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AVS Moment Retrieval

Locate the moment where “A man 

wearing a white mask is speaking 

about sponsor Bokksu snacks with 

noisy background sound, which they 

have been trying for over a year.”

[97.3, 105.6]

AVS Segment Captioning

What’s happening between [97.3, 

105.6],considering from both audio, 

visual and speech aspects?

A man wearing a white mask is 

speaking about sponsor Bokksu snacks 

with noisy background sound, which 

they have been trying for over a year. 

VS Segment Captioning

From [97.3, 105.6], would you describe 

the visual-speech event happening, 

focusing on what’s visible and spoken?

A man wearing a face mask talks to 

another person about the sponsor 

Bokksu, mentioning they have been 

trying out the snacks for over a year.

AV Segment Captioning

In the time window [97.3, 105.6], please 

identify the visual-sound event and 

explain what’s happening.

A man wearing a face mask is talking 

under noisy background sound.

Visual-Only Segment Captioning

At the interval [97.3, 105.6], explain 

what visual event is happening in the 

video.

A man is wearing a face mask is talking.

VS Moment Retrieval

For the query 'A man recommends 

visiting local areas in Tokyo, filming the 

vibrant shopping mall with various 

shops.', find the second at which it 

occurs in the video

[256.3, 265.6]

AV Moment Retrieval

Where does 'A man is walking in a 

narrow alley, with street noise and 

conversations in the background. 

Another man rides a bike down the 

street while an old man speaks on the 

sidewalk.” appears within the video.

[1747.9, 1759.1]

Visual-Only Moment Retrieval

Determine the precise timestamp in 

seconds of the content described by 

'two men walking' in the video, and 

provide this information.

[50.2, 59.4]

… … … …

Sound: Street Noise Sound: Street Noise Sound: Street Noise Sound: Street Noise, People Talking Sound: Street Noise, People Talking

Speech: 35 yuan, 
it’s  like 30 cents, 
can you believe…

Speech: By the way guys, this 
video is sponsored by bokksu, you 
guys know, we’ve trying out the 
boxes snacks for over a year…

0s 6s 50s 60s

Speech: People start to gather in 
this area, and this place is also 
known to very cheap street food 
and take out food…

97s 106s 256s 267s

Speech: I really really recommend 
if you’ve never been to one, to visit 
one of these local areas, and walk 
around one of the…

1747s 1759s

Speech: Ok guys, there’s one more 
shopping day in this area, and 
instead of me like backtracking…

Figure 1: TriSense supports segment captioning and moment retrieval for videos from audio, visual,
and speech modalities, as well as any combination of them, covering a total of eight different tasks.

Abstract

Humans naturally understand moments in a video by integrating visual and auditory
cues. For example, localizing a scene in the video like “A scientist passionately
speaks on wildlife conservation as dramatic orchestral music plays, with the
audience nodding and applauding” requires simultaneous processing of visual,
audio, and speech signals. However, existing models often struggle to effectively
fuse and interpret audio information, limiting their capacity for comprehensive
video temporal understanding. To address this, we present TriSense, a triple-
modality large language model designed for holistic video temporal understanding
through the integration of visual, audio, and speech modalities. Central to TriSense
is a Query-Based Connector that adaptively reweights modality contributions
based on the input query, enabling robust performance under modality dropout
and allowing flexible combinations of available inputs. To support TriSense’s
multimodal capabilities, we introduce TriSense-2M, a high-quality dataset of
over 2 million curated samples generated via an automated pipeline powered by
fine-tuned LLMs. TriSense-2M includes long-form videos and diverse modality
combinations, facilitating broad generalization. Extensive experiments across
multiple benchmarks demonstrate the effectiveness of TriSense and its potential to
advance multimodal video analysis.
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1 Introduction

Human understanding of real-world events is inherently multimodal: we rely not only on vision
but also on spoken language and audio cues to make sense of what is happening in a video. This
integration allows us to interpret intention, emotion, and the significance of events—going beyond
what is seen to include what is heard and said. However, existing Multimodal Large Language Models
(MLLMs) often fall short of achieving this level of nuanced video temporal understanding. While
advances in vision-language modeling and temporal localization have improved language–visual
alignment [11, 23, 15, 12, 38, 19, 28], most models still rely solely on visual inputs. As a result,
they perform poorly on tasks requiring the integration of audio and speech—particularly when one
or more modalities are missing, noisy, or contextually irrelevant. This stands in contrast to human
perceptual robustness and significantly limits model generalization in real-world scenarios, such
as accurately localizing events or generating rich multimodal descriptions.

Challenges and Current Limitations. As highlighted above, the current state of multimodal temporal
understanding remains limited. Building on these observations, two core challenges continue to hinder
progress in multimodal temporal understanding: 1) Insufficient and Incomplete Training Data: Cur-
rent datasets are often composed of short clips and lack large-scale, fully annotated examples across
all three modalities—vision, audio, and speech—which are essential for effective multimodal pretrain-
ing [14, 8, 13, 12]. This scarcity hampers the development of robust MLLMs. Moreover, real-world
videos often contain incomplete or inconsistent modality coverage, due to factors like variable record-
ing setups, intentional omissions (e.g., silent footage or background music), or the natural absence of
certain signals in specific scenes. When models are trained predominantly on videos with all modal-
ities present, they often fail at inference time when confronted with missing or degraded inputs—a
common scenario in the wild. 2) Lack of Modality Adaptation: Current MLLMs are generally not
equipped to assess the relative importance of each modality based on task or query context. Recent
models such as LongVALE [10] and Qwen2.5-Omni [34] attempt to integrate multiple modalities but
fall short in adaptivity. For instance, LongVALE compresses all modality tokens into a single represen-
tation, resulting in information loss and poor handling of missing modalities. It also lacks an adaptive
dropout strategy, leading to unstable performance when modality availability varies. Qwen2.5-Omni
introduces temporal positional embeddings, but still fails to capture fine-grained temporal dependen-
cies, limiting its effectiveness on complex moment-level tasks, as demonstrated in our experiments.

Key Contributions. We argue that understanding complex moments in video requires not only
broader modality coverage but also an adaptive mechanism to selectively emphasize the most relevant
modalities depending on the task and query. Our approach addresses these challenges through the
following key contributions:

1) We introduce TriSense-2M, a large-scale multimodal dataset containing 2 million annotations.
Each video instance in the dataset includes event-based annotations across vision, audio, and speech
modalities, with flexible combinations and natural absences of modalities. The dataset supports a
wide variety of scenes and includes long-form videos averaging 905 seconds—significantly longer
than those in existing datasets—enabling deeper and more realistic temporal understanding. Impor-
tantly, queries are expressed in high-quality natural language, aligned with temporal annotations, and
span diverse modality configurations to facilitate robust multimodal learning.

2) We propose TriSense, a triple-modality MLLM designed for both video segment captioning and
moment retrieval under diverse modality configurations. As depicted in Figure 1, TriSense is designed
to handle multimodal video data with varying availability of vision, audio, and speech over temporal
dimension. Crucially, it includes a Query-Based Connector that dynamically adjusts modality
weights based on the query’s content and context. This allows the model to emphasize the most
informative modalities (e.g., prioritizing vision if most relevant) while down-weighting irrelevant or
missing ones—enabling strong performance even under incomplete modality conditions.

3) We conduct extensive experiments on two core tasks—video segment captioning and moment
retrieval—across eight modality configurations, including zero-shot evaluation on public benchmarks.
TriSense achieves strong performance on both the new TriSense-2M dataset and existing benchmarks,
laying a solid foundation for future research in multimodal temporal video understanding.
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2 Related Work

2.1 Video Temporal Understanding MLLMs

Video temporal understanding focuses on modeling how events unfold over time within a video,
enabling tasks such as moment retrieval, segment captioning, and dense video captioning. Vision-
language models (VLMs) have demonstrated strong capabilities in solving real-world problems,
including in zero-shot scenarios without task-specific fine-tuning. However, many of these models still
face challenges when it comes to understanding temporal dynamics [36, 5]. To address this, several
models have been fine-tuned on video grounding datasets that emphasize temporal structure—such as
TimeChat [27], VTimeLLM [15]—to enhance their temporal reasoning abilities. More recently, Mo-
mentor [23] introduced a time encoder to correct errors caused by time token quantization, while VTG-
LLM [12] employed specialized time tokens and temporal position embeddings to help video LLMs
better capture the timing of events. In a different approach, TRACE [11] applied principles from causal
language modeling to propose causal event modeling for videos. It also introduced a lightweight time
tower for encoding temporal information, achieving solid performance in temporal understanding.

Extending beyond vision-language modeling, Multimodal Large Language Models (MLLMs)
integrate visual, audio, and speech modalities to enable richer video analysis. To improve
performance, recent efforts have focused on incorporating these additional modalities. For example,
LongVALE [10] compresses all modality tokens into a single token, but this leads to loss of
fine-grained details such as audio context or speech intonation. Qwen2.5-Omni [34], on the other
hand, introduces the Thinker-Talker architecture—a fully end-to-end multimodal system that
handles text, images, audio, and video inputs. To better align audio and video along the temporal
dimension, the authors propose TMRoPE, a timing-aware positional encoding technique. However,
our experiments show that this model still struggles with grounding in long-form videos.

Despite these advancements, many existing models are either limited to visual modalities or lack
support for flexible combinations of different modalities. This restricts their effectiveness in temporal
understanding tasks, particularly in scenarios where some modalities may be absent or noisy. These
challenges motivate our pursuit of MLLMs that can robustly handle various modality combinations
while maintaining strong temporal reasoning and general understanding performance.

2.2 Benchmarks for Temporal Understanding

The development of benchmark datasets has played a crucial role in advancing video temporal
understanding. Early contributions such as DiDeMo [14] introduced natural language queries
for moment localization in videos. Subsequent datasets like Charades-STA [8] and ActivityNet
Captions [18] expanded on this by covering a wider variety of actions and longer video durations,
significantly pushing the field forward. More recently, InternVid2 [32] has emerged as a large-scale
foundational dataset, offering 61 million audio-visual-speech annotations. However, many of these
annotations are disjointed, lacking coherence across modalities, and the dataset contains a substantial
number of low-quality captions due to its scale.

To address these limitations, VAST-27M [3] and VALOR [2] were introduced. Both datasets offer
high-quality, omni-modal (audio-visual-speech) annotations with better interrelated features than
InternVid2, supporting comprehensive multimodal understanding for MLLMs. Nonetheless, they
rely on simple concatenation of captions across modalities and do not incorporate cross-modal
reasoning. Moreover, these benchmarks provide only coarse-grained captions for short clips,
making them inadequate for fine-grained understanding of long-form video. Although both datasets
improve on InternVid2, they repeat similar limitations: their annotations are not contextually
integrated across modalities, and their temporal granularity is too coarse for modeling nuanced event
transitions in extended videos. In response to these shortcomings, LongVALE [10] was proposed,
featuring 108K high-quality annotations with omni-modal coverage. While it offers notable
improvements, VAST-27M, VALOR, and LongVALE all overlook a critical issue: the dynamic
presence of modalities. In real-world videos, audio, visual, and speech inputs are not always available
simultaneously, raising important questions about model robustness in the face of missing modalities.

In conclusion, existing benchmarks often focus exclusively on visual information or fail to adequately
support flexible multimodal integration. These limitations highlight the need for improved datasets
and serve as a key motivation for our work.
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3 Data Construction

As discussed in Sections 1 and 2, while some existing datasets include all three modalities—visual,
audio, and speech—they generally assume that these modalities are always present simultane-
ously [3, 2, 10], overlooking the importance of supporting arbitrary combinations. This assumption
limits the development of models that can handle missing or partial inputs effectively. To address
this, we introduce a new large-scale, high-quality dataset designed to support both fully multimodal
and partially multimodal scenarios.

Two men are singing and 
clapping hands, 

speaking and laughing.

Someone is singing and 
talking, someone is 

yelling.

"This is the ugliest thing 
you’re gonna do."

Visual Caption

Audio Caption

Speech Caption

LLM
 G

enera
tor

Two men are speaking 
and laughing while 

someone else is singing 
and talking, and the 

ugliest thing is about to 
happen.

Two men are singing, 
clapping, and talking. 
One of them yells while 

the other sings and 
speaks

Two men are clapping 
and speaking in sync, 
laughin. One of them 
says “This is the ugliest 

thing you’re gonna do”.

AVS Caption

AV Caption

VS Caption

Average
Score

×  Filter

✔  Keep

>= 3/5

< 3/5

LLM
 Jud

ger

…
…

Figure 2: We employ an automated framework to build our dataset by leveraging modality-specific
captions from vision, audio, and speech streams. Two large language models (LLMs) are trained for
this process: a Generator, which fuses the three input captions into multi-modal outputs (AVS, AV,
VS), and a Judger, which evaluates the semantic quality of the generated captions. The Judger assigns
an average quality score between 0 and 5 based on alignment with the original inputs. Samples
scoring ≥ 3 are retained, while those scoring < 3 are discarded.

Our dataset includes longer video durations, making it suitable for realistic and fine-grained temporal
grounding tasks. It enables models to “watch and listen” in a human-like manner, flexibly attending to
available visual, auditory, and speech cues to identify relevant moments. In addition, we include cap-
tion data to promote deeper video understanding and narrative generation. To support scalable and con-
sistent annotation, we developed a fully automated data construction pipeline, as shown in Figure 2.

2-5 min (0.1%)

5-10 min (10.2%)

10-20 min (83.5%)

20-30 min (4.2%)

30-60 min (1.9%)

>60 min (0.1%)

Figure 3: Video duration distribution.
Most videos are 10–20 minutes long
(83.5%), supporting long-form tempo-
ral understanding.

We begin by selecting subsets from InternVid [32] and
VAST [3] as our raw sources for both video content
and initial captions. Each video clip is annotated with
three distinct captions: a visual caption that describes
observable scenes and actions, an audio caption that
details acoustic elements, and a speech caption that
transcribes spoken content. These modality-specific
captions are generated using specialized annotation
pipelines adapted from previous works [32, 3].

To enable reasoning across modalities, our goal is to
synthesize omni-modal captions that flexibly combine
distinct unimodal annotations. These are crucial for
training models capable of comprehensive temporal
understanding. To generate these captions, we use two
custom-trained large language models based on Qwen2.5-
72B [35]: a Generator and a Judger. The Generator merges modality-specific captions into unified
representations for three combinations: AVS (Audio-Visual-Speech), AV (Audio-Visual), and VS
(Visual-Speech). These captions are designed to capture cross-modal interactions, such as clapping
that aligns with vocal rhythm or speech that corresponds with visual context. The Judger evaluates the
quality of each synthesized caption by measuring its semantic alignment with the original unimodal
annotations. It assigns a quality score ranging from 0 to 5 and filters out samples with inconsistencies,
such as speech that does not relate to visual actions or mismatched audio-visual descriptions. To
train these models, we first build a high-quality reference corpus using GPT-o1 [16], which is then
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manually refined and filtered. From this curated set, we select 10,000 samples to train the Generator
and 3,000 samples to train the Judger. Further training details are provided in the Appendix.

Table 1: Comparison of temporal understanding datasets. TriSense-2M uniquely supports all
three modalities with long video lengths and explicit handling of modality dropout.
Datasets Annotations Avg. len Visual Audio Speech Modality Dropout
VALOR [2] 1.32M 10s ✓ ✓ ✗ ✗
VAST [3] 27M 30s ✓ ✓ ✗ ✗
UnAV-100 [9] 30K 42.1s ✓ ✓ ✗ ✗
Charades-STA [8] 16K 30s ✓ ✗ ✗ ✗
ActivityNet-Captions [13] 20K 180s ✓ ✗ ✗ ✗
LongVALE [10] 108K 235s ✓ ✓ ✓ ✗
TriSense-2M 2M 905s ✓ ✓ ✓ ✓

Table 2: Detailed Information of TriSense-2M, where Avg/Min/Max Duration represent the average,
minimum, and maximum duration, respectively. 0–5s / 5–10s / 10–15s, etc., represent the proportions
of different duration intervals.
Total Events Avg Duration Min Duration Max Duration 0-5s 5-10s 10-15s 15-20s 20-30s
1940522 6.87s 2.00s 30.00s 35.5% 46.2% 12.6% 4.2% 1.5%

The data construction pipeline processes an initial pool of 5 million multimodal video samples
containing visual, audio, and speech captions. Through multiple rounds of generation, evaluation,
and filtering, the Judger retains only high-quality outputs, resulting in a final dataset of 2 million
samples drawn from approximately 38,000 long videos. The distribution of video durations is shown
in Figure 3. The average video length is 905 seconds, nearly four times longer than that of the closest
existing dataset, which averages 235 seconds [10]. This curated dataset enables robust temporal
reasoning across diverse modality combinations and forms the foundation for training and evaluating
our TriSense model. Overall comparisons with existing datasets are provided in Table 1, and more
detailed examples are included in the Appendix.

4 TriSense Architecture

The overall architecture of the TriSense model is illustrated in Figure 4. The model is designed to
process visual, audio, and speech information extracted from a video in order to answer a text-based
query. Each modality is first processed by one of three specialized expert encoders [24, 26, 4]. The
resulting feature representations are then passed through modality-specific projectors and integrated
with the query using Cross-Attention mechanisms, allowing the model to capture fine-grained
interactions between each modality and the query. A Query-Based Connector subsequently fuses
the modality representations and adaptively adjusts their contributions based on the content of the
query. This fused multimodal representation is enriched with temporal information and then input
into a Large Language Model (LLM) backbone, which produces the final output. To effectively
model temporal dependencies, the architecture includes a dedicated Time Encoder [11] and employs
task-specific heads to ensure outputs are temporally aligned and task-relevant.

4.1 Multimodal Information Extraction
During training, given a video V = {F1, F2, ....FT }, where T denotes the total number of frames,
we first uniformly select n = 64 frames for further processing and controlling memory usage. For
each selected frame, we record its timestamp and extract an audio segment of ±1 second around the
frame, resulting in a sequence of audio segments A = {A1, A2, ....An}, each lasting 2 seconds. For
instance, if a frame is sampled at 123.4 seconds, the corresponding audio segment spans from 122.4
to 124.4 seconds. We then use pretrained expert encoders to extract modality-specific tokens: fv

i , fa
i ,

fs
i for vision, audio, and speech, repectively.

To enhance temporal awareness of the model, we encode the selected timestamp using a Time
Encoder [11]. Each timestamp is first tokenized into a fixed-length character sequence comprising
four integer digits, a decimal point, and one fractional digit, resulting in 6 tokens per frame. For
example, the timestamp [123.4] is tokenized to 〈0〉〈1〉〈2〉〈3〉〈.〉〈4〉. These tokens are then embedded
to form time features f(t). Given the high token count from the three modalities, we apply Slot-Based
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 Concat(                                                                      )

… … … …

0s 6s 50s 60s 97s 106s 256s 267s 1747s 1759s

…

Query: Locate the moment where “A 
man wearing a white mask is talking 
about the sponsor under noisy street 
sound, which they have been trying for 
over a year”, return precise timestamps.

Vision Tokens  Audio Tokens Speech Tokens

Vision Encoder

Vision Projector

Audio Encoder

Audio Projector

Speech Encoder

Speech Projector

Text Tokenizer

Cross Attention Cross Attention

Text Tokens

Large Language Model

Multimodal tokens

LM HeadTime Head

Wv

Wa

Ws

Query-Based Connector

Time 
Encoder

Wv* Wa * Ws *

Point-wise Addition

Stage2 Trainable Modules

Frozen Components

Stage3 Trainable Modules

Cross Attention

Compress & Two-layer MLP

<sync>

fi
v fi

a fi
s

fi
’v fi

’a fi
’s

fi
v,q fi

a,q fi
s,q

fi
q

Figure 4: Architecture of the TriSense model. The model processes vision, audio, and speech via
dedicated encoders and fuses them using a Query-Based Connector that assigns weights based on the
query. The fused output, combined with temporal embeddings, is passed to an LLM for generating
timestamped or textual responses.

Compression [12] as Modality Projector to reduce the dimensionality of the input. This technique
compresses the vision tokens fv

i , audio tokens fa
i , and speech tokens fs

i , into fixed-length vectors
of 16 tokens each, denoted as f

′v
i , f

′a
i and f

′s
i .

4.2 Query-Based Connector
To more effectively integrate multimodal inputs with the query and enhance sensitivity to salient
features, we introduce a Query-Based Connector that adaptively balances the contributions of each
modality based on the query’s content, as illustrated in Figure 4. The compressed modality features
f

′v
i , f

′a
i and f

′s
i obtained from Section 4.1, are passed through Cross-Attention layers, where

they interact with the encoded query representation f (q). The objective is for each attention layer to
emphasize features that are most relevant to the query. The outputs of these layers are denoted as query-
relevant features fv,q

i , fa,q
i and fs,q

i , which reflect the alignment between each modality and the query.

To dynamically determine the importance of each modality in relation to the query, we introduce an
adaptive weighting mechanism. First, we apply global average pooling over the sequence dimension of
each modality to derive compact global representations cv , ca, and cs. These vectors are concatenated
and fed into a single-layer MLP F(·) to generate unnormalized weights wv, wa, and ws. The
weights are then normalized using a softmax function to yield a valid probability distribution over the
modalities, satisfying the constraint wv + wa + ws = 1. The computation is formalized below:

cm = 1
Tm

∑Tm

t=1 xm,t, m ∈ {v, a, s} (1)

w̃m = F
(
[ cv ∥ ca ∥ cs ]

)
∈ R3, m ∈ {v, a, s} (2)

wm = exp(w̃m)∑
m′∈{v,a,s}

exp
(
w̃m′

) , m ∈ {v, a, s} (3)

Here, cm is the compressed modality vector after global average pooling, Tm indicates the
sequence length of distinct modality m, ∥ denotes vector concatenation, and w̃m and wm represent
unnormalized and normalized weights, respectively.

After computing the weights, we multiply the previously obtained query-relevant features by their
corresponding weights and concatenate them together to fuse a multimodal representation. To
reduce the token count, we apply slot compression Ccomp(·) again to compress the tokens from
triple the amount back to a single scale. Finally, a two-layer MLP F̂(·) is used for further feature
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refinement, aligning the representation with the LLM’s input dimensionality and enhancing its
expressive capacity:

Xm = F̂(Ccomp(concat(wvf
v,q
i , waf

a,q
i , wsf

s,q
i ))) (4)

This adaptive fusion allows the model to emphasize the most informative modalities while reducing
the influence of less relevant ones, based on the specific query. The resulting representation Xm

is combined with the corresponding time embeddings f(t) (as introduced in Section 4.1) and passed
into the LLM backbone, which uses its contextual reasoning capabilities to generate the final output.

4.3 Causal Event Prediction
To enhance the model’s temporal reasoning capabilities and better align predictions with the underly-
ing structure of video narratives, we employ causal event prediction, a method shown to be effective
in prior work [11]. This approach enables the model to reason about cause-and-effect relationships
across time, predicting upcoming events based on prior context. Specifically, given a video V, we
segment it into a sequence of events {e1, e2, · · · , eK}, where each event ek = (tk, ck) consists of a
timestamp tk and an associated caption ck describing the video segment:

V = {e1, e2, · · · , ek} = {(tk, ck)|1 ≤ k ≤ K} . (5)

Our goal is to predict the next event ek conditioned on the sequence of prior events e1:k−1, the
user-provided query Q, and the multimodal features Xm produced by the Query-Based Connector:

P(ek|e1:k−1, f
(q),Xm) = P(tk, ck|e1:k−1, f

(q),Xm) (6)

To support both temporal and textual outputs, we introduce adaptive head switching via a special
〈sync〉 token during LLM generation. This token is appended to the vocabulary and serves as a control
signal that guides the model to switch between time head and language model (LM) head, as illustrated
in Figure 4. When the 〈sync〉 token is encountered, the LLM transitions between decoding modalities
to generate either timestamp-aligned predictions or free-form textual outputs, depending on the task.

5 Experiments

In this section, we present the core experiments conducted to evaluate the performance of our
proposed model. Due to space constraints, implementation details, training procedures, and additional
experimental results are provided in the Appendix.

5.1 Evaluation Datasets, Metrics and Baseline Models

To rigorously assess the effectiveness of TriSense, we conduct evaluations on two key temporal
understanding tasks:

• Segment Captioning (SC). This task involves generating descriptive captions that accurately
summarize the events occuring throughout a video. We evaluate our model on the newly introduced
TriSense-2M dataset, and provide additional datasets in the Appendix. The performances are
reported in BLEU-4 [22], CIDEr [30], ROUGE_L [20] and METEOR [1] to gauge the quality and
accuracy of the generated captions.

• Moment Retrieval (MR). In this task, the model is required to retrieve specific segments within a
video that correspond to a given textual query. We evaluate performance on TriSense-2M, as well
as two widely used public benchmarks: Charades-STA [8] and ActivityNet-Captions [13]. Re-
trieval effectiveness is reported using Recall@IoU=0.5, Recall@IoU=0.7, and mean IoU (mIoU),
providing a comprehensive view of the model’s localization accuracy at varying overlap thresholds.

The modality combinations are set to Audio-Visual-Speech (AVS), Visual-Speech (VS), Audio-Visual
(AV) and Visual-Only (V). To establish a solid comparative baseline, we select representative models
specifically designed for Video Temporal Grounding (VTG) tasks. These include VTimeLLM [15],
TimeChat [27], VTG-LLM [12], TRACE [11], along with two recent omni-modal models Long-
VALE [10] and Qwen2.5-Omni [34]. While Momentor [23], Hawkeye [31] and NumPro-FT [33] are
not included in the TriSense-2M benchmark due to the unavailability of model checkpoints and their
lack of support for captioning, they are included in public benchmark evaluations according to the
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Table 3: Segment Captioning results. Performance is reported on four modality settings using
BLEU-4 (B), METEOR (M), ROUGE-L (R), and CIDEr (C). Best and second-best results are in
bold and underlined, respectively.

Model AVS-SC VS-SC AV-SC V-SC
B M R C B M R C B M R C B M R C

VTimeLLM (7B) 0.8 8.2 16.1 2.4 1.2 8.8 16.9 3.1 1.3 10.3 17.9 2.6 1.4 10.4 18.2 4.0
TimeChat (7B) 0.6 4.0 8.7 0.6 0.9 4.9 9.8 1.4 1.1 5.5 10.5 1.5 0.8 6.7 12.5 5.7
VTG-LLM (7B) 0.3 4.8 9.6 0.6 0.3 4.9 10.0 0.9 0.4 5.2 10.2 0.9 0.3 5.0 9.8 1.4
TRACE (7B) 1.0 7.6 13.5 1.1 1.4 7.8 14.3 2.3 1.6 9.0 16.3 2.6 1.3 9.4 16.8 9.5
TRACE-uni (7B) 1.1 8.2 14.7 1.4 1.5 8.3 15.1 2.2 1.6 9.5 16.3 2.3 1.3 9.9 17.6 8.8
LongVALE (7B) 1.2 8.6 16.7 4.9 2.3 10.0 20.1 5.5 2.5 11.4 21.3 5.9 1.5 11.5 18.8 0.9
Qwen2.5-Omni (7B) 0.8 8.8 13.1 1.7 0.8 8.6 13.1 0.8 1.2 9.8 15.1 1.3 1.1 10.1 14.6 1.1
TriSense (7B) 3.4 10.1 20.1 8.3 3.0 10.0 22.2 11.8 5.3 12.2 26.3 15.4 7.3 12.6 30.7 36.3

Table 4: Moment Retrieval results with 64 frames. Performance is reported as Recall at IoU
0.5 and 0.7 across four modality settings. Best and second-best results are in bold and underlined,
respectively.

Model AVS-MR VS-MR AV-MR V-MR
IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7

VTimeLLM (7B) 0.21 0.09 0.28 0.14 0.23 0.08 0.41 0.14
TimeChat (7B) 0.28 0.12 0.27 0.09 0.22 0.08 0.34 0.12
VTG-LLM (7B) 0.19 0.08 0.15 0.05 0.21 0.07 0.23 0.06
TRACE (7B) 0.39 0.12 0.31 0.15 0.24 0.13 0.42 0.21
TRACE-uni (7B) 0.30 0.17 0.35 0.17 0.24 0.18 0.48 0.22
LongVALE (7B) 0.08 0.01 0.07 0.01 0.07 0.01 0.05 0.01
Qwen2.5-Omni (7B) 0.61 0.21 0.61 0.16 0.28 0.07 0.18 0.06
TriSense (7B) 1.12 0.42 0.80 0.28 0.57 0.21 0.43 0.22

reports in their official papers. By comparing our model against these baselines across diverse tasks
and evaluation metrics, we aim to provide a comprehensive assessment of TriSense’s capabilities and
its advancements in video temporal understanding.

5.2 Results and Analysis

Superior Performance on Omni-Modal datasets. We evaluate our performance on the proposed
TriSense-2M dataset. As illustrated in Table 3 and Table 4, TriSense consistently outperforms existing
video LLMs across nearly all evaluated tasks. It also significantly surpasses latest omni-modal models
like LongVALE [10] and Qwen2.5-Omni [34], particularly in the audio-visual-speech (AVS) setting
where all three modalities are leveraged.

We observe that the model shows slightly lower performance on visual-only moment retrieval
compared to state-of-the-art vision models, which is likely due to its optimization for multimodal
settings rather than visual-only scenario. Also, it is important to note that our model uses only
64 input frames during testing, compared to larger input sizes used in other models—such as 128
frames in TRACE [11] and 100 frames in VTimeLLM [15]. Since TriSense-2M consists mostly of
long videos, using fewer frames makes it more difficult for the model to achieve high accuracy in
long-video moment retrieval tasks. When the videos become shorter or more frames are used, we
gain better performances, this is also supported by the results in Table 6 and Table 7.

We also conduct experiments on the public Omni-Modal benchmark LongVALE [10]. LongVALE is
designed for event understanding across vision, audio, and language modalities, comprising 105,000
omni-modal events with precise temporal annotations and relation-aware captions, collected from
8,400 high-quality long-form videos. The Omni-VTG and Omni-SC tasks named from the official
report of LongVALE, which are the same as AVS-MR and AVS-SC in our paper. As summarized
in Table 5, our zero-shot performance on the Moment Retrieval task is comparable to LongVALE’s
performance, even though their model is trained on the same dataset. Although there is a larger gap
in the Segment Captioning task, we believe this is due to pattern differences in captioning styles
between our Segment Captioning training data and LongVALE’s Segment Captioning data. Such
differences in caption patterns can lead to noticeable drops across all four evaluation metrics.
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Table 5: Performance on public Omni-Modal benchmark LongVALE [10]. "*" indicates this model is
trained on the LongVALE dataset. The best and second results are highlighted in bold and underlined,
respectively.

Model Omni-VTG (AVS-MR) Omni-SC (AVS-SC)
R@0.3 R@0.5 R@0.7 mIoU B M R C

VideoChat (7B) 2.2 0.9 0.4 3.0 0.5 9.6 0.0 8.2
VideoChatGPT (7B) 4.9 2.9 0.9 5.0 0.4 14.0 0.9 5.9
VideoLLaMA (7B) 2.5 1.1 0.3 1.9 0.9 11.5 0.1 8.9
PandaGPT (7B) 2.5 1.0 0.3 2.2 0.6 14.9 0.3 8.9
NExT-GPT (7B) 4.3 1.9 0.7 4.0 0.4 10.2 0.0 8.1
TimeChat (7B) 5.8 2.6 1.1 5.2 1.2 16.1 1.6 10.0
VTimeLLM (7B) 7.5 3.4 1.3 6.4 1.0 14.5 1.6 5.5
LongVALE* (7B) 15.7 8.6 3.9 11.0 5.6 22.4 20.3 10.9
TriSense (7B) 14.8 9.3 4.7 11.2 4.8 21.9 18.8 10.4

Table 6: Zero-shot Moment Retrieval results on public benchmarks with 64 frames. "*" indicates
this model uses more frames than TriSense. The top and second-best results are highlighted in bold
and underlined, respectively.

Model Charades-STA ActivityNet-Caption
IoU=0.5 IoU=0.7 mIoU IoU=0.5 IoU=0.7 mIoU

VTimeLLM* (7B) 27.5 11.4 31.2 27.8 14.3 30.4
VTimeLLM* (13B) 34.3 14.7 34.6 29.5 14.2 31.4
TimeChat* (7B) 32.2 13.4 - 4.6 2.0 6.9
Momentor* (7B) 26.6 11.6 28.5 23.0 12.4 29.3
HawkEye (7B) 31.4 14.5 33.7 29.3 10.7 32.7
VTG-LLM* (7B) 33.8 15.7 - 8.3 3.7 12.0
TRACE* (7B) 40.3 19.4 38.7 37.7 24.0 39.0
TRACE-uni* (7B) 43.7 21.0 41.5 38.2 24.7 39.4
NumPro-FT* (7B) 42.0 20.6 41.4 37.5 20.6 38.8
TriSense (7B) 42.3 27.6 39.8 39.6 27.2 40.1

Zero-shot performance on public Moment Retrieval benchmarks. We also evaluate TriSense in a
zero-shot setting on established two classical visual-only datasets, including Charades-STA [8] and
ActivityNet-Captions [13], as shown in Table 6. The results show that although TriSense shows slight
inferior performance in Table 4, it still achieves competitive performance in visual-only settings,
showing especially higher accuracy (IoU=0.7) than others, even with less frames used.

Table 7: Ablation studies on Moment Retrieval. The top and second-best results are highlighted in
bold and underlined, respectively.

Model Frame Number AVS-MR VS-MR AV-MR V-MR
IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7

Training Stages
Stage1 Only 64 0.07 0.01 0.06 0.01 0.06 0.00 0.02 0.00
Stage1+2 64 0.52 0.19 0.43 0.18 0.32 0.12 0.27 0.14

Connector
Addition 64 0.71 0.22 0.69 0.21 0.41 0.11 0.22 0.19
Fixed Weights 64 0.89 0.38 0.77 0.24 0.52 0.19 0.44 0.23

Frame Number
TriSense (7B) 32 0.74 0.27 0.68 0.18 0.39 0.13 0.24 0.11
TriSense (7B) 64 1.12 0.42 0.80 0.28 0.57 0.21 0.43 0.22
TriSense (7B) 128 1.12 0.43 0.87 0.31 0.64 0.32 0.49 0.26

Ablation Studies. We conduct ablation experiments to assess the contribution of different compo-
nents, including the training strategy, the Query-Based Connector, and the number of frames
processed by the model. As shown in Table 7 and Table 8, we compare our adaptive weighting
strategy against simpler alternatives. The Addition baseline directly sums the modality features
without weighting. The Fixed Weights baseline assigns equal weights (e.g., 0.33 each in AVS), or
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fixed values depending on the modality pair (e.g., 0.5 for each active modality and 0 for inactive ones
in VS/AV), and uses only the visual stream in visual-only tasks (weight of 1, others set to 0). These
comparisons confirm the effectiveness of our query-adaptive weighting mechanism.

Table 8: Ablation results on Segment Captioning. We analyze the effects of training stages,
connector design, and input frame count across four modality settings (AVS, VS, AV, V). Metrics
include BLEU-4 (B), METEOR (M), ROUGE-L (R), and CIDEr (C).

Model Frame Number AVS-SC VS-SC AV-SC V-SC
B M R C B M R C B M R C B M R C

Training Stages
Stage1 Only 64 0.0 1.5 4.3 0.1 0.0 1.4 4.1 0.1 0.0 1.3 4.1 0.1 0.0 1.3 4.0 0.1
Stage1+2 64 2.1 9.3 19.8 6.6 1.8 8.6 20.2 6.7 3.0 11.1 21.5 8.2 5.3 6.2 11.8 13.8

Connector
Addition 64 1.6 9.9 18.0 5.8 1.8 9.1 19.3 5.8 3.8 11.2 22.0 11.5 5.7 11.1 28.5 21.9
Fixed Weights 64 3.1 9.8 19.4 6.6 2.4 9.3 20.7 7.9 4.3 11.8 26.1 15.3 7.4 12.7 30.6 36.7
Frame Number
TriSense (7B) 32 3.2 9.7 19.9 7.7 2.1 9.3 19.5 7.9 3.4 11.1 22.5 9.6 6.3 11.7 29.8 29.2
TriSense (7B) 64 3.4 10.1 20.1 8.3 3.0 10.0 22.2 11.8 5.3 12.2 26.3 15.4 7.3 12.6 30.7 36.3
TriSense (7B) 128 3.4 10.2 20.2 8.5 3.1 9.9 22.8 11.5 5.4 12.3 26.7 15.4 7.3 12.8 30.8 36.1

We can observe that in Training Stages section, Stage 1 focuses solely on modality alignment and
no temporal information is included, therefore does not performing well across two tasks. However,
after training in Stage 2, the model acquires around 50% of its capability. For the Connector ablation,
we find that simply adding all modalities together does not allow the model to emphasize the more
important modalities, resulting in a drop in performance. Similarly, in the Fixed Weights ablation
for AVS/VS/AV tasks, assigning equal weights to modalities fails to effectively capture their varying
importance, leading to inferior performance compared to using dynamic modality weights. However,
fixing visual weight to 1 indeed leads to slightly better performance in visual-only (V) setting. We
also observe that increasing the number of frames used by the model (from 64 to 128) leads to
performance improvement in every scenario. This trend is consistent with the findings in both of
the Moment Retrieval and Segment Captioning.

6 Conclusion

In this work, we introduced TriSense, a novel multimodal large language model designed to ad-
vance comprehensive video understanding by integrating visual, audio, and speech modalities. At
the core of our model is the Query-Based Connector, which enables dynamic, modality-adaptive
fusion—allowing the system to operate effectively across arbitrary combinations of input modalities.
This capability is essential for real-world scenarios, where certain modalities may be partially avail-
able or entirely absent. To support progress in this area, we constructed TriSense-2M, a large-scale
dataset containing over 2 million carefully curated samples. These samples span diverse scenes,
durations, and modality alignments, offering a rich foundation for training and evaluation. Through
extensive experimentation, we demonstrated that TriSense consistently achieves state-of-the-art
performance on key temporal video understanding tasks, including moment retrieval and long-form
video segment captioning. Our modality-adaptive framework marks a substantial step toward more
flexible and human-like video understanding systems. It not only delivers strong performance in
controlled evaluations but also shows robust applicability in real-world conditions with varying input
configurations. We believe that both TriSense and the TriSense-2M dataset will serve as valuable re-
sources for future research in multimodal learning and temporal reasoning, enabling broader advances
across a range of video understanding applications.

7 Acknowledgements

This project is jointly supported by the University of Western Australia (UWA) HDR Scholarship,
Australian Research Council ARC DP210101682, DP210102674, and the Australian Government
through the Australian Research Council’s DECRA funding scheme DE250100030. We thank
Zhejiang Lab for providing the computational resources.

10



References
[1] Satanjeev Banerjee and Alon Lavie. Closer look at summarization evaluations. In Proceedings of the

workshop on empirical modeling of semantic equivalence and entailment, pages 1–8, 2005. 7
[2] Sihan Chen, Xingjian He, Longteng Guo, Xinxin Zhu, Weining Wang, Jinhui Tang, and Jing Liu. Valor:

Vision-audio-language omni-perception pretraining model and dataset. arXiv preprint arXiv:2304.08345,
2023. 3, 4, 5

[3] Sihan Chen, Handong Li, Qunbo Wang, Zijia Zhao, Mingzhen Sun, Xinxin Zhu, and Jing Liu. Vast: A
vision-audio-subtitle-text omni-modality foundation model and dataset. Advances in Neural Information
Processing Systems, 36, 2024. 3, 4, 5

[4] Sanyuan Chen, Yu Wu, Chengyi Wang, Shujie Liu, Daniel Tompkins, Zhuo Chen, and Furu Wei. Beats:
Audio pre-training with acoustic tokenizers. 2022. 5, 14

[5] Zesen Cheng, Sicong Leng, Hang Zhang, Yifei Xin, Xin Li, Guanzheng Chen, Yongxin Zhu, Wenqi
Zhang, Ziyang Luo, Deli Zhao, et al. Videollama 2: Advancing spatial-temporal modeling and audio
understanding in video-llms. arXiv preprint arXiv:2406.07476, 2024. 3

[6] Konstantinos Drossos, Samuel Lipping, and Tuomas Virtanen. Clotho: An audio captioning dataset. In
ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 736–740. IEEE, 2020. 13, 14

[7] Chaoyou Fu, Yuhan Dai, Yondong Luo, Lei Li, Shuhuai Ren, Renrui Zhang, Zihan Wang, Chenyu Zhou,
Yunhang Shen, Mengdan Zhang, et al. Video-mme: The first-ever comprehensive evaluation benchmark of
multi-modal llms in video analysis. arXiv preprint arXiv:2405.21075, 2024. 17, 18

[8] Jiyang Gao, Chen Sun, Zhenheng Yang, and Ram Nevatia. Tall: Temporal activity localization via language
query. In Proceedings of the IEEE international conference on computer vision, pages 5267–5275, 2017.
2, 3, 5, 7, 9

[9] Tiantian Geng, Teng Wang, Jinming Duan, Runmin Cong, and Feng Zheng. Dense-localizing audio-visual
events in untrimmed videos: A large-scale benchmark and baseline. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 22942–22951, 2023. 5

[10] Tiantian Geng, Jinrui Zhang, Qingni Wang, Teng Wang, Jinming Duan, and Feng Zheng. Longvale:
Vision-audio-language-event benchmark towards time-aware omni-modal perception of long videos. arXiv
preprint arXiv:2411.19772, 2024. 2, 3, 4, 5, 7, 8, 9

[11] Yongxin Guo, Jingyu Liu, Mingda Li, Xiaoying Tang, Qingbin Liu, and Xi Chen. Trace: Temporal
grounding video llm via causal event modeling, 2024. 2, 3, 5, 7, 8, 14, 15, 16, 17

[12] Yuchen Guo, Linchao Liu, Xin Li, and Ping Luo. Vtg-llm: Efficient temporal grounding in long videos
with compressed visual cues. In arXiv preprint arXiv:2401.07684, 2024. 2, 3, 6, 7, 16

[13] Fabian Caba Heilbron and Juan Carlos Niebles. Activitynet captions: A dense-captioning dataset for
evaluating understanding of complex video activities. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 5246–5255, 2015. 2, 5, 7, 9

[14] Lisa Anne Hendricks, Oliver Wang, Eli Shechtman, Josef Sivic, Trevor Darrell, and Bryan Russell.
Localizing moments in video with natural language. In Proceedings of the IEEE international conference
on computer vision, pages 5803–5812, 2017. 2, 3

[15] Junjie Huang, Ming Wu, Linchao Li, Yi Zhu, Yu Chen, Siwei Yan, Yi Liu, and Ping Luo. Vtimellm:
Compression of time into a latent embedding for efficient video-language modeling. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 16694–16704, 2023. 2, 3, 7, 8

[16] Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec Hel-
yar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv preprint
arXiv:2412.16720, 2024. 4, 15

[17] Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and
William El Sayed. Mistral 7b, 2023. 14

[18] Ranjay Krishna, Kenji Hata, Frederic Ren, Li Fei-Fei, and Juan Carlos Niebles. Dense-captioning events in
videos. In Proceedings of the IEEE international conference on computer vision, pages 706–715, 2017. 3

[19] Jiabo Lei, Licheng Yu, Mohit Bansal, and Tamara L Berg. Tallyqa: Answering complex counting
questions. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 14168–14178, 2021. 2

[20] Chin-Yew Lin and Franz Josef Och. Automatic evaluation of machine translation quality using longest
common subsequence and skip-bigram statistics. In Proceedings of the 42nd annual meeting of the
association for computational linguistics (ACL-04), pages 605–612, 2004. 7

[21] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning, 2023. 13, 14
[22] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic evaluation

of machine translation. In Proceedings of the 40th annual meeting of the Association for Computational
Linguistics, pages 311–318, 2002. 7

11



[23] Yiyuan Qian, Linchao Liu, Xin Li, and Ping Luo. Momentor: Advancing video understanding with
temporal reasoning in large language models. In arXiv preprint arXiv:2401.03923, 2024. 2, 3, 7

[24] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from
natural language supervision. In International conference on machine learning, pages 8748–8763. PmLR,
2021. 5

[25] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from
natural language supervision. In International conference on machine learning, pages 8748–8763. PmLR,
2021. 14

[26] Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya Sutskever. Robust
speech recognition via large-scale weak supervision, 2022. 5, 14

[27] Junjie Ren, Can Li, Ming Zhao, Jinhui Liu, Junchi Yang, and Jian Wang. Timechat: A time-aware large
language model for video question answering. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 16726–16736, 2023. 3, 7

[28] Chen Sun, Austin Myers, Carl Vondrick, Kevin Murphy, and Cordelia Schmid. Videoclip: Contrastive
pre-training for zero-shot video-text understanding. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 16632–16642, 2022. 2

[29] Cassia Valentini-Botinhao et al. Noisy speech database for training speech enhancement algorithms and tts
models. University of Edinburgh. School of Informatics. Centre for Speech Technology Research (CSTR),
2017. 13, 14

[30] Ramakrishna Vedantam, C Lawrence Zitnick, and Devi Parikh. Cider: Consensus-based image description
evaluation. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
4566–4575, 2015. 7

[31] Hao Wang, Linchao Liu, Xin Li, and Ping Luo. Hawkeye: Visually explainable reasoning in video question
answering. In arXiv preprint arXiv:2401.04705, 2024. 7

[32] Yi Wang, Kunchang Li, Xinhao Li, Jiashuo Yu, Yinan He, Guo Chen, Baoqi Pei, Rongkun Zheng, Jilan
Xu, Zun Wang, et al. Internvideo2: Scaling video foundation models for multimodal video understanding.
arXiv preprint arXiv:2403.15377, 2024. 3, 4

[33] Yongliang Wu, Xinting Hu, Yuyang Sun, Yizhou Zhou, Wenbo Zhu, Fengyun Rao, Bernt Schiele, and Xu
Yang. Number it: Temporal grounding videos like flipping manga. arXiv preprint arXiv:2411.10332, 2024.
7

[34] Jin Xu, Zhifang Guo, Jinzheng He, Hangrui Hu, Ting He, Shuai Bai, Keqin Chen, Jialin Wang, Yang Fan,
Kai Dang, Bin Zhang, Xiong Wang, Yunfei Chu, and Junyang Lin. Qwen2.5-omni technical report. arXiv
preprint arXiv:2503.20215, 2025. 2, 3, 7, 8

[35] An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng
Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang,
Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue,
Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang
Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5
technical report. arXiv preprint arXiv:2412.15115, 2024. 4

[36] Hang Zhang, Xin Li, and Lidong Bing. Video-llama: An instruction-tuned audio-visual language model
for video understanding. arXiv preprint arXiv:2306.02858, 2023. 3

[37] Yuanhan Zhang, Jinming Wu, Wei Li, Bo Li, Zejun Ma, Ziwei Liu, and Chunyuan Li. Video instruction
tuning with synthetic data, 2024. 13, 14

[38] Bolei Zhou, Yu Guo, Meng Zhang, Xiongwei Wang, Siyuan Pu, Yuan Wu, Yan Zhang, Yan Wang, and
Li Li. Recent advances in video understanding. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2023. 2

12



Contents of Appendix

A Implementation Details 13
A.1 Training Recipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
A.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
A.3 Detailed training settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

B More details of TriSense-2M 15
B.1 Training Generator and Judger . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
B.2 Training data format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

C Additional Experiments. 15
C.1 More ablation studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
C.2 General understanding dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

D Case studies on diferent scenarios 18

A Implementation Details

A.1 Training Recipe

Our training process follows a structured three-stage approach: Feature Alignment, Connector
Generalization, and Instruction Tuning—to progressively equip the model with strong multimodal
and temporal reasoning capabilities. The specific components trained at each stage are illustrated in
Figure 4.

Feature Alignment. In the first stage, only the Query-Based Connector and LM Head are set as
trainable, while all other components remain frozen. This phase employs single-modality inputs,
enabling the model to gain an initial understanding of each of the three modalities individually. It also
helps the model learn to assign weights effectively in the absence of multimodal context, promoting a
focused grasp of modality-specific features without interference from other components.

Connector Generalization. During the second stage, we incorporate mixed-modality data and allow
training for the Query-Based Connector, Time Encoder, Time Head, and LM Head, while keeping the
LLM backbone fixed. This phase equips the connector to handle weight allocation across multiple
modalities, thereby enhancing its generalization beyond isolated modalities. Simultaneously, training
the Time Encoder and Time Head introduces the model to temporal structure, laying the groundwork
for capturing inter-modality dynamics over time.

Instruction Tuning. In the final stage, we freeze the Query-Based Connector and train the remaining
components—including the Time Encoder, Time Head, LM Head, and the LLM backbone—using
mixed-modality inputs. By keeping the connector fixed, we retain the modality alignment learned in
previous stages. This step concentrates on refining temporal reasoning and language understanding
capabilities, strengthening the LLM’s ability to interpret and process multimodal, temporally-sensitive
queries across diverse scenarios.

A.2 Datasets

In alignment with the objectives of the three-stage training process outlined earlier, we employ varying
datasets and data volumes at each stage. The overarching goal is to enhance the model’s capacity
for temporal video understanding while retaining robust general video understanding abilities. An
overview of the datasets used in each stage is provided in Table 9.

Table 9: Datasets and sample sizes used across the three training stages.
Stages Datasets Total Quantity
Stage 1 Clotho [6], LLaVA-LCS558K [21], Valentini-Botinhao Speech Dataset [29] 600K

Stage 2 TriSense-2M (880K), LLaVA-Video-178K (120K) [37] 1M

Stage 3 TriSense-2M (1.12M), LLaVA-Video-178K (380K) [37] 1.5M
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Stage1. For the initial stage, we use a combination of the Clotho [6], LLaVA-LCS558K [21], and
Valentini-Botinhao Speech Dataset [29] as training dataset:

• Clotho is an audio captioning dataset containing 4,981 audio clips, each paired with five
unique captions, totaling 24,905 annotations. The audio clips range from 15 to 30 seconds,
and each caption consists of 8 to 20 words.

• LLaVA-LCS558K is a concept-balanced multimodal dataset comprising 558,000 image-text
pairs, annotated using BLIP-generated captions. It is designed to support feature alignment
during the pretraining of vision-language models.

• Valentini-Botinhao Speech Dataset is a parallel corpus of clean and noisy speech record-
ings. It is widely used in training and evaluating speech enhancement and text-to-speech
(TTS) systems, featuring 48kHz audio from multiple speakers under various noise condi-
tions.

Stage 2 and 3. For these stages, we adopt our newly proposed TriSense-2M dataset, applying a 9:1
training-to-testing split. This results in 1.9 million training samples and 0.1 million test samples. The
training data is further partitioned into approximately 880K samples for Stage 2 and 1.12M samples
for Stage 3.

To ensure the model also retains general video understanding capabilities, we supplement the training
data with a portion of LLaVA-Video-178K [37], which includes video captioning, open-ended QA,
and multiple-choice QA tasks. This mixed-task dataset helps the model develop broader understanding
skills beyond temporal reasoning.

Table 10: Details of test set.
Num. Videos Num. Events Avg. Event Duration Total Tasks

3805 11415 7.23s 91320

To avoid massive evaluation time, we extract 11,415 challenging samples from the 0.1M test set, as
shown in Table 10 using two filtering criteria: 1) The majority of events should occur in the middle
portion of the video rather than the beginning. 2) Captions must contain at least 20 words. Evaluation
is conducted using a single A100 SXM4 80GB GPU with a batch size of 1, requiring approximately
8–10 hours to complete. All models in comparison are evaluated on this same test subset, using their
officially recommended hyperparameters (e.g., number of frames, temperature, top-p, etc.)

A.3 Detailed training settings

Our multimodal framework incorporates dedicated encoders for each modality. For the visual
modality, we adopt openai/clip-vit-large-patch14-336 [25]; for audio and speech modalities, we
employ BEATs_iter3+ (AS2M) (cpt2) [4] and Whisper-large-V3 [26], respectively. As for the large
language model (LLM) backbone, we select Mistral-7B [17], initialized from TRACE [11], instead
of using other LLM backbones, rather than using other LLM backbones. This choice is motivated by
TRACE’s prior training on large-scale temporal understanding data, which equips it with stronger
temporal reasoning capabilities. The maximum context length is configured to 4096 tokens.

During training, videos are resampled at 1 frame per second (fps) to improve efficiency—this step
is omitted during inference to retain full fidelity. This resampling reduces input redundancy and
accelerates training.

In Stage 1, we train the model with a batch size of 512 and single-frame input, completing within 10
hours using 4×A100SXM4-80GB GPUs. Stage 2 and 3 are conducted on 16×A100SXM4-80GB
GPUs with batch sizes of 128 and 256, respecitvely. Stage 2 requires approximately 3.5 days to
complete, and stage 3 requires 7 days to finish. We use DeepSpeed Zero2 because the BEATs model
does not function properly under Zero3 settings. Further details on datasets and hyperparameters are
provided in 11.
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Table 11: Training configurations and hyperparameters by stage.
Settings Stage 1 Stage 2 & Stage3

Computation 4×A100SXM4-80GB. 16×A100SXM4-80GB
Vision Encoder clip-vit-large-patch14-336 clip-vit-large-patch14-336
Audio Encoder BEATs_iter3+ (AS2M) (cpt2) BEATs_iter3+ (AS2M) (cpt2)
Speech Encoder Whisper-large-V3 Whisper-large-V3

DeepSpeed Stage Zero2 Offload Zero2 Offload
LLM Backbone Mistral-7B-v0.2 Mistral-7B-v0.2

Batch Size 512 128 & 256
Num Frames 1 64

Frame Sample Uniform Uniform
Train Epochs 2 1
Learning Rate 1e-3 5e-6
LR Scheduler Cosine Cosine

Model Max Length 4096 4096
Training Duration 10 Hours 3.5 days & 5.5 days

B More details of TriSense-2M

B.1 Training Generator and Judger

This section describes the data generation and manual filtering process used to prepare training data
for both the Generator and the Judger. To ensure efficiency and quality in omni-modal caption
generation, we first utilize GPTo1 [16] to produce high-quality annotation samples for Supervised
Fine-tuning (SFT). The specific prompts used for this process are shown in 5. These prompts serve a
dual purpose: they are used to generate training data via GPT and also function as system prompts
during the SFT of both the Generator and the Judger.

To further enhance caption quality, we implement a two-stage scoring mechanism. After captions are
generated, GPT conducts a self-evaluation. Then, a separate GPT instance provides an additional
evaluation to filter out low-quality samples. Following this automated scoring, we conduct manual
sampling to verify consistency and ensure a high quality standard is met.

Data is generated in batches of 1,000 samples. From each batch, we randomly select 500 samples for
manual review to evaluate the generated content and the reliability of GPT’s scoring. If over 80% of
the reviewed samples meet our quality criteria, the batch is retained; otherwise, it is discarded.

Ultimately, we curate 10,000 training samples for the Generator and 3,000 samples for the Judger.
Both models are trained for 3 epochs to establish effective captioning and judging capabilities.

B.2 Training data format

This section outlines the data format used for training TriSense. We adopt a ShareGPT-style format,
where each training sample consists of 8 conversation rounds, each corresponding to a different
modality combination. The tasks and settings within these rounds are randomized—for instance, one
round might involve a VS-SC task, while the next could be an AVS-SC or V-MR task.

Following the approach in TRACE, we use special tokens such as 〈sync〉 and 〈time〉 to signal the
model to switch between different prediction heads. An example of the data structure is illustrated
in 6.

C Additional Experiments.

C.1 More ablation studies

We conduct small-scale ablation studies on slot compression and task-specific heads. Specifically,
we randomly selected 20K samples and trained for 3 epochs, initializing all weights from [11]. All
experiments were conducted with a sampled frame rate of 64. In terms of token compression, we
explored different slot configurations, including 8, 32, and 64. For the prediction head, we removed
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You are a helpful assistant designed to output CAPTIONS and JSON. 
Given three distinct captions describing audio, visual, and speech 
scenarios, please generate omni-modal captions for the following 
combinations: Audio-Visual-Speech (AVS), Visual-Speech (VS), 
and Audio-Visual (AV).

Input Examples:
Audio: {audio\_caption}
Visual: {visual\_caption}
Speech: {speech\_caption}

You should generate captions according to the following rules:
1. The generated captions must preserve all essential information 
from the original captions.
2. Do not introduce any content that is not present in the original 
captions.
3. Do not copy verbatim from the original captions; instead, 
paraphrase the key information and incorporate it into the new 
caption.
4. Each generated caption must not exceed 200 words.

When you generate captions, assign a score for yourself from 1 to 
5. If the you think the quality is very poor, assign a score of 1. If the 
generated captions satisfy approximately 80% of the above 
criteria, assign a score of 3. If they fully satisfy all criteria (100%), 
assign a score of 5.

Please think carefully and provide your answer in JSON format as 
follows: { "AVS": "", "AV": "", "VS": "", "Score": ""}. Note that only one 
caption should be provided for each of AVS, AV, and VS. You MUST 
respond in JSON format.

You are a helpful assistant designed to evaluate caption quality. 
Given three original captions and three generated omni-modal 
captions, please assess the quality of the generated captions based 
on the following criteria:
1. The generated captions must include all key information from the 
original captions.
2. No new content may be introduced beyond what is present in 
the original captions.
3. The generated captions must not copy text directly from the 
original captions; instead, they should paraphrase and incorporate 
the essential information.
4. Each generated caption must not exceed 200 words.

Input Examples:
Audio: {audio_caption}
Visual: {visual_caption}
Speech: {speech_caption}
AVS: {audio-visual-speech_caption}
VS: {visual-speech_caption}
AV: {audio-visual_caption}

Assign a score from 1 to 5. If the quality is very poor, assign a score 
of 1. If the generated captions satisfy approximately 80% of the 
above criteria, assign a score of 3. If they fully satisfy all criteria 
(100%), assign a score of 5.

Please analyze carefully and provide your evaluation in the 
following JSON format: { "AVS": "", "AV": "", "VS": "", "Score": "" }Note 
that you should provide only one score and one caption for each of 
AVS, AV, and VS. You MUST respond in JSON format.

Figure 5: Prompts used for training the Generator and Judger. The left prompt guides GPT in
generating omni-modal captions for the Generator using audio, visual, and speech inputs. The right
prompt is used to train the Judger by instructing GPT to assess the quality of generated captions
based on coverage, accuracy, and paraphrasing. During data creation, samples are randomly selected
and manually filtered to ensure high-quality training data.

the Time Head and instead encoded temporal information into special tokens, which were injected
into the LLM. Prediction was then performed using only the LM Head.

Table 12: Ablation study on the slot compression [12].
AVS-SC AVS-MR Avg. Event Duration
Slot=8 B: 1.6 M: 3.1 R: 13.1 C: 1.9 IoU=0.5: 0.3 IoU=0.7: 0.1

Slot=16 B: 1.8 M: 3.4 R: 14.6 C: 2.4 IoU=0.5: 0.4 IoU=0.7: 0.3

Slot=32 B: 1.8 M: 3.4 R: 15.6 C: 2.4 IoU=0.5: 0.4 IoU=0.7: 0.3

Slot=64 B: 1.9 M: 3.5 R: 16.1 C: 2.4 IoU=0.5: 0.5 IoU=0.7: 0.2

Table 13: Ablation study on the task-specific heads.

AVS-SC AVS-MR
Unified Head B: 1.5 M: 3.1 R: 13.2 C: 1.1 IoU=0.5: 0.2 IoU=0.7: 0.1

Time Head + LM Head B: 1.8 M: 3.4 R: 14.6 C: 2.4 IoU=0.5: 0.4 IoU=0.7: 0.3

As shown in Table 12, for slot compression, although reducing the compression rate (by increasing the
number of slots) can bring slight performance improvements, it also results in a significant increase in
computational overhead. Therefore, the benefits are subject to diminishing returns. As shown in the
table, setting the slot to 16 currently offers a good balance between performance and computational
cost. For task-specific head in Table 13, using a single unified head alone leads to a significant drop
in performance, indicating that the time head provides additional temporal information which is
beneficial to the model. There may be better unified solutions in the future.

We also provide more ablation studies in Table 14 and Table 15 for different branches of the Query-
Based Connector based on the same 20K randomly selected samples as above. For example, AV-Only
in the table means we discarded the Speech branch. During training, all the weigths are initialized
from [11], and LLM backbone is set to frozen. Results show that all three modalities contribute
positively to all tasks, with the full AVS configuration performing best.
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{
    "video": "zEqicUE2R0I.mp4",
    "conversations": 
    [
      {
        "from": "human",
        "value": "<video>\nFrom 1070.8 to 1081.9, please detail the visual-sound event, highlighting any essential visuals and 
sounds."
      },
      {
        "from": "gpt",
        "value": "<sync><time><time><time><time><time><time><time><time><time><time><time><time><time><time>A man is 
passionately speaking on stage while the audience laughs and talks in the theater. The crowd is engaged and responsive."
      },
      {
        "from": "human",
        "value": "Could you provide a summary of the video between [1070.8, 1081.9], focusing on visual, audio, and speech 
elements?"
      },
      {
        "from": "gpt",
        "value": "<sync><time><time><time><time><time><time><time><time><time><time><time><time><time><time>A 
person is performing on stage, and the audience is laughing and talking in a theater, but the speech subtitle mentions that 
the person has to hide because they look like a rat from the movie Ratatouille."
      },      
      {
        "from": "human",
        "value":  "<sync><time><time><time><time><time><time><time><time><time><time><time><time><time><time>Please 
find the precise time in seconds when the content described as 'a man is singing on stage' takes place in the video, and 
report this timestamp."
      },
      {
        "from": "gpt",
        "value": "<sync><time><time><time><time><time><time><time><time><time><time><time><time><time><time>a man is 
singing on stage"
      }
      <Remaining conversations......>
    ]
     "times": [[1070.8, 1081.9], [1070.8, 1081.9], [1070.8, 1081.9], <remaining times......>]
  }

 Dataset Format Example of ShareGPT

Figure 6: Example of ShareGPT-style annotation format used during training. Each sample
includes multi-turn conversations over video segments with synchronized modality cues. Only the
first three rounds are shown due to space limitations.

Table 14: Ablation studies on the branches of Query-based Connector on Segment Captioning tasks.
Model AVS-SC VS-SC AV-SC V-SC
V-Only B: 1.0 M: 1.7 R: 10.1 C: 0.9 B: 1.1 M: 1.6 R: 10.3 C: 1.1 B: 1.0 M: 1.7 R: 10.2 C: 1.1 B: 1.0 M: 1.8 R: 13.3 C: 1.4

VS-Only B: 1.7 M: 2.9 R: 13.3 C: 2.4 B: 1.6 M: 2.9 R: 14.7 C: 2.5 B: 0.7 M: 2.3 R: 13.2 C: 1.5 B: 0.7 M: 1.6 R: 13.2 C: 1.2

AV-Only B: 1.7 M: 3.1 R: 13.7 C: 1.9 B: 1.4 M: 2.2 R: 12.0 C: 2.1 B: 0.9 M: 3.1 R: 15.0 C: 1.7 B: 0.7 M: 1.6 R: 13.0 C: 1.1

AVS-Full B: 1.8 M: 3.4 R: 14.6 C: 2.4 B: 1.7 M: 3.1 R: 15.1 C: 2.5 B: 1.0 M: 3.2 R: 15.3 C: 1.7 B: 0.8 M: 1.8 R: 13.4 C: 1.5

C.2 General understanding dataset

For general video understanding evaluation, we report results on VideoMME [7]—a large-scale
benchmark designed to assess multimodal large language models (MLLMs) in video analysis.
VideoMME covers a wide range of visual domains, temporal scales, and modalities, including 900
videos (totaling 254 hours) and 2,700 human-annotated QA pairs. As shown in Table 16, our model
not only demonstrates significant advantages in multimodal scenarios but also performs competitively
in general understanding tasks. It is worth noting that our model uses much less general understanding
data (500K) compared to TRACE-uni [11], which uses 0.9M, as reported in their official paper.
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Table 15: Ablation studies on the branches of Query-based Connector on Moment Retrieval tasks.
Model AVS-MR VS-MR AV-MR V-MR
V-Only IoU=0.5: 0.1 IoU=0.7: 0.0 IoU=0.5: 0.1 IoU=0.7: 0.0 IoU=0.5: 0.1 IoU=0.7: 0.1 IoU=0.5: 0.4 IoU=0.7: 0.2

VS-Only IoU=0.5: 0.4 IoU=0.7: 0.1 IoU=0.5: 0.3 IoU=0.7: 0.2 IoU=0.5: 0.1 IoU=0.7: 0.0 IoU=0.5: 0.3 IoU=0.7: 0.1

AV-Only IoU=0.5: 0.4 IoU=0.7: 0.2 IoU=0.5: 0.1 IoU=0.7: 0.1 IoU=0.5: 0.3 IoU=0.7: 0.1 IoU=0.5: 0.3 IoU=0.7: 0.1

AVS-Full IoU=0.5: 0.4 IoU=0.7: 0.3 IoU=0.5: 0.3 IoU=0.7: 0.2 IoU=0.5: 0.3 IoU=0.7: 0.2 IoU=0.5: 0.4 IoU=0.7: 0.2

Table 16: Zero-shot performance on general understanding dataset Video-MME [7]. Our model only
uses 55% of the general understanding data compared to TRACE-uni.

Model VideoMME (Overall Scores w/o Subtitles)

VideoChat2 (7B) 33.7
Video-LLaVA (7B) 39.9
VideoLLaMA2 (7B) 46.6
TRACE (7B) 43.8
TRACE-uni (7B) 49.6
TriSense (7B) 48.7

D Case studies on diferent scenarios

We provide case studies of TriSense in various scenarios in Figures 7 to 12.

0s 10s

......

Speech: Yes we managed to get it 3-1, that was absolutely horrific for a finish! But DeCosta 
get his second’s of today’s game, what a player this could be! 

Sound: Passionate and uplifting music.
 

559.5s 567.6s

......

700s 710s

AVS-SC

In the time frame [559.5, 567.6], please describe the audio-visual-speech event visible in the clip.

Ground Truth: A boy is playing a video game and talking about it, and a player named DeCosta scored his second goal of the game, 
but it was a tough finish.

A man, wearing a black cap and a black t-shirt, stands in a cluttered garage, enthusiastically explaining to the camera how he plans 
to install a new set of tires on his truck.

LongVALE

Qwen2.5-Omni

TriSense (Ours)

Well, in that part of the video, it's just a guy talking. He's not doing anything else visually. He's just speaking. What do you think about 
that?

"timestamps": [[559.5, 567.6]], "captions": ["A man is playing a football video game and talking about it while someone is speaking in 
the background, and the speaker mentions a player named Bobby and a score of 3 to 1"]

Modality Weights: Audio=0.1854, Speech=0.1038, Vision=0.7108

Human

Figure 7: Case study of TriSense on AVS-SC task.
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0s 10s

......

475.2s 477.4s

......

700s 710s

V-SC

At the range [475.2, 477.4], please summarize the video’s content, focusing strictly on the visual cue.

Ground Truth: a man is slicing an avocado on a cutting board

 A man is carefully stirring a pot of thick, reddish-brown sauce on the stove, as he explains the process of making a tomato sauce.

LongVALE

Qwen2.5-Omni

TriSense (Ours)

At that time, there's a text that says \"JOIN THE NOTIFICATION SQUAD!\" on the screen. It's probably an encouragement for viewers to 
subscribe and get notifications for the channel.

"timestamps": [[475.2, 477.4]], "captions": ["a man is cutting a piece of avocado on a cutting board"]

Modality Weights: Audio=0.1191, Speech=0.0579, Vision=0.8231

Human

Sound: no background sound/music 

Speech: Cut around the stone...

Figure 8: Case study of TriSense on V-SC task.

0s 10s

......

Speech: You'll love that it can capture for 4K video at 24 frames a second. First still capture is 
11 frames a second with the mechanical shutter. And up to 40 frames a second with the 
electronic shutter.

Sound: Rhythmic and dynamic music.
 

216.3s 223.4s

......

250s 255s

AVS-MR

Query: Locate the moment where ’The man jumping in the air, with the speaker saying that mechanical shutter is set to 11 frames per 
second, while passionate music is playing at the background. The speaker then says \’up to 40 frames per second, mechanical 
shutter and electronic shutter.\’’, return precise timestaps.

Ground Truth: [216.3, 223.4]

From 03 to 04
LongVALE

Qwen2.5-Omni

TriSense (Ours)

[200, 250]

"timestamps": [[215.8, 223.8]], "captions": ["The man jumping in the air, with the speaker saying that mechanical shutter is set to 11 
frames per second, while passionate music is playing at the background. The speaker then says \’up to 40 frames per second, 
mechanical shutter and electronic shutter.\’"]

Modality Weights: Audio=0.2080, Speech=0.0829, Vision=0.7091

Human

Figure 9: Case study of TriSense on AVS-MR task.
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0s 10s

......

Speech: This one is also shipped to us, but if we knew the status of this Abino, 
we would not have it shipped.

Sound: silent background sound 

189.3s 197.9s

......

970s 980s

VS-MR

Query: Determine the precise time in seconds when 'A person describes a video about an Albino snake while showing a large yellow 
snake inside a cage. The snake is crawling around in its enclosure as people talk.' happens in the video, and report this exact 
moment.

Ground Truth: [189.3, 197.9]

From 00 to 02

LongVALE

Qwen2.5-Omni

TriSense (Ours)

The content you're asking about appears in the video starting at 180.0 seconds and ends at 240.0 seconds.

"timestamps": [[188.2, 197]], "captions": ["A person describes a video about an Albino snake while showing a large yellow snake inside 
a cage. The snake is crawling around in its enclosure as people talk.'"]

Modality Weights: Audio=0.1035, Speech=0.1842, Vision=0.7123

Human

Figure 10: Case study of TriSense on VS-MR task.

0s 10s

......

Speech: This is our Android wish phone, I want to see if these (phones) are 
alive. Oh!!! It started smoking...  

Sound: Crackling sound caused by a screwdriver smashing a phone
 

659.7s 666.1s

......

970s 980s

AV-MR

Query: Locate the exact moment in the video that corresponds to the textual query 'A man is in a studio speaking into a microphone, 
discussing an electronic device while making sounds with his hand and laughing.', and provide the specific time in seconds when 
this content is presented."

Ground Truth: [659.7, 666.1]

From 00 to 01

LongVALE

Qwen2.5-Omni

TriSense (Ours)

[0.00, 10.00]

"timestamps": [[658.1, 665.8]], "captions": ["A man is in a studio speaking into a microphone, discussing the features of an electronic 
device while making sounds with his hand and laughing."]

Modality Weights: Audio=0.2674, Speech=0.0238, Vision=0.7088

Human

Figure 11: Case study of TriSense on AV-MR task.
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0s 10s 60s 70s

General Understanding

What is the woman holding on her hand between [0.0, 5.0]?
A. a pen
B. a peice of paper
C. a book
D. a phone
Please provide your answer by stating the letter followed by the full option.

'timestamps': [[]], 'captions': ['B.a peice of paper ']

Modal Weights: Audio=0.1860, Speech=0.0485, Vision=0.7656TriSense

Human

TriSense

'timestamps': [[]], 'captions': ['A.a pen ']

Modal Weights: Audio=0.2004, Speech=0.0502, Vision=0.7495

Human

What is the man holding on his hand between [60.0, 65.0]?
A.a pen
B.a peice of paper
C.a book
D.a phone
Please provide your answer by stating the letter followed by the full option.

.............

Figure 12: Case study of TriSense on General Understanding task.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We have adequately addressed our claims in Abstract and Introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Due to the page limit, we include the limitation discussion in appendix.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: We have properly cited relevant papers and have doubled checked theories.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Yes, the code and data will also be made public.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: The code an data will be made public on cloud drive and git repository after
review.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The details have been included in experiment section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: The paper does not include error bars due to the large scale of the experiments
(More than 10,000 A100 GPU Hours), resources are limited to do so.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Training resources have been included in imlementation details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have checked and followed the ethical guidelines.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper poses no such risks, and the usage safeguards will be included in
git repository by proper license.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have checked all the licenses of the used datasets in this paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We do introduce new assets in this paper, we have included details in the paper
and appendix.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The LLM is only used for writing, and the core method development in this
research does not involve LLMs as any important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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