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Abstract

Large language models (LLMs) have demon-001
strated impressive capabilities, but still suffer002
from inconsistency issues (e.g. LLMs can re-003
act differently to disturbances like rephrasing004
or inconsequential order change). In addition005
to these inconsistencies, we also observe that006
LLMs, while capable of solving hard problems,007
can paradoxically fail at easier ones. To evalu-008
ate this hard-to-easy inconsistency, we develop009
the ConsisEval benchmark, where each entry010
comprises a pair of questions with a strict or-011
der of difficulty. Furthermore, we introduce012
the concept of consistency score to quantita-013
tively measure this inconsistency and analyze014
the potential for improvement in consistency by015
relative consistency score. Based on compre-016
hensive experiments across a variety of existing017
models, we find: (1) GPT-4 achieves the high-018
est consistency score of 92.2% but is still incon-019
sistent to specific questions due to distraction020
by redundant information, misinterpretation of021
questions, etc.; (2) models with stronger capa-022
bilities typically exhibit higher consistency, but023
exceptions also exist; (3) hard data enhances024
consistency for both fine-tuning and in-context025
learning. Our data and code will be publicly026
available on GitHub.1027

1 Introduction028

With the increases in pre-training corpora and029

the number of parameters (Radford et al., 2018,030

2019; Brown et al., 2020), large language mod-031

els (LLMs) have shown remarkable performance032

across various natural language processing (NLP)033

tasks, even generating expert-level responses to034

user queries. The extraordinary capabilities of035

LLMs hold potential for further real-world applica-036

tions (Wang et al., 2023c; Guo et al., 2023; Driess037

et al., 2023), which necessitate higher requirements038

for model trustworthiness (Wang et al., 2023a; Li039

1https://anonymous.4open.science/r/
ConsisEval-F607/
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Figure 1: A hard-to-easy inconsistency case of LLMs.
A counter-intuitive phenomenon occurs when an LLM,
which can solve a harder problem, surprisingly goes
wrong on an easier problem.

et al., 2023a; Sun et al., 2024a) and consistency 040

(Jang and Lukasiewicz, 2023; Elazar et al., 2021). 041

However, LLMs still suffer from inconsistency 042

issues: semantically equivalent queries (Elazar 043

et al., 2021; Raj et al., 2023) and insignificant order 044

changes of inputted contents (Wang et al., 2023b) 045

can lead to divergent outcomes; LLMs can also be- 046

have differently in the generation versus validation 047

of the same content (Li et al., 2023b); moreover, 048

logical transformations like negation and symmetry 049

can also induce inconsistent behaviors (Jang et al., 050

2022). In addition to previous work, we also find 051

LLMs able to solve hard problems surprisingly fail 052

to solve easier ones (as shown in Figure 1), suffer- 053

ing from the hard-to-easy inconsistency. Unlike 054

LLMs, humans are naturally consistent reasoners, 055

and it is undisputed that an individual proficient 056

in calculus can easily address simpler arithmetic 057

problems. However, why this difference exists is 058

still unknown and relevant research to explore hard- 059

to-easy consistency of LLMs is still lacking. 060
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To systematically evaluate this consistency of061

LLMs, we develop ConsisEval, a Hard-to-easy062

Consistency Evaluation Benchmark, through au-063

tomatic generation and human annotation. Consi-064

sEval encompasses data from three domains: in-065

struction following, code, and mathematics, each066

entry consisting of a pair of questions with a strict067

order of difficulty. Considering the absence of an068

off-the-shelf metric, we propose a new metric con-069

sistency score, which is defined as the conditional070

probability of a model correctly answering easy071

questions provided that it has correctly answered072

harder ones, for quantitative assessment of con-073

sistency from a probabilistic stance. Further, to074

analyze the potential for improvement in consis-075

tency if model capability remains unchanged, we076

introduce the concept of relative consistency score.077

The calculation of our metrics relies on the proba-078

bility of a model answering each question correctly079

through a single sampling, for which we design080

two probability estimation methods.081

Based on our benchmark and metrics, we con-082

duct extensive experiments on various LLMs.083

Among evaluated models, GPT-4 (Achiam et al.,084

2023) achieves the highest CS of 92.2%, demon-085

strating notable hard-to-easy consistency. Nonethe-086

less, GPT-4 also exhibits inconsistent behaviors087

to specific prompts due to distraction by redun-088

dant information, misinterpretation of questions,089

etc. Further, we find models with stronger capa-090

bilities typically exhibit higher consistency, but ex-091

ceptions where powerful models demonstrate poor092

consistency also exist. Additionally, we discover093

that models show higher consistency when trained094

under hard data than easy data, and that holds the095

same under few-shot setting (in-context learning096

with harder demonstration examples shows better097

consistency).098

We summarize our contributions as follows:099

1. To the best of our knowledge, we are the first100

to systematically study the hard-to-easy con-101

sistency of LLMs and establish a benchmark102

to evaluate this consistency.103

2. We propose metrics grounded in probabilistic104

theory to quantitatively measure the hard-to-105

easy consistency, along with probability esti-106

mation methods for metric computation.107

3. Based on our benchmark and metrics, we con-108

duct extensive experiments across a variety of109

LLMs and draw some conclusions that may 110

benefit future research. 111

2 ConsisEval Benchmark 112

To systematically evaluate the hard-to-easy consis- 113

tency of LLMs, we develop ConsisEval with data 114

from code, mathematics, and instruction-following 115

domains, which are widely considered to be diffi- 116

cult but of significant importance for LLMs (Wei 117

et al., 2021; Cobbe et al., 2021a,b; Zhou et al., 118

2023). Different from traditional benchmarks in 119

which data are usually individual, there are only 120

pairwise data in ConsisEval: one datum is com- 121

prised of two questions (an easy question and a 122

harder one) with a strict order of difficulty, and 123

we present some example data from ConsisEval in 124

Table 5. To construct ConsisEval, we collect easy 125

data from some established public datasets (§2.1); 126

then we acquire hard data through automatic gener- 127

ation by GPT-4 and human annotation (§2.2), and 128

this process is shown in Figure 2. 129

2.1 Easy Data Collection 130

Mathematics easy data are collected from 131

GSM8K (Cobbe et al., 2021a), a linguistically di- 132

verse collection of high-quality grade school math 133

word problems crafted by human problem writers. 134

The difficulty of these problems varies, requiring 135

from 2 to 8 steps to solve, and solving these prob- 136

lems typically requires a series of fundamental cal- 137

culations employing basic arithmetic operations 138

(+−×÷). To prevent easy data from being too dif- 139

ficult to be further improved in terms of difficulty, 140

we only select the problems requiring 3 steps to 141

solve in the test set of GSM8k as our easy data in 142

the mathematics domain (298 entries). 143

Code easy data are collected from HumanEval 144

(Cobbe et al., 2021b), a benchmark aiming at evalu- 145

ating the capability of LLMs to generate standalone 146

Python functions from docstrings. For each cod- 147

ing problem, a check function containing some test 148

cases is provided for automatic correctness evalu- 149

ation of code samples. Since HumanEval is rela- 150

tively small , we select all of the data in HumanEval 151

as our easy data in code domain (164 entries). 152

Instruction-following easy data are collected 153

from IFEval (Zhou et al., 2023), a benchmark com- 154

prised of various instructions for LLMs to follow. 155

Each instruction contains 1-3 verifiable constraints 156

(e.g. maximum number of words in response or 157
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Figure 2: The hard data collection process of ConsisEval. An easy datum is fed into GPT-4 with a well-designed
prompt and multiple hard data candidates are sampled. Human annotators select the one of best quality, then check
and revise the sample to make it fit our criteria.

the appearance of specific keywords in response),158

whose correctness can be automatically evaluated159

by rule-based check functions. We only select the160

instructions with only one constraint as our easy161

data in instruction-following domain (270 entries).162

2.2 Hard Data Collection163

To build our pairwise dataset in which a strict or-164

der of difficulty is guaranteed for each pair of easy165

and hard problems, all of the hard data are modi-166

fied from easy data. We employ a semi-automatic167

pipeline that integrates the automatic generation of168

GPT-4 with human annotation to acquire hard data,169

and the whole workflow is illustrated in Figure 2.170

Compared to traditional methods that rely solely on171

manual annotation, our semi-automatic approach172

can significantly alleviate the workload of human173

annotators.174

Automatic generation. Considering the remark-175

able performance of GPT-4 on various text genera-176

tion tasks, we employ GPT-4 as a strong modified177

data generator to acquire our hard data candidates178

for human annotators to choose from. To make179

GPT-4 understand our criteria better, we insert easy180

data into a well-designed prompt template (shown181

in Appendix J) before feeding them into GPT-4.182

Taking the code domain as an example, the prompt183

consists of 5 parts: (1) the #Instruction# part ar-184

ticulates the information we want GPT-4 to know,185

including but not limited to definition of our modifi-186

cation task, composition of a datum, and guarantee187

of strict order of difficulty; (2) the #Demonstra-188

tions# part requires insertion of easy and hard data189

pairs as demonstrations; (3) finally, an easy datum190

targeted for modification is decomposed into three191

Easy Question:
John has 2 houses with 3 bedrooms each. How many
bedrooms are there in total?

Hard Question:
John has 2 houses with 3 bedrooms each. Each bedroom
has 2 windows. How many windows are there in total?

Table 1: An example question pair with a strict order
of difficulty. Green text denotes the common part of
questions and blue text denotes the additional part of
hard question.

components and inserted into the #Problem#, #An- 192

swer#, and #Check Function# parts, respectively. 193

Human annotation. Though we have endeav- 194

ored to request GPT-4 to generate hard data that 195

fully adheres to our criteria through a well-designed 196

prompt, the generated contents may still not meet 197

our standards (e.g. some samples lack a strict or- 198

der of difficulty and check functions of some other 199

samples are incorrect). To address potential issues 200

in generated samples, we have engaged human an- 201

notators to inspect, select, and revise these samples. 202

Firstly, the annotators are required to select the 203

sample of the highest quality from multiple candi- 204

dates and discard all the other samples. To ensure 205

compliance with our criteria, the selected sample 206

is checked from two aspects: 207

1. Strict order of difficulty: the steps or knowl- 208

edge (or ability) required to solve an easy 209

problem should be a proper subset of those for 210

the hard problem (example shown in Table 1). 211

2. Correctness: the standard answer or check 212

function (for automatic judgment of model- 213
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generated answers) should be correct.214

If one sample fails to comply with our criteria dur-215

ing the checking process, the annotators will revise216

it to ensure full alignment with our standards.217

3 Evaluation Metrics218

Firstly, we formulate the evaluation problem and219

introduce mathematical notations in §3.1. Consid-220

ering that there is no off-the-shelf metric to utilize,221

then we propose a new metric named Consistency222

Score (§3.2) to measure the hard-to-easy consis-223

tency quantitatively. Further, we introduce the con-224

cept of Relative Consistency Score (§3.3) to ana-225

lyze the potential for improvement in consistency.226

We model sampling an answer from an LLM for a227

given question as a stochastic process, wherein the228

answer is correct with a fixed probability p. The229

computation of our metrics requires access to p,230

and §3.4 discusses how to estimate p by maximum231

likelihood estimation.232

3.1 Problem Formulation and Notation233

Initially, we have a partially ordered set com-234

prising N pairs of data, denoted as A ⊙235

B = {(a1, b1), (a2, b2), ..., (aN , bN )}, where A =236

{a1, a2, ..., aN} represents a set of easy questions,237

and B = {b1, b2, ..., bN} constitutes a set of hard238

questions. A stringent guarantee exists that the dif-239

ficulty order satisfies ai < bi, for bi is derived from240

ai by increasing the difficulty level. For a given241

question ai (or bi), the model generates a correct an-242

swer through a single temperature-based sampling243

with probability P (ai) (or P (bi)). We employ ˆ244

to symbolize estimates (e.g. P̂ (ai) represents the245

estimate of the true value P (ai) ). For convenience,246

all of the notations mentioned and their meanings247

are shown in Appendix A.248

3.2 Consistency Score249

Can large language models solve easy problems250

if they can solve harder ones? To answer this251

question from a probabilistic perspective, we in-252

troduce a metric termed Consistency Score (CS),253

which is the conditional probability of a model cor-254

rectly answering easy questions given that it has255

correctly answered harder ones. The higher CS256

indicates the lower probability humans encounter257

inconsistency phenomena when using LLMs, so258

CS is almost equal to human perceptions of model259

consistency. Let P (a|b) be the conditional proba-260

P(a) P(b)P(a,b) P(a) P(b)P(a,b)

Consistent ModelInconsistent Model

Figure 3: Venn diagram for consistent/inconsistent mod-
els in complete probability space. The orange , red
circles and their overlap area denote the probability of
a model correctly answering easy questions, hard ques-
tions, and both respectively. the overlap area of con-
sistent models is much larger than that of inconsistent
models.

bility of a model correctly answering a given that 261

it has answered b correctly, and we have: 262

CS = P (a|b) =
∑

i=1,...,N P (ai)P (bi)∑
i=1,...,N P (bi)

(1) 263

The detailed derivation of CS is shown in Ap- 264

pendix B. To intuitively understand the distinctions 265

between consistent and inconsistent models and 266

better illustrate CS, we present a Venn diagram in 267

Figure 3. The more consistent a model is, the larger 268

overlap area P (a, b) in Venn diagram, and conse- 269

quently the higher CS of the model. Fundamentally, 270

CS represents the ratio of P (a, b) to P (b). 271

3.3 Relative Consistency Score 272

In addition to CS that directly reveals consistency 273

probability of LLMs, we also endeavor to analyze 274

the potential for improvement in consistency if 275

model capability remains unchanged. To analyze 276

what the CS of an evaluated model M0 should be 277

if it behaves extremely consistently/inconsistently, 278

we formally define a model set Ω = {M0,M1, ...} 279

(detailed definition shown in Appendix C) in which 280

models possess similar capabilities to M0 and de- 281

rive the upper and lower bounds of CS (denoted as 282

CSupp and CSlow) among these hypothetical mod- 283

els. Based on these bounds, we propose Relative 284

Consistency Score (RCS) (as shown in Figure 4) 285

to indicate the potential for improvement in consis- 286

tency, and low RCS can reveal high potential for 287

improvement in CS. The RCS is given by: 288

RCS =
CS − CSlow

CSupp − CSlow
(2) 289

According to the definition of Ω and rearrange- 290

ment inequality, we can obtain strict mathematics 291
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Figure 4: Visualized expression of relative consistency
score.

bounds. However, these bounds are empirically too292

loose, and thus we utilize tighter bounds derived293

from two heuristics:294

CSlow =
Σi=1,...,NP (ai)

N
, (3)295

296

CSupp =

∑
i=1,...,N (P (bi) + µ̂)P (bi)∑

i=1,...,N P (bi)
, (4)297

where µ̂ =
Σi=1,...,N (P (ai)−P (bi))

N , and the deriva-298

tion of boundaries and discussion are shown in299

Appendix D.300

3.4 Probability Estimation301

For a given question ai and a given model, the302

probability P (ai) that the model produces a cor-303

rect answer in a single sampling is an unknown304

constant. We propose two methods for estimat-305

ing P (ai) based on repeated sampling. For open-306

source models that can be deployed locally, esti-307

mate P̂ (ai) is obtained by sampling multiple an-308

swers independently. For proprietary models that309

require payment for API calls, an early stopping310

strategy is employed during answer sampling to311

obtain estimate P̂ (ai) with fewer API calls.312

Multiple Sampling Estimation For a given ques-313

tion ai, answers are sampled m times to obtain a314

sequence a1i , a
2
i , ..., a

m
i . If the model generates315

a correct answer on the jth sampling, we denote316

aji = 1; otherwise, aji = 0. In this scenario, aji fol-317

lows a Bernoulli distribution, and
∑

j=1,...,m aji fol-318

lows a Binomial distribution (i.e.
∑

j=1,...,m aji ∼319

B(m,P (ai))). It can be derived that the maximum320

likelihood estimate of P (ai) (refer to Appendix E.1321

for the derivation details):322

P̂ (ai) =

∑
j=1,...,m aji

m
(5)323

Early Stopping Estimation Estimating through324

multiple sampling necessitates generating a multi-325

tude of answers for the same question (e.g. in §4 we326

utilize Llama2-7b-chat to sample 20 answers for a327

question). However, considering the high payment328

for the API calls and the typically high accuracy of 329

closed-source models, an early stopping technique 330

is employed to estimate with fewer API calls. 331

Details of early stopping strategy: Initially, we 332

set the minimum and maximum number of sam- 333

pling times kmin and kmax. For a given question 334

ai, initially, kmin answers are sampled. If at least 335

one correct answer exists in these answers, the 336

sampling process will be terminated; otherwise, 337

sampling will continue repeatedly until a correct 338

answer appears for the first time. Besides, the sam- 339

pling procedure will be forcibly terminated if a 340

correct answer still does not emerge after sampling 341

kmax answers. 342

The total number of samples in the above process 343

and the number of correct answers are denoted as 344

k and kc, respectively. The maximum likelihood 345

estimation of P (ai) can be derived as follows (refer 346

to Appendix E.2 for the derivation details): 347

P̂ (ai) =
kc
k

(6) 348

Besides, we also show the pseudo-code of Early 349

Stopping Estimation, discuss the trade-off, and 350

compare these two methods in Appendix E.3. 351

4 Experiments 352

4.1 Experimental Setup 353

For closed-source models, we evaluate GPT-4 354

Turbo 2 (Achiam et al., 2023), GPT-3.5 Turbo 355
3, Qwen Max (Bai et al., 2023), and Claude- 356

3 Opus 4, which can only be accessed via API 357

calls. For open-source models, we experiment 358

on Llama2-(7B,13B,70B) (Touvron et al., 2023), 359

Llama3-(8B,70B) (AI@Meta, 2024), Qwen-1.5- 360

(7B,14B,72B) (Bai et al., 2023), ChatGLM3- 361

6B (Du et al., 2022), DeepseekLLM-(7B,67B) 362

(DeepSeek-AI, 2024), Mistral-7B (Jiang et al., 363

2023), Baichuan2-(7B,13B) (Baichuan, 2023), and 364

Yi-6B (Young et al., 2024). Most of these open- 365

source models are released with two versions, the 366

pre-trained base model and the chat model (based 367

model + instruction tuning and alignment), and we 368

focus our evaluation solely on chat models. More 369

implementation details can be found in Appendix 370

G.1. 371

2gpt-4-0125-preview
3gpt-3.5-turbo-0125
4claude-3-opus-20240229
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Models
Code Instruction Following Maths Avg CSHard Easy CS Hard Easy CS Hard Easy CS

GPT-4 Turbo 80.8 85.5 88.1 74.4 84.2 91.8 92.8 96.2 96.8 92.2
GPT-3.5 Turbo 62.3 71.4 81.2 53.0 76.1 88.6 65.6 86.9 90.7 86.8
Claude-3 Opus 79.0 81.1 85.5 78.0 87.7 93.4 93.7 96.5 96.6 91.8

Qwen Max 66.9 75.0 82.4 53.2 74.3 89.6 86.8 95.2 96.8 89.6

Llama3-70B-Instruct 69.2 73.9 84.3 74.7 86.7 94.4 80.8 94.9 96.9 91.9
Llama2-70B-Chat 20.7 34.5 74.7 36.3 56.6 81.0 23.2 70.5 83.7 79.8

Qwen1.5-72B-Chat 47.0 62.3 79.4 34.9 56.5 87.3 75.7 90.6 93.6 86.8
DeepseekLLM-67B-Chat 56.9 68.6 77.9 29.6 52.5 83.8 66.9 90.2 94.8 85.5

Llama2-13B-Chat 14.2 20.2 61.9 24.9 48.3 84.2 8.1 48.6 67.2 71.1
Qwen1.5-14B-Chat 36.1 51.4 74.6 29.3 55.4 83.6 58.2 82.6 90.7 83.0

Baichuan2-13B-Chat 15.7 21.5 59.1 13.0 31.0 63.3 14.2 48.6 65.8 62.7

Llama3-8B-Instruct 41.7 53.6 71.4 62.6 78.5 87.9 38.3 77.8 87.4 82.2
Llama2-7B-Chat 10.2 14.9 63.1 26.6 43.7 75.6 4.7 34.3 57.9 65.5

Qwen1.5-7B-Chat 28.6 40.9 68.4 21.8 47.2 82.5 34.7 68.6 83.6 78.2
ChatGLM3-6B 24.1 50.8 68.5 16.4 36.6 64.7 16.7 64.4 83.9 72.4

DeepseekLLM-7B-Chat 26.6 40.3 62.6 24.1 47.5 71.0 20.8 69.0 84.8 72.8
Mistral-7B-Instruct 20.3 28.4 57.0 37.1 60.8 84.3 11.6 51.8 67.4 69.6

Yi-6B-Chat 8.7 13.2 49.3 15.4 37.4 76.0 10.2 50.9 69.7 65.0
Baichuan2-7B-Chat 8.8 12.4 43.0 12.1 29.9 60.0 5.0 28.4 50.1 51.0

Table 2: Consistency evaluation results. A variety of LLMs are evaluated on code, instruction-following, and maths
domains. On each domain, we report consistency score (CS), accuracy (%) on hard set and easy set (denoted as
Hard and Easy). We also report the average consistency score (Avg CS) among three domains.

4.2 Main Results372

As illustrated in Table 2, we evaluate the hard-to-373

easy consistency of LLMs on ConsisEval and re-374

port the consistency score (CS) in three domains375

and the average consistency score (Avg CS). The376

accuracy (%) on easy and hard sets (indicating377

model capability) is also shown for comparison.378

Among the evaluated LLMs, GPT-4 Turbo show-379

cases outstanding performance in three domains380

and achieves the highest Avg CS of 92.2%, closely381

followed by Claude-3 Opus with an Avg CS is382

91.8%. Llama3-(8B,70B)-Instruct exhibit high ca-383

pability and consistency among open-source mod-384

els, superior to other models of comparable size.385

For comparison, CS of humans is theoretically386

100% if not take carelessness cases into consid-387

eration. Therefore, the potential for further im-388

provement in consistency still exists.389

We also observe a strong correlation between390

capability and consistency of LLMs. For example,391

Kendall rank correlation coefficient between accu-392

racy on hard set and CS across all evaluated LLMs393

on code domain is 0.801 (further discussion is pro-394

vided in Appendix G.2). However, higher capabil-395

ity does not necessarily lead to higher consistency396

(e.g. in math domain, Claude-3 Oplus outperforms397

GPT-4 Turbo in capability, yet exhibits a lower398

consistency). Additionally, empirical results also399

show CS is always larger than easy accuracy across400

all evaluated models, suggesting that answering 401

hard questions correctly benefits answering easy 402

questions. 403

4.3 Relative Consistency Analysis 404

To analyze the potential for improvement in consis- 405

tency, we attempt to compare the consistency of an 406

evaluated model with other hypothetical models of 407

similar capability ("capability" can be intuitively 408

but not strictly understood as "performance on ac- 409

curacy", with a formal definition provided in Ap- 410

pendix C). For each evaluated model, we present 411

its CS, upper and lower bounds of CS along with 412

the relative consistency score (RCS), which can be 413

utilized to analyze potential improvement in con- 414

sistency within the current capability. 415

The experimental results in code domain are pre- 416

sented in Figure 5, while the comprehensive results 417

across all domains can be found in Appendix G.3. 418

In code domain, we find that while GPT-4 Turbo 419

exhibits high consistency with a CS of 88.1%, there 420

is still considerable potential for improvement com- 421

pared to the upper bound 93.0%. Furthermore, the 422

RCS for GPT-4 Turbo is 34.8%, indicating a rela- 423

tive improvement potential of 65.2%. Conversely, 424

Llama2-70B-Chat, despite showing a low CS of 425

merely 74.7%, achieves an RCS of 81.5%, indicat- 426

ing notable consistency within its current capabil- 427

ity. 428
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Figure 5: Relative consistency results in code domain (shown in ascending order of CS). Except for showing RCS
for each evaluated model in a bar, we also show CS, upper and lower bounds of CS in lines of different colors for
comparison.

5 Analysis429

5.1 Hard Training Data Benefits Consistency430

To investigate the impact of the ratio between easy431

and hard data in the training set on model consis-432

tency, we select 2,500 easy and 2,500 hard entries433

from the training set of gsm8k (Cobbe et al., 2021a)434

based on the number of reasoning steps. We adjust435

the ratio between easy and hard data while keep-436

ing the total amount constant at 2,500 entries to437

construct a series of training sets with varying pro-438

portions. We then fine-tune Llama3-8B on these439

training sets (each group is repeated three times440

under different random seeds with Lora (Hu et al.,441

2021)) and observe the consistency behaviors. As442

shown in Figure 6, both the CS and RCS generally443

increase as the proportion of hard data increases,444

suggesting that hard training data benefits model445

consistency. Moreover, compared to a dataset com-446

posed entirely of hard data, a combination of 80%447

hard and 20% easy data yields better consistency,448

indicating proper easy data also contributes to en-449

hancing model consistency.450

5.2 Hard ICL Examples Benefits Consistency451

Similar to §5.1, we also explore the impact of easy452

and hard in-context learning (ICL) (Brown et al.,453

2020; Dong et al., 2022; Yang et al., 2023) demon-454

stration examples on model consistency. The ex-455

periments are under 1-4 shot setting, and for each456

setting we randomly select 20 easy and 20 hard ICL457

examples to evaluate the consistency of Llama-8B-458
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Figure 6: Consistency of models fine-tuned on training
sets of different proportions of easy and hard data. Fine-
tuned models show higher consistency with more hard
training data.

Instruct. As shown in Figure 7, hard examples dis- 459

play better consistency than easy ones, and model 460

consistency progressively increases with the num- 461

ber of shots. 462

5.3 Case Study: Why are LLMs Inconsistent? 463

Through investigations on math inconsistency 464

cases (shown in Appendix I), where the probability 465

of solving hard problems is higher than that of eas- 466

ier ones, we find even state-of-the-art GPT-4 still 467

behaves inconsistently due to the following rea- 468

sons: (1) Distracted by redundant information: 469

As the case shown in Table 6, for the easy question 470

with redundant conditions, GPT-4 incorrectly pro- 471

ceeds with an additional step after having already 472
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Figure 7: Consistency behavior of ICL with easy and
hard examples under 1-4 shot settings. ICL with harder
examples shows higher consistency.

arrived at the correct answer, leading to a final in-473

correct result. (2) Data mismatch: As the case474

shown in Table 7, GPT-4 could accurately analyze475

the usage of "dancing time on Tuesday" for compu-476

tation, but it erroneously utilizes "dancing time on477

Thursday" when conducting computation. (3) Mis-478

interpretation of questions: As the case shown in479

Table 8, the easy question requires finding the "cost480

of travel," GPT-4 misinterprets the requirement as481

the "cost of tickets for travel". (4) Logical error482

(Off-by-one error): As the case shown in Table483

9, the initial state should be recorded as "Day 0"484

in the easy question, but GPT-4 erroneously began485

recording from "Day 1". (5) Computational er-486

ror: As the case shown in Table 10, GPT-4 encoun-487

ters computational errors while solving an equation488

for the easy question. Superficially, the inconsis-489

tency of GPT-4 stems from the occurrence of the490

above mistakes on the easy questions but not on491

the corresponding hard questions. However, deeper492

underlying reasons remain unclear.493

6 Related Work494

Consistency of LLMs Consistency constitutes495

an important part of trustworthiness and reliability496

(Wang et al., 2023a; Li et al., 2023a; Chai et al.,497

2024; Liu et al., 2023) of LLMs. Humans are inher-498

ently consistent reasoners, but LLMs suffer from499

inconsistency problems. Wang et al. (2023b) find500

LLMs, when acting as evaluators, show inconsis-501

tency with insignificant order changes of evaluation502

content; Li et al. (2023b) observe that LLMs also503

show inconsistency when generating and validating504

the same knowledge; Elazar et al. (2021); Raj et al.505

(2023) endeavor to evaluate and enhance the consis-506

tency with semantically identical expressions; Jang 507

et al. (2022); Jang and Lukasiewicz (2023) evaluate 508

and analyze consistency to logical transformations, 509

such as negation and symmetry. Different from per- 510

spectives presented in previous works, our research 511

focuses on the hard-to-easy consistency of LLMs. 512

Easy-to-Hard Generalization Hupkes et al. 513

(2020); Xu and Wang (2024) study the generaliza- 514

tion ability of models trained on simple elements 515

to complex element combinations; likewise, Burns 516

et al. (2023); Hase et al. (2024); Sun et al. (2024b) 517

find models trained on easy data exhibit strong gen- 518

eralization capabilities to hard data. However, we 519

have observed that training models solely on easy 520

data can lead to inconsistent behaviors. 521

Leveled Evaluation Liu et al. (2024); Xu et al. 522

(2024a) hierarchically evaluate the capability of 523

LLMs to solve problems of different difficulty lev- 524

els by data categorized from easy to hard. Simi- 525

larly but differently, we evaluate the consistency 526

of LLMs by pairwise hard-to-easy data. Unlike 527

previous work whose difficulty level is roughly 528

divided by the number of reasoning steps (Hase 529

et al., 2024), the difficulty order in our work is 530

constrained to pairwise questions and more strict. 531

7 Conclusion 532

We observe an anomalous phenomenon where 533

LLMs able to solve hard problems paradoxically 534

fail at easier ones. To evaluate this hard-to-easy in- 535

consistency, we construct ConsisEval by automatic 536

generation and human annotation. Furthermore, 537

we propose consistency score to measure this in- 538

consistency quantitatively and relative consistency 539

score to analyze the potential for improvement in 540

consistency. Based on our dataset and metrics, we 541

conduct comprehensive experiments on numerous 542

existing models, finding that there are exceptions 543

where some powerful models demonstrate poor 544

consistency, though models with stronger capabili- 545

ties usually exhibit higher consistency. Case study 546

shows though state-of-the-art GPT-4 achieves the 547

highest CS of 92.2%, still suffers from inconsis- 548

tency due to distraction by redundant information, 549

misinterpretation of questions, etc. Besides, we 550

also find hard data benefits consistency for both 551

fine-tuning and ICL. Our benchmark and metrics 552

can facilitate research in consistency of LLMs, ulti- 553

mately paving the way for building more trustwor- 554

thy and reliable AI in the future. 555
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Limitations556

Our evaluation requires repeated sampling for the557

same question to estimate the probability, which558

is more computationally expensive than traditional559

non-probability evaluation. Our metric CS can only560

reflect the overall consistency of a model and can561

hardly identify to which types of problems it is562

more inconsistent. We also find different models563

behave inconsistently to totally different questions,564

and identifying these questions for a given model565

still requires human efforts in case studies.566

Data contamination (or data leakage) (Magar and567

Schwartz, 2022; Xu et al., 2024b) can affect our568

evaluation. As detailedly discussed in Appendix F,569

leakage of easy and hard data can lead to higher570

and lower CS, respectively. Considering that easy571

data are from public data and thereby suffer from572

a higher risk of data leakage (e.g. Achiam et al.573

(2023) reports 25% of HumanEval has been con-574

taminated in their training data), model consistency575

can be overrated.576

Our evaluation does not include human results.577

Theoretically, consistency of humans should equate578

to 100%, yet incorrectness on easy questions579

caused by carelessness can diminish this consis-580

tency. Human evaluation results can vary due to581

the variance of carelessness among individuals; be-582

sides, having humans complete all questions in583

ConsisEval is exceedingly time-consuming. There-584

fore, determining the human level consistency for585

LLMs as a reference needs more discussion and586

exploration.587

Our benchmark focuses on evaluating the hard-588

to-easy consistency of LLMs but does not inves-589

tigate the underlying reasons and how inconsis-590

tency comes into being. The knowledge acquire-591

ment process of humans and LLMs is totally dif-592

ferent, and humans are inherently consistent rea-593

soners yet LLMs are not. Will pre-training and594

fine-tuning paradigm of LLMs necessarily lead to595

inconsistency? Further discussion and exploration596

is needed. Though our preliminary findings suggest597

that hard training data can mitigate this inconsis-598

tency, how to solve this inconsistency problem is599

still unknown, and we leave it to future work.600

Ethical Considerations601

The easy part of our benchmark originates from602

publicly available datasets, which is allowed for603

research usage. Our dataset encompasses code,604

maths, and instruction-following domains, which605

are safe and can hardly be utilized in harmful ways. 606

Besides, the evaluated LLMs are all publicly avail- 607

able by either parameters or API calls. Therefore, 608

we do not anticipate any ethical concerns in our 609

research. 610
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Appendix820

A Mathematical Notations821

This section shows all of the mathematical nota-822

tions used in this paper. If you forget the meaning823

of any notation, please refer to Table 4. We lever-824

age ˆ to symbolize estimates (e.g. P̂ (ai) represents825

the estimate of the true value P (ai) ). For sim-826

plicity, we only show true values in Table 4, and827

estimates are omitted.828

B Derivation of Consistency Score829

§3.2 only shows the result for CS, and we show the830

derivation process of CS in this section. We have:831

CS = P (a|b)

=
P (a, b)

P (b)

=

∑
i=1,...,N P (ai, bi)/N∑
i=1,...,N P (bi)/N

=

∑
i=1,...,N P (ai)P (bi)∑

i=1,...,N P (bi)

(7)832

It is worth noting that for a given question pair833

(ai, bi), the probability that a model correctly an-834

swers ai, bi (i.e. P (ai) and P (bi)) are unknown835

constants. When sampling answers, whether the836

model answers one question correctly does not af-837

fect answering the other, which allows us to deduce838

that the simultaneous probability of correctly an-839

swering both is P (ai, bi) = P (ai)P (bi). However,840

this does not hold for random questions a and b, as841

P (a, b) ̸= P (a)P (b).842

The above derivation process does not specify843

how the random questions a and b are obtained.844

We provide a more rigorous proof by defining the845

random process through which a and b are selected,846

as well as the random variables P (a) and P (b).847

Firstly, we outline the following stochastic process:848

Randomly sampling a pair of questions (a, b)849

from A⊙B with equal probability.850

851

Based on this stochastic process, we define the852

random variables P (a) and P (b) as the probabil-853

ities of the model correctly answering a and b re-854

spectively, through a single temperature-based sam-855

pling. It is noteworthy that P (a), P (b) are constant856

in the previous derivation, but here we treat them857

as random variables. Initially, the prior probabil-858

ity of selecting bi in the above random process is859

P (select bi) =
1
N . Upon introducing the condition 860

that model answers b correctly, the posterior prob- 861

ability of bi being selected in the random process 862

becomes P (select bi) =
P (bi)∑

i=1,...,N P (bi)
. leverag- 863

ing this posterior probability for the calculation of 864

expected values, we have: 865

CS

= E[P (a|b)]

=
∑

i=1,...,N

P (ai|bi)P (select bi)

=
∑

i=1,...,N

P (ai, bi)

P (bi)

P (bi)∑
j=1,...,N P (bj)

=
∑

i=1,...,N

P (ai)P (bi)∑
j=1,...,N P (bj)

=

∑
i=1,...,N P (ai)P (bi)∑

i=1,...,N P (bi)

(8) 866

C Formal Definition of Models with 867

Similar Capabilities 868

For an evaluated model M0 and a question 869

pair (ai, bi) from dataset A ⊙ B, the probabil- 870

ity of M0 answer ai, bi correctly through a sin- 871

gle temperature-based sampling is denoted as 872

PM0(ai), PM0(bi). We define a model set Ω = 873

{M0,M1, ...} in which models have similar capa- 874

bilities (but consistency is not necessarily similar). 875

For any Mj ∈ Ω, we have: 876

1. PM0(bi) = PMj(bi) for any i ∈ {1, ..., N} 877

2. Mset{PM0(a0), ..., PM0(aN )} 878

= Mset{PMj(a0), ..., PMj(aN )}, 879

where Mset denotes multiset (a.k.a. bag), a 880

generalization of a set where repetition of elements 881

matters. 882

In this scope, we define models with similar abil- 883

ities as models whose correct probability on each 884

datum in B are exactly the same and multisets of 885

correct probability on each datum in A are iden- 886

tical to each other. The fact that different models 887

from Ω demonstrate the same accuracy on A (and 888

B) intuitively makes one feel that these models 889

have similar capabilities. It is worth noting that 890

only M0 is an existing model in the real world; all 891

other models in Ω are hypothetical for analysis of 892

consistency score boundaries. 893
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D Boundaries for Consistency Score894

This section discusses the derivation of boundaries895

for consistency score utilized in §3.3, and we show896

both strict mathematical boundaries and tighter897

heuristic boundaries.898

D.1 Mathematical Boundaries899

Without any loss of generality, we assume that900

P (b0), ..., P (bN ) is an ascending sequence (oth-901

erwise, the order of elements can be adjusted902

properly to meet this condition). After arrang-903

ing the sequence P (a0), ..., P (aN ) in ascend-904

ing order, we denote the resulting sequence as905

P (a(0)), ..., P (a(N)). According to the rearrange-906

ment inequality, we have:907 ∑
i=1,...,N P (a(N+1−i))P (bi)∑

i=1,...,N P (bi)

≤
∑

i=1,...,N P (ai)P (bi)∑
i=1,...,N P (bi)

≤
∑

i=1,...,N P (a(i))P (bi)∑
i=1,...,N P (bi)

(9)908

From this inequality, we obtain the mathemat-909

ical upper bound CSupp =
∑

i=1,...,N P (a(i))P (bi)∑
i=1,...,N P (bi)

910

and mathematical lower bound CSlow =911 ∑
i=1,...,N P (a(N+1−i))P (bi)∑

i=1,...,N P (bi)
.912

D.2 Heuristic Boundaries913

Although the aforementioned boundaries are math-914

ematically rigorous, they are too loose, as the915

lower bound sometimes approaches 0 and the upper916

bound approaches 1 in the experiments. Empiri-917

cally, CS lies within a narrower interval. To find918

more precise boundaries, we leverage two heuristic919

assumptions:920

Lower Bound Heuristic: For the most inconsis-921

tent model, probabilities of correctly answering922

easy and hard questions P (a) and P (b) are923

independent (instead of negatively correlated).924

925

Upper Bound Heuristic: For the most consistent926

model, the difference in probabilities of correctly927

answering easy and hard questions is directly928

proportional to the degree of increased difficulty929

level.930

931

These two hypotheses specify the behavior of932

the model of best and worst consistency. We as-933

sume that for a model of worst consistency, there934

might be independence between correctly answer- 935

ing easy and hard questions, rather than a negative 936

correlation where an increased probability of cor- 937

rectly answering hard questions leads to a lower 938

probability of correctly answering easy questions. 939

Conversely, for a model with best consistency, the 940

probability of correctly answering easy and hard 941

questions is entirely dependent on the difficulty 942

level of the questions. Thus, the difference in prob- 943

ability between correctly answering easy and hard 944

questions, P (ai) − P (bi), is solely reliant on the 945

gradient of difficulty from ai to bi. When construct- 946

ing our dataset, it’s almost impossible to ensure that 947

each ai scales up in difficulty uniformly to obtain 948

bi; therefore, we hypothesize that the difficulty scal- 949

ing from ai to bi follows a normal distribution (i.e. 950

(P (a)− P (b)) ∼ N(µ, σ)). 951

Based on the Lower Bound Heuristic, we have a 952

tighter heuristic lower bound: 953

CSlow = P (a|b) = P (a, b)

P (b)

=
P (a)P (b)

p(b)
= P (a)

=
Σi=1,...,NP (ai)

N

(10) 954

Based on the Upper Bound Heuristic, we have 955

P (ai) − P (bi) = µ + ϵiσ, where ϵi is a random 956

variable that follows a standard normal distribution. 957

The maximum likelihood estimation of µ, σ is: 958

µ̂ =
Σi=1,...,N (P (ai)− P (bi))

N
,

σ̂ =

√
Σi=1,...,N (P (ai)− P (bi)− µ̂)2

N

(11) 959

Substitute actual values µ, σ with estimated ones 960

µ̂, σ̂, then we have the theoretical value of P (ai) 961

in a consistent model: P (ai) = P (bi) + µ̂ + ϵiσ̂. 962

Empirically, the value of σ does not affect final 963

results if averaging on multiple sampling of ϵ, so 964

we directly let σ = 0. Then by substituting the 965

theoretical values of P (ai) in consistent model for 966

the true values of P (ai) used in calculation of CS , 967

we can obtain the heuristic upper bound as follows: 968

CSupp =

∑
i=1,...,N (P (bi) + µ̂)P (bi)∑

i=1,...,N P (bi)
(12) 969

E Probability Estimation 970

This section shows the derivation of the maximum 971

likelihood estimate of P (ai) in Multiple Sampling 972
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Estimation (§E.1) and Early Stopping Estimation973

(§E.2), respectively. Besides, we also show the974

pseudo-code and more discussion about Early Stop-975

ping Estimation in §E.3976

E.1 Multiple Sampling Estimation977

For problem ai, we sample answers m times in-978

dependently to obtain a sequence a1i , a
2
i , ..., a

m
i .979

Let aji = 1 if the model generates a correct an-980

swer on the jth sampling; otherwise, aji = 0. In981

this case, aji follows a Bernoulli distribution. Let982

k =
∑

j=1,...,m aji , we have the likelihood func-983

tion:984

L(P (ai); k) =
m∏
j=1

P (ai)
aji (1− P (ai))

1−aji

= P (ai)
k(1− P (ai))

m−k,
(13)985

the derivative of the likelihood function:986

∂L(P (ai); k)

∂P (ai)

=kP (ai)
k−1(1− P (ai))

m−k

− (m− k)P (ai)
k(1− P (ai))

m−k−1

∝ k(1− P (ai))− (m− k)P (ai)

∝ k −mP (ai)

(14)987

L(P (ai); k) is monotonically increasing when988

P (ai) ∈ [0, k
m ] and monotonically decreasing989

when P (ai) ∈ [ km , 1]. When P (ai) =
k
m , it max-990

imizes the likelihood function, so the maximum991

likelihood estimate of P (ai) is:992

P̂ (ai) =
k

m
=

∑
j=1,...,m aji

m
(15)993

E.2 Early Stopping Estimation994

In Early Stopping Estimation, the minimum and995

the maximum number of sampling times kmin and996

kmax are set as hyper-parameters for a given ques-997

tion ai. Initially, kmin answers are sampled, and998

the sampling process will be terminated if at least999

one correct answer exists in these kmin answers;1000

otherwise, answers will be sampled one by one1001

until a correct answer appears for the first time.1002

Besides, the sampling procedure will be forcibly1003

terminated if a correct answer still does not emerge1004

after sampling kmax answers. Let P (k, kc) be the1005

probability of sampling k answers in total in which1006

kc answers are correct, and let L(P (ai); k, kc) be1007

the likelihood function. The discussion is divided1008

into the following three cases based on the different1009

values of k:1010

Case 1: k = kmin 1011

We have the likelihood function: 1012

L(P (ai); k, kc) = P (k, kc)

=

(
kmin

kc

)
P (ai)

kc(1− P (ai))
kmin−kc ,

(16) 1013

the derivative of the likelihood function: 1014

∂L(P (ai); k, kc)

∂P (ai)

=

(
kmin

kc

)
[kcP (ai)

kc−1(1− P (ai))
kmin−kc

− (kmin − kc)P (ai)
kc(1− P (ai))

kmin−kc−1]

∝ kc(1− P (ai))− (kmin − kc)P (ai)

∝ kc − kminP (ai)
(17) 1015

L(P (ai); k, kc) is monotonically increasing 1016

when P (ai) ∈ [0, kc
kmin

] and monotonically de- 1017

creasing when P (ai) ∈ [ kc
kmin

, 1]. When P (ai) = 1018
kc

kmin
, it maximizes the likelihood function, so 1019

the maximum likelihood estimate of P (ai) is: 1020

P̂ (ai) =
kc

kmin
1021

Case 2: kmin < k < kmax 1022

We have the likelihood function: 1023

L(P (ai); k, kc) = P (k, kc)

= (1− P (ai))
k−1P (ai),

(18) 1024

the derivative of the likelihood function: 1025

∂L(P (ai); k, kc)

∂P (ai)

= −(k − 1)(1− P (ai))
k−2P (ai)

+ (1− P (ai))
k−1

∝ −(k − 1)P (ai) + 1− P (ai)

∝ 1− kP (ai)

(19) 1026

L(P (ai); k, kc) is monotonically increasing 1027

when P (ai) ∈ [0, 1k ] and monotonically decreasing 1028

when P (ai) ∈ [ 1k , 1]. When P (ai) = 1
k , it max- 1029

imizes the likelihood function, so the maximum 1030

likelihood estimate of P (ai) is: P̂ (ai) =
1
k 1031

Case 3: k = kmax We have the likelihood func- 1032

tion: 1033

L(P (ai); k, kc) = P (k, kc)

= (1− P (ai))
kmax−I(kc ̸=0)P (ai)

I(kc ̸=0),
(20) 1034

where I denoted indicator function. If kc ̸= 0, the 1035

likelihood function is the same as Case 2, we have 1036
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P̂ (ai) =
1

kmax
by the same reasoning. If kc = 0,1037

the likelihood function is monotonically decreasing1038

on [0, 1], so the maximum likelihood estimate of1039

P (ai) is: P̂ (ai) = 0.1040

To summarize, the maximum likelihood estimate1041

of P (ai) is shown as below:1042

1. if k = kmin, then P̂ (ai) =
kc

kmin
1043

2. if kmin < k < kmax, then P̂ (ai) =
1
k1044

3. if k = kmax, then P̂ (ai) =
I(kc ̸=0)
kmax

1045

The above three cases can be formulated as:1046

P̂ (ai) =
kc
k

(21)1047

E.3 More Details about Early Stopping1048

Estimation1049

The pseudo-code for Early Stopping Estimation is1050

shown in Algorithm 1. if we set kmax equal to the1051

number of sampling m in Multiple Sampling Esti-1052

mation, in the worst-case scenario, the number of1053

sampling of Early Stopping Estimation could equal1054

that of Multiple Sampling Estimation, theoretically.1055

However, empirical results suggest that, due to the1056

high accuracy of these closed-source models, the1057

actual number of samples required with early stop-1058

ping is typically low. While introducing an early1059

stopping strategy might slightly reduce the accu-1060

racy of estimation, the reduction in the number of1061

API calls required makes it a worthwhile trade-off.1062

Algorithm 1: Early Stopping Estimation
input :a question ai; function to generate an answer

by sampling generate();
minimum number of samples kmin;
maximum number of samples kmax

output :estimated probability P̂ (ai) of model answer
ai correctly through a single sampling

1 Initialize answer_list← [ ]
2 for j ← 1 to kmin do
3 answer ← generate(ai)
4 answer_list.append(answer)

5 if not exist_correct(answer_list, ai) then
6 for j ← kmin + 1 to kmax do
7 answer ← generate(a)
8 answer_list.append(answer)
9 if answer is correct then

10 Break

11 correct_num← CountCorrect(answer_list)
12 P̂ (ai)← correct_num/Len(answer_list)
13 Return P̂ (ai)

Multiple Sampling Estimation v.s. Early Stop- 1063

ping Estimation If we sample fewer times in 1064

Multiple Sampling Estimation, resulting in a 1065

roughly equal total number of samples across the 1066

entire dataset for both methods, which method 1067

yields a more accurate estimation? For questions 1068

with a low probability of being answered correctly 1069

(near 0%), a large number of samples are required 1070

to obtain a correct answer and thus accurately es- 1071

timate this probability; otherwise, there is a high 1072

risk of erroneously deeming the probability to be 1073

zero. On the contrary, for questions that models 1074

have a high probability of answering correctly (near 1075

100%), almost all samples will be correct, and 1076

therefore, fewer samples are needed to accurately 1077

estimate the probability. The Early Stopping Es- 1078

timation method adapts the number of sampling 1079

times dynamically for different questions, mak- 1080

ing better use of each sampling opportunity com- 1081

pared to the Multiple Sampling Estimation. Con- 1082

sequently, it achieves higher precision in its final 1083

estimates when the sampling times are limited. 1084

F Impact of Data Leakage 1085

Data leakage can affect our evaluation. We find 1086

leakage of easy and hard data can lead to higher 1087

and lower CS, respectively. We analyze data leak- 1088

ing on datum ai (or bi) by modeling the leaking 1089

as an increment in probability P (ai) (or P (bi)). 1090

For example, if ai is not leaked, model answers 1091

it correctly with probability P (ai); after ai is 1092

leaked, model answers it correctly with higher 1093

probability P (ai) + ∆P (aj). The original CS is 1094∑
i=1,...,N P (ai)P (bi)∑

i=1,...,N P (bi)
, and we numerically analyze 1095

the change of CS after data leakage. 1096

F.1 Leakage of Easy Data 1097

After leakage on an easy datum aj , the new CS 1098

after leakage is : 1099

CSleak =

∑
i=1,...,N P (ai)P (bi) + ∆P (aj)P (bj)∑

i=1,...,N P (bi)

= CS +
∆P (aj)P (bj)∑
i=1,...,N P (bi)

> CS
(22) 1100

So leakage of easy data will lead to a higher CS. 1101
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F.2 Leakage of Hard Data1102

After leakage on a hard datum bj , the new CS after1103

leakage is :1104

CSleak =

∑
i=1,...,N P (ai)P (bi) + P (aj)∆P (bj)∑

i=1,...,N P (bi) + ∆P (bj)
(23)1105

If P (aj)∆P (bj)
∆P (bj)

= P (aj) > CS, CSleak >1106

CS;If P (aj)∆P (bj)
∆P (bj)

= P (aj) < CS, CSleak <1107

CS. The expected value of P (aj) is the accuracy1108

on easy data, so we have E(P (aj)) < CS, and1109

CSleak < CS on average. So leakage of hard data1110

will lead to a lower CS on average.1111

G More Details and Results for1112

Experiments1113

We show more implementation details and results1114

for main experiments in §4.1115

G.1 Implement Experiment Details1116

For small open-source models with roughly 7B or1117

13B parameters, we employ the Multiple Sampling1118

Estimation and independently sample 20 answers1119

for each question. As for the large models with1120

around 70B parameters and closed-source models,1121

we utilize the Early Stopping Estimation to reduce1122

computational costs and API calls, and we set the1123

minimum number of samples at kmin = 3 and the1124

maximum at kmax = 20. For each small open-1125

source model (7B or 13B), we run the experiments1126

on a single Nvidia A100 80G GPU; for each large1127

model (70B), experiments are conducted on three1128

Nvidia A100 80G GPUs. All of the open-source1129

models are acquired from Huggingface5, and we1130

utilize the default sampling hyper-parameters (e.g.1131

temperature, top-p) released by model developers.1132

All evaluations are under zero-shot setting: for1133

mathematics and instruction-following data, ques-1134

tions as fed into LLMs directly; code data are trans-1135

formed into instruction format 6 before inputted1136

into models.1137

G.2 Correlation between Capability and1138

Consistency1139

We find there is a strong correlation between capa-1140

bility and consistency of LLM in all of our evalu-1141

ated domains. Taking code domain as an example,1142

5https://huggingface.co/
6https://huggingface.co/datasets/codeparrot/

instructhumaneval
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Figure 8: Correlation of capability and consistency.

Kendall’s coefficient of correlation between accu- 1143

racy on hard set and CS of all evaluated LLMs on 1144

code domain is 0.801, and the linear regression line 1145

is shown in Figure 8 (each dot represents an LLM). 1146

1147

G.3 Full Experiment Results on Relative 1148

Consistency Score 1149

Due to space limitation, §4 only shows experiment 1150

results on RCS in code domain. We show full 1151

experiment results in Table 3. 1152

H Metric Convergence 1153

The calculation of our evaluation metric consis- 1154

tency score (CS) and relative consistency score 1155

(RCS) relies on repeated sampling for a given ques- 1156

tion. We show the value change and variance of 1157

these metrics as the increase in sampling times. As 1158

the convergence results for Llama3-8B-Instruct on 1159

mathematics domain shown in Figure 9, CS con- 1160

verges faster than RCS and achieves a stable value 1161

at about 5 samples. The value of RCS converges 1162

relatively slower and becomes stable after about 15 1163

samples. 1164

We also explore leveraging consistent rate as 1165

an evaluation metric. Taking the case where the 1166

probability of answering an easy question cor- 1167

rectly is larger than that of the hard question 1168

as a consistent case, we have consistent rate = 1169
number of consistent cases

number of all cases ∗100%. However, we find 1170

that for the case where the probability of answering 1171

easy and hard questions correctly is close, reach- 1172

ing a convergent result requires too many times of 1173

sampling. We abandon this metric due to its high 1174

computational cost. 1175
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Moldes
Code Instruction following Maths

low CS upp RCS low CS upp RCS low CS upper RCS

GPT-4 Turbo 85.5 88.1 93.0 34.8 84.2 91.8 93.1 85.3 96.2 96.8 97.2 54.4
GPT-3.5 Turbo 71.4 81.2 88.8 56.1 76.1 88.6 91.7 80.5 86.9 90.7 96.2 40.8
Claude-3 Opus 81.1 85.5 93.6 35.1 87.7 93.4 95.7 70.7 96.5 96.5 98.1 0.6

Qwen Max 75.0 82.4 93.4 40.5 74.3 89.6 94.3 76.7 95.2 96.8 98.2 51.9

Llama3-70B-Instruct 73.9 84.3 94.6 50.2 86.7 94.4 95.1 90.7 94.9 96.9 98.0 64.1
Llama2-70B-Chat 34.5 74.7 83.8 81.5 56.6 81.0 91.6 69.7 70.5 83.7 90.3 66.9

Qwen1.5-72B-Chat 62.3 79.4 91.3 58.7 56.5 87.3 90.7 89.9 90.6 93.6 94.0 87.2
Deepseek-67B-Chat 68.6 77.9 88.1 47.6 52.5 83.8 88.1 87.8 90.2 94.8 98.8 54.0

Llama2-13B-Chat 20.2 61.9 84.2 65.1 48.3 84.2 89.2 87.7 48.6 67.2 76.1 67.4
Qwen1.5-14B-Chat 51.4 74.6 86.0 67.2 55.4 83.6 90.8 79.6 82.6 90.7 92.2 84.7

Baichuan2-13B-Chat 21.5 59.1 73.4 72.5 31.0 63.3 75.2 73.2 48.6 65.8 78.1 58.3

Llama3-8B-Instruct 53.6 71.4 83.4 59.7 78.5 87.9 91.8 70.7 77.8 87.4 89.2 84.6
Llama2-7B-Chat 14.9 63.1 79.6 74.5 43.7 75.6 86.2 75.0 34.3 57.9 76.5 55.9

Qwen1.5-7B-Chat 40.9 68.4 81.9 66.9 47.2 82.5 87.9 86.7 68.6 83.6 88.8 74.3
ChatGLM3_6B 50.8 68.5 81.6 57.4 36.6 64.7 75.3 72.5 64.4 83.8 86.2 89.0

Deepseek-7B-Chat 40.3 62.6 75.9 62.6 47.5 71.0 82.3 67.7 69.0 84.8 88.6 80.8
Mistral-7B-Instruct 28.4 57.0 69.7 69.2 60.8 84.3 88.3 85.3 51.8 67.4 75.3 66.5

Yi-6B-Chat 13.2 49.3 70.5 63.0 37.4 76.0 80.2 90.1 50.9 69.7 76.9 72.4
Baichuan2-7B-Chat 12.4 43.0 54.5 72.7 29.9 60.0 69.8 75.5 28.4 50.1 56.6 76.9

Table 3: Relative consistency results. A variety of LLMs are evaluated on code, instruction-following, and maths
domains. On each domain, we report consistency score (CS), lower and upper bounds of CS (denoted as low and
upp).

I Case Study1176

We show inconsistent cases of GPT-4 in Table1177

6,7,8,9,10. More analyses are shown in §5.3.1178

J Prompts for Data Generation1179

The prompts for data generation on code, maths1180

and instruction-following domains are shown in1181

Figure 10, 11, 12 respectively.1182

K Example Data1183

We show example data in Table 5.1184
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Notations Meanings

A,B easy question set and hard question set

A⊙B dataset with pairwise easy and hard questions

N number of data in A⊙B (also for A or B)

ai, bi the i− th easy question and the i− th hard question (they are a pair)

P (ai) (or P (bi)) the probability of model answer ai (or bi) correctly through a single temperature-based sampling

(a, b) a pair of questions sampled from A⊙B with equal probability.

P (a) (or P (b)) the probability of model answer a (or b) correctly through a single temperature-based sampling

P (a|b) the probability of model correctly answering a given that it has answered b correctly through a
single temperature-based sampling

P (a, b) the probability of model correctly answering a and b correctly through a single temperature-based
sampling

E[∗] expected values

M0 a language model to be tested

Ω a set of models with similar abilities with M0

PM0(ai) (or PM0(bi)) the probability of model M0 answer ai (or bi) correctly through a single temperature-based
sampling

Mset{} multiset (a.k.a. bag), a generalization of a set where repetition of elements matter

upp CS(Ω), low CS(Ω) the upper and lower bounds of consistency scores for all models in Ω

ϵi random variable following the standard normal distribution

µ, σ mean and standard variance for ( P (ai)− P (bi) )

m sampling times in Multiple Sampling Estimation

kmin, kmax, k, kc minimum sampling times, maximum sampling times, actual sampling times and correct answer
number in early Stopping Estimation

L likelihood function

Table 4: mathematical notations and their meanings.
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Figure 9: Convergence of metrics with the increase of sampling times.
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Question: George has 45% more pears than bananas. If George has 200 bananas, how many fruits does
George have?
Answer: To find out the number of pears George has, we must first calculate 45% of the bananas, then
add that to the number of bananas he has. If George has 200 bananas, we will find 45% of this number
like so:0.45 * 200 = 90. This means George has 90 more pears than bananas. Now, add the extra pears to
the 200 bananas to find the total number of pears: 200 + 90 = 290 pears. Now, to find the total number of
fruits, add the number of bananas to the number of pears: Number of bananas (200) + Number of pears
(290) = Total fruits. 200 + 290 = 490 fruits. Therefore, George has 490 fruits in total.
Answer (Number Only): 490

ha
rd

Question: George has 45% more pears than bananas. If George has 200 bananas, 270 oranges, and 150
apples, how much are George’s fruits worth if pears cost 3 dollars each, bananas 2 dollars each, oranges
50 cents each, and apples 1 dollar each?
Answer: First, let’s calculate how many pears George has. Since he has 45% more pears than bananas,
and he has 200 bananas, we calculate the number of pears as follows: Number of pears = Number of
bananas + 0.45 * Number of bananas = 200 + 0.45 * 200 = 200 + 90 = 290. Next, let’s calculate the total
cost of each type of fruit. Bananas (200 bananas at $2 each): 200 * 2 = $400. Pears (290 pears at $3
each): 290 * 3 = $870. Oranges (270 oranges at $0.50 each): 270 * 0.50 = $135. Apples (150 apples at
$1 each): 150 * 1 = $150. Finally, to find the total value of all the fruits, we sum these amounts: $400 +
$870 + $135 + $150 = $1555. Therefore, George’s fruits are worth $1555 in total.
Answer (Number Only): 1555
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Question:
Write a riddle for kids about auspices but make sure you don’t use any commas.
Constraint Type List: ["punctuation:no_comma"]
Constraint Kwargs: [{}]

ha
rd

Question:
Write a riddle for kids about auspices but make sure you don’t use any commas. Also, the riddle must be
at least 6 sentences long.
Constraint Type List: ["punctuation:no_comma", "length_constraints:number_sentences"]
Constraint Kwargs: [{}, {"relation": "at least", "num_sentences": 6}]

easy hard

C
od

e

Question:
def strlen(string: str) -> int:

”’
Return length of given string
> > > strlen(”) 0
> > > strlen(’abc’) 3
”’

Answer:
return len(string)

Check Function:
def check(candidate):

assert candidate(”) == 0
assert candidate(’x’) == 1
assert candidate(’asdasnakj’) == 9

Question:
def strlen_add(string1: str, string2: str) -> str:

”’
Return length sum of two given strings
> > > strlen_add(’abc’, ’d’) 4
”’

Answer:
return len(string1 + string2)

Check Function:
def check(candidate):

assert candidate(’abc’, ’d’) == 4
assert candidate(”, ’z’) == 1
assert candidate(’x’, ’y’) == 2
assert candidate(’hello’, ’!’) == 6

Table 5: Example data from ConsisEval. For each domain (mathematics, instruction-following, and code), a pairwise
example datum is shown.
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ns A team of 4 painters worked on a mansion for 3/8ths of
a day every day for 3 weeks. How many hours of work
did each painter put in?
Standard Answer: 189

A team of 4 painters worked on a mansion for 3/8ths of
a day every day for 3 weeks. Each painter earns 80 yuan
per hour. After working for 3 weeks, 70000 yuan were
allocated for the wages. How much money will remain
after paying the wages of the 4 painters?
Standard Answer: 9,520
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First, let’s figure out how many days are in 3 weeks.
There are 7 days in a week, so 3 weeks have 3× 7 = 21
days.
Each day, the team worked for 3/8 of a day. There are
24 hours in a full day, so 3/8 of a day in hours is:

24× 3

8
= 3× 3 = 9 hours

If they worked 9 hours each day, over 21 days, the total
hours worked by the team is:

9 hours/day× 21 days = 189 hours

Since the total hours worked by the team is 189 and the
team consists of 4 painters, the hours worked by each
painter is:

189 hours÷ 4 = 47.25 hours

So, each painter put in 47.25 hours of work.

First, let’s calculate the total hours worked by each
painter:
1. A day is considered to have 24 hours, so 3/8ths of a
day is: 3

8
× 24 hours. 2. 3

8
of 24 hours = 9 hours per

day.
Each painter works for 9 hours a day.
Now, let’s find out the total days worked in 3 weeks.
Since there are 7 days in a week:
3 weeks × 7 days/week = 21 days.
Each painter worked for 9 hours a day for 21 days, so
their total hours worked are:
9 hours/day × 21 days = 189 hours in total for 3 weeks.
Since there are 4 painters:
189 hours × 4 = 756 hours worked in total by all
painters.
Given that each painter earns 80 yuan per hour, the total
wages for all painters are:
756 hours × 80 yuan/hour = 60,480 yuan.
Finally, subtracting the total wages from the initially
allocated funds gives the remaining amount:
70,000 yuan - 60,480 yuan = 9,520 yuan.
Therefore, 9,520 yuan will remain after paying the wages
of the 4 painters.

Table 6: An inconsistency case for GPT-4. Red texts denote wrong reasoning steps. GPT-4 is distracted by the
redundant condition of "4 painters", leading it to perform an additional unnecessary calculation after arriving at the
correct answer, ultimately resulting in the wrong final answer.
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Hallie had dance practice for 1 hour on Tuesdays and
2 hours on Thursdays. On Saturdays, she had dance
practice that lasted twice as long as Tuesday’s night class.
How many hours a week did she have dance practice?
Standard Answer: 5

Hallie had dance practice for 1 hour on Tuesdays and
2 hours on Thursdays. On Saturdays, she had dance
practice that lasted twice as long as Tuesday’s night
class. On Sundays, her dance practice was 3 hours longer
than Saturday’s. Mary is also a dance enthusiast, and
her weekly dance practice is 4 hours less than Hallie’s.
Alice’s weekly dance practice is 5 times the duration of
Hallie’s Thursday practice. How many more hours does
Alice practice per week than Mary?
Standard Answer: 4
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s Hallie has dance practice for 1 hour on Tuesdays.

On Thursdays, she has dance practice for 2 hours.
Since Saturday’s dance practice is twice as long as Tues-
day’s, it would be 2 hours * 2 = 4 hours.
Adding all the hours together, we have:
1 hour (Tuesday) + 2 hours (Thursday) + 4 hours (Satur-
day) = 7 hours
So, Hallie had dance practice for 7 hours a week.

First, let’s calculate the total weekly practice duration
for Hallie.
Tuesday practice = 1 hour Thursday practice = 2 hours
Saturday practice = 2 * Tuesday = 2 * 1 hour = 2 hours
Sunday practice = Saturday practice + 3 hours = 2 hours
+ 3 hours = 5 hours
Total weekly practice for Hallie = Tuesday + Thursday
+ Saturday + Sunday = 1 hour + 2 hours + 2 hours + 5
hours = 10 hours
Mary’s weekly dance practice is 4 hours less than Hal-
lie’s: Mary’s weekly practice = Hallie’s weekly practice
- 4 hours = 10 hours - 4 hours = 6 hours
Alice’s weekly dance practice is 5 times the duration of
Hallie’s Thursday practice: Alice’s weekly practice = 5
* Thursday (of Hallie) = 5 * 2 hours = 10 hours
Comparing how many more hours Alice practices per
week than Mary: Alice’s weekly practice - Mary’s
weekly practice = 10 hours - 6 hours = 4 hours
Therefore, Alice practices 4 more hours per week than
Mary.

Table 7: An inconsistency case for GPT-4. Red texts denote wrong reasoning steps. Misapplication of data occurs
with GPT-4: Tuesday involves 1 hour of dancing, while GPT-4 mistakenly uses Thursday’s 2 hours in its calculation,
resulting in a wrong final answer.
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Jen decides to travel to 3 different countries. He has to
pay $400 for the supplies he needs, in total. The tickets
for travel cost, in total, 50% more than the supplies. How
much does travel cost?
Standard Answer: 1,000

Jen decides to travel to 3 different countries. He has to
pay $400 for the supplies he needs, in total. The tickets
for travel cost, in total, 50% more than the supplies.
Additionally, the accommodation costs for the travel are
3 times the cost of the supplies. The total travel expenses
amount to one-quarter of Jen’s monthly salary. If Eily’s
monthly salary is $3200 higher than that of Jen, what is
Eily’s monthly salary?
Standard Answer: 12,000
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s If the supplies cost $400 in total and the tickets for travel

cost 50% more than the supplies, we calculate the total
cost of the tickets by adding 50% of $400 to the original
$400.
50% of $400 is 0.50 * $400 = $200.
So, the tickets cost $400 (the cost of supplies) + $200
(50% more than the supplies) = $600 in total.

Let’s break this down step by step.
1. **Cost of Supplies**: Given as $400.
2. **Cost of Tickets**: Stated as 50% more than the
supplies, which is: Cost of Supplies× 150% = 400×
1.5 = $600.
3. **Cost of Accommodation**: Three times the cost of
the supplies, which is: 3×Cost of Supplies = 3×400 =
$1200.
4. **Total Travel Expenses**: Sum of Supplies, Tickets,
and Accommodation costs: 400+600+1200 = $2200.
5. **Total Travel Expenses as a Quarter of Jen’s Monthly
Salary**: This means: Jen’s Monthly Salary = 2200×
4 = $8800.
6. **Eily’s Monthly Salary** is $3200 more
than Jen’s Monthly Salary. Therefore, it’s:
Eily’s Monthly Salary = 8800 + 3200 = $12000.

Table 8: An inconsistency case for GPT-4. Misunderstanding of the question leads to an error: the question askes
for the total cost of the trip, whereas GPT-4 only calculates the cost of travel tickets.
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Mark plants a beanstalk below his second-story window,
which is 20 feet off the ground. The beanstalk doubles
its height every day. If the beanstalk starts out 4 feet
tall, how many days will it take to be taller than Mark’s
window?
Standard Answer: 3

Mark plants a beanstalk below his second-story window,
which is 20 feet off the ground. The beanstalk doubles
its height every day. If the beanstalk starts out 4 feet tall,
on the third day after planting it, Mark cuts off the part
of the beanstalk that has grown above his window to sell.
The beanstalk sells for $3 per foot. The money Mark
makes from selling the beanstalk is one fourteenth of his
daily wage. How much does Mark earn per day?
Standard Answer: 504
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To determine how many days it will take for the
beanstalk to be taller than Mark’s second-story window,
20 feet off the ground, we can follow the growth pattern
of the beanstalk, which doubles in height each day, start-
ing at 4 feet.
Day 1: 4 feet, Day 2: 4 feet × 2 = 8 feet, Day 3: 8 feet ×
2 = 16 feet, Day 4: 16 feet × 2 = 32 feet
On day 4, the beanstalk’s height becomes 32 feet, which
exceeds the 20-foot height of the window. Therefore,
it will take 4 days for the beanstalk to grow taller than
Mark’s second-story window.

To solve the problem, let’s first find out how tall the
beanstalk is on the third day after it starts growing.
Starting height: 4 feet
Growth pattern: doubles height every day
1st day height: 4 feet * 2 = 8 feet, 2nd day height: 8 feet
* 2 = 16 feet, 3rd day height: 16 feet * 2 = 32 feet
By the third day, the beanstalk is 32 feet tall. Since
Mark’s window is 20 feet off the ground, the part of the
beanstalk that grows above the window is the difference
between its third-day height and the window’s height.
Height above the window: 32 feet - 20 feet = 12 feet
Mark cuts and sells this 12-foot section for $3 per foot.
Money made from selling the beanstalk: 12 feet *
$3/foot = $36
It is stated that the money Mark makes from selling
the beanstalk is one fourteenth of his daily wage. Let’s
represent his daily wage as W.
Therefore, according to the problem:
$36 = 1/14 * W
To find W, multiply both sides of the equation by 14:
W = $36 * 14 = $504
Mark earns $504 per day.

Table 9: An inconsistency case for GPT-4. Red texts denote wrong reasoning steps. GPT-4 encounters an off-by-one
error: the initial state should be recorded as Day 0, but GPT-4 starts recording from Day 1 instead.
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Kenny is selling his Pokemon cards to buy a ticket to an
amusement park, which costs $100. He has a collection
of cards and plans to sell them for $1.5 each. He keeps
1/3 of them and gets to go to the amusement park with
$50 in spending cash. How many cards did he start with?
Standard Answer: 150

Kenny is selling his Pokemon cards to buy a ticket to
an amusement park, which costs $100. He has a collec-
tion of cards and plans to sell them for $1.5 each. He
keeps 1/3 of them and, after buying the ticket, has $50
in spending money for the amusement park. His initial
number of cards is 5 times the number of cards Eily has.
John has 37 more cards than Eily. Mary has 4 times as
many cards as John. How many cards does Mary have?
Standard Answer: 268
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Let’s denote the original number of Pokemon cards that
Kenny has as X.
Kenny decides to sell his cards for $1.5 each. However,
he keeps one-third of them, which means he sells two-
thirds of his cards.
The number of cards he sells is 2/3 * X.
From the sale of his cards, he earns enough to buy the
amusement park ticket, which costs $100, and he has
$50 in spending cash. Therefore, the total amount he
earns from selling his cards is $100 for the ticket plus
$50 spending cash, which equals $150.
The amount he earns from selling the cards can be found
by multiplying the number of cards he sells (2/3 * X) by
the price per card ($1.5):
(2/3 * X) * $1.5 = $150
Let’s solve for X:
$1.5 * (2X/3) = $150
(3/2) * $1.5 * (2X/3) = $150 * (3/2)
$2.25 * X = $225
Divide both sides by $2.25 to find X:
X = $225 / $2.25 X = 100
Kenny started with 100 Pokemon cards.

Let’s break down the problem step by step.
1. We know that Kenny sells his cards for $1.5 each and
wants to end up with $150 in total ($100 for the ticket
and $50 in spending money).
2. Let’s find out how many cards he sells. We take the
total money he wants to have, which is $150, and divide
it by the price per card: Total cards sold = total money
needed / price per card Total cards sold = $150 / $1.5
Total cards sold = 100 cards
3. Kenny keeps 1/3 of his cards and sells the rest, so 2/3
of his cards were sold. Let’s calculate the initial number
of cards he had: Let x be the number of cards Kenny
initially had. (2/3)x = 100 cards
To find x, we solve for x: x = (100 cards) / (2/3) x = (100
* 3) / 2 x = 300 / 2 x = 150 cards
So Kenny originally had 150 cards.
4. Kenny’s initial number of cards is 5 times the number
of cards Eily has. Let’s call the number of cards Eily has
E. Therefore: 5E = 150
Solving for E gives us: E = 150 / 5 E = 30 cards
Eily has 30 cards.
5. John has 37 more cards than Eily: John’s cards = E +
37 John’s cards = 30 + 37 John’s cards = 67 cards
6. Mary has 4 times as many cards as John: Mary’s cards
= 4 * John’s cards Mary’s cards = 4 * 67 Mary’s cards =
268 cards
So Mary has 268 cards.

Table 10: An inconsistency case for GPT-4. Red texts denote wrong reasoning steps. GPT-4 encounters a
computational error while solving equations.
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Prompt for Code Data Generation

#Instruction#:
I want you to act as a helpful assistant. Please help me modify some programming problems and make them harder. A
programming problem datum consists of three parts: #Problem#, #Answer#, and #Check Function#. The #Problem#
includes the name of a python function, function signature, and docstring; the #Answer# is the specific code that fulfills
the function’s purpose; in addition to that, there is a #Check Function# to verify whether the answer is correct. Please
follow the format of the following demonstrations, modify the original problem, and make it more challenging. To
ensure that there is a strict order in difficulty between the original problem and modified one, steps to solve the original
problem should be included in that of the modified problem. In other words, steps to solve the original problem is a
proper subset of that of the modified problem. Except the modified #Problem#, you should also provide #Answer# and
#Check Function# to the modified #Problem#.
#Demonstrations#:
<insert demonstrations>
The above are some demonstrations showing how to modify the original problems. Please follow their format and
modify the following problem:
#Problem#:
<insert the original problem>
#Answer#:
<insert the answer>
#Check Function#:
<insert the check function>
Please modified the above #Problem# and then provide #Answer# and #Check Function# to the modified #Problem#:

Figure 10: Our prompt fed to GPT-4 for code data generation. Our prompt is comprised of intention instruction,
demonstrations, and one datum to be modified. The instruction offers a clear description of the composition of the
datum and outlines the task we expect the model to accomplish. Demonstrations are provided as a format reference
for the model, followed by the original datum for the model to modify.

Prompt for Math Data Generation

#Instruction#:
I want you to act as a helpful assistant. Please help me modify some grade school math problems and make them
harder. A math problem datum consists of two parts: #Problem# and #Answer#. The #Problem# provides a background
description of a real-world mathematical problem, along with the conditions known and the unknown content to be
solved. There is a strict gurrantee that the unknown value can be derived through a few proper computational steps
based on konwn conditions. The #Answer# encompasses several computational steps based on logical reasoning with
the known conditions, culminating in the numerical value of the final answer. Please follow the format of the following
demonstrations, modify the original problem and make it more challenging. To ensure that there is a strict order in
difficulty between the original problem and modified one, steps to solve the original should be included in that of the
modified problem. In other words, steps to solve the original problem is a proper subset of that of the modified problem.
Except for the modified #Problem#, you should also provide #Answer# to the modified #Problem#.
#Demonstrations#:
<insert demonstrations>
The above are some demonstrations showing how to modify the original problems. Please follow their format and
modify the following problem:
#Problem#:
<insert the original problem>
#Answer#:
<insert the answer>
Please modified the above #Problem# and then provide #Answer# to the modified #Problem#:

Figure 11: Our prompt fed into GPT-4 for math data generation.
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Prompt for Instruction Following Data Generation

#Instruction#:
I want you to act as a helpful assistant. Please help me modify some instruction following problems and make
them harder. An instruction following problem datum consists of three parts: #Prompt#, #Constraint Type List#,
and #Constraint Kwargs#. The #Prompt# consists of several constraints that guide the model to generate text. The
#Constraint Type List# and #Constraint Kwargs# include the types and keyword arguments of the constraints contained
within the #Prompt#, respectively. They are utilized to verify whether the text generated by the model meets the
constraints. We provide a #Candidate Constraint Set# containing a variety of constraints. Please select an appropriate
constraint from this set and follow the format of the demonstrations provided to add to the original #Prompt#. By doing
so, you will create a more challenging new #Prompt#. Except for the modified #Prompt#, you should also provide
#Constraint Type List#, and #Constraint Kwargs# to the modified #Prompt#.
#Candidate Constraint Set#:
<insert the candidate constraint set>

#Demonstrations#:
<insert demonstrations>
The above are some demonstrations showing how to modify the original problems. Please follow their format and
modify the following problem:
#Prompt#:
<insert the original prompt>
#Constraint Type List#:
<insert the constraint type list>
#Constraint Kwargs#:
<insert the constraint keyword arguments>
Please modified the above #Prompt# and then provide #Constraint Type List# and #Constraint Kwargs# to the modified
#Prompt#:

Figure 12: Our prompt fed into GPT-4 for instruction following data generation.

25


	Introduction
	ConsisEval Benchmark
	Easy Data Collection
	Hard Data Collection

	Evaluation Metrics
	Problem Formulation and Notation
	Consistency Score
	Relative Consistency Score
	Probability Estimation

	Experiments
	Experimental Setup
	Main Results
	Relative Consistency Analysis

	Analysis
	Hard Training Data Benefits Consistency
	Hard ICL Examples Benefits Consistency
	Case Study: Why are LLMs Inconsistent?

	Related Work
	Conclusion
	Mathematical Notations
	Derivation of Consistency Score
	Formal Definition of Models with Similar Capabilities
	Boundaries for Consistency Score
	Mathematical Boundaries
	Heuristic Boundaries

	Probability Estimation
	Multiple Sampling Estimation
	Early Stopping Estimation
	More Details about Early Stopping Estimation

	Impact of Data Leakage
	Leakage of Easy Data
	Leakage of Hard Data

	More Details and Results for Experiments
	Implement Experiment Details
	Correlation between Capability and Consistency
	Full Experiment Results on Relative Consistency Score

	Metric Convergence
	Case Study
	Prompts for Data Generation
	Example Data

