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ABSTRACT

Generative Flow Networks (GFlowNets) were developed to learn policies for ef-
ficiently sampling combinatorial candidates by interpreting their generative pro-
cesses as trajectories in directed acyclic graphs. In the value-based training work-
flow, the objective is to enforce the balance over partial episodes between the flows
of the learned policy and the estimated flows of the desired policy, implicitly en-
couraging policy divergence minimization. The policy-based strategy alternates
between estimating that divergence and updating the policy, but reliable estima-
tion of the divergence under directed acyclic graphs remains a major challenge.
This work bridges the two perspectives by showing that flow balance also yields a
principled policy evaluator that measures the policy divergence, and an evaluation
balance objective over partial episodes is proposed for learning the evaluator. As
demonstrated on both synthetic and real-world tasks, the flow balance condition
not only strengthens the reliability of policy-based training but also broadens its
flexibility by seamlessly supporting parameterized backward policies and enabling
the integration of offline data-collection techniques.

1 INTRODUCTION

Generative Flow Networks (GFlowNets) are generative models on combinatorial space X, such as
graphs formed by organizing nodes and edges in a particular way, or strings composed of alphabets
in a specific ordering. GFlowNets aim at sampling © € X with probability oc R(z) where R(x)
is a non-negative score function. The task is challenging as |X’| can be too large to compute the
normalization constant Z* := ), R(z) and the distribution modes can be highly isolated due
to the combinatorial nature for efficient exploration. In GFlowNets (Bengio et al.l 2021} [2023),
generating or sampling x € X" is decomposed into incremental trajectories (episodes) that start from
a null state, pass through intermediate states, and end at x as the desired terminating state. These
trajectories 7 € T can be viewed as the paths along a Directed Acyclic Graph (DAG) with state
s € S and edge (s — s') € £. Positive measures (unnormalized probability) of trajectories are
viewed as the amount of flows along the DAG, and R(x) is the total flow of trajectories ending at x,
so that sampled trajectories will end at = with the probability o< R(z).

The core of the GFlowNet training problem can be understood as minimizing the discrepancy of
forward trajectory distribution Pr(7) induced by forward policy 7z (s’|s) towards backward tra-
jectory distribution Pp(7) := Pp(7|x)R(x)/Z* induced by a given backward policy w5 (s|s’) and
R(x) (Bengio et al.l 2023 Malkin et al., 2022b). This is motivated by the fact that in real-world
applications, sequential generation must be done in a forward manner. Besides, the marginaliza-
tion P*(z) = 3., Pp(r) trivially holds for all z € X, so any backward policy can be used
to define a target backward trajectory distribution. Since evaluating Z* and thereby the normal-
ized distribution Pg(7) is considered intractable, directly optimizing some distributional divergence
of Pp(7) and Pp(7) is not feasible. To circumvent this, value-based methods reformulate the
problem of distributional matching as a flow-matching problem and leverage the balance condi-
tions of flow values to derive training objectives. The basic condition Ep,, (5 [log 7r(s'|s) F(s)] =
Ep,(s)[log mp(s|s’)F(s)] means that the edge flow value F'(s — s’) = mp(s’|s)F(s) matches the
target edge flow value in the reverse direction, where Pp(s) is the marginal state distribution induced
by the data collection policy 7p(s’|s). This basic condition leads to various training objectives that
implicitly encourage the alignment between forward and backward distributions. These objectives
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range from edge-wise formulations to subtrajectory-wise variants, providing diverse estimation of
target flows and quantification of flow imbalances (Bengio et al., 2023; Madan et al., 2023; [Malkin
et al.,[2022a)). Alternatively, policy-based methods (Malkin et al.| 2022bj |Niu et al., 2024} Zimmer-
mann et al., [2022) introduce a state evaluation function V (s) of the forward policy 7z (-|s), which
approximates the Kullback-Leibler (KL) divergence between the distribution of forward subtrajec-
tories (partial episodes) starting from state s and that of backward subtrajectories ending at s. Then
V (s) is used to update the forward policy 7 (|s). While optimizing policy updating based on V' (s)
has been well-studied, how to reliably estimate V'(s) remains an open problem.

In light of the success of value-based methods that leverage flow balance conditions and the analogy
between F'(s) as the total amount of trajectory flows passing state s, and V'(s) as a measurement
of distributional divergence at state s, it is worthwhile to investigate the relationship between the
two quantities. It is known that the optimal forward policy 7 and state flow function F'(s) can be
uniquely determined by the flow balance condition E . [log F(s)mr(s'|s)] = Er,[F (s )7B(s|s")].
We find that, for an arbitrary fixed 7, the solution to this condition coincides with the ground-truth
evaluation function V'(s) of m. This paves the way to derive balance-based objectives to estimate
V() reliably. Our contributions are as follows:

e We establish the connection between balance conditions with respect to (w.r.t.) the state flow
function F' and the evaluation function V. Fixing 7, the expected balancing conditions of
log F' directly lead to a sufficient condition for V', which we call the Subtrajectory Evaluation
Balance (Sub-EB) condition.

e We introduce the Sub-EB objective (Sub-EB) for reliably estimating the evaluation function V,
where subtrajectories (partial episodes) serve as the basic unit of balance.

e Experimental results on both simulated and real-world datasets, including hypergrid model-
ing, biological and molecular sequence design, and Bayesian network structure learning, have
demonstrated the effectiveness and reliability of Sub-EB for policy evaluation.

2 PRELIMINARIES

We restrict DAGs of GFlowNets to be graded as any DAG can be equivalently converted to be
graded by adding dummy non-terminating states (Malkin et al.l 2022b). In a DAG G := (S, &),
element s € S denotes a state, and element e € £(C S x S) denotes a directed edge. We define
the index set of time horizons as [H| := {0,..., H}. Being acyclic means the state space S can
be partitioned into disjoint subspaces: Sy, ..., Smx+1, Where each element of S, is denoted as sp
for h € [H + 1]. Being graded further implies that actions are only allowed from Sy, to Sy, 41. For
any s € S, we denote its parent set by Pa(s) := {s'|(s'—s) € £} and its child set by Ch(s) :=
{s'|(s—s") € £}. We have two special states: the initial state so with Pa(sg) = 0 and Sy = {so},
and the final state sy with Ch(sy) = 0 and Sp+1 = {sy}. The terminating state set, S := X is
associated with a score function R : X — R™. Furthermore, the complete trajectory set is defined
asT :={1r=(sg = --- = s5)|V(s—s") € 7: (s—=s') € £}, 7;.; denotes a subtrajectory (partial
episode) that starts at some state in S; and ends at some state S; for i < j € [H + 1], 7;. denotes a
subtrajectory from s; to sy and 7.; denotes a subtrajectory from sg to s;. An exemplary DAG and
its graded version is shown in Fig.

2.1 GFLOWNET TRAINING

GFlowNets aim at sampling with probability R(xz)/Z*, where computing Z* is considered in-
tractable. To achieve this, GFlowNets define a Markovian positive measure F'(7) : T — RT, termed
as (trajectory) flow (Bengio et al., 2023), so that for any event E and E', F(E) := > __ F(7).
Then the total flow is Z := F(sg) = >, F(z). Consequently, P(E) := F(E)/Z and

P(E|E') = F%?Eﬁ/)~ In particular, for any (s — §') € &, the edge flow and state flow are

F(s=s") = 32 550 F(7) and F(s) = }_ 5 F(7). These induces to the forward and backward
policies, m(s'|s) := P(s — §'|s) = 7F(S}ng“) and 7(s|s’) == P(s — §|s') = 7F(;,h(';ih$1).
Being Markovian implies that P(7; ;|s;) = {lzi T(Sht1lsn), P(7is5) = Htho 7(Sn|Sp+1), and
P(1) = P(7|so) = P(7|s¢). Consequently, the goal of GFlowNet training is to learn a flow F' that
matches any desired flow F™* satisfying F*(x) = R(x). Given mr(s'|s) and F'(s) of one flow F(7),
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and 7 (s|s’) of the desired flow F*(7) := R(x)Pg(7|z), a necessary and sufficient condition for
achieving this goal is called the Sub-Trajectory Balance (Sub-TB) condition (Malkin et al., [2022a;
Madan et al., [2023)), which can be written as:

Epp(r,.,) [l0g (F(5:) Prp(Ti-j|s:))] = Epp(s,.,) [log (F(s;) Pp(7ij|s;))] (1)

forany i < j € [H+1], where F(s¢)Pg(z|sy) :== R(x) forx € X, Here, Pp(7; j|s;), Pa(Ti ;|5;),
and Pp(7ij) = > .5, ; Pp(7) are distributions induced by 7p, mp and offline data-collection
policy 7p, respectively. It is assumed that Pp(7) > 0 for any 7 € T (Malkin et al., [2022b).
Besides, backward policy 7 can be arbitrary, as long as Pg(7) := Pp(7|z)R(z)/Z* > 0 for any
7 € T. This is because R(x)/Z* = __,, Pp(7) trivially holds for all z € X. The condition can
be interpreted as the flow value of a subtrajectory should match the target flow value in the reverse
direction, which represents an (approximated) desired flow value.

Leveraging the balance condition, value-based methods typically use the Sub-TB objective to opti-
mize the parameterized policy 7w (s’|s; #) and state-flow logarithm log F'(s; #) toward their optimal
solutions 75 (s'|s) := wp(s|s) and log F*(s). The objective is defined as follows:

= Sl ) — Pp(7i4]5::0) log F(s::0) \*
Lr:=Eppe) {ZMJ_Z(SF(T”)}’ Or(riji6) = (10g Py (7i.5]55;0) log F(s;;0) ) @

Tisj

where w;_; denotes the non-zero weight coefficient for subtrajectories that consist of j —

1 edges.  For practical gradient-based optimization, Lp are approximated by Lp :=
+ > rep[dori, er Wi—i0F(Ti;j)], where D = {r% 7% ~ Pp (1)}, is the set of samples.

2.2  POLICY-BASED TRAINING

Policy-based training methods for GFlowNets (Niu et al., [2024) resemble the policy gradient algo-
rithm in Reinforcement Learning (RL) and aim to minimize the Kullback-Leibler (KL) divergence
Dx1,(Pr(7;0)||Pg(7)) as in traditional variational approaches (Malkin et al., 2022bj; Zimmermann
et al.| 202152022)). The method follows the actor-critic framework Agarwal et al.|(2021).

Critic In each training round, the critic (evaluation function) VT of actor 7x is first computed
to captureﬂ the policy gaps in terms of KL divergences over subtrajectories, which is defined as
Vh € [H]

H

> R(si, siq1; 9)] =logF™ (sn) — DkL(Pr (Th:|sn) | Pp(Th:ls1)) (3)
i=h

V(515 0):=Epp(r.|50:0)

where R(s;, 8;41;0) := log %, and 7 = 7 expect that T (z|s¢) := R(z). The second

equality can be easily verified Niu et al.| (2024), and its explicit derivation is also provided in (2I)) in
the Appendix.

Actor To optimize 7 to minimize Dy, (Pr(7;0)||Pg(7)), it is noted that VoV T(sq;0) =
Vo (Pp(1;0)||Pp(T)) since log F*(sp) is a constant. Further applying the policy gradient theo-
rems in RL (Agarwal et al., 2019)), the gradients of the KL divergence w.r.t 7 can be simplified and
expressed as the following expectation:

H
VoV1(s0:60) == Epy(r) ZA’Y(ShaSh-H)V() log mp(shy1|sn;0) |, 4
h=0

where A7 (sp, $pt1) = Zfih V=P (Rp(s; — siz1) + V(siy1) — V(s;)). When increasing the
hyperparameter -y from 0 to 1, AV(sp, sp+1) evolves from Rg(sp, — Spy1) + V(sp+1) — V(sn)
to Zfi n Rr(si = si11) — V(sy). This enables the variance-bias trade-off during stochastic gra-
dient descent (Schulman et al., [2016;2017). Given 7, analytical computation of its Viis usually
not feasible as | 7| can be enormous, so VT is directly modeled by an evaluation function V with
learnable parameters. We will discuss the learning objective of V' in the next section.

INiu et al|(2024) consider an additional total flow estimator Z(8) to scale down the magnitude of V. For
notion compactness, we defer the discussion of integrating Z into our method to Appendix[@
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3 SUBTRAJECTORY EVALUATION BALANCE

As discussed in the previous sections, the true evaluation function V' plays a central role in policy-
based methods. In this section, we first introduce the Sub-EB condition that characterizes the rela-
tionship between 7 and a parameterized evaluation V', which closely resembles the Sub-TB condi-
tions between mr and F'. We then present the Sub-EB objective for learning V. Further, we extend
these results with corresponding conditions and objectives for backward policies and backward eval-
uation functions.

3.1 THE BALANCE CONDITION AND OBJECTIVE FOR FORWARD POLICIES

Given a forward policy 7, the Subtrajectory Evaluation Balance (Sub-EB) condition for the asso-
ciated evaluation function V' can be written as:

Epp(r:.)) [log (PF(TZ';j|Si) exp V(Sz))] =Epp(r.)) [log (PB(Ti;j|Sj) exp V(sj)ﬂ (5)

forany i < j € [H + 1], where V := —V and Pp(x|s;)exp V(ss) := R(x) for 2 € X. It should
be noted that the expectation is taken w.r.t. the subtrajectory distribution induced by 7 while it is
taken w.r.t. the subtrajectory distribution induced by 7p in the Sub-TB condition.
Theorem 3.1. Suppose V is an evaluation function over S and F* is the desired flow. Given a
forward policy 7,

Vh € [H]: =V (sp) = log F*(sn) — Dxr(Pr(7h:|sr)|| Pa(Th:|S1)), (6)
if and only if V satisfies the Sub-EB condition ().

The corresponding proof can be found in Appendix [A.T]
Theorem 3.2. Suppose F is a state flow function over S and 7 is a forward policy. Then,

Vh € [H] : log F(sp) = log F*(sp) — Dki (P (7h:|81) | P (Th:|sk)) (7
and wf is equal to T}, if and only if F' and 7 satisfy the Sub-TB condition (E])

F*(s
the sufficiency and necessity of the Sub-TB condition have been studied in prior v&go)rk (Bengio
et al.| 2023} Malkin et al., |2022a)), Theorem @] offers an alternative perspective that more clearly
elucidates the connection between the flow function and the evaluation function. It should be noted
that the minimum of the KL term above is zero as both Pr(7) and Pg(7) are Markovian. By
Proposition 23 in Bengio et al.| (2023), the trajectory flow F'(7) = Pp(7)Z that achieves the zero
KL term is unique.

The corresponding proofs can be found in Appendix Here, i (s'|s) := F*(s'2s)  wWhile

Leveraging the balancing condition, we define the Sub-EB objective for optimizing a parameterized
evaluation function V(- ; ¢) as:

. 2
Pr (73585 V(si;

where w;_; is a weight constant for sub-trajectories that consist of j —¢ edges. While the traditional
-Temporal-Difference (TD) objective detailed in Appendix (Niu et al.| 2024} [Schulman
et al., 2016) focuses on learning V' (sy; @) only from events starting at step h and edge-wise mis-
matches dy (s — s), the Sub-EB objective incorporates events both before and after s and leverages
subtrajectory-wise mismatches, yielding more balanced learning of V'(s,; ¢). Moreover, Sub-EB al-
lows freely weighting schemes, whereas the scheme of A\-TD is restricted to the A-decay form. A
detailed comparison between our Sub-EB and A-TD objectives is provided in Appendix

Tizj

It should be noted that the Sub-EB objective is specifically designed for learning V' that approximates
VT of the current 7. During each optimization iteration, its gradient w.r.t. ¢ is computed to update
V(-; ¢), while parameter 6 is frozen. In contrast, the Sub-TB objective [2|is used to jointly update
7w (-|;0) and log F(-; 9) We summarize the workflow of our policy-based method for GFlowNet

training in Algorithm Here, in analogy to L and L F, We use EV and §9VT (so; @) to denote the
approximated versions based on sampled trajectories (and V).

Here, 0 and ¢ are introduced as separate parameter sets. 6 corresponds to functions updated jointly with
7, While ¢ corresponds to functions that are not.
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3.2 PARAMETERIZED BACKWARD POLICY

In this and the following sections, we further discuss two key advantages, introduced by the Sub-EB
condition, that improve the flexibility of policy-based training. The A-TD objective requires
7 to remain fixed throughout optimization, as V* is treated as constant w.r.t. ¢. To address this
limitation, |Niu et al.[(2024) proposed a two-phase algorithm for addressing this issue. Each training
iteration includes two phases. In the forward phase, we sample D ~ Pp(7), update V' based on
D, and update 7 based on V and D. In the backward phase, we sample D' ~ Pg(7|z)Pr(x),
update the evaluation function W that approximates the true evaluation function W' w.r.t. 75, and
update 75 based on W. The definitions of W1 and W are detailed in Section In parallel,
Gritsaev et al.f Jang et al.|(2024)) adopted an additional objective for 7 in the forward phase. When
applied to the policy-based framework, their approach first samples a batch D ~ Pg(7) and updates
7p by maximizing its log-likelihood, ) 1, log Pg(7). Then, with 7 held fixed, they update the
value function V' and subsequently optimize 7 based on the updated V, using the same batch D.
Compared to all these algorithms, both the Sub-TB (2)) and Sub-EB ({8) objectives allow for updating
parameterized 7 without introducing a separate backward phase or an additional objective. To be
more specific, g is jointly updated with 75 and F'°2 for the Sub-TB objective, and 7 is jointly
updated with V' for the Sub-EB objective. This leads to a more streamlined and efficient training
process while enabling the backward policy to adapt dynamically during optimization.

3.3 OFFLINE POLICY-BASED TRAINING

Both the single-phase method and the two-phase method by [N1u et al. (2024) operate in an online
manner, meaning that we can not use a policy mp, different from the current forward policy 7p,
during training. To overcome this limitation, we introduce an offline policy-based method made
possible by the flexibility of the Sub-EB objective. Supposing 7 is fixed, we can define the evalu-
ation function W of w5 as W(sg) := —log F(so) and Vh € [H] \ {0}:

h—1

Z R(siy1,8:; ¢>)1 = D1 (Pp(7.nlsn) || Pr(T:n|5k)) —1og F(sn) (9)
1=0

W (sn;0):=Epy (rn|sn:0)

where R(s;11,8:;¢) := log %, It can be easily verified that. Since V4 log F(z) = 0 and

VoEp, (2) W(x; ¢)] = VoEpp ., [DxkL(Pg(7|x; ¢)|| Pr(7|2))], minimizing Ep, [W1(x)] can be
a surrogate to minimizing the expected KL divergence. In analogy to the forward case, we use a
parameterized evaluation function W to approximate W 1. Then, given a backward policy 75, the
backward Sub-EB condition for W can be written as:

Epg(n:j) {108 (PF (Tizjlsi) exp W(*SZ))} = ]EPE(Tiij) [log (PB (7isjls;) exp W<sj))} (10)

forany i < j € [H+1], where W := —W, Pp(x|s;) exp W (ss) := R(x) forx € X,and PE(7; ;)

denotes the marginal distribution induced by P2 (1) := Pg(r|z)Pp(z).

Theorem 3.3. Suppose W is an evaluation function over S\{s}. Given a backward policy 7,
Vhe[H —1]: =W (spy1) = log F(spt1) — DxL(Pp(Tht1|She1) | Pe(Ting]sne1)),  (11)

and —W (z) = log R(x) if and only if W satisfies the backward Sub-EB condition (10).

The corresponding proof can be found in Appendix As shown in there, the right-hand

side of is equal to W defined in @) When 75 and 7 are at their optima, the KL term in

the expression of W is zero. Consequently, F(x) = R(x) and F(sp) = F*(sp) for any h € [H]

thereby fulfilling the goal of GFlowNet training. Based on the backward Sub-EB condition, we
present the backward Sub-EB objective for W (- ; ) as follows:

. 2
log PF(TZ';J‘|SZ‘;9) eXpW(Si;G) ) (12)
Pp(7i.5|s;) expW(s;;0)

Lw :=Epo (s [ijfﬁw(ﬁ:j)}y ow (73,5, 0) =
Tisj
The workflow of our offline policy-based method for GFlowNet training is presented in Algorithm[2]

where we use Ly and VW1 (s0;6) to denote the approximated Ly and VoW (s0; 0) based on
sampled trajectories (and WW).
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Algorithm 1 Online Policy-based Workflow Algm:lthm 2 Offfine Policy-based Workflow
Require: 75(-|;¢), mp(-|-;0), W(-;0), mp,

Require:. mr(-[50),  7ma(| ;.¢)’ : V() batch size K, number of total iterations N
batch size K, number of total iterations N for n — 1 N do
forn =1, }c"kN do X« DT« {ak|z* € 7%, 7% ~ Pp(r)}E
D {m"|m" ~ Pp(T)}imy D {r5|zk € DT, 7% ~ Pp(r|2")} K,
Based on D, update ¢ by Vi Ly (9). Based on D, update 6 by VQZW(G). B
]Eased on D and V. update ¢ by Based on ’D and W, update ¢ by
VoVT(s0;0) ’

end for VoEpy ) W1 (2;9)]

. . . end for
return 7 (- |-;0), 7(-|-;0), V(-;9) return 75(-|-; ¢), 7p(- |5 6), W(-:0)

4 RELATED WORKS

Value-based GFlowNet Training Existing works on value-based GFlowNet training can be cat-
egorized into two directions. The first one focuses on designing training objectives to characterize
target flow values, thereby improving the estimation of flow imbalance. For example, the Detailed
Balance (DB) objective (Bengio et al., 2021; [2023) aims at minimizing the mismatch between the
logarithms of forward edge flow and backward target edge flow expressed as F'°8(s) +log 7 (s'|s)
and F'°8(s’) 4 log mp(s|s’), respectively. Malkin et al. (2022a) proposed the Trajectory Balance
(TB) objective that optimizes the mismatch between the logarithms of forward trajectory flow and
the backward trajectory flow. Sub-TB objective (Madan et al., 2023)) generalizes both DB and TB
by minimizing the flow logarithm mismatch of subtrajectories across varying lengths. DB and
TB objectives are equivalent to the Sub-TB objective when non-zero weights are only assigned
to edges or complete trajectories. Building on Sub-TB objects, various improvements are also pro-
posed. Kim et al.|(2023a)) introduced temperature-conditional objectives, whose goal turns to make
Pr(x) oc RP(x) with positive scalar 3 < 1. Taking R to the exponent 3 reduces its sharpness,
making it easier to be matched. As Pr(z) does not match R(z) in this case, this representation
is specifically useful when the focus is solely on mode seeking. For all the objectives mentioned
above, backward policy 7z (s|s’) can be chosen freely for any intermediate edges (s — s’) and only
m(x|sy) is fixed to R(x). Target flow values of intermediate edges or subtrajectories do not directly
reflect the ground-truth knowledge about the reward function R. However, under the special cases
that the covered object space of R can be extended from A" to S, [Pan et al.|(2023)) and Jang et al.
(2023) improved the formulation of the DB and Sub-TB objectives, propagating partial knowledge
of R directly to intermediate edges. Due to the similarity of the Sub-TB objective and our Sub-EB
objective, these improvements can also be easily adapted to Sub-EB, facilitating the estimation of
the evaluation function V. A key characteristic of value-based methods is the data-collection policy
7p that can be off-policy, meaning it can differ from 7. This flexibility leads to numerous efforts at
designing mp (Kim et al.|[2023b; Rector-Brooks et al.,[2023;[Shen et al.,[2023)). The goal is to effec-
tively identify edges that precede highly-rewarded terminating states (exploration) while allowing
revisiting the edges already found to yield high reward (exploitation). The most widely used ap-
proach is a-greedy design that mixes mx with a uniform policy by factor a. These efforts, however,
fail to achieve deep exploration, which requires considering not only immediate information gain
but also the long-term consequences of a transition (edge) in future learning (Osband et al., [2019).
Although there have been many theoretical advances to efficient exploration design from an RL per-
spective (Azar et al.,[2017;|Jin et al., 2018 [Ménard et al., 2021])), their expensive computational cost
approaches limit their applicability in practical problems.

Policy-based GFlowNet Training As mentioned above, designing a data-collection policy that
is both computationally efficient and capable of deep exploration remains a significant challenge.
Moreover, what is truly needed for training efficiency is identifying the edges of high flow-imbalance
rather than the edges that lead to high terminating rewards. However, the flow imbalance is
closely related to mp and changes whenever 7 is updated. Empirical evidence shows that on-
policy training, meaning 7p is equal to 7w can result in faster convergence under many condi-
tions (Atanackovic & Bengiol 2024). Accordingly, policy-based GFlowNet methods (Malkin et al.,
2022b; Niu et al., 2024} Zimmermann et al., 2022)) conduct on-policy training, which typically
corresponds to optimizing the KL divergence between Pr(7) and the unnormalized distribution
Pp(t]x)R(x)(= Pp(1)Z*), which has gradient equivalence to the divergence between Pr(7) and
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Pg(7). Removing the need to design a data-collection policy, the main challenge of policy-based
methods shifts to robust estimation of the divergence and its gradients, that is, balancing the trade-off
between variance and bias of the estimators. [Malkin et al.|(2022b)) and |Silva et al.| (2024) construct
estimators empirically. During gradient-based optimization, these estimators are computed solely
from the training data sampled in the current iteration. These estimators typically exhibit low bias
but high variance. From the perspective of policy gradient algorithms in RL, Niu et al.| (2024)) pro-
posed estimators on a parameterized evaluation function V', which enables leveraging sampled data
from all previous iterations. These estimators generally have high bias but low variance. Combin-
ing empirical and parameterized approaches, Niu et al.|(2024) introduced a tunable hyperparameter
to control bias-variance trade-off explicitly, resulting in significant performance gains. As the
effectiveness of this policy-based method critically depends on how V' is learned, our paper is a
subsequent work to address this key challenge.

As GFlowNet training is closely related to RL, we provide more detailed discussions on GFlowNet
training from an RL perspective in Appendix and . Value-based methods follow the soft
Q-learning framework [Haarnoja et al|(2017), whereas policy-based methods, based on policy gra-
dients, operates within the soft actor—critic framework |Haarnoja et al.| (2018)).

5 EXPERIMENTS

We compare the empirical policy-based method of Silva et al.|(2024), which uses the Control Variate
technique for variance reduction during gradient estimation, RL-like policy-based method with V'
estimated by the A-TD objective in GFlowNet training (N1u et al.,|2024) and V' by our proposed Sub-
EB objective, referred to as CV, RL and Sub-EB, respectively. Since the Sub-TB method (Madan
et al.,|2023)) and the value-based RL method (Muchnausen DQN, denoted as Q-Much) Tiapkin et al.
(2024) are closely related to Sub-EB, we also include them as representative baselines for value-
based methods. To design the data collection policy mp in the Sub-TB method, we follow a common
choice, where 7p is equal to 7wz with probability (1 — «) and a uniform policy with probability
a (Shen et al.l 2023} [Rector-Brooks et al., [2023). The common setups of 7 are a uniform policy
or a parameterized policy. By default, we follow the first setup, as the parameterized policy does
not carry ground-truth information about the reward function. For both Sub-EB and Sub-TB, the
weight coefficient w;—; for i < j € [H + 1]issetto ¥ ="/ 37, iy 4y MV 7* following Madan
et al.| (2023)).

1<je

We choose total variation Dy and Jensen—Shannon divergence Djsp between Pr(z) and P*(x)
as the metrics for performance comparison between competing methods. Their definition is detailed
in Appendix [B] We have conducted three sets of experiments. The first set is conducted in simulated
environments, referred to as ‘Hypergrids’. The second set focuses on biological and molecular
sequence design tasks using real-world datasets. The third set involves real-world applications of
GFlowNet in Bayesian Network (BN) structure learning. More experimental details can be found in
Appendix [B] The implementation code is provided as supplementary material.

Hypergrids Hypergrid experiments are widely used for testing GFlowNet performance (Malkin
et al., 2022b; Niu et al., [2024). Here, states are the coordinate tuples of an D-dimensional hyper-
cubic grid with heights equal to H. The detailed description of the generative process is provided in
Appendix [B.T} We perform experiments on 256 x 256, 128 x 128 x 128 and 64 x 64 x 64 grids. We
use dynamic programming (Malkin et al., 2022a)) to explicitly compute Pr(z) for learned 7p, and
compute the exact Dy and Djsp between Pr(z) and P*(z). Experimental results are depicted in
Fig.[I]for Dy and Fig.[5|in Appendix [B.1]for D;gp respectively.

On the 256 x 256 grid, it can be observed that replacing the A-TD objective for learning V4 by
the proposed Sub-EB objective, the stability and convergence rate of the policy-based method are
significantly improved. While the final performances of the two policy-based methods (RL and Sub-
EB) are close, they both outperform Sub-TB and CV. These experimental results strongly support the
effectiveness of the Sub-EB objective in enabling more reliable learning of the evaluation function
V', leading to improved stability and faster convergence during policy-based GFlowNet training. The
empirical gradient estimator constructed solely from the current training batch is not adequate for
reliably guiding policy-based training. On the 128 x 128 x 128 grid, the stability and convergence rate
of Sub-EB are again much better than RL. While all three methods achieve similar final performance,
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Figure 1: Plots of the means and standard deviations (represented by the shaded area) of Dy
for different training methods with parameterized 75 and uniform 7p on the 256 x 256 (left) and
128 x 128 (middle) and 64 x 64 x 64 (right) grids, based on five randomly started runs for each
method. By default, metric values are recorded every 20 iterations over N = 2000 training iterations
and smoothed by a sliding window of length 5 for all plotted curves in this paper.

—e— SubTB

Avg — top — 100
Div — top — 100

o 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000
N

Figure 2: Plots of the mean and standard deviation values (represented by the shaded area) of average
reward (left), diversity (right) and FCS (right) of the top 100 unique candidate graphs over 10 nodes,
based on five randomly started runs for each method.

both RL and Sub-EB outperform Sub-TB and CV in terms of convergence rate. These findings
further validate the effectiveness of our Sub-EB objective. Finally, on the 64 x 64 x 64 grid, both RL
and Sub-EB outperform Sub-TB and CV, but the behavior of RL and Sub-EB is very close. This can
be ascribed to the fact that the stability of RL is good enough for this experiment, so the advantages
brought by the Sub-TB objectives is not obvious. Besides, since hypergrids are homogeneous w.r.t.
each dimension, and the minimum distance between modes only depends on NV, the environment
height N can have more effect on the modeling difficulty than the environment dimension D (Niu
et al.| [2024).

Ablation study on 7z To demonstrate that the Sub-EB objective naturally accommodates a pa-
rameterized backward policy. We compare the performance of the different methods with parame-
terized and uniform 75 on 256 x 256 and 128 x 128 and 64 x 64 x 64 grids. We use ‘-P’ to denote the
method with parameterized 7. RL-P uses the two-phase algorithm by Niu et al.|(2024) and RL-M
uses the approach by [Gritsaev et all As shown in Fig. [[]and Fig. 5] in Appendix [B.I] Sub-EB-P
achieves the best performance and training stability among all the evaluated methods. This confirms
that the Sub-EB objective well accommodates backward policies, which are parameterized and up-
dated jointly with evaluation functions. We also conduct an ablation study A, which is deferred to
Appendix [B-T]

Sequence design In this set of experiments, we use GFlowNets to generate biological and molec-
ular sequences of length D, which are composed of M building blocks (Shen et al., [2023). We use
nucleotide sequence datasets (SIX6 and PHO4), and molecular sequence datasets (QM9 and sEH )
from Shen et al.[(2023)). The detailed description of the generative process and experimental results
are provided in Appendix [B.2]

BN structure learning In this experiment set, we focus on real-world studies of Bayesian Net-
work (BN) structure learning (Malkin et al.| [2022b; |[Niu et al., [2024). Here, the object space X
corresponds to the space of BN structures. The detailed description of the generative process is
provided in Appendix We consider three cases with 5, 10, and 15 nodes, where the sizes of
X are approximately 2.95 x 104, 4.18 x 108, and 2.38 x 103, respectively. As in sequence de-
sign experiments, we also augment Sub-TB and the offline Sub-EB (Algorithm [Z) with the local
search technique |[Kim et al.|(2023b) for designing Pp, yielding the variants Sub-TB-B and Sub-EB-
B. While such off-policy techniques that explicitly encourage the exploration of high rewards may
not benefit overall distribution modeling, they can be valuable when the focus is on mode discovery
during training.
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We present the results and discussion for the two large-scale cases below and defer the small-scale
case to Appendix For the large-scale cases, either Pr(x) or P*(z) is computationally infeasi-
ble. Instead, we report the average reward of the top 100 unique graphs that are discovered during
the training process. Since effective distribution modeling performance implies not only optimality
but also diversity of generated candidates, we also compute the mean pairwise Hamming distance
among these 100 graphs as a measure of diversity. It should be noted that neither excessively high
nor excessively low diversity is desirable: the former corresponds to near-random generation, while
the latter indicates that generation gets stuck in a limited set of structures. Thanks to the works
by (Silva et al., [2025)), we use Flow Consistency in Sub-graphs (FCS) as the unbiased estimation of
Dry . For FCS, we randomly sampled 32 batches of terminal states of size up to 128 for the Monte
Carlo estimator. The experimental results are presented in Fig. 2] and Fig. [I2]in the Appendix
Among RL, Sub-EB, Sub-TB, Q-Much and CV, the results indicate that Sub-EB achieves the high-
est average reward, and both RL and Sub-EB converge faster than Sub-TB. All three methods attain
similar diversity. More importantly, only RL and Sub-EB obtain strong distribution-modeling per-
formance as measured by the FCS metric. Taking together all these findings, we can conclude that
all methods achieve appropriate distribution modeling, and Sub-EB performs the best. This supports
that Sub-EB not only enables reliable policy-based training but also scales effectively to large com-
binatorial spaces, providing both high-quality and diverse solutions. For the two variants, Sub-TB-B
and Sub-EB-B, it can be observed that Sub-EB-B achieves the highest average reward among all five
methods, accompanied by a more noticeable drop in diversity. Given that the local search compo-
nent explicitly prioritizes high-reward regions of the solution space, such a trade-off—significant
reward improvement at the expense of reduced diversity—is expected. In contrast, the Sub-TB-B
does achieve a higher average reward compared to its non-augmented counterpart (Sub-TB) with a
moderate decrease in diversity. However, the trade-off becomes much less pronounced. Without the
local search technique, Sub-EB already achieves a comparable average reward and higher diversity
than Sub-TB-B. Overall, Sub-EB-B proves to be more effective than Sub-TB-B, aligning well with
our expectations of the optimality-diversity trade-off. This finding further supports the superiority of
the policy-based methods, and validates that the Sub-EB objective enables the integration of offline
techniques within policy-based frameworks.

Molecular graph design In this set of experiments, we consider the molecular graph design task
(with |X| &~ 10'%) described in Bengio et al.[(2021). The sequence design task based on the SEH
dataset (with |X| ~ 3.4 x 107) (Shen et al.| 2023) is simplified from these tasks. A detailed de-
scription of the generative process and the corresponding experimental results for these graph design
tasks are provided in the Appendix[B-4] Sub-EB achieves the best overall performance on large-scale
molecular graph design, providing higher average rewards, faster convergence, and competitive di-
versity compared to RL, and Sub-TB.

6 DISCUSSION AND CONCLUSION

In this work, we have established the connection between the state flow function F'(s) and the
evaluation function V (s). Built upon that, a new objective, called Sub-EB, is proposed for learning
the evaluation function V'(s). Through three sets of experiments, we provide empirical evidence that
the new Sub-EB objective enables more stable and flexible learning of V' than the A-TD objective
in GFlowNet training, thereby improving the performance of the RL-like policy-based methods. In
principle, the Sub-EB objective allows flexible choices of weight coefficients. Further investigation
of designing optimal weight coefficients is left for future work.

7 REPRODUCIBILITY STATEMENT

Implementation details such as model configurations and hyperparameter choices are provided in
Appendix [B] Our implementation is based on the rorchgfn package (Lahlou et al, 2023), and the
code is also included in the supplementary materials.
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Figure 3: A graphical illustration of a DAG (left) and its graded version (right). Dotted circles
represent dummy states, added during the conversion to a graded DAG.

LLM USAGE DISCLOSURE

LLMs were used only for text refinement (grammar and style). All scientific content was developed
and verified by the authors.

A THEORETICAL ANALYSES

A.1 PROOF OF THEOREM [3.1]

Proof. We first prove the sufficiency of the Sub-EB condition (3). Assume that V' is an evaluation
function over S that satisfies the Sub-EB condition for a given forward policy 7r. Then, for any
h e [H]:

Epp(sn)mr (snitlsn) [10g w5 (snlsne1) + Vsne1) — log mp(spelsn) — V(Sh)} =0 (13

%
Erp(snilsn) [10g7TB(Sh|Sh+1) + V(sns1) — log mr(sns1lsn) — V(Sh)] =0 (14)
i3
: B(SnlSht1) | ¢
=E .y |log ——————= 15
V(sn) mr(shtlsn) |108 7TF(5h+1‘5h) + V(Sh-‘rl)] 15)

Here, the second equation holds by our assumption that any valid 7 should introduce a flow F',
which is a positive measure over trajectories over G. Consequently, the corresponding state proba-
bility Pr(s) is strictly positive for any s € S.

Based on , the previous definition log 75 (z|s ;) + V (s¢) := R(x), we have:

V(z) = ET"F(Sf‘w) {log 7TF(‘(9f|)x)}

F*(x — sy)

—E log —— % 7 51)
mrlorle) {"g 7 (s1]) }
Pp(x — s;)2*

=K X log ———~—
Pp(x — sfl|x)
Pr(z — sy|z)

=log F*(z) — Dxv(Pr(7a:|su)||Pe(Ta:|5H)), (16)

= EPp(xﬁsHm) |:10g :| + logPB(x)Z*
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B(sH-1|z)
mi(alp) |

Pp(tH-1:)Z" }
0og
Pr(TH-1:|SH-1

)
P(TH-1:[SH-1)
=K log ———— 2~ log P, 1)Z*
Pr(rilsm—) {Og Pr(TH-1:|8H-1) log Pa(sr-1)

=log F*(sg—1) — Dxi.(Pr(Te—1:|sH-1)||PB(TH-1:|5H-1)), (17)

. Pp(z — s5¢)27
V(SH—I) = Eﬂ'F(m\sH,l) |:10g B( f) :|:|

log 2B\ 7 °f)4
°8 Pr(z — sy|z)

= EPF(TH—I: [sm—1) |:1

7B (Sh|Sht1)
T (Shy1lsn)
PB(Th:)Z*:|
PF(Th |Sh)

/ Pp(mhe1.)2*
V(5h) = Erptopsalon) [log Pp(r)Z” ”

E I
T EPr(niaclonsa) [ o8 Pr(Ths1:|8h+1)

= Epp(r.|sn) [10% (18)

PB(T}L |Sh) *
= Epp (. |sn) [bg Pr(rlon) +log Pp(sn)Z

=log F*(sn) — Dxr(Pr(mh:|sn) || PB(Th:|51)), (19)

V(So) = EPF(Tlsh) |:10g P;E:-(?rf*]

PB(T)
PF(T)
= log " (s0) — Dx1.(Pr(7)[|P5(7)). (20)

= EPF(T) |:10g :| + log Z*

It should be noted that the definition of evaluation function (3)) coincides with the equation (I8) in
that

T (si|sit1) T (SilSit1) X
V( h) = Epp (7. [sh) lz log ———— e (5ie1]51) = Epp(rn.lsn) lz 10g m +log Z
i=h
PB(Th )Z*
= Epp(rn.|sn) [10g m 21

Now, we prove the necessity of the Sub-EB condition (E]) Assume that V' is the evaluation function
of a given forward policy . Then, Vh € [H]:

H

. TB\Si|Si
V(Sh) = ]EPF(Th,:|Sh,) lz ].Og M

+log Z*
ieh mr(Si+1]si)

7 (Sh|Sht1) Pp(Thi1:)Z*
—F log———""2 1 & log ———————
e (snitlon) {Og Tr(Shy1|sn) T EPe (i nlani) |18 Pr(Thyi:|sh+1)
mB(sh |Sh+1)
—FE, (0. 1oy |log TB\SAISK41) . 2
F(sh+1lsn) |:Og WF(Sh+1|Sh) (5h+1):| (22)
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Therefore,

Epp(sn)mr(sniilsn) [log w5 (snlsni1) + Vsni1) — log mp(snitlsn) — V(Sh)} =0 (23
(8

Jj—1

ZEPF(SWSZH) [log m5(s1]s111) + V(sip1) — V(s1) — log '/TF(SZ—H‘SZ)} =0 (24)

=1

4

j—1 j—1
Epp(ris) [Z log mp(silsi11) + V(s;) = V(si) — Y _ log TFF(Sl+1|Sl)] =0 (25)

=1 =1

\
Epe(rig) [bg Pp(7ijls;) + V (s;) — log Pr(7izss:) — V(Si)} =0 (26)
foranyi < j € [H +1]. O
A.2 PROOF OF THEOREM 3.2]
Proof. We first prove the sufficiency of the Sub-TB condition (I). Assume that F is a state flow

function over S, and 7 is a forward policy, such that they satisfy the Sub-TB condition. Then, for
any h € [H]:

Epp(sh—ssni1) 108 TB(ShlSh41)F (sht1) — log mp(spy1|sn) F(sp)] =0 (27)
\[8

log g (sp|sht1)F (sht1) — logmp(spy1|sn)F(sp) =0 (28)
(8

75 (Shlsh+1)
mp(Sht1lsn)
Here, the second equation holds due to the following two reasons. First, by our assumption that the
trajectory distribution Pp, which is induced by 7p, assigns non-zero probability to all trajectories
in 7. Thus, the marginal probability Pp(s — s') is strictly positive for any (s — s’) € £. Second,
mp is arbitrarily constructed and may differ from 7. Let
75 (3]s F (')

Yo mB(s|s)F(s)

Summing both sides of over spy1 yields F(sp) = 3 . log F(sp)mp(spr1lsn) =

log F'(sp,) = log + log F(sh+1)- (29)

7l(s'|s) == (30)

> snir 108 TB(Sh[Sh41)F(sp+1). Inserting this into , we arrive at 7z = 71. Then, taking
the expectation of w.r.t. mp, we have for any h € [H]:

TR(Sh|sh
log F(Sh) = ETrF(s;Hrl\sh) |:10g M + IOgF(Sh-H)} (31
7t (snyalsn)
= Erp(snsalsn) {log WF(SH”Sh)} + log Z mi(Snlsh+1)F(sh+1)
Sh+1
= —Dxv(mp(-|sn) |7 (sn)) +log > 7p(snlsni1)F(sni1)- (32)

Sh+1

Note that the second term in the last equality is independent of 7 (+|sy ). Then, given 75 (sp|-) and
F(spy1), F(sp) is maximized at s, when 7(-|sp,) = m'(-|sy). Accordingly, given 75 (sp+1]-)

and F(spy2), F(spy1) is maximized at sy, when 7p(-|spy1) = wf(-|spi1). Keeping do-
ing this recursion from h = 0 to h = H, we get the conclusion that F' is maximized when
mr = 7 for any (s — s’) € &£ When achieving the maximum, we have log F(z) =

log >, m(x|sy)F(sf) := log R(x) = log F*(z), log F(sp—1) = log -, mp(su—1|x)F*(z) =
log F*(sp-1),...,log F'(so) = log>_, mp(sols1)F*(s1) = F*(so). Therefore, F(s) =
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F*(s) for any s € S. Combining this with (28), we have mp = n},, where 7} (s'|s) =
wp(s|s")F*(s")/F*(s) is the desired forward policy induced by 7 5. Moreover, based on (31) and a
derivation analogous to that of V', we have, for Markovian Pg and any h € [H]:

log F(Sh) = log F*(Sh) — DKL(PF(Th;|Sh)HPB(T}1;|S;,)). (33)
Finally, we conclude:

log F'(sp) = log F™* (sp,) — min Dy (Pr(7h:|sn)|| P (7h:|sn)) = log F™* (sn), (34)

Now we prove the necessity of the Sub-TB condition (T)). Assume that I’ and 7 satisfy the equa-
tion (34) above. Then the equations (33) and (3T) must also hold for F' and 7, and we have, for
any h € [H]:
PB (Th: ) z*
log F’ =E log ——F—
o8 F'(sn) Pr(mlon) [og Pr(7h:|sn)
H

TB(S;i|S;
:EPF(Th:ISh) [Zlogw

+log Z*
i—n 7TF(Si+1|Si)

T5(Sh|Sn+1) Pp(tp41:) 2" H

E I
t EPp(rngailsnir) {Og Pr(Th+1:|Sn+1)

- EWF(SHI‘S’I) {log Sh+1\8h

T ( )
TB(Sh|Sht1)
T ( )

+ log F(sh_H)} . (35)
Shy1lsn

= ET{'F (Sh+1 ‘Sh) |:10g
We can rewrite the above equation as follows:

log F(sn) := —Dxvr(mr(:|sn)l|7i (|sn)) +1og > mp(snlsni1)F(sat1), Vh e [H]. (36)

Sh41

Since wp(+|sy) is independent of wg(sy|-) and F(sp41), the assumption that log F'(s;,) is maxi-
mized at sy, indicates wp(-|sy,) = 7' (+|sp,). Therefore, we recover Vh € [H]:

log mr(spt1|$n)F (sn) =logmp(snlsht1)F (Sht1)s (37)

and the Sub-TB condition can be easily derived from it. O

A.3 PROOF OF THEOREM 3.3

Proof. We first prove the sufficiency of the backward Sub-EB condition (I0). Assume that I is an
evaluation function over S\{s} that satisfies the backward Sub-EB condition for a given backward
policy mp. Then, for any h € [H — 1]:

Eorep (snlsnt1) Po(sns1) {bg 5 (shlsne1) + W(snt1) — log mr(sprlsn) — W(Sh)} =0 (33
N8

Erp(snlsnin) [bg T5(sh|sh+1) + W(shi1) — log mp(shi1lsn) — W(Sh)] =0 (39)
(8

- TE(Sht1lsn)

W =E 1 W : 40
(Sh-‘,—l) WB(sh,\sh,+1) Og TB(Sh'Sthl) + (sh):| ( )

Here, the second equation holds by our assumption that any valid 75 and R should introduce a flow
F*, which is a positive measure over trajectories over G. Consequently, the corresponding state
probability Pg(s) is strictly positive for any s € S.
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Based on (@0), we have:
W(s1) = Erp(so]s1) [log m} + W (s0)
Pr(sg — s1)
Pg(sop — s1]s1)
Pr(sg — s1]$1)
Pgp(sp — s1]s1)

= EPB(SO‘)'SI‘Sl) |:10g :l + log F(So)

=Ep,(so—s1]s1) [log } + log F(s0)Pr(s1)

=log F(s1) — Dxr(Pg(7:1|s1)||Pr(T:1]s1)), (41)
. 7TF(Sh+1‘Sh) PF(T:h) :
W (sht1) = Engsnlsns) {logﬂB(SMShH) +Eps(rn)sn) [IOgPB(TM + Wi(sg)
Pr(Tht1)
=K log —————~ log I 42
Pp(T:ht1lsh+1) {og (Th+1|5h+1) + log (30) (42)
—-F 1 Pp(T.nt1]8ht1) log F P
Pg(T:ht1lsht1) {Og PB(Th+1|Sh+1) + log (50) F(Sh+1)
=log F(sp+1) — Dxr(Pr(Tht1|sh+1) | PB(T:h|Sh+1)), (43)
. 7 (T|sH_1) Pr(T.5-1) :
w =K log ————= + E log ——MmM——%— 1474
(@) mo(s ) [og mB(sH—1]x) T EPs(aalon) {og Pp(T.H-1]5H-1) Wis)
Pr(1)
=K 1 log F'
Pgp(T|z) I:Og (7'|£E):| + 0og (80)
F(7]7)
|z

)] + log F'(s9) Pr(x)

= log F'(z) — D1 (Pp(7[2)|| Pr(T|z)). (44)

It should be noted that the definition of evaluation function (9) coincides with the equation ([@2) in
that

=Ep,(r|2) [bg Po(r

W (sht1) = Epy(rla) lz log = - :;ig] Epg(rlz) [g 10gm + log F(s0)
= Epp(rp.|sn) [1og IM} + log F(s0). (45)
In particular, when the backward Sub-EB condition is satisfied for h = H, we have
Epy () [log mr(syp|z) + W (x) —logmp(z|sf) — W(ss)] =0 (46)
!
Ep, (z) [W(z) — log R(z)] = 0. 47)

As Pp can be chosen arbitrarily, W () = R(z) is further implied.

Now, we prove the necessity of backward the Sub-EB condition (I0). Assume that W is the
evaluation function of a given forward policy 7. Then, Vh € [H — 1]:

h
T TE\Si+1|S:
W(Sthl) :EPB(T:thﬂSthl) lZIOg ( + ‘ )

+W S
im0 ﬂ'B(Si|5i+1) ( O)

T (Shy1lsn) Pr(1.4)F(s0)
—E log TEAShH1ISR) | g log ~E\T:h) X \S0)
T (snlsnin) [Og B (Sh|shy1) T EPsralen) 108 Pg(T.n|sn)
7r(Shy1lsn)
—E e [log TEASRELISR) i 48
B(snlsny1) [Og 7TB(3}L|3h+1) + (Sh)] (48)
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and W (z) = log R(x). Therefore,

Epp su oy onlsn o) 108 T8 (snls41) + W (snin) = logmr(snalsn) = W(si)| =0 49)
4

-1
D Epp(ssi) [10g 7 (silsi11) + Wsip1) = Wi(si) — 10g7TF(8l+1|Sz)} =0 (50)

l=i

4

Jj—1 Jj—1
Epp(r.) [Z log g (si|si41) + W(s;) — W(s;) — Zlong(slel)} =0 (51)

=1 l=1

i3
Epp(r.) [log Pp(7i:jls;) + W(s;) — log Pr(7s:) — W(Si)] =0 (52)

forany i < j € [H + 1] O

A.4 THE COMPLETE VERSION OF THE EVALUATION FUNCTION

Taking into consideration the total flow estimator Z, VT still takes the form of ll only
differing at mp(x|ss), which is redefined as R(z)/Z. In this case, it can be verified that

VI = Dkin(Pp(7)||Ps(1)) + log Z. Then, the gradient of V(sg;6) is equal to that of
Dk (Prp(7;0)||Pp(7)) + 1(log Z — log Z*)?. The forms of the Sub-EB condition and objective
remain unchanged except that Pg (s ;) exp V (s) is refined as R(z)/Z.

Corollary A.1 (Corollary to Theorem[3.1I). Suppose V' is an evaluation function over S and F* is
the desired flow. Given a forward policy Tp,

F*(s
Vh € [H] : ~V(sn) = log TS Dy (Pr(rilsn) | Po o), 63)
if and only if V satisfies the Sub-EB condition ().
Proof. The proof can be done by replacing R(z) in the proof of Theorem[3.1|by R(xz)/Z O

Finally, in Algorithm the approximated VoE,,s,.0)14[V T (s0;0)] (Niu et al.l 2024) are computed
to update both 7 (+|-;6) and Z(0), where p(so;0) := Z(9)/Z.

A.5 COMPARISON BETWEEN A\-TD AND SUB-EB OBJECTIVES

The traditional A-TD objective for V(- ; ¢) can be expressed as follows:

H H
Epp(r) | D, (VNsn) = Vsn; ¢))2  VA(sn) = Visn) + > AT 6y (si = sipa), (54
h=0 i=h

where V* is considered as constant when computing gradients w.r.t. ¢, and 8y (s; — s;41) is equal
to dy (7',;714_1) as defined in . Without consideration of gradient computation, the expression of the
objective value can be simplified as:

rH H .

Epe(ry | D> N0y (si = si41))°] - (55)

Lh=0 i=h _

In comparison, the expression of the Sub-EB objective value is:

Epq(r) Z wj—i(6v (7::5))% | - (56)

L 7i.5 Hi<jE[H+1]
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It can be observed that the A-TD objective only considers the events that start at step h for learning
V(sn; ¢), and edges-wise mismatch dy (s; — $;41). In contrast, the Sub-EB objective incorporates
information from both events that start at 4 and those that end at h by considering subtrajectory-wise
mismatches 0y (7;.(.)) that start at i(> h) and Jy (7(.);) that end at j(< k). This results in a more
balanced and reliable learning of V' (sp; ¢). Besides, the form of w can be freely chosen, while it
must be A\*~" in the A-TD objective (Schulman et al., 2016).

A.6 ADDITIONAL RELATED WORKS

RL methods can be roughly categorized into two main framework (Sutton & Barto, 2018)): the first
is (soft) Q-learning, and the second is the actor—critic framework.

In the first framework, the core idea of Soft Q-learning (Haarnoja et al., [2017) is to learn a function
() that minimizes the mismatch of the offfine Bellman equation for the transition environment G
with edge reward log mp(s|s’) and log mp(z|ss) + V(ss) := log R(x). This objective of Q) can be
written as

Epp(s—s) [0 (s — s, dg(s — &) :=logmp(s|s’) +V(s') — Q(s,5), (57)

with 7 (s|s) = % and V(s) :=log >, exp Q(s,s"). Any function () that achieves zero

mismatch is guaranteed to equal the optimal soft Q-function Q* with the corresponding V' = V* and
mp = 7. (Tiapkin et al|(2024) showed that if we treat Q(s, s") as log F/(s — s’) so that V (s) =
log> . F(s — s’) = log F(s), then the Bellman objective transforms into the DB objective.
The distinction lies only in parameterization: one may parameterize (7, V') directly and represent
Q(s, s) as V(s)mp(s'|s), instead of parameterizing Q(s, s’) and deriving V and 7 from it. They
further proved that the optimal solutions of the Bellman objective coincide with those of the DB
objective from the perspective of Soft Q-learning. As acknowledged by the authors, their proof only
applies to the DB objective with fixed 7 5. To address this limitation, [Deleu et al.|(2024) established
an equivalence between path-consistency learning (a generalized form of soft Q learning) and the
Sub-TB objective from a gradient-based perspective. Compared to Deleu et al.[(2024), our Theorem
3.2 offers a more direct and explicit connection along this RL direction. The major challenge in RL
is balancing the exploration-exploitation trade-off (Sutton & Barto}, 2018). Returning to GFlowNet,
the DB objective tends to favor exploitation as the target flow logarithm is log F'(s’) + log Pg(s|s’),
where log F' encodes the learned partial knowledge about the task, resulting in biased but low-
variance task feedback. In contrast, the TB objective encourages exploration as the target flow
logarithm log(Pp(7)R(z)) is independent of log F', and serves as unbiased but high-variance
feedback. The main advantage of the Sub-TB objective is that it enables a tunable trade-off between
exploration and exploitation by adjusting the weights assigned to subtrajectories of different lengths,
thereby having better performances This behavior is empirically demonstrated on hypergrid tasks,
as shown in Fig. ]

Our work and (2024)) is based on theory of policy-gradient [Agarwal et al.| (2021)), which
operates under the actor—critic framework |Haarnoja et al| (2018). In the framework, we learn a

function V' that minimizes (but not necessarily) the online Bellman objective of

Ep,(s—s[0s(s — §")?, 6s(s = s') :=logmp(s'|s) + V(s) — Q(s,s), (58)

with Q(s, s") := logmp(s|s’) + V(s') and Q(z, sy) := log R(x), where Ep, (5_,4[...] above can
be generalized into Ep,, (5)[Er . (s/|s)[- - -]]. but the inner online expectation still must be maintained.
At this point, the two RL directions begin to diverge (Schulman et all [2017). When the V

3As the offline Bellman objective under the first framework can be written as the DB objective, a special
case of the Sub-TB objective, the online Bellman objective for the second framework can be expressed as a
special case of the Sub-EB objective.
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achieves the optimal solution of the Bellman objective (denoted as V'), we have
V(s) = VI(s) = Erp (1) [Q(s,8') — logmp(s']s)]

_E exp Q(s, 5')
— Y log 22, exp Qs

§ —logme(s|3) + log Y exp Qs )

exp Q(s, ')
>oexpQ(s,s)

Defining F'(s — §') := exp Q(s, s’) yields expressions that coincide with those used in the main
text. This clarifies why VT (and its learned approximate V') serves as a critic: it evaluates how far
the 7 is from the local optimal policy as (s, s’) may still deviate from the global optimal one
Q* (s, s"). The divergence is then minimized w.r.t. actor 7 using critic V/, so that VT of 7 moves
closer to the optimal one V*. This can be achieved by simply setting 7 (- |s) to mg(-|s) for all
sampled states or applying policy gradients for sampled trajectories. In Appendix [A7} we further
derive the soft actor—critic algorithms based on basic minimization operations to better illustrate
how the Sub-EB objective and policy gradients operate within the actor—critic framework.

= —Dxr (nr(-]s)|mq(ls)) +1og Y _expQ(s,s'), mq(s'ls) =

A.7 SOFT ACTOR-CRITIC FOR GFLOWNET

The soft actor-critic algorithm tailored to GFlowNet training is presented in Alg. [3]and [ When
all states are visited through sampling in Alg.[3]and the online Bellman objective of V' reachs zero,
meaning Vs € S : Dy (mr(-]s), mo(-|s)) = 0,and V = VT, we below show that policy 75 and
V' will converge to optimal quantities 77 and V*. Starting at terminating states, we have:
V(z) = =DrrL(mr(|z)[mq(-[x) + Q(x, sf)
= Q(z,sy) :=1log R(x) (59)
Q(sp-1,2) :=logmp(sp-1|z) + V()

F*(sg—1 — )
()
where we use the definition of 7. Next, we have:

V(su1) = =D (mp(-lsr—1)llmo(-|su—1)) +log Yy expQ(su—1,)

x

zlogZF*(sH,l,x) =log F*(spg-1), (61)

= log +log R(z) =log F*(sp—1 — x), (60)

eXp Q(SH—la 'r)
Zx expQ(sg_1,)

=mp(zlsg—_1). (62)

wr(xlsp—1) = mo(xlsp_1) ==

_ F(sg_1 — @)
F*(SHfl)

Continuing this recursion, we will arrive at V(s) = log F*(s), Qf(s — s') = log F*(s — s'), and
wp(s'|s) = mh(s|s) forall s and (s — §').

The online expectation over 7y make algorithm [3] computational expensive, and also eliminating
the possible for ehanced the edge-wise formulation of dgs. To address this, one may modify it into
Algorithm 4] where the key difference is online trajectories sampled from Pp (7). While
(2024) improve the basic policy-optimization operator using policy-gradient theory for practical
implementation, our Sub-EB objective further enables subtrajectory-level formulations of dg and
parameterized w5 (- | - ¢). Since traditional policy-gradient methods operate strictly in an on-policy
manner, our backward Sub-EB objective derived from Theorem [3.2]is introduced to enable the use
of an offline sampler Pp.

B EXPERIMENTAL SETTINGS AND RESULTS

Hyperparameters For both the original policy-based method and the proposed one with the Sub-
TB objective (RL and Sub-EB), we set the hyperparameter v to 0.99 based on the ablation study
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Algorithm 3 Soft Actor-Critic Workflow Algorithm 4 Modified Actor-Critic Workflow
Require: 7 (-|-;0), np(-|-), V(-;¢), batch  Require: 7p(-|-;6), mp(-|-), V(-;¢), batch
size K, number of total iterations NV size K, number of total iterations N
forn=1,...,Ndo forn=1,...,Ndo
D+ {r*7" ~ Pp(r) 1, D« {r¥|rh ~ Pp(T) i,
Based on D, update ¢ by its gradients w.r.t. Based on D, update ¢ by its gradients w.r.t.
% ZSETk Eﬂp(s/|s) [58(5_%9/; ¢)2] % Z(s%s’)erk 6S(5_> 5/§ ¢)2
Based on D and V, setting 7p(-|s) to Based on D and V, setting 7p(-|s) to
(- |s) for any s(# s¢) € D. mq(-|s) for any s(# sy) € D.
end for end for
return 7y (-|-560), V(-;9) return 7p(-|-50), V(-;¢)

results reported in Niu et al.| (2024)). For the data collection policy 7p of Sub-TB, the hyperparame-
ter v starts at 1.0 and decays exponentially at a rate of 0.99, where the decay rate is also determined
based on the results of the ablation study in Niu et al.| (2024). In the Sub-TB objective, the hyperpa-
rameter ) is set to 0.9 following the ablation study by Madan et al.[(2023). For the Sub-EB objective,
A is set to be 0.9 selected from {0.1,0.2,...,0.9,0.99} based on the ablation study results shown

in Fig.[6]

Optimization The Adam optimizer is used for optimization. The sample batch size is set to 128
for each optimization iteration following Niu et al.| (2024). The learning rates of 7wp(-|-;6) and
F'°8(.; 0) are equal to 1 x 1073, which is selected from {5 x 1073,1 x 1073,5 x 1074,1 x 1074}
based on the performance of Sub-TB on the 256 x 256 grid. The learning rate of Vy(-) is set to
5x 1073, which is selected from {1072,5x 1073,1073,5 x 10~*, 10~} based on the performance
of RL on the 256 x 256 grid. In all experiments, each training method is run five times, initialized
from five different random seeds.

Model architecture The forward policy 7 (- | -; #) and evaluation function V,(+) are both param-
eterized by a neural network with four hidden layers, each with a hidden dimension of 256. The
backward policy w(-|-) is a uniform distribution over valid transitions (edges). In hypergrid and
sequence design experiments, coordinate tuples and integer sequences are transformed using K-hot
encoding before entering the neural networks. In BN structure learning, adjacency matrices are used
directly as input into neural networks without encoding.

Peformance metrics The first one is the total variation Dy between Pr(z) and P*(z), which is
defined as: Dry (Pr(z), P*(z)) = 3. ,cx |Pr(x) — P*(x)|. An alternative performance metric
adopted in literature is the average [;-distance, which is defined as |X|~! >~ |P*(x) — Pp(z)|. The
reason that we use Dy instead is as follows. The design space | X| is usually large (> 10%) and
> . |P*(x)—Pr(x)| < 2, resulting in the average [, -distance being heavily scaled down by | X'|. We
also evaluate different methods using the Jensen—Shannon divergence Djsp as the second metric,
which can be written as: Dysp (Pp(x), P*(x)) = 3 DkL(Pr(z), Py (x))+5DkL(P* (), Py (),
where Py := %(PF + P*).

B.1 HYPERGRIDS

The generative process of hypergrid experiments is defined as follows. For a grid with height H
and width D, the state space excluding the final state, S\{s f}, consists of all D-dimensional coor-
dinate vectors of the form {s = ([s]1,..., [S]d,---,[s]p) | [s]la € {0, ..., H — 1}}. The generating
process begins at the initial state so = (0,...,0) and ends in the final state sy, which we de-
note as (—1,...,—1). From any state s € S\{sy}, there are D + 1 valid transitions (edges): (1)
for each d € {0,..., D}, the d-th coordinate can be incremented by one, leading to a new state
s = ([s]l1,---s[8la + 1,...,[s]lp); (2) if s € X, the process can be stopped by taking transi-
tion (s—sy), returning s as the terminating coordinate tuple z. By definitions above, the DAGs
of Hypergrid experiments are not graded, meaning every state (excluding sy) can be returned as a
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Figure 4: Plots of the means and standard deviations (represented by the shaded area) of Drv (right)
for different training methods on the 128 x 128 (left) 20 x 20 (right) grids, based on five randomly
started runs for Sub-TB-16 Sub-TB-128, Q-much-16 and Q-much 128. Here, “16” and “128” denote
the training batch sizes.
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Figure 5: Plots of the means and standard deviations (represented by the shaded area) of Djgp for
different training methods on the 256 x 256 (left) 128 x 128 (middle) and 64 x 64 x 64 (right) grids,
based on five randomly started runs for each method.

terminating state. The reward function associated with terminating states is defined as:

- 0.5

€ (0.3, 0.4]} ,

R(z) = Ro+ R ﬁ]l HN[SEH
d=1

c (0.25,0.5]} + Rzﬁﬂ HN[S]_dl —05

where Ry = 1072, Ry = 0.5 and R, = 2 in our experiments.

Ablation study on A  For the 128 x 128 grid, we conduct an ablation study on the hyperparameter
A of the Sub-EB weights w;_i(= N ™"/ 32, e 1) NV 77) to investigate its effect on policy-based
GFlowNet training. We run Sub-EB methods with A equal to 0.1,0.2,...,0.90 and 0.99. The
experimental results are depicted in Fig.[6] It can be observed that the Sub-EB method with A = 0.9
achieves the best performance. Although convergence rates and final performances differ, Sub-EB
methods under all configurations exhibit good stability, demonstrating that the proposed Sub-EB
objective enables reliable learning of the evaluation function V.

B.2 SEQUENCE DESIGN

The generative process of this set of experiments is defined as follows. The state space excluding

the final state S\{so, ss} is equal to Uil{O, ..., N — 1} where each state is a sequence composed
of integers ranging from 0 to N — 1. The set {0, ..., N — 1} corresponds to the N types of building
blocks. The process begins at the initial state so = (—1,...,—1), which represents an empty
sequence, and ends at the final state s; = (N,...,N). For any intermediate state s, € Sp, it
contains h elements drawn from {0, ..., N — 1}. There are N x 2 possible transitions for s; with
t < D, corresponding to either appending or prepending one element from {0,..., N — 1} to the
current sequence. For implementation easiness in practice, each state s; is equivalently represented
as a sequence of fixed length D, where the first ¢ elements are integers from {0,..., N — 1} and
the others are equal to —1. This generative process continues until sequences reach length D. By
definition, G is a graded DAG and Sp = X = {0,...,N — 1}D . We use nucleotide sequence
datasets (SIX6 and PHO4), and molecular sequence datasets (QM9 and sEH ) from |Shen et al.
(2023). Rewards are defined as the exponents of raw scores from the datasets, R(z) = score® (z).
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Figure 6: Plots of the means and standard deviations (represented by the shaded area) of Dt (left)
and Djgp (right) for Sub-EB runs on the 128 x 128 grid. The hyperparameter A for Sub-EB runs
ranges from 0.1 to 0.99. The results are based on five Sub-EB runs for each setup.
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Figure 7: Plots of the mean and standard deviation values (represented by the shaded area) of MN
for the SIX6 (top left), QMO (top right), PHO4 (bottom left), and sEH (bottom right) dataset, based
on five randomly started runs for each method.

The hyperparameter f3 is set to 3, 5, 3, 6, and rewards are normalized to [10~3,10], [10~3, 10],
[0,10] and [10~2, 10] for SIX6, QM9, PHO4 and sEH, respectively. In this experimental setting, we
consider an additional metric introduced by |Shen et al.|(2023). It is Mode Accuracy (MA) of Pr(x)
w.r.t. P*(z), and defined as:

(63)

MA (Pp(z), P*(z)) = min (EPF@)W”)] 1) _

We use dynamic programming (Malkin et al.| 2022a) to compute Pr(z) and the exact MA, Dty
and Djgsp between Pr(x) and P*(x).

In this set of experiments, we focus not only on distribution modeling but also on mode discovery,
where the goal is to uncover high-reward terminating states. In addition to RL, Sub-EB, and Sub-TB
methods, we also consider augmenting Sub-TB and the offline Sub-EB (Algorithm [2) with the local
search technique (Kim et al.,|[2023b) for designing Pp, to explicitly promote the exploration of high-
reward states during trajectory sampling. These variants are denoted Sub-TB-B and Sub-EB-B. As
explained in the Related Works section and confirmed by the following experiment results, off-policy
techniques that explicitly encourage exploration may not benefit distribution modeling. However,
when the focus is on discovering modes of terminating states during training, these techniques can
be valuable.

Mode discovery Results Here, we present the experimental results comparing different methods
for mode discovery. We measure performance using Mode Number (MN), defined as the number
of unique high-reward terminating states discovered during training. A terminating state is regarded
as highly rewarded if its reward falls within the top 0.5% for the SIX6, QM9, and PHO4 datasets,
and the top 0.01% for the SEH dataset. As depicted in Fig. |7} Sub-EB-B and Sub-TB-B can find

22



Under review as a conference paper at ICLR 2026

o,
0 500 1000 1500 2000 ) 500 1000 1500 2000 ) 500 1000 1500 2000
N N N

Figure 8: Plots of the mean and standard deviation values (represented by the shaded area) of Dy
(left), Djsp (middle), and MA (right) for the SIX6 dataset, based on five randomly started runs for
each method.
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Figure 9: Plots of the mean and standard deviation values (represented by the shaded area) of Dy
(left), Djsp (middle), and MA (right) for the QM9 dataset, based on five randomly started runs for
each method.

a fixed number of unique modes faster and discover more unique modes within a fixed number of
optimization iterations, despite a decline in distribution modeling performance on all datasets except
PHOA4. These results validate our offline policy-based training workflow and support our claim that
the proposed Sub-EB objective enables the integration of offline sampling techniques.

Distribution Modeling Results We compare different training methods by their performance
measured by MA, Dyy and D jsp, as shown in Figs. [8] 0] [I0] and [IT] for SIX, QM9, PHO4,
and sEH datasets respectively. It can be seen that Sub-EB performs slightly better than RL. This can
be ascribed to the sufficient stability of RL in these experiments, rendering the advantages brought
by the Sub-TB objective less obvious. Nevertheless, Sub-EB outperforms Sub-TB in terms of both
convergence rate and final performance. They both leverage the balance conditions to learn an eval-
uation function V' and a state flow function F', respectively. In principle, the key difference is that
7w and F' are learned simultaneously in Sub-TB, whereas Sub-EB first learns V' and then uses RL-
like techniques to optimize 7 based on V. The results suggest that the balance conditions enable
learning both V' and F, and incorporating RL-like techniques into the balance-based framework can
enhance the performance of traditional value-based training methods such as Sub-TB.

For the offline variants, it can be observed that Sub-EB-B performs slightly better than Sub-TB-B,
but performs worse than Sub-EB for all datasets except PHO4. Combined with the mode discov-
ery results in Fig. [/} this indicates that while offline techniques that encourage the high-rewarded
terminating states is helpful for mode discovery, they may hinder accurate distribution modeling.

B.3 BN STRUCTURE LEARNING

A Bayesian Network is a probabilistic model, representing the joint distribution of N random
variables, whose factorization is determined by the network structure x, which is a DAG graph.
Accordingly, the distribution can be written as P(yi,...,yn) = ngl P(yn|Pas(yn)), where
Pa,(yy,) denote the parent nodes of y, in graph z. Since any graph structure can be en-
coded as an adjacency matrix, the state space excluding the final state is defined as S\{s;} =
{s|C(s) = 0,5 € {0,1}¥*N} where C corresponds to the acyclic graph constraint introduced
by Deleu et al.| (2022). It should be noted that each BN DAG x € X corresponds to a state s € S
in the GFlowNet DAG G. The generative process begins from the initial state so = 0V*¥, repre-
senting a graph without edges, and ends at s¢ := —1V>*"_ For any s € S\s/, a transition (s — )
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Figure 10: Plots of the mean and standard deviation values (represented by the shaded area) of Dy
(left), Dsp (middle), and MA (right) for the PHO4 dataset, based on five randomly started runs for
each method.
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Figure 11: Plots of the mean and standard deviation values (represented by the shaded area) of Drv
(left), Djsp (middle), and MA (right) for the sEH dataset, based on five randomly started runs for
each method.

corresponds to adding an edge by flipping a zero entry in the adjacency matrix to one, provided
that the resulting state s’ remains acyclic. Alternatively, the generative process can be stopped by
transitioning to sy and returning s as the terminating graph structure. By definition, the G is not
graded for this experiment set. Given an observed sample set D,, of y;.x, the goal of structure learn-
ing is to approximate the posterior distribution P(z|D,) o P(D,|z)P(x). In the absence of prior
knowledge about x, the prior distribution P(z) is often assumed to be uniform, reducing the task to
maximizing the likelihood, P(Dy|z)(cx P(x|Dy)).

Following Malkin et al.| (2022b), the ground-truth graph structure =* and the corresponding dataset
D, of size |D,| = 10° are simulated from Erd6s—Rényi model (Deleu et al., 2022). We use BGe
score (Kulpers et al., 2014) to assess generated graph structures, and deﬁne the reward R(z) =
(A(x,Dy)/C) , where A(z;D,) = BGe(z;D,) — BGe(so; Dy), § = 10 sharpens the reward
function toward high-scoring structures, and C' = A(z*; D,;) normalizes the reward so that R(z*) =
1. The exact number of DAGs on n nodes, denoted as a(n) satisfies (Robinson, 2006):

n

Z ’““( > 2k(=k) o(n — k), (64)

k=1

with a(0) = 1. For the ease of accessing distribution modeling performance, Malkin et al.| (2022b)
set the number of nodes to 5, resulting in about 2.92 x 10% possible DAGs. In this setup, the ground-
truth DAG contains 5 edges. In addition to this small-scale case, we also consider two much larger
cases with 10 and 15 nodes, corresponding to about 4.18 x 10'® and 2.38 x 103 possible DAGs,
respectively. We set the ground-truth DAGs to contain 10 and 15 edges in the two respective cases.

Experimental results For the small-scale case, we use dynamic programming (Malkin et al.,
2022al) to explicitly compute Pg(x) for learned 7, and compute the exact Dy and Djysp between
Pp(z) and P*(z). In Fig.|13] the mean and standard deviation values of Dty and Djgp are plotted
for five runs of Sub-TB, RL, and Sub-EB, respectively. It can be seen that Sub-EB performs better
than both RL and Sub-TB. These results confirm our conclusion that the Sub-EB objective enables
more reliable learning of the evaluation function V' compared to the A-TD objective, thereby im-
proving the performance of the RL-like policy-based method. We also include results for Sub-EB-B
and Sub-TB-B. These results further support our conclusion that explicitly encouraging exploration
of high-reward regions may not be beneficial for distributional modeling performance.
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Figure 12: Plots of the mean and standard deviation values (represented by the shaded area) of
average reward (left), diversity (middle) and FCS (right) of the top 100 unique candidate graphs
over 15 nodes, based on five randomly started runs for each method.
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Figure 13: Plots of the mean and standard deviation values (represented by the shaded area) of
Dy (left) and Djgp (right) for the BN learning structure learning task over 5 nodes, based on five
randomly started runs for each method.

B.4 MOLECULAR GRAPH DESIGN

Each molecule (graph) is a composition of at most 8 building blocks, selected from N = 105
predefined molecular substructures provided by [Bengio et al.[|(2021). Each block (graph node) has
a list that contains at most M available atom indices for forming bonds (graph edges) with other
blocks. Each block’s list includes contains exactly one target atom and O to M — 1 source atoms. A
bond is formed by connecting a source atom in one block to a target atom in another. A graphical
illustration of 4 exemplary blocks is shown in Fig. [T4]

Following [Bengio et al.| (2021)), we restrict the maximum number of blocks in a molecular graph
to be H = 8. Each state s € S in the generative process is represented as a H x 2 matrix. The
generative process begins from the initial state s = —1/*2, representing an empty graph, and
ends at sy = 1057%2. For any state s, € Sh, the first column contains % integers drawn from
{0,..., N — 1}, representing the indices of the building blocks present in the molecule. The second
column contains h — 1 integers drawn from {0, ..., H x M — 1}, encoding the connectivity. For
any s € S\ (s, s0), a transition (s — s") corresponds to a two-level action:

1. Selecting a building block to add, represented by an integer in {0, ..., N — 1}.

2. Selecting a bonding site represented by an integer & € {0,...,H x M — 1}. Supposing
k = (i — 1) x H + j, this indicates that the target atom of the newly added block will be
connected to the j-th source atom of the ¢-th block.

The generative process stops when we make the transition (z — s¢), when no available source
atoms remain for forming bonds, or when the state reaches the limit of H blocks. According to
the definition of the generative process, the G is not graded, meaning any state except sy can be a
terminating state x € X’. Since there may be multiple types of bonds between a given pair of blocks,
the size of the terminating state space is greater than u%i!s)! ~ 10'6. The Octanol-Water Partition
Coefficient (LogP) and c-Jun N-terminal Kinase 3 (JNK3) scores provided in the pyTDC package
are directly used as the reward functions R(x). Since actions in this generative process involve two
levels, we use separate neural networks to represent the policy for each action component. The
log-probability of an action is computed as the sum of the log-probabilities output by the respective
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Figure 14: Four exemplary building blocks. Red and blue dots indicate the available atoms for
bonding, where each bonding edge originates from a red dot and terminates at a blue dot.
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Figure 15: Plots of the mean and standard deviation values of average reward (left) and diversity
(right, Tanimoto diversity of molecular Morgan fingerprints) of top 100 unique molecules based on
LogP score.

networks for the two action levels. Finally, following [Bengio et al.|(2021)), we use a batch size of 4
to emulate scenarios where querying the real-world molecule oracle is computationally expensive.

The experimental results are presented in Figs.[I5]and[I6] We report the average reward and diversity
of the top 100 unique graphs which are discovered during the training process. The diversity of a
set of molecules is computed as the average pairwise dissimilarity based on Tanimoto distance of
Morgan fingerprints via the pyTDC package. For the LogP task, RL and Sub-EB achieve similar
average rewards and convergence rate, both outperforming Sub-TB and Q-Much. All three methods
exhibit comparable diversity. For the JNK3 task, Sub-EB achieves the highest average reward and
demonstrates the fastest convergence among all methods. Its diversity is comparable to that of Sub-
TB and higher than that of RL. While Q-Much achieves the highest diversity, its average reward
is almost the lowest. Overall, these results indicate that Sub-EB achieves the best performance in
terms of reward and convergence rate, while maintaining reasonable diversity. This confirms its
effectiveness for large-scale molecule design tasks.

B.5 GRADIENT VARIANCE STUDY

To measure gradient variance for different policy-based methods (CV, RL, Sub-EB), we follow
the procedure of Madan et al| (2023). We first sample a large batch of 2!1° = 1024 trajecto-

ries {71,...,T1024} and compute their per-trajectory gradients g](-o)

rameters. For each k € {2,...,9}, we construct 2'°=% disjoint sub-batches B;k), e ,Bé}fg,k,

each containing exactly 2* trajectories chosen in order from the large batch. The averaged sub-

batch gradient is then defined as gfk) = 2% Zj B g](_o)'

w.r.t. the forward policy pa-

The full-batch reference gradient is

g(10) = T124 2;2214 g§0). This hierarchical batching is used solely for gradient-variance analysis;
the actual training batch size remains unchanged. For each sub-batch gradient, we compute the
g’(k),g(lo)
llgt™ 119@11°

the mean similarity MeanSim (k) = 50— Z?;U;k Sim(gik), g"19)). Higher MeanSim (k) indicates

lower gradient variance. In Fig. @ we report the mean similarity of CV, RL, and Sub-EB at itera-
tions 500, 1000, and 1500. The results show that Sub-EB consistently achieves the lowest variance.

cosine similarity sim(gfk)7 9(10)) = and estimate the variance at batch size 2% via
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Figure 16: Plots of the mean and standard deviation values of average reward (left) and diversity
(right, Tanimoto diversity of molecular Morgan fingerprints) of top 100 unique molecules based on
JNK3 score.
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Figure 17: The mean cosine simiarity between small-batch 2* and large batch (1024) of different
methods at k = {2,...,9} and training iteration 500, 1000 and 1500.

Method Mean Std Method Mean Std Method Mean Std

Sub-TB 1Th08m  1.09 Sub-TB Oh 52m  0.27 Sub-TB 1h59m  1.53
Sub-TB-P  1h 14m 10.36 Sub-TB-P  Oh 58m 7.92 Sub-TB-P  2h 19m  4.40

RL 1h03m 0.92 RL Oh44m 143 RL 1h27m 7.37
RL-P 1h27m  0.57 RL-P lh 06m 2.21 RL-P 2h 03m 10.68
RL-M 1h09m  1.78 RL-M Oh 58m 3.27 RL-M 2h28m  9.58

Sub-EB lTh17m 231 Sub-EB Oh 54m  2.66 Sub-EB 2h04m 4.11
Sub-EB-P  1h 17m  1.49 Sub-EB-P 1h1lm 0.82 Sub-EB-P 2h4lm 1546

Table 1: The mean and standard deviation (std) of the total runtimes for each method on the 64 x
64 x 64 (left), 128 x 128 x 128 (middle), and 256 x 256 x 256 (right) grids. Here, ‘h’ denotes hours
and ‘m’ denotes minutes, and all std values are reported in minutes.

Method Mean Std Method Mean Std
Sub-TB Oh O5m 0.21 Sub-TB Oh04m 1.10
Sub-TB-B  Oh 16m 0.67 Sub-TB-B  Oh 12m 0.57
RL 0Oh 04m 0.06 RL Oh 04m 0.12
Sub-EB Oh 04m 0.34 Sub-EB 0Oh 04m 0.06
Sub-EB-B Oh 17m 1.63 Sub-EB-B  Oh 13m 0.71

Table 2: The mean and standard deviation (std) of the total runtimes for each method on the SIX6
and QMY datasets. Here, ‘h’ denotes hours and ‘m’ denotes minutes, and all std values are reported
in minutes.

Method Mean Time (h:min)  Std (min) Method Mean Time (h:min)  Std (min)
Sub-TB Oh 19m 2.05 Sub-TB 3h 30m 10.23
Sub-TB-B Oh 27m 0.42 Sub-TB-B 3h 46m 11.59
RL Oh 18m 0.10 RL 3h 42m 13.78
Sub-EB Oh 18m 0.15 Sub-EB 3h41m 13.97
Sub-EB-B Oh 30m 1.09 Sub-EB-B 3h 58m 7.57

Table 3: The mean and standard deviation (std) of the total runtimes for each method on the PHO4
and sEH datasets. Here, ‘h’ denotes hours and ‘m’ denotes minutes, and all std values are reported
in minutes.
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Method Mean Std Method Mean Std Method Mean Std
Sub-TB Oh57m 1.11 Sub-TB 0Oh 10m 0.80 Sub-TB Oh 16m 1.28
Sub-TB-B  1h23m 4.27 Sub-TB-B  Oh36m 1.82 Sub-TB-B  0Oh42m 3.82
RL Oh 56m 0.46 RL Oh I11lm 3.58 RL Oh12m 1.79
Sub-EB 0h49m 0.87 Sub-EB Oh 10m 0091 Sub-EB Oh 14m 0.28
Sub-EB-B  1h07m 143 Sub-EB-B Oh3Im 2.27 Sub-EB-B Oh39m 1.13

Table 4: The mean and standard deviation (std) of the total runtimes for each method on the 5-
node, 10-node and 15-node BN tasks. Here, ‘h’ denotes hours and ‘m’ denotes minutes, and all std
values are reported in minutes. The runtimes for the 5-node cases are the largest due to the explicit
computation of Dry for performance comparison during training.
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