
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

EVALUATING GFLOWNET FROM PARTIAL EPISODES
FOR STABLE AND FLEXIBLE POLICY-BASED TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

Generative Flow Networks (GFlowNets) were developed to learn policies for ef-
ficiently sampling combinatorial candidates by interpreting their generative pro-
cesses as trajectories in directed acyclic graphs. In the value-based training work-
flow, the objective is to enforce the balance over partial episodes between the flows
of the learned policy and the estimated flows of the desired policy, implicitly en-
couraging policy divergence minimization. The policy-based strategy alternates
between estimating that divergence and updating the policy, but reliable estima-
tion of the divergence under directed acyclic graphs remains a major challenge.
This work bridges the two perspectives by showing that flow balance also yields a
principled policy evaluator that measures the policy divergence, and an evaluation
balance objective over partial episodes is proposed for learning the evaluator. As
demonstrated on both synthetic and real-world tasks, the flow balance condition
not only strengthens the reliability of policy-based training but also broadens its
flexibility by seamlessly supporting parameterized backward policies and enabling
the integration of offline data-collection techniques.

1 INTRODUCTION

Generative Flow Networks (GFlowNets) are generative models on combinatorial space X , such as
graphs formed by organizing nodes and edges in a particular way, or strings composed of alphabets
in a specific ordering. GFlowNets aim at sampling x ∈ X with probability ∝ R(x) where R(x)
is a non-negative score function. The task is challenging as |X | can be too large to compute the
normalization constant Z∗ :=

∑
x∈X R(x) and the distribution modes can be highly isolated due

to the combinatorial nature for efficient exploration. In GFlowNets (Bengio et al., 2021; 2023),
generating or sampling x ∈ X is decomposed into incremental trajectories (episodes) that start from
a null state, pass through intermediate states, and end at x as the desired terminating state. These
trajectories τ ∈ T can be viewed as the paths along a Directed Acyclic Graph (DAG) with state
s ∈ S and edge (s → s′) ∈ E . Positive measures (unnormalized probability) of trajectories are
viewed as the amount of flows along the DAG, and R(x) is the total flow of trajectories ending at x,
so that sampled trajectories will end at x with the probability ∝ R(x).

The core of the GFlowNet training problem can be understood as minimizing the discrepancy of
forward trajectory distribution PF (τ) induced by forward policy πF (s

′|s) towards backward tra-
jectory distribution PB(τ) := PB(τ |x)R(x)/Z∗ induced by a given backward policy πB(s|s′) and
R(x) (Bengio et al., 2023; Malkin et al., 2022b). This is motivated by the fact that in real-world
applications, sequential generation must be done in a forward manner. Besides, the marginaliza-
tion P ∗(x) =

∑
τ |x PB(τ) trivially holds for all x ∈ X , so any backward policy can be used

to define a target backward trajectory distribution. Since evaluating Z∗ and thereby the normal-
ized distribution PB(τ) is considered intractable, directly optimizing some distributional divergence
of PF (τ) and PB(τ) is not feasible. To circumvent this, value-based methods reformulate the
problem of distributional matching as a flow-matching problem and leverage the balance condi-
tions of flow values to derive training objectives. The basic condition EPD(s)[log πF (s

′|s)F (s)] =
EPD(s)[log πB(s|s′)F (s′)] means that the edge flow value F (s→ s′) = πF (s

′|s)F (s) matches the
target edge flow value in the reverse direction, where PD(s) is the marginal state distribution induced
by the data collection policy πD(s

′|s). This basic condition leads to various training objectives that
implicitly encourage the alignment between forward and backward distributions. These objectives

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

range from edge-wise formulations to subtrajectory-wise variants, providing diverse estimation of
target flows and quantification of flow imbalances (Bengio et al., 2023; Madan et al., 2023; Malkin
et al., 2022a). Alternatively, policy-based methods (Malkin et al., 2022b; Niu et al., 2024; Zimmer-
mann et al., 2022) introduce a state evaluation function V (s) of the forward policy πF (·|s), which
approximates the Kullback-Leibler (KL) divergence between the distribution of forward subtrajec-
tories (partial episodes) starting from state s and that of backward subtrajectories ending at s. Then
V (s) is used to update the forward policy πF (·|s). While optimizing policy updating based on V (s)
has been well-studied, how to reliably estimate V (s) remains an open problem.

In light of the success of value-based methods that leverage flow balance conditions and the analogy
between F (s) as the total amount of trajectory flows passing state s, and V (s) as a measurement
of distributional divergence at state s, it is worthwhile to investigate the relationship between the
two quantities. It is known that the optimal forward policy πF and state flow function F (s) can be
uniquely determined by the flow balance condition EπF

[logF (s)πF (s
′|s)] = EπF

[F (s′)πB(s|s′)].
We find that, for an arbitrary fixed πF , the solution to this condition coincides with the ground-truth
evaluation function V (s) of πF . This paves the way to derive balance-based objectives to estimate
V (s) reliably. Our contributions are as follows:

• We establish the connection between balance conditions with respect to (w.r.t.) the state flow
function F and the evaluation function V . Fixing πF , the expected balancing conditions of
logF directly lead to a sufficient condition for V , which we call the Subtrajectory Evaluation
Balance (Sub-EB) condition.

• We introduce the Sub-EB objective (Sub-EB) for reliably estimating the evaluation function V ,
where subtrajectories (partial episodes) serve as the basic unit of balance.

• Experimental results on both simulated and real-world datasets, including hypergrid model-
ing, biological and molecular sequence design, and Bayesian network structure learning, have
demonstrated the effectiveness and reliability of Sub-EB for policy evaluation.

2 PRELIMINARIES

We restrict DAGs of GFlowNets to be graded as any DAG can be equivalently converted to be
graded by adding dummy non-terminating states (Malkin et al., 2022b). In a DAG G := (S, E),
element s ∈ S denotes a state, and element e ∈ E(⊆ S × S) denotes a directed edge. We define
the index set of time horizons as [H] := {0, . . . ,H}. Being acyclic means the state space S can
be partitioned into disjoint subspaces: S0, . . . ,SH+1, where each element of Sh is denoted as sh
for h ∈ [H + 1]. Being graded further implies that actions are only allowed from Sh to Sh+1. For
any s ∈ S, we denote its parent set by Pa(s) := {s′|(s′→s) ∈ E} and its child set by Ch(s) :=
{s′|(s→s′) ∈ E}. We have two special states: the initial state s0 with Pa(s0) = ∅ and S0 = {s0},
and the final state sf with Ch(sf) = ∅ and SH+1 = {sf}. The terminating state set, SH := X is
associated with a score function R : X → R+. Furthermore, the complete trajectory set is defined
as T := {τ = (s0 → · · · → sf)|∀(s→s′) ∈ τ : (s→s′) ∈ E}, τi:j denotes a subtrajectory (partial
episode) that starts at some state in Si and ends at some state Sj for i < j ∈ [H + 1], τi: denotes a
subtrajectory from si to sf and τ:j denotes a subtrajectory from s0 to sj . An exemplary DAG and
its graded version is shown in Fig. 3.

2.1 GFLOWNET TRAINING

GFlowNets aim at sampling with probability R(x)/Z∗, where computing Z∗ is considered in-
tractable. To achieve this, GFlowNets define a Markovian positive measure F (τ) : T → R+, termed
as (trajectory) flow (Bengio et al., 2023), so that for any event E and E′, F (E) :=

∑
τ∈E F (τ).

Then the total flow is Z := F (s0) =
∑

x F (x). Consequently, P (E) := F (E)/Z and
P (E|E′) := F (E∩E′)

F (E′) . In particular, for any (s → s′) ∈ E , the edge flow and state flow are
F (s→s′) =

∑
τ∋(s→s′) F (τ) and F (s) =

∑
τ∋s F (τ). These induces to the forward and backward

policies, π(s′|s) := P (s → s′|s) = F (sh→sh+1)
F (sh)

and π(s|s′) := P (s → s′|s′) = F (sh→sh+1)
F (sh+1)

.

Being Markovian implies that P (τi,j |si) =
∏j

h=i π(sh+1|sh), P (τi,j |sj) =
∏H

h=0 π(sh|sh+1), and
P (τ) = P (τ |s0) = P (τ |sf). Consequently, the goal of GFlowNet training is to learn a flow F that
matches any desired flow F ∗ satisfying F ∗(x) = R(x). Given πF (s

′|s) and F (s) of one flow F (τ),

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

and πB(s|s′) of the desired flow F ∗(τ) := R(x)PB(τ |x), a necessary and sufficient condition for
achieving this goal is called the Sub-Trajectory Balance (Sub-TB) condition (Malkin et al., 2022a;
Madan et al., 2023), which can be written as:

EPD(τi:j) [log (F (si)PF (τi:j |si))] = EPD(τi:j) [log (F (sj)PB(τi:j |sj))] (1)

for any i < j ∈ [H+1], where F (sf)PB(x|sf) := R(x) for x ∈ X , Here, PF (τi,j |si), PB(τi,j |sj),
and PD(τi,j) =

∑
τ∋τi,j

PD(τ) are distributions induced by πF , πB and offline data-collection
policy πD, respectively. It is assumed that PD(τ) > 0 for any τ ∈ T (Malkin et al., 2022b).
Besides, backward policy πB can be arbitrary, as long as PB(τ) := PB(τ |x)R(x)/Z∗ > 0 for any
τ ∈ T . This is because R(x)/Z∗ =

∑
τ |x PB(τ) trivially holds for all x ∈ X . The condition can

be interpreted as the flow value of a subtrajectory should match the target flow value in the reverse
direction, which represents an (approximated) desired flow value.

Leveraging the balance condition, value-based methods typically use the Sub-TB objective to opti-
mize the parameterized policy πF (s

′|s; θ) and state-flow logarithm logF (s; θ) toward their optimal
solutions π∗

F (s
′|s) := πB(s

′|s) and logF ∗(s). The objective is defined as follows:

LF := EPD(τ)

[∑
τi:j

wj−iδF (τi:j)
]
, δF (τi:j ; θ) :=

(
log

PF (τi:j |si; θ) logF (si; θ)

PB(τi:j |sj ; θ) logF (sj ; θ)

)2

, (2)

where wj−i denotes the non-zero weight coefficient for subtrajectories that consist of j −
i edges. For practical gradient-based optimization, LF are approximated by L̂F :=
1
K

∑
τ∈D[

∑
τi:j∈τ wj−iδF (τi:j)], where D := {τk : τk ∼ PD(τ)}Kk=1 is the set of samples.

2.2 POLICY-BASED TRAINING

Policy-based training methods for GFlowNets (Niu et al., 2024) resemble the policy gradient algo-
rithm in Reinforcement Learning (RL) and aim to minimize the Kullback-Leibler (KL) divergence
DKL(PF (τ ; θ)∥PB(τ)) as in traditional variational approaches (Malkin et al., 2022b; Zimmermann
et al., 2021; 2022). The method follows the actor-critic framework Agarwal et al. (2021).

Critic In each training round, the critic (evaluation function) V † of actor πF is first computed
to capture the policy gaps in terms of KL divergences over subtrajectories, which is defined as
∀h ∈ [H]1:

V †(sh; θ) :=EPF (τh:|sh;θ)

[
H∑
i=h

R(si, si+1; θ)

]
=logF ∗(sh)−DKL(PF (τh:|sh)∥PB(τh:|sh)) (3)

where R(si, si+1; θ) := log πF (si+1|si;θ)
π̃B(si|si+1)

, and π̃B = πB expect that π̃B(x|sf) := R(x). The second
equality can be easily verified Niu et al. (2024), and its explicit derivation is also provided in (21) in
the Appendix.

Actor To optimize πF to minimize DKL (PF (τ ; θ)∥PB(τ)), it is noted that ∇θV
†(s0; θ) =

∇θ (PF (τ ; θ)∥PB(τ)) since logF ∗(s0) is a constant. Further applying the policy gradient theo-
rems in RL (Agarwal et al., 2019), the gradients of the KL divergence w.r.t πF can be simplified and
expressed as the following expectation:

∇θV
†(s0; θ) := EPF (τ)

[
H∑

h=0

Aγ(sh, sh+1)∇θ log πF (sh+1|sh; θ)

]
, (4)

where Aγ(sh, sh+1) =
∑H

i=h γ
i−h (RF (si → si+1) + V (si+1)− V (si)). When increasing the

hyperparameter γ from 0 to 1, Aγ(sh, sh+1) evolves from RF (sh → sh+1) + V (sh+1) − V (sh)

to
∑H

i=h RF (si → si+1) − V (sh). This enables the variance-bias trade-off during stochastic gra-
dient descent (Schulman et al., 2016; 2017). Given πF , analytical computation of its V † is usually
not feasible as |T | can be enormous, so V † is directly modeled by an evaluation function V with
learnable parameters. We will discuss the learning objective of V in the next section.

1Niu et al. (2024) consider an additional total flow estimator Z(θ) to scale down the magnitude of V †. For
notion compactness, we defer the discussion of integrating Z into our method to Appendix A.4.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3 SUBTRAJECTORY EVALUATION BALANCE

As discussed in the previous sections, the true evaluation function V † plays a central role in policy-
based methods. In this section, we first introduce the Sub-EB condition that characterizes the rela-
tionship between πF and a parameterized evaluation V , which closely resembles the Sub-TB condi-
tions between πF and F . We then present the Sub-EB objective for learning V . Further, we extend
these results with corresponding conditions and objectives for backward policies and backward eval-
uation functions.

3.1 THE BALANCE CONDITION AND OBJECTIVE FOR FORWARD POLICIES

Given a forward policy πF , the Subtrajectory Evaluation Balance (Sub-EB) condition for the asso-
ciated evaluation function V can be written as:

EPF (τi:j)

[
log
(
PF (τi:j |si) exp V̇ (si)

)]
= EPF (τi:j)

[
log
(
PB(τi:j |sj) exp V̇ (sj)

)]
(5)

for any i < j ∈ [H + 1], where V̇ := −V and PB(x|sf) exp V̇ (sf) := R(x) for x ∈ X . It should
be noted that the expectation is taken w.r.t. the subtrajectory distribution induced by πF while it is
taken w.r.t. the subtrajectory distribution induced by πD in the Sub-TB condition.
Theorem 3.1. Suppose V is an evaluation function over S and F ∗ is the desired flow. Given a
forward policy πF ,

∀h ∈ [H] : −V (sh) = logF ∗(sh)−DKL(PF (τh:|sh)∥PB(τh:|sh)), (6)
if and only if V satisfies the Sub-EB condition (5).

The corresponding proof can be found in Appendix A.1.
Theorem 3.2. Suppose F is a state flow function over S and πF is a forward policy. Then,

∀h ∈ [H] : logF (sh) = logF ∗(sh)−DKL(P
∗
F (τh:|sh)∥PB(τh:|sh)) (7)

and πF is equal to π∗
F if and only if F and πF satisfy the Sub-TB condition (1).

The corresponding proofs can be found in Appendix A.2. Here, π∗
F (s

′|s) := F∗(s′→s)
F∗(s) . While

the sufficiency and necessity of the Sub-TB condition have been studied in prior work (Bengio
et al., 2023; Malkin et al., 2022a), Theorem 3.2 offers an alternative perspective that more clearly
elucidates the connection between the flow function and the evaluation function. It should be noted
that the minimum of the KL term above is zero as both PF (τ) and PB(τ) are Markovian. By
Proposition 23 in Bengio et al. (2023), the trajectory flow F (τ) = PF (τ)Z that achieves the zero
KL term is unique.

Leveraging the balancing condition, we define the Sub-EB objective for optimizing a parameterized
evaluation function V (· ;ϕ) as:

LV (ϕ) :=EPF (τ)

[∑
τi:j

wj−iδV (τi:j ;ϕ)
]
, δV (τi:j ;ϕ)=

(
log

PF (τi:j |si) exp V̇ (si;ϕ)

PB(τi:j |sj ;ϕ) exp V̇ (sj ;ϕ)

)2

, (8)

where wj−i is a weight constant for sub-trajectories that consist of j− i edges. While the traditional
λ-Temporal-Difference (TD) objective (54) detailed in Appendix A.5 (Niu et al., 2024; Schulman
et al., 2016) focuses on learning V (sh;ϕ) only from events starting at step h and edge-wise mis-
matches δV (s→ s′), the Sub-EB objective incorporates events both before and after h and leverages
subtrajectory-wise mismatches, yielding more balanced learning of V (sh;ϕ). Moreover, Sub-EB al-
lows freely weighting schemes, whereas the scheme of λ-TD is restricted to the λ-decay form. A
detailed comparison between our Sub-EB and λ-TD objectives is provided in Appendix A.5.

It should be noted that the Sub-EB objective is specifically designed for learning V that approximates
V † of the current πF . During each optimization iteration, its gradient w.r.t. ϕ is computed to update
V (· ;ϕ), while parameter θ is frozen. In contrast, the Sub-TB objective 2 is used to jointly update
πF (· |· ; θ) and logF (· ; θ).2 We summarize the workflow of our policy-based method for GFlowNet
training in Algorithm 1. Here, in analogy to LF and L̂F , we use L̂V and ∇̂θV

†(s0; θ) to denote the
approximated versions based on sampled trajectories (and V).

2Here, θ and ϕ are introduced as separate parameter sets. θ corresponds to functions updated jointly with
πF , while ϕ corresponds to functions that are not.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.2 PARAMETERIZED BACKWARD POLICY

In this and the following sections, we further discuss two key advantages, introduced by the Sub-EB
condition, that improve the flexibility of policy-based training. The λ-TD objective (54) requires
πB to remain fixed throughout optimization, as V λ is treated as constant w.r.t. ϕ. To address this
limitation, Niu et al. (2024) proposed a two-phase algorithm for addressing this issue. Each training
iteration includes two phases. In the forward phase, we sample D ∼ PF (τ), update V based on
D, and update πF based on V and D. In the backward phase, we sample D′ ∼ PB(τ |x)PF (x),
update the evaluation function W that approximates the true evaluation function W † w.r.t. πB , and
update πB based on W . The definitions of W † and W are detailed in Section 3.3. In parallel,
Gritsaev et al.; Jang et al. (2024) adopted an additional objective for πB in the forward phase. When
applied to the policy-based framework, their approach first samples a batchD ∼ PF (τ) and updates
πB by maximizing its log-likelihood,

∑
τ∈D logPB(τ). Then, with πB held fixed, they update the

value function V and subsequently optimize πF based on the updated V , using the same batch D.
Compared to all these algorithms, both the Sub-TB (2) and Sub-EB (8) objectives allow for updating
parameterized πB without introducing a separate backward phase or an additional objective. To be
more specific, πB is jointly updated with πF and F log for the Sub-TB objective, and πB is jointly
updated with V for the Sub-EB objective. This leads to a more streamlined and efficient training
process while enabling the backward policy to adapt dynamically during optimization.

3.3 OFFLINE POLICY-BASED TRAINING

Both the single-phase method and the two-phase method by Niu et al. (2024) operate in an online
manner, meaning that we can not use a policy πD, different from the current forward policy πF ,
during training. To overcome this limitation, we introduce an offline policy-based method made
possible by the flexibility of the Sub-EB objective. Supposing πF is fixed, we can define the evalu-
ation function W † of πB as W †(s0) := − logF (s0) and ∀h ∈ [H] \ {0}:

W †(sh;ϕ) :=EPB(τ:h|sh;ϕ)

[
h−1∑
i=0

R(si+1, si;ϕ)

]
=DKL(PB(τ:h|sh)∥PF (τ:h|sh))−logF (sh) (9)

where R(si+1, si;ϕ) := log πB(si|si+1;ϕ)
πF (si+1|si) , It can be easily verified that. Since∇ϕ logF (x) = 0 and

∇ϕEPD(x)[W
†(x;ϕ)] = ∇ϕEPD(x)

[DKL(PB(τ |x;ϕ)∥PF (τ |x))], minimizing EPD [W
†(x)] can be

a surrogate to minimizing the expected KL divergence. In analogy to the forward case, we use a
parameterized evaluation function W to approximate W †. Then, given a backward policy πB , the
backward Sub-EB condition for W can be written as:

EPD
B (τi:j)

[
log
(
PF (τi:j |si) exp Ẇ (si)

)]
= EPD

B (τi:j)

[
log
(
PB(τi:j |sj) exp Ẇ (sj)

)]
(10)

for any i < j ∈ [H+1], where Ẇ := −W , PB(x|sf) exp Ẇ (sf) := R(x) for x ∈ X , and PD
B (τi,j)

denotes the marginal distribution induced by PD
B (τ) := PB(τ |x)PD(x).

Theorem 3.3. Suppose W is an evaluation function over S\{sf}. Given a backward policy πB ,

∀h ∈ [H − 1] : −W (sh+1) = logF (sh+1)−DKL(PB(τ:h+1|sh+1)∥PF (τ:h+1|sh+1)), (11)

and −W (x) = logR(x) if and only if W satisfies the backward Sub-EB condition (10).

The corresponding proof can be found in Appendix A.3. As shown in (45) there, the right-hand
side of (11) is equal to W † defined in (9). When πB and πF are at their optima, the KL term in
the expression of W is zero. Consequently, F (x) = R(x) and F (sh) = F ∗(sh) for any h ∈ [H]
thereby fulfilling the goal of GFlowNet training. Based on the backward Sub-EB condition, we
present the backward Sub-EB objective for W (· ; θ) as follows:

LW := EPD
B (τ)

[∑
τi:j

wj−iδW (τi:j)
]
, δW (τi:j ; θ) =

(
log

PF (τi:j |si; θ) exp Ẇ (si; θ)

PB(τi:j |sj) exp Ẇ (sj ; θ)

)2

. (12)

The workflow of our offline policy-based method for GFlowNet training is presented in Algorithm 2,
where we use L̂W and ∇̂θW

†(s0; θ) to denote the approximated LW and ∇θW
†(s0; θ) based on

sampled trajectories (and W).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 Online Policy-based Workflow
Require: πF (· |· ; θ), πB(· |· ;ϕ), V (· ;ϕ),

batch size K, number of total iterations N
for n = 1, . . . , N do
D ← {τk|τk ∼ PF (τ)}Kk=1

Based on D, update ϕ by ∇ϕL̂V (ϕ).
Based on D and V , update θ by
∇̂θV

†(s0; θ)
end for
return πF (· |· ; θ), πB(· |· ;ϕ), V (· ;ϕ)

Algorithm 2 Offline Policy-based Workflow
Require: πB(· |· ;ϕ), πF (· |· ; θ), W (· ; θ), πD,

batch size K, number of total iterations N
for n = 1, . . . , N do
D⊤ ← {xk|xk ∈ τk, τk ∼ PD(τ)}Kk=1

D ← {τk|xk ∈ D⊤, τk ∼ PB(τ |xk)}Kk=1

Based on D, update θ by ∇θL̂W (θ).
Based on D and W , update ϕ by
∇̂ϕEPD(x)[W

†(x;ϕ)]
end for
return πB(· |· ;ϕ), πF (· |· ; θ), W (· ; θ)

4 RELATED WORKS

Value-based GFlowNet Training Existing works on value-based GFlowNet training can be cat-
egorized into two directions. The first one focuses on designing training objectives to characterize
target flow values, thereby improving the estimation of flow imbalance. For example, the Detailed
Balance (DB) objective (Bengio et al., 2021; 2023) aims at minimizing the mismatch between the
logarithms of forward edge flow and backward target edge flow expressed as F log(s)+ log πF (s

′|s)
and F log(s′) + log πB(s|s′), respectively. Malkin et al. (2022a) proposed the Trajectory Balance
(TB) objective that optimizes the mismatch between the logarithms of forward trajectory flow and
the backward trajectory flow. Sub-TB objective (Madan et al., 2023) generalizes both DB and TB
by minimizing the flow logarithm mismatch of subtrajectories across varying lengths. DB and
TB objectives are equivalent to the Sub-TB objective when non-zero weights are only assigned
to edges or complete trajectories. Building on Sub-TB objects, various improvements are also pro-
posed. Kim et al. (2023a) introduced temperature-conditional objectives, whose goal turns to make
PF (x) ∝ Rβ(x) with positive scalar β < 1. Taking R to the exponent β reduces its sharpness,
making it easier to be matched. As PF (x) does not match R(x) in this case, this representation
is specifically useful when the focus is solely on mode seeking. For all the objectives mentioned
above, backward policy πB(s|s′) can be chosen freely for any intermediate edges (s→ s′) and only
π(x|sf) is fixed to R(x). Target flow values of intermediate edges or subtrajectories do not directly
reflect the ground-truth knowledge about the reward function R. However, under the special cases
that the covered object space of R can be extended from X to S, Pan et al. (2023) and Jang et al.
(2023) improved the formulation of the DB and Sub-TB objectives, propagating partial knowledge
of R directly to intermediate edges. Due to the similarity of the Sub-TB objective and our Sub-EB
objective, these improvements can also be easily adapted to Sub-EB, facilitating the estimation of
the evaluation function V . A key characteristic of value-based methods is the data-collection policy
πD that can be off-policy, meaning it can differ from πF . This flexibility leads to numerous efforts at
designing πD (Kim et al., 2023b; Rector-Brooks et al., 2023; Shen et al., 2023). The goal is to effec-
tively identify edges that precede highly-rewarded terminating states (exploration) while allowing
revisiting the edges already found to yield high reward (exploitation). The most widely used ap-
proach is α-greedy design that mixes πF with a uniform policy by factor α. These efforts, however,
fail to achieve deep exploration, which requires considering not only immediate information gain
but also the long-term consequences of a transition (edge) in future learning (Osband et al., 2019).
Although there have been many theoretical advances to efficient exploration design from an RL per-
spective (Azar et al., 2017; Jin et al., 2018; Ménard et al., 2021), their expensive computational cost
approaches limit their applicability in practical problems.

Policy-based GFlowNet Training As mentioned above, designing a data-collection policy that
is both computationally efficient and capable of deep exploration remains a significant challenge.
Moreover, what is truly needed for training efficiency is identifying the edges of high flow-imbalance
rather than the edges that lead to high terminating rewards. However, the flow imbalance is
closely related to πF and changes whenever πF is updated. Empirical evidence shows that on-
policy training, meaning πD is equal to πF can result in faster convergence under many condi-
tions (Atanackovic & Bengio, 2024). Accordingly, policy-based GFlowNet methods (Malkin et al.,
2022b; Niu et al., 2024; Zimmermann et al., 2022) conduct on-policy training, which typically
corresponds to optimizing the KL divergence between PF (τ) and the unnormalized distribution
PB(τ |x)R(x)(= PB(τ)Z

∗), which has gradient equivalence to the divergence between PF (τ) and

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

PB(τ). Removing the need to design a data-collection policy, the main challenge of policy-based
methods shifts to robust estimation of the divergence and its gradients, that is, balancing the trade-off
between variance and bias of the estimators. Malkin et al. (2022b) and Silva et al. (2024) construct
estimators empirically. During gradient-based optimization, these estimators are computed solely
from the training data sampled in the current iteration. These estimators typically exhibit low bias
but high variance. From the perspective of policy gradient algorithms in RL, Niu et al. (2024) pro-
posed estimators on a parameterized evaluation function V , which enables leveraging sampled data
from all previous iterations. These estimators generally have high bias but low variance. Combin-
ing empirical and parameterized approaches, Niu et al. (2024) introduced a tunable hyperparameter
to control bias-variance trade-off explicitly, resulting in significant performance gains. As the
effectiveness of this policy-based method critically depends on how V is learned, our paper is a
subsequent work to address this key challenge.

As GFlowNet training is closely related to RL, we provide more detailed discussions on GFlowNet
training from an RL perspective in Appendix A.6 and A.7 . Value-based methods follow the soft
Q-learning framework Haarnoja et al. (2017), whereas policy-based methods, based on policy gra-
dients, operates within the soft actor–critic framework Haarnoja et al. (2018).

5 EXPERIMENTS

We compare the empirical policy-based method of Silva et al. (2024), which uses the Control Variate
technique for variance reduction during gradient estimation, RL-like policy-based method with V
estimated by the λ-TD objective in GFlowNet training (Niu et al., 2024) and V by our proposed Sub-
EB objective, referred to as CV, RL and Sub-EB, respectively. Since the Sub-TB method (Madan
et al., 2023) and the value-based RL method (Muchnausen DQN, denoted as Q-Much) Tiapkin et al.
(2024) are closely related to Sub-EB, we also include them as representative baselines for value-
based methods. To design the data collection policy πD in the Sub-TB method, we follow a common
choice, where πD is equal to πF with probability (1 − α) and a uniform policy with probability
α (Shen et al., 2023; Rector-Brooks et al., 2023). The common setups of πB are a uniform policy
or a parameterized policy. By default, we follow the first setup, as the parameterized policy does
not carry ground-truth information about the reward function. For both Sub-EB and Sub-TB, the
weight coefficient wj−i for i < j ∈ [H + 1] is set to λj−i/

∑
i<j∈[H+1] λ

j−i following Madan
et al. (2023).

We choose total variation DTV and Jensen–Shannon divergence DJSD between PF (x) and P ∗(x)
as the metrics for performance comparison between competing methods. Their definition is detailed
in Appendix B. We have conducted three sets of experiments. The first set is conducted in simulated
environments, referred to as ‘Hypergrids’. The second set focuses on biological and molecular
sequence design tasks using real-world datasets. The third set involves real-world applications of
GFlowNet in Bayesian Network (BN) structure learning. More experimental details can be found in
Appendix B. The implementation code is provided as supplementary material.

Hypergrids Hypergrid experiments are widely used for testing GFlowNet performance (Malkin
et al., 2022b; Niu et al., 2024). Here, states are the coordinate tuples of an D-dimensional hyper-
cubic grid with heights equal to H . The detailed description of the generative process is provided in
Appendix B.1. We perform experiments on 256×256, 128×128×128 and 64×64×64 grids. We
use dynamic programming (Malkin et al., 2022a) to explicitly compute PF (x) for learned πF , and
compute the exact DTV and DJSD between PF (x) and P ∗(x). Experimental results are depicted in
Fig. 1 for DTV and Fig. 5 in Appendix B.1 for DJSD respectively.

On the 256 × 256 grid, it can be observed that replacing the λ-TD objective for learning Vϕ by
the proposed Sub-EB objective, the stability and convergence rate of the policy-based method are
significantly improved. While the final performances of the two policy-based methods (RL and Sub-
EB) are close, they both outperform Sub-TB and CV. These experimental results strongly support the
effectiveness of the Sub-EB objective in enabling more reliable learning of the evaluation function
V , leading to improved stability and faster convergence during policy-based GFlowNet training. The
empirical gradient estimator constructed solely from the current training batch is not adequate for
reliably guiding policy-based training. On the 128×128×128 grid, the stability and convergence rate
of Sub-EB are again much better than RL. While all three methods achieve similar final performance,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 500 1000 1500 2000
N

0.0

0.2

0.4

0.6

0.8

1.0

D
TV

Sub-TB
Sub-TB-P
RL
RL-P
RL-M
Sub-EB
Sub-EB-P
CV
Q-Much

0 500 1000 1500 2000
N

0.0

0.2

0.4

0.6

0.8

1.0

D
TV

Sub-TB
Sub-TB-P
RL
RL-P
RL-M
Sub-EB
Sub-EB-P
CV
Q-Much

0 500 1000 1500 2000
N

0.2

0.4

0.6

0.8

1.0

D
TV

Sub-TB
Sub-TB-P
RL
RL-P
RL-M
Sub-EB
Sub-EB-P
CV
Q-Much

Figure 1: Plots of the means and standard deviations (represented by the shaded area) of DTV

for different training methods with parameterized πB and uniform πB on the 256 × 256 (left) and
128 × 128 (middle) and 64 × 64 × 64 (right) grids, based on five randomly started runs for each
method. By default, metric values are recorded every 20 iterations over N = 2000 training iterations
and smoothed by a sliding window of length 5 for all plotted curves in this paper.

0 500 1000 1500 2000
N

0.0

0.1

0.2

0.3

0.4

0.5

Av
g

to
p

10
0

Sub-TB
Sub-TB-B
RL
Sub-EB
Sub-EB-B
CV
Q-Much

0 500 1000 1500 2000
N

18

19

20

21

22

23
D

iv
to

p
10

0
Sub-TB
Sub-TB-B
RL
Sub-EB
Sub-EB-B
CV
Q-Much

0 500 1000 1500 2000
N

0.2

0.4

0.6

0.8

1.0

FC
S

Sub-TB
Sub-TB-B
RL
Sub-EB
Sub-EB-B
CV
Q-Much

Figure 2: Plots of the mean and standard deviation values (represented by the shaded area) of average
reward (left), diversity (right) and FCS (right) of the top 100 unique candidate graphs over 10 nodes,
based on five randomly started runs for each method.

both RL and Sub-EB outperform Sub-TB and CV in terms of convergence rate. These findings
further validate the effectiveness of our Sub-EB objective. Finally, on the 64×64×64 grid, both RL
and Sub-EB outperform Sub-TB and CV, but the behavior of RL and Sub-EB is very close. This can
be ascribed to the fact that the stability of RL is good enough for this experiment, so the advantages
brought by the Sub-TB objectives is not obvious. Besides, since hypergrids are homogeneous w.r.t.
each dimension, and the minimum distance between modes only depends on N , the environment
height N can have more effect on the modeling difficulty than the environment dimension D (Niu
et al., 2024).

Ablation study on πB To demonstrate that the Sub-EB objective naturally accommodates a pa-
rameterized backward policy. We compare the performance of the different methods with parame-
terized and uniform πB on 256×256 and 128×128 and 64×64×64 grids. We use ‘-P’ to denote the
method with parameterized πB . RL-P uses the two-phase algorithm by Niu et al. (2024) and RL-M
uses the approach by Gritsaev et al.. As shown in Fig. 1 and Fig. 5 in Appendix B.1, Sub-EB-P
achieves the best performance and training stability among all the evaluated methods. This confirms
that the Sub-EB objective well accommodates backward policies, which are parameterized and up-
dated jointly with evaluation functions. We also conduct an ablation study λ, which is deferred to
Appendix B.1.

Sequence design In this set of experiments, we use GFlowNets to generate biological and molec-
ular sequences of length D, which are composed of M building blocks (Shen et al., 2023). We use
nucleotide sequence datasets (SIX6 and PHO4), and molecular sequence datasets (QM9 and sEH)
from Shen et al. (2023). The detailed description of the generative process and experimental results
are provided in Appendix B.2.

BN structure learning In this experiment set, we focus on real-world studies of Bayesian Net-
work (BN) structure learning (Malkin et al., 2022b; Niu et al., 2024). Here, the object space X
corresponds to the space of BN structures. The detailed description of the generative process is
provided in Appendix B.3. We consider three cases with 5, 10, and 15 nodes, where the sizes of
X are approximately 2.95 × 104, 4.18 × 1018, and 2.38 × 1035, respectively. As in sequence de-
sign experiments, we also augment Sub-TB and the offline Sub-EB (Algorithm 2) with the local
search technique Kim et al. (2023b) for designing PD, yielding the variants Sub-TB-B and Sub-EB-
B. While such off-policy techniques that explicitly encourage the exploration of high rewards may
not benefit overall distribution modeling, they can be valuable when the focus is on mode discovery
during training.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

We present the results and discussion for the two large-scale cases below and defer the small-scale
case to Appendix B.3. For the large-scale cases, either PF (x) or P ∗(x) is computationally infeasi-
ble. Instead, we report the average reward of the top 100 unique graphs that are discovered during
the training process. Since effective distribution modeling performance implies not only optimality
but also diversity of generated candidates, we also compute the mean pairwise Hamming distance
among these 100 graphs as a measure of diversity. It should be noted that neither excessively high
nor excessively low diversity is desirable: the former corresponds to near-random generation, while
the latter indicates that generation gets stuck in a limited set of structures. Thanks to the works
by (Silva et al., 2025), we use Flow Consistency in Sub-graphs (FCS) as the unbiased estimation of
DTV . For FCS, we randomly sampled 32 batches of terminal states of size up to 128 for the Monte
Carlo estimator. The experimental results are presented in Fig. 2 and Fig. 12 in the Appendix B.3.
Among RL, Sub-EB, Sub-TB, Q-Much and CV, the results indicate that Sub-EB achieves the high-
est average reward, and both RL and Sub-EB converge faster than Sub-TB. All three methods attain
similar diversity. More importantly, only RL and Sub-EB obtain strong distribution-modeling per-
formance as measured by the FCS metric. Taking together all these findings, we can conclude that
all methods achieve appropriate distribution modeling, and Sub-EB performs the best. This supports
that Sub-EB not only enables reliable policy-based training but also scales effectively to large com-
binatorial spaces, providing both high-quality and diverse solutions. For the two variants, Sub-TB-B
and Sub-EB-B, it can be observed that Sub-EB-B achieves the highest average reward among all five
methods, accompanied by a more noticeable drop in diversity. Given that the local search compo-
nent explicitly prioritizes high-reward regions of the solution space, such a trade-off—significant
reward improvement at the expense of reduced diversity—is expected. In contrast, the Sub-TB-B
does achieve a higher average reward compared to its non-augmented counterpart (Sub-TB) with a
moderate decrease in diversity. However, the trade-off becomes much less pronounced. Without the
local search technique, Sub-EB already achieves a comparable average reward and higher diversity
than Sub-TB-B. Overall, Sub-EB-B proves to be more effective than Sub-TB-B, aligning well with
our expectations of the optimality-diversity trade-off. This finding further supports the superiority of
the policy-based methods, and validates that the Sub-EB objective enables the integration of offline
techniques within policy-based frameworks.

Molecular graph design In this set of experiments, we consider the molecular graph design task
(with |X | ≈ 1016) described in Bengio et al. (2021). The sequence design task based on the sEH
dataset (with |X | ≈ 3.4 × 107) (Shen et al., 2023) is simplified from these tasks. A detailed de-
scription of the generative process and the corresponding experimental results for these graph design
tasks are provided in the Appendix B.4. Sub-EB achieves the best overall performance on large-scale
molecular graph design, providing higher average rewards, faster convergence, and competitive di-
versity compared to RL, and Sub-TB.

6 DISCUSSION AND CONCLUSION

In this work, we have established the connection between the state flow function F (s) and the
evaluation function V (s). Built upon that, a new objective, called Sub-EB, is proposed for learning
the evaluation function V (s). Through three sets of experiments, we provide empirical evidence that
the new Sub-EB objective enables more stable and flexible learning of V than the λ-TD objective
in GFlowNet training, thereby improving the performance of the RL-like policy-based methods. In
principle, the Sub-EB objective allows flexible choices of weight coefficients. Further investigation
of designing optimal weight coefficients is left for future work.

7 REPRODUCIBILITY STATEMENT

Implementation details such as model configurations and hyperparameter choices are provided in
Appendix B. Our implementation is based on the torchgfn package (Lahlou et al., 2023), and the
code is also included in the supplementary materials.

REFERENCES

Alekh Agarwal, Nan Jiang, Sham M Kakade, and Wen Sun. Reinforcement learning: Theory and
algorithms. CS Dept., UW Seattle, Seattle, WA, USA, Tech. Rep, 32, 2019.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gaurav Mahajan. On the theory of policy
gradient methods: Optimality, approximation, and distribution shift. Journal of Machine Learning
Research, 22(98):1–76, 2021.

Lazar Atanackovic and Emmanuel Bengio. Investigating generalization behaviours of generative
flow networks. In ICML 2024 Workshop on Structured Probabilistic Inference {\&} Generative
Modeling, 2024.

Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. Minimax regret bounds for reinforce-
ment learning. In International conference on machine learning, pp. 263–272. PMLR, 2017.

Emmanuel Bengio, Moksh Jain, Maksym Korablyov, Doina Precup, and Yoshua Bengio. Flow
network based generative models for non-iterative diverse candidate generation. Advances in
Neural Information Processing Systems, 34:27381–27394, 2021.

Yoshua Bengio, Salem Lahlou, Tristan Deleu, Edward J Hu, Mo Tiwari, and Emmanuel Bengio.
Gflownet foundations. Journal of Machine Learning Research, 24(210):1–55, 2023.

Tristan Deleu, António Góis, Chris Emezue, Mansi Rankawat, Simon Lacoste-Julien, Stefan Bauer,
and Yoshua Bengio. Bayesian structure learning with generative flow networks. In Uncertainty
in Artificial Intelligence, pp. 518–528. PMLR, 2022.

Tristan Deleu, Padideh Nouri, Nikolay Malkin, Doina Precup, and Yoshua Bengio. Discrete proba-
bilistic inference as control in multi-path environments. In Uncertainty in Artificial Intelligence,
pp. 997–1021. PMLR, 2024.

Timofei Gritsaev, Morozov Nikita, Samsonov Sergey, and Daniil Tiapkin. Optimizing backward
policies in gflownets via trajectory likelihood maximization. In The Thirteenth International
Conference on Learning Representations.

Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning with
deep energy-based policies. In International conference on machine learning, pp. 1352–1361.
PMLR, 2017.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning, pp. 1861–1870. PMLR, 2018.

Hyosoon Jang, Minsu Kim, and Sungsoo Ahn. Learning energy decompositions for partial inference
of gflownets. In The Twelfth International Conference on Learning Representations, 2023.

Hyosoon Jang, Yunhui Jang, Minsu Kim, Jinkyoo Park, and Sungsoo Ahn. Pessimistic backward
policy for gflownets. Advances in Neural Information Processing Systems, 2024.

Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, and Michael I Jordan. Is q-learning provably effi-
cient? Advances in neural information processing systems, 31, 2018.

Minsu Kim, Joohwan Ko, Dinghuai Zhang, Ling Pan, Taeyoung Yun, Woo Chang Kim, Jinkyoo
Park, and Yoshua Bengio. Learning to scale logits for temperature-conditional gflownets. In
NeurIPS 2023 AI for Science Workshop, 2023a.

Minsu Kim, Taeyoung Yun, Emmanuel Bengio, Dinghuai Zhang, Yoshua Bengio, Sungsoo Ahn,
and Jinkyoo Park. Local search gflownets. In The Twelfth International Conference on Learning
Representations, 2023b.

Jack Kuipers, Giusi Moffa, and David Heckerman. Addendum on the scoring of gaussian directed
acyclic graphical models. 2014.

Salem Lahlou, Joseph D Viviano, and Victor Schmidt. torchgfn: A pytorch gflownet library. arXiv
preprint arXiv:2305.14594, 2023.

Kanika Madan, Jarrid Rector-Brooks, Maksym Korablyov, Emmanuel Bengio, Moksh Jain, An-
drei Cristian Nica, Tom Bosc, Yoshua Bengio, and Nikolay Malkin. Learning GFlowNets from
partial episodes for improved convergence and stability. In International Conference on Machine
Learning, pp. 23467–23483. PMLR, 2023.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Nikolay Malkin, Moksh Jain, Emmanuel Bengio, Chen Sun, and Yoshua Bengio. Trajectory balance:
Improved credit assignment in GFlowNets. Advances in Neural Information Processing Systems,
35:5955–5967, 2022a.

Nikolay Malkin, Salem Lahlou, Tristan Deleu, Xu Ji, Edward J Hu, Katie E Everett, Dinghuai
Zhang, and Yoshua Bengio. Gflownets and variational inference. In The Eleventh International
Conference on Learning Representations, 2022b.

Pierre Ménard, Omar Darwiche Domingues, Anders Jonsson, Emilie Kaufmann, Edouard Leurent,
and Michal Valko. Fast active learning for pure exploration in reinforcement learning. In Inter-
national Conference on Machine Learning, pp. 7599–7608. PMLR, 2021.

Puhua Niu, Shili Wu, Mingzhou Fan, and Xiaoning Qian. Gflownet training by policy gradients. In
Forty-first International Conference on Machine Learning, 2024.

Ian Osband, Benjamin Van Roy, Daniel J Russo, and Zheng Wen. Deep exploration via randomized
value functions. Journal of Machine Learning Research, 20(124):1–62, 2019.

Ling Pan, Nikolay Malkin, Dinghuai Zhang, and Yoshua Bengio. Better training of gflownets with
local credit and incomplete trajectories. In International Conference on Machine Learning, pp.
26878–26890. PMLR, 2023.

Jarrid Rector-Brooks, Kanika Madan, Moksh Jain, Maksym Korablyov, Cheng-Hao Liu, Sarath
Chandar, Nikolay Malkin, and Yoshua Bengio. Thompson sampling for improved exploration
in gflownets. In ICML 2023 Workshop on Structured Probabilistic Inference {\&} Generative
Modeling, 2023.

Robert W Robinson. Counting unlabeled acyclic digraphs. In Combinatorial Mathematics V: Pro-
ceedings of the Fifth Australian Conference, Held at the Royal Melbourne Institute of Technology,
August 24–26, 1976, pp. 28–43. Springer, 2006.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. In Proceedings of the
International Conference on Learning Representations (ICLR), 2016.

John Schulman, Xi Chen, and Pieter Abbeel. Equivalence between policy gradients and soft q-
learning. arXiv preprint arXiv:1704.06440, 2017.

Max W Shen, Emmanuel Bengio, Ehsan Hajiramezanali, Andreas Loukas, Kyunghyun Cho, and
Tommaso Biancalani. Towards understanding and improving gflownet training. In International
Conference on Machine Learning, pp. 30956–30975. PMLR, 2023.

Tiago Silva, de Souza da Silva Eliezer, and Mesquita Diego. On divergence measures for training
gflownets. Advances in Neural Information Processing Systems, 2024.

Tiago Silva, Alves Rodrigo Barreto, da Silva Eliezer de Souza, Souza Amauri H, Garg Vikas, Kaski
Samuel, and Mesquita Diego. When do gflownets learn the right distribution? In The Thirteenth
International Conference on Learning Representations, 2025.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Daniil Tiapkin, Morozov Nikita, Naumov Alexey, and Vetrov P Dmitry. Generative flow networks
as entropy-regularized rl. In International Conference on Artificial Intelligence and Statistics.
PMLR, 2024.

Heiko Zimmermann, Hao Wu, Babak Esmaeili, and Jan-Willem van de Meent. Nested variational
inference. Advances in Neural Information Processing Systems, 34:20423–20435, 2021.

Heiko Zimmermann, Fredrik Lindsten, Jan-Willem van de Meent, and Christian A Naesseth. A
variational perspective on generative flow networks. Transactions on Machine Learning Research,
2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

s2

s1

s3

x1

x2

x3

s0

sf

s2

s1

s3

x1

x2

x3

s0 sf

Figure 3: A graphical illustration of a DAG (left) and its graded version (right). Dotted circles
represent dummy states, added during the conversion to a graded DAG.

LLM USAGE DISCLOSURE

LLMs were used only for text refinement (grammar and style). All scientific content was developed
and verified by the authors.

A THEORETICAL ANALYSES

A.1 PROOF OF THEOREM 3.1

Proof. We first prove the sufficiency of the Sub-EB condition (5). Assume that V is an evaluation
function over S that satisfies the Sub-EB condition for a given forward policy πF . Then, for any
h ∈ [H]:

EPF (sh)πF (sh+1|sh)

[
log πB(sh|sh+1) + V̇ (sh+1)− log πF (sh+1|sh)− V̇ (sh)

]
= 0 (13)

⇓

EπF (sh+1|sh)

[
log πB(sh|sh+1) + V̇ (sh+1)− log πF (sh+1|sh)− V̇ (sh)

]
= 0 (14)

⇓

V̇ (sh) = EπF (sh+1|sh)

[
log

πB(sh|sh+1)

πF (sh+1|sh)
+ V̇ (sh+1)

]
. (15)

Here, the second equation holds by our assumption that any valid πF should introduce a flow F ,
which is a positive measure over trajectories over G. Consequently, the corresponding state proba-
bility PF (s) is strictly positive for any s ∈ S.

Based on (15), the previous definition log πB(x|sf) + V̇ (sf) := R(x), we have:

V̇ (x) = EπF (sf |x)

[
log

R(x)

πF (sf |x)

]
= EπF (sf |x)

[
log

F ∗(x→ sf)

πF (sf |x)

]
= EPF (x→sf |x)

[
log

PB(x→ sf)Z
∗

PF (x→ sf |x)

]
= EPF (x→sf |x)

[
log

PB(x→ sf |x)
PF (x→ sf |x)

]
+ logPB(x)Z

∗

= logF ∗(x)−DKL(PF (τH:|sH)∥PB(τH:|sH)), (16)

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

V̇ (sH−1) = EπF (x|sH−1)

[
log

πB(sH−1|x)
πF (x|sH−1)

+ EPF (x→sf |x)

[
log

PB(x→ sf)Z
∗

PF (x→ sf |x)

]]
= EPF (τH−1:|sH−1)

[
log

PB(τH−1:)Z
∗

PF (τH−1:|sH−1)

]
= EPF (τH−1:|sH−1)

[
log

PB(τH−1:|sH−1)

PF (τH−1:|sH−1)

]
+ logPB(sH−1)Z

∗

= logF ∗(sH−1)−DKL(PF (τH−1:|sH−1)∥PB(τH−1:|sH−1)), (17)
...

V̇ (sh) = EπF (sh+1|sh)

[
log

πB(sh|sh+1)

πF (sh+1|sh)
+ EPF (τh+1:|sh+1)

[
log

PB(τh+1:)Z
∗

PF (τh+1:|sh+1)

]]
= EPF (τh:|sh)

[
log

PB(τh:)Z
∗

PF (τh:|sh)

]
(18)

= EPF (τh:|sh)

[
log

PB(τh:|sh)
PF (τh:|sh)

]
+ logPB(sh)Z

∗

= logF ∗(sh)−DKL(PF (τh:|sh)∥PB(τh:|sh)), (19)
...

V̇ (s0) = EPF (τ |sh)

[
log

PB(τ)Z
∗

PF (τ)

]
= EPF (τ)

[
log

PB(τ)

PF (τ)

]
+ logZ∗

= logF ∗(s0)−DKL(PF (τ)∥PB(τ)). (20)

It should be noted that the definition of evaluation function (3) coincides with the equation (18) in
that

V̇ (sh) = EPF (τh:|sh)

[
H∑
i=h

log
π̃B(si|si+1)

πF (si+1|si)

]
= EPF (τh:|sh)

[
H∑
i=h

log
πB(si|si+1)

πF (si+1|si)

]
+ logZ∗

= EPF (τh:|sh)

[
log

PB(τh:)Z
∗

PF (τh:|sh)

]
. (21)

Now, we prove the necessity of the Sub-EB condition (5). Assume that V is the evaluation function
of a given forward policy πF . Then, ∀h ∈ [H]:

V̇ (sh) = EPF (τh:|sh)

[
H∑
i=h

log
πB(si|si+1)

πF (si+1|si)

]
+ logZ∗

= EπF (sh+1|sh)

[
log

πB(sh|sh+1)

πF (sh+1|sh)
+ EPF (τh+1:|sh+1)

[
log

PB(τh+1:)Z
∗

PF (τh+1:|sh+1)

]]
= EπF (sh+1|sh)

[
log

πB(sh|sh+1)

πF (sh+1|sh)
+ V̇ (sh+1)

]
. (22)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Therefore,

EPF (sh)πF (sh+1|sh)

[
log πB(sh|sh+1) + V̇ (sh+1)− log πF (sh+1|sh)− V̇ (sh)

]
= 0 (23)

⇓
j−1∑
l=i

EPF (sl→sl+1)

[
log πB(sl|sl+1) + V̇ (sl+1)− V̇ (sl)− log πF (sl+1|sl)

]
= 0 (24)

⇓

EPF (τi:j)

[
j−1∑
l=i

log πB(sl|sl+1) + V̇ (sj)− V̇ (si)−
j−1∑
l=i

log πF (sl+1|sl)

]
= 0 (25)

⇓

EPF (τi:j)

[
logPB(τi:j |sj) + V̇ (sj)− logPF (τi:j |si)− V̇ (si)

]
= 0 (26)

for any i < j ∈ [H + 1].

A.2 PROOF OF THEOREM 3.2

Proof. We first prove the sufficiency of the Sub-TB condition (1). Assume that F is a state flow
function over S, and πF is a forward policy, such that they satisfy the Sub-TB condition. Then, for
any h ∈ [H]:

EPD(sh→sh+1) [log πB(sh|sh+1)F (sh+1)− log πF (sh+1|sh)F (sh)] = 0 (27)

⇓
log πB(sh|sh+1)F (sh+1)− log πF (sh+1|sh)F (sh) = 0 (28)

⇓

logF (sh) = log
πB(sh|sh+1)

πF (sh+1|sh)
+ logF (sh+1). (29)

Here, the second equation holds due to the following two reasons. First, by our assumption that the
trajectory distribution PD, which is induced by πD, assigns non-zero probability to all trajectories
in T . Thus, the marginal probability PD(s→ s′) is strictly positive for any (s→ s′) ∈ E . Second,
πD is arbitrarily constructed and may differ from πF . Let

π†(s′|s) := πB(s|s′)F (s′)∑
s′ πB(s|s′)F (s′)

. (30)

Summing both sides of (28) over sh+1 yields F (sh) =
∑

sh+1
logF (sh)πF (sh+1|sh) =∑

sh+1
log πB(sh|sh+1)F (sh+1). Inserting this into (28), we arrive at πF = π†. Then, taking

the expectation of (29) w.r.t. πF , we have for any h ∈ [H]:

logF (sh) = EπF (sh+1|sh)

[
log

πB(sh|sh+1)

πF (sh+1|sh)
+ logF (sh+1)

]
(31)

= EπF (sh+1|sh)

[
log

π†(sh+1|sh)
πF (sh+1|sh)

]
+ log

∑
sh+1

πB(sh|sh+1)F (sh+1)

= −DKL(πF (·|sh)∥π†(·|sh)) + log
∑
sh+1

πB(sh|sh+1)F (sh+1). (32)

Note that the second term in the last equality is independent of πF (·|sh). Then, given πB(sh|·) and
F (sh+1), F (sh) is maximized at sh when π(·|sh) = π†(·|sh). Accordingly, given πB(sh+1|·)
and F (sh+2), F (sh+1) is maximized at sh+1 when πF (·|sh+1) = π†(·|sh+1). Keeping do-
ing this recursion from h = 0 to h = H , we get the conclusion that F is maximized when
πF = π† for any (s → s′) ∈ E . When achieving the maximum, we have logF (x) =
log
∑

sf
π(x|sf)F (sf) := logR(x) = logF ∗(x), logF (sH−1) = log

∑
x πB(sH−1|x)F ∗(x) =

logF ∗(sH−1), . . . , logF (s0) = log
∑

s1
πB(s0|s1)F ∗(s1) = F ∗(s0). Therefore, F (s) =

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

F ∗(s) for any s ∈ S. Combining this with (28), we have πF = π∗
F , where π∗

F (s
′|s) =

πB(s|s′)F ∗(s′)/F ∗(s) is the desired forward policy induced by πB . Moreover, based on (31) and a
derivation analogous to that of V̇ , we have, for Markovian PB and any h ∈ [H]:

logF (sh) := logF ∗(sh)−DKL(PF (τh:|sh)∥PB(τh:|sh)). (33)

Finally, we conclude:

logF (sh) = logF ∗(sh)−minDKL(PF (τh:|sh)∥PB(τh:|sh)) = logF ∗(sh), (34)

Now we prove the necessity of the Sub-TB condition (1). Assume that F and πF satisfy the equa-
tion (34) above. Then the equations (33) and (31) must also hold for F and πF , and we have, for
any h ∈ [H]:

logF (sh) = EPF (τh:|sh)

[
log

PB(τh:)Z
∗

PF (τh:|sh)

]
= EPF (τh:|sh)

[
H∑
i=h

log
πB(si|si+1)

πF (si+1|si)

]
+ logZ∗

= EπF (sh+1|sh)

[
log

πB(sh|sh+1)

πF (sh+1|sh)
+ EPF (τh+1:|sh+1)

[
log

PB(τh+1:)Z
∗

PF (τh+1:|sh+1)

]]
= EπF (sh+1|sh)

[
log

πB(sh|sh+1)

πF (sh+1|sh)
+ logF (sh+1)

]
. (35)

We can rewrite the above equation as follows:

logF (sh) := −DKL(πF (·|sh)∥π†(·|sh)) + log
∑
sh+1

πB(sh|sh+1)F (sh+1), ∀h ∈ [H]. (36)

Since πF (·|sh) is independent of πB(sh|·) and F (sh+1), the assumption that logF (sh) is maxi-
mized at sh indicates πF (·|sh) = π†(·|sh). Therefore, we recover ∀h ∈ [H]:

log πF (sh+1|sh)F (sh) = log πB(sh|sh+1)F (sh+1), (37)

and the Sub-TB condition can be easily derived from it.

A.3 PROOF OF THEOREM 3.3

Proof. We first prove the sufficiency of the backward Sub-EB condition (10). Assume that W is an
evaluation function over S\{sf} that satisfies the backward Sub-EB condition for a given backward
policy πB . Then, for any h ∈ [H − 1]:

EπB(sh|sh+1)PB(sh+1)

[
log πB(sh|sh+1) + Ẇ (sh+1)− log πF (sh+1|sh)− Ẇ (sh)

]
= 0 (38)

⇓

EπB(sh|sh+1)

[
log πB(sh|sh+1) + Ẇ (sh+1)− log πF (sh+1|sh)− Ẇ (sh)

]
= 0 (39)

⇓

Ẇ (sh+1) = EπB(sh|sh+1)

[
log

πF (sh+1|sh)
πB(sh|sh+1)

+ Ẇ (sh)

]
. (40)

Here, the second equation holds by our assumption that any valid πB and R should introduce a flow
F ∗, which is a positive measure over trajectories over G. Consequently, the corresponding state
probability PB(s) is strictly positive for any s ∈ S.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Based on (40), we have:

Ẇ (s1) = EπB(s0|s1)

[
log

πF (s1|s0)
πB(s0|s1)

]
+ Ẇ (s0)

= EPB(s0→s1|s1)

[
log

PF (s0 → s1)

PB(s0 → s1|s1)

]
+ logF (s0)

= EPB(s0→s1|s1)

[
log

PF (s0 → s1|s1)
PB(s0 → s1|s1)

]
+ logF (s0)PF (s1)

= logF (s1)−DKL(PB(τ:1|s1)∥PF (τ:1|s1)), (41)
...

Ẇ (sh+1) = EπB(sh|sh+1)

[
log

πF (sh+1|sh)
πB(sh|sh+1)

+ EPB(τ:h|sh)

[
log

PF (τ:h)

PB(τ:h|sh)

]]
+ Ẇ (s0)

= EPB(τ:h+1|sh+1)

[
log

PF (τ:h+1)

PB(τ:h+1|sh+1)

]
+ logF (s0) (42)

= EPB(τ:h+1|sh+1)

[
log

PF (τ:h+1|sh+1)

PB(τ:h+1|sh+1)

]
+ logF (s0)PF (sh+1)

= logF (sh+1)−DKL(PF (τ:h+1|sh+1)∥PB(τ:h|sh+1)), (43)
...

Ẇ (x) = EπB(sH−1|x)

[
log

πF (x|sH−1)

πB(sH−1|x)
+ EPB(τ:H−1|sH−1)

[
log

PF (τ:H−1)

PB(τ:H−1|sH−1)

]]
+ Ẇ (s0)

= EPB(τ |x)

[
log

PF (τ)

PB(τ |x)

]
+ logF (s0)

= EPB(τ |x)

[
log

PF (τ |x)
PB(τ |x)

]
+ logF (s0)PF (x)

= logF (x)−DKL(PB(τ |x)∥PF (τ |x)). (44)

It should be noted that the definition of evaluation function (9) coincides with the equation (42) in
that

Ẇ (sh+1) = EPB(τ |x)

[
h∑

i=0

log
π̃F (si+1|si)
πB(si|si+1)

]
= EPB(τ |x)

[
h∑

i=0

log
πF (si+1|si)
πB(si|si+1)

]
+ logF (s0)

= EPF (τh:|sh)

[
log

PF (τ:h+1)

PB(τ:h+1|sh+1)

]
+ logF (s0). (45)

In particular, when the backward Sub-EB condition is satisfied for h = H , we have

EPD(x)[log πF (sf |x) + Ẇ (x)− log πB(x|sf)− Ẇ (sf)] = 0 (46)

⇓
EPD(x)[Ẇ (x)− logR(x)] = 0. (47)

As PD can be chosen arbitrarily, Ẇ (x) = R(x) is further implied.

Now, we prove the necessity of backward the Sub-EB condition (10). Assume that W is the
evaluation function of a given forward policy πB . Then, ∀h ∈ [H − 1]:

Ẇ (sh+1) = EPB(τ:h+1|sh+1)

[
h∑

i=0

log
πF (si+1|si)
πB(si|si+1)

]
+ Ẇ (s0)

= EπB(sh|sh+1)

[
log

πF (sh+1|sh)
πB(sh|sh+1)

+ EPB(τ:h|sh)

[
log

PF (τ:h)F (s0)

PB(τ:h|sh)

]]
= EπB(sh|sh+1)

[
log

πF (sh+1|sh)
πB(sh|sh+1)

+ Ẇ (sh)

]
. (48)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

and Ẇ (x) = logR(x). Therefore,

EPD
B (sh+1)πB(sh|sh+1)

[
log πB(sh|sh+1) + Ẇ (sh+1)− log πF (sh+1|sh)− Ẇ (sh)

]
= 0 (49)

⇓
j−1∑
l=i

EPD
B (sl→sl+1)

[
log πB(sl|sl+1) + Ẇ (sl+1)− Ẇ (sl)− log πF (sl+1|sl)

]
= 0 (50)

⇓

EPD
B (τi:j)

[
j−1∑
l=i

log πB(sl|sl+1) + Ẇ (sj)− Ẇ (si)−
j−1∑
l=i

log πF (sl+1|sl)

]
= 0 (51)

⇓

EPD
B (τi:j)

[
logPB(τi:j |sj) + Ẇ (sj)− logPF (τi:j |si)− Ẇ (si)

]
= 0 (52)

for any i < j ∈ [H + 1]

A.4 THE COMPLETE VERSION OF THE EVALUATION FUNCTION

Taking into consideration the total flow estimator Z, V † still takes the form of (3), only
differing at π̃B(x|sf), which is redefined as R(x)/Z. In this case, it can be verified that
V † = DKL(PF (τ)∥PB(τ)) + log Z

Z∗ . Then, the gradient of V †(s0; θ) is equal to that of
DKL(PF (τ ; θ)∥PB(τ)) +

1
2 (logZ − logZ∗)2. The forms of the Sub-EB condition and objective

remain unchanged except that PB(x|sf) exp V̇ (sf) is refined as R(x)/Z.
Corollary A.1 (Corollary to Theorem 3.1). Suppose V is an evaluation function over S and F ∗ is
the desired flow. Given a forward policy πF ,

∀h ∈ [H] : −V (sh) = log
F ∗(sh)

Z
−DKL(PF (τh:|sh)∥PB(τh:|sh)), (53)

if and only if V satisfies the Sub-EB condition (5).

Proof. The proof can be done by replacing R(x) in the proof of Theorem 3.1 by R(x)/Z

Finally, in Algorithm 1, the approximated ∇θEµ(s0;θ)µ[V
†(s0; θ)] (Niu et al., 2024) are computed

to update both πF (·|·; θ) and Z(θ), where µ(s0; θ) := Z(θ)/Z.

A.5 COMPARISON BETWEEN λ-TD AND SUB-EB OBJECTIVES

The traditional λ-TD objective for V (· ;ϕ) can be expressed as follows:

EPF (τ)

[
H∑

h=0

(
V λ(sh)− V (sh;ϕ)

)2]
, V λ(sh) := V (sh) +

H∑
i=h

λi−hδV (si → si+1), (54)

where V λ is considered as constant when computing gradients w.r.t. ϕ, and δV (si → si+1) is equal
to δV (τi,i+1) as defined in (8). Without consideration of gradient computation, the expression of the
objective value can be simplified as:

EPF (τ)

[
H∑

h=0

H∑
i=h

λi−h(δV (si → si+1))
2

]
. (55)

In comparison, the expression of the Sub-EB objective value is:

EPF (τ)

 ∑
τi,j : i<j∈[H+1]

wj−i(δV (τi:j))
2

 . (56)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

It can be observed that the λ-TD objective only considers the events that start at step h for learning
V (sh;ϕ), and edges-wise mismatch δV (si → si+1). In contrast, the Sub-EB objective incorporates
information from both events that start at h and those that end at h by considering subtrajectory-wise
mismatches δV (τi:(·)) that start at i(≥ h) and δV (τ(·):j) that end at j(≤ h). This results in a more
balanced and reliable learning of V (sh;ϕ). Besides, the form of w can be freely chosen, while it
must be λi−h in the λ-TD objective (Schulman et al., 2016).

A.6 ADDITIONAL RELATED WORKS

RL methods can be roughly categorized into two main framework (Sutton & Barto, 2018): the first
is (soft) Q-learning, and the second is the actor–critic framework.

In the first framework, the core idea of Soft Q-learning (Haarnoja et al., 2017) is to learn a function
Q that minimizes the mismatch of the offline Bellman equation for the transition environment G
with edge reward log πB(s|s′) and log πB(x|sf) + V (sf) := logR(x). This objective of Q can be
written as

EPD(s→s′)[δQ(s→ s′)2], δQ(s→ s′) := log πB(s|s′) + V (s′)−Q(s, s′), (57)

with πF (s
′|s) := expQ(s,s′)

expV (s) and V (s) := log
∑

s′ expQ(s, s′). Any function Q that achieves zero
mismatch is guaranteed to equal the optimal soft Q-function Q∗ with the corresponding V = V ∗ and
πF = π∗

F . Tiapkin et al. (2024) showed that if we treat Q(s, s′) as logF (s → s′) so that V (s) =
log
∑

s′ F (s → s′) = logF (s), then the Bellman objective transforms into the DB objective.
The distinction lies only in parameterization: one may parameterize (πF , V) directly and represent
Q(s, s′) as V (s)πF (s

′|s), instead of parameterizing Q(s, s′) and deriving V and πF from it. They
further proved that the optimal solutions of the Bellman objective coincide with those of the DB
objective from the perspective of Soft Q-learning. As acknowledged by the authors, their proof only
applies to the DB objective with fixed πB . To address this limitation, Deleu et al. (2024) established
an equivalence between path-consistency learning (a generalized form of soft Q learning) and the
Sub-TB objective from a gradient-based perspective. Compared to Deleu et al. (2024), our Theorem
3.2 offers a more direct and explicit connection along this RL direction. The major challenge in RL
is balancing the exploration-exploitation trade-off (Sutton & Barto, 2018). Returning to GFlowNet,
the DB objective tends to favor exploitation as the target flow logarithm is logF (s′)+ logPB(s|s′),
where logF encodes the learned partial knowledge about the task, resulting in biased but low-
variance task feedback. In contrast, the TB objective encourages exploration as the target flow
logarithm log(PB(τ)R(x)) is independent of logF , and serves as unbiased but high-variance
feedback. The main advantage of the Sub-TB objective is that it enables a tunable trade-off between
exploration and exploitation by adjusting the weights assigned to subtrajectories of different lengths,
thereby having better performances This behavior is empirically demonstrated on hypergrid tasks,
as shown in Fig. 4

Our work and Niu et al. (2024) is based on theory of policy-gradient Agarwal et al. (2021), which
operates under the actor–critic framework Haarnoja et al. (2018). In the framework, we learn a
function V that minimizes (but not necessarily) the online Bellman objective of V 3:

EPF (s→s′)[δS(s→ s′)2], δS(s→ s′) := log πF (s
′|s) + V (s)−Q(s, s′), (58)

with Q(s, s′) := log πB(s|s′) + V (s′) and Q(x, sf) := logR(x), where EPF (s→s′)[. . .] above can
be generalized into EPD(s)[EπF (s′|s)[. . .]], but the inner online expectation still must be maintained.
At this point, the two RL directions begin to diverge (Schulman et al., 2017). When the V

3As the offline Bellman objective under the first framework can be written as the DB objective, a special
case of the Sub-TB objective, the online Bellman objective for the second framework can be expressed as a
special case of the Sub-EB objective.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

achieves the optimal solution of the Bellman objective (denoted as V †), we have

V (s) = V †(s) = EπF (s′|s)[Q(s, s′)− log πF (s
′|s)]

= EπF (s′|s)

[
expQ(s, s′)

log
∑

s′ expQ(s, s′)
− log πF (s

′|s) + log
∑
s′

expQ(s, s′)

]

= −DKL (πF (·|s)∥πQ(·|s)) + log
∑
s′

expQ(s, s′), πQ(s
′|s) := expQ(s, s′)∑

s′ expQ(s, s′)
.

Defining F (s → s′) := expQ(s, s′) yields expressions that coincide with those used in the main
text. This clarifies why V † (and its learned approximate V) serves as a critic: it evaluates how far
the πF is from the local optimal policy as Q(s, s′) may still deviate from the global optimal one
Q∗(s, s′). The divergence is then minimized w.r.t. actor πF using critic V , so that V † of πF moves
closer to the optimal one V ∗. This can be achieved by simply setting πF (· |s) to πQ(· |s) for all
sampled states or applying policy gradients for sampled trajectories. In Appendix A.7, we further
derive the soft actor–critic algorithms based on basic minimization operations to better illustrate
how the Sub-EB objective and policy gradients operate within the actor–critic framework.

A.7 SOFT ACTOR-CRITIC FOR GFLOWNET

The soft actor-critic algorithm tailored to GFlowNet training is presented in Alg. 3 and 4. When
all states are visited through sampling in Alg. 3 and the online Bellman objective of V reachs zero,
meaning ∀s ∈ S : DKL(πF (· |s), πQ(· |s)) = 0, and V = V †, we below show that policy πF and
V will converge to optimal quantities π∗

F and V ∗. Starting at terminating states, we have:

V (x) = −DKL(πF (·|x)∥πQ(·|x)) +Q(x, sf)

= Q(x, sf) := logR(x) (59)
Q(sH−1, x) := log πB(sH−1|x) + V (x)

= log
F ∗(sH−1 → x)

F ∗(x)
+ logR(x) = logF ∗(sH−1 → x), (60)

where we use the definition of πB . Next, we have:

V (sH−1) := −DKL (πF (·|sH−1)∥πQ(·|sH−1)) + log
∑
x

expQ(sH−1, x)

= log
∑
x

F ∗(sH−1, x) = logF ∗(sH−1), (61)

πF (x|sH−1) = πQ(x|sH−1) :=
expQ(sH−1, x)∑
x expQ(sH−1, x)

=
F ∗(sH−1 → x)

F ∗(sH−1)
:= π∗

F (x|sH−1). (62)

Continuing this recursion, we will arrive at V †(s) = logF ∗(s), Q†(s→ s′) = logF ∗(s→ s′), and
πF (s

′|s) = π∗
F (s

′|s) for all s and (s→ s′).

The online expectation over πF make algorithm 3 computational expensive, and also eliminating
the possible for ehanced the edge-wise formulation of δS . To address this, one may modify it into
Algorithm 4, where the key difference is online trajectories sampled from PF (τ). While Niu et al.
(2024) improve the basic policy-optimization operator using policy-gradient theory for practical
implementation, our Sub-EB objective further enables subtrajectory-level formulations of δS and
parameterized πB(· | · ϕ). Since traditional policy-gradient methods operate strictly in an on-policy
manner, our backward Sub-EB objective derived from Theorem 3.2 is introduced to enable the use
of an offline sampler PD.

B EXPERIMENTAL SETTINGS AND RESULTS

Hyperparameters For both the original policy-based method and the proposed one with the Sub-
TB objective (RL and Sub-EB), we set the hyperparameter γ to 0.99 based on the ablation study

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Algorithm 3 Soft Actor-Critic Workflow
Require: πF (· |· ; θ), πB(· |·), V (· ;ϕ), batch

size K, number of total iterations N
for n = 1, . . . , N do
D ← {τk|τk ∼ PD(τ)}Kk=1
Based onD, update ϕ by its gradients w.r.t.
1
K

∑
s∈τk EπF (s′|s)[δS(s→s′;ϕ)2].

Based on D and V , setting πF (· |s) to
πQ(· |s) for any s(̸= sf) ∈ D.

end for
return πF (· |· ; θ), V (· ;ϕ)

Algorithm 4 Modified Actor-Critic Workflow
Require: πF (· |· ; θ), πB(· |·), V (· ;ϕ), batch

size K, number of total iterations N
for n = 1, . . . , N do
D ← {τk|τk ∼ PF (τ)}Kk=1
Based onD, update ϕ by its gradients w.r.t.
1
K

∑
(s→s′)∈τk δS(s→ s′;ϕ)2.

Based on D and V , setting πF (· |s) to
πQ(· |s) for any s(̸= sf) ∈ D.

end for
return πF (· |· ; θ), V (· ;ϕ)

results reported in Niu et al. (2024). For the data collection policy πD of Sub-TB, the hyperparame-
ter α starts at 1.0 and decays exponentially at a rate of 0.99, where the decay rate is also determined
based on the results of the ablation study in Niu et al. (2024). In the Sub-TB objective, the hyperpa-
rameter λ is set to 0.9 following the ablation study by Madan et al. (2023). For the Sub-EB objective,
λ is set to be 0.9 selected from {0.1, 0.2, . . . , 0.9, 0.99} based on the ablation study results shown
in Fig. 6.

Optimization The Adam optimizer is used for optimization. The sample batch size is set to 128
for each optimization iteration following Niu et al. (2024). The learning rates of πF (· |· ; θ) and
F log(· ; θ) are equal to 1× 10−3, which is selected from {5× 10−3, 1× 10−3, 5× 10−4, 1× 10−4}
based on the performance of Sub-TB on the 256 × 256 grid. The learning rate of Vϕ(·) is set to
5×10−3, which is selected from {10−2, 5×10−3, 10−3, 5×10−4, 10−4} based on the performance
of RL on the 256 × 256 grid. In all experiments, each training method is run five times, initialized
from five different random seeds.

Model architecture The forward policy πF (· | ·; θ) and evaluation function Vϕ(·) are both param-
eterized by a neural network with four hidden layers, each with a hidden dimension of 256. The
backward policy πB(· | ·) is a uniform distribution over valid transitions (edges). In hypergrid and
sequence design experiments, coordinate tuples and integer sequences are transformed using K-hot
encoding before entering the neural networks. In BN structure learning, adjacency matrices are used
directly as input into neural networks without encoding.

Peformance metrics The first one is the total variation DTV between PF (x) and P ∗(x), which is
defined as: DTV(PF (x), P

∗(x)) = 1
2

∑
x∈X |PF (x)− P ∗(x)|. An alternative performance metric

adopted in literature is the average l1-distance, which is defined as |X |−1
∑

x |P ∗(x)−PF (x)|. The
reason that we use DTV instead is as follows. The design space |X | is usually large (> 104) and∑

x |P ∗(x)−PF (x)| ≤ 2, resulting in the average l1-distance being heavily scaled down by |X |. We
also evaluate different methods using the Jensen–Shannon divergence DJSD as the second metric,
which can be written as: DJSD(PF (x), P

∗(x)) = 1
2DKL(PF (x), PM (x))+ 1

2DKL(P
∗(x), PM (x)),

where PM := 1
2 (PF + P ∗).

B.1 HYPERGRIDS

The generative process of hypergrid experiments is defined as follows. For a grid with height H
and width D, the state space excluding the final state, S\{sf}, consists of all D-dimensional coor-
dinate vectors of the form {s = ([s]1, . . . , [s]d, . . . , [s]D) | [s]d ∈ {0, . . . ,H − 1}}. The generating
process begins at the initial state s0 = (0, . . . , 0) and ends in the final state sf , which we de-
note as (−1, . . . ,−1). From any state s ∈ S\{sf}, there are D + 1 valid transitions (edges): (1)
for each d ∈ {0, . . . , D}, the d-th coordinate can be incremented by one, leading to a new state
s′ = ([s]1, . . . , [s]d + 1, . . . , [s]D); (2) if s ∈ X , the process can be stopped by taking transi-
tion (s→sf), returning s as the terminating coordinate tuple x. By definitions above, the DAGs
of Hypergrid experiments are not graded, meaning every state (excluding sf) can be returned as a

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

0 500 1000 1500 2000
N

0.2

0.4

0.6

0.8

1.0

D
TV

Sub-TB-16
Q-Much-16
Sub-TB-128
Q-Much-128

0 500 1000 1500 2000
N

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

D
TV

Q-Much-16
Sub-TB-16
Sub-TB-128
Q-Much-128

Figure 4: Plots of the means and standard deviations (represented by the shaded area) of DTV (right)
for different training methods on the 128× 128 (left) 20× 20 (right) grids, based on five randomly
started runs for Sub-TB-16 Sub-TB-128, Q-much-16 and Q-much 128. Here, “16” and “128” denote
the training batch sizes.

0 500 1000 1500 2000
N

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

D
JS

D

Sub-TB
Sub-TB-P
RL
RL-P
RL-M
Sub-EB
Sub-EB-P
CV
Q-Much

0 500 1000 1500 2000
N

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
D

JS
D

Sub-TB
Sub-TB-P
RL
RL-P
RL-M
Sub-EB
Sub-EB-P
CV
Q-Much

0 500 1000 1500 2000
N

0.0

0.1

0.2

0.3

0.4

0.5

0.6

D
JS

D

Sub-TB
Sub-TB-P
RL
RL-P
RL-M
Sub-EB
Sub-EB-P
CV
Q-Much

Figure 5: Plots of the means and standard deviations (represented by the shaded area) of DJSD for
different training methods on the 256×256 (left) 128×128 (middle) and 64×64×64 (right) grids,
based on five randomly started runs for each method.

terminating state. The reward function associated with terminating states is defined as:

R(x) = R0 +R1

D∏
d=1

I
[∣∣∣∣ [s]d
N − 1

− 0.5

∣∣∣∣ ∈ (0.25, 0.5]

]
+R2

D∏
d=1

I
[∣∣∣∣ [s]d
N − 1

− 0.5

∣∣∣∣ ∈ (0.3, 0.4]

]
,

where R0 = 10−2, R1 = 0.5 and R2 = 2 in our experiments.

Ablation study on λ For the 128× 128 grid, we conduct an ablation study on the hyperparameter
λ of the Sub-EB weights wj−i(= λj−i/

∑
i<j∈[H+1] λ

j−i) to investigate its effect on policy-based
GFlowNet training. We run Sub-EB methods with λ equal to 0.1, 0.2, . . . , 0.90 and 0.99. The
experimental results are depicted in Fig. 6. It can be observed that the Sub-EB method with λ = 0.9
achieves the best performance. Although convergence rates and final performances differ, Sub-EB
methods under all configurations exhibit good stability, demonstrating that the proposed Sub-EB
objective enables reliable learning of the evaluation function V .

B.2 SEQUENCE DESIGN

The generative process of this set of experiments is defined as follows. The state space excluding
the final state S\{s0, sf} is equal to

⋃H
t=1{0, . . . , N−1}t where each state is a sequence composed

of integers ranging from 0 to N − 1. The set {0, . . . , N − 1} corresponds to the N types of building
blocks. The process begins at the initial state s0 = (−1, . . . ,−1), which represents an empty
sequence, and ends at the final state sf = (N, . . . , N). For any intermediate state sh ∈ Sh, it
contains h elements drawn from {0, . . . , N − 1}. There are N × 2 possible transitions for st with
t < D, corresponding to either appending or prepending one element from {0, . . . , N − 1} to the
current sequence. For implementation easiness in practice, each state st is equivalently represented
as a sequence of fixed length D, where the first t elements are integers from {0, . . . , N − 1} and
the others are equal to −1. This generative process continues until sequences reach length D. By
definition, G is a graded DAG and SD = X = {0, . . . , N − 1}D. We use nucleotide sequence
datasets (SIX6 and PHO4), and molecular sequence datasets (QM9 and sEH) from Shen et al.
(2023). Rewards are defined as the exponents of raw scores from the datasets, R(x) = scoreβ(x).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

0 500 1000 1500 2000
N

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

D
TV

0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
0.99

0 500 1000 1500 2000
N

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

D
JS

D

0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
0.99

Figure 6: Plots of the means and standard deviations (represented by the shaded area) of DTV (left)
and DJSD (right) for Sub-EB runs on the 128 × 128 grid. The hyperparameter λ for Sub-EB runs
ranges from 0.1 to 0.99. The results are based on five Sub-EB runs for each setup.

0 500 1000
N

0

50

100

150

200

250

300

M
N

Sub-TB
Sub-TB-B
RL
Sub-EB
Sub-EB-B

0 500 1000 1500 2000
N

0

50

100

150

200

250

300

350

M
N

Sub-TB
Sub-TB
RL
Sub-EB
Sub-EB

0 500 1000 1500 2000
N

0

500

1000

1500

2000

M
N

Sub-TB
Sub-TB-B
RL
Sub-EB
Sub-EB-B

0 500 1000 1500 2000
N

0

500

1000

1500

2000

M
N

Sub-TB
Sub-TB-B
RL
Sub-EB
Sub-EB-B

Figure 7: Plots of the mean and standard deviation values (represented by the shaded area) of MN
for the SIX6 (top left), QM9 (top right), PHO4 (bottom left), and sEH (bottom right) dataset, based
on five randomly started runs for each method.

The hyperparameter β is set to 3, 5, 3, 6, and rewards are normalized to [10−3, 10], [10−3, 10],
[0, 10] and [10−3, 10] for SIX6, QM9, PHO4 and sEH, respectively. In this experimental setting, we
consider an additional metric introduced by Shen et al. (2023). It is Mode Accuracy (MA) of PF (x)
w.r.t. P ∗(x), and defined as:

MA(PF (x), P
∗(x)) = min

(EPF (x)[R(x)]

EP∗(x)[R(x)]
, 1

)
. (63)

We use dynamic programming (Malkin et al., 2022a) to compute PF (x) and the exact MA, DTV

and DJSD between PF (x) and P ∗(x).

In this set of experiments, we focus not only on distribution modeling but also on mode discovery,
where the goal is to uncover high-reward terminating states. In addition to RL, Sub-EB, and Sub-TB
methods, we also consider augmenting Sub-TB and the offline Sub-EB (Algorithm 2) with the local
search technique (Kim et al., 2023b) for designing PD, to explicitly promote the exploration of high-
reward states during trajectory sampling. These variants are denoted Sub-TB-B and Sub-EB-B. As
explained in the Related Works section and confirmed by the following experiment results, off-policy
techniques that explicitly encourage exploration may not benefit distribution modeling. However,
when the focus is on discovering modes of terminating states during training, these techniques can
be valuable.

Mode discovery Results Here, we present the experimental results comparing different methods
for mode discovery. We measure performance using Mode Number (MN), defined as the number
of unique high-reward terminating states discovered during training. A terminating state is regarded
as highly rewarded if its reward falls within the top 0.5% for the SIX6, QM9, and PHO4 datasets,
and the top 0.01% for the sEH dataset. As depicted in Fig. 7, Sub-EB-B and Sub-TB-B can find

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

0 500 1000 1500 2000
N

0.20

0.25

0.30

0.35

0.40

D
TV

Sub-TB
Sub-TB-B
RL
Sub-EB
Sub-EB-B

0 500 1000 1500 2000
N

0.04

0.06

0.08

0.10

0.12

D
JS

D

Sub-TB
Sub-TB-B
RL
Sub-EB
Sub-EB-B

0 500 1000 1500 2000
N

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
A

Sub-TB
Sub-TB-B
RL
Sub-EB
Sub-EB-B

Figure 8: Plots of the mean and standard deviation values (represented by the shaded area) of DTV

(left), DJSD (middle), and MA (right) for the SIX6 dataset, based on five randomly started runs for
each method.

0 500 1000 1500 2000
N

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

D
TV

Sub-TB
Sub-TB-B
RL
Sub-EB
Sub-EB-B

0 500 1000 1500 2000
N

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

D
JS

D

Sub-TB
Sub-TB-B
RL
Sub-EB
Sub-EB-B

0 500 1000 1500 2000
N

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

M
A

Sub-TB
Sub-TB-B
RL
Sub-EB
Sub-EB-B

Figure 9: Plots of the mean and standard deviation values (represented by the shaded area) of DTV

(left), DJSD (middle), and MA (right) for the QM9 dataset, based on five randomly started runs for
each method.

a fixed number of unique modes faster and discover more unique modes within a fixed number of
optimization iterations, despite a decline in distribution modeling performance on all datasets except
PHO4. These results validate our offline policy-based training workflow and support our claim that
the proposed Sub-EB objective enables the integration of offline sampling techniques.

Distribution Modeling Results We compare different training methods by their performance
measured by MA, DTV and DJSD, as shown in Figs. 8, 9, 10, and 11 for SIX, QM9, PHO4,
and sEH datasets respectively. It can be seen that Sub-EB performs slightly better than RL. This can
be ascribed to the sufficient stability of RL in these experiments, rendering the advantages brought
by the Sub-TB objective less obvious. Nevertheless, Sub-EB outperforms Sub-TB in terms of both
convergence rate and final performance. They both leverage the balance conditions to learn an eval-
uation function V and a state flow function F , respectively. In principle, the key difference is that
πF and F are learned simultaneously in Sub-TB, whereas Sub-EB first learns V and then uses RL-
like techniques to optimize πF based on V . The results suggest that the balance conditions enable
learning both V and F , and incorporating RL-like techniques into the balance-based framework can
enhance the performance of traditional value-based training methods such as Sub-TB.

For the offline variants, it can be observed that Sub-EB-B performs slightly better than Sub-TB-B,
but performs worse than Sub-EB for all datasets except PHO4. Combined with the mode discov-
ery results in Fig. 7, this indicates that while offline techniques that encourage the high-rewarded
terminating states is helpful for mode discovery, they may hinder accurate distribution modeling.

B.3 BN STRUCTURE LEARNING

A Bayesian Network is a probabilistic model, representing the joint distribution of N random
variables, whose factorization is determined by the network structure x, which is a DAG graph.
Accordingly, the distribution can be written as P (y1, . . . , yN) =

∏N
n=1 P (yn|Pax(yn)), where

Pax(yn) denote the parent nodes of yn in graph x. Since any graph structure can be en-
coded as an adjacency matrix, the state space excluding the final state is defined as S\{sf} :={
s|C(s) = 0, s ∈ {0, 1}N×N

}
where C corresponds to the acyclic graph constraint introduced

by Deleu et al. (2022). It should be noted that each BN DAG x ∈ X corresponds to a state s ∈ S
in the GFlowNet DAG G. The generative process begins from the initial state s0 = 0N×N , repre-
senting a graph without edges, and ends at sf := −1N×N . For any s ∈ S\sf , a transition (s→ s′)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

0 500 1000 1500 2000
N

0.26

0.28

0.30

0.32

0.34

D
TV

Sub-TB
Sub-TB-B
RL
Sub-EB
Sub-EB-B

0 500 1000 1500 2000
N

0.06

0.07

0.08

0.09

D
JS

D

Sub-TB
Sub-TB-B
RL
Sub-EB
Sub-EB-B

0 500 1000 1500 2000
N

0.70

0.72

0.74

0.76

0.78

0.80

M
A

Sub-TB
Sub-TB-B
RL
Sub-EB
Sub-EB-B

Figure 10: Plots of the mean and standard deviation values (represented by the shaded area) of DTV

(left), DJSD (middle), and MA (right) for the PHO4 dataset, based on five randomly started runs for
each method.

0 500 1000 1500 2000
N

0.00

0.05

0.10

0.15

0.20

0.25

D
TV

Sub-TB
Sub-TB-B
RL
Sub-EB
Sub-EB-B

0 500 1000 1500 2000
N

0.00

0.01

0.02

0.03

0.04

0.05

0.06

D
JS

D

Sub-TB
Sub-TB-B
RL
Sub-EB
Sub-EB-B

0 500 1000 1500 2000
N

0.75

0.80

0.85

0.90

0.95

1.00

M
A

Sub-TB
Sub-TB-B
RL
Sub-EB
Sub-EB-B

Figure 11: Plots of the mean and standard deviation values (represented by the shaded area) of DTV

(left), DJSD (middle), and MA (right) for the sEH dataset, based on five randomly started runs for
each method.

corresponds to adding an edge by flipping a zero entry in the adjacency matrix to one, provided
that the resulting state s′ remains acyclic. Alternatively, the generative process can be stopped by
transitioning to sf and returning s as the terminating graph structure. By definition, the G is not
graded for this experiment set. Given an observed sample setDy of y1:N , the goal of structure learn-
ing is to approximate the posterior distribution P (x|Dy) ∝ P (Dy|x)P (x). In the absence of prior
knowledge about x, the prior distribution P (x) is often assumed to be uniform, reducing the task to
maximizing the likelihood, P (Dy|x)(∝ P (x|Dy)).

Following Malkin et al. (2022b), the ground-truth graph structure x∗ and the corresponding dataset
Dy of size |Dy| = 103 are simulated from Erdős–Rényi model (Deleu et al., 2022). We use BGe
score (Kuipers et al., 2014) to assess generated graph structures, and define the reward R(x) =

(∆(x;Dy)/C)
β , where ∆(x;Dy) = BGe(x;Dy) − BGe(s0;Dy), β = 10 sharpens the reward

function toward high-scoring structures, and C = ∆(x∗;Dy) normalizes the reward so that R(x∗) =
1. The exact number of DAGs on n nodes, denoted as a(n) satisfies (Robinson, 2006):

a(n) =

n∑
k=1

(−1)k+1

(
n

k

)
2k(n−k) a(n− k), (64)

with a(0) = 1. For the ease of accessing distribution modeling performance, Malkin et al. (2022b)
set the number of nodes to 5, resulting in about 2.92×104 possible DAGs. In this setup, the ground-
truth DAG contains 5 edges. In addition to this small-scale case, we also consider two much larger
cases with 10 and 15 nodes, corresponding to about 4.18 × 1018 and 2.38 × 1035 possible DAGs,
respectively. We set the ground-truth DAGs to contain 10 and 15 edges in the two respective cases.

Experimental results For the small-scale case, we use dynamic programming (Malkin et al.,
2022a) to explicitly compute PF (x) for learned πF , and compute the exact DTV and DJSD between
PF (x) and P ∗(x). In Fig. 13, the mean and standard deviation values of DTV and DJSD are plotted
for five runs of Sub-TB, RL, and Sub-EB, respectively. It can be seen that Sub-EB performs better
than both RL and Sub-TB. These results confirm our conclusion that the Sub-EB objective enables
more reliable learning of the evaluation function V compared to the λ-TD objective, thereby im-
proving the performance of the RL-like policy-based method. We also include results for Sub-EB-B
and Sub-TB-B. These results further support our conclusion that explicitly encouraging exploration
of high-reward regions may not be beneficial for distributional modeling performance.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

0 500 1000 1500 2000
N

0.00

0.05

0.10

0.15

0.20

Av
g

to
p

10
0

Sub-TB
Sub-TB-B
RL
Sub-EB
Sub-EB-B
CV
Q-Much

0 500 1000 1500 2000
N

22

24

26

28

D
iv

to
p

10
0

Sub-TB
Sub-TB-B
RL
Sub-EB
Sub-EB-B
CV
Q-Much

0 500 1000 1500 2000
N

0.2

0.4

0.6

0.8

1.0

FC
S

Sub-TB
Sub-TB-B
RL
Sub-EB
Sub-EB-B
CV
Q-Much

Figure 12: Plots of the mean and standard deviation values (represented by the shaded area) of
average reward (left), diversity (middle) and FCS (right) of the top 100 unique candidate graphs
over 15 nodes, based on five randomly started runs for each method.

0 500 1000 1500 2000
N

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

D
TV

Sub-TB
Sub-TB-B
RL
Sub-EB
Sub-EB-B

0 500 1000 1500 2000
N

0.000

0.005

0.010

0.015

0.020

0.025

0.030

D
JS

D

Sub-TB
Sub-TB-B
RL
Sub-EB
Sub-EB-B

Figure 13: Plots of the mean and standard deviation values (represented by the shaded area) of
DTV (left) and DJSD (right) for the BN learning structure learning task over 5 nodes, based on five
randomly started runs for each method.

B.4 MOLECULAR GRAPH DESIGN

Each molecule (graph) is a composition of at most 8 building blocks, selected from N = 105
predefined molecular substructures provided by Bengio et al. (2021). Each block (graph node) has
a list that contains at most M available atom indices for forming bonds (graph edges) with other
blocks. Each block’s list includes contains exactly one target atom and 0 to M − 1 source atoms. A
bond is formed by connecting a source atom in one block to a target atom in another. A graphical
illustration of 4 exemplary blocks is shown in Fig. 14.
Following Bengio et al. (2021), we restrict the maximum number of blocks in a molecular graph
to be H = 8. Each state s ∈ S in the generative process is represented as a H × 2 matrix. The
generative process begins from the initial state s0 = −1H×2, representing an empty graph, and
ends at sf = 105H×2. For any state sh ∈ Sh, the first column contains h integers drawn from
{0, . . . , N − 1}, representing the indices of the building blocks present in the molecule. The second
column contains h − 1 integers drawn from {0, . . . ,H ×M − 1}, encoding the connectivity. For
any s ∈ S \ (sf , s0), a transition (s→ s′) corresponds to a two-level action:

1. Selecting a building block to add, represented by an integer in {0, . . . , N − 1}.
2. Selecting a bonding site represented by an integer k ∈ {0, . . . ,H ×M − 1}. Supposing

k = (i − 1) ×H + j, this indicates that the target atom of the newly added block will be
connected to the j-th source atom of the i-th block.

The generative process stops when we make the transition (x → sf), when no available source
atoms remain for forming bonds, or when the state reaches the limit of H blocks. According to
the definition of the generative process, the G is not graded, meaning any state except sf can be a
terminating state x ∈ X . Since there may be multiple types of bonds between a given pair of blocks,
the size of the terminating state space is greater than 105!

(105−8)! ≈ 1016. The Octanol–Water Partition
Coefficient (LogP) and c-Jun N-terminal Kinase 3 (JNK3) scores provided in the pyTDC package
are directly used as the reward functions R(x). Since actions in this generative process involve two
levels, we use separate neural networks to represent the policy for each action component. The
log-probability of an action is computed as the sum of the log-probabilities output by the respective

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Figure 14: Four exemplary building blocks. Red and blue dots indicate the available atoms for
bonding, where each bonding edge originates from a red dot and terminates at a blue dot.

0 500 1000 1500 2000
N

2

0

2

4

6

Av
g-

to
p-

10
0

LogP

Sub-TB
RL
Sub-EB
Q-Much

0 500 1000 1500 2000
N

0.775

0.800

0.825

0.850

0.875

0.900

0.925

0.950

Di
v-

to
p-

10
0

LogP
Sub-TB
RL
Sub-EB
Q-Much

Figure 15: Plots of the mean and standard deviation values of average reward (left) and diversity
(right, Tanimoto diversity of molecular Morgan fingerprints) of top 100 unique molecules based on
LogP score.

networks for the two action levels. Finally, following Bengio et al. (2021), we use a batch size of 4
to emulate scenarios where querying the real-world molecule oracle is computationally expensive.

The experimental results are presented in Figs. 15 and 16. We report the average reward and diversity
of the top 100 unique graphs which are discovered during the training process. The diversity of a
set of molecules is computed as the average pairwise dissimilarity based on Tanimoto distance of
Morgan fingerprints via the pyTDC package. For the LogP task, RL and Sub-EB achieve similar
average rewards and convergence rate, both outperforming Sub-TB and Q-Much. All three methods
exhibit comparable diversity. For the JNK3 task, Sub-EB achieves the highest average reward and
demonstrates the fastest convergence among all methods. Its diversity is comparable to that of Sub-
TB and higher than that of RL. While Q-Much achieves the highest diversity, its average reward
is almost the lowest. Overall, these results indicate that Sub-EB achieves the best performance in
terms of reward and convergence rate, while maintaining reasonable diversity. This confirms its
effectiveness for large-scale molecule design tasks.

B.5 GRADIENT VARIANCE STUDY

To measure gradient variance for different policy-based methods (CV, RL, Sub-EB), we follow
the procedure of Madan et al. (2023). We first sample a large batch of 210 = 1024 trajecto-
ries {τ1, . . . , τ1024} and compute their per-trajectory gradients g

(0)
j w.r.t. the forward policy pa-

rameters. For each k ∈ {2, . . . , 9}, we construct 210−k disjoint sub-batches B(k)1 , . . . ,B(k)
210−k ,

each containing exactly 2k trajectories chosen in order from the large batch. The averaged sub-
batch gradient is then defined as g

(k)
i = 1

2k

∑
j∈B(k)

i
g
(0)
j . The full-batch reference gradient is

g(10) = 1
1024

∑1024
j=1 g

(0)
j . This hierarchical batching is used solely for gradient-variance analysis;

the actual training batch size remains unchanged. For each sub-batch gradient, we compute the

cosine similarity sim(g
(k)
i , g(10)) =

g
(k)
i ·g(10)

∥g(k)
i ∥∥g(10)∥

, and estimate the variance at batch size 2k via

the mean similarity MeanSim(k) = 1
210−k

∑210−k

i=1 sim(g
(k)
i , g(10)). Higher MeanSim(k) indicates

lower gradient variance. In Fig. 17, we report the mean similarity of CV, RL, and Sub-EB at itera-
tions 500, 1000, and 1500. The results show that Sub-EB consistently achieves the lowest variance.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

0 500 1000 1500 2000
N

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Av
g-

to
p-

10
0

Jnk3

Sub-TB
RL
Sub-EB
Q-Much

0 500 1000 1500 2000
N

0.775

0.800

0.825

0.850

0.875

0.900

0.925

0.950

Di
v-

to
p-

10
0

Jnk3
Sub-TB
RL
Sub-EB
Q-Much

Figure 16: Plots of the mean and standard deviation values of average reward (left) and diversity
(right, Tanimoto diversity of molecular Morgan fingerprints) of top 100 unique molecules based on
JNK3 score.

2 3 4 5 6 7 8 9
k

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Co
sin

e
Si

m
ila

rit
y

N=500

CV
RL
Sub-EB

2 3 4 5 6 7 8 9
k

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Co
sin

e
Si

m
ila

rit
y

N=1000

CV
RL
Sub-EB

2 3 4 5 6 7 8 9
k

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Co
sin

e
Si

m
ila

rit
y

N=1500

CV
RL
Sub-EB

Figure 17: The mean cosine simiarity between small-batch 2k and large batch (1024) of different
methods at k = {2, . . . , 9} and training iteration 500, 1000 and 1500.

Method Mean Std
Sub-TB 1h 08m 1.09
Sub-TB-P 1h 14m 10.36
RL 1h 03m 0.92
RL-P 1h 27m 0.57
RL-M 1h 09m 1.78
Sub-EB 1h 17m 2.31
Sub-EB-P 1h 17m 1.49

Method Mean Std
Sub-TB 0h 52m 0.27
Sub-TB-P 0h 58m 7.92
RL 0h 44m 1.43
RL-P 1h 06m 2.21
RL-M 0h 58m 3.27
Sub-EB 0h 54m 2.66
Sub-EB-P 1h 11m 0.82

Method Mean Std
Sub-TB 1h 59m 1.53
Sub-TB-P 2h 19m 4.40
RL 1h 27m 7.37
RL-P 2h 03m 10.68
RL-M 2h 28m 9.58
Sub-EB 2h 04m 4.11
Sub-EB-P 2h 41m 15.46

Table 1: The mean and standard deviation (std) of the total runtimes for each method on the 64 ×
64×64 (left), 128×128×128 (middle), and 256×256×256 (right) grids. Here, ‘h’ denotes hours
and ‘m’ denotes minutes, and all std values are reported in minutes.

Method Mean Std
Sub-TB 0h 05m 0.21
Sub-TB-B 0h 16m 0.67
RL 0h 04m 0.06
Sub-EB 0h 04m 0.34
Sub-EB-B 0h 17m 1.63

Method Mean Std
Sub-TB 0h 04m 1.10
Sub-TB-B 0h 12m 0.57
RL 0h 04m 0.12
Sub-EB 0h 04m 0.06
Sub-EB-B 0h 13m 0.71

Table 2: The mean and standard deviation (std) of the total runtimes for each method on the SIX6
and QM9 datasets. Here, ‘h’ denotes hours and ‘m’ denotes minutes, and all std values are reported
in minutes.

Method Mean Time (h:min) Std (min)
Sub-TB 0h 19m 2.05
Sub-TB-B 0h 27m 0.42
RL 0h 18m 0.10
Sub-EB 0h 18m 0.15
Sub-EB-B 0h 30m 1.09

Method Mean Time (h:min) Std (min)
Sub-TB 3h 30m 10.23
Sub-TB-B 3h 46m 11.59
RL 3h 42m 13.78
Sub-EB 3h 41m 13.97
Sub-EB-B 3h 58m 7.57

Table 3: The mean and standard deviation (std) of the total runtimes for each method on the PHO4
and sEH datasets. Here, ‘h’ denotes hours and ‘m’ denotes minutes, and all std values are reported
in minutes.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Method Mean Std
Sub-TB 0h 57m 1.11
Sub-TB-B 1h 23m 4.27
RL 0h 56m 0.46
Sub-EB 0h 49m 0.87
Sub-EB-B 1h 07m 1.43

Method Mean Std
Sub-TB 0h 10m 0.80
Sub-TB-B 0h 36m 1.82
RL 0h 11m 3.58
Sub-EB 0h 10m 0.91
Sub-EB-B 0h 31m 2.27

Method Mean Std
Sub-TB 0h 16m 1.28
Sub-TB-B 0h 42m 3.82
RL 0h 12m 1.79
Sub-EB 0h 14m 0.28
Sub-EB-B 0h 39m 1.13

Table 4: The mean and standard deviation (std) of the total runtimes for each method on the 5-
node, 10-node and 15-node BN tasks. Here, ‘h’ denotes hours and ‘m’ denotes minutes, and all std
values are reported in minutes. The runtimes for the 5-node cases are the largest due to the explicit
computation of DTV for performance comparison during training.

28

	Introduction
	Preliminaries
	GFlowNet training
	policy-based training

	Subtrajectory Evaluation Balance
	The balance condition and objective for forward policies
	Parameterized backward policy
	Offline policy-based training

	Related works
	Experiments
	Discussion and conclusion
	Reproducibility statement
	Theoretical analyses
	Proof of Theorem 3.1
	Proof of Theorem 3.2
	Proof of Theorem 3.3
	The complete version of the evaluation function
	Comparison between -TD and Sub-EB objectives
	Additional related works
	Soft actor-critic for GFlowNet

	Experimental settings and results
	Hypergrids
	Sequence design
	BN structure learning
	Molecular graph design
	Gradient variance study

