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ABSTRACT

Estimating the Lipschitz constant of deep neural networks is of growing interest as
it is useful for informing on generalisability and adversarial robustness. Convolu-
tional neural networks (CNNs) in particular, underpin much of the recent success
in computer vision related applications. However, although existing methods for
estimating the Lipschitz constant can be tight, they have limited scalability when
applied to CNNs. To tackle this, we propose a novel method to accelerate Lips-
chitz constant estimation for CNNs. The core idea is to divide a large convolu-
tional block via a joint layer and width-wise partition, into a collection of smaller
blocks. We prove an upper-bound on the Lipschitz constant of the larger block
in terms of the Lipschitz constants of the smaller blocks. We demonstrate an en-
hanced scalability and comparable accuracy to existing baselines through a range
of experiments.

1 INTRODUCTION

It has been shown that deep neural networks (DNNs) exhibit vulnerabilities to adversarial attacks
(Goodfellow et al., 2014; Madry et al., 2018), which in the field of image classification are defined
by imperceptible changes to the input image resulting in misclassification. In recent years, there has
been an increased effort to develop methods to measure the robustness of DNNs to such attacks. One
way to do so is through accurate estimation of the Lipschitz constant of neural networks (Akhtar &
Mian, 2018). Given a function f : Rn → Rm, we say f is globally Lipschitz continuous with
respect to a norm ∥ · ∥, if ∃L ≥ 0 such that:

∥f(x)− f(y)∥ ≤ L∥x− y∥, ∀x,y ∈ Rn. (1)
The minimum value of L for which (1) holds is called the Lipschitz constant of f , denoted by L(f).
It intuitively provides a metric for measuring adversarial robustness, as it gives the maximum ratio
between changes in the output space with respect to changes in the input space.

Existing methods for Lipschitz estimation of DNNs are either scalable but conservative (Szegedy
et al., 2014), or accurate in their estimation but unable to scale to larger networks (Fazlyab et al.,
2019; Latorre et al., 2019; Raghunathan et al., 2018), due to the underlying optimisation problems.
For example, the LipSDP method (Fazlyab et al., 2019) formulates (1) as a semidefinite program
(SDP). Classical interior-point methods (Vandenberghe & Boyd, 1996) deployed for solving such
problems have a per-iteration time complexity ofO(N3m+N2m2+m3) and a memory complexity
of O(N2 + m2), where N denotes the size of the constraint matrix and m the number of equality
constraints. On regular computers, computational bottlenecks are reached for problems with N and
m greater than a few hundred and thousand respectively (Zheng et al., 2021; Majumdar et al., 2020).
This becomes problematic when applying the LipSDP method to convolutional neural networks
(CNNs) due to the significant increase of problem size caused by CNNs.

Current acceleration methods exploit parallelisation (Fazlyab et al., 2019) or sparsity patterns in
the underlying SDP (Xue et al., 2022) to scale to deeper networks, but not necessarily wider ones.
With the growing use of deep and wide CNNs in safety-critical domains (Bojarski et al., 2016;
Esteva et al., 2017), it is important to provide practitioners with both an accurate and scalable way
to measure the Lipschitz constant. Our contributions include:

• We propose a novel method, named as dynamic convolutional partition (DCP), for scaling
existing Lipschitz estimation frameworks to deep and wide CNNs, by dividing a large
convolutional block into a collection of smaller blocks via a joint layer and width-wise
partition.
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• We prove that the Lipschitz constant of a large convolutional block can be bounded above
by the Lipschitz constants of the smaller blocks, serving as the theoretical foundation for
our acceleration method.

• We demonstrate an enhanced scalability and comparable accuracy of our method over ex-
isting baselines, through a range of experiments.

2 RELATED WORKS

The earliest attempt at estimating the global Lipschitz constant of neural networks (NNs) was made
by Szegedy et al. (2014). They bound the Lipschitz constant above in terms of the product of the
spectral norm of the weight matrices at each layer, i.e. L =

∏l
i=1 ∥Wi∥2, by using a well-known

result described in our later section by Lemma 3.1. While scalable, this approach yields conserva-
tive bounds for non-linear networks, and is sometimes referred to by existing literature as a naive
estimation (Fazlyab et al., 2019; Xue et al., 2022). Recently, methods for exactly computing the
spectral norm of convolutional layers have been developed (Sedghi et al., 2018; Singla & Feizi,
2021). Another layer-based approach estimates the Lipschitz constant through the singular value
decomposition of the weight matrices and the maximisation of the activation gradients, known as
SeqLip (Scaman & Virmaux, 2018). However, it uses a brute force approach, which becomes im-
practical for larger networks. Tighter bounds have been developed by Combettes & Pesquet (2020)
based on abstracting activation functions as averaged operators, but this method scales exponentially
with network depth.

An alternative direction providing tighter bounds poses the problem of Lipschitz constant estimation
as a linear program or SDP through convex relaxations. For instance, Raghunathan et al. (2018)
estimate the Lipschitz constant of NNs with a single hidden layer by solving an SDP with respect
to the ℓ∞-norm. This was later shown by Latorre et al. (2019) to be a specific relaxation of their
method LiPopt, a linear program framework for estimating the local Lipschitz constant. LipSDP
(Fazlyab et al., 2019) is considered the state of the art for estimating the global Lipschitz constant.
It is based on characterising the activation functions as quadratic constraints (Açıkmeşe & Corless,
2011) to develop an SDP for minimising the upper bound of the Lipschitz constant of a feedforward
neural network (FNN). Recently, SDP variations have been developed based on dissipativity theory
for 1-D and 2-D convolutional neural networks (Pauli et al., 2023; Gramlich et al., 2023).

The main disadvantage of SDP-based estimation schemes is the computational bottleneck associ-
ated with interior-point methods when optimising with respect to a large constraint matrix. In an
attempt to offset this, Fazlyab et al. (2019) proposed a hierarchy of relaxations based on varying
the number of decision variables, allowing a trade-off between scalability and accuracy. However,
their relaxation based on fully-dense matrices (LipSDP-Network) was later disproven by Pauli et al.
(2021). To exploit parallelisation, Fazlyab et al. (2019) also suggested a layer-wise cutting approach
to decompose an FNN into a collection of subnetworks, and upper bounded the Lipschitz constant
in terms of the Lipschitz constants of these smaller subnetworks. Although this is effective in im-
proving scalability to deeper networks, it does not improve the computational tractability to wider
layers. Recently, Chordal-LipSDP (Xue et al., 2022) has been proposed to accelerate by decompos-
ing a large constraint matrix into an equivalent sum of smaller ones, encouraged by theory relating
sparse matrices and chordal graphs (Agler et al., 1988; Vandenberghe et al., 2015). However, their
experiments are somewhat limited by only considering FNNs of an input dimension of 2 and a
maximum hidden width of 50. Another potential drawback of Chordal-LipSDP is that their vanilla
chordal decomposition ignores the increase in the number of equality constraints, and this can po-
tentially nullify the computational benefits of optimising over smaller constraint matrices (Fukuda
et al., 2001; Garstka et al., 2020). To the best of our knowledge, there is no existing acceleration
method in the field that works effectively for both deep and wide neural networks.

3 PRELIMINARIES

We denote matrices and vectors as bold face capital and lower-case letters respectively. The vector
space of n × n symmetric matrices and the cone of n × n symmetric, positive semidefinite (PSD)
matrices are denoted by Sn and Sn+, respectively. We will write X ⪰ 0 instead of X ∈ Sn+. We use
∥ · ∥p to denote the vector p-norm. The inner product between two vectors x,y ∈ Rn, is denoted
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by ⟨x,y⟩ = x⊤y. The n-dimensional identity matrix is denoted by In. I denotes the set of positive
indices and |I| is its cardinality.

In this paper, we study CNNs consisting of convolutional layers taking equal input height and width
of ni and channel size ci and of fully-connected layers taking input size of Ni. We consider their
re-characterisation as FNNs consisting of flattened convolutional layers Ci : Rci−1n

2
i−1 → Rcin

2
i

with indices i ∈ IC and fully-connected layers Fi : RNi−1 → RNi with indices i ∈ IF . We refer to
the convolutional layers as a convolutional block. The resulting FNN can be recursively expressed
as follows:

f
(
x0
)
= Wℓxℓ−1 + bℓ,

xi = ϕ
(
Wixi−1 + bi

)
, i = 1, 2, . . . , ℓ− 1, (2)

where ℓ = |IC |+ |IF |. Here, Wi,bi are the weight and bias respectively, applied at the i-th layer.
The activation function ϕ(·) is non-linear and applied component-wise, e.g., ReLU and tanh. We
apply the same activation function at each layer unless stated otherwise.

3.1 LIPSCHITZ BOUNDS

We first present some well-known results from functional analysis (Cobzaş et al., 2019) that serve
as the theoretical foundation for our method.

Lemma 3.1. The Lipschitz constant of a composite function f(x) = (gk ◦ gk−1 ◦ . . . ◦ g1)(x) :
Rn → Rm is bounded above by

L(f) ≤
k∏

i=1

L(gi). (3)

The above result also underpins the layer-wise cutting approach proposed by Fazlyab et al. (2019).
The proceeding lemma bounds the Lipschitz constant of a multivariate, vector-valued function in
terms of its component functions.

Lemma 3.2. Given a function f : A → Rm where A ⊆ Rn, let fi : A → R denote its i-th
component such that f = [f1, f2, . . . fm]⊤. Considering l2-norm, the Lipschitz constant of f is
bounded above by

L(f) ≤

(
m∑
i=1

L(fi)
2

) 1
2

, (4)

3.2 LIPSDP FRAMEWORK

We briefly outline the LipSDP framework (Fazlyab et al., 2019), which we will use to demonstrate
the effectiveness of our method. It characterises the activation functions as incremental quadratic
constraints, predicated on the fact that they are slope-restricted on [s1, s2], i.e. the slope of the
secant line connecting any two points is bounded below and above by s1 and s2 respectively, where
0 ≤ s1 < s2 <∞. As a result, a tight upper bound on the Lipschitz constant of an FNN recursively
expressed by (2) can be found by solving the following optimisation problem over the bound value
L and a symmetric matrix T:

min
L≥0,T∈TN

L2, (5)

subject to M
(
L2,T

)
⪯ 0.

The dimension of T, denoted by N , is equal to the total number of hidden neurons, and its search
space TN ⊂ SN can be restricted to the set of all non-negative diagonal matrices. The constraint
matrix M := M1(T) + M2

(
L2
)

is a square matrix of a larger dimension N0 + N , where N0
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denotes the number of input neurons, and

M1 =

[
A
B

]⊤ [ −2s1s2T (s1 + s2)T
(s1 + s2)T 2T

] [
A
B

]
, (6)

M2 =


−L2IN0

0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . (Wℓ)⊤Wℓ

 , (7)

also

A =

W
1 . . . 0 0

...
. . .

...
...

0 . . . Wℓ−1 0

 , B =

0 IN1 . . . 0
...

...
. . .

...
0 0 . . . INl

 . (8)

It can be seen that M
(
L2,T

)
is linear in L2 and T.

4 METHODOLOGY

We propose the DCP method for accelerating Lipschitz estimation of CNNs, designed to address the
depth and width of the network. In summary, it works by exploiting the fact that the network can
be characterised by vector-valued composite functions. From this, Lemma 3.1 allows us to express
the network as a collection of subnetworks. Lemma 3.2 allows us to partition each subnetwork
into smaller convolutional blocks, which are independent meaning that their Lipschitz constants
can be computed in parallel. We outline how to upper bound the Lipschitz constant of the original
convolutional block in terms of the Lipschitz constants of the smaller blocks. Further details are
provided in the proceeding sections.

4.1 DYNAMIC CONVOLUTIONAL PARTITION

4.1.1 CONVOLUTIONAL PARTITIONING

We first present convolutional partitioning, proposed to handle large network width. Given a func-
tion F : Rn0×n0×c0 → Rnℓ×nℓ×cℓ characterising an ℓ-layer convolutional block, we begin by
partitioning the integer nℓ into d-parts through the computation of a restricted integer composition
(RIC) (Heubach & Mansour, 2004). We refer to d as the partition factor. A RIC of nℓ, which we
denote by Rnℓ

d , is of the form nℓ =
∑d

i=1 pi, where pi denotes the i-th part. The partition factor
is in the range 1 < d ≤ nℓ, noting that d = 1 corresponds to applying no partition. Each part is
strictly positive and at most nℓ − (d− 1), which arises when (d− 1) parts are equal to one. Letting
Xℓ denote the output of the final convolutional layer, a given RIC divides Xℓ into a d× d grid by

Xℓ =


Xℓ

11 Xℓ
12 · · · Xℓ

1d

Xℓ
21 Xℓ

22 · · · Xℓ
2d

...
...

. . .
...

Xℓ
d1 Xℓ

d2 · · · Xℓ
dd

 , (9)

where Xℓ
ij ∈ Rpi×pj×cℓ . We then identify the neurons in the input layer contributing to each Xℓ

ij

denoting them X0
ij . Applying the subsequent convolutional operators forms the functions Xℓ

ij =

fij
(
X0

ij

)
. This allows us to express F as smaller convolutional blocks as follows:

F (X0) =

f11
(
X0

11

)
· · · f1d(X

0
1d)

...
. . .

...
fd1
(
X0

d1

)
· · · fdd

(
X0

dd

)
 . (10)

By design, any two distinct output blocks Xℓ
ij and Xℓ

pq are disjoint but can in general share input
neurons. Next, we flatten the partitioned convolutional block (10) using the standard vectorisation
operation by first flattening each input sub-matrix, i.e. x0

ij := vec(X0
ij), concatenating the resulting
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vectors to give x0 = [x0
11,x

0
12, . . . ,x

0
dd]. Then we vectorise each smaller convolutional block, i.e.

f̃ij : Rn0
in

0
jc0 → Rp0

ip
0
jcℓ , where f̃ij = vec(fij). The flattened, partitioned convolutional block is

then given by:
Fu(x

0) =
[
f̃11
(
x0
11

)
, f̃12

(
x0
12

)
, . . . , f̃dd

(
x0
dd

)]
. (11)

The sparse structure of the flattened convolutional layers permits a significant reduction in size of
each flattened convolutional block. Exploiting this redundancy underpins our method.

Based on Lemma 3.2, we derive that the Lipschitz constant of Fu can be bounded above in terms of
the Lipschitz constants of {f̃ij}di,j=1 from (11). The result is formalised in the following theorem.

Theorem 4.1. Given a function F : Rn0×n0×c0 → Rnℓ×nℓ×cℓ characterising an ℓ-layer convolu-
tional block and its flattened, partitioned form given by (11). Then L(Fu) is bounded above by

L(Fu) ≤

(
d∑

i,j=1

L
(
f̃ij

)4) 1
4

. (12)

A proof is given in Appendix A.2 of the supplementary material. Theorem 4.1 provides us with a
sufficient condition for bounding the Lipschitz constant of a larger convolutional block above, in
terms of the Lipschitz constants of d2 smaller blocks obtained via partitioning. A key advantage is
that each L(f̃ij) can be computed in parallel, enabling efficient implementation in practice.

4.1.2 JOINT LAYER AND WIDTH-WISE PARTITIONING

To handle both deep and wide CNNs, we combine our convolutional partitioning with layer-wise
cutting. We incorporate Lemma 3.1 to express F as the composition of s subnetworks, characterised
by the set of ordered integers Cs = {I0, I1, . . . , Is−1, Is}, such that 0 = I1 < I1 < . . . < Is = ℓ,
where a pair of consecutive integers (Ik−1, Ik) denote the input and output layer respectively, of
the k-th subnetwork, for k ∈ {1, 2, . . . , s}. For instance, given an 8-layer convolutional block,
C3 = {0, 3, 5, 8} cuts the block into 3 subnetworks at layer 3 and layer 5, and (5, 8) corresponds
to the last subnetwork. Each subnetwork is partitioned into d2k smaller convolutional blocks via the
process outlined in Section 4.1.1. In this way we express F as the following composite function:

F
(
X0
)
= (Fs ◦ Fs−1 ◦ . . . F1)

(
X0
)
, (13)

where the k-th individual function is given as follows:

Fk

(
XIk−1

)
=


f
(k)
11

(
X

Ik−1

11

)
· · · f

(k)
1dk

(
X

Ik−1

1dk

)
...

. . .
...

f
(k)
dk1

(
X

Ik−1

dk1

)
· · · f

(k)
dkdk

(
X

Ik−1

dkdk

)
 . (14)

Here XIk−1 denotes the output and input of the (k − 1)-th and k-th subnetworks, respectively. The
function f

(k)
ij denotes the (i, j)-th convolutional block of the k-th subnetwork, for 1 ≤ i, j ≤ dk.

By flattening each individual function defined by (14), Fu can be expressed as follows:
Fu

(
x0
)
= (Fu

s ◦ Fu
s−1 ◦ . . . Fu

1 )
(
x0
)
, (15)

where, for k = 1, 2, . . . , s, we have:

Fu
k

(
xIk−1

)
=

[
f̃
(k)
11

(
x
Ik−1

11

)
, f̃

(k)
12

(
x
Ik−1

12

)
, . . . , f̃

(k)
dkdk

(
x
Ik−1

dkdk

)]
. (16)

By way of Lemma 3.1 and the fact that Theorem 4.1 is applicable to each subnetwork Fu
k , we are able

to bound the Lipschitz constant of Fu in terms of the Lipschitz constants of the smaller convolutional
blocks comprising each subnetwork. The result is formalised in the following corollary.
Corollary 4.2. Given a function F : Rn0×n0×c0 → Rnℓ×nℓ×cℓ characterising an ℓ-layer convolu-
tional block and its flattened, partitioned form Fu expressed as the composition of s subnetworks,
as defined by (15). Then L(Fu) is bounded above as follows:

L(Fu) ≤
s∏

k=1

(
dk∑

i,j=1

L
(
f̃
(k)
ij

)4) 1
4

. (17)

A proof is provided in Appendix A.3 of the supplementary material.
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4.1.3 DYNAMIC PARTITION SEARCH

Determining the optimal subnetwork decomposition Cs, the set of partition factors {dk}sk=1 and the

corresponding set of RICs
{
R

nℓk

dk

}s

k=1
, is non-trivial in general. Optimality here is defined as the

choice of the aforementioned parameters giving the tightest upper bound on L(Fu), while ensur-
ing that the Lipschitz estimation framework of choice does not exceed the available computational
resource for any of the subnetworks. We describe this by the following optimisation problem:

min
Cs,{dk}s

k=1,
{
R

nℓk
dk

}s

k=1

s∏
k=1

(
dk∑

i,j=1

L
(
f̃
(k)
ij

)4) 1
4

,

s.t. P
(
ALip, f̃

k
ij

)
≤ Pmax, for k = 1, 2, . . . , s, and i, j = 1, 2, . . . dk. (18)

Here P
(
ALip, f̃

k
ij

)
denotes the computational resource required by the Lipschitz estimation frame-

work ALip, to compute the Lipschitz constant of f̃k
ij . Pmax denotes the maximum available com-

puting power. It is practically infeasible to find the global optimal solution to (18), so we deploy a
dynamic search strategy aimed at balancing estimation accuracy and scalability. This involves: (1)
an empirical approximation of solution feasibility, (2) a reduction of the search space of RICs, and
(3) a dynamic backwards search to determine a joint layer and width-wise partition. We note that
these added relaxations give a Lipschitz upper-bound but not necessarily the global optimum. We
expand on each design feature below.

Feasibility Examination. The computing power required by LipSDP is predominantly determined
by the dimension of the square constraint matrix M, which we recall is equal to the sum of the input
and hidden neurons. Thus, we convert the constraint in (18) to the following constraint, which is
simpler and practically easier to examine:

max
i,j,k

N
(
f̃k
ij

)
≤ Nmax, (19)

where N(·) denotes the constraint dimension associated with the input network and Nmax the max-
imally allowed dimension. In practice, we can empirically estimate Nmax by performing multiple
simulations, whereby SDPs of increasing size are generated and the constraint dimension for which
computational bottlenecks are reached is recorded. Averaging over all such instances gives an esti-
mate of Nmax. In Appendix A.5.1, we discuss cheaper ways to obtain an estimation.

RIC Space Reduction. Enumerating all possible RICs of nℓ is computationally prohibitive as nℓ

increases (Eger, 2013). To reduce the search cost we impose the additional constraint whereby dif-
ferent orderings of the same composition are considered non-distinct. This is formally referred to
as a restricted integer partition (RIP) (Andrews & Eriksson, 2004). For example, given nℓ = 5 and
d = 2, the set of RICs of nℓ into two parts is {(1, 4), (2, 3), (3, 2), (4, 1)}, while the set of RIPs
is given by {(1, 4), (2, 3)}. We sort all RIPs lexicographically. For example, given nℓ = 8 and
d = 3 the lexicographically ordered set of RIPs is {(1, 1, 6), (1, 2, 5), (1, 3, 4), (2, 2, 4), (2, 3, 3)}.
Polynomial-time algorithms for computing integer compositions and restrictions are detailed in
Opdyke (2010); Vajnovszki (2013).

Backward Partition Search. As outlined in Section 4.1.1, we partition the original convolutional
block in a backwards manner, i.e., starting from the last layer, to ensure that the resulting subnet-
works {f̃k

ij}i,j,k do not have overlapping outputs, which is required to develop the result in Corol-
lary 4.2. When working with the LipSDP framework, networks require at least one hidden layer
(Theorem 1; Fazlyab et al. (2019)). Thus, we begin by considering the subnetwork indexed by
(ℓ−2, ℓ). We choose a suitable partition factor in an iterative manner, starting at 2 and incrementing
to nℓ if necessary. For a given value of d, we select a RIP of nℓ into d-parts following the lexico-
graphical order and check if (19) is satisfied. If the criterion is not met for any element in the RIP
set, we increment d and repeat the process. Otherwise, we choose the first element for which it is
satisfied and perform a backwards pass across the network using this RIP choice, considering the
subnetwork indexed by (ℓ − k, ℓ) for k ∈ {3, . . . , ℓ}. If the constraint is violated at layer k, then
(ℓ − k + 1, ℓ) forms the first subnetwork and the (ℓ − k + 1)-th layer is taken as the output of the
proceeding subnetwork. Repeating this process until the input layer, forms a collection of s sub-
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(a) Lipschitz estimations (b) solver times (c) subnetwork decompositions

Figure 1: Comparison of estimated Lipschitz constant 1(a) and solver time (seconds) 1(b) for toy
networks with varying channel size, as well as effects of the number and order of subnetworks 1(c).

networks, each comprised of smaller (flattened) convolutional blocks. This process1 is outlined in
Algorithm 1 in Appendix A. It prioritises finding a partition choice that does not violate the comput-
ing constraint, while the use of lexicographical order favours the selection of an RIP with a bigger
size difference among the parts. As we show in Section 5.2, this can potentially encourage a tighter
upper-bound.

4.2 SCALABILITY ANALYSIS

To establish an understanding of the effectiveness of the proposed DCP method in improving scal-
ability, we analyse sufficient conditions to achieve the best and worst-case reductions in time com-
plexity. This analysis is based on the per-iteration time complexity of classical interior-points meth-
ods, i.e. O(N3m + N2m2 + m3), where N and m denote the dimension of the linear matrix
inequality (LMI) and the number of equality constraints, respectively, in (5). Given a convolutional
block F : Rn0×n0×c0 → Rnℓ×nℓ×cℓ , m is equal to one and N =

∑ℓ−1
i=0 cin

2
i . The following

proposition informs of the best and worst-case reductions in time complexity.

Proposition 4.3. Given an ℓ-layer convolutional block F : Rn0×n0×c0 → Rnℓ×nℓ×cℓ and a d-part
RIP of nℓ, i.e. nℓ =

∑d
i=1 pi, we consider the largest block after the partition i.e., ρ∗ = maxdi=1 pi

and its associated constraint dimension N∗. Then we have the following cases:

I. Best-case. When d = nℓ and ρ∗ = 1 by direct consequence, it has(
N∗

N

)3

= O

(
1

n6
ℓ

)
, asnℓ →∞. (20)

II. Worst-case. When d = 2 with ρ∗ = ⌈nℓ

2 ⌉, it has(
N∗

N

)3

= O(1). (21)

Intuitively the best case reduction corresponds to the minimum possible size of the largest convo-
lutional block after partitioning, which is obtained by dividing the output layer into an nℓ × nℓ

grid. The worst-case reduction in time complexity corresponds to the maximum possible size of the
largest convolutional block after partitioning, resulting in a constant order speed-up. Further details
and proof of Proposition 4.3 can be found in Appendix A.4 of the supplementary material.

5 EXPERIMENTS

We conduct experiments to demonstrate the effectiveness of DCP method used in tandem with the
LipSDP-Neuron (Fazlyab et al., 2019) framework, which we refer to as DCP-LipSDP. We compare
against the naive estimation L =

∏l
i=1 ∥Wi∥2 (Szegedy et al., 2014), and the layer-wise accel-

eration method reviewed in Section 2, which we refer to as Layerwise-LipSDP. All experiments

1A link to the anonymised implementation can be found here: Click Link.
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Table 1: Lipschitz estimation and computing time for trained CNNs.

Neural Networks Naive Estimation DCP-LipSDP Estimation DCP-LipSDP Time in Sec.
CNN1-MNIST 91.31 65.84 864
CNN2-CIFAR10 3.73× 108 1.48× 106 445

were implemented in Python. We used the CVXPY (Diamond & Boyd, 2016) toolbox and MOSEK
(ApS, 2019) to formulate and solve the SDPs. All experiments used a 20-core CPU with 120GB
of RAM. Base on this setup, we estimated Nmax to be 1400. All subsequent subnetworks resulting
from DCP-LipSDP and Layerwise-LipSDP were constrained to be less than this value.

5.1 PERFORMANCE ANALYSIS

First, we evaluate the effectiveness of DCP-LipSDP to convolutional layers of increasing width,
using toy networks with random weights from the Kaiming distribution (He et al., 2015). We con-
structed a convolutional block with an input size 10 × 10 × 1 proceeded by 7 convolutional layers,
each with a filter size 2×2× c and stride 1, where c is the number of output channels. We increased
the width by varying c from 1 to 14 and enforced that the number of subnetworks resulting from
our method was the same as that from Layerwise-LipSDP, to highlight the effect of the proposed
convolutional partitioning. A partition factor of 2 was applied at each resulting subnetwork. The
Lipschitz estimations and solve times are shown in Figure 1(a) and Figure 1(b) respectively. We
observe that our method provides comparable Lipschitz estimations to Layerwise-LipSDP, anden-
hanced scalability evidenced by the reduced computation time. Specifically, we find an average
reduction in solve time of 55% from our method in comparison to Layerwise-LipSDP.

Following this, we examine larger CNNs trained on the MNIST (LeCun, 1998) and CIFAR-10
(Krizhevsky et al., 2009) datasets. CNN1 was trained on MNIST reaching a training accuracy of
99.7%, with a similar architecture to the CNN in Example 3 of (Gramlich et al., 2023). Specifically,
CNN1 has an input size of 28× 28× 1, followed by 2 convolutional layers each with a filter size of
5×5×5 and stride 1, proceeded by a fully-connected layers of size 50. This corresponds to a network
size of 784→ 2880→ 2000→ 50 after being flattened. CNN2 was trained on CIFAR10, reaching
a training accuracy of 70.6%. It has an input size of 32×32×3 proceeded by 5 convolutional layers
each with a filter size 2×2×5 and stride 1, followed by 2 fully-connected layers of sizes 50, 100 and
100. This corresponds to a network size of 3072 → 4500 → 3920 → 3380 → 2880 → 2420 →
50 → 100, after being flattened. These networks were too large for LipSDP, so we compared to
the naive estimation. The results are reported in Table 1. It can be seen that our method provides a
tighter Lipschitz upper-bound than naive estimation in all cases, computed within a reasonable time.
It is worth to mention that, after applying the DCP method, the largest problem size resulted from
the subnetworks of CNN1 is 1304 while 1220 of CNN2. Therefore, the overall computing time of
CNN2 is less, benefited from the parallel implementation, although it is actually a larger network.

5.2 DCP ANALYSIS

We perform further analysis for DCP using networks with random Kaiming weights.

Effect of Subnetwork Number and Order. It is theoretically possible that when applying
Lemma 3.1, a tighter Lipschitz upper-bound can be obtained by considering fewer subnetworks.
To analyse this phenomenon, we consider the model with 14 channels from Section 5.1 and vary
both the number and order of subnetworks, characterised by the set Cs. From Figure 1(c) we find
that increasing the number of subnetworks s, from 2 to 5, can generally result in a more conservative
Lipschitz upper-bound, thus a less accurate estimation. Changing the ordering for a given value of
s (indicated by different markers of the same colour in Figure 1(c)), in combination with the choice
of the partition factor, affects the maximum size of the largest convolutional block, which in turn
impacts the solver time.

Effect of Partition Factor. To examine the effects of the partition factor, we considered a 10-layer
convolutional block with an input size of 64×64×1, filter size 5×5×1 and stride 1. This corresponds
to an input dimension of 4096, a maximum hidden-layer width of 3600 and an output dimension of
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(a) Accuracy & scalability trade-
off for increasing values of d.

(b) Per-iteration accelera-
tion for increasing values of
d.

(c) Lipschitz estimations and
solver time (seconds) for differ-
ent 3-part partitions.

Figure 2: Effects of the partition factor d and chosen RIPs on accuracy and scalability.

576 when flattened. The results in Figure 2(a) indicate a tighter Lipschitz upper bound for smaller
values of d. All reported Lipschitz values were lower than the naive bound of 7.05. Additionally,
we considered a 2-layer convolutional block with input 28× 28× 1 and output 20× 20× 1 to verify
the order of the ratio of per-iteration time complexity as derived in Proposition 4.3. The results in
Figure 2(b) show a decrease in complexity as the partition factor d increases, suggesting the use of
larger values of d in the earlier layers where the output sizes tend to be larger, to improve scalability.

Effect of Chosen RIP Element. We examine how changing the choice of partition affects the
accuracy and scalability. We considered a 2-layer convolutional block with input 32 × 32 × 1 and
output 24 × 24 × 1, i.e. nℓ = 24, for a fixed partition factor of 3. We computed the RIP of 24
into 3-parts and selected 8 distinct partitions whereby the difference in size between the smallest
and largest part is decreasing. Figure 2(c) indicates that, in this case, maximising the difference in
size between the largest and smallest convolutional blocks, gives the tightest Lipschitz upper bound,
but is the least scalable. Our current implementation sorts all partitions in lexicographical order,
encouraging a larger size difference and a potentially more accurate estimation.

6 CONCLUSION AND FUTURE WORK

We have proposed a novel acceleration method to scale Lipschitz estimation to deep and wide CNNs.
The DCP method incorporates a joint layer and width-wise partitioning, to decompose a large con-
volutional block into independent smaller blocks, permitting parallel implementation. We have
proven a Lipschitz upper-bound in terms of the Lipschitz constants of the smaller blocks. We have
demonstrated the effectiveness of the proposed method by experimenting with the LipSDP-Neuron
framework, though our method is framework-invariant and can be used in conjunction with any es-
timation method. We have observed empirically that the reduction of the number of subnetworks, a
smaller partition factor and increasing the size difference between the largest and smallest convolu-
tional block, can result in a tighter Lipschitz upper-bound but is less scalable.

In general, solving (18) is a challenging problem due to the computational cost of evaluating the ob-
jective function as well as the identification and the size of the feasible set. Hitherto, we have relaxed
it to a search problem, prioritising the constraint feasibility while weakly addressing the minimisa-
tion of the Lipschitz upper-bound through the lexicographical ordering of the RIPs. In the future,
we will continue to research more effective ways to approximate and solve (18), and to address the
accuracy-scalability trade-off. We will also attempt to provide theoretical guarantees of the tightness
of the bound. Furthermore, we aim to explore the application of DCP to a wider range of network
architectures. Of particular interest is the application to networks that encapsulate convolutional
blocks, e.g. function compositions of the form: g ◦ Conv(·). Through leveraging Lemma 3.1, DCP
can be applied to accelerate the Lipschitz estimation for the convolutional block Conv(·), while the
Lipschitz constant of g can be estimated separately. Examples include architectures incorporating
pooling layers (Pauli et al., 2023) and skip connections (Araujo et al., 2023), both formulated via
SDP-based frameworks. So far we have achieved increased acceleration by exploiting network spar-
sity. In the future, we will investigate other acceleration strategies for scaling Lipschitz estimation
to a wider range of network structures, such as self-attention (Kim et al., 2021) and equilibrium
networks (Revay et al., 2020).
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