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Abstract

Contrastive Representation Learning (CRL) has
achieved impressive success in various domains
in recent years. Nevertheless, the theoretical un-
derstanding of the generalization behavior of CRL
has remained limited. Moreover, to the best of our
knowledge, the current literature only analyzes
generalization bounds under the assumption that
the data tuples used for contrastive learning are
independently and identically distributed. How-
ever, in practice, we are often limited to a fixed
pool of reusable labeled data points, making it
inevitable to recycle data across tuples to create
sufficiently large datasets. Therefore, the tuple-
wise independence condition imposed by previous
works is invalidated. In this paper, we provide a
generalization analysis for the CRL framework
under non-i.i.d. settings that adheres to practice
more realistically. Drawing inspiration from the
literature on U-statistics, we derive generalization
bounds which indicate that the required number
of samples in each class scales as the logarithm
of the covering number of the class of learnable
feature representations associated to that class.
Next, we apply our main results to derive excess
risk bounds for common function classes such as
linear maps and neural networks.

1. Introduction

The performance of many machine learning (ML) algo-
rithms is often significantly influenced by the quality of data
representations. For example, in multi-class classification
problems, it is typically desirable for data points within the
same class to exhibit proximity, reflecting intra-class com-
pactness, while maintaining sufficient separation from data
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points of other classes, thereby ensuring inter-class separa-
bility under an appropriate distance metric. Motivated by
this intuition, CRL has been utilized in numerous ML tasks
as a pre-processing step to improve data representations.
Essentially, the goal of CRL is to learn a representation
function f : X — R? that maps data from an input space X
to a representation space (potentially of lower dimension).
The underlying strategy for representation learning is by
pulling together similar pairs of data points (x, %) while
pushing apart dissimilar pairs (z,z; ) via minimizing a cer-
tain contrastive loss function ¢. For instance, given an input
tuple (z, 2+, {z; }%_,) where k is the number of negative
samples, the logistic loss (otherwise known as N-pair loss
(Sohn, 2016)) £ : R¥ — R is defined as follows:

k
L(v) = log (1 + Z exp(—vl-)), W

i=1
where v; = f(x)" f(z") = f(2)" f(27).
The application of CRL spans a wide variety of ML disci-
plines, including computer vision (Chen et al., 2020; He
et al., 2019; Gidaris et al., 2018), graph representation learn-
ing (Hassani & Khasahmadi, 2020; Zhu et al., 2020; Velick-
ovic et al., 2019), natural language processing (Gao et al.,
2021; Zhang et al., 2021; Reimers & Gurevych, 2021) and
time series forecasting (Lee et al., 2024; Yang et al., 2022;
Niel et al., 2023; Eldele et al., 2021). The increasing em-
pirical success naturally inspires multiple theoretical works
(Arora et al., 2019; Lei et al., 2023; Hieu et al., 2024) ded-
icated to studying the generalization behavior of the CRL
framework. However, the analyses performed by previous
works have only explored the ¢.i.d. settings where input
tuples are independently and identically distributed (cf. Sec-
tion 3.2). In reality, training datasets are often limited to
fixed pools of labeled samples (Sohn, 2016; van den Oord
et al., 2019; Khosla et al., 2020). Therefore, in order to
create sufficiently large datasets for contrastive learning, it
is a standard practice to “recycle” data points across input
tuples (cf. Section 3.3). Effectively, it is possible for the
same data points to appear multiple times in different input
tuples, invalidating the independence criterion. As a result,
previous results on generalization bounds for CRL might not
comply with most practical use cases where data is limited.
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In this work, we propose a revised theoretical model and
establish generalization bounds for the CRL framework
under non-¢.i.d. conditions, adhering more closely to the
standard practice compared to existing results. Our key
contributions are listed as follows:

1. A revised theoretical framework for CRL: Previous
analyses performed for CRL mostly rely on the theo-
retical model proposed by Arora et al. (2019), which
requires an 3.7.d. assumption across input tuples used
for empirical risk minimization (ERM). However, we
argue that this approach does not abide by the set-ups
of most practical use cases. As an alternative, we pro-
pose a modified framework where ERM is performed
using a small subset of input tuples assembled from a
fixed pool of labeled data points (cf. Section 3.3).

2. Generalization bound for the empirical minimizer
of U-Statistics: We proposed a U-Statistics formula-
tion (cf. Equation 10) for the population unsupervised
risk (cf. Definition 3.1). We proved that, with high
probability and when the dataset is well-balanced, the
generalization gap between the performance of the
empirical U-Statistics minimizer and the Bayes risk

grows in the order of O(1/ VN ) where N scales like
O(N/|C|) for small values of k and O(N/k) when k is
large (cf. Theorem 5.1 and Theorem 5.2).

3. Generalization bound for the empirical minimizer
of a sub-sampled risk: We derive a generaliza-
tion bound for the empirical minimizer of the “sub-
sampled” risk, i.e., the average of some contrastive
loss evaluated over a small subset of non-:.i.d. tuples
(cf. Equation 7). We prove that, with high probability,
the gap between the performance of the empirical sub-
sampled risk minimizer and the Bayes risk scales in the

order of O(1/ VN +1 /M) where M is the number
of tuples subsampled for training.

4. Applications of the theoretical results: We apply
our results to obtain bounds for common classes of
representation functions such as linear maps and deep
neural networks.

2. Related Work

Empirical minimization of U-Statistics: U-Statistics were
first introduced by Hoeffding (1948) as a class of statistics to
estimate parameters via the use of symmetric kernels. The
concentration properties of U-Statistics was later rigorously
studied by Gine & Zinn (1984) and Arcones & Gine (1993).
These works proposed concentration inequalities and limit
theorems for U-Processes, setting an concrete foundation
for subsequent works in statistical learning theory. In gen-
eralization analyses where loss functions rely on two or

more samples in the dataset, formulations of U-Statistics
are often used to create unbiased estimators for the popu-
lation risk. In such cases, the empirical risk minimizer is
obtained via the minimization of U-Statistics. Techniques
in U-Statistics have been applied in various analyses for
generalization performance of common ML tasks, including
bipartite ranking (Clémencgon et al., 2008), metric and simi-
larity learning (Cao et al., 2016; Jin et al., 2009), pairwise
learning (Lei et al., 2020; 2018), clustering (Li & Liu, 2021)
and semi-supervised learning (HaoChen et al., 2021).

Theoretical analysis of CRL: In the seminal work of Arora
et al. (2019), the foundation for the theoretical understand-
ing of the CRL framework was initially established. Their
main contributions are threefold: (1) A formal definition of
the population unsupervised risk and derivation of bounds
on the excess unsupervised risk, (2) a rigorous analysis
of the class-collision phenomenon, which shows how the
repetition of anchor-positive classes among the negatives
can distort learning and finally, (3) an analysis of the rela-
tionship between the unsupervised risk and the downstream
classification risk. While their theoretical contribution has
set a strong foundation and has been rigorously utilized by
further works, the bounds derived by Arora et al. (2019) are
limited by a strong dependency of O(+/k) on the number of
negative samples. This dependency was later improved to at
most logarithmic by Lei et al. (2023) using more advanced
complexity measures like worst-case Rademacher complex-
ity, fat-shattering dimension and arguments related to £*°-
Lipschitzness of loss functions inspired by prior works in
multi-class classification (Lei et al., 2019; Wu et al., 2021;
Mustafa et al., 2021). The theoretical model designed by
Arora et al. (2019) was later extended to results in other
regimes of CRL such as adversarial contrastive learning
(Zou & Liu, 2023; Ghanooni et al., 2024), PAC-Bayes anal-
ysis (Nozawa et al., 2020), de-biased CRL (Chuang et al.,
2020) and CRL using DNNs (Alves & Ledent, 2024; Hieu
et al., 2024). Notably, we emphasize that all of the afore-
mentioned works target learning setups with ¢.7.d. tuples.

Other lines of research in CRL: Other directions in the
theoretical analysis of CRL have also been explored. For
example, in Wang et al. (2022), the effect of data augmen-
tation was studied using augmentation overlap theory. The
authors suggested that aggressive augmentation can implic-
itly enhance intra-class compactness. In Huang et al. (2023),
the effect of unsupervised risk on downstream classification
was investigated by deriving bounds for the error rate of
nearest-neighbor classifiers built on top of learned represen-
tations using misalignment probability. In Bao et al. (2022),
the authors showed that the unsupervised risk is a surrogate
of the supervised risk by deriving upper and lower bounds
for the surrogate gap, which is the difference between the
supervised and unsupervised risk. Further efforts for under-
standing the effect of representation quality to downstream
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tasks have also been made (Arora et al., 2019; Chuang
et al., 2020; Li & Liu, 2021; Bao et al., 2022). Crucially,
these works primarily focus on studying the influence of the
population unsupervised contrastive risk on the population
downstream classification risk. On the other hand, the anal-
ysis in this paper targets generalization bounds on excess
contrastive risk. Aside from the works mentioned above,
another line of research studies the effect of negative sam-
pling on the supervised downstream task. For example, in
Ash et al. (2022), the authors show that while increasing the
number of negatives can be initially advantageous, too many
negative samples can potentially hinder the performance of
downstream classifiers. The work of Awasthi et al. (2022)
builds upon this by showing that the decline of downstream
performance as number of negatives increases can be theo-
retically alleviated under certain situations (e.g., when class
distribution is balanced). Despite earlier efforts, empirical
experiments tend to suggest that amount of negatives usu-
ally correlates positively with downstream performance. In
Nozawa & Sato (2021), the authors proposed a novel frame-
work based on the coupon collector’s problem that bridges
the gap between theory and practice, showing that as the
number of negatives increases, the unsupervised risk is more
likely to contain the supervised risk. We also note that all of
the results in this direction concern population-level risks.

3. Problem Formulation
3.1. Problem Set-up

We denote X as the space of input vectors and C be the finite
set of all classes. Suppose that p is the discrete probability
measure over C (for all ¢ € C, p(c) denotes that occurrence
probability of class ¢). For any class ¢ € C, we denote D,
as the class-conditional distribution of input vectors over X
given that the vectors belong to class c. On the other hand,
we define D, as the distribution of input vectors in X' given
that the vectors do not belong to class c. Specifically, D, is
defined as follows:

_ 2)D,(x
mw=ZM?f% -

Ve X. )

Basically, for x € X, D.(x) quantifies the probability that
does not belong to class c. Let F denote the class of repre-
sentation functions f : X — R?for d > 1. For f € F, we
denote Ly, (f) as the (population) unsupervised risk of f (cf.
Definition 3.1). In this work, we are interested in bounding
the excess risk of the form L, (f) —inf fe 7 Lun(f) where f
is a minimizer of an empirical risk assessed on some dataset.

3.2. A Theoretical Framework under IID Settings

We start by revisiting the key definitions from the theoretical
framework proposed by Arora et al. (2019).

Definition 3.1 (Unsupervised Risk). Let ¢ : RF — R,
be an unsupervised loss function (E.g., Hinge or Logistic
losses) where k is the number of negative examples and
f : & — R? be a representation function. The population
unsupervised risk for f is defined as follows:

Lun(f) = 3)
k
52l oo} )]
x;~'DiC
Lllﬂ(f‘c)

By the law of total expectation, we can decompose the
population unsupervised risk as the weighted sum of the
class-specific unsupervised risks Ly (f|c) as follows:

Lun(f) = Z p(c)Lun(fle). “
ceC
Remark 3.2. We note that the risk in Definition 3.1 is
slightly different from Arora et al. (2019). In the latter,
the negatives are drawn from D = Y} _. p(c)D,, which
allows the positive class to re-appear among the negatives,
effectively allowing class-collision.

A natural choice of algorithm for determining a representa-
tion function with low expected unsupervised risk is through
empirical risk minimization (ERM). In the analyses done
by Arora et al. (2019); Lei et al. (2023); Hieu et al. (2024),
the empirical risk minimizer is identified via an ERM ap-

proach. Specifically, let S = {(Xj, X;_, X1, ’Xj_k)} )

j=1
be a dataset of n independently and identically (i.7.d.) drawn
input tuples from an unknown distribution. The empirical
risk minimizer is then defined as f,, = argmin rex Lyn (f)

where I:un(f) is defined as:

k

Bun(h) = 2 S ({100 10 -r050] ) ).

i=1

In line with most of the learning theory literature, the gener-
alization gap Ly, ( fn) —inf fer Lun(f) can be conveniently
upper bounded via controlling the Rademacher complexity
of the loss class £ o F:

LoF = {(X,X+7XI,...7XI;)H

k (6)

(({ream e = se)]} ) i FeF )
However, Rademacher complexity based bounds, which
arise from the symmetrization trick, are only immediately
applicable under the assumption that the tuples in S are
all independent. Under regimes where tuples are sampled
in a way that violates this assumption, more nuanced ap-
proaches are required before sample complexity bounds can
be derived.
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3.3. A Revised Framework under non-IID Settings

An issue with the framework described in Section 3.2 is that
S is defined as a dataset sampled .i.d. from a distribution
of tuples. However, in practice, we do not observe whole
input tuples independently due to the cost of data collection.
Instead, training of representation functions is often limited

N
to a fixed pool S = {(xj,yj)} c X x C of input vec-
=1

tors and their corresponding labels, which are drawn i.i.d.
from a joint distribution over X and C (for each c € C, we
denote NI as the number of samples that belong to class ¢,
ie., Y .cc NI = N). One possible alternative is to evaluate
the empirical risk over all possible tuples that one can create
from the dataset S. Unfortunately, this approach is computa-
tionally expensive because as the number of labeled samples
N increases, the number of all possible tuples grows in the
order of 0[2c€c(Nj)2 C(N - Nj)k] !, Alternatively, a
more reasonable approach is to use only a small subset of
valid tuples. Let 75,1, denote the subset of tuples that we use
for training, the procedure for sub-sampling input tuples to
train representation functions can be described as follows:

1. For 1 < j < M, collect M tuples of the form

o - .
(xj,xj X1y 7xjk,) as follows:

(i) Select a class ¢ € C with probability p(c) = NNj .

(ii) Select x;,x; uniformly (without replacement)
among samples belonging to class c¢. We call
these two data points the “anchor-positive pair”.

(iii) Select x5, ... X uniformly (without replace-
ment) among samples belonging to classes other
than c. We call these “negative samples”.

(iv) Add the tuple (x;, x}", > ST ,xj_k) t0 Tsub-

2. Finally, repeat the above steps M times independently.

Using the collected set of tuples 7Ty, described above, the
empirical risk evaluated for every representation function
f € F is computed as:

L(f; Toup) = @
13 T[ it SN
M;E({f(xj) [f(xj)_f(xji)]}':1)’

7

which we refer to as “sub-sampled empirical risk” since it
is only evaluated on a small subset of valid tuples. In this
revised framework, we are interested in the performance of
the Asub-sampled empirical risk minimizer, which we define

as fsub = argminfef E(fa 7;ub)'

"For a given class ¢, a valid tuple is chosen by picking two
samples from class ¢ and k£ samples from other classes. Hence,
the total number of tuples possibly formed for each class is

2(%) (V) e o[ (N9 (N - N,

4. Proof Strategy

As mentioned in the previous section, we are interested in
how well the empirical sub-sampled risk minimizer ]?Sub
generalizes to testing data. In particular, we are concerned
with bounding the excess risk Lun (faun) — inf jez Lun (f).
However, as noted in Section 3.3, this is not immediately
straightforward because the set of sub-sampled tuples gy,
are not ¢.7.d. Therefore, we first formulate an (asymptoti-
cally) unbiased estimator (U-Statistics), denoted as Un (f),
for the population unsupervised risk Ly, (f). Then, we can
decompose the generalization gap as (cf. Theorem E.1):

%[Lun(fsub) - }Iel‘f}'_Lun(f)] <
sup | £(f; Touv) = Us ()] + sup U (£) = Lun(F)|
feF feF

As aresult, the task of bounding Ly, ( fsub) —inf per Lyn(f)
translates naturally to the sub-tasks of deriving uniform
bounds for the absolute deviations between:

1. The sub-sampled empirical risk (Eqn. 7) and the for-
mulation of U-Statistics (Eqn. 10), and

2. The U-Statistics (Eqn. 10) and the population unsuper-
vised risk (Eqn. 3).

In the following sections, we will provide general strate-
gies to tackle both types of deviations. Our proof will rely
heavily on the U-Statistics decoupling technique (Arcones
& Gine, 1993; de la Peiia & Giné, 1998).

4.1. Bounding the U-Statistics to Population
Unsupervised Risk Deviation

Overview of U-Statistics: Given S = {xy,...,x,} drawn
1.4.d. from a distribution P over an input space X. Let
h : X™ — R be a symmetric kernel in its arguments,
ie., h(z1,...,2y) is unchanged for any permutations of
Z1,...,Zm € X. Then, a natural estimate for the parameter
0 = Ex, . x, ~Pm[h(X1,...,Xm)] can be the average of
the kernel h over all possible m-tuples (selected without
replacement) that can be formed from S’ (which is the one-
sample U-Statistics of order m for the kernel k), denoted
U, (h). Formally:

Un(h) = (711) 4 Z

m <7irrzecnz [71]

h(Xil, . 7Xim)7 (8)

where C,,,[n] denotes the set of m-tuples selected (without
replacement) from [n] without order (m-combinations). We
call U, (h) an one-sample U-Statistics of order m. When
the kernel & is asymmetric with respect to the arguments,
the average is taken over the set of m-tuples selected from
[n] with order instead (m-permutations).
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Remark 4.1. U, (h) is indeed an unbiased estimator for
6. However, since the formula averages over a set of non-
i.1.d. tuples, it is impossible to analyze the concentration
properties of U,, (h) without applying further processing.

Our proof relies on the decoupling technique of U-Statistics
discussed in de la Pefia & Giné (1998). Specifically, the
goal is to decouple the U-Statistics as an average of mean
over independent “blocks” of samples so that we can apply
concentration inequalities (E.g. McDiarmid (1989)). Let
q = |n/m] (which represents the maximum number of
i.3.d. tuples possibly created from S), the U-Statistics given
in Eqn. (8) can be re-formulated as follows:

1
Ual) =53 3 VelS),
. ©)

Z h(xﬂ’[miferl]a s 7X7r[mi])7

1
i=1

and S[n] = {77 : [n] = [n]] mis bijective} denotes the set
of all possible permutations of the indices [n] = {1,...,n}.

The techniques related to decoupling U-Statistics has been
applied for bipartite ranking in Clémencon et al. (2008),
which involves one-sample U-Statistics with order 2. Even
though the authors pointed out that their results can be nat-
urally extended to m-order U-Statistics for any m > 2, it
is not as direct to formulate a (k + 2)-order U-Statistics in
the case of CRL. Specifically, in Clémencon et al. (2008),
the selection of valid tuples is straightforward by choosing
(without replacement) m elements arbitrarily from a single
random sample .S. On the other hand, the problem setup of
CRL involves |C| random samples with random sizes. Fur-
thermore, given an arbitrary (k + 2)-tuple selected (without
replacement) from S, the validity of the tuple is restricted
by the classes of its elements (as described in Section 3.3).

Therefore, instead of formulating a (k+2)-order U-Statistics
to estimate Ly, (f) directly, our approach is to formulate
multiple class-wise U-Statistics Un(f]|c) to estimate each
class-conditional risk L, (f|c) separately then combine the
estimations. Specifically, Let 7 be the set of all possible
valid tuples (not necessarily ¢.2.d., repetition of data points
across tuples allowed) that can be formed from the dataset S.
Additionally, denote 7" = | J .. 7 where for each c € C, 7.
denotes the set of valid tuples whose anchor-positive pairs

belong to class c. Thus, |T.| = 2(1\12:) (kaN:). The core
strategy of our proofs relies on the following U-Statistics

formulation for the population unsupervised risk Ly, (f):

() = 3 N fle)
= c),
A (10)

Un(fle) = 1{Ne = 1}Un(flc)

where N, = min(|[NF/2|,|(N — NI)/k|) and Ux(f|c)
denotes the U-Statistics that estimates the conditional unsu-
pervised risk Ly, (f|c), i.e., the average of the contrastive
loss £ over valid tuples in 7. (cf. Appendix D, Eqn. 27). The
indicator involving N specifies whether there are enough
samples to form at least one tuple where the anchor-positive
pair belongs to class c. When N. = 0 (i.e., 7. = &), the
dataset S lacks either anchor-positive pairs or negative sam-
ples. In this case, we set the estimation for Ly, (f|c) to 0,
indicating the absence of information about the unsuper-
vised risk conditioned on class c.

4.2. Bounding the Sub-sampled Empirical Risk to
U-Statistics Deviation

Suppose that the dataset S is given. The sampling procedure
described earlier in Section 3.3 is equivalent to selecting M
elements (with replacement) from the pool of all possible
tuples 7 such that the probability of selecting a tuple whose
anchor-positive pair belongs to class ¢ € C is proportional to

+
I\f\f - the unbiased estimator of the class probability p.. In
other words, it is equivalent to drawing M tuples indepen-
dently from the discrete distribution v over T such that for

any tuple T" € T, the mass assigned to 7" via v is:

_ Nf/N
I7el

v(T) if TeT,. (11)

LetC = {c eC: N, > 1}, which denotes the subset of
classes such that V¢ e C. ,Te # . Then, we have:

(£ Tnls] = 3 S ustsle.
ceC
Un(f)

Teup~vM

(12)

In other words, given a fixed draw of the labeled dataset
S, the sub-sampled empirical risk, which is evaluated on a
subset of tuples drawn i.7.d. from the distribution v, concen-
trates to the proposed U-Statistics formulation in Eqn. (10).
Hence, we can make use of classic results in learning theory
on Rademacher complexity bounds (cf. Proposition F.3) to
obtain high probability results on the excess risk of fsub,
conditionally given the draw of the labeled dataset S>.

5. Main Results

N
Notations and Settings: Let S = {(xj, yj)} be the
j=1

labeled dataset and 7 be the set of all possible valid tuples
that can be formed from S. Additionally, for each ¢ € C:

2The conditioning can be easily eliminated using the tower rule
(cf. Theorem E.1).
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Figure 1. An illustration of the tuples selection process for 7.9,
In this case, there are excess samples from S. that are left unused.
However, the other way around where there are excess samples
from S. is also possible (E.g. for very large values of k).

* Let S; © & the be set of data points belonging to class
c(ie., S =J.c Se). Also, we denote S, = S\S...

e Let N} = [S.| and N = |S.| = N — N}. Also, we
define N, = min(|NZ /2], [N /&]).

* Let 71 be the set of independent tuples selected in
a “greedy” way such that each tuple’s anchor-positive
pair belongs to class c. Specifically, we select tuples
for 7114 by matching 2-element disjoint blocks from
S. and k-element disjoint blocks from S, until one of

the two sets runs out of blocks to select (cf. Figure 1).

Therefore, when 7114 = ¢, |[THd| = N

Furthermore, for any subset of tuples 7' < 7, we denote
R (¢ o F) as the empirical Rademacher complexity of the
loss class £ o F (Eqn. (6)) restricted to 7. Formally, if we

denote 7' = {(Xj,x;_yxj_lg e ’Xj_k)} o ve have:
ik f

where f(x;), f(xj) f(xj;) are denoted as f],f , fj; for
all 1 <

j<nl<i< k for notational brevity and we
denote 3, = { Olye-eyO } as the vector of independent

Rademacher variables. Additionally, when T = &, we

define Ry (£ o F) = 0 for completeness.

Assumption: We assume that for all classes ¢ € C, whenever
7;“(1 # & (i.e., N, = 1), we can bound the empirical
Rademacher complexity Ryiia (£ o F) of the loss class as:

K]",c
vN.’

where Kz . is an expression that depends on both the
function class F and the class c itself. For example, by
the Dudley entropy integral (Theorem F.5), we can bound
%T.,d (£ o F) with K r . as an expression that involves the
Lsy-covering number (cf. Definition D.11) of £ o F restricted
to the subset of independent tuples 71d.

Roria(Lo F) < (14)

In the results that follow, for a given representatlon function
f € F, we denote ERun(f) = Lun(f) inf fe 7 Lun (f) for
notational brevity (short for “excess risk”).

5.1. Generalization Bound for Empirical Minimizer of
U-Statistics

Theorem 5.1 (cf. Theorem D.10). Let F be a class of rep-
resentation functions and ¢ : R¥ — [0, M] be a bounded

contrastive loss. Let fy = argminger Un(f). Then, for
any ¢ € (0, 1), with probability of at least 1 — §:

Kr, In|C|/é
S (02 4 M “'N'/ ] (1)

ceC \/i

where N = N min (mincec ple) 1-maxcec p(c)>
2 % :

ERun(fu) < O

To understand the intuition of Theorem 5.1, let us assume
that the underlying distribution over the labels set C is per-
fectly balanced, meaning p(c) = |C|~!,Vc € C. Under this
assumption, we have N = N max[2|C|, k|C|/(|C] — 1)]*

which means that the bound scales as O(1/|C|/N) for
k < 2|C] — 2 and as O(1/k/N) for larger values of k.
In other words, for a given desired generalization gap, the
sample complexity of the model exhibits a square-root de-
pendency on either the number of classes or on the number
of negative samples. For example, if we consider a class
of neural networks with WV parameters in total, the sample
complexity to reach a desired generalization gap of € > 0

1) % (cf. Table 1 or Theorem

D.17) for large values of k£ and when the distribution over C
is perfectly balanced.

scales in the order of

At first glance, the bound may seem worse than that of
previous works by Lei et al. (2023) and Hieu et al. (2024)
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Table 1. Summary of generalization bounds for fu and fsub when the class of representation functions are linear maps and neural networks.
The O notation hides poly-logarithmic terms of all relevant quantities. For linear maps, N, M, n, s, a, b, k and d are hidden. For neural

networks, , N, L, b, {£;}, and {s;}}, are hidden.

f Function Classes Generalization Bounds ERun(f) Relevant Results

Ju Fiin (Eqn. (17)) o % + M % Theorem D.15
N

fu Fiv (Eqn. (18)) o M\/‘@Q + My |§|/6 Theorem D.17
N

fob Fim (Eqn. (17)) O nsab2(\/% + ﬁ) +M< mle hﬁ/é) Theorem E.2
J?sub FA (Eqn. (18)) O MWz (\/% +4/ ﬁ) + M( % + m;{/&) Theorem E.3

where one of the primary strengths of their results is the
logarithmic dependency on the tuples size k. However, we
note that the results in the above references express sample
complexity in terms of fuples rather than the number of
labeled data points. Specifically, their generalization bounds
scale in the order of O(1/4/n) where n is the number of
tuples drawn ¢.7.d. from an unknown distribution of tuples.
In other words, there are N = nk labeled data points in total.
Therefore, under the regime where the label distribution is
perfectly balanced and there is a large number of negative
samples, our bound behaves similarly as the bounds derived
by prior works.

One key drawback of the bound in Theorem 5.1 is its square-
root dependency on the number of classes |C| when k is
small. This arises from analyzing the concentration of each
U-Statistics Un ( f|¢) around their corresponding conditional
unsupervised risk L, (f|c) independently. As a result, the
sample size required to achieve a desired generalization gap
has to be large enough such that for all ¢ € C, the deviations
|Ux(flc) — Lun(f|c)| are small even though the probabili-
ties for most classes are low (especially for large number of
classes |C|), making their contribution to the overall unsuper-
vised risk Ly, (f) negligible. Consequently, the minimum
occurrence probability min.cc p(c) is introduced into the
sample complexity as a result of minimizing the deviations
between Un (f|c) and Ly, (f|c) across all classes equally.

We conjecture that there is a certain U-Statistics formulation
that accounts for the concentration of all classes at once.
However, we note that this is a major technical challenge as
it is non-trivial to formulate a (k + 2)-order U-Statistics to
estimate L, (f) directly. This is primarily due to the fact
that a randomly selected (k + 2)-tuple from the pool of la-
beled data points S is not automatically a valid input for the
loss function ¢, making it complicated to apply techniques
in de la Pefia & Giné (1998) and Clémencon et al. (2008).

5.2. Generalization Bound for Empirical Sub-sampled
Risk Minimizer

Theorem 5.2 (cf. Theorem E.1). Let F be a class of rep-
resentation functions and ¢ : R¥ — [0, M] be a bounded

contrastive loss. Let fo1, = argminger 2( £ Tsub)- Then,
Sorany 6 € (0,1), with probability of at least 1 — §:

S o) B2+ Fir (00 F) (16)

ceC \/N

W15 ln|§|/5]’

ERun (ﬁub) < o

+M X

mincec p(c) 1—maxcec p(c)
2 k :

where N = N min ,

From the above theorem, there is a striking resemblance to
the result in theorem 5.1 except there is an additional cost of

order O (1 / %) Although there is an additional empiri-

cal Rademacher complexity 5%7— . (£ 0 F) appearing in the
bound, by Theorem FE.5, we know that it also scales in the
order of O(1/+/M). The implication of this result is straight-
forward: under the sub-sampling regime, when the number
of sub-sampled tuples is large, the performance discrepancy
between the empirical sub-sampled risk minimizer fsub and
fu is negligible. As a result, under circumstances when the
amount of labeled data points available is too large, making
it computationally impossible to train on all valid tuples,
the training of representation functions can be improved by
simply increasing the number of (non-independent) tuples.
We further corroborate this intuition with a numerical exper-
iment (Figure 2), which shows that the performance of the
sub-sampled empirical risk minimizer tends to the perfor-
mance of the full U-Statistics minimizer as the number of
sub-sampled tuples M increases.
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Figure 2. Summary of results for experiments with the MNIST dataset. On the left, we have the results for n = 10000. On the right, we
have the results for n = 100 as well as the additional result for the all-tuples regime.
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Figure 3. Summary of results for synthetic data experiments on the
relationship between |C|, k and the sample complexity.

5.3. Generalization Bounds for Common Classes of
Representation Functions

Suppose that the contrastive loss function £ : R* — [0, M]
is ¢*-Lipschitz with constant n > 0. Specifically, for all
v,v € R* |{(v) — ((v')] < n|v — v/|o. Also, suppose
that sup,cs [x]2 < b with probability one (with respect to
the draw of dataset S) for some b € R . In this section, we
apply our main theorems to derive generalization bounds
for common classes of representation functions such as
linear maps and neural networks. We provide a summary
of our main results in Table 1 and a brief description of the
considered function classes below.

Linear Functions: For a matrix A € R™*¢ we define the
d .

| - |2,1 norm as [|All21 = >3;_; [A. ]2, ie., the sum of

column Euclidean norms and || - ||, as the spectral norm. We

define the class of linear functions as follows:

Flin = {:c — Az :A e R&™,
(I7)
|AT|

21 < a,[[A], < s},

Neural Networks: Let L > 1 and dy, ds, ..., dr be known
positive integers representing layer widths. Furthermore, let
W= Zlel d;, which is the total number of parameters in
the neural networks. For 1 < 1 < L, we define the sets
of matrices B; = {A(l) € Rb-—1xdi . | A0, < sl} as the

layer-wise parameter spaces where {s;} lel is a sequence of
known real positive numbers. Let {¢; : R4 — R%}£  bea
sequence of activation functions that are fixed a-priori which
are /2-Lipschitz with constants {fl}le, ie., Vx,x € R%
and 1 <1 < L, we have |¢;(x) — o (%) < &lx — x'|2.
Then, we are interested in the class of neural networks F:
defined as follows:

FA =FroFp 10---0F, (18)
where F; = {x — o (A%) AL e Bl},w e [L].

6. Experiments

In this section, we describe the numerical experiments on
both synthetic and open sourced datasets to empirically
verify our main results. Specifically, we aim to provide em-
pirical evidence to corroborate three hypotheses. Firstly, the
sample complexity, i.e., the number of labeled examples re-
quired to reach a desirable performance, for the U-Statistics
minimizer corresponds (linearly) to the number of negative
samples and the number of classes. Secondly, as the num-
ber of sub-sampled tuples increases, the performance of the
sub-sampled empirical risk minimizer approaches that of
the full U-Statistics minimizer. Finally, the performance
of models trained on tuples with recycled data (non-i.:.d.
tuples) can outperform both models trained on independent
tuples and models trained directly with the non-contrastive
cross-entropy loss. This observation is in line with the ex-
isting literature (Khosla et al., 2020). In fact, the benefit
of recycling data is most present when there are too few
labeled data points to construct disjoint tuples. For all ex-
periments detailed below, we fix F as a class of shallow
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neural networks (with a fixed number of layers L = 2). We
summarize our experiment results in Figure 3 and Figure 2.

6.1. Performance of f5,1, as M Increases

In this section, we describe two experiments conducted on
the MNIST dataset. Firstly, we sample from the original
dataset n independent (disjoint) valid tuples. Then, for each
of the following regimes, we train the neural networks for 5
random weights initializations:

* Independent tuples: Using only the selected n inde-
pendent tuples as the training dataset.

* Sub-sampled tuples: Among all the n(k + 2) labeled
data points from the previously selected n disjoint tu-
ples, we sub-sample M tuples and use them as the
training dataset.

For each regime and random weight initialization, we also
train and evaluate a linear classifier on top of the learned
representations extracted from the original MNIST dataset.
We conduct the experiments with n = 100 and n = 10000.
For the case of n = 100, we also compare the above regimes
with the performance of the neural networks when trained
on all possible valid tuples. The results of both experiments
are summarized in Figure 2. For both cases, the results show
that the sub-sampling regime helps with the performance for
both supervised and unsupervised tasks. Noticeably, when
the number of labeled examples (n = 100) is small, the re-
sult of reusing samples across tuples outperforms the i.:.d.
regime extremely fast, which cements the practical validity
of the learning setting considered. Moreover, for n = 100,
we observe that the performance of the sub-sampling regime
closely approximates the all-tuples regime. This observa-
tion is in line with the implications from Theorem 5.2. Fur-
thermore, the model trained on sub-sampled tuples quickly
outperforms the fully independent tuples regime as M in-
creases, highlighting the benefit of recycling data when the
amount of labeled examples is limited.

6.2. Correlation Between Sample Complexity and
Values of |C|, k

Let us denote N, as the minimum number of samples re-
quired to achieve a desired generalization gap € > 0. We
conducted two ablation studies to investigate the correlation
between N, and different values of |C| and k.

Initialization: For each value of N, |C| and k, we gener-
ate the sample sizes {N1}.cc ~ Multinom(N, {|C|*}.ec)
(assuming perfectly balanced classes condition) and random
Gaussian centers g. € R'2® corresponding to each class
c € C. Then, for each class c € C, we generate the samples
from that class as S, ~ N (g, 02)N¢ with a fixed standard
deviation of ¢ = 0.1.

Training: We create 5 random generations of Gaussian
datasets for each configuration of |C| and k values. Then,
for each configuration and dataset, we find the sample com-
plexity N, corresponding to a desired gap € using a binary
search approach within a fixed values range of N. For each
search, we train the neural network with M = N2 sub-
sampled tuples so that the performance is approximately
close to that of fu. Fixing € = 0.5, we conduct the ablation
studies with the following values ranges of |C| and k:

¢ Ablation study 1: Fix k£ = 3 and increase the values
of |C| from 5 to 50 with an interval of 5.

* Ablation study 2: Fix |C| = 5 and increase the values
of k from 5 to 50 with an interval of 5.

For each configuration, we average the sample complexities
over the random dataset generations and plot the results in
Figure 3. For both experiments, the sample complexities
display linear relationships with values of k and |C|. These
observations are consistent with the result in Theorem 5.1.

7. Conclusion & Future Work

In this work, we derive generalization bounds for the CRL
framework when training is limited to a fixed pool of
reusable labeled examples. We provide two main results on
the excess risk bounds for the U-Statistics minimizer fu and
the empirical sub-sampled risk minimizer fg,,. We show
that under the assumption that the class distribution is per-
fectly balanced, our results for the U-Statistics minimizer
behave similarly to the previous analyses conducted for
the 7.7.d. regime. Furthermore, we prove both theoretically
and empirically that under the sub-sampling regime, as the
number of sub-sampled tuples increases, the performance
of fAsub is approximately close to ]?u- Thereby, verifying
the validity of the common practice of recycling labeled
samples across input tuples. Finally, we apply our main
results to derive specific generalization bounds for common
function classes such as linear maps and neural networks.

In our experiments, we demonstrate the advantages of recy-
cling samples in different tuples, and confirm the superiority
of supervised contrastive learning over direct training with
the cross-entropy loss.

We also note that our excess risk bounds possess a depen-
dency of O(1/,/pmin) Where puiy, is the probability associ-
ated to the rarest class. This can potentially be overly pes-
simistic in cases when there are a lot of small categories in
the true class distribution. This dependency arises because
all the class-wise U-Statistics Un (f|c) need to concentrate
uniformly. Therefore, a possible future direction is to im-
prove this dependence by designing an estimation strategy
which captures joint concentration across small classes.
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Impact Statement

This work is primarily theoretical and we cannot foresee
any potential implications that need to be addressed.
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Supplementary Materials : Generalization Analysis for Supervised Contrastive
Representation Learning under Non-IID Settings

A. Table of Notations

Table 2: Table of notations for quick reference.

Notation ‘ Description

Basic Setups
Let & be the input space and C be the finite set of labels endowed with the probability measure p.

N
LetS = {(xj, yj)} be a labeled dataset sampled ¢.7.d. from a distribution over X x C.
j=1

We fix a class of representation F, for every c € C, we have the following notations:

p(c) The probability mass assigned to class c, i.e., the occurrence probability of class c.

D, The distribution over X’ of data points belonging to class c.

D, The distribution over X of data points not belonging to class c.

Se The subset of S that contains instances of class ¢ € C.

S, The subset of S that contains instances not belonging to class ¢ € C. S, = S\S..

x\) / xgé) The i*" and j** elements of S, and S.., respectively.

fei) fzj The shortcuts for f (xl(.c)) and f (xf)) where f € F, respectively.

Nt Number of samples that belong to class c. We have N ~ Bin(N, p(c)).

N7 Number of samples that does not belong to class c. N = N — N7,

N. Number of possible 7.i.d. tuples with positive pairs in class c. N. = min(| N} /2], N7 /k]).

N, N, = max(1,N,).

Vo F (o F = {(x7 xt,x7,) E({f(x)T [f(x+) - f(x;)] };) fe ]-'} _ loss function class.
Combinatorics

[n] [n] ={1,2,...,n} where n € N.

S[n] The set of all permutations (shuffles) of the indices set [n].

Pon[n] The set of all permutations of m elements from the indices set [n].

Cm[n] The set of all combinations of m elements from the indices set [n].

Datasets & Auxiliary Datasets

13
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T The set of all possible valid tuples. 7 = | J .o 7e-

Te The set of all valid tuples whose anchor-positive pairs belong to ¢ € C (Eqn. (20)).

7iid The set of 4.4.d. tuples whose anchor-positive pairs belong to ¢ € C (Eqn. (21)).

7~'CiiCl The set of all vectors including anchor, positive and negative samples from 714 (Eqn. (22)).
Teub The subset of tuples sampled i.7.d. from distribution v over 7 (Eqn. (52)).

v The discrete distribution over 7 such that v(T) = N“;_F/ |N ifT e T..

Risk, Empirical Risk & U-Statistics

Let £ : Rk — [0, M] be a contrastive loss function and F be a class of representation functions.

Luo79) | Lun(F16) = B e [1({ 1007107 — re ) )]

Lun(f) Lun(f) = EED [e({ro0m176e) 161} )] = Sece PO (1)

Un(fle) Un(fle) = ﬁ ) J1,j26P2[NF] ¢ ({ch,jl [fC,jQ - fa,li]}le) it Te # &.

l1,...,lx€CE[NT]

Un(fle) Un(fle) = Un(fle) if T # & and Un(f|c) = 0 otherwise.

Un(f) Un(f) = Seee S tn(fle).

T | BT = iy Syt e ({70016 — 70501 ).
fu Fu = arg min re 7 Un (f).

Feub Faup = arg minger L(f; Toun)-

Notations for Rademacher Complexity

In the following notations, suppose that we have a distribution P over an input space Z.

Let S = {z1,...,2,} be drawn 4.i.d. from P and let G be a function class.
. 3, = {o1,...,0,} is the sequence of n 7.i.d. Rademacher variables.
RE’Z" A random variable depending on S, 3, and the class G. Rg’z" = SUPyeg ‘% Z;;l ajg(zj)‘.
SA{S(Q ) The empirical Rademacher Complexity of G restricted to S. 9?%5(9 ) =Es,|s [RSE"] whenn > 1.

and %S(g) = 0 when n = 0 (in other words, S = &¥).

R, (9) The expected Rademacher Complexity of G. R,,(G) = Eg [DA%S(Q )]

Specific Rademacher Complexities Used in The Main Results

7—:id7z c 7—2id72 c 1 NC k
Ry N Rz =% N a1 0'][({.]022]‘—1 [fc72j - fE,kj—k-H’]} )

= SUDger )
i=1

0 when N, = 0
R (Lo F) | Ry, (Lo F) = Egps [Ryua(l o F)]

9}7?(1(50]:) 5%72;;(1(60}—): {

14



Generalization Analysis for Non-IID CRL

Constants & Estimators

k The number of negative samples.
M The upper bound on the unsupervised loss function £ : R* — R
b Bound on input’s 2 norm. Vx € S : |x[2 < b with probability one.
n The ¢*-Lipschitz constant of the loss function £ : R* — R .
Prmin Minimum class occurrence probability pin = min.ec p(c).
Pmax Maximum class occurrence probability ppyax = maxeec p(c).
31n4[C|/s

A Ford € (0,1), A = /3l
], R, - max{l min ([Np(c>2§1—A)J [N(l—p(?)(l—A)J)}'
N N 3 min 1— max
N Nszln(pT,pT).

Class of Linear Functions

Fiim = {x > Az Ae R ATy, < a, |Alls < s}

|21 For A € R>™ | Alyy = Y%, |A ]2, i.e., sum of column Euclidean norms.
|- lle For A € R™™ || A|, is the spectral norm, i.e., the largest singular value of A.

Class of Neural Networks

]-"rﬂl =FroFp_10---0F1,where F; = {:c — (A(l)x) . ONC Bl}.

L Number of layers in the neural networks.
do Dimensionality of the input layer.

dy,le[L] Dimensionality of the [*" hidden layer.
si,le[L] Bounds on the I*" layer’s weight matrices’ spectral norm.
B, le[L] Space of [*" layer’s weight matrices. B; = {A(l) e Rb-1xdi 1 | AW, < sl}.

&,le L] ¢%-Lipschitz constant of the [!" layer’s activation function.

e, l e [L] @1 : RY — R is the ' layer’s activation such that Vx, x" € R% [p;(x) — o(x')[2 < &[x — x| 2.

Covering Numbers
LetG = { g:zZ2— Rd} be a class of real/vector-valued functions (with d > 1) from an input space Z.

Let S = {z1,...,2,} C Z be a dataset.

N(G,¢€, | -|) | The covering number of a class G with granularity e with respect to a norm | - |. Specifically,
if there exists a (minimum internal) cover Cg < G

where Vg € G,3f € Cg : |f — gl < e, then [Cg| = N'(G, e, - ).

sy | 99326 l9 = dlhas) = (2 X lo(z) — @)

I liwats) | V9:9€ G119 =gl 2(s) = maxges [9(25) — 9(25)]2.
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B. Useful Notations

1. Notations on datasets & tuples sets: As a reiteration of the main text, we lay out formal definitions for the notations
N

used throughout this work. Suppose that we are given a dataset S = {(xj7 yj)} drawn i.i.d. from a joint distribution
j=1

over the input and label spaces X x C. We denote S = .. S where S, is the set of data points belonging to class c:

ceC

Sc={(xj,yj)eS:yj=c}. (19)

With a slight abuse of notation, we also denote S, as the set containing only the data points (without labels). Furthermore,
for each ¢ € C, we also define S, = S\S,, i.e., the set of instances not belonging to class c. For every ¢ € C and f € F
(where F is the class of representation functions), we denote:

1. Nf =S,
c)

N7 = |S.] and N, = min([N} /2], [N; /k]).

2. x;“ as the it element of S,.

(
3. x;E) as the j element of S,..
4. f (ch)) = f.iand f (X;E)) = f,; for notational brevity.

Let 7 = |J cc 7c where 7. denotes the set of tuples whose anchor-positive pairs belong to class ¢ € C. Formally:

Jj1 02

VeeC: T, = {(x“) x(c),xl(f),...7xl(f)) 1< jo < NI I<l,. I < Ng}. (20)

Additionally, for all ¢ € C, we also define 7' as the set of independent tuples selected in a “greedy” way such that every
tuple in 7114 has an anchor-positive pair belonging to class ¢ (See also Figure 1 for visual illustration). Formally:

.. - > C ¢ NC
Veec: Ti = {(xgj-)_l,xg?,x](f?_ﬂv . ,x,(;].))} 1)

j=1

Furthermore, as we progress through the proofs, we also often use the auxiliary datasets 7~'C“d, which contains all vectors
including anchors, positive and negative samples from the tuples set 714, Formally:

VeeC:Thd = U U{x}. (22)

Te’TCiid xeT

2. Notations on loss function class: Let £ : R* — [0, M] be a contrastive loss function and JF be a class of representation
functions. With a slight abuse of notation (of the composition operator “o”), we define the class of loss functions as £ o F
formally as follows:

loF = {(x,x*,x;,...,x;) HE({f(x)T(f(er) —f(xl_))}le) :fe]:}. (23)

3. Notations related to Rademacher complexitites: Now, we are ready to formally define the quantities related to
Rademacher complexity used throughout the proofs. For the following definitions, we use the notation E x [-] to refer to the
expectation taken over the distribution of a random variable X and E x|y [-] to refer to the conditional expectation over the

distribution of X conditioned on another random variable Y. For every c € C, let Xy, = {01, ..., 0N, } be the vector of

N. independent Rademacher variables and 7. be define in (21), we have:

N,
iid 1 9 k
Ry —sup|— 3 ot ({ flaji [ fezs = Fomsnni||_ )|, (whenNe = 1)
feF | Ne =1 i=1
iid
- E [RE"™¥ ] whenN, > 1 24
Rria(l o F) = BnelSNE | THF when , (Empirical Rademacher Complexity) 9
¢ 0 when N, = 0
RN, (Lo F) =Egp+ [E)A%Tcnd (Lo F)]. (Expected Rademacher Complexity)

16
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The vector N = {N}} .cc represents the sample sizes and N ~ Multinom(N, {p(c)}.ec). Hence, even though we denote
RN, (£ o F) as the “expected” Rademacher complexity, it is still a random variable due to the randomness in N. However, as
we will see in subsequent proofs of the main results, we will eventually handle the randomness by analysing the concentration
of N around the respective expectations {Np(c)}cec-

Throughout the main results, we will often encounter the assumption that for all ¢ € C, the empirical Rademacher

—1 A
complexities N? Rriia (¢ o F) are upper bounded by some K r . depending on both the class of representation functions
F and the class c. In this work, we use Dudley entropy integral bound to derive the upper bounds K 7 .. Specifically, by

Theorem F.5, for any choice of o > 0, we can generally upper bound N? §{7“jid (¢ o F) by setting:

M
Kr.=4a+ 12J In? 2N (€ o F, €, Lo(T719))de,

[e%

where N(£ o F, e, Lo(T14)) is the Ly covering number of the loss class £ o F restricted to the vector dataset 7,4 (See
definition D.11 for the formal definition of Ly norm).

For a more comprehensive summary of all the notations used throughout this paper, we refer the readers to Table 2 for quick
references.

C. U-Statistics Revisited

In this section, we revisit the definition of U-Statistics and the decoupling technique which will be used throughout the
proofs of the main results.

Definition C.1. (U-Statistics) Given S = {x1, ..., Xy} drawn i.i.d. from a distribution P over X’. Let h : X — R be a
symmetric kernel in its arguments. Then, the U-Statistics U,,(h) used to estimate § = Ey,  x,_~pm[h(X1,...,Xm)] is
defined as follows:

Un(h):(T_ D by, xi), (25)

where C,,,[n] denotes the set of m-tuples selected (without replacement) from [n] without order (m-combinations). We call
U,,(h) an one-sample U-Statistics of order m. Furthermore, let ¢ = |n/m|, the decoupled form of U, (h) is:

1
HOEE YR AT)
" weS[n] (26)

1 q
Vﬂ'(S) = 5 Z h(xw[7ni—m+1]7 cee ?Xﬂ'[mi])7
i=1

Remark C.2. Forany 1 < i < ¢, we can write U, (h) = % Zwes[n] P(Xr[mi—m+1]> - - - » Xx[ma])- Specifically,
1 1 |
m 2 h(Xﬂ'[TVLi—’"L-‘rl]V s 7x7r[m’i]) = E Z (TL - m).h(le Yoo :ij)
WGS[TL] 1o Jm€EPm [TL]

1
= D mln—m)h(xi,, .. xi,,)

n D1 4eees im€Cm [n]
1
= (n) 2 h(Xi17~~~7Xim)~
m ila-<-7i'rrzECnL[n]
Eqn. (25)

Hence, by swapping the summations, the decoupled formula of U,, (h) can be understood as summing the same quantity ¢
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times then dividing by ¢:

2 Z h [mi— m+1]7--~>xﬂ'[mi]) = - Z 2 h [mi— m+1]>‘-‘ax7r[mi])

! 7rES[71 i=1 = ! ‘n'ES[n]

Eqn. (26) U, (h)

D. Generalization Bound for Empirical Risk Minimizer of U-Statistics
D.1. Formulation of U-Statistics

Let N, = min ([N;r /2], INZ/ sz), which represents the maximum number of valid i.i.d. tuples that can be formed for

contrastive learning from the pool of training data. We restate the definition of the U-Statistics for Ly, (f|c) as follows:
Un(fle) = Tin13Un(fle);
1 k
where Ux(fle) = o 03 ({fT[ e = £}, ) @7)

J1,32€P2[N}]
l17.‘.,lk€Ck [Nc_]

From the above equation, when N. = 0, there is no valid tuple where the anchor-positive pair belongs to class c (either the
number of instances from class ¢ or outside of class ¢ is not sufficient). In such case, we adopt a naive estimate Ux (f|c) = 0.
On the other hand, when N, > 1, it is natural to estimate Ly, (f|c) as the average loss over all valid tuples (not necessarily
i..d.) where the anchor-positive pairs belong to class c. Finally, we define the overall U-Statistics for Ly, (f) as follows:

N+
Us(f) =D ¢ Un(fle) (28)

ceC

Remark D.1. It is worth mentioning that the above formulation is asymptotically unbiased, i.e., imN_,o Un(f) = Lun(f).
To demonstrate this briefly, denote A/ as the event that for all classes, there are enough data points to form at least one tuple,

e, N = {Vc €C,N,. > 1}. Hence, limy_, o P(N) = 1. Furthermore, we have:
E[Un(f)] = PWN)E[UN(f)INT + PN)E[UN(f)INC]

E| ),

ceC

= BOV) Y ple)Lun (Fle) + BOV)ERS(/) ]

ceC
= P(N)Lun(f) + E[Un(f)INIPNC)
- Lun(f) as N — oo

X Un(fle M + POVO)EUN()IN]

Remark D.2. Let Un(f|c) be defined in Eqn. (27). With a similar decoupling argument to de la Pefia & Giné (1998) and
given that N, > 1, we can re-write Un(f|c) as follows:

Ul = e S Ve )
m.€S[NT],7.€S[N, ]
. ) 29)
where Vﬂ' e f| Z ({ c,me[25—1] |:fc we[25] — fé,?rc[k'j—k-‘ri]] }i=1)7

where S[n] = {71' : [n] — [n] ‘ﬂ' is bijective} denotes the set of all possible permutations of the indices set [n] for any

n € N. Vy_ . (f|c) is the average over the loss evaluated on the set of independent tuples 7 11[r,, 7] selected as follows:

18
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1. Shuffle the set of inputs S, according to the permutation 7. € S[N7 ], denote the resulting set as S.[.].
2. Shuffle the set of inputs S, according to the permutation 7. € SN ], denote the resulting set as S,[7.].

3. Pair 2-element blocks from S.[7.] to k-element blocks from S, [7.] until either set runs out of independent blocks.

i} , N
iid — (c) (c) @) @ ¢
T e, 7] = {( 25177 X271 Ko [hjkt1] - 7xﬁc[kj])} o (30)

j=1

Essentially, the formation of the tuples set 7'4[r.., 7] is identical to that of 7114 except S.. and S.. are shuffled according to
permutations 7. and 7. beforehand. To briefly demonstrate how the representation of U-Statistics in Eqn. (29) holds, for

() xg? € S., we define:

any two data points X °,
1 k
T I SO N( A T |
J1 J2 |C]€[n]| 11,,,_7%]0,6[71] J1 J2 , i1

. i 31)
= N Z ({ ¢,j1 [fc,]z fE,ﬁ'c[kmkari]] }izl)’
¢ #.eS[NI]
for any 1 < m < N, (by remark C.2). Then, using the same decoupling argument as de la Pefia & Giné (1998), we can
write Ux(f|c) as an average over h(x EC), (C)) as follows:
U _ ! hixl@ x(©
N(f|c) - PQ[N+:| Z ( ]1 ?ij )
N J1,j2€P2[NF]
N
1 LS @ (©)
TN 7Zh 2j-11 X, [27)
meeS[NF] T =1
1 1 1 . k
=<5 N 24 N f({ eome[2j—1] I:fc,ﬂ'c[Qj] - fé,v’rc[kjkari]]}i:l)
reeS[NF] CI=1""¢" z es[ND]
N
1 1 & T k
= N+l x NT! 2 Ni E({fc,nc[Qj—l] |:fc,7rc[2j] - fé,ﬁc[kj—k-ki]] }i=1>.
07 mesINF] T Ca=1
T.eS[N_]

Remark D.3. Let g be a real-valued function. For any distinct pairs of indices re-arrangements 7., 7, € S[N1] and
Te, M € S[N ], we have ES\N+9<V7TLJTL fle)) = ]ES\N;TQ(VW;,TT’C (fle)).-

D.2. Proof of the Main Results

Lemma D4. Ler ¢ : R — R be a convex, non-decreasing function. Let N = {NT}.cc ~ Multinom(N, {p(c)}cec)
be the multinomial random variable representing the class-wise sample sizes. Suppose that N. > 1 and X, denote the
sequence of N, i.i.d. Rademacher random variables. Then, for every c € C, we have:

IES|N:r [@(?‘lel]?' ‘UN(f| un(f| )D] 5 EN. |N+@[2RT” ENC]v (32)

where E S|N+ denotes the expectation taken over the sample S conditioned on the random variable N} and the random

variable R e PN o defined in Eqn. (24).
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Proof. We have:

EslN: [gp(;lel.[; ’UN(f|C) - Lun(f|C)D]

- )
= ES\N:'SD 7@ ?}EIJI:)_ B jzg[N+] [f({ c—l,—jl [fc,j2 - fali] }izl) - Lun(f‘c)] H
ll,..’.,lkeCk[liIC_]
1
=Egnze W sup MES[N%LES[N] [Vﬂmfrc(f‘c) - Lun(f\C)] H

1
<Egn:® ISR Z V. 7. (flc) = Lun(fle) (Triangle inequality)
c+ X Nc - feF i _
L m€S[NT],7.eS[N] -
— 1 T
<Egnet| s % s |Veos (10 - Lun(710)| | (sup Y < 3 sup. ¢ non-decreasing)
N&!l'x Ng! = _, feF
L m€S[N] ], m.eS[N_] -
1 ] b 3
< RISl Z ES‘NIQD[Su-I; Vo7 (fle) = Lun(flc) | (Jensen’s Inequality)
¢’ € r.eS[NF],7.eS[N]] fe
1 Ne - k
= ES\NI‘»O sup N Z E({ C,Qj_l[fc,zj — fa,kj—k+i]}_ ) — Lua(f]c) (Remark D.3).
reF|Ne 73 i=1

When conditioning on a given sample size N of class ¢ € C, S is an i.i.d. sample drawn N — N7 times from the distribution

_ k
D.. Hence, for any 1 < j < N,, we have ES‘N+€<{fCT2j71|:fC72j — fak;j_k_i,_i:l} ) = Lun(f|c). Therefore, by the
c : i=1

symmetrization trick (Lemma F.6), we have:

c

Bz |2 (sup [Un(710) ~ LunS10)]) |

<o gl 2 e = ] }) <t

Hence, we obtained the desired bound. O

Proposition D.5. Ler N = {N'}.cc ~ Multinom(N, {p(c)}cec) be the multinomial random variable representing the
class-wise sample sizes. Let F be a class of representation functions. For any 0 € (0, 1), the following inequality holds:

P(sup Un(fle) — Lun(flo)| < 28N, (0o F) + 8M ln%/é

Nj) >1-4. (33)
feF 2N,

where N, = max(1,N,.) and R, (¢ o F) is the expected Rademacher complexity (Eqn. (24)).

Proof. We divide the proof into two cases when N, = 0 and when N, > 1.

1. When N, = 0: Then, we have Ux(f|c) = 0 by default and sup ;. z \Un(f|c) — Lun(f|c)| < M. Furthermore, since

SM 1n§/ 3 < 4M, the bound holds trivially.
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2. When N, > 1: By lemma D .4, let ¢(z) = exp(tx) for t > 0, we have:

iid
Egpns exp (1 sup [UN(/1) = Lun(f16)]) < Bg s exp (2R )

3262 M?
N,

< exp (27,‘9{1\16 (LoF)+ ) (Lemma F.9)

N+)

< eft)\IEslNér exp (t iug ‘UN(f|C) - Lun(f|C)D
€

22 2
< exp <2tfRNC(€o]:) + 324 M —t)\>.

Using Markov’s Inequality, for any A > 0, we have:

]P’(sup Un(fle) — Lun(f|c)‘ > )\‘Nj) = ]P’(exp (tsup Un(fle) — Lun(f\c)D > et
fer feF

N

Setting 6 = exp (21?9{1\10 (LoF)+ 322&;]7/\42 - t)\> and solve for ), we have:

32tM?  Inl/s

A=20N, (Lo F)+ N, + .
Using the Lagrange multiplier to solve for the optimal value of ¢, we have ¢t = 7%;. Plugging the value of ¢ back

to the formula of \:

Inl1/0
sup |Ux(fle) — Lun(flc)| < 298N, (£ 0 F) + 8M nl/
feF 2N,

Inl

_ oma, (0o F) + sMy | L0
2N,

In2/0

< 2%, (Lo F) + sMy | 20
9N,

with probability of at least 1 — ¢, as desired.

O

Lemma D.6. Let N ~ Multinom(N, {p(c¢)}cec) be the multinomial random variable representing the class-wise sample

Nl\% — p(c)‘ < ple)a/ 31%‘\:’1\]/6 hold simultaneously for all ¢ € C with probability
of at least 1 — §. In particular, on the same high probability event:

NF /31In2|C|/0
Z ~N —P(c)' < Npmm (34

ceC
Proof. Recall that N} ~ Bin(N, p(c)). Hence, E[N}] = Np(c). Then, let 0 < A\ < 1, by the two-sided multiplicative
Chernoff bound:
N
IP)(

sizes. Then, for any § € (0, 1), the events

A*Np(c)

Wg —ple)| = /\P(C)> = P()Nj - Np(C)‘ > )\Np(c)) < 2exp (— 3),
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=)W

Then, by the Union bound, we have:

o2

N+
1\§ —p(c)

Setting § = 2|C| exp ( — %), we have A = 4/ %W. Therefore, with probability of at least 1 — 4,

N} /3In2|C|/é
~N P(C)‘ 7Npm1n
31n2|C|/s

iy hold simultaneously for all ¢ € C, as desired. (]

2

ceC

and the events ‘— —p(e )’ p(c)

Proposition D.7. Let F be a class of representation functions and fu = argminser Un(f) be the empirical minimizer of
the U-Statistics (Eqn. (28)). Then, for any § € (0, 1), with probability of at least 1 — §, we have:

Lon(Fi) = 08 Lun(1) < 20| 20D 2p<c>[4mNc<eof>+16M h“j'c/ﬂ (35)

ceC c

where N. = max {1,min ([Np(c)z(l_A)J, [N(l_p(i))(l_A)J)}, A =4/ 31114‘CV5 (cf. Table 2) and Rn_ (L o F) is the
expected Rademacher complexity (Eqn. (24)).

Proof. From the definition of Uy, we have:

Lun(fu) - }gjf__ Lun(f) < 2sup [Un(f) — Lun(f)’ (Uniform Deviation Bound)

feF
= 2sup Un(fle) — Z p(c)Lun(fle)
feF | cec ceC
= 2?2_2 ;UN fle) < ) CeZé (UN fle) un(f'c))’
<2 ) suplx (fle)| 5o — p(e)] +2 3 plc) sup U (£1e) — L fle)|
cec J€F ceC fer
<MY |5~ p0)| + 23 ple) sup s 1e) ~ Lun 1)
ceC ceC fer

Letd € (0,1) and A = 4/ 31&147'?'/6. By lemma D.6, we have:
Prmin

N} 31n4|C|/é
2| el <«/Np|,/iA, (36)
ceC min
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with probability of at least 1 — §/2. Furthermore,

% - p(c)‘ < p(c)A holds simultaneously for all ¢ € C with probability
1 — §/2. Hence, by the triangle inequality:

N S =N
—_ 2 —_
N plc) — Ap(c) = { o N

c

ple)(1—A)
(L=p(e))A=4)

simultaneously for all ¢ € C with probability of at least 1 — §/2. Therefore, we can estimate N, with probability of at least
1 —§/2 as follows:

—- < N 1-A N(1 - 1-A

S S |

By proposition D.5, we have sup ;. » ’L{N(f|c) - Lun(f|c)‘ < 20N, (Lo F) +8M ln 2/ with probability of at least 1 — ¢
for all £ € (0, 1). Then, by the Union bound, we have:

In4|C|/o
5 (s s 10) ~Lan( 10 < 300 lzsm(e 0 F) +8M ;‘N'/] 39)

with probability of at least 1 — §/2. By inequalities (36), (38) and a Union bound, we have:

N In4
Lun(f2e) — nf Lun(f) < 2AM + >n( lmN ({oF)+16M n21|\IC|/6]
ceC c
ceC c

Npmln

C

=2M 3indicl/o Z p(c) l4%NC ({oF)+16M IH;HACV(;].

ceC

with probability of at least 1 — 4. Hence, we obtained the desired bound. O

Remark D.8. The above proof relies on the assumption that A < 1 because of the use of multiplicative Chernoff bound. In
other words, Npin = 31n4|C|/d. However, when we have A > 1, the right hand side of the bound becomes greater than or

equal to 2 M, which is already larger than the largest possible value for Ly, ( fu) — inf pe 7 Lun (f). Hence, we can safely
remove the assumption that A € (0, 1) from the result of the theorem.

Remark D.9. Let A = 4/ 31&};‘%. Suppose that N > minﬁl&' We can further simplify the high probability (of

Pmin l1—pmax
2 k

at least 1 — §/2) lower bound for N.. Firstly, we have:

: min 1= Pmax
3n4c|/s | min (% = ) 1
A= < < =
Npmin 2pmin 2

Note that for every ¢ € C, we have p(¢) = pmin and 1 — p(¢) = 1 — pmax Where ppmax = maxecc p(c). Hence, with
probability of at least 1 — §/2, we have:

N> max{l,min QNpmmg A>|’ P(l il pmax>|>}
o {17 {N(l ~Amin <pn;n ’ l_zfx>| } (39)

2 len pmin’ 1-— Pmax 7
8 4k
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since 1 — A > % and |z| > ¢ for all z > 1. Then, by the initial assumption on the lower bound of N, we have

N min (%, 175%“) >31n 4|C| /6 > 1. Therefore, with probability of at least 1 — §,/2, our final simplification for the

lower bound of N, becomes N > N min (” Fa 1”&) forall ce C.

Theorem D.10. Let F be a class of representation functions and fu = argminser Un(f) be the empirical minimizer of

~ 1
U-Statistics (Egn. (28)). Suppose that mﬁid (0o F) <N, ?Kg,where Kr . depends on both the function class F and c
Sorall c € C. Then, for any § € (0, 1), with probability of at least 1 — §, we have:

N In8|C|/d
Lun(fU) - }2;__ Lun Z K]: ct 44M r12|1'<1|/7 (40)

('EC

where N = N min (%7 H’%) and 9?{72“‘* (€ o F) is the empirical Rademacher complexity of the loss class restricted to
the set of independent tuples T4 (Egn. (24)).

Proof. Fixing A € (0,1). Let A = 4/ %& and suppose that N > —0m4lC/A _ "hen A < 3 and the events

min (PmJ 1_ﬂmax)
2 9Tk
N, >N /4 hold simultaneously for all ¢ € C with probability of at least 1 — A/2 (Eqn. (39)). By proposition D.7 and the
assumption on the lower bound of N, for any value of A € (0, 1), we have:

~

Lun(fu) — }g};Lun(f) <2AM + ) p(e lmN (Lo F)+16M

In4/C|/A
ceC QNC

< 2AM + 16M, /QW“CVA +4 p(e) %, (Lo F)
ceC
M /31n4\C\/A /21114|C\/A (o F)
Npmin (,EC

(41)
In4|C|/A 2In4 A
M 73 = ‘g‘/ = |C‘/ N, ({0 F)
2N ceC
21n4|C|/A
<18My | E2 |C|/ +4 p(e)%n, (Lo F)
ceC
In4|C|/A
= 36 M % + 42 p(c)Rn, (Co F),
2N ceC
with probability of at least 1 — A. By lemma F.2 and a Union bound, we have:
- In|C|/A
Z p(O)RN,(l o F) < Z p(c) [ERTCM (Lo F)+ M 2N|f
ceC ceC
- In|C|/A
<Y ple) | Rrua(Co F) + 2M n|cl/ (42)
ceC ‘ 2N

—IM lnm/A + 3 p(e)Rua (o F),

ceC
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with probability of at least 1 — A. From Eqn. (41), Eqn. (42) and a Union bound, we have:

N /4 AL /1 A
Lua(fu) = inf Lua(f) < 36M & |C|/ n|c|/ +4 ) p()Rya (L 0 F)
ceC

In4/C|/A
< 44M +4Y ple)Ryua(lo F
=~ > p(O)Rgua (Lo F)

ceC

Y 1n4|C|/A a3 oK
ceC \/ c
In4 A
< qam, | mAC/A K.,
2N \/ﬁcec
61n4/C|/A

with probability of at least 1 — 2A. Now, suppose that N < or N < 6In4|C|/A. Then, we have

: Pmin l1—pmax
mm( 5, T )

44M % > 44 M,/ {5. Therefore, the right-hand-side of Eqn. (41) will be at least 22M/+/3, which is the greater

than the largest possible upper-bound for Ly, ( fu) —inf ye 7 Lun(f). Hence, the inequality in Eqn. (41) holds regardless of
the assumption on N. Finally, setting A = §/2 yields the desired bound. O

D.3. Applications to Common Function Classes

In the results that follows, without reiteration, we define fu = arg minge r Un(f) by default. We will use covering number
and the Dudley entropy integral bound (Theorem F.5) as the primary tools for bounding empirical Rademacher complexities.
Firstly, we define the following metrics defined on function spaces:

Definition D.11 (Ly and L, o metrics). Let G = { g:Z— Rd} be a class of real/vector-valued functions (with d > 1)

from an input space Z. Let S = {z,...,z,} < Z be a dataset. Then, the L, and Le,2 metrics defined for any two
functions g, g € G is defined as:

1/2
lg = Glv.s) = ( Z lg(z;) ZJ)|2> ;

lg = 3lL. .0 = max lg(z;) — G(z;)|2-

(43)

Lemma D.12 (Hieu et al. (2024)). Let F be a class of representation functions f : X — R Let ¢ : R*¥ — R, be a

n
contrastive loss function which is £ -Lipschitz with constant ) > 0 and S = {(Xj , X;_, X1 ,xj_k)}j_1 c X**2pea

given set of i.i.d. input tuples. Then, let { o F denote the loss function class and € > 0, we have:
mN(é o F,e,La(S )) ln/\f< L 2(§)> (44)

where S < X is the set of all vectors including anchor, positive and negative samples and T’ = sup feFxed [ f(x)]2-

D.3.1. LINEAR FUNCTIONS

Proposition D.13 (Ledent et al. 2021; Hieu et al. 2024 ). Let a,b € R be given and let X < R™ be an input space where
m = 2. Define F as the class of functions f : X — R as follows:

F = {x — Az Ae R>*™ AT |21 < a},

where d = 2. Given dataset S = {x1,...,2,} € X" such that |z;|2 < b,V1 < i < n. Then, for all e > 0, we have:

212
A (F, € Loea(S)) < S0 <<Hab + 7) nd>. 5)

€ €
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Remark D.14. For proper credit, the above proposition is a consequence of the Ly, covering number for linear function
classes from Zhang (2002).

Theorem D.15. Let a, s € Ry be given and Fiiy, be the class of linear representation functions (also defined in Eqn. (17)),
defined as follows:

F - {QZ e Az Ac Rdxm, HATHQJ <aq, |4, < s}. (46)

Let N = N min (pT“, HT‘“‘> and ||x|2 < b,Vx € S with probability one *. Suppose that the contrastive loss function

0 : RF — [0, M] is £*-Lipschitz with constant n) > 0. Then, for any § € (0, 1), with probability of at least 1 — §, we have:

N 32 In8|C|/é
Lun(fo) = i T (f) <—e + a4ty | 20
f€Fiin NV N N (47)

3072+/2nsab?
:;’75“ In ((44Nnsab? + 7)N(k + 2)d) In(NM).
N
Proof. Given a certain class ¢ € C. Suppose that N, > 1. In other words, the set of i.i.d. tuples whose anchor-positive pairs

belong to class ¢, 7114, is not empty. Let 7~'ciid be the set of all vectors including anchor, positive and negative samples from
ThHd LetT,. = SUD pe 7 xeiia | f(x)]|2. For any € > 0, we have:

1n/\/(£ 0 Flin, €, L2(7jid)) <InNV (]—'hn, : Lw,Q(ﬁid)) (Lemma D.12)

€
4T.n

1024n2a2b*12 44nT .ab
< 5 In

+ 7) N.(k + 2)d> (Proposition D.13)

€ €

1024n%s%a?b* ( <44175ab2
< ———n

~
€2 €

+ 7) N(k + 2)d> (T. < sb,Vee ().

Let o = N~!. Without loss of generality, assume that N(Z 0 Flin, €, LQ(TCiid)) > 2 forall @ < € < M. Then, using
Theorem F.5, we have:

{}\{ d(go.; )<4OC+J‘M\/21HN<(7OJ GLg( 3 ))dE
T in) X iny €y ;c
¢ : \/NC a :

12 M 2()48 a=0 44 sao
Vv I]C « €

2 2 M
< da + 384*/§Nisab In ((44”3”b N(k +2) d) f

2 2
384+/2nsab n ((44775ab N 7)

=4o +

VN

4 384\/§nsab2 9
-t T@ln((@ansab +7)N(k +2) d)ln

N(k + 2) d)lnj\/l/a

Setting In ((44ana62 + 7)N(k + 2)d) In(N.M) = ¢ for brevity. Then, for all ¢ € C, we have:

- 4 3844/2nsab’¢
Rriia (£ in) X =+ —m———.
reallo Fin) S g+

3The bound on input’s norm with probability one is imposed so that for any draw of S, we can bound the Lo 2 covering number of
Fiin restricted to any subset of S using proposition D.13 with the same value b.
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Then, by Theorem D. 10, setting K7 . = % + 384\@775ab2¢ for all ¢ € C, we have:

N 2
Lon(F) — inf Ln(f) < 32 oy ln8|C\/§+3072\/§nsab

feFiin N\F 2N \/ﬁ

with probability of at least 1 — § for any ¢ € (0, 1), as desired. ]

In ((44ana62 + 7>N(k + 2)d) In(NM),

D.3.2. NEURAL NETWORKS

We are interested in the following class of neural networks: Let L > 1 be a natural number representing number of layers.
Letdy,d1,...,dr, € Nsuchthatd; > 1,V0 <[ < L be layer widths. Let s1, ..., sy, be a sequence of real positive numbers
and define the following parameter spaces:

B = {AD e RUx A0), < 5}, (48)

where | - |, denotes the spectral norm. Denote A = By x --- x By, as the parameter space for the class of neural networks
]-';1‘}1 (also defined in Eqn. (18)), defined as follows:

Fin=FroFp10-0F, (49)
where forall 1 <[ < L, F; = ¢; o V; such that:

1. ¢ : R% — R% is an £2-Lipschitz activation function with constant & fixed a priori.
2.V, = {x — AWz AW ¢ Bl} represents the pre-activated linear layers.

Lemma D.16 (Long & Sedghi (2020), Lemma A.8). The internal covering number of a d-dimensional ball with radius K,
denoted as B, with respect to any norm | - || can be bounded by:

d d
N(Bme, - H) < Fﬂ < (‘0’: + 1) . (50)

Theorem D.17. Let F:\ be the class of neural networks defined in Eqn. (18). Let N = Nmin (”“T, 1_"%) and

|x|2 < b,Vx € S with probability one. Suppose that the contrastive loss { : R* — R is £*-Lipschitz with constant n > 0.
Then, for any § € (0, 1), with probability of at least 1 — 0, we have:

~ 32 In
Lun(fu) — inf Ly (f + 44M S‘CV&

feFA N\/7

+10om, | W <l (12nNLb2 []&s2+ 1>, (51)

m=1

where W = Zle dy is the total number of neurons in the neural networks.

Proof. Let A = {A(D} L | be a set of weight matrices from the parameter space .A and we denote F € F: as the neural
network parameterized by A. In other words,

Fa(x) = ¢L<A(L)¢L_1(...¢1(A(1)X)...)), Vx e X.

Additionally, let 1 < I; < Iy < L, define Fk_’l2 as the sub-network from layer [; to /5. Specifically,
Fk‘)b (Z) = Pl, (A(b)(plz*l ( <P (A(ll)z) s ))7 Vz € Rdll_l-
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Let A = {g(l)}lil € A be another set of weight matrices different from A. Additionally, for 1 < [ < L, define
Ay ={AD A AW AT ag the set of weight matrices obtained by replacing the I*" to the L elements of
A with those of A. Then, forall 1 <[ < L, we have:

Firi=l(z)y = FIF1=k(z), Yz e R%

J?z ) Al+l1
—l—1 _ 1—1—1
FAz (x) = FAZ+1 (x), VxelX

Given a certain class ¢ € C and suppose that N. > 1. In other words, ’tﬁd # . For any x € ﬁﬁd and 1 <! < L, we have:

_ l+1->L (1) p1—l—1 _ pl+1-L A) p1—i-1
3,600 = 7, 00, = [P o (a0mg00) - e (A0 )

1+1 I+1

L
< () pl=l=1(y _ F() pl—oi—1 H
<& ] &uom| AV 0 = AV ()]
m=Il+1
L
(OO . 1-1-1 _ pl—oi-1
n EmSm|A A i HFAZ (x) F&H (x)”
m=Il+1
L N -1
[T €msm|A® - A(Z)H 2 TT €use
m=1+1 7 u=1
= ~
< [ €msm|A® = AO
S me=1 o
By the triangle inequality, for all x € 714, we have:
[ 309, < 3 Az+1<X>H2
”A(l) — ‘ o
<b H Emm Z 4% = Ao
Lete > 0 and €4, ...,€e1, be a sequence of positive real numbers such that ¢ = Zle Bie; where Z{‘:l B; = 1. For all
1 < 1 < L, we construct an internal ¢;-cover, denoted as C(B;, ¢;), with respect to the || - ||, norm for the parameter

space at the [*" layer, B;. Let C4 = ®IL=1 C(By, ;) be the Cartesian product of all constructed covers. Then, for all
A = {AW} | € A, there exists A = {AD}} | € C4 such that:

Fa(x) — FA(X)H

. = max
Loo 2(TH9)  xeTjid

<bngms 2 4% - 29
1_:[ fmsml . Sl

Fa — Fx
H A A 2

51816

Foreach1 <[ < L, setting ¢; = b
'm,=1

ylelds |Fa — Fx HLQO S(Fia) S < e. Hence, C 4 becomes the e-cover for A (or
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equivalently, 7 ) with respect to the L, Q(Tlld) metric. Setting 3; = L~! forall [ € [L] *, we have:

WA (FA € Lo ) = 21n|c Bi.<)|

L
3
<Ndn (;l + 1) (Lemma D.16)

L b L S
=Y dn (3 HWE;E ° +1>

Let o = N7 and Ty = sup . 4 weua || Fa (X)[2. Without loss of generality, assume thatN(é o Fi e Lg(Tc“d)) > 2
for all & < € < M. By Theorem E.5, we have:

- 12 (M i
Rrua(Co Fh) < da+ \/—NZ L \/2 lnN(E o Fins €, L2(72“°‘))d6

12 M

+ \/T 21n/\/'<]: o 4 . 302(7'“(1)> € (Lemma D.12)

S RE|
<

<dat = f \

<4do +

129LT, b]_[m L EmSm 1) .

120Lb2 ] L
nLb? ] [y €25 m+1>de (e <b [ [ émsm,¥eeC)

m=1

«

¢ HI2M T I

2Win
2 2 <2
JZWIH 120Lb2 [T _, €2,52, 1)
<
N <

12)NLb? ]_[ €252 + 1)

Then, for all ¢ € C, we have:

. 4
Ryua (Lo Fiy) < N T2 % In <l2nNLb2 H €252 + 1)

m=1

Let Kr .= x + 24M\/W In (12nNLb? Hm 1&2,82, + 1) for all ¢ € C, applying Theorem D.10 yields:

Lun(fu)— inf Lon(f) < 32 1n8\C|/6

FEFA N\/7

L
+192M % In (12nNLb2 []¢s2+ 1>,

m=1

with probability of at least 1 — § for any d € (0, 1), as desired. O

“Even though we can use Lagrange multiplier to solve for the optimal values of 3;, these values are only present in logarithmic terms.
Therefore, we can afford to be somewhat less “strict” with their selection.
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E. Generalization Bound for Empirical Sub-sampled Risk Minimizer

E.1. Sub-sampling Procedure

N
Given a labeled dataset S = {(XJ, Y )} . Let 7 be the set of all valid tuples that can be formed from the dataset S and let
Jj=

T be the set of valid tuples whose anchor- posmve pairs belong to class c. Then, we have 7 = | J .. Tc and |T| = . - |7¢|

where |T¢| = 2(N2:) (kaN:r ) The procedure for sampling subsets of tuples described in Section 3.3 is equivalent to drawing
M samples i.i.d. from the discrete distribution v over T defined as:

VI eT,ceC:v(T) = |C7_|, ifTeT. (52)

In other words, for all c e C, the probability of picking from 7 a tuple T whose anchor-positive pair belongs to class c is

v({T e T.}) = themselves, i.e., Ex[v({T € T.})] = p(c).
E.2. Proof of the Main Result
M
Let Toup = {(xj, x;r, b ST 7X;k) } i ~ vM be the sample of tuples drawn i.i.d. from the distribution v over all valid

tuples 7. Let F be a class of representation functions and £ : R¥ — R, be an /*°-Lipschitz contrastive loss function. For
any f € F, we define the sub-sampled empirical risk evaluated on the tuples set 75,1, as follows:

E(: o) = 57 » (oo [reh - re50]} ) (53)

=1

Theorem E.1. Let F be a class of representation ﬁmctwns and fgub = argmingser C( f; Teun) be the empirical sub-sampled

risk minimizer (Eqn. (53)). Suppose that %Tnd (loF)<N —3 Kz . where K r . depends on both the function class F and
cforall c e C. Then, foranyé € (0,1), with probability ofat least 1 — 5, we have:

T aangy [BSCS  sy
oN

N _ ~ Ing/§
§ — <
Lun(fsub) }Ielg__Lun(f) = 49{7;1 (f © ]: N l;C K]" c+ GM oM

where N = N min (”m%, 17”%) and 9?{7—(@ (€ o F) is the empirical Rademacher complexity of the loss class restricted to
the set of independent tuples T'4 (Eqn. (24)).

Proof. Let A € (0,1). By the uniform deviation bound, we have:

~ . <
Lun(fsub) }Ielf’-' Lun(f)

un(f; 7;ub) - Lun(f)‘

~

an (5 Touw) = Un(f)] + 25up U (£) = Lun(F)|
feF

feF

feF

With a slight abuse of notation, for any 7" = (x,x",x7,...,x, ) € T, denote E({f(x)T [f(x*) - f(x.’)] }
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for brevity. Denote C = {c eC:N,.> 1}. Then, we have:
By et [Lun(f3 To)[S] = Epyppt oot [ Bun (5 (T 13|

1 M
=Bz, ~om [M 2, (L) 31
j=1

g 1
simplifies to Ep,, [£(T)|S]

= > v(TUT)
Y >, VT

ceC TeeTe

N+ 1
= E LT,
2N g 2 1
ceC €Te
(S —
Uni(fle) - Eqn. (27)

N+
=>] 1\; Un(fle) = Un(f).

ceC

Hence, by Proposition F.3, for any choice of S we have with probability of at least 1 — A (with respect to the draw of Tg,p):

~ ~ In4/A
sup Eun(f;’rsub) *MN(f)) < Qstub(E © ]:) + 3M HQI\C[ : (55)
feF

In particular, we have P (Eqn. (55) does not hold) = EgP (Eqn. (55) does not hold‘S) < Es[A] = A: the overall failure
probability of Eqn. (55) is less than A. Furthermore, by Theorem D.10, with probability of at least 1 — A (with respect to

the draw of S), we have:
In8|C|/A
oN

sup s (1)~ Lun(D] € < 30Kz + 2 (56)

fer ceC

Combining Eqn. (55) and Eqn. (56) using a Union bound, with probability of at least 1 — 2A (with respect to the draw of S
and 75,1 ), we have:

" . S 8 In4/A In8|C|/A
Lun(fsup) — inf Ly, <4R7, (loF)+ — )Kr .+ 6M + 44My | —=—.
Setting A = §/2 yields the desired bound. ]

E.3. Applications to Common Function Classes

Without reiteration, we define fsub = argmingscr L (f; Tsub) by default. Applying the above result, we can easily obtain

the generalization bounds for the common classes (linear functions, neural networks) by bounding 5%7—5% (¢ o F) using
Dudley entropy integral (Theorem F.5) and applying Theorem D.10.

E.3.1. LINEAR FUNCTIONS

Theorem E.2 (Linear Functions). Let a,s € Ry be given and JFy, be the class of linear representation functions (also
defined in Eqn. (17)), defined as follows:

Fin = {x > Az Ae R™™ AT < a, |As < s}. (57)
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Let N = Nmin (Pnzml WT&X) and |x|s < b,Vx € S with probability one. Suppose that the loss { : R¥ — R, is
{*-Lipschitz with constant 1) > 0. Then, for any § € (0, 1), with probability of at least 1 — 0, we have:

+3072v/2nsab? In ((44anab2 + 7)N(k + 2)d) In(NM) (1

un(fsub) - fénin Lun(f) M N\/7

%
3_:

In8/5

In16/C|/0
o kil I

+ 6M + 44M

(58)
~ 1
Proof. By Theorem D.15, for all ¢ € C, we have m']‘éid (0o Fin) <AN"1 + N, 2 384+/2nsab®¢ where ¢ is a logarithmic

function of N, M, 7, 5, a, b, k and d, defined by ¢ = In ((44anab2 + 7)N(kz + 2)d) In(NM). Then, by Theorem E.1,
with probability of at least 1 — ¢ for any ¢ € (0, 1), we have:

~ - 32 3072+/2nsab? In8 In16|C|/d
Lun(fsub) — inf Lun(f) < Ry, (o Fin) + — + fisa ¢ 6 M n8/o + 44 M u (59)
fE€Fiin N\/ﬁ \/N 2M
Using Dudley entropy integral bound (Theorem E.5) in the same way as Theorem D.15, we have:
4 4 384+/2nsab’¢
L in) < =+ —m——. 60
s‘yi7-sul> ( © ‘F.l ) M Jr \/M ( )
Combining Eqn. (59) and Eqn. (60), with probability of at least 1 — §, we have:
~ . 4 32 In8/6 In16|C|/é
Lun(foub) — inf Lyn(f) < — + +3072v2nsab’¢ | —= + —= | +6M +AAMy | ———,
() = iaf Lun() < 37 + = 2 ff - s
as desired. ]
E.3.2. NEURAL NETWORKS
Theorem E.3 (Neural Networks). Let L > 1 and dy,d,...,dr be positive integers representing layer widths. For

1<1<LletB = {A(l) e Rli-1xdi | A0, < sl} be parameter spaces where {s;}_, is a sequence of known real
positive numbers and {p; : R4 — R% }lel be the sequence of activation functions that are fixed a priori and (?-Lipschitz
with constants {§l}lL:1. Let FA be the class of neural networks (also defined in Eqn. (18)) defined as follows:

‘FI‘;‘; :‘FLO\FLflo"‘O-FhWhereJrl = {LE*—)QDI(A(l)x> ZA(l) EBZ} (61)

Let N = N min <%, 1_"%) and x| < b,Vx € S with probability one. Suppose that the contrastive loss £ : RF — R
is £*°-Lipschitz with constant n) > 0. Then, for any ¢ € (0, 1), with probability of at least 1 — §, we have:

L
- 4 2 1 1
Lun(Foup) — i0f Lun(f) < ok 4+ —22 4 24MW* In? (12nNLb2 []&sn+ 1) ( + )
feFA

M N\/ﬁ m=1 \/ﬁ \/M (62)
+6M In 8/5 L AAM 1n16|~C|/5’
2M 2N

where W = ZlL=1 dy is the total number of neurons in the neural networks.
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~ 1
Proof. By Theorem D.17, forall ¢ € C, we have Ryua (CoF7h) < AN~1 4N, 224 MW= In? (1277NLb2 s, 2151271—&—1).
Applying Theorem E.1 yields:

m=1

~ ~ 5 2AMWin? (1277NLb2]_[ 2 52 +1)
Lun(faun) = inf Lun(f) < R, (Lo FL) + —= + =
fe}-ﬁAﬂ b N\/ﬁ \/N (63)
In8/6 In16|C|/é
oM N

+ 6M + 44 M

with probability of at least 1 — ¢ for any 6 € (0, 1). Applying Dudley entropy integral bound (Theorem F.5) again for
R, (Lo F), we have:

G gy 24MWE It (120NLR [Ty €452, + 1) 9
Tsub( © nn) = M+ \/M . ( )
Combining Eqn. (63) and Eqn. (64), we have:
~ 4 1 1 1
Lun(fsub) — inf Lyn z (12nNLb? —  —
(Fow) = inf, Lun(f) < NW (120 l_[£ )(m m)
In8/6 Inl )
Loy 80 g, [ I0IC)S
2M 2N
with probability of at least 1 — ¢ for any ¢ € (0, 1), as desired. ]

F. Classic Learning Theory Results
F.1. Rademacher Complexity

Definition F.1 (Rademacher Complexity). Let Z be a vector space and D be a distribution over Z. Let G be a class of
functions g : Z — [a,b] where a,b € Rand a < b. Let S = {z1,...,2,} be a dataset drawn 4.i.d. from D. Then, the
empirical Rademacher complexity of G is defined as follows:

] (65)

where 3,, = (01,...,04,) is a vector of n independent Rademacher variables. Additionally, the expected Rademacher
complexity of G is defined as follows:

E)A%S(Q) = lbup

geg M

R,(G) = Eg [aﬁs(g)]. (66)

Intuitively, the Rademacher complexity is a measure of a function class’ richness. If a class G is sufficiently diverse, there is
a higher chance that given a random sequence of signs (represented by the sequence of Rademacher variables), we will be
able to find a function g € G that matches the signs. Hence, the Rademacher complexity will be large.

Lemma F.2. Let Z be a vector space and D be a distribution over Z. Let G be a class of functions g : Z — [a, b] where
a,be Rand a < b. Let S = {z1, . ..,2,} be a dataset drawn i.i.d. from D. Then, for any § € (0, 1), with probability of at
least 1 — §, we have:

Ra(G) < Rs(0) + (6 — apy[ 1L

(67)

Proof. Let ¢ : Z® — R, be defined as ¢(x1,...,2,) = Ex, [supgeg %‘ Z?Zl Ujg(xj)u where x; € Z forall 1 < i < n.
Then, forall 1 <1 < n, we have:
b—a

—

<

Sup (d(T1,y .-y Tiyen oy Ty) — AT, oo, Xy Ty,
zi,T€Z
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Hence, by McDiarmid’s inequality (McDiarmid, 1989), for any € > 0, we have:

2
P(E¢(z1,. . 2) = §(z1,- . 2) > €) < exp <_ (b2il€a)2>

R (9) D?is(g)

In1/8§
2n

Setting the right-hand-side to ¢, we have € = (b — a) and we obtained the desired bound. O

Proposition F.3 (Rademacher Complexity Bound). Let Z be a vector space and D be a distribution over Z. Let G be a
class of functions g : Z — [a,b] where a,b € Rand a < b. Let S = {z1, . ..,2,} be a dataset drawn i.i.d. from D. Then,
forany 6 € (0,1), with probability of at least 1 — §, we have:

EZ~D % ;

In4/6

< 2R4(G) + 3(b — a) o

sup (68)

9geg

n

Proof. Let ¢ : Z" — R be defined as ¢(1,...,2,) = Supyeg [EZND[g(z)] — iy 1g(xl)]. Using McDiarmid’s
inequality, for all A € (0, 1), the following inequality holds with probability of at least 1 — A/2:

O (z1,...,2,) <Esd(z1,...,2,) + (b— a)\/@

In2/A

<2Ra(G) + (b — a5

(Symmetrization - Lemma F.6)

Furthermore, we have R,,(G) < Rs(G) + (b— a)y/ ™ 2/ 2 with probability of at least 1 — A/2 (Lemma F.2). Hence, by the
Union bound, with probability of at least 1 — A, we have

1 ¢ In2/A
sup | Ex~ - g(x; 22}{5 g)+3(b— e
gl olot)] Dot ] (©)+ 30— a)y "
Let ¢(21,...,Tn) = SUPyeg [% S glzs) — EZND[g(z)]] and repeat the above argument, we have the inequality in the

other direction with probability of at least 1 — A. Hence, by the Union bound, with probability of at least 1 — 2A, we have
the following two-sided inequality:

RS 5 In2/A
sup |E,~p[g — < 2R5(G) +3(b—a .
up 7 2 otai) < 2Re(0) 430 -\ =5,
Setting A = §/2 completes the proof. O
F.2. Massart Lemma & Dudley’s Entropy Integral
Lemma F.4 (Massart’s Finite Lemma). Given S = {z1,...,2,} be an i.i.d. sample from a given distribution. Let G be a
finite function class. Then, we have:
1 ¢ 2In2
Es, | sup~| 3 oiglan)| | < By 2229 (69)
9e6 i3 n
. 1/2
where 3, = {01, ...,0,} is a sequence of i.i.d. Rademacher variables and B = sup ;g (% > g(zi)|2) .

34



Generalization Analysis for Non-IID CRL

Proof. For each h € G, we denote ), = 2 Z _10i9(2;). Then, for A > 0, we have:

n

Z; ] = \Ex, [I}Llaé( |0h|] (sup — max due to finite G)
€

~1 Es.| ]
nexp AEz, | max |6y

= lnexp \Ex;, [ max max(6, —Gh)]

"L heg
<InEsg, exp ()\ max max(0y, —Gh)> (Jensen’s Inequality)

€
=lnEys Tax exp ()\ max(0p, —Gh)) (exp(Az) is an increasing function)
€

<In Z Es, [exp()\ﬂh) + exp(f)\ﬁh)] (exp max < exp sum)
heg

=1In2 Z Es, [exp(/\eh)] (By symmetry of o)
heg

=1In2 Z n Es, [exp </\azg( )> 1 (Since all o;’s are independent)
heGi=1
ey ﬁ exp ( - Qg(zi)); exp (%g(zi)) |

1| < A2g(z;
)\EE"lSup Zalg 1 ln22nexp< gz >
heg T =1 heg i=1
N Y 9(zi)
In2 i=1
n hze;jexp ( o2
\2B?
<ln2|g|-exp< >
2n
)\2B2
=In2|G| +
2n
From the above, let \ = B~1,/2n1n 2|G| and we obtain the desired bound. ]
Theorem F.5 (Dudley’s Entropy Integral). Let G be a real-valued function class and S = {z1, ...,z } be a sample drawn
i.1.d. from a fixed distribution. Then, we have:
~ In 2N/ ( L
Rs(G) < inf <4a+12f \/n g, La(S ))de>, (70)
a>0 n

1/2 ~
where B = sup g (% Sy g(zi)2) and Rg(G) is the empirical Rademacher complexity of the function class G.

Proof. The above result is derived by a standard chaining argument (See, for example, Ledent et al. (2021, Proposition
22) or Bartlett et al. (2017, Lemma A.5)). Then, apply Massart’s finite lemma. The difference is that instead of using the
standard Massart’s lemma for the regular notion of Rademacher Complexity (without the absolute value surrounding the
sum), we apply lemma F4. O
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F.3. Symmetrization Inequality

Lemma F.6 (Symmetrization). Let S = {z1,...,2,} be a sample drawn i.i.d. from a distribution P. Let G denote a
function class. Then, for any real-valued non-decreasing function p, we have:

1 n
Es@lsup =3 9(2) — Eyn[g( )]1 Es.s,0|2RE™ |, (1)
9eg |1 =1
where 3, = {01, ...,0,} is the sequence of i.i.d. Rademacher variables.
Proof. Denote Eg as the expectation taken over the sample S. We introduce another sample S’ = {z/,..., 2] } that is

identically distributed as .S. We have:

Eswlsup 3 (g(z) —Es[g<zz>]>H
9€9 n i=1
1 ¢ ,
= Ese| sup —| > (g(z:) — Es[g(2))])
9eG |5
1 n n
= Essolsmo —| D 9(z:) = D Es[g(=)] 1
9e6 i3 i=1
1 n
< ]ES,S/go[sup = E(g(zl) - f(z;))H (Jensen’s Inequality for ¢ osup | . |)
9€6 21
1 . .
=Ess =, @lsugp - Z oi(9(z;i) — g(z/i))H (9(zi) — g(z}) is symmetric)
9¢€ i=1
< 1IE s 2 Z (zi)| | + 5E s i
X 3 up — g; 7 o 4 u
5 S,2, P gegn ~ g S =P gegn ~
1 2| ¢ 1 S
=-Egs, p|sup— Zaig(zz) + —Eg' 5, ¢| sup — Z (Rademacher variables are symmetric)
2 geg N ] 2 geg N izl
2 n
=Esx, ¢ l sup — 2 0i9(2;) ] (S and S’ are identically distributed)
9€ i=1

= ES,E,L@[QRS’E"] :

F.4. Sub-Gaussianity of Rademacher Complexity

Definition F.7 (Sub-Gaussian Random Variable). Let X be a random variable with mean E[X] = p. X is then called
sub-Gaussian if there exists & > 0 such that:

1262
Mx(t) < exp (t,u + 6), vt > 0, (72)

where M x denotes the moment generating function of X. We call X a sub-Gaussian random variable with variance proxy
€2, denoted as X € SG(&?).

Lemma F.8 ((Boucheron et al., 2013), Theorem 2.1). Let X be a random variable with mean E[X ] = p. If there exists
& > 0 such that the following holds:

2
]P’(|X—,u|>t)<2exp<—2£2>, (73)
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then the random variable X is sub-Gaussian. Specifically, X € Sg(16§2).
Proof. Let Z = X — u be the centered random variable derived by translating X by its mean. Firstly, we prove that Eqn.
(73) implies that E| Z|? < ¢!(4¢%)7 for all integers ¢ > 1. Using the identity E|Z|? = {;’ qt?~'P(|Z| > t)dt, we have:

0
E| 7| = QqJ; PI1B( 2] > )dt

o0 ) L t2
< 4qJ. t“ITrexp [ — = |dt.
0 2¢2

Letting u = %, hence t? = 2ué? and dt = 52%, the above integral becomes:
Q0
E|Z)%? < 4q§2f 24727 dy
0

0
= 4q§2f (2u€?)? te " du
0 o0

=2q- (252)‘1J ul™te "du
0
—_

I'(q)
= 2q1(26%)7 < q!(4€2)".

Let Z be the i.i.d. copy of Z. Hence, Z — Z is symmetric about 0, which means that E[(Z — Z)?] = 0 for odd-order
p-moments. Therefore, For all A > 0, we have:
Mz(N)M_5(A) = M,_5(\) (Due toindependence)
exp ()\(Z —Z ))

B A?qE[(Z - Z)QQ]

I
[t
+

By the convexity of f(z) = 224, forall t € (0, 1), we have:

~ 12¢q ~
[tZ (1 t)(—Z)] <t7% 4 (1 - t)2%.
Setting ¢ = 3, we have:

~ 12q 9 ~
_ q 2q - .
lZ Z} gﬂ — (Z_Z)2q<22q—1(z2q+z2q).

2

As a result, we have E[(Z — Z)%7] < 229~ Y(E[Z29] + E[Z?7]) = 229E[Z%4]. Plugging this back to the formula of
M, 5()\), we have:

N 0 2q92q 2q
E[e*]E[e ] <1+ 2 API2ME[Z7]

= (29)
o p o N M2
= (2!
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Since E[e~*#] > 1 forall A > 0 and

‘We have:

Therefore, we have:

2
Hence, by definition, we have X € SG(16£2) as desired. O
Lemma F.9. Let F be a class of bounded functions f : X — [0, M] and let S = {x1,...,x,} be sampled i.i.d. from a
given distribution P. Let X, = {01, ...,0,} be a sequence of independent Rademacher variables and define the following
random variable:
1 n
RE™ =sup| =} 0;f(x;)], (74)
feF M =1

which is a function of both S and X,,. Then, we have:

1 t2 2
Es s, exp (tRfT’Z"> < exp (tiﬁn(}') + 62;\/1), vVt >0,

where R, (F) is the expected Rademacher complexity, defined as R, (F) = Eg s, [Ri’g"].

Proof. Let S; be the copy of S with the 7** element replaced with x/, an 7.i.d. copy of x;. Similarly, let Eg) be the copy of
3, where the [*" element is replaced with o7, an i.i.d. copy of o;. Then, we have:

. 1 2M
(R~ R < swp | L0 — riy| < 22,
fer M n
0 2M
RSP — REF| < sup |~ f(x) (o — op)| < =
eF n

Hence, by McDiarmid’s inequality, we have:

P(‘R%Z"—%n(f)‘>t><2exp(— tQ ) vt > 0.

dn—TM2
Let &2 = % Then, by lemma F.8, the random variable Ri-’z" is sub-Gaussian with variance proxy of 16£2 = %
Hence, we have:
Es.x, exp (tR;iE”) < exp (tmn(f) + W) V¢ > 0,
as desired. O
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G. Further Discussions
G.1. Some Comments on the Differences between OQur Proof Strategy and that of Lei et al. (2023)

The core similarity of our work and Lei et al. (2023) is that we both bound the (empirical) Rademacher complexity of the
loss class, denoted as Rg(G) through the L, covering number of the following class:

H={(xx*,x7) = F0T| Fx) = fx0)| : f e F. (75)

Specifically, suppose that the loss is £*°-Lipschitz with constant 77 > 0 and bounded by M. By Dudley’s entropy integral
bound, we have:

M M
Rs(0) sf \/1HN(Q’;’ L2(9) 4 <J \/mN(H’E/Z’L‘”(SH))de, a>0. (76)

Where S is a set of n independent tuples and Sy, is the set of triplets incurred from S (See Lei et al. (2023), Section 4.2).
At this point, the difference lies in the methods by which we estimate N (, €/7, Lo (S% ). In our work, the Lo, covering
number of H is directly estimated by the L, » covering number of the representation function class F (Lemma D.12). In
Lei et al. (2023), the estimation is done via fat-shattering dimension and worst-case Rademacher complexity. Below, we
show how the additional costs in terms of n, k and their logarithmic terms propagate through complexity measures:

5 nk/e? In?(nk/e
e e

Ry e(H) fat, (H) D, N (H, €, Lo (S30)). (77)

where Ry ¢ (#) denotes the worst-case Rademacher complexity of . (note that Ry (H) € O(1/+/nk)) and fat, ()
denotes the fat-shattering dimension. This yields the final inequality (See Lei et al. (2023), Eqn. (C.6)):

€2 €2

26122 2
N (H, €/, L (Sag)) < TE B (D) | 2 (’7 "k> (78)

Effectively, this introduces an additional multiplicative factor of In(k) in the main results of Lei et al. (2023) (See Theorems
4.8 and 4.9 of Lei et al. (2023)).

We also note that the works in the similar lines of research as Arora et al. (2019) and Lei et al. (2023) deal with the 7.7.d.
tuples regime while our work is concerned with non-:.7.d. regimes. In this paper, we use similar arguments as Hoeffding
(1948) and Clémengon et al. (2008) to handle the non-i..d. nature of the tuples with recycled data. This requires estimating

each class-conditional risk independently, resulting in excess risk bounds of order O <1 / \/ N min (pmin, 1_"%) ) , which

are substantially different than those of Lei et al. (2023). In fact, the number N min (pmin, 1",’;““") in our bounds plays a
similar role as the number “n” in Lei et al. (2023) - the sample complexity for the number of disjoint tuples.

G.2. Extension of the Sub-sampling Procedure

In the procedure described in Section 3.3, the tuples are sub-sampled independently from the pool of “valid” tuples where
samples are unique within tuples. This means that the samples within each tuple are dependent conditionally given the full
sample x1,...,XyN (but independent without condition), whilst the tuples are independent with or without conditioning.
This approach corresponds to calculating U-statistics.

It is also possible to allow replacement within tuples, in which case the samples within each tuple would instead be
independent conditioned on the full sample x1,...,xxN but dependent if no conditioning is applied. This approach
corresponds to calculating V-statistics. Our techniques readily extend to this case and would only incur an additive term

2] 1
Of O < N min(pmin/Qy(1_pmax)/k) )
the one-sample case for simplicity. Specifically, let S = {x1,...,X,} be a random sample drawn .i.d. from a distribution

, which does not worsen the order of magnitude in our bounds. To see why, let us consider
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P over X and let h : XY™ — R be a symmetric kernel. The V-Statistics of order m of the kernel & is defined as:

1 n n
Va(h) = — D70 > h(Xips- o 0xi,). (79)
[ A g
Unlike U, (h), V,,(h) is generally not an unbiased estimator of Eh (X1, ..., X.,) due to the terms with repeated samples. By
Hoeffding (1948), we can write V;,(h) as follows:
n"™V,(h) = <n)Un(h) + 3 h(xiy, . Xi)- (80)
m 11:m€ [n] m\cm [”]
As aresult:
1
Va(h) = Un(h) = — > [A(%iys -5 Xi,,) = Un(B)], @®1)

i1:m €[n]™\Cm [n]

where |[n]™\Cy,[n]| € O(n™~1). Therefore, if |h(x1,. .., 2m)| < M forall x1,...,2,, € X, then V,,(h) — U, (h) €
O(M /n), which means the effect of biasedness dissipates when n increases. Therefore, while biasedness slightly complicates
analysis, we can leverage results on the concentration of U-statistics to study the concentration of V-statistics around the
population risk, with a small incurred cost.

G.3. Relevance to Semi-Supervised Contrastive Learning

The methods developed in this work is not directly tailored for semi-supervised or self-supervised regimes. However, we
note that they are reasonably extendable to those settings. In this section, we outline how the analytical techniques used in
this paper can be adapted to semi/self-supervised representation learning. Suppose that there exists a distribution P over
X x C where X denotes the data space and C denotes the labels space (which is accessible to the learner). In semi-supervised
classification, two sets of data S = {(x,y;)}}_; ~ P" and Sy = {(u;,y;)}]L; ~ P™ are given. While both S, St; are
drawn i.i.d. from P, the labels (7;) e are hidden, making Sy unlabeled. In general, the overall risk for a representation
functions f € F is a combination of both supervised and unsupervised risks. As the supervised risk has been well-studied
(Bartlett et al., 2017; Golowich et al., 2017; Long & Sedghi, 2020; Wei & Ma, 2020; Ledent et al., 2021), we focus on the
possible formulations of unsupervised risk below instead.

Consistency regularization (Sajjadi et al., 2016; Chen et al., 2020): Under this regime, the unsupervised loss aims to
ensure consistency of representations under different augmentations of inputs. Specifically, let A be a distribution over
augmentation schemes, the unsupervised risk can be defined as

L) =E wop [ |flalu]) = fa* [u)] | (82)

a,at~A%

where || - || is a distance measure in R%. Under this regime, we are implicitly given a set of augmented pairs Sp;'® =
{(a;[u;], o [u;])}72, drawn i.id. from a distribution dependent on both P, A (where ;s are drawn i.i.d. from A). Here,
the loss function only relies on augmented views a(x) and a™ (z) which comes from the same natural sample, which
precludes reusing natural samples in different pairs/tuples. Thus, we can analyze this regime using standard results in
learning theory without the decoupling technique.

Self-supervised CL (HaoChen et al., 2021; Wang et al., 2022; Huang et al., 2023): In this case, the unsupervised risk can
be defined as

LaolD) =B e s [(({ 7B [7(0* ) — sa0 D]} )] 53)

i=1
+ k+2
a,am By~ A

Intuitively, the augmented views of the same input should be similar to each other while being dissimilar to augmented
views of other samples. Since Sy consists of i.i.d. data points in this setting, it is natural to formulate a (k + 2)-order
U-Statistics from Sy7, generalizing our results to this setting. While such a learning setting involves reused samples, the lack
of supervised information removes much of the subtleties of class-collision in our work. Thus, the analysis would be close to
(a k-wise extension of) Clémencon et al. (2008), making the result simpler than our case when class constraints are present.
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