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Abstract

As large language models (LLMs) are widely
deployed, targeted editing of their knowledge
has become a critical challenge. Recently, ad-
vancements in model editing techniques, such
as Rank-One Model Editing (ROME) (Meng
et al., 2022a), have paved the way for updating
LLMs with new knowledge. However, the ef-
ficacy of these methods varies across different
types of knowledge. This study investigates the
capability of knowledge editing methods to in-
corporate new knowledge with varying degrees
of "perplexingness"”, a term we use to describe
the initial difficulty LLMs have in understand-
ing new concepts. We begin by quantifying the
"perplexingness" of target knowledge using pre-
edit conditional probabilities, and assess the
efficacy of edits through post-edit conditional
probabilities. Utilizing the widely-used COUN-
TERFACT dataset (Meng et al., 2022a), we find
significant negative correlations between the
"perplexingness" of the new knowledge and the
edit efficacy across all 12 scenarios. To dive
deeper into this phenomenon, we introduce a
novel dataset, HIERARCHYDATA, consisting
of 99 hyponym-hypernym pairs across diverse
categories. Our analysis reveal that more ab-
stract concepts (hypernyms) tend to be more
perplexing than their specific counterparts (hy-
ponyms). Further exploration into the influence
of knowledge hierarchy on editing outcomes
indicates that knowledge positioned at higher
hierarchical levels is more challenging to mod-
ify in some scenarios. Our research highlights
a previously overlooked aspect of LLM editing:
the variable efficacy of editing methods in han-
dling perplexing knowledge. By revealing how
hierarchical relationships can influence editing
outcomes, our findings offer new insights into
the challenges of updating LLMs and pave the
way for more nuanced approaches to model
editing in the future.
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Figure 2: Two examples in our HIERARCHYDATA
dataset, along a hierachy chain.

1 Introduction

Large language models (LLMs) possess the capa-
bility to predict factual statements about the world,
and recent advancements have enabled the editing
of the factual knowledge embedded within these
models. Such editing not only aids in rectifying
inaccuracies within the large language models but
also serves as a valuable approach for comprehend-
ing the complex mechanisms of these extensive,
often opaque, neural networks. Among the various
methodologies for knowledge editing, Rank-One
Model Editing (ROME) (Meng et al., 2022a) and
Mass-Editing Memory In a Transformer (MEMIT)
(Meng et al., 2022b) stand out as notable ones.

Knowledge editing methods show great poten-
tial for controlling LLMs. As researchers deploy
the knowledge editing methods, it is increasingly
important to know the boundary of the capacities
of the knowledge editing methods.

In this paper, we try to answer this question: Is
the perplexing knowledge more difficult to edit?



We explore knowledge editing methods within
the context of their ability to update new infor-
mation, with a specific emphasis on the notion of
"perplexingness”. This concept serves to gauge the
initial challenge faced by LLMs when encountering
new or unfamiliar information. By assessing the
"perplexingness" of the target knowledge through
pre-edit conditional probabilities and evaluating the
efficacy of these edits through post-edit conditional
probabilities, our research endeavors to illuminate
the intricate dynamics involved in the process of
updating knowledge within LLMs.

Leveraging the COUNTERFACT dataset,
we investigate various knowledge editing
approaches—including  Fine-Tuning (FD),

Low-Rank Adaptation (LoRA), ROME, and
MEMIT—applied to models such as GPT2-Large,
GPT2-XL, and GPT-J (6B). Our research identifies
significant negative correlations between the
"perplexingness" of new knowledge and the edit
efficacy across a spectrum of scenarios.

To deepen our comprehension of the elements
that influence "perplexingness", we introduce
the HTERARCHYDATA dataset, comprised of 99
hyponym-hypernym pairs spanning a variety of
categories. Our analysis demonstrates that hierar-
chical relations significantly affect the knowledge
"perplexingness” in the models. Abstract concepts
(hypernyms) tend to present a higher level of "per-
plexingness" compared to their more specific coun-
terparts (hyponyms). Additionally, we analyze the
relationships between "perplexingness" and edit
efficacy, as well as the relationships between hier-
archical relations and edit efficacy.

Figure 1 illustrates the overall structure of fac-
tors that may influence the efficacy of edits. In
this paper, we contribute a novel perspective on
LLM editing by highlighting how the "perplexing-
ness" of knowledge affects the efficacy of edits.
Additionally, we develop the HIERARCHYDATA
dataset, which is the first to consider hierarchical
relations when editing knowledge in models. Our
findings indicate that hierarchical relations influ-
ence "perplexingness." As we continue to unravel
the complexities of editing LLMs, this research
serves as a foundation for future endeavors aimed
at refining and enhancing the adaptability of these
knowledge edit methods.

2 Related Work
2.1 Knowledge Edit Methods

Various approaches have been developed to modify
the knowledge embedded in large language models.
Rank-One Model Editing (ROME) (Meng et al.,
2022a) updated feed-forward weights to alter spe-
cific factual associations. MEMIT (Meng et al.,
2022b) allowed for the incorporation of numer-
ous memories into a language model. Low-Rank
Adaptation (LoRA) (Hu et al., 2021) maintains
pre-trained weights while using trainable decompo-
sition matrices for efficient, targeted updates with-
out altering the original weights. Model Editor
Networks with Gradient Decomposition (MEND)
(Mitchell et al., 2021) utilized a single targeted
input-output pair for quick, localized adjustments
in a pre-trained model’s behavior. Other notable
methods include editing specific knowledge neu-
rons (Dai et al., 2021), employing hyper-networks
(De Cao et al., 2021), and applying linear trans-
formations (?). These techniques have demon-
strated impressive efficacy in modifying knowledge
in large language models. There are also works that
apply model editing to gain novel insights about
the model interpretability (Niu et al., 2024; Hase
et al., 2024). However, the performance of the
model editing techniques is typically assessed in
a broad context. We delve into whether model
editing methods are applicable to knowledge with
different "perplexingness". We specifically exam-
ine the impact of the conditional probability of the
target words for editing and the hierarchical rela-
tionships among words on the overall performance
of these editing techniques.

2.2 Limitation of Knowledge Edit Methods

Recent research has identified certain limitations in
the methods used for editing large language mod-
els. Firstly, some studies have concentrated on the
specificity of edits, developing new metrics and
benchmarks for evaluation. Hoelscher-Obermaier
et al. (2023) enhanced existing benchmarks by in-
troducing a dynamic component and proposed a KL
divergence-based metric for measuring specificity.
Li et al. (2023) introduced an evaluation protocol
and a question-answer dataset designed to assess
edit specificity.

Secondly, the consistency of edits has been an-
other focal point. Zhong et al. (2023) devised a
multi-hop question benchmark to test whether mod-
els can correctly respond to questions affected by



edited facts. Wu et al. (2023) examined knowl-
edge editing through reasoning and cross-lingual
knowledge transfer. Ma et al. (2024) looked into if
edited LLMs can behave consistently resembling
communicative Al in realistic situations. Li et al.
(2023) also offered a protocol to evaluate edit con-
sistency, while Onoe et al. (2023) investigated the
ability of Large Language Models to infer and prop-
agate injected facts. Rosati et al. (2024) introduced
a long-form evaluation protocol, assessing the ef-
fects of model editing beyond the immediate “next
token”; we consider the effects of the model editing
methods that can be assessed at the next token.

Thirdly, the nature of the edited knowledge has
been scrutinized. Gupta et al. (2023) specifically
evaluated editing methods on commonsense knowl-
edge statements, as opposed to encyclopedic knowl-
edge. Ma et al. (2024) examined which knowledge
features are correlated with the performance and
robustness of editing.

While these studies cover various aspects, only a
few delve into the impact of the type of knowledge
being edited. In this paper, we explore how the
"perplexingness" of the knowledge and the hierar-
chical relations among words influence the efficacy
of editing methods in large language models.

3 Model Edit Methods

For a knowledge edit task, we represent each fact
as a knowledge tuple ¢ = (s,r,0). For each
fact, we want to insert a new knowledge tuple
t = (s,r,0"). Recent studies explored different
ways to edit knowledge, including Fine-Tuning
(FT), Low-Rank Adaptation (LoRA), Rank-One
Model Editing (ROME) and Mass-Editing Mem-
ory In a Transformer (MEMIT).

Fine-Tuning (FT) This traditional method in-
volves applying Adam optimization (Kingma and
Ba, 2014) with early stopping at one layer to edit
knowledge. It directly adjusts the weights of the
model through backpropagation, affecting the en-
tire layer where the edit is applied.

Low-Rank Adaptation (LoRA) (Hu et al., 2021)
Unlike FT, LoRA freezes the pre-trained model
weights and introduces trainable rank decomposi-
tion matrices at each layer of the Transformer. This
method significantly reduces the number of train-
able parameters needed for editing, focusing on a
more efficient and targeted update mechanism with-
out altering the original model weights directly.

Rank-One Model Editing (ROME) (Meng et al.,
2022a) ROME specifically targets the feed-
forward weights within the Transformer’s MLP lay-
ers, viewing them as associative memory. By com-
puting and inserting a key-value pair (k, v) into this
memory through a constrained least-squares prob-
lem, ROME offers a precise and efficient way to
update factual knowledge. This method focuses on
modifying specific factual associations with mini-
mal impact on the overall model.

Mass-Editing Memory In a Transformer
(MEMIT) (Meng et al., 2022b) Building on the
direct editing approach of ROME, MEMIT is de-
signed for large-scale updates, capable of handling
thousands of associations. It directly targets trans-
former module weights identified as causal media-
tors of factual knowledge recall, aiming for a broad
and scalable editing solution.

In summary, while FT and LoRA focus on gen-
eral model adjustments with varying degrees of pa-
rameter freedom, ROME and MEMIT offer more
targeted and efficient approaches to knowledge edit-
ing, with MEMIT specifically designed for mass-
editing scenarios.

4 Data and tool

4.1 Data

CounterFact (Meng et al., 2022a) is a dataset
designed to assess counterfactual edits in language
models. It includes a collection of challenging
incorrect facts (s,r,0*) and the accurate facts
(s,r,0). In this context, s represents the subject,
r delineates the relation, and o corresponds to the
object. The prompt consists of predetermined tem-
plates based on r, which are then completed with s.
For instance, in the statement "A British Shorthair
is a kind of cat", "A British Shorthair" represents s,
"is a kind of" signifies r, and "cat" is denoted by o.

HierarchyData encompasses a series of both
challenging incorrect facts, represented as
(s,r,0%), and their corresponding accurate facts,
denoted as (s,r,0). It also draws upon a curated
collection of hierarchy chains, as illustrated in
Figure 2. Here, s signifies the subject and o the
object, both selected from the hierarchy chains.
The relation r consistently adopts the "is a kind
of" schema, emphasizing hierarchical connections.
This dataset is organized into two hierarchical
levels: specific level (hyponyms), and abstract
level (hypernyms). An example of such a hierarchy



chain is "British Shorthair — Cat — Animal"
from which we can infer the specific relationship
"A British Shorthair is a kind of cat" and the
more abstract relationship "A cat is a kind of
animal." The focal point of our investigation is to
assess the performance of editing methodologies
on these two distinct types of facts within the
hierarchical framework, exploring whether the
level of abstraction within the hierarchy affects
editing efficacy. To this end, we modify the objects
of these facts individually, generating altered
facts such as "A British Shorthair is a kind of
dog" and "A cat is a kind of plant" to test the
efficacy of edit methods against the backdrop of
hierarchical data complexity. The HIERARCHY
DATA dataset includes approximately 99 such
chains, culminating in a corpus of 198 facts
targeted for editing analysis. This structured
approach facilitates explorations into the role
of hierarchical relations in the adaptability and
accuracy of language model editing processes.

4.2 Tool

We employ four knowledge editing method: FT,
LoRA, ROME and MEMIT, sourced from the
EasyEdit repository (Wang et al., 2023) to conduct
our experiments.

S Experiment

The experiments conducted in this study are de-
signed to evaluate the efficacy of several knowledge
editing methods, including FT, LoRA, ROME, and
MEMIT. Our approach involves the substitution
of a knowledge tuple, denoted as (s, r, 0*), for the
existing tuple (s, r, o). In this context, s represents
the subject, r delineates the relation, and o corre-
sponds to the object. This analysis is carried out
using three distinguished large language models:
GPT2-Large, GPT2-XL, and GPT-J (6B).

5.1 '"Perplexingness'' of Knowledge

First, we want to define perplexing knowledge. Peo-
ple find knowledge perplexing when they cannot
understand it. So we define the perplexing knowl-
edge as the knowledge that the model cannot eas-
ily understand. Therefore, we define perplexing
knowledge as knowledge that the model cannot
easily understand. We quantify the "perplexing-
ness" of knowledge as the conditional probabilities
of new targets prior to editing. For easier compari-
son, we use the negative log form of the probability:
the higher the value, the lower the probability, and

FT LoRA ROME MEMIT
GPT2-large 0.482* 0.236* 0.288*  0.640*
GPT2-XL 0.158* 0.324* 0.259*  0.486*
GPT-J 0.204* 0.203* 0.062*  0.076*

Table 1: COUNTERFACT data Pearson correlation be-
tweeen "perplexingness" and edit efficacy (x indicates
corresponding entry has p-value below 0.05).

the more perplexing the model finds the new knowl-
edge.

It is important to note that we define ‘perplexing-
ness’ based on the model’s poor understanding of
the knowledge, not its complexity. Even if a piece
of knowledge is complex, if it is well known to
the model due to effective pre-training, we do not
consider it perplexing to the model.

Second, we evaluate the edit performance by its
efficacy. Here, the efficacy of edits is defined as
the conditional probabilities of new targets after
the edit. We also express these conditional proba-
bilities in the form of negative logarithms for more
intuitive data interpretation. A lower "Efficacy"
value indicates greater edit efficacy. The formulas
are presented as follows:

Perplexingness = —logPpre—cqit[0*]s, 7], (1)

Efficacy = —10gPyost—edit [0%[s, 7]. 2

The investigation into the perplexing knowledge
and the efficacy of edits employs the COUNTER-
FACT dataset. For each large language model, a
total of 2,000 data groupings were analyzed.

Correlations between ''perplexingness'' and edit
efficacy We chart the "perplexingness" (pre-edit
probabilities of the new target) against the efficacy
(post-edit probabilities of new target). The scatter
plots (see Appendix A) generated from this analysis
provide a visual representation of the relationship
between pre-edit and post-edit probabilities for the
new target outcomes. The left panel of Figure 3
provides an example of these scatter plots, show-
casing the application of MEMIT on GPT2-XL.
This visulaization clearly illustrates a positive cor-
relation between "perplexingness" of knowledge
and efficacy of edits.

Correlations are significant To quantify this re-
lationship, Pearson correlation coefficients are com-
puted and are presented in Table 1. Additionally,



to assess the statistical significance of these cor-
relations, p-values are calculated. Entries corre-
sponding to p-values falling below the significance
threshold of 0.05 are marked with * within the ta-
ble.

It is observed that all the coefficients’ p-values
are beneath the 0.05 threshold, thereby indicating
a statistically significant correlation between "per-
plexingness" and edit efficacy. This means that
when a model finds new knowledge very per-
plexing, it is difficult to incorporate this knowl-
edge into the model. Similarly, a person might
be resistant to learning something they find hard to
understand.

Furthermore, the analysis reveals that certain
scenarios exhibit high Pearson coefficients, such
as the application of MEMIT to the GPT-2 large
model. This variance could stem from the possibil-
ity that different models encode "perplexingness"
in distinct manners, and that editing methods may
interact with this "perplexingness" uniquely.

Correlation is in the new knowledge but not the
original knowledge Our analysis specifically fo-
cuses on the conditional probabilities of newly in-
troduced knowledge (s, r,0*), as opposed to the
original knowledge (s, r, 0) that stored in the lan-
guage models. Early efforts to evaluate the condi-
tional probabilities of the original knowledge did
not show any significant correlation with the edit-
ing process, suggesting a mostly arbitrary relation-
ship.

5.2 Hierarchical relations

To enhance our understanding of the factors con-
tributing to "perplexingness", we introduce a
dataset named HIERARCHYDATA. This dataset
is aimed at investigating whether hierarchical rela-
tions between words can affect "perplexingness",
subsequently influencing the edit efficacy.

Significantly higher ''perplexingness'' of higher
hierarchy level knowledge Do hierarchical rela-
tions affect "perplexingness"? We divide the HIER-
ARCHYDATA into two groups: hypernyms (abstract
concepts) and hyponyms (specific concepts). For
example, a statement like "A British Shorthair is
a kind of cat" represents a specific level, while "A
cat is a kind of animal" exemplifies an abstract
level. To investigate the effect of hierarchical re-
lations on "perplexingness," we analyze these two
groups. The box plots are included in Appendix
D. We conduct t-tests for two independent samples

GPT2-Large
0.00728*

GPT2-XL GPT-J
0.00605*  1.330e — 06*

Table 2: Comparative analysis of "perplexingness" in
HIERARCHYDATA: t-test results for specific vs. abstract
level distributions (x indicates corresponding entry has
p-value below 0.05).

FT LoRA ROME MEMIT
GPT2-large 0.893* 0.886* 0.167* 0.575*
GPT2-XL 0.860* 0.856* 0.148*  0.381*
GPT-J 0.454* 0.755* 0.078 —0.019

Table 3: HIERARCHYDATA Pearson correlation be-
tweeen "perplexingness" and edit efficacy (x indicates
corresponding entry has p-value below 0.05)

to determine if the mean "perplexingness" of the
specific level is statistically lower than that of the
abstract level. The results of the t-tests are detailed
in Table 2, with all values demonstrating statistical
significance. Our findings indicate that knowledge
on a higher hierarchical level (more abstract) is
associated with greater ''perplexingness'' for the
models. This suggests that hierarchical relations
are a factor affecting knowledge "perplexingness"”
for language models.

Correlations between ''perplexingness'' and edit
efficacy Next, we aim to determine if the corre-
lation between "perplexingness" and edit efficacy
also holds for the HIERARCHYDATA dataset. We
employ the same method to analyze HIERARCHY-
DATA as analyzing COUNTERFACT, focusing on
the Pearson correlation coefficient between "per-
plexingness" and edit efficacy. The right panel
of Figure 3 provides one of the scatter plots (see
Appendix B for other plots), showcasing the appli-
cation of MEMIT on GPT2-XL. We also calculate
the Pearson coefficients, with the results presented
in Table 3. In this table, p-values below 0.05 are
marked with *, indicating statistical significance.
Our analysis reveals a consistent trend: an increase
in "perplexingness" correlates with poorer efficacy
of edits (higher negative log conditional probabil-
ity). This pattern holds true across all scenarios,
except when applying the ROME and MEMIT tech-
niques to the GPT-J model.

Relationships between hierarchical relations
and edit efficacy Additionally, we want to deter-
mine if hierarchical relations within the knowledge
ultimately affect the edit efficacy. Box plots (see
Appendix C) are constructed to visually compare
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Figure 3: Pre vs. post probability of new knowl-
edge (MEMIT on GPT2-XL). a.COUNTERFACT(left).
b.HIERARCHYDATA(right).

the efficacy across the two hierarchical levels. Fig-
ure 5 shows one of the examples. Furthermore,
we conduct t-tests on two independent samples to
determine whether the mean of the specific level
distribution is significantly lower than that of the ab-
stract level distribution. The p-values obtained are
documented in Table 4. This finding underscores
a markedly lower efficacy in editing knowledge
at higher hierarchical levels (more abstract knowl-
edge). Significantly, this discrepancy indicates that
hierarchical relationships profoundly affect the effi-
cacy of specific editing techniques, like ROME and
MEMIT, when applied to particular models, such
as GPT2-Large and GPT2-XL. For fine-tuning and
LoRA, the results do not appear to be significant,
possibly because these methods can address knowl-
edge at different hierarchical levels similarly. But,
how about GPT-J?

GPT-J can understand perplexing knowledge
better From the previous experiment, we observe
that GPT-J did not show any difference in edit ef-
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Figure 4: Same knowledge "perplexingness” in different
models (HIERARCHYDATA).

FT LoRA ROME MEMIT
GPT2-large 0.970 0.989 0.113 3.41le — 8*
GPT2-XL 0.972 0.958 0.0286* 8.14e — 6*
GPT-J 0.865 0.770  0.317 0.976

Table 4: Comparative analysis of efficacy in HIER-
ARCHYDATA: t-test results for specific vs. abstract
level distributions (* indicates corresponding entry has
p-value below 0.05).

ficacy when editing higher hierarchy and lower
hierarchy knowledge. To determine if GPT-J finds
the same knowledge less perplexing compared to
GPT-2L and GPT-2XL, we generated a heatmap of
each knowledge’s ’perplexingness’ in the HIERAR-
CHYDATA for each model, as shown in Figure 4.
Each line represents a piece of knowledge in the
HIERARCHYDATA, sorted by "perplexingness" in
the GPT-2L model. We observed that GPT-J ap-
pears darker in the heatmap, indicating it finds the
same knowledge less perplexing.

To assess the statistical significance of this ob-
servation, we conduct paired t-tests comparing the
perplexingness values of GPT-J to those of GPT-
2L and GPT-2XL. The resulting p-values were
5.71le — 9 and 6.84e — 7, respectively, indicating a
very significant difference. This suggests that GPT-
J indeed finds the same knowledge less perplexing
than GPT-2L and GPT-2XL, implying that GPT-J
is more receptive to learning new things. Addi-
tionally, this means GPT-J can learn more beyond
hierarchical relationships, and various factors will
influence its edit efficacy.
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Figure 5: The post-edit probability (lower probability
means higher edit efficacy) of editing GPT2-XL with
MEMIT on specific vs. abstract knowledge in the HI-
ERARCHYDATA.

Lack of Significant Findings Across Knowledge
Categories Besides hierarchical relations, we
also try to find if categories of knowledge would
affect "perplexingness". We attempt to categorize
the data based on the types of knowledge; however,
this method does not yield any significant insights
related to "perplexingness".

6 Discussion

Do different models have different mechanisms
of saving perplexing knowledge? Our experi-
mental results reveal intriguing variations in how
different models handle perplexing knowledge, par-
ticularly in the context of editing. Specifically, the
application of ROME and MEMIT to GPT-J ex-
hibits a notably low Pearson correlation between
"perplexingness" and editing efficacy. Moreover,
within the HIERARCHYDATA context, these cor-
relations appear insignificant. Additionally, the
influence of hierarchical relations on the editing ef-
ficacy of ROME and MEMIT when applied to GPT-
J seems negligible. This suggests that GPT-J may
employ a unique mechanism for storing and pro-
cessing different hierarchy level knowledge com-
pared to other models. These differences highlight
the need to comprehend each model’s unique archi-
tecture and methods for handling perplexing con-
cepts, suggesting a move towards tailored editing
strategies.

Why should more abstract knowledge be harder
to edit? An intuition is that when editing to-
wards a hypernym (“animal” — “plant™), it is as-

sumed that the hyponym (“cat” — “plant”) is edited
as well, making the edit of hypernym inherently
harder. Yet, the dependent knowledge is usually
not edited, for popular editing methods (Li et al.,
2023).

Are there other factors that may influence the
""perplexingness''? The investigation into the re-
sponsiveness of different editing techniques to per-
plexing knowledge reveals that FT and LoRA are
seemingly unaffected by the hierarchical structure
of knowledge. Notably, there exists a pronounced
correlation between "perplexingness" and the ef-
ficacy of edits. This suggests that while FT and
LoRA are adept at navigating the hierarchical rela-
tionships among words, they falter when address-
ing the inherent "perplexingness" present within
the knowledge. This observation leads to the hy-
pothesis that additional factors, beyond hierarchical
complexity, play a pivotal role in influencing "per-
plexingness" when employing FT and LoRA for
knowledge editing.

More understanding of model editing The im-
pact of "perplexingness" on the efficacy of vari-
ous editing methodologies can vary significantly.
Moreover, the manner in which different models
interpret, process, and encode the "perplexingness"
of knowledge also differs. This suggests a complex
interplay between the editing methods used and the
intrinsic mechanisms of the models, underscoring
the need for a nuanced understanding of both to
optimize knowledge editing strategies.

Recommendations to future model editors a.
Future model editing efforts should pay attention
to understanding the nature of the knowledge being
edited, particularly its level of "perplexingness".
To aid in this endeavor, we have introduced a hier-
archy dataset designed to facilitate it. It is crucial
to ensure that editing methods are versatile and
effective across a diverse range of data types. b.
Moreover, adopting different editing approaches
tailored to the specificities of each model can sig-
nificantly enhance the success of edits. And when
edit hierarchy knowledge, we can try to use edit
methods like fine-tune or LoRA. It may dismiss the
influence of hierarchy data. c. Also, we should pay
attention to the side effect of knowledge edit.

Limitation a. In this paper, we focus on a short
hierarchy chain to facilitate the comparison be-
tween higher and lower hierarchy levels. We have
not yet explored longer hierarchy chains. b. The



experiment can be scaled up, including the use of
larger models and larger datasets. c. Additional
types of evaluation can be applied. For instance, we
could ask language models specific questions to de-
termine if the knowledge has actually been edited.
However, this approach is very labor-intensive and
was not implemented in this study.

7 Conclusion

In our study, we focus on the challenges of updat-
ing large language models (LLMs) with perplexing
knowledge. We meticulously define "perplexing-
ness" and efficacy respectively. Through a compre-
hensive analysis using the COUNTERFACT dataset,
we identify a significant negative correlation be-
tween the "perplexingness" of the new knowledge
and the efficacy of the edits across diverse sce-
narios. This core finding underscores the variable
efficacy of editing methods in handling knowledge
with different levels of initial "perplexingness".

Furthermore, we develop a specialized dataset
HIERARCHYDATA, consisting of hyponym-
hypernym pairs. This dataset, emphasizing
hierarchical relations, serves as a tool for a
more contextual evaluation of edit efficacy. We
undertake a thorough review of current knowledge
editing methodologies using this dataset. Our
findings reveal that abstract knowledge are
inherently more perplexing to LLMs than their
specific counterparts. Also, our investigation into
the impact of hierarchical knowledge structures on
edit outcomes reveal that more abstract knowledge
exhibits lower editing efficacy in some scenarios.
Our methodology and dataset collectively provide
a novel and rigorous approach to evaluating the
efficacy of knowledge edits, offering valuable
insights into the factors that contribute to their
success or failure.

Our investigation into the targeted editing of
knowledge within LLMs sheds light on a previ-
ously underexplored facet of model editing tech-
nology. The findings underscore the challenges
associated with editing knowledge that spans var-
ious levels of "perplexingness", revealing signifi-
cant discrepancies in editing efficacy. This research
not only enriches our understanding of the inher-
ent complexities in model editing but also sets a
foundational basis for the development of more
sophisticated editing methodologies in the future.
By pushing the boundaries of our current capabili-
ties, we move closer to achieving more refined and

precise manipulations of knowledge within these
advanced Al systems, marking a significant step
forward in the evolution of LLMs.
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A Correlation of "perplexingness'' and
efficacy in COUNTERFACT

We plot the "perplexingness" (pre-edit probabilities
of the new target) against the efficacy (post-edit
probabilities of the new target) to visually analyze
their relationship. This analysis is conducted using
the first 2000 groupings from the COUNTERFACT
dataset. Figure 6 displays the scatter plot for edit-
ing methods applied to GPT2-Large. Similarly,
Figure 7 presents the scatter plot for methods used
on GPT2-XL, and Figure 8 illustrates the scatter
plot for edits performed on GPT-J(6B).

B Correlation of '"perplexingness'' and
efficacy in HIERARCHYDATA

To visually explore the relationship between "per-
plexingness" and editing efficacy, we plot these
dimensions against each other using 198 group-
ings from the HIERARCHYDATA dataset. Figure 9
shows the scatter plot highlighting the effects of

editing methods on the GPT2-Large model. Like-
wise, Figure 10 demonstrates the scatter plot for the
GPT2-XL model, and Figure 11 displays the scatter
plot for edits on the GPT-J(6B) model, providing
a clear visual representation of how "perplexing-
ness" correlates with the efficacy of knowledge
edits across different models.

C Specific vs. Abstract Probability
Distribution in HIERARCHYDATA

We conduct a comparative analysis by plotting the
efficacy distributions for data at both specific and
abstract hierarchical levels, utilizing 198 groupings
from the HIERARCHYDATA dataset—comprising
an equal split of 99 specific-level instances and
99 abstract-level instances. Figure 12 showcases
the box plot for editing methods applied to the
GPT2-Large model. In a similar vein, Figure 13
displays the box plot for techniques employed on
the GPT2-XL model, while Figure 14 reveals the
box plot corresponding to edits made on the GPT-
J(6B) model.

D Pre-edit Specific vs. Abstract
Probability Distribution in
HIERARCHYDATA

We perform a comparative analysis of the "perplex-
ingness" across both specific and abstract hierar-
chical levels by plotting their distributions. This
analysis is based on 198 instances from the HI-
ERARCHYDATA dataset, evenly divided between
99 specific-level and 99 abstract-level cases. Fig-
ure 15 presents the box plots, illustrating the impact
of editing methods on the GPT2-Large, GPT2-XL,
and GPT-J(6B) models, thereby offering insights
into the variation of "perplexingness" across differ-
ent levels of hierarchy and models.


https://openreview.net/forum?id=2HJRwwbV3G
https://openreview.net/forum?id=2HJRwwbV3G
https://openreview.net/forum?id=2HJRwwbV3G

Pre vs. Post Probability of New Target (FT)
v

54
=
k]
H
23
s
2
22
3
8
a
3
g1
&

0

2.5 5.0 75 100 125 150 175 200
Pre-edit Probability of New Target
Pre vs. Post Probability of New Target (LoRA)
0.007 o .
0.006 M

0.005

0.004

0.003

0.002

Post-edit Probability of New Target

0.001

0.000

25 50 75 100 125 150 175 200
Pre-edit Probability of New Target

Pre vs. Post Probability of New Target (ROME)

Post-edit Probability of New Target
°
o
g

0.00
25 5.0 75 100 125 150 175 200
Pre-edit Probability of New Target
6 Pre vs. Post Probability of New Target (MEMIT)
.
14

Post-edit Probability of New Target

25 5.0 75 100 125 150 175 200
Pre-edit Probability of New Target

Figure 6: Pre vs. post probability of new knowledge
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left) b. LoRA (upper right) c. ROME (lower left) d.
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