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Abstract

As large language models (LLMs) are widely001
deployed, targeted editing of their knowledge002
has become a critical challenge. Recently, ad-003
vancements in model editing techniques, such004
as Rank-One Model Editing (ROME) (Meng005
et al., 2022a), have paved the way for updating006
LLMs with new knowledge. However, the ef-007
ficacy of these methods varies across different008
types of knowledge. This study investigates the009
capability of knowledge editing methods to in-010
corporate new knowledge with varying degrees011
of "perplexingness", a term we use to describe012
the initial difficulty LLMs have in understand-013
ing new concepts. We begin by quantifying the014
"perplexingness" of target knowledge using pre-015
edit conditional probabilities, and assess the016
efficacy of edits through post-edit conditional017
probabilities. Utilizing the widely-used COUN-018
TERFACT dataset (Meng et al., 2022a), we find019
significant negative correlations between the020
"perplexingness" of the new knowledge and the021
edit efficacy across all 12 scenarios. To dive022
deeper into this phenomenon, we introduce a023
novel dataset, HIERARCHYDATA, consisting024
of 99 hyponym-hypernym pairs across diverse025
categories. Our analysis reveal that more ab-026
stract concepts (hypernyms) tend to be more027
perplexing than their specific counterparts (hy-028
ponyms). Further exploration into the influence029
of knowledge hierarchy on editing outcomes030
indicates that knowledge positioned at higher031
hierarchical levels is more challenging to mod-032
ify in some scenarios. Our research highlights033
a previously overlooked aspect of LLM editing:034
the variable efficacy of editing methods in han-035
dling perplexing knowledge. By revealing how036
hierarchical relationships can influence editing037
outcomes, our findings offer new insights into038
the challenges of updating LLMs and pave the039
way for more nuanced approaches to model040
editing in the future.041

Figure 1: The whole structure: what influence the edit
efficacy.

Figure 2: Two examples in our HIERARCHYDATA
dataset, along a hierachy chain.

1 Introduction 042

Large language models (LLMs) possess the capa- 043

bility to predict factual statements about the world, 044

and recent advancements have enabled the editing 045

of the factual knowledge embedded within these 046

models. Such editing not only aids in rectifying 047

inaccuracies within the large language models but 048

also serves as a valuable approach for comprehend- 049

ing the complex mechanisms of these extensive, 050

often opaque, neural networks. Among the various 051

methodologies for knowledge editing, Rank-One 052

Model Editing (ROME) (Meng et al., 2022a) and 053

Mass-Editing Memory In a Transformer (MEMIT) 054

(Meng et al., 2022b) stand out as notable ones. 055

Knowledge editing methods show great poten- 056

tial for controlling LLMs. As researchers deploy 057

the knowledge editing methods, it is increasingly 058

important to know the boundary of the capacities 059

of the knowledge editing methods. 060

In this paper, we try to answer this question: Is 061

the perplexing knowledge more difficult to edit? 062
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We explore knowledge editing methods within063

the context of their ability to update new infor-064

mation, with a specific emphasis on the notion of065

"perplexingness". This concept serves to gauge the066

initial challenge faced by LLMs when encountering067

new or unfamiliar information. By assessing the068

"perplexingness" of the target knowledge through069

pre-edit conditional probabilities and evaluating the070

efficacy of these edits through post-edit conditional071

probabilities, our research endeavors to illuminate072

the intricate dynamics involved in the process of073

updating knowledge within LLMs.074

Leveraging the COUNTERFACT dataset,075

we investigate various knowledge editing076

approaches—including Fine-Tuning (FT),077

Low-Rank Adaptation (LoRA), ROME, and078

MEMIT—applied to models such as GPT2-Large,079

GPT2-XL, and GPT-J (6B). Our research identifies080

significant negative correlations between the081

"perplexingness" of new knowledge and the edit082

efficacy across a spectrum of scenarios.083

To deepen our comprehension of the elements084

that influence "perplexingness", we introduce085

the HIERARCHYDATA dataset, comprised of 99086

hyponym-hypernym pairs spanning a variety of087

categories. Our analysis demonstrates that hierar-088

chical relations significantly affect the knowledge089

"perplexingness" in the models. Abstract concepts090

(hypernyms) tend to present a higher level of "per-091

plexingness" compared to their more specific coun-092

terparts (hyponyms). Additionally, we analyze the093

relationships between "perplexingness" and edit094

efficacy, as well as the relationships between hier-095

archical relations and edit efficacy.096

Figure 1 illustrates the overall structure of fac-097

tors that may influence the efficacy of edits. In098

this paper, we contribute a novel perspective on099

LLM editing by highlighting how the "perplexing-100

ness" of knowledge affects the efficacy of edits.101

Additionally, we develop the HIERARCHYDATA102

dataset, which is the first to consider hierarchical103

relations when editing knowledge in models. Our104

findings indicate that hierarchical relations influ-105

ence "perplexingness." As we continue to unravel106

the complexities of editing LLMs, this research107

serves as a foundation for future endeavors aimed108

at refining and enhancing the adaptability of these109

knowledge edit methods.110

2 Related Work 111

2.1 Knowledge Edit Methods 112

Various approaches have been developed to modify 113

the knowledge embedded in large language models. 114

Rank-One Model Editing (ROME) (Meng et al., 115

2022a) updated feed-forward weights to alter spe- 116

cific factual associations. MEMIT (Meng et al., 117

2022b) allowed for the incorporation of numer- 118

ous memories into a language model. Low-Rank 119

Adaptation (LoRA) (Hu et al., 2021) maintains 120

pre-trained weights while using trainable decompo- 121

sition matrices for efficient, targeted updates with- 122

out altering the original weights. Model Editor 123

Networks with Gradient Decomposition (MEND) 124

(Mitchell et al., 2021) utilized a single targeted 125

input-output pair for quick, localized adjustments 126

in a pre-trained model’s behavior. Other notable 127

methods include editing specific knowledge neu- 128

rons (Dai et al., 2021), employing hyper-networks 129

(De Cao et al., 2021), and applying linear trans- 130

formations (?). These techniques have demon- 131

strated impressive efficacy in modifying knowledge 132

in large language models. There are also works that 133

apply model editing to gain novel insights about 134

the model interpretability (Niu et al., 2024; Hase 135

et al., 2024). However, the performance of the 136

model editing techniques is typically assessed in 137

a broad context. We delve into whether model 138

editing methods are applicable to knowledge with 139

different "perplexingness". We specifically exam- 140

ine the impact of the conditional probability of the 141

target words for editing and the hierarchical rela- 142

tionships among words on the overall performance 143

of these editing techniques. 144

2.2 Limitation of Knowledge Edit Methods 145

Recent research has identified certain limitations in 146

the methods used for editing large language mod- 147

els. Firstly, some studies have concentrated on the 148

specificity of edits, developing new metrics and 149

benchmarks for evaluation. Hoelscher-Obermaier 150

et al. (2023) enhanced existing benchmarks by in- 151

troducing a dynamic component and proposed a KL 152

divergence-based metric for measuring specificity. 153

Li et al. (2023) introduced an evaluation protocol 154

and a question-answer dataset designed to assess 155

edit specificity. 156

Secondly, the consistency of edits has been an- 157

other focal point. Zhong et al. (2023) devised a 158

multi-hop question benchmark to test whether mod- 159

els can correctly respond to questions affected by 160
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edited facts. Wu et al. (2023) examined knowl-161

edge editing through reasoning and cross-lingual162

knowledge transfer. Ma et al. (2024) looked into if163

edited LLMs can behave consistently resembling164

communicative AI in realistic situations. Li et al.165

(2023) also offered a protocol to evaluate edit con-166

sistency, while Onoe et al. (2023) investigated the167

ability of Large Language Models to infer and prop-168

agate injected facts. Rosati et al. (2024) introduced169

a long-form evaluation protocol, assessing the ef-170

fects of model editing beyond the immediate “next171

token”; we consider the effects of the model editing172

methods that can be assessed at the next token.173

Thirdly, the nature of the edited knowledge has174

been scrutinized. Gupta et al. (2023) specifically175

evaluated editing methods on commonsense knowl-176

edge statements, as opposed to encyclopedic knowl-177

edge. Ma et al. (2024) examined which knowledge178

features are correlated with the performance and179

robustness of editing.180

While these studies cover various aspects, only a181

few delve into the impact of the type of knowledge182

being edited. In this paper, we explore how the183

"perplexingness" of the knowledge and the hierar-184

chical relations among words influence the efficacy185

of editing methods in large language models.186

3 Model Edit Methods187

For a knowledge edit task, we represent each fact188

as a knowledge tuple t = (s, r, o). For each189

fact, we want to insert a new knowledge tuple190

t = (s, r, o∗). Recent studies explored different191

ways to edit knowledge, including Fine-Tuning192

(FT), Low-Rank Adaptation (LoRA), Rank-One193

Model Editing (ROME) and Mass-Editing Mem-194

ory In a Transformer (MEMIT).195

Fine-Tuning (FT) This traditional method in-196

volves applying Adam optimization (Kingma and197

Ba, 2014) with early stopping at one layer to edit198

knowledge. It directly adjusts the weights of the199

model through backpropagation, affecting the en-200

tire layer where the edit is applied.201

Low-Rank Adaptation (LoRA) (Hu et al., 2021)202

Unlike FT, LoRA freezes the pre-trained model203

weights and introduces trainable rank decomposi-204

tion matrices at each layer of the Transformer. This205

method significantly reduces the number of train-206

able parameters needed for editing, focusing on a207

more efficient and targeted update mechanism with-208

out altering the original model weights directly.209

Rank-One Model Editing (ROME) (Meng et al., 210

2022a) ROME specifically targets the feed- 211

forward weights within the Transformer’s MLP lay- 212

ers, viewing them as associative memory. By com- 213

puting and inserting a key-value pair (k, v) into this 214

memory through a constrained least-squares prob- 215

lem, ROME offers a precise and efficient way to 216

update factual knowledge. This method focuses on 217

modifying specific factual associations with mini- 218

mal impact on the overall model. 219

Mass-Editing Memory In a Transformer 220

(MEMIT) (Meng et al., 2022b) Building on the 221

direct editing approach of ROME, MEMIT is de- 222

signed for large-scale updates, capable of handling 223

thousands of associations. It directly targets trans- 224

former module weights identified as causal media- 225

tors of factual knowledge recall, aiming for a broad 226

and scalable editing solution. 227

In summary, while FT and LoRA focus on gen- 228

eral model adjustments with varying degrees of pa- 229

rameter freedom, ROME and MEMIT offer more 230

targeted and efficient approaches to knowledge edit- 231

ing, with MEMIT specifically designed for mass- 232

editing scenarios. 233

4 Data and tool 234

4.1 Data 235

CounterFact (Meng et al., 2022a) is a dataset 236

designed to assess counterfactual edits in language 237

models. It includes a collection of challenging 238

incorrect facts (s, r, o∗) and the accurate facts 239

(s, r, o). In this context, s represents the subject, 240

r delineates the relation, and o corresponds to the 241

object. The prompt consists of predetermined tem- 242

plates based on r, which are then completed with s. 243

For instance, in the statement "A British Shorthair 244

is a kind of cat", "A British Shorthair" represents s, 245

"is a kind of" signifies r, and "cat" is denoted by o. 246

HierarchyData encompasses a series of both 247

challenging incorrect facts, represented as 248

(s, r, o∗), and their corresponding accurate facts, 249

denoted as (s, r, o). It also draws upon a curated 250

collection of hierarchy chains, as illustrated in 251

Figure 2. Here, s signifies the subject and o the 252

object, both selected from the hierarchy chains. 253

The relation r consistently adopts the "is a kind 254

of" schema, emphasizing hierarchical connections. 255

This dataset is organized into two hierarchical 256

levels: specific level (hyponyms), and abstract 257

level (hypernyms). An example of such a hierarchy 258
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chain is "British Shorthair → Cat → Animal"259

from which we can infer the specific relationship260

"A British Shorthair is a kind of cat" and the261

more abstract relationship "A cat is a kind of262

animal." The focal point of our investigation is to263

assess the performance of editing methodologies264

on these two distinct types of facts within the265

hierarchical framework, exploring whether the266

level of abstraction within the hierarchy affects267

editing efficacy. To this end, we modify the objects268

of these facts individually, generating altered269

facts such as "A British Shorthair is a kind of270

dog" and "A cat is a kind of plant" to test the271

efficacy of edit methods against the backdrop of272

hierarchical data complexity. The HIERARCHY273

DATA dataset includes approximately 99 such274

chains, culminating in a corpus of 198 facts275

targeted for editing analysis. This structured276

approach facilitates explorations into the role277

of hierarchical relations in the adaptability and278

accuracy of language model editing processes.279

4.2 Tool280

We employ four knowledge editing method: FT,281

LoRA, ROME and MEMIT, sourced from the282

EasyEdit repository (Wang et al., 2023) to conduct283

our experiments.284

5 Experiment285

The experiments conducted in this study are de-286

signed to evaluate the efficacy of several knowledge287

editing methods, including FT, LoRA, ROME, and288

MEMIT. Our approach involves the substitution289

of a knowledge tuple, denoted as (s, r, o∗), for the290

existing tuple (s, r, o). In this context, s represents291

the subject, r delineates the relation, and o corre-292

sponds to the object. This analysis is carried out293

using three distinguished large language models:294

GPT2-Large, GPT2-XL, and GPT-J (6B).295

5.1 "Perplexingness" of Knowledge296

First, we want to define perplexing knowledge. Peo-297

ple find knowledge perplexing when they cannot298

understand it. So we define the perplexing knowl-299

edge as the knowledge that the model cannot eas-300

ily understand. Therefore, we define perplexing301

knowledge as knowledge that the model cannot302

easily understand. We quantify the "perplexing-303

ness" of knowledge as the conditional probabilities304

of new targets prior to editing. For easier compari-305

son, we use the negative log form of the probability:306

the higher the value, the lower the probability, and307

FT LoRA ROME MEMIT
GPT2-large 0.482∗ 0.236∗ 0.288∗ 0.640∗

GPT2-XL 0.158∗ 0.324∗ 0.259∗ 0.486∗

GPT-J 0.204∗ 0.203∗ 0.062∗ 0.076∗

Table 1: COUNTERFACT data Pearson correlation be-
tweeen "perplexingness" and edit efficacy (∗ indicates
corresponding entry has p-value below 0.05).

the more perplexing the model finds the new knowl- 308

edge. 309

It is important to note that we define ‘perplexing- 310

ness’ based on the model’s poor understanding of 311

the knowledge, not its complexity. Even if a piece 312

of knowledge is complex, if it is well known to 313

the model due to effective pre-training, we do not 314

consider it perplexing to the model. 315

Second, we evaluate the edit performance by its 316

efficacy. Here, the efficacy of edits is defined as 317

the conditional probabilities of new targets after 318

the edit. We also express these conditional proba- 319

bilities in the form of negative logarithms for more 320

intuitive data interpretation. A lower "Efficacy" 321

value indicates greater edit efficacy. The formulas 322

are presented as follows: 323

Perplexingness = −logPpre−edit[o
∗|s, r], (1) 324

Efficacy = −logPpost−edit[o
∗|s, r]. (2) 325

The investigation into the perplexing knowledge 326

and the efficacy of edits employs the COUNTER- 327

FACT dataset. For each large language model, a 328

total of 2,000 data groupings were analyzed. 329

Correlations between "perplexingness" and edit 330

efficacy We chart the "perplexingness"(pre-edit 331

probabilities of the new target) against the efficacy 332

(post-edit probabilities of new target). The scatter 333

plots (see Appendix A) generated from this analysis 334

provide a visual representation of the relationship 335

between pre-edit and post-edit probabilities for the 336

new target outcomes. The left panel of Figure 3 337

provides an example of these scatter plots, show- 338

casing the application of MEMIT on GPT2-XL. 339

This visulaization clearly illustrates a positive cor- 340

relation between "perplexingness" of knowledge 341

and efficacy of edits. 342

Correlations are significant To quantify this re- 343

lationship, Pearson correlation coefficients are com- 344

puted and are presented in Table 1. Additionally, 345
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to assess the statistical significance of these cor-346

relations, p-values are calculated. Entries corre-347

sponding to p-values falling below the significance348

threshold of 0.05 are marked with ∗ within the ta-349

ble.350

It is observed that all the coefficients’ p-values351

are beneath the 0.05 threshold, thereby indicating352

a statistically significant correlation between "per-353

plexingness" and edit efficacy. This means that354

when a model finds new knowledge very per-355

plexing, it is difficult to incorporate this knowl-356

edge into the model. Similarly, a person might357

be resistant to learning something they find hard to358

understand.359

Furthermore, the analysis reveals that certain360

scenarios exhibit high Pearson coefficients, such361

as the application of MEMIT to the GPT-2 large362

model. This variance could stem from the possibil-363

ity that different models encode "perplexingness"364

in distinct manners, and that editing methods may365

interact with this "perplexingness" uniquely.366

Correlation is in the new knowledge but not the367

original knowledge Our analysis specifically fo-368

cuses on the conditional probabilities of newly in-369

troduced knowledge (s, r, o∗), as opposed to the370

original knowledge (s, r, o) that stored in the lan-371

guage models. Early efforts to evaluate the condi-372

tional probabilities of the original knowledge did373

not show any significant correlation with the edit-374

ing process, suggesting a mostly arbitrary relation-375

ship.376

5.2 Hierarchical relations377

To enhance our understanding of the factors con-378

tributing to "perplexingness", we introduce a379

dataset named HIERARCHYDATA. This dataset380

is aimed at investigating whether hierarchical rela-381

tions between words can affect "perplexingness",382

subsequently influencing the edit efficacy.383

Significantly higher "perplexingness" of higher384

hierarchy level knowledge Do hierarchical rela-385

tions affect "perplexingness"? We divide the HIER-386

ARCHYDATA into two groups: hypernyms (abstract387

concepts) and hyponyms (specific concepts). For388

example, a statement like "A British Shorthair is389

a kind of cat" represents a specific level, while "A390

cat is a kind of animal" exemplifies an abstract391

level. To investigate the effect of hierarchical re-392

lations on "perplexingness," we analyze these two393

groups. The box plots are included in Appendix394

D. We conduct t-tests for two independent samples395

GPT2-Large GPT2-XL GPT-J
0.00728∗ 0.00605∗ 1.330e− 06∗

Table 2: Comparative analysis of "perplexingness" in
HIERARCHYDATA: t-test results for specific vs. abstract
level distributions (∗ indicates corresponding entry has
p-value below 0.05).

FT LoRA ROME MEMIT
GPT2-large 0.893∗ 0.886∗ 0.167∗ 0.575∗

GPT2-XL 0.860∗ 0.856∗ 0.148∗ 0.381∗

GPT-J 0.454∗ 0.755∗ 0.078 −0.019

Table 3: HIERARCHYDATA Pearson correlation be-
tweeen "perplexingness" and edit efficacy (∗ indicates
corresponding entry has p-value below 0.05)

to determine if the mean "perplexingness" of the 396

specific level is statistically lower than that of the 397

abstract level. The results of the t-tests are detailed 398

in Table 2, with all values demonstrating statistical 399

significance. Our findings indicate that knowledge 400

on a higher hierarchical level (more abstract) is 401

associated with greater "perplexingness" for the 402

models. This suggests that hierarchical relations 403

are a factor affecting knowledge "perplexingness" 404

for language models. 405

Correlations between "perplexingness" and edit 406

efficacy Next, we aim to determine if the corre- 407

lation between "perplexingness" and edit efficacy 408

also holds for the HIERARCHYDATA dataset. We 409

employ the same method to analyze HIERARCHY- 410

DATA as analyzing COUNTERFACT, focusing on 411

the Pearson correlation coefficient between "per- 412

plexingness" and edit efficacy. The right panel 413

of Figure 3 provides one of the scatter plots (see 414

Appendix B for other plots), showcasing the appli- 415

cation of MEMIT on GPT2-XL. We also calculate 416

the Pearson coefficients, with the results presented 417

in Table 3. In this table, p-values below 0.05 are 418

marked with ∗, indicating statistical significance. 419

Our analysis reveals a consistent trend: an increase 420

in "perplexingness" correlates with poorer efficacy 421

of edits (higher negative log conditional probabil- 422

ity). This pattern holds true across all scenarios, 423

except when applying the ROME and MEMIT tech- 424

niques to the GPT-J model. 425

Relationships between hierarchical relations 426

and edit efficacy Additionally, we want to deter- 427

mine if hierarchical relations within the knowledge 428

ultimately affect the edit efficacy. Box plots (see 429

Appendix C) are constructed to visually compare 430
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Figure 3: Pre vs. post probability of new knowl-
edge (MEMIT on GPT2-XL). a.COUNTERFACT(left).
b.HIERARCHYDATA(right).

the efficacy across the two hierarchical levels. Fig-431

ure 5 shows one of the examples. Furthermore,432

we conduct t-tests on two independent samples to433

determine whether the mean of the specific level434

distribution is significantly lower than that of the ab-435

stract level distribution. The p-values obtained are436

documented in Table 4. This finding underscores437

a markedly lower efficacy in editing knowledge438

at higher hierarchical levels (more abstract knowl-439

edge). Significantly, this discrepancy indicates that440

hierarchical relationships profoundly affect the effi-441

cacy of specific editing techniques, like ROME and442

MEMIT, when applied to particular models, such443

as GPT2-Large and GPT2-XL. For fine-tuning and444

LoRA, the results do not appear to be significant,445

possibly because these methods can address knowl-446

edge at different hierarchical levels similarly. But,447

how about GPT-J?448

GPT-J can understand perplexing knowledge449

better From the previous experiment, we observe450

that GPT-J did not show any difference in edit ef-451

Figure 4: Same knowledge "perplexingness" in different
models (HIERARCHYDATA).

FT LoRA ROME MEMIT
GPT2-large 0.970 0.989 0.113 3.41e− 8∗

GPT2-XL 0.972 0.958 0.0286∗ 8.14e− 6∗

GPT-J 0.865 0.770 0.317 0.976

Table 4: Comparative analysis of efficacy in HIER-
ARCHYDATA: t-test results for specific vs. abstract
level distributions (∗ indicates corresponding entry has
p-value below 0.05).

ficacy when editing higher hierarchy and lower 452

hierarchy knowledge. To determine if GPT-J finds 453

the same knowledge less perplexing compared to 454

GPT-2L and GPT-2XL, we generated a heatmap of 455

each knowledge’s ’perplexingness’ in the HIERAR- 456

CHYDATA for each model, as shown in Figure 4. 457

Each line represents a piece of knowledge in the 458

HIERARCHYDATA, sorted by "perplexingness" in 459

the GPT-2L model. We observed that GPT-J ap- 460

pears darker in the heatmap, indicating it finds the 461

same knowledge less perplexing. 462

To assess the statistical significance of this ob- 463

servation, we conduct paired t-tests comparing the 464

perplexingness values of GPT-J to those of GPT- 465

2L and GPT-2XL. The resulting p-values were 466

5.71e− 9 and 6.84e− 7, respectively, indicating a 467

very significant difference. This suggests that GPT- 468

J indeed finds the same knowledge less perplexing 469

than GPT-2L and GPT-2XL, implying that GPT-J 470

is more receptive to learning new things. Addi- 471

tionally, this means GPT-J can learn more beyond 472

hierarchical relationships, and various factors will 473

influence its edit efficacy. 474
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Figure 5: The post-edit probability (lower probability
means higher edit efficacy) of editing GPT2-XL with
MEMIT on specific vs. abstract knowledge in the HI-
ERARCHYDATA.

Lack of Significant Findings Across Knowledge475

Categories Besides hierarchical relations, we476

also try to find if categories of knowledge would477

affect "perplexingness". We attempt to categorize478

the data based on the types of knowledge; however,479

this method does not yield any significant insights480

related to "perplexingness".481

6 Discussion482

Do different models have different mechanisms483

of saving perplexing knowledge? Our experi-484

mental results reveal intriguing variations in how485

different models handle perplexing knowledge, par-486

ticularly in the context of editing. Specifically, the487

application of ROME and MEMIT to GPT-J ex-488

hibits a notably low Pearson correlation between489

"perplexingness" and editing efficacy. Moreover,490

within the HIERARCHYDATA context, these cor-491

relations appear insignificant. Additionally, the492

influence of hierarchical relations on the editing ef-493

ficacy of ROME and MEMIT when applied to GPT-494

J seems negligible. This suggests that GPT-J may495

employ a unique mechanism for storing and pro-496

cessing different hierarchy level knowledge com-497

pared to other models. These differences highlight498

the need to comprehend each model’s unique archi-499

tecture and methods for handling perplexing con-500

cepts, suggesting a move towards tailored editing501

strategies.502

Why should more abstract knowledge be harder503

to edit? An intuition is that when editing to-504

wards a hypernym (“animal” → “plant”), it is as-505

sumed that the hyponym (“cat” → “plant”) is edited 506

as well, making the edit of hypernym inherently 507

harder. Yet, the dependent knowledge is usually 508

not edited, for popular editing methods (Li et al., 509

2023). 510

Are there other factors that may influence the 511

"perplexingness"? The investigation into the re- 512

sponsiveness of different editing techniques to per- 513

plexing knowledge reveals that FT and LoRA are 514

seemingly unaffected by the hierarchical structure 515

of knowledge. Notably, there exists a pronounced 516

correlation between "perplexingness" and the ef- 517

ficacy of edits. This suggests that while FT and 518

LoRA are adept at navigating the hierarchical rela- 519

tionships among words, they falter when address- 520

ing the inherent "perplexingness" present within 521

the knowledge. This observation leads to the hy- 522

pothesis that additional factors, beyond hierarchical 523

complexity, play a pivotal role in influencing "per- 524

plexingness" when employing FT and LoRA for 525

knowledge editing. 526

More understanding of model editing The im- 527

pact of "perplexingness" on the efficacy of vari- 528

ous editing methodologies can vary significantly. 529

Moreover, the manner in which different models 530

interpret, process, and encode the "perplexingness" 531

of knowledge also differs. This suggests a complex 532

interplay between the editing methods used and the 533

intrinsic mechanisms of the models, underscoring 534

the need for a nuanced understanding of both to 535

optimize knowledge editing strategies. 536

Recommendations to future model editors a. 537

Future model editing efforts should pay attention 538

to understanding the nature of the knowledge being 539

edited, particularly its level of "perplexingness". 540

To aid in this endeavor, we have introduced a hier- 541

archy dataset designed to facilitate it. It is crucial 542

to ensure that editing methods are versatile and 543

effective across a diverse range of data types. b. 544

Moreover, adopting different editing approaches 545

tailored to the specificities of each model can sig- 546

nificantly enhance the success of edits. And when 547

edit hierarchy knowledge, we can try to use edit 548

methods like fine-tune or LoRA. It may dismiss the 549

influence of hierarchy data. c. Also, we should pay 550

attention to the side effect of knowledge edit. 551

Limitation a. In this paper, we focus on a short 552

hierarchy chain to facilitate the comparison be- 553

tween higher and lower hierarchy levels. We have 554

not yet explored longer hierarchy chains. b. The 555
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experiment can be scaled up, including the use of556

larger models and larger datasets. c. Additional557

types of evaluation can be applied. For instance, we558

could ask language models specific questions to de-559

termine if the knowledge has actually been edited.560

However, this approach is very labor-intensive and561

was not implemented in this study.562

7 Conclusion563

In our study, we focus on the challenges of updat-564

ing large language models (LLMs) with perplexing565

knowledge. We meticulously define "perplexing-566

ness" and efficacy respectively. Through a compre-567

hensive analysis using the COUNTERFACT dataset,568

we identify a significant negative correlation be-569

tween the "perplexingness" of the new knowledge570

and the efficacy of the edits across diverse sce-571

narios. This core finding underscores the variable572

efficacy of editing methods in handling knowledge573

with different levels of initial "perplexingness".574

Furthermore, we develop a specialized dataset575

HIERARCHYDATA, consisting of hyponym-576

hypernym pairs. This dataset, emphasizing577

hierarchical relations, serves as a tool for a578

more contextual evaluation of edit efficacy. We579

undertake a thorough review of current knowledge580

editing methodologies using this dataset. Our581

findings reveal that abstract knowledge are582

inherently more perplexing to LLMs than their583

specific counterparts. Also, our investigation into584

the impact of hierarchical knowledge structures on585

edit outcomes reveal that more abstract knowledge586

exhibits lower editing efficacy in some scenarios.587

Our methodology and dataset collectively provide588

a novel and rigorous approach to evaluating the589

efficacy of knowledge edits, offering valuable590

insights into the factors that contribute to their591

success or failure.592

Our investigation into the targeted editing of593

knowledge within LLMs sheds light on a previ-594

ously underexplored facet of model editing tech-595

nology. The findings underscore the challenges596

associated with editing knowledge that spans var-597

ious levels of "perplexingness", revealing signifi-598

cant discrepancies in editing efficacy. This research599

not only enriches our understanding of the inher-600

ent complexities in model editing but also sets a601

foundational basis for the development of more602

sophisticated editing methodologies in the future.603

By pushing the boundaries of our current capabili-604

ties, we move closer to achieving more refined and605

precise manipulations of knowledge within these 606

advanced AI systems, marking a significant step 607

forward in the evolution of LLMs. 608
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A Correlation of "perplexingness" and690

efficacy in COUNTERFACT691

We plot the "perplexingness" (pre-edit probabilities692

of the new target) against the efficacy (post-edit693

probabilities of the new target) to visually analyze694

their relationship. This analysis is conducted using695

the first 2000 groupings from the COUNTERFACT696

dataset. Figure 6 displays the scatter plot for edit-697

ing methods applied to GPT2-Large. Similarly,698

Figure 7 presents the scatter plot for methods used699

on GPT2-XL, and Figure 8 illustrates the scatter700

plot for edits performed on GPT-J(6B).701

B Correlation of "perplexingness" and702

efficacy in HIERARCHYDATA703

To visually explore the relationship between "per-704

plexingness" and editing efficacy, we plot these705

dimensions against each other using 198 group-706

ings from the HIERARCHYDATA dataset. Figure 9707

shows the scatter plot highlighting the effects of708

editing methods on the GPT2-Large model. Like- 709

wise, Figure 10 demonstrates the scatter plot for the 710

GPT2-XL model, and Figure 11 displays the scatter 711

plot for edits on the GPT-J(6B) model, providing 712

a clear visual representation of how "perplexing- 713

ness" correlates with the efficacy of knowledge 714

edits across different models. 715

C Specific vs. Abstract Probability 716

Distribution in HIERARCHYDATA 717

We conduct a comparative analysis by plotting the 718

efficacy distributions for data at both specific and 719

abstract hierarchical levels, utilizing 198 groupings 720

from the HIERARCHYDATA dataset—comprising 721

an equal split of 99 specific-level instances and 722

99 abstract-level instances. Figure 12 showcases 723

the box plot for editing methods applied to the 724

GPT2-Large model. In a similar vein, Figure 13 725

displays the box plot for techniques employed on 726

the GPT2-XL model, while Figure 14 reveals the 727

box plot corresponding to edits made on the GPT- 728

J(6B) model. 729

D Pre-edit Specific vs. Abstract 730

Probability Distribution in 731

HIERARCHYDATA 732

We perform a comparative analysis of the "perplex- 733

ingness" across both specific and abstract hierar- 734

chical levels by plotting their distributions. This 735

analysis is based on 198 instances from the HI- 736

ERARCHYDATA dataset, evenly divided between 737

99 specific-level and 99 abstract-level cases. Fig- 738

ure 15 presents the box plots, illustrating the impact 739

of editing methods on the GPT2-Large, GPT2-XL, 740

and GPT-J(6B) models, thereby offering insights 741

into the variation of "perplexingness" across differ- 742

ent levels of hierarchy and models. 743
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Figure 6: Pre vs. post probability of new knowledge
(COUNTERFACT) on GPT2-Large using a. FT (upper
left) b. LoRA (upper right) c. ROME (lower left) d.
MEMIT (lower right).

Figure 7: Pre vs. post probability of new knowledge
(COUNTERFACT) on GPT2-XL using a. FT (upper left)
b. LoRA (upper right) c. ROME (lower left) d. MEMIT
(lower right).
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Figure 8: Pre vs. post probability of new knowledge
(COUNTERFACT) on GPT-J(6B) using a. FT (upper left)
b. LoRA (upper right) c. ROME (lower left) d. MEMIT
(lower right).

Figure 9: Pre vs. post probability of new knowledge
(HIERARCHYDATA) on GPT2-Large using a. FT (upper
left) b. LoRA (upper right) c. ROME (lower left) d.
MEMIT (lower right).
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Figure 10: Pre vs. post probability of new knowledge
(HIERARCHYDATA) on GPT2-XL using a. FT (upper
left) b. LoRA (upper right) c. ROME (lower left) d.
MEMIT (lower right).

Figure 11: Pre vs. post probability of new knowledge
(HIERARCHYDATA) on GPT-J(6B) using a. FT (upper
left) b. LoRA (upper right) c. ROME (lower left) d.
MEMIT (lower right).
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Figure 12: Specific vs. abstract probability distribution
(HIERARCHYDATA) on GPT2-Large using a. FT (upper
left) b. LoRA (upper right) c. ROME (lower left) d.
MEMIT (lower right).

Figure 13: Specific vs. abstract probability distribution
(HIERARCHYDATA) on GPT2-XL using a. FT (upper
left) b. LoRA (upper right) c. ROME (lower left) d.
MEMIT (lower right).
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Figure 14: Specific vs. abstract probability distribution
(HIERARCHYDATA) on GPT-J(6B) using a. FT (upper
left) b. LoRA (upper right) c. ROME (lower left) d.
MEMIT (lower right).

Figure 15: Pre-edit specific vs. abstract probability
distribution (HIERARCHYDATA) on a. GPT2-Large
(upper left) b. GPT2-XL (upper right) c. GPT-J(6B)
(below).
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