
A Data-Centric Perspective on Evaluating Machine
Learning Models for Tabular Data

Andrej Tschalzev∗

University of Mannheim
Sascha Marton

University of Mannheim
Stefan Lüdtke

University of Rostock

Christian Bartelt
University of Mannheim

Heiner Stuckenschmidt
University of Mannheim

Abstract

Tabular data is prevalent in real-world machine learning applications, and new mod-
els for supervised learning of tabular data are frequently proposed. Comparative
studies assessing the performance of models typically consist of model-centric eval-
uation setups with overly standardized data preprocessing. This paper demonstrates
that such model-centric evaluations are biased, as real-world modeling pipelines
often require dataset-specific preprocessing, which includes feature engineering.
Therefore, we propose a data-centric evaluation framework. We select 10 rele-
vant datasets from Kaggle competitions and implement expert-level preprocessing
pipelines for each dataset. We conduct experiments with different preprocessing
pipelines and hyperparameter optimization (HPO) regimes to quantify the impact
of model selection, HPO, feature engineering, and test-time adaptation. Our main
findings are: 1. After dataset-specific feature engineering, model rankings change
considerably, performance differences decrease, and the importance of model
selection reduces. 2. Recent models, despite their measurable progress, still signifi-
cantly benefit from manual feature engineering. This holds true for both tree-based
models and neural networks. 3. While tabular data is typically considered static,
samples are often collected over time, and adapting to distribution shifts can be
important even in supposedly static data. These insights suggest that research
efforts should be directed toward a data-centric perspective, acknowledging that
tabular data requires feature engineering and often exhibits temporal characteristics.
Our framework is available under: https://github.com/atschalz/dc_tabeval.

1 Introduction

Since ancient times, tables have been used as a data structure, i.e., to record astronomical observations
[69] or financial transactions [6]. Many traditional machine learning (ML) methods, like logistic
regression or the first artificial neural networks, were initially developed for tabular data [14, 54, 62].
Even nowadays, in the age of AI, tabular data is the most prevalent modality in real-world applications,
including medicine [34], finance [8], manufacturing [75], retail [50], and many others [64, 5]. Several
novel deep learning architectures have been contributed in recent years to improve supervised machine
learning for tabular data [59, 79, 53, 33, 2, 7, 25, 66, 11, 42, 24].

To evaluate existing approaches, various comparative studies were conducted in recent years [4, 22,
21, 25, 64, 5, 55]. While motivated by different goals, they all have one in common: The focus is on
evaluating models on tabular datasets using predefined cross-validation splits and one standardized
preprocessing for all datasets. In this paper, we challenge such model-centric evaluation setups by

∗Correspondence to: andrej.tschalzev@uni-mannheim.de

38th Conference on Neural Information Processing Systems (NeurIPS 2024) Track on Datasets and Benchmarks.

https://github.com/atschalz/dc_tabeval/

highlighting two major limitations (Section 2): 1) The evaluation setups are overly standardized and
do not reflect the actual routine of practitioners, which typically includes dataset-specific feature
engineering [68]. 2) There is no external reference for the highest possible performance on a task
beyond a study’s own reporting, which limits its reliability.

To address these issues, we advocate for shifting the research perspective in the tabular data field
from model-centric to data-centric. Therefore, our main contribution is an evaluation framework
that includes a collection of ten relevant real-world datasets, dataset-specific expert-level
preprocessing pipelines, and an external measure of top performance for each dataset (Section
3). The datasets were carefully selected by screening Kaggle competitions involving tabular data,
and, to our knowledge, our contribution represents the largest existing collection of implemented
expert-level solutions for tabular datasets. To assess the potential bias from the first limitation, we
investigate how the model comparison changes when considering dataset-specific preprocessing
instead of standardized evaluation setups (Subsection 4.1). To address the second limitation, we
use the leaderboard from Kaggle competitions as an external performance reference and reassess
what is possible with modern methods that were not available when the Kaggle competitions
took place (Subsection 4.2). We find that when considering dataset-specific expert preprocessing,
performance differences between the best models shrink, and the importance of selecting the ’right’
model diminishes. In addition, we dissect expert solutions for tabular data competitions and quantify
the importance of different modeling components (Subsection 4.3). We find that measurable
progress has been made in automating human effort, but feature engineering is still the most important
aspect of many tabular data problems. No model fully automates this aspect and comparisons that
don’t consider feature engineering merely scratch the surface of the potential performance achievable
on many datasets. This paper focuses on independent and identically distributed (i.i.d.) tabular data
in line with related work. However, our analysis of Kaggle competitions shows strong evidence that
this focus in the research community might not align with practitioners’ needs. In particular, we find
that many tabular data competitions on Kaggle have temporal characteristics (i.e., timestamp
features) and we identify test-time adaptation (TTA) as an overlooked but important part of some
supposedly static competitions (Subsection 4.4).

Our findings indicate that current academic evaluation setups and benchmarks for tabular data are
biased due to their overly model-centric focus. We conclude by discussing possible directions to
improve machine learning for tabular data from a data-centric perspective (Section 5).

2 Related Work

Machine Learning for tabular data. Unlike domains like computer vision and natural language
processing, an established state-of-the-art neural network architecture does not exist for tabular data
[64, 5]. Therefore, recent research has primarily concentrated on developing general-purpose deep
learning models often inspired by architectures from other domains [59, 33, 46, 37, 2, 42, 79, 66, 28,
9, 70, 67, 77, 30, 56, 48, 72, 10, 11, 53, 24]. Despite these efforts, Gradient Boosted Decision Trees
(GBDTs) remain the state-of-the-art, outperforming even the novel neural models in many studies
[5, 26, 55]. This paper aims to motivate more research inspired by tabular data-specific techniques
like feature engineering instead of architectures established in other domains.

Limitations of current evaluation frameworks. Several benchmarks exist for evaluating tabular
machine learning models, focusing on general model comparisons [4, 22, 21, 26, 55] and specific sub-
problems [40, 20, 13, 63, 18]. However, these benchmarks do not provide preprocessing settings for
the included datasets. Consequently, most studies adopt a fixed, standardized preprocessing for all
datasets to concentrate on model comparisons [64, 25, 55, 26, 41]. While this model-centric approach
is suitable for AutoML, it limits the real-world transferability of model comparisons, as models in
practical applications typically follow dataset-specific preprocessing pipelines containing feature
engineering techniques [68, 74, 31]. Our evaluation framework is the first to explicitly incorporate a
more detailed distinction through diverse preprocessing pipelines. Furthermore, existing benchmarks
lack an external reference (i.e., a leaderboard) for the current best task performance, hindering
comparability across different studies. In contrast, we leverage datasets from ML competitions
as an external benchmark for high performance on tasks. Many existing evaluation frameworks
prioritize usability at the expense of representativeness by limiting sample sizes and removing high-
cardinality categorical features, thus evaluating models on artificially constrained dataset versions
[4, 26]. Our evaluation framework solely consists of tasks meaningful to the real world without

2

Preprocessing Pipelines Unified Cross-Validation Pipeline EvaluationData Loading

a) Standardized Preprocessing

b) Expert Feature Engineering

c) Test-Time Adaptation

Fold 1 …Fold 2 Fold k

Model 1 Model 2 Model k

Final test
predictions

Test
Data

Test
Performance

= 0.932

Test
Pred.

submit

Leaderboard

RankScore

10.955

20.951

……

5000.932

……

50000.5

retrieve

submitted
solution

outperforms
90% of all

participants

Evaluation:
leaderboard
percentile

= 0.9

traintrain train

predict predict predict

average

Merge
tables

Remove issues
(data leakage,
faulty entries)

Process special
domain features
(e.g. datetime)

Simple, dataset-
agnostic methods

Dataset-specific
feature engineering

Train
Test-time feature
engineering with
unlabeled test
samples

Train

Test
Test

…

Figure 1: Illustration of the components of our evaluation framework.

imposing artificial restrictions on datasets. Finally, most evaluation frameworks concentrate on
tasks where samples are identically and independently distributed (i.i.d.). However, distribution
shifts are prevalent in many machine learning applications [45, 71, 73, 51, 78, 20], and adapting to
these shifts in tabular data has received limited attention [39, 20]. In this paper, we point out that
excluding tabular data with temporal characteristics undermines the reliability of benchmarks, as
many real-world applications using the benchmarked models include such data.

Using Kaggle for model evaluation. Kaggle is an online platform renowned for its machine
learning competitions, hosted by companies and organizations to solve real-world problems in various
domains. Some studies have retrospectively compared the performance of new approaches in Kaggle
competitions [16, 61, 74]. However, most of these studies are limited to a few competitions or only
compared against the leaderboard without investing the high effort of implementing expert solutions.
In Subsection 3.1, we will explain that using Kaggle competitions to evaluate new approaches
has several benefits. The evaluation framework most similar to ours is presented by Erickson
et al. [16], where the proposed AutoML framework was compared to the leaderboard in Kaggle
competitions. However, the methods leading to high performance on the leaderboard remain a black
box. As we will show, some methods (i.e., test-time adaptation) prevent a fair comparison, and
simply evaluating against the leaderboard is not helpful for gaining deeper insights. In contrast, we
implement high-performing expert-level solutions, allowing us to dissect the components of interest
and truly understand what drives high performance on specific tasks.

3 A Data-Centric Evaluation Framework for Tabular Machine Learning

We propose an evaluation framework built upon three crucial aspects that are often overlooked in
tabular data research: 1) Evaluation on realistic datasets without removing frequently occurring
challenging aspects like high cardinality categorical features, 2) Dataset-specific expert preprocessing
pipelines containing feature engineering techniques, and 3) Evaluation against human expert per-
formance on hidden test sets. Figure 1 depicts an overview of our framework. Our design choices
are additionally justified by the fact that for each dataset, at least one model in our evaluation ranks
among the top 1% of all competition participants (note that not all participants are experts, and
leaderboard distributions can vary across datasets).

3.1 Collection of Relevant and Challenging Datasets

We rely on the Kaggle community and competitions hosted by companies and institutions to select
datasets with expert solutions. Figure 2 illustrates our dataset selection process, and Table 1 summa-
rizes the main properties of the included datasets. Using data from Kaggle competitions has various
benefits: 1) The selected tasks are challenging and meaningful to the real world, as companies and
institutions only spend money on hosting competitions from which they benefit. 2) Each competition
has a clear evaluation setup, including metrics selected to reflect the practitioners’ needs. 3) Each
competition has a large hidden test set, which has been shown to reduce the risk of adaptive overfitting
[61]. 4) The competition leaderboard serves as an external reference for truly high performance,

3

77
Competitions

Kaggle
Competitions

Tabular, rewarded,
>1000 participants

29 competitions
with non-neglecatble

temporal nature

62
Competitions

10 competitions with
other modality
besides tabular

52
Competitions

6 competitions from
special domains with

own methods

46
Competitions

7 competitions
without a replicable

expert solution

10
Competitions

selected

15 competitions with
technical issues

17
Competitions

Figure 2: Illustration of the dataset selection process. Details on the criteria and all screened datasets
can be found in the Appendix. The Figure only lists the competitions as temporal, which were not
already excluded for other reasons. In total, we identified 46 competition datasets with temporal
characteristics (i.e., timestamps as a feature). Consistent with related work, we include competitions
that have timestamps but can be approached without time-sensitive feature engineering.

Name Year N (train/test) D (raw/fe) Categorical Task Metric Model TTA

MBGM 2017 4209 / 4209 377 / 59 8 / 47 Reg r2 XGBoost No
SVPC 2018 12296 / 49342 4992 / 1420 0 / 0 Reg rmsle LGBM No
AEAC 2013 32769 / 58921 9 / 315 9 / 7,518 Bin auc Ensemble Yes
OGPCC 2015 61878 / 144368 93 / 104 0 / 0 Multi logloss Ensemble Yes
SCS 2016 76020 / 75818 370 / 224 0 / 0 Bin auc Ensemble Yes
BPCCM 2016 114321 / 114393 132 / 313 19 / 18,210 Bin logloss XGBoost No
SCTP 2019 200000 / 200000 200 / 600 0 / 0 Reg auc NN Yes
HQC 2015 260753 / 173836 299 / 300 29 / 868 Bin auc XGBoost No
IFD 2019 590540 / 506691 432 / 263 49 / 13,553 Bin auc CatBoost Yes
PSSDP 2017 595212 / 892816 57 / 53 8 / 104 Bin gini NN Yes

Table 1: Datasets included in our framework. N denotes the sample size in thousands, and D
dimensionality of the raw data and after expert feature engineering. Categorical lists the no. of
categorical features and the no. of clusters of the highest-cardinality categorical feature. Metric
corresponds to the competition metric. MBGM and SVPC are regression tasks, OGPCC is a multi-
class classification task, and the remaining are binary classification tasks. Model corresponds to the
best single model used in the original expert solution. For some datasets, no best single model could
be distinguished due to the heavy ensembling used. TTA denotes if test-time feature engineering has
been used in the implemented expert solution.

as many expert teams participated in the competitions. Furthermore, our framework ensures a fair
comparison by including a data loading function for each dataset that removes potential side issues,
like data leakage or faulty data. This distinguishes our framework from related work that compares
approaches to Kaggle solutions [16, 74]. An important insight from screening the competitions is
that most tabular datasets had temporal characteristics – i.e., datasets with weak temporal correlations
that benefit from time-sensitive feature engineering but not from models with temporal inductive
biases (i.e., [32]). This finding will be further discussed in Subsection 4.4.

3.2 Expert Solutions and Preprocessing Pipelines

In the context of our paper, preprocessing refers to a pipeline that combines a “set of techniques
used prior to the application of a [model]” [19]. Feature engineering (FE) refers to techniques that
“construct novel features from given data with the goal of improving predictive learning performance”
[38]. Consequently, feature engineering is a subset of preprocessing. Our proposed evaluation
framework includes three preprocessing pipelines. One is dataset-agnostic and closely resembles
the pipelines researchers currently use for model evaluation. The other two are dataset-specific
and directly derived from expert solutions. All preprocessing pipelines are model-agnostic, and
model-specific preprocessing steps are considered part of the model in our framework.

Standardized Preprocessing The main purpose of this pipeline in our framework is to evaluate
single models in a scenario with minimal dataset-specific human effort invested. Continuous missing
values are replaced with the mean, and missing categorical feature values are treated as a new
category. Furthermore, constant columns are removed, and heavy-tailed targets are log-transformed
for regression tasks. As these preprocessing steps are almost universally applied across related work
[25, 26, 55], this pipeline represents current evaluation setups in academia well.

4

https://www.kaggle.com/competitions/mercedes-benz-greener-manufacturing
https://www.kaggle.com/competitions/santander-value-prediction-challenge
https://www.kaggle.com/competitions/amazon-employee-access-challenge
https://www.kaggle.com/competitions/otto-group-product-classification-challenge/
https://www.kaggle.com/competitions/santander-customer-satisfaction
https://www.kaggle.com/competitions/bnp-paribas-cardif-claims-management
https://www.kaggle.com/competitions/santander-customer-transaction-prediction
https://www.kaggle.com/competitions/homesite-quote-conversion
https://www.kaggle.com/competitions/ieee-fraud-detection
https://www.kaggle.com/competitions/porto-seguro-safe-driver-prediction

Expert Feature Engineering We select one high-performance expert solution from Kaggle for each
dataset. The solution was chosen based on the private leaderboard rank and the descriptions’ quality
and sufficiency. For each solution, we separate the data preparation from the remaining parts of the
solution. For most datasets, this pipeline solely consists of feature engineering techniques. Besides
a few distinctions between tree-based and deep learning models, the pipelines are model-agnostic.
Model-specific preprocessing steps (i.e., feature normalization for neural networks) are considered
part of the model in our framework and are explained in the Appendix. This paper focuses on a
pipeline perspective and does not discuss single feature engineering steps further. Implementation
details and feature engineering techniques used for specific datasets are provided in the Appendix and
in our publicly available code. For this pipeline, we ensured that all feature engineering operations
included were on the training data and that a model could have learned the same patterns without
external information. Some of the feature engineering techniques used by the experts occur across
multiple datasets: groupby interactions of categorical and numeric features (4), 2-order categorical
interactions (3), feature selection (3), categorical frequency encoding (3), dimensionality reduction
(2), 3-order categorical interaction (2), 2-order arithmetic interactions (2), sum of missing values in a
row (2), and sum of zeros in a row (2). A common pattern is that the most frequently applied feature
engineering steps include categorical features and that feature interactions are frequently manually
engineered while transformations of single features are rare.

Test-Time Adaptation This pipeline is exactly the same as the expert feature engineering pipeline,
with the key difference that the test data is used for feature engineering where applicable. Most ML
competitions are organized so that the test features (but not the targets) are given. We found that
the top solutions used the test data in their data preparation for six of the datasets in our framework.
Hence, this pipeline represents the actual preprocessing used by the experts. While this might be
considered an unfair and unrealistic setup, there are applications where using unlabeled test data
for unsupervised learning is applicable (see Appendix A.3). We argue that this conceptualization
makes many tabular ML competitions a test-time adaptation (TTA) task. TTA is a type of domain
adaptation where test samples are used at test time in an unsupervised or self-supervised way to
update or retrain a model [76, 44, 43, 65, 57]. We term the common Kaggle practice of engineering
domain-invariant features at test time as test-time feature engineering. The feature engineering
techniques most frequently used to this end are groupby interactions, frequency encodings, and
learning joint low-dimensional representations. With this preprocessing pipeline, we are the first to
closer examine test-time feature engineering in Kaggle competitions.

3.3 Modeling and Evaluation Framework

Modeling Pipeline and Models We implement a unified modeling pipeline for all datasets with a
dataset-specific cross-validation (CV) ensembling procedure. The validation sets are used for early
stopping and determining the best hyperparameters. The final test data predictions are an ensemble of
averaging the test predictions of each fold. We use three gradient-boosted tree libraries (XGBoost [12],
LightGBM [36], and CatBoost [60]) because each was used in at least one of the expert solutions.
Each expert solution that used neural networks developed a highly customized network for the
particular competition. We want to assess whether recently developed general-purpose architectures
can replace the high effort of building custom networks. Hence, we chose ResNet and FTTransformer
[25] because they have been frequently used in recent benchmark comparisons and have shown strong
performance [26, 55]. Because the Resnet essentially is an MLP with skip connections, it serves as a
baseline representing what was already possible before the recent developments in DL for tabular data.
In addition, we use two more recent approaches: MLP-PLR [23], which can help learn high-frequency
functions, mitigating a major weakness of deep learning for tabular data [26]; and GRANDE [53], a
recent representative of hybrid neural-tree models. Although other recent architectures exist, we don’t
include more, as our focus is not on benchmarking particular models but rather on demonstrating the
importance of data-centric evaluation. To assess how well fully automated solutions perform without
any preprocessing, we additionally evaluate AutoGluon, which has been shown to be the current best
AutoML solution [21].

Hyperparameter Optimization Hyperparameter optimization is done per fold to obtain a diverse
CV ensemble. Each model is evaluated in three HPO regimes: 1) Default: Either library default or
hyperparameters suggested in related work, 2) Light HPO: 20 random search iterations. 3) Extensive
HPO: 20 random search warmup iterations + 80 iterations of the tree-structured Parzen estimator
algorithm [1]. More details on the hyperparameter optimization can be seen in the Appendix.

5

0.0

0.2

0.4

0.6

0.8

1.0

Le
ad

er
bo

ar
d

Po
sit

io
n

MBGM SVPC AEAC OGPCC SCS

XG
B

LG
B CB

Re
sN

et FT
T

M
LP

PL
R

GR
AN

DE
Au

to
Gl

uo
n0.0

0.2

0.4

0.6

0.8

1.0

Le
ad

er
bo

ar
d

Po
sit

io
n

BPCCM

XG
B

LG
B CB

Re
sN

et FT
T

M
LP

PL
R

GR
AN

DE
Au

to
Gl

uo
n

SCTP

XG
B

LG
B CB

Re
sN

et FT
T

M
LP

PL
R

GR
AN

DE
Au

to
Gl

uo
n

HQC

XG
B

LG
B CB

Re
sN

et FT
T

M
LP

PL
R

GR
AN

DE
Au

to
Gl

uo
n

IFD

XG
B

LG
B CB

Re
sN

et FT
T

M
LP

PL
R

GR
AN

DE
Au

to
Gl

uo
n

PSSDP

Default Light HPO Extensive HPO Expert FE FE-TTA

Figure 3: Performance gains from different modeling components on the private Kaggle leaderboard
by dataset and model. Higher values correspond to a better position. Each segment represents
the performance gain of adding the modeling component to the previous configuration. ’Default’
corresponds to the model performance with default hyperparameters in a standardized preprocessing
pipeline. Light and extensive HPO correspond to tuning hyperparameters in the same preprocessing
pipeline. Expert FE and FE-TTA correspond to the model performance with extensively tuned
hyperparameters in the feature engineering and the test-time adaptation pipeline respectively.

Evaluation We use the Kaggle API to automatically submit predictions and retrieve performance
results after evaluating against the hidden targets. Each dataset is evaluated on the metric specified
by the competition host. Instead of reporting this metric directly, we report the solution’s private
leaderboard position as the percentile. This has the benefit that although different metrics are
used to evaluate the model, comparisons across datasets are possible. Note that the leaderboard
position is always a snapshot of the end of each competition. In the Appendix, we additionally
report performances on the actual metrics for each dataset. Throughout the paper, higher values
represent a better performance (leaderboard position). As we use only one test set per dataset and less
datasets compared to academic benchmarks, concerns about overfitting might be raised. However,
ten datasets with one test set are less of an issue in our framework than it would be in conventional
benchmarks, because: 1) The datasets in our framework, especially the test data, are comparably
large and overfitting them is harder. Roelofs et al. [61] found that at least 10,000 test examples is a
reasonable minimum test set size to protect against adaptive overfitting in Kaggle challenges. All test
sizes in our framework, except for the MBGM dataset, are at least of size 50,000. 2) Test labels are
unknown making it hard to purposefully overfit on particular samples. 3) The need of submitting to
Kaggle, although automated, is an additional overfitting barrier.

4 Experimental Evaluation

Our framework allows us to assess the dataset-specific individual performance impact of model
selection, hyperparameter optimization, feature engineering, and test-time adaptation. Whenever
not stated otherwise, we report the results for the extensively tuned hyperparameter setup. As a
general overview, Figure 3 shows how each of the analyzed modeling components improves over the
default baseline for each model and dataset. The length of each segment indicates the performance
gain relative to the previous configuration. The results demonstrate the importance of an external
performance reference: If we only considered the standardized evaluation setup (blue/orange/green
segments), we would only be scratching the surface of achievable task performance for many data
sets.

6

4.1 How Model Comparisons Change When Considering Dataset-specific Preprocessing

0.44
0.52
0.590.62
0.68
0.73
0.79

Standardized

0.62

0.80
0.84
0.89

Expert FE

0.64

0.83
0.90
0.97

FE-TTA

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

0.43 0.77
0.31

XGBoost
LightGBM
CatBoost
ResNet

FTTransformer
MLP-PLR
GRANDE
AutoGluon

Figure 4: Average leaderboard position of mod-
els with different preprocessing. Black horizontal
lines denote the Spearman correlation between all
results with the respective preprocessing.

Three observations stand out when evaluating
models in different preprocessing pipelines (Fig-
ure 4). 1) The model rankings change con-
siderably, as indicated by the relatively low
Spearman coefficients between the standardized
preprocessing pipeline and the other pipelines.
2) The performance gap between all models
diminishes when considering expert prepro-
cessing. On average, all models benefit from fea-
ture engineering, and multiple models can reach
top performance. While all models benefit from
TTA, the performance increase varies. 3) The
superiority of CatBoost vanishes when con-
sidering dataset-specific preprocessing. The
reason is that CatBoost already incorporates spe-
cific feature engineering steps in its algorithm
for which other models need manual engineer-
ing, as we will further elaborate in Subsection
4.3.

4.2 Measurable Progress Through Recent Efforts

.33

.48

.74

.80

1.0MBGM

.80

.92

.95

SVPC

.59

.62

.69

.95

AEAC

.72

.84

.88

1.0
OGPCC

.35

.54

.69

.92

.95

SCS

.30

.36

.59

.99
BPCCM

.30

.49

.52

SCTP

.41

.62

.91

.99
HQC

.21

.52

.55

IFD

.31

.56

.59

.66

PSSDP

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

XGBoost (2014)
ResNet Baseline (<2021)
CatBoost (2018)

AutoGluon (2020)
Best NN (>2021)

Figure 5: Progress made through recent models
trained in the standardized preprocessing pipeline,
illustrated by retrospective comparison to the Kag-
gle leaderboard. Best NN denotes the best model
of FTTransformer, MLP-PLR, and GRANDE.

Figure 5 shows the model ranking on the private
Kaggle leaderboard when trained after standard-
ized preprocessing. CatBoost achieves top ranks
in three competitions (MBGM, BPCCM, HQC)
where a high manual effort in feature engineer-
ing was previously necessary. Similar to Erick-
son et al. [16], AutoGluon achieves top ranks in
two of these (BPCCM, HQC) and one additional
competition (OGPCC). Regarding neural net-
works, novel architectures rank higher than the
ResNet baseline on nine datasets. In two com-
petitions, neural networks were originally the
single-best models (SCTP, PSSDP - see Table 1).
In our analysis, MLP-PLR and FTTransformer
are able to reach top ranks on these datasets af-
ter feature engineering and test-time adaptation,
while ResNet performs worse (see Figure 3). All
neural networks originally used in the compe-
titions were custom-designed for the particular
competition. Hence, our analysis confirms that
meaningful progress has been made in devel-
oping general-purpose architectures for tabular
data as they reduce the necessity of custom-designed networks. Although the progress in the tabular
data field is clearly visible, top performance cannot be reached without human effort for six datasets.

4.3 Feature Engineering is Still the Most Important Factor for Top Performance

The most remarkable performance gains are achieved through feature engineering. Fig-
ure 6 shows that expert feature engineering is the most important modeling component on av-
erage. This holds true for all models, indicating that unlike for modalities like imaging, neu-
ral networks do not automate feature engineering for tabular data. When comparing the perfor-
mance of different models in the standardized preprocessing pipeline (blue/orange/green bars in
Figure 3), we can observe that using any other model than CatBoost rarely brings large gains.
Only for the SCS dataset does FTTransformer clearly outperform all other models. For all
other datasets, the average performance gains achievable solely with model selection are small.

7

XGB LGB CB ResNet FTT MLPPLR GRANDEAutoGluon0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Le
ad

er
bo

ar
d

Po
sit

io
n

+0.21
+0.09

+0.03

+0.03

+0.06 +0.10

+0.09

+0.04

+0.07

+0.02

+0.01

+0.04 +0.02

+0.05

+0.22
+0.23

+0.10

+0.18

+0.21 +0.22
+0.29

+0.11

+0.07

+0.05
+0.08

+0.02

+0.10 +0.09
+0.02

+0.06

Default Light HPO Extensive HPO Expert FE FE-TTA

Figure 6: Leaderboard performance gains from dif-
ferent modeling components per model. ’Default’
corresponds to the model with default hyperparam-
eters. The results for Expert FE and FE-TTA are
reported after extensively tuning hyperparameters.

Hence, our results confirm the findings of McEl-
fresh et al. [55] that model selection is less im-
portant than HPO on a strong tree-based baseline
for most datasets. Furthermore, we extend this
finding by quantifying the even more important
aspect of dataset-specific feature engineering.

Feature engineering is responsible for the
high performance of CatBoost. Our analy-
sis of different preprocessing pipelines reveals
that CatBoost benefits much less from feature
engineering than other models. The reason is
that CatBoost incorporates explicit feature engi-
neering techniques in its learning procedure. In
particular, counts and target-based statistics are
used to generate encodings for categorical fea-
tures, and combinatorial encoding methods cap-
ture categorical feature interactions [60]. When
considering the same feature engineering tech-
niques for the other models, the gap to CatBoost
drastically shrinks for most models, and XGBoost performs similarly to CatBoost on average. Hence,
CatBoost’s success in recent benchmarking studies [55, 20] can, at least to some extent, be attributed
to feature engineering.

PSSDP BPCCM
Default OHE Default Target

XGBoost 0.69 0.99 0.4 0.99
LightGBM 0.54 0.94 0.35 0.99
CatBoost 0.71 0.97 1.0 1.0

Table 2: Performance of tree-based models with
different categorical data treatment methods. ’De-
fault’ corresponds to the model-inherent method.

The optimal treatment of categorical features
can be dataset-specific. Table 2 shows that a
different treatment of categorical features than
the model-inherent treatment was necessary for
two datasets to achieve top performance. Fur-
thermore, each of the two datasets required a
different encoding method. This shows that stan-
dardized preprocessing can be biased for cate-
gorical features. Furthermore, the performance
of deep learning models on categorical data can
be greatly improved with feature engineering
techniques on categorical data. I.e., for the AEAC dataset, which consists entirely of categorical
features, all neural networks gain from feature engineering techniques like categorical feature interac-
tions, as can be seen in Figure 3. This suggests that current architectures do not adequately capture
the complex patterns within categorical data. Hence, whenever the goal is not to evaluate models
as AutoML solutions, categorical data treatment methods in comparative studies should not only be
model-specific, but also dataset-specific.

4.4 The Importance of Test-Time Adaptation and Temporal Characteristics

Best single model AutoGluon
Stand. FE TTA Stand. FE TTA

AEAC 0.953 0.937 0.991 0.618 0.953 0.993
OGPCC 0.896 0.871 0.923 0.996 0.983 0.995
SCS 0.945 0.953 0.975 0.92 0.999 1.0
SCTP 0.518 0.962 0.992 0.498 0.531 0.991
IFD 0.662 0.988 0.992 0.205 0.351 0.432
PSSDP 0.656 0.994 0.995 0.562 0.707 0.742

Table 3: Performance comparison in different preprocessing
pipelines with a focus on top performance. AutoGluon is
displayed separately to prevent bias in the single-model com-
parison.

Test-time feature engineering con-
sistently improves the performance
of single models. Table 3 shows that
test-time feature engineering leads to
performance gains over solely using
the train data for feature engineering
for all datasets. From the task per-
spective, the feature engineering used
for AEAC and OGPCC only leads to
performance gains when used as a test-
time adaptation method. This shows
that some of the feature engineering
techniques used in Kaggle competi-
tions actually serve the purpose of test-
time adaptation. For three datasets, ranking among the top 1% on the leaderboard was not achieved
without test-time adaptation. Our results indicate that simply comparing approaches to the Kaggle

8

leaderboard, as done in previous studies [16, 74], is insufficient. Techniques like test-time adaptation
are frequently used in Kaggle competitions and limit comparability to approaches that don’t use the
test data. Hence, a fair model comparison to expert solutions using the Kaggle leaderboard can only
be ensured under controlled conditions through implemented expert solutions such as our pipelines.

Models in real-world applications are often applied to non-i.i.d. tabular data. By definition,
TTA should only be effective if the data violates the i.i.d. assumption and contains distribution shifts
to adapt to. Indeed, the data collection process likely happened over time for most of the datasets
used in our framework. However, timestamps were not always provided as the competitions were
conceptualized as static tabular data tasks. Therefore, most of the datasets were also used in at
least one comparative study for tabular data, although non-i.i.d. was a criterion for exclusion (e.g.,
SVPC, AEAC, and PSSDP in [21], SCTP and OGPCC in [41], or MBGM in [26]). Our results show,
that despite treating datasets as static, the samples remain non-i.i.d. and approaches like test-time
adaptation can improve performance. Furthermore, there is evidence that other datasets treated as i.i.d.
in related work actually have a temporal nature. I.e., the electricity dataset [29] is frequently used in
academic benchmarks [26, 55]. At the same time, this dataset would actually require a time-based
data split and is used as a benchmark in online learning to measure the ability of models to adapt
to concept drifts [15]. As models for tabular data assume the data to be i.i.d., most benchmarks
for evaluating tabular general-purpose models either directly name the data being non-i.i.d. as an
exclusion criterion [26, 21] or exclude data that requires special CV procedures [4], which leads to
the same results. In contrast, our analysis of Kaggle competitions revealed that most tabular data
competitions have temporal characteristics and that the best solutions for such datasets typically
engineer time-invariant features and utilize tabular data models assuming the data to be i.i.d (i.e. [32]).
We conclude that there might be a mismatch between current evaluation frameworks for tabular data
in academia and the tabular data tasks practitioners were interested in getting solved through ML
competitions on Kaggle.

4.5 Limitations

Despite the outlined advantages our evaluation has some limitations compared to evaluation designs
in academic benchmarks:

1. The distribution of leaderboard rankings varies across competitions, and advancements in one
competition’s leaderboard do not necessarily translate equivalently in another. Moreover, large
gains on a leaderboard may correspond to only minor increases on the actual task metric,
particularly in competitions where solutions are widely shared and numerous similar entries
are submitted. As an alternative, we repeat our evaluation based on the original task metric in
Appendix F.

2. Not all leaderboard submissions are made by experts, resulting in a tail of lower-quality entries
in each competition. Users of our framework should exercise caution when interpreting the
leaderboard as a performance metric, ensuring that only factually accurate statements about its
implications are used.

3. Due to the extent of our experiments, it was infeasible to repeat them to obtain error bars. This
limitation is important, as it leaves the randomness introduced by data splits, model-specific
characteristics, and hyperparameter optimization unquantified. Hence, small differences between
models on single datasets need to be interpreted with caution. Nevertheless, our primary focus
was to assess the effects of various modeling components. In this regard, the extensive nature
of our experiments and the clear distinctions observed between preprocessing pipelines across
multiple models and datasets suggest a minimal impact of randomness on our main findings.
For users applying our framework to systematically compare individual models, alternative
configurations with repeated evaluations would be necessary to increase reliability.

4. Due to the focus on incentivized competitions, most datasets are from the finance domain and
primarily represent North America and Europe, leading to an underrepresentation of other
domains and regions. To address this limitation, future analyses could incorporate competitions
from additional platforms. However, as our framework was designed to be user-friendly, we
focused on Kaggle, which contains an API for effortlessly downloading datasets and submitting
predictions.

A more extensive discussion of limitations can be found in Appendix E.

9

5 Implications for Future Work

We challenged the prevalent model-centric evaluation setups in tabular data research by comparing
evaluations with standardized preprocessing pipelines to evaluations with expert preprocessing
pipelines. We have shown that current research is overly model-centric, while tabular datasets often
require dataset-specific feature engineering or violate the i.i.d. assumption the models are based on.
This reveals important insights and directions for future work in Machine Learning for tabular data.

More careful choice of preprocessing for model evaluation. Our findings highlight that stan-
dardized evaluation setups do not necessarily ensure fair model comparisons. In standardized
preprocessing setups, models are evaluated as if they were AutoML solutions, whereas in real-world
applications, they are components of highly dataset-specific pipelines. Researchers should be aware a)
whether their datasets are amenable to feature engineering, b) that standardized preprocessing setups
treat models as AutoML systems, and, c) that true ceteris paribus (c.p.) comparisons are hard if some
models (i.e., CatBoost) apply feature engineering internally and others don’t. Feature-engineered
evaluation setups can be more suitable if a study aims for truly c.p. conditions or for evaluating models
in realistic scenarios. Standardized evaluation setups are more suitable for benchmarking AutoML
solutions and can also be suitable if models are expected to learn features without human effort.
Future research could emphasize incorporating dataset-specific (expert) preprocessing pipelines into
benchmarks or separate raw data benchmarks from fully preprocessed benchmarks, as done in our
study. However, gathering high-quality expert solutions at a large scale is tedious and may require a
community effort.

Need for external performance references. Our analysis shows that evaluations without consider-
ing the highest achievable performance on a task don’t actually measure the state-of-the-art. Despite
numerous benchmarks, there is no established standard to measure progress. A benchmark with a
public leaderboard and a dynamic collection of meaningful and unsolved real-world datasets could
facilitate progress.

Investigate why some feature engineering operations are not inherently learned by models.
Researchers developing general-purpose models should recognize the impact of feature engineering
on model performance. CatBoost has advanced the field by automating feature engineering on
categorical data. However, significant feature engineering effort is still necessary for datasets where
this is not the only challenge. Our study made it evident that there are transformations of the feature
space which are not learned by models without manual feature engineering. While we focused on a
pipeline perspective, future work could look at particular feature engineering techniques to uncover
modes of failure for current models and develop novel architecture components. I.e., our experiments
show that deep learning models benefit from feature engineering on categorical features. Hence,
unlike previously claimed [26], categorical features can indeed be an important challenge for deep
learning models and future work could focus on improvements over conventional embeddings. Our
expert feature engineering pipelines can serve as a starting point for evaluating and developing new
methods. Furthermore, AutoGluon was sometimes outperformed by single models in our analysis,
although it contains the same models. Future work could investigate why AutoGluon does not always
benefit from feature engineering to the same extent as single models.

Methods for tabular data with temporal characteristics. Our analysis highlights the temporal
nature of many real-world tabular data tasks, as well as the importance of accounting for distribution
shifts. Future work could investigate test-time adaptation methods specifically for tabular data, using
our datasets and the identified test-time feature engineering techniques as baselines. Furthermore, our
findings indicate that the current research focus on static i.i.d. data might hinder the development
of techniques to handle weak temporal correlations in tabular data. Future work should focus on
developing models with inductive biases for tabular data with temporal characteristics.

Align tabular benchmarks with practitioners needs. We have shown that models developed for
tabular data are often applied to datasets with temporal characteristics, while existing tabular data
benchmarks are overly focused on i.i.d. data. General-purpose tabular benchmarks should consider
including tabular datasets with temporal characteristics instead of excluding them. Furthermore, a
benchmark solely for tabular datasets with temporal characteristics could significantly advance model
development for this relevant data problem.

10

Acknowledgments and Disclosure of Funding

This research was supported by the Ministry of Economic Affairs, Labour and Tourism Baden-
Württemberg. Furthermore, the authors acknowledge support by the state of Baden-Württemberg
through bwHPC and the German Research Foundation (DFG) through grant INST 35/1597-1 FUGG.
We want to thank the reviewers of the NeurIPS datasets and benchmarks track for their invaluable
feedback, which greatly improved the quality of this paper. Moreover, we want to thank Kaggle
for hosting the competitions used in our framework and maintaining them as open source. In
addition, we thank the Kaggle users gmobaz, joeytaj, pyduan, bensolucky, mikeskim, leustagos,
efimov, titericz, davutpolat, jiweiliu, kazanova, stasg7, mmueller, kyazuki, utility, raddar, confirm,
psilogram, fl2ooo, konradb, rejulien, cdeotte, kyakovlev, xiaozhouwang, kelexu, and qqgeogor for
sharing the competition solutions we used. Lastly, we thank Malte Gaber and Michael Temnov for
their assistance in implementing Kaggle solutions.

References
[1] Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M. (2019). Optuna: A next-generation hyperparameter

optimization framework. In Proceedings of the 25th ACM SIGKDD international conference on knowledge
discovery & data mining, pages 2623–2631.

[2] Arik, S. Ö. and Pfister, T. (2021). Tabnet: Attentive interpretable tabular learning. In Proceedings of the
AAAI conference on artificial intelligence, volume 35, pages 6679–6687.

[3] Bergstra, J., Bardenet, R., Bengio, Y., and Kégl, B. (2011). Algorithms for hyper-parameter optimization.
Advances in neural information processing systems, 24.

[4] Bischl, B., Casalicchio, G., Feurer, M., Gijsbers, P., Hutter, F., Lang, M., Mantovani, R. G., van Rijn, J. N.,
and Vanschoren, J. (2017). Openml benchmarking suites.

[5] Borisov, V., Leemann, T., Seßler, K., Haug, J., Pawelczyk, M., and Kasneci, G. (2022). Deep neural
networks and tabular data: A survey. IEEE Transactions on Neural Networks and Learning Systems.

[6] Bromberg, B. (1942). The origin of banking: religious finance in babylonia. The Journal of Economic
History, 2(1):77–88.

[7] Cai, S., Zheng, K., Chen, G., Jagadish, H., Ooi, B. C., and Zhang, M. (2021). Arm-net: Adaptive relation
modeling network for structured data. In Proceedings of the 2021 International Conference on Management
of Data, pages 207–220.

[8] Cao, L. (2022). Ai in finance: challenges, techniques, and opportunities. ACM Computing Surveys (CSUR),
55(3):1–38.

[9] Chen, J., Liao, K., Wan, Y., Chen, D. Z., and Wu, J. (2022). Danets: Deep abstract networks for tabular data
classification and regression. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36,
pages 3930–3938.

[10] Chen, J., Yan, J., Chen, D. Z., and Wu, J. (2023a). Excelformer: A neural network surpassing gbdts on
tabular data. arXiv preprint arXiv:2301.02819.

[11] Chen, K.-Y., Chiang, P.-H., Chou, H.-R., Chen, T.-W., and Chang, T.-H. (2023b). Trompt: Towards a better
deep neural network for tabular data. arXiv preprint arXiv:2305.18446.

[12] Chen, T. and Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd
acm sigkdd international conference on knowledge discovery and data mining, pages 785–794.

[13] Cherepanova, V., Levin, R., Somepalli, G., Geiping, J., Bruss, C. B., Wilson, A. G., Goldstein, T., and
Goldblum, M. (2024). A performance-driven benchmark for feature selection in tabular deep learning.
Advances in Neural Information Processing Systems, 36.

[14] Cramer, J. S. (2002). The origins of logistic regression.

[15] de Barros, R. S. M., de Carvalho Santos, S. G. T., and Júnior, P. M. G. (2016). A boosting-like online
learning ensemble. In 2016 international joint conference on neural networks (IJCNN), pages 1871–1878.
IEEE.

[16] Erickson, N., Mueller, J., Shirkov, A., Zhang, H., Larroy, P., Li, M., and Smola, A. (2020). Autogluon-
tabular: Robust and accurate automl for structured data. arXiv preprint arXiv:2003.06505.

11

[17] Falkner, S., Klein, A., and Hutter, F. (2018). Bohb: Robust and efficient hyperparameter optimization at
scale. In International conference on machine learning, pages 1437–1446. PMLR.

[18] Fischer, S. F., Feurer, M., and Bischl, B. (2023). Openml-ctr23–a curated tabular regression benchmarking
suite. In AutoML Conference 2023 (Workshop).

[19] García, S., Ramírez-Gallego, S., Luengo, J., Benítez, J. M., and Herrera, F. (2016). Big data preprocessing:
methods and prospects. Big data analytics, 1:1–22.

[20] Gardner, J., Popovic, Z., and Schmidt, L. (2024). Benchmarking distribution shift in tabular data with
tableshift. Advances in Neural Information Processing Systems, 36.

[21] Gijsbers, P., Bueno, M. L., Coors, S., LeDell, E., Poirier, S., Thomas, J., Bischl, B., and Vanschoren, J.
(2024). Amlb: an automl benchmark. Journal of Machine Learning Research, 25(101):1–65.

[22] Gijsbers, P., LeDell, E., Thomas, J., Poirier, S., Bischl, B., and Vanschoren, J. (2019). An open source
automl benchmark. arXiv preprint arXiv:1907.00909.

[23] Gorishniy, Y., Rubachev, I., and Babenko, A. (2022). On embeddings for numerical features in tabular
deep learning. Advances in Neural Information Processing Systems, 35:24991–25004.

[24] Gorishniy, Y., Rubachev, I., Kartashev, N., Shlenskii, D., Kotelnikov, A., and Babenko, A. (2023). Tabr:
Unlocking the power of retrieval-augmented tabular deep learning. arXiv preprint arXiv:2307.14338.

[25] Gorishniy, Y., Rubachev, I., Khrulkov, V., and Babenko, A. (2021). Revisiting deep learning models for
tabular data. Advances in Neural Information Processing Systems, 34:18932–18943.

[26] Grinsztajn, L., Oyallon, E., and Varoquaux, G. (2022). Why do tree-based models still outperform deep
learning on typical tabular data? Advances in Neural Information Processing Systems, 35:507–520.

[27] Guo, H., Tang, R., Ye, Y., Li, Z., and He, X. (2017). Deepfm: a factorization-machine based neural network
for ctr prediction. arXiv preprint arXiv:1703.04247.

[28] Guo, X., Quan, Y., Zhao, H., Yao, Q., Li, Y., and Tu, W. (2021). Tabgnn: Multiplex graph neural network
for tabular data prediction. arXiv preprint arXiv:2108.09127.

[29] Harries, M., Wales, N. S., et al. (1999). Splice-2 comparative evaluation: Electricity pricing.

[30] Hollmann, N., Müller, S., Eggensperger, K., and Hutter, F. (2022). Tabpfn: A transformer that solves small
tabular classification problems in a second. arXiv preprint arXiv:2207.01848.

[31] Hollmann, N., Müller, S., and Hutter, F. (2024). Large language models for automated data science: Intro-
ducing caafe for context-aware automated feature engineering. Advances in Neural Information Processing
Systems, 36.

[32] Howard, A., inversion, Makridakis, S., and vangelis (2020). M5 forecasting - accuracy. https://kaggle.
com/competitions/m5-forecasting-accuracy. Accessed: 2024-10-15.

[33] Huang, X., Khetan, A., Cvitkovic, M., and Karnin, Z. (2020). Tabtransformer: Tabular data modeling
using contextual embeddings. arXiv preprint arXiv:2012.06678.

[34] Johnson, A. E., Pollard, T. J., Shen, L., Lehman, L.-w. H., Feng, M., Ghassemi, M., Moody, B., Szolovits,
P., Anthony Celi, L., and Mark, R. G. (2016). Mimic-iii, a freely accessible critical care database. Scientific
data, 3(1):1–9.

[35] Kaggle (2024). Kaggle. https://www.kaggle.com. Accessed: 2024-10-16.

[36] Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., and Liu, T.-Y. (2017). Lightgbm: A
highly efficient gradient boosting decision tree. Advances in neural information processing systems, 30.

[37] Ke, G., Xu, Z., Zhang, J., Bian, J., and Liu, T.-Y. (2019). Deepgbm: A deep learning framework distilled
by gbdt for online prediction tasks. In Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pages 384–394.

[38] Khurana, U., Turaga, D., Samulowitz, H., and Parthasrathy, S. (2016). Cognito: Automated feature
engineering for supervised learning. In 2016 IEEE 16th international conference on data mining workshops
(ICDMW), pages 1304–1307. IEEE.

[39] Kim, C., Kim, T., Woo, S., Yang, J. Y., and Yang, E. (2023). Adaptable: Test-time adaptation for tabular
data via shift-aware uncertainty calibrator and label distribution handler.

12

https://kaggle.com/competitions/m5-forecasting-accuracy
https://kaggle.com/competitions/m5-forecasting-accuracy
https://www.kaggle.com

[40] Klein, A. and Hutter, F. (2019). Tabular benchmarks for joint architecture and hyperparameter optimization.
arXiv preprint arXiv:1905.04970.

[41] Kohli, R., Feurer, M., Eggensperger, K., Bischl, B., and Hutter, F. (2024). Towards quantifying the effect
of datasets for benchmarking: A look at tabular machine learning.

[42] Kossen, J., Band, N., Lyle, C., Gomez, A. N., Rainforth, T., and Gal, Y. (2021). Self-attention between
datapoints: Going beyond individual input-output pairs in deep learning. Advances in Neural Information
Processing Systems, 34:28742–28756.

[43] Kundu, J. N., Kulkarni, A. R., Bhambri, S., Mehta, D., Kulkarni, S. A., Jampani, V., and Radhakrishnan,
V. B. (2022). Balancing discriminability and transferability for source-free domain adaptation. In International
conference on machine learning, pages 11710–11728. PMLR.

[44] Lee, J., Jung, D., Yim, J., and Yoon, S. (2022). Confidence score for source-free unsupervised domain
adaptation. In International conference on machine learning, pages 12365–12377. PMLR.

[45] Li, H., Pan, S. J., Wang, S., and Kot, A. C. (2018). Domain generalization with adversarial feature learning.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 5400–5409.

[46] Li, J., Li, Y., Xiang, X., Xia, S.-T., Dong, S., and Cai, Y. (2020). Tnt: An interpretable tree-network-tree
learning framework using knowledge distillation. Entropy, 22(11):1203.

[47] Lian, J., Zhou, X., Zhang, F., Chen, Z., Xie, X., and Sun, G. (2018). xdeepfm: Combining explicit
and implicit feature interactions for recommender systems. In Proceedings of the 24th ACM SIGKDD
international conference on knowledge discovery & data mining, pages 1754–1763.

[48] Liu, M., Guo, C., and Guo, S. (2023). An explainable knowledge distillation method with xgboost for icu
mortality prediction. Computers in Biology and Medicine, 152:106466.

[49] Loshchilov, I. and Hutter, F. (2017). Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101.

[50] Luo, Y., Zhou, H., Tu, W.-W., Chen, Y., Dai, W., and Yang, Q. (2020). Network on network for tabular data
classification in real-world applications. In Proceedings of the 43rd International ACM SIGIR Conference on
Research and Development in Information Retrieval, pages 2317–2326.

[51] Malinin, A., Band, N., Chesnokov, G., Gal, Y., Gales, M. J., Noskov, A., Ploskonosov, A., Prokhorenkova,
L., Provilkov, I., Raina, V., et al. (2021). Shifts: A dataset of real distributional shift across multiple large-scale
tasks. arXiv preprint arXiv:2107.07455.

[52] Mao, K., Zhu, J., Su, L., Cai, G., Li, Y., and Dong, Z. (2023). Finalmlp: An enhanced two-stream mlp
model for ctr prediction. arXiv preprint arXiv:2304.00902.

[53] Marton, S., Lüdtke, S., Bartelt, C., and Stuckenschmidt, H. (2023). Grande: Gradient-based decision tree
ensembles. arXiv preprint arXiv:2309.17130.

[54] McCulloch, W. S. and Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The
bulletin of mathematical biophysics, 5:115–133.

[55] McElfresh, D., Khandagale, S., Valverde, J., Ramakrishnan, G., Goldblum, M., White, C., et al. (2023).
When do neural nets outperform boosted trees on tabular data? arXiv preprint arXiv:2305.02997.

[56] Müller, A., Curino, C., and Ramakrishnan, R. (2023). Mothernet: A foundational hypernetwork for tabular
classification. arXiv preprint arXiv:2312.08598.

[57] Niu, S., Wu, J., Zhang, Y., Wen, Z., Chen, Y., Zhao, P., and Tan, M. (2023). Towards stable test-time
adaptation in dynamic wild world. arXiv preprint arXiv:2302.12400.

[58] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer,
P., Weiss, R., Dubourg, V., et al. (2011). Scikit-learn: Machine learning in python. the Journal of machine
Learning research, 12:2825–2830.

[59] Popov, S., Morozov, S., and Babenko, A. (2019). Neural oblivious decision ensembles for deep learning
on tabular data. arXiv preprint arXiv:1909.06312.

[60] Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V., and Gulin, A. (2018). Catboost: unbiased
boosting with categorical features. Advances in neural information processing systems, 31.

13

[61] Roelofs, R., Shankar, V., Recht, B., Fridovich-Keil, S., Hardt, M., Miller, J., and Schmidt, L. (2019). A
meta-analysis of overfitting in machine learning. Advances in Neural Information Processing Systems, 32.

[62] Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning representations by back-propagating
errors. nature, 323(6088):533–536.

[63] Shi, X., Mueller, J., Erickson, N., Li, M., and Smola, A. J. (2021). Benchmarking multimodal automl for
tabular data with text fields. arXiv preprint arXiv:2111.02705.

[64] Shwartz-Ziv, R. and Armon, A. (2022). Tabular data: Deep learning is not all you need. Information
Fusion, 81:84–90.

[65] Sinha, S., Gehler, P., Locatello, F., and Schiele, B. (2023). Test: Test-time self-training under distribution
shift. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pages
2759–2769.

[66] Somepalli, G., Goldblum, M., Schwarzschild, A., Bruss, C. B., and Goldstein, T. (2021). Saint: Im-
proved neural networks for tabular data via row attention and contrastive pre-training. arXiv preprint
arXiv:2106.01342.

[67] Sun, B., Yang, L., Zhang, W., Lin, M., Dong, P., Young, C., and Dong, J. (2019). Supertml: Two-
dimensional word embedding for the precognition on structured tabular data. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition workshops, pages 0–0.

[68] Tunguz, B., Dieter, or Tails, H., Kapoor, K., Pandey, P., Mooney, P., Culliton, P., Mulla, R., Bhutani, S.,
and Cukierski, W. (2023). 2023 kaggle ai report.

[69] Van Dalen, B. (1993). Ancient and Mediaeval Astronomical Tables: mathematical structure and parameter
values. Universiteit Utrecht, Faculteit Wiskunde en Informatica.

[70] Wang, Z. and Sun, J. (2022). Transtab: Learning transferable tabular transformers across tables. Advances
in Neural Information Processing Systems, 35:2902–2915.

[71] Xu, M., Zhang, J., Ni, B., Li, T., Wang, C., Tian, Q., and Zhang, W. (2020). Adversarial domain adaptation
with domain mixup. In Proceedings of the AAAI conference on artificial intelligence, volume 34, pages
6502–6509.

[72] Yan, J., Chen, J., Wu, Y., Chen, D. Z., and Wu, J. (2023). T2g-former: organizing tabular features into
relation graphs promotes heterogeneous feature interaction. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 37, pages 10720–10728.

[73] Yan, S., Song, H., Li, N., Zou, L., and Ren, L. (2020). Improve unsupervised domain adaptation with
mixup training. arXiv preprint arXiv:2001.00677.

[74] Zhang, T., Zhang, Z. A., Fan, Z., Luo, H., Liu, F., Liu, Q., Cao, W., and Jian, L. (2023a). Openfe:
Automated feature generation with expert-level performance. In International Conference on Machine
Learning, pages 41880–41901. PMLR.

[75] Zhang, Y., Safdar, M., Xie, J., Li, J., Sage, M., and Zhao, Y. F. (2023b). A systematic review on data
of additive manufacturing for machine learning applications: the data quality, type, preprocessing, and
management. Journal of Intelligent Manufacturing, 34(8):3305–3340.

[76] Zhao, H., Liu, Y., Alahi, A., and Lin, T. (2023). On pitfalls of test-time adaptation. In International
Conference on Machine Learning, pages 42058–42080. PMLR.

[77] Zhou, K., Liu, Z., Chen, R., Li, L., Choi, S.-H., and Hu, X. (2022a). Table2graph: Transforming tabular
data to unified weighted graph. In IJCAI, pages 2420–2426.

[78] Zhou, K., Liu, Z., Qiao, Y., Xiang, T., and Loy, C. C. (2022b). Domain generalization: A survey. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 45(4):4396–4415.

[79] Zhu, Y., Brettin, T., Xia, F., Partin, A., Shukla, M., Yoo, H., Evrard, Y. A., Doroshow, J. H., and Stevens,
R. L. (2021). Converting tabular data into images for deep learning with convolutional neural networks.
Scientific reports, 11(1):11325.

[80] Zindi (2024). Zindi. https://www.zindi.africa. Accessed: 2024-10-15.

14

https://www.zindi.africa

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] Each main claim is supported in one of the Subsections
of Section 4

(b) Did you describe the limitations of your work? [Yes] Limitations are mentioned in the
main paper where appropriate and discussed in more detail in the Appendix.

(c) Did you discuss any potential negative societal impacts of your work? [N/A] There are
no direct societal impacts.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [N/A] The paper

does not include theoretical results.
(b) Did you include complete proofs of all theoretical results? [N/A] The paper does not

include theoretical results.
3. If you ran experiments (e.g. for benchmarks)...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] The training details are provided in the supplementary material.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [No] Due to the extent of our experiments (over 200,000 trained
models), repeating experiments to obtain error bars was not feasible.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] The used hardware is described in
the supplementary material.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We greatly rely on

datasets and public solutions from Kaggle competitions and reference them in Table 1
and the supplementary material.

(b) Did you mention the license of the assets? [Yes] All assets are publicly available.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

Our code is provided to the reviewers in the supplementary material and will be made
publicly available upon acceptance.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A] All utilized data is publicly available.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A] All utilized data was anonymized by the
publishers.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

15

A Datasets and Expert Solutions

In this Section, we provide more details on the dataset/competition selection process and the expert
solutions implemented in our framework. Table 4 shows the name of all Kaggle competitions along
with additional information.

A.1 Dataset Selection

The main paper already provides an overview of the main characteristics of the selected datasets and
our main selection criteria. In this Subsection we further explain the selection criteria and summarize
the excluded datasets.

Name Competition Name End date Expert solution openml-id

MBGM mercedes-benz-greener-manufacturing 2017-06-11 1st place 42570
SVPC santander-value-prediction-challenge 2018-08-21 6th place 42572
AEAC amazon-employee-access-challenge 2013-08-01 1st place 4135
OGPCC otto-group-product-classification-challenge 2015-05-19 8th place 45548
SCS santander-customer-satisfaction 2016-05-03 3rd place -
BPCCM bnp-paribas-cardif-claims-management 2016-04-19 8th place -
SCTP santander-customer-transaction-prediction 2019-04-11 1st place 42395
HQC homesite-quote-conversion 2016-02-09 15th place -
IFD ieee-fraud-detection 2019-10-04 1st place -
PSSDP porto-seguro-safe-driver-prediction 2017-11-30 2nd place 43121

Table 4: Datasets and expert solutions included in our framework. The competitions can be accessed
at https://www.kaggle.com/competitions/{Competition Name}. The openml id is provided for better
contextualization with prior work.

In an initial search through the competitions hosted on Kaggle, we selected all datasets that satisfied
the following criteria:

• Tabular: We only consider competitions that include tabular data.
• Popular competitions: We consider all competitions with at least 1000 participants.
• Additional incentive: We only consider competitions that are incentivized, either monetarily

or otherwise.

We identified 77 competitions that satisfy these criteria and further applied dataset-specific criteria to
select competitions for our framework. Table 5 summarizes all excluded datasets. In the following,
we explain the exclusion criteria:

• Technical Issues:
– Code competition: Automating solution submission is non-trivial since the competition

is a code competition with special requirements. (3 competitions)
– Ongoing: The home-credit-credit-risk-model-stability competition was not finished at

the time of the development.
– Availability: Dataset not available anymore (6 competitions)
– Sample size: The restaurant-revenue-prediction dataset had only 137 training samples,

preventing reliable non-random model comparisons.
– Leak: The competition was won through an unresolvable data leak s.t. a fair evaluation

is impossible. (3 competitions)
– Submission error: Submitting to Kaggle doesn’t work due to an unresolved error for

the liberty-mutual-group-property-inspection-prediction competition.
• Other Modality: Utilization of other modalities, e.g. images, text, signals, molecular, or

genetic data, was a major part of the expert solution besides tabular data. (10 competitions)
• Special domain:

– Spatial: The data has spatial correlations that cannot easily be learned by the existing
general-purpose models. (4 competitions)

16

https://www.kaggle.com/competitions/mercedes-benz-greener-manufacturing/discussion/37700
https://www.openml.org/search?type=data&status=active&id=42570
https://www.kaggle.com/competitions/santander-value-prediction-challenge/discussion/63919
https://www.openml.org/search?type=data&status=active&id=42572
https://www.kaggle.com/competitions/amazon-employee-access-challenge/discussion/5283
https://www.openml.org/search?type=data&status=active&id=4135
https://www.kaggle.com/competitions/otto-group-product-classification-challenge/discussion/14295
https://www.openml.org/search?type=data&status=active&id=45548
https://www.kaggle.com/competitions/santander-customer-satisfaction/discussion/20978
https://www.kaggle.com/code/confirm/xfeat-catboost-cpu-only
https://www.kaggle.com/competitions/santander-customer-transaction-prediction/discussion/89003
https://www.openml.org/search?type=data&status=active&id=42395
https://www.kaggle.com/competitions/homesite-quote-conversion/discussion/18831
https://www.kaggle.com/competitions/ieee-fraud-detection/discussion/111308
https://www.kaggle.com/competitions/porto-seguro-safe-driver-prediction/discussion/44558
https://www.openml.org/search?type=data&status=active&id=43121

– Recommendation: Click-through-rate prediction and recommendation tasks were ex-
cluded because dedicated models exist for these tasks (e.g., [27, 47, 52]), while we focus
on general-purpose models. (avazu-ctr-prediction and kkbox-music-recommendation-
challenge)

• Temporal: In line with related work, we focus on i.i.d. tabular data. Competitions where
time-sensitive feature engineering was the key to competition success were excluded. This
also includes competitions without an explicit timestamp where multiple tables needed to
be merged, and where the strategy for merging datasets was a relevant part of the solution,
e.g., due to specific aggregation strategies. Although no timestamps are available for
those datasets, the underlying task necessitating merging was temporal. An example is the
elo-merchant-category-recommendation competition. (32 competitions)

• Expert Solution availability/reproducibility: These datasets could be included in our
framework but, for various reasons, could not be used with different preprocessing pipelines:

– For the walmart-recruiting-trip-type-classification, no top 1% solution was available.
– For the Springleaf-marketing-response and the ClaimPredictionChallenge datasets,

solution descriptions were available but were insufficient to reproduce the solution.
– For the prudential-life-insurance-assessment dataset, the main aspect for high perfor-

mance was calibration and transforming the target to simplify calibration, which was
out-of-scope in our framework.

– For two competitions, the expert solution mainly consisted of heavy ensembling on
different dataset versions and models, which we could not reproduce within our setup
(allstate-claims-severity, higgs-boson).

– For the sberbank-russian-housing-market competition, high performance was mainly
achieved by training different models for different samples in a dataset and by modify-
ing the target in highly task-specific ways.

Competition Name No. Teams Exclusion criteria

home-credit-default-risk 7176 Temporal
icr-identify-age-related-conditions 6430 Code competition
m5-forecasting-accuracy 5558 Temporal
amex-default-prediction 4874 Temporal
LANL-Earthquake-Prediction 4516 Other Modality, Temporal
optiver-trading-at-the-close 4436 Temporal
lish-moa 4373 Code competition
jane-street-market-prediction 4245 Availability, Temporal
elo-merchant-category-recommendation 4110 Temporal
talkingdata-adtracking-fraud-detection 3943 Temporal
optiver-realized-volatility-prediction 3852 Temporal
zillow-prize-1 3770 Spatial
ashrae-energy-prediction 3614 Temporal
ga-customer-revenue-prediction 3611 Temporal
godaddy-microbusiness-density-forecasting 3547 Temporal
petfinder-pawpularity-score 3537 Other Modality
home-credit-credit-risk-model-stability 3481 Ongoing
rossmann-store-sales 3298 Temporal
sberbank-russian-housing-market 3264 No expert solution
allstate-claims-severity 3045 No expert solution
h-and-m-personalized-fashion-recommendations 2952 Other Modality, Temporal
two-sigma-financial-news 2927 Availability, Temporal
ubiquant-market-prediction 2893 Availability, Temporal
champs-scalar-coupling 2737 Other Modality
predict-energy-behavior-of-prosumers 2731 Temporal
instacart-market-basket-analysis 2621 Temporal
prudential-life-insurance-assessment 2610 No expert solution
otto-recommender-system 2574 Temporal
novozymes-enzyme-stability-prediction 2482 Other Modality

17

Competition Name No. Teams Exclusion criteria

two-sigma-connect-rental-listing-inquiries 2480 Other Modality, Temporal
microsoft-malware-prediction 2410 Temporal
mercari-price-suggestion-challenge 2380 Other Modality
predicting-red-hat-business-value 2260 Leak, Temporal
restaurant-revenue-prediction 2257 Sample size
liberty-mutual-group-property-inspection-prediction 2232 Submission error
springleaf-marketing-response 2221 No expert solution
recruit-restaurant-visitor-forecasting 2148 Temporal
home-depot-product-search-relevance 2123 Leak
two-sigma-financial-modeling 2063 Availability, Temoral
predict-student-performance-from-game-play 2051 Temporal
jpx-tokyo-stock-exchange-prediction 2033 Temporal
petfinder-adoption-prediction 2023 Other Modality
expedia-hotel-recommendations 1971 Spatial
grupo-bimbo-inventory-demand 1963 Temporal
g-research-crypto-forecasting 1946 Temporal
avito-demand-prediction 1868 Other Modality, Temporal
amp-parkinsons-disease-progression-prediction 1805 Code competition, Temporal
higgs-boson 1784 No expert solution
santander-product-recommendation 1779 Temporal
talkingdata-mobile-user-demographics 1680 Leak
favorita-grocery-sales-forecasting 1671 Temporal
avazu-ctr-prediction 1602 Recommendation
allstate-purchase-prediction-challenge 1566 Temporal
axa-driver-telematics-analysis 1524 Availability, Temporal
new-york-city-taxi-fare-prediction 1483 Spatial
airbnb-recruiting-new-user-bookings 1458 Temporal
vsb-power-line-fault-detection 1445 Temporal
bosch-production-line-performance 1370 Temporal
hhp 1350 Availability
predict-west-nile-virus 1304 Temporal
ClaimPredictionChallenge 1278 No expert solution
nyc-taxi-trip-duration 1254 Spatial, Temporal
PLAsTiCC-2018 1089 Temporal
kkbox-music-recommendation-challenge 1081 Recommendation
foursquare-location-matching 1079 Other Modality
coupon-purchase-prediction 1072 Temporal
walmart-recruiting-trip-type-classification 1043 No expert solution

Table 5: Datasets excluded during the selection process

A.2 Implemented Components of Expert Solutions

In this Subsection, we document the components of our framework that were directly derived from
expert solutions.

Task conceptualization in data loading. For all datasets, the data loading includes merging tables,
defining the target, and defining categorical features. For some datasets, we incorporated parts of
expert solutions into the task conceptualization as a part of the data-loading function:

• mercedes-benz-greener-manufacturing: The index is used as a numeric feature as it was
necessary to score top leaderboard ranks.

• santander-value-prediction-challenge: 1) The target is marked as heavy-tailed to be trans-
formed in the standardized preprocessing pipeline. 2) There was a data leak allowing to
derive the test targets for some samples. The top expert solutions used these samples for
data augmentation. Hence, we also moved these samples from the test to the training dataset,
s.t. this leak is not an issue for any of our pipelines.

• homesite-quote-conversion: Extract weekday from datetime feature.

18

• porto-seguro-safe-driver-prediction: Replace -1 with nan.

Feature Engineering Pipelines. For each expert solution, we extract the data preparation, which
mostly consisted of feature engineering. The expert solutions of the datasets contained the following
feature engineering operations:

• mercedes-benz-greener-manufacturing: Addition of binary features, logical_and of binary
features, sum of multiple binary features, feature selection

• santander-value-prediction-challenge: {max, mean, min, median, first nonzero, last nonzero,
no. of nans, no. of unique values} of groups of multiple features. The groups mostly
consisted either of 40 or 99 features. Three groups were formed with 4991, 991, and 4000
features. The groups were previously determined based on expert knowledge. However, all
operations to obtain the new features could theoretically be learned solely from the train
data, and no timestamps are given explicitly.

• amazon-employee-access-challenge: (normalized) groupby interactions, 2- and 3-order cate-
gorical interactions, (normalized) frequency encoding, frequency encoding of interactions,
log of frequency features, drop constant features

• otto-group-product-classification-challenge: tSNE features, PCA features, KMeans centroid
features

• santander-customer-satisfaction: a few data cleaning steps, Remove highly correlated and
constant features, remove features with <4 target=1 instances, count of value 0/3/6/9 in a
row, percentile rank of feature A within feature B (considered a special kind of groupby
interaction), ratios, (X mod 3) == 0, KMeans features with 2-11 clusters, binary feature
separating population based on different other feature values

• bnp-paribas-cardif-claims-management: 2- and 3-order categorical interactions, Convert
numerical to categorical by rounding, 2-order Arithmetic combinations, 11-order categorical
interaction, out-of-fold target encoding

• santander-customer-transaction-prediction: replacing values that are unique in train data
(added test for test-time adaptation) with the mean of the feature, Extract categorical features
from numeric. Features have four (five if test data used) categories: 1) value appears at least
another time in data with target==1 and no 0, 2) value appears at least another time in data
with target==0 and no 1, 3) value appears at least two more time in data with target==0 & 1,
4) value is unique in data (if test-time adaptation: 5) value is unique in data + test)

• homesite-quote-conversion: sum NAs in a row, sum of zeros in a row, two-order categorical
interaction

• ieee-fraud-detection: feature selection, normalize "time deltas" from some point in the past
(Feature 1 (F1)-Feature 2 (F2)/(24*60*60)), frequency encoding (train & test), label encode
categoricals, groupby interactions (mean, std, count), 2-way categorical interactions, (F1 -
floor(F2), F1(cat) + ascat(floor(F2)-F3) - is not used directly, but for more aggregations),
abs(F1-F2)>3, use cat features as numeric

• porto-seguro-safe-driver-prediction: Feature selection, sum of missing values, frequency
encoding of high-order interaction of categorical features, only for tree-based models: one-
hot-encoding of categorical features, only for neural networks: train XGBoost models with
one group of features as input and another feature as output - use the out-of-fold predictions
as features

For the ieee-fraud-detection competition the winning solution found that once one transaction of a
customer is a fraud in the train dataset - all are. They deal with that by implementing a postprocessing
function labeling all customers as a fraud whenever one of the transactions is a fraud. As this pattern
could also be learned by models, we decided to treat this aspect as part of the expert preprocessing
pipeline.

The treatment of categorical features is left to the models whenever possible. The utilized encoding
is listed as part of the expert feature engineering pipeline for datasets where the categorical data
treatment was crucial for high performance. Operations that add new features based on existing
categorical features (e.g., frequency encoding) are always considered part of the expert preprocessing
pipeline, even though models like CatBoost use this information natively. Similarly, we remove

19

the treatment of missing values from the expert pipelines and leave that to the respective models
whenever possible.

The following feature engineering techniques were applied most frequently over all datasets: groupby
interactions (4), two-order categorical interactions (3), feature selection (3), categorical frequency
encoding (3), dimensionality reduction (2), three-order categorical interaction (2), 2-order arithmetic
interactions (2), sum of missing values in a row (2), and sum of zeros in a row (2). Details on all
implemented techniques for the datasets can be found in our code.

Feature Engineering Techniques used for test-time adaptation. Of the abovementioned feature
engineering techniques, the following were utilized as test-time feature engineering techniques:

• Counts of categorical features (AEAC, IFD, PSSDP)

• Dimensionality reduction (OGPCC, SCS)

• Groupby interactions (SCS, IFD)

• Occurrence of numeric features from train data in the test data (SCTP)

• Model-based Denoising/Smoothing by training an XGBoost model to predict features and
using out-of-fold predictions as features (PSSDP)

Cross-validation procedures. We used the same CV split type for each dataset as the expert
solutions but unified the number of folds across all our datasets. We used 10 folds for most datasets,
as this worked well for all datasets. For classification tasks, the folds were stratified across the target.
For the IFD dataset, we split the data based on the month the data was collected, which resulted in six
folds. For faster training, fewer folds could be used for large datasets with similar results. For large
datasets, most expert solutions used fewer folds, e.g., for the PSSDP competition.

A.3 Discussion on Test-Time Feature Engineering

To deal with distribution shifts, test-time adaptation is a conceptual framework where the model
parameters are allowed to depend on the test sample x but not on its unknown label y. This matches
the common ML competition setup, where test samples are given, but the target is hidden. We found
that successful participants in Kaggle competitions often use the test data for feature engineering.
Hence, we established that using test data for feature engineering in Kaggle competitions can be
considered a special kind of test-time adaptation. This subsection discusses when this practice can be
considered for real-world applications and when it is an unfair and unrealistic setup for a task.

We argue that the common ML setup allowing for test-time adaptation corresponds to a frequent
real-world application scenario where 1) The data to predict arrives in batches, 2) No real-time
predictions are required, 3) The train data is still available at test time, and 4) Retraining the model at
test time is feasible. The first criterion is important as the employed test-time feature engineering
techniques (e.g. dimensionality reduction and frequency encoding) often required the presence of
many test samples at once. It is unclear whether this kind of domain adaptation would work per
sample. The other criteria are necessary as test-time feature engineering always requires retraining the
model. Consequently, test-time feature engineering is not applicable in online learning, if the number
of test samples is small, or if the models are not retrainable (i.e., large-scale models). Importantly,
while test-time feature engineering might be infeasible in such applications, other test-time adaptation
techniques might still apply. One example of a task conceptualization amenable to test-time feature
engineering is product return prediction, where samples are collected over a day, and a (lightweight)
model can be retrained daily. In this scenario, using the test data in an unsupervised fashion for better
adaptation to possible distribution shifts is feasible. After examining the application scenarios of the
tasks in our framework, we found that most of them, like customer transaction prediction (SCTP)
and customer satisfaction prediction (SCS), would allow such a setup, although likely with smaller
amounts of test data than used for the competitions. Furthermore, our discussion in Subsection
4.4 reveals that many tabular datasets not in our scope have temporal components and thus may be
amenable to test-time feature engineering.

20

B Experimental Details

In this Section, we discuss all aspects of our experiments that are not a part of our proposed evaluation
framework but rather are design choices we made for our experiments.

B.1 Software and Hardware

The deep learning models, CatBoost, and XGBoost, were trained using one or more of the following
GPU hardware, depending on the availability: NVIDIA H100, NVIDIA A100, NVIDIA RTX A6000,
or NVIDIA A40. LightGBM and AutoGluon were trained using the following CPU hardware:
Intel(R) Xeon(R) CPU E2640v2 @ 2,00 GHz; Intel(R) Xeon(R) CPU E5-2640 v3 @ 2.60GHz.

B.2 Model-Specific Preprocessing

For the tree-based models, model-specific preprocessing only included the correct assignment of
datatypes to categorical features. For the deep learning models, the preprocessing was defined in line
with the related work [25, 26]. For regression, the target is normalized to zero mean and unit variance.
For numeric features, missing values are replaced with the mean, and the features are normalized
using ScikitLearn’s QuantileTransformer [58]. Categorical features are ordinally encoded as ResNet,
FTTransformer, and MLP-PLR use embeddings for categorical features. The GRANDE library
includes its own preprocessing, which contains the same steps as for the other deep learning models
but uses leave-one-out-encoding for categorical features. For AutoGluon, all the preprocessing is left
to the AutoML framework.

B.3 Model Training and Hyperparameter Optimization

We use the optuna library [1] for hyperparameter optimization. Each model is optimized for 100
trials with the first 20 trials being random search trials and the remaining 80 using the multivariate
Tree-structured Parzen Estimator algorithm [3, 17]. The models are trained using cross entropy for
classification and mean squared error for regression. The AdamW optimizer is used for training
the deep learning models [49]. Whenever possible, we use the task metric for validation during
model training and for choosing the best hyperparameters. Instead of the R2 metric, we use rmse, as
the objective is the same. Moreover, we we use rmse whenever the metric is rmsle, as we already
transformed the target prior to fitting. Instead of Gini, we use AUC, as the metrics are convertible. For
AutoGluon, we use the ’best_quality’ preset configuration and a time limit of 10 hours. Everything
else is left to the AutoML library itself. We try to use default hyperparameters and tuning ranges
that have been shown to perform well for each model. For that, we orient on different related work
[25, 26, 23, 55, 53] and the library documentations. Some of the datasets we use are quite large
compared to most related work. Our goal was to evaluate each of the included models with an equal
number of hyperparameter trials. Therefore, we did not use time budgets to constrain the number of
trials per model and dataset. As this leads to long computation times for some models, we did not
tune the representation capacity parameters for FTTransformer, as it was the most time-expensive
model in our scope. All default hyperparameters and search spaces can be seen in Tables 6-12.

Hyperparameter Default Search distribution

n_estimators 4000 -
patience 200 -
learning_rate 0.3 LogUniform[1e-3, 0.7]
max_depth 6 UniformInt[1, 11]
colsample_bytree 1. Uniform[0.5,1.]
subsample 1. Uniform[0.5,1.]
min_child_weight 1. LogUniform[1, 100]
reg_alpha 0. LogUniform[1e-8, 100]
reg_lambda 1. LogUniform[1, 4]
gamma 0. LogUniform[1e-8, 7]

Table 6: Hyperparameter configurations for XGBoost.

21

Hyperparameter Default Search distribution

iterations 4000 -
patience 200 -
learning_rate 0.1 LogUniform[1e-3, 0.7]
max_depth -1 {-1, UniformInt[1, 11]}
min_data_in_leaf 20 {20, 50, 100, 500, 1000, 2000}
num_leaves 31 UniformInt[2, 2047]
lambda_l2 0. LogUniform[1e-4, 10.]
feature_fraction 1. Uniform[0.5, 1.]
bagging_fraction 1. Uniform[0.5, 1.]
min_sum_hessian_in_leaf 1e-3 LogUniform[1e-4,100.0]

Table 7: Hyperparameter configurations for LightGBM. If max_depth>=1, the possible num_leaves
ranges were adjusted to be in a space feasible with the respective depth.

Hyperparameter Default Search Distribution

iterations 4000 -
od_type "Iter" -
od_wait 200 -
learning_rate auto LogUniform[1e-3, 1.]
max_depth 6 UniformInt[1, 11]
l2_leaf_reg 3.0 LogUniform[1,30]
bagging_temperature 1 Uniform[0,1]

Table 8: Hyperparameter configurations for CatBoost. In the default setting, the library automatically
determines a dataset-specific learning rate.

Hyperparameter Default Search distribution

epochs 200 -
patience 5 -
batch_size 128 -
learning_rate 1e-4 LogUniform[1e-5, 1e-2]
weight_decay 1e-5 LogUniform[1e-6, 1e-3]
Layers 2 UniformInt[1, 8]
Layer size 192 UniformInt[64, 1024]
Hidden factor 2. Uniform[1, 4]
Hidden dropout 0.25 Uniform[0., 0.5]
Residual dropout 0. Uniform[0., 0.5]
Categorical embedding size 8 UniformInt[4, 512]

Table 9: Hyperparameter configurations for ResNet.

Hyperparameter Default Search distribution

epochs 200 -
patience 5 -
batch_size 128 -
learning_rate 1e-4 LogUniform[1e-5, 1e-3]
weight_decay 1e-5 LogUniform[1e-6, 1e-3]
Layers 3 -
Layer size 192 -
Attention heads 8 -
Hidden factor 4

3
-

Hidden dropout 0.1 Uniform[0., 0.5]
Attention dropout 0.2 Uniform[0., 0.5]
Residual dropout 0. Uniform[0., 0.2]
Categorical embedding size 8 -

Table 10: Hyperparameter configurations for FTTransformer. Note that weight decay is only applied
to some layers of the model. For details, see [25].

22

Hyperparameter Default Search distribution

epochs 200 -
patience 5 -
batch_size 128 -
learning_rate 1e-3 LogUniform[5e-5, 5e-3]
weight_decay 1e-4 LogUniform[1e-6, 1e-3]
Layers 2 UniformInt[1, 8]
Layer size 192 UniformInt[1, 1024]
Categorical embedding size 8 UniformInt[1, 128]
Numerical embedding size 8 UniformInt[1, 128]
Dropout 0.25 Uniform[0., 0.5]
frequency_init_scale 0. LogUniform[1e-2, 10.]

Table 11: Hyperparameter configurations for MLP-PLR.

Hyperparameter Default Search distribution

epochs 1000 -
patience 25 -
batch_size 64 -
depth 5 -
n_estimators 2048 -
learning_rate_weights 0.005 LogUniform[1e-4, 0.25]
learning_rate_index 0.01 LogUniform[1e-4, 0.25]
learning_rate_values 0.01 LogUniform[1e-4, 0.25]
learning_rate_leaf 0.01 LogUniform[1e-4, 0.25]
cosine_decay_steps 0 {0, 100, 1000}
dropout 0.0 {0, 0.25}
selected_variables 0.8 {0.5, 0.75, 1.}
Focal loss 0.0 {False, True}
Temperature 0.0 {0, 0.25}

Table 12: Hyperparameter configurations for GRANDE. The focal loss and temperature parameters
only apply to classification tasks.

23

C Detailed Performance Results

In this Section, we provide the leaderboard position results for all the experiments in the main paper,
separated by hyperparameter regime and preprocessing pipeline. The results can be seen in Tables 13,
14, 15, and 16.

XGBoost LightGBM CatBoost ResNet FTT MLP-PLR GRANDE

Default MBGM 0.17 0.226 0.997 0.231 0.267 0.605 0.143
SVPC 0.799 0.929 0.889 0.798 0.798 0.92 0.795
AEAC 0.553 0.613 0.91 0.503 0.544 0.527 0.43
OGPCC 0.819 0.803 0.795 0.706 0.729 0.776 0.69
SCS 0.466 0.439 0.469 0.368 0.6 0.412 0.37
BPCCM 0.256 0.28 0.953 0.261 0.281 0.31 0.07
SCTP 0.338 0.364 0.431 0.287 0.374 0.315 0.376
HQC 0.319 0.343 0.936 0.378 0.47 0.418 0.455
IFD 0.311 0.324 0.519 0.226 0.408 0.294 0.177
PSSDP 0.288 0.301 0.519 0.315 0.478 0.258 0.347

Light MBGM 0.552 0.312 0.998 0.272 0.39 0.708 0.649
HPO SVPC 0.929 0.937 0.895 0.798 0.798 0.946 0.925

AEAC 0.544 0.693 0.945 0.693 0.614 0.56 0.474
OGPCC 0.834 0.888 0.799 0.712 0.748 0.808 0.587
SCS 0.609 0.543 0.557 0.374 0.993 0.529 0.4
BPCCM 0.578 0.398 0.978 0.285 0.31 0.357 0.185
SCTP 0.448 0.392 0.448 0.297 0.401 0.501 0.4
HQC 0.865 0.414 0.987 0.378 0.491 0.527 0.509
IFD 0.461 0.525 0.54 0.22 0.334 0.267 0.201
PSSDP 0.583 0.392 0.555 0.313 0.493 0.656 0.407

Extensive MBGM 0.476 0.503 0.999 0.334 0.448 0.8 0.615
HPO SVPC 0.932 0.946 0.917 0.798 0.798 0.947 0.932

AEAC 0.585 0.687 0.953 0.691 0.669 0.6 0.474
OGPCC 0.887 0.896 0.845 0.724 0.742 0.878 0.776
SCS 0.692 0.73 0.542 0.351 0.945 0.478 0.427
BPCCM 0.587 0.499 0.986 0.301 0.333 0.362 0.185
SCTP 0.51 0.428 0.495 0.298 0.408 0.518 0.496
HQC 0.911 0.409 0.991 0.414 0.527 0.527 0.619
IFD 0.533 0.662 0.552 0.223 0.518 0.268 0.245
PSSDP 0.656 0.463 0.586 0.308 0.549 0.656 0.418

Table 13: Leaderboard position of models trained with varying hyperparameter optimization regimes
on datasets after standardized preprocessing. The best model (+/- 0.01) is highlighted.

24

XGBoost LightGBM CatBoost ResNet FTT MLP-PLR GRANDE

Default MBGM 0.706 0.545 0.999 0.626 0.641 0.964 0.61
SVPC 0.993 0.987 0.987 0.941 0.968 0.989 0.946
AEAC 0.736 0.84 0.937 0.695 0.914 0.407 0.407
OGPCC 0.806 0.792 0.797 0.702 0.718 0.731 0.681
SCS 0.59 0.758 0.673 0.366 0.879 0.466 0.393
BPCCM 0.994 0.995 0.994 0.987 0.993 0.995 0.991
SCTP 0.311 0.373 0.417 0.284 0.376 0.345 0.395
HQC 0.354 0.371 0.953 0.46 0.948 0.393 0.368
IFD 0.83 0.775 0.775 0.215 0.741 0.615 0.462
PSSDP 0.511 0.479 0.743 0.531 0.993 0.361 0.377

Light MBGM 0.991 0.794 0.999 0.727 0.774 0.908 0.985
HPO SVPC 0.993 0.992 0.987 0.951 0.971 0.987 0.988

AEAC 0.734 0.932 0.945 0.905 0.78 0.693 0.495
OGPCC 0.823 0.852 0.803 0.705 0.748 0.839 0.563
SCS 0.824 0.754 0.783 0.382 0.837 0.555 0.519
BPCCM 0.993 0.991 0.995 0.99 0.993 0.995 0.995
SCTP 0.413 0.418 0.483 0.288 0.37 0.483 0.438
HQC 0.989 0.501 0.989 0.45 0.986 0.973 0.57
IFD 0.988 0.963 0.836 0.2 0.71 0.572 0.744
PSSDP 0.716 0.708 0.735 0.701 0.94 0.741 0.575

Extensive MBGM 0.95 0.859 0.994 0.71 0.875 0.934 0.945
HPO SVPC 0.993 0.992 0.987 0.949 0.978 0.987 0.985

AEAC 0.762 0.937 0.928 0.832 0.777 0.702 0.525
OGPCC 0.867 0.856 0.842 0.714 0.751 0.871 0.777
SCS 0.953 0.941 0.777 0.377 0.702 0.627 0.711
BPCCM 0.992 0.992 0.996 0.991 0.992 0.992 0.996
SCTP 0.521 0.5 0.557 0.293 0.376 0.499 0.962
HQC 0.99 0.487 0.991 0.468 0.986 0.982 0.839
IFD 0.988 0.985 0.809 0.216 0.665 0.62 0.736
PSSDP 0.994 0.944 0.973 0.684 0.99 0.99 0.605

Table 14: Leaderboard position of models trained with varying hyperparameter optimization regimes
on datasets after feature engineering. The best model (+/- 0.01) is highlighted.

XGBoost LightGBM CatBoost ResNet FTT MLP-PLR GRANDE

Default AEAC 0.944 0.948 0.98 0.725 0.758 0.46 0.445
OGPCC 0.856 0.847 0.84 0.714 0.714 0.783 0.718
SCS 0.543 0.611 0.701 0.39 0.892 0.635 0.431
SCTP 0.985 0.987 0.988 0.302 0.983 0.986 0.988
IFD 0.986 0.983 0.913 0.214 0.774 0.53 0.533
PSSDP 0.508 0.491 0.746 0.59 0.981 0.315 0.374

Light AEAC 0.95 0.96 0.99 0.932 0.943 0.776 0.507
HPO OGPCC 0.894 0.915 0.852 0.731 0.75 0.842 0.566

SCS 0.937 0.778 0.773 0.425 0.904 0.611 0.485
SCTP 0.988 0.988 0.989 0.315 0.985 0.991 0.989
IFD 0.991 0.989 0.987 0.211 0.692 0.642 0.646
PSSDP 0.94 0.773 0.792 0.745 0.978 0.707 0.609

Extensive AEAC 0.953 0.961 0.991 0.922 0.932 0.932 0.534
HPO OGPCC 0.922 0.923 0.884 0.72 0.78 0.878 0.808

SCS 0.975 0.842 0.904 0.362 0.798 0.734 0.798
SCTP 0.991 0.99 0.991 0.346 0.985 0.992 0.991
IFD 0.992 0.992 0.972 0.204 0.739 0.647 0.708
PSSDP 0.992 0.982 0.99 0.741 0.994 0.995 0.651

Table 15: Leaderboard position of models trained with varying hyperparameter optimization regimes
on datasets after test-time feature engineering as a preprocessing method for test-time adaptation.
The best model (+/- 0.01) is highlighted.

25

MBGM SVPC AEAC OGPCC SCS BPCCM SCTP HQC IFD PSSDP

Def. 0.74 0.799 0.618 0.996 0.92 0.991 0.498 0.992 0.205 0.562
FE 0.964 0.963 0.953 0.983 0.999 0.995 0.531 0.992 0.351 0.707
TTA - - 0.993 0.995 1.0 - 0.991 - 0.432 0.742

Table 16: Leaderboard position of AutoGluon on the private Kaggle leaderboard after different
preprocessing applied. The best results (+/- 0.01) are highlighted.

D Additional Results

D.1 Runtime analysis

As our experiments were conducted with varying hardware setups depending on availability, we
cannot directly compare runtimes. Hence, we conduct a separate experiment where we train each
model with default hyperparameters on each dataset and preprocessing pipeline on the same hardware.
In particular, we train all models in a setup where all folds are trained in parallel distributed equally
over two NVIDIA RTX A6000 GPUs. This setup is particularly beneficial for small datasets as well
as for MLP-like neural architectures as sequential training does not fully utilize the capabilities of
modern GPUs on these datasets and models. Figure 7 shows that XGBoost is the only Pareto point
after feature engineering and with test-time adaptation as it is the fastest and best performing model
at the same time. For the standardized setup the tree-based models build the Pareto frontier. However,
as in this plot runtime is measured with default hyperparameters and performance with extensively
tuned hyperparameters, the results do not represent the actual time required to obtain the performance
results.

0 2 4 6 8 10

Runtime in hours (sum of the ten datasets))

0.5

0.6

0.7

0.8

0.9

1.0

Av
er

ag
e

Le
ad

er
bo

ar
d

Po
sit

io
n

Model
XGBoost
LightGBM
CatBoost
ResNet
FTTransformer
MLP-PLR
GRANDE

Preprocessing Pipeline
Standardized
FE
FE-TTA

Figure 7: Runtime analysis. Performance is reported as the leaderboard position after extensive
hyperparameter optimization averaged over the ten datasets. Time is reported as the total time in
minutes required to train a model with default hyperparameters on all ten datasets with a particular
preprocessing pipeline. Note that each experiment was conducted with parallelizing the training of
folds, s.t. the time in GPU hours is much higher than the reported time. The black line represents
the Pareto frontier for the models trained in the standardized preprocessing pipeline. For the other
pipelines, XGBoost was the only Pareto optimum.

26

D.2 Model Ranking Variances Across Dataset

Figure 17 shows that the dataset-variance is rather high, mainly because the hardness of the task
differs among datasets, especially with standardized preprocessing. It can be seen that the variance of
the best performing methods strongly decreases after TTA, as good preprocessing eases the prediction
tasks for the previously hard datasets.

CatBoost XGBoost LightGBM MLP-PLR FTTransformer GRANDE ResNet

Stand. 0.79 (0.21) 0.68 (0.17) 0.62 (0.19) 0.6 (0.22) 0.59 (0.19) 0.52 (0.23) 0.44 (0.21)
FE 0.89 (0.14) 0.9 (0.15) 0.85 (0.19) 0.82 (0.19) 0.81 (0.2) 0.81 (0.17) 0.62 (0.27)
TTA 0.97 (0.04) 0.97 (0.03) 0.9 (0.16) 0.91 (0.12) 0.91 (0.1) 0.83 (0.16) 0.64 (0.28)

Table 17: Average leaderboard position with variance per dataset and pipeline.

D.3 Comparison of Preprocessing Pipelines per Model and Dataset

Figure 8 visualizes the comparison of different pipelines per model and dataset. It can be seen that
almost all models benefit from feature engineering and test-time adaptation on almost all datasets.
The only remarkable outlier is FTTransformer on the SCS dataset. The otherwise consistent results
support our claim that feature engineering and test-time adaptation are important components of
tabular machine learning competitions.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
LB percentile - Standardized Preprocessing

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

LB
 p

er
ce

nt
ile

 -
Ex

pe
rt

Fe
at

ur
e

En
gi

ne
er

in
g

Spearman: 0.43

Models
CatBoost
FTTransformer
GRANDE
LightGBM
MLP-PLR
ResNet
XGBoost

Datasets
AEAC
BPCCM
HQC
IFD
MBGM
OGPCC
PSSDP
SCS
SCTP
SVPC

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
LB percentile - Expert Feature Engineering

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

LB
 p

er
ce

nt
ile

 -
Te

st
-ti

m
e

ad
ap

ta
tio

n

Spearman: 0.57

Models
CatBoost
FTTransformer
GRANDE
LightGBM
MLP-PLR
ResNet
XGBoost

Datasets
AEAC
IFD
OGPCC
PSSDP
SCS
SCTP

Figure 8: Leaderboard positions of models and datasets in different preprocessing pipelines.

D.4 Analysis of Modeling Components

In this Subsection we complement our analysis of modeling components in the main paper with
additional analyses from different perspectives. Figure 9 shows the distributions of the leaderboard
positions of all our experiments, grouped by different modeling components. It can be seen that with-
out expert feature engineering, most submissions are far from the top percentiles on the leaderboard,
while after expert feature engineering, most submissions score top ranks. After test-time adaptation,
the density of top submissions increases even more. Moreover, the importance of hyperparameter
optimization can be seen. Regarding model selection, CatBoost clearly dominates, mainly due to the
property of achieving robustly strong results with default hyperparameters.

These results are in line with common practice in ML competitions [68]. While recent work strongly
focuses on model selection [26, 55], participants of Kaggle competitions typically stick to few model
classes and instead focus on developing feature engineering techniques for these particular models
[35]. Predictive Machine Learning is a winner-takes-all game. Selecting another model than the one

27

0.0 0.2 0.4 0.6 0.8 1.0
Leaderboard position

0.0

0.5

1.0

1.5

2.0

De
ns

ity

Standardized
Expert FE
FE-TTA

0.0 0.2 0.4 0.6 0.8 1.0
Leaderboard position

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

De
ns

ity

Default
Light HPO
Extensive HPO

0.0 0.2 0.4 0.6 0.8 1.0
Leaderboard position

0.0

0.5

1.0

1.5

2.0

2.5

De
ns

ity

XGBoost
LightGBM
CatBoost
ResNet
FTTransformer
MLP-PLR
GRANDE

Figure 9: Kernel Density Estimation of all results grouped by different modeling components (Left:
Preprocessing Pipelines, Center: HPO regimes, Right: Models).

CatBoost Default:
 Top 25.8%

 of submissions on the
 private Kaggle

 leaderboard

+ Expert
 Feature Engineering

-->Top 17.3%

+ Model Selection
-->Top 23.9%

+ Extensive HPO
-->Top 21.4%

+ Feature Engineering
 + Extensive HPO

-->Top 11.5%

+ Extensive HPO
 + Model Selection

-->Top 14.5%

+ Feature Engineering
 + Test-time adaptation

-->Top 9.0%

+ Feature Engineering
 + Model Selection

-->Top 12.0%

+ Feature Engineering
 + Extensive HPO
 + Model Selection

-->Top 3.2%

+ Feature Engineering
 + Test-time adaptation

 + Extensive HPO
-->Top 3.0%

+ Feature Engineering
 + Test-time adaptation

 + Model Selection
-->Top 3.8%

+ Extensive HPO
 + Model Selection

 + Feature Engineering
 + Test-time adaptation

-->Top 1.6%

Figure 10: Average Gains from different modeling choices from a winner-takes-all perspective with
CatBoost as the default model. Lower values mean a higher leaderboard position (unlike the rest of
the paper).

that is known to work best is only important if the default model fails or if ensembling is necessary.
Hence, it makes sense to look at the problem from the winner-takes-all perspective and to evaluate
performance gains from different modeling decisions w.r.t. a strong baseline. It is known from
related work that CatBoost is the strongest model with default hyperparameters [55]. Hence, we
evaluate performance gains over a CatBoost baseline. Figure 10 illustrates average leaderboard
position gains over the baseline for different modeling decisions. It can be seen that without feature
engineering, the best average leaderboard position is the 14.5% percentile, while without model
selection, it is the 3% percentile. Hence, one of the most important takeaways is that current tabular
ML research overemphasizes model evaluation but underestimates data preprocessing especially
feature engineering. While TTA increases the average leaderboard position by 8.3% in the default
setting, its importance after model selection and hyperparameter optimization reduces. Without TTA,
the best achievable average leaderboard position was 3.2% and 1.6% with TTA, indicating a relatively
small but important effect. In this Figure, the average top position is the 1.6% percentile because
we only considered single models. The missing component for scoring in the top 1% percentile is
ensembling, which we achieve using AutoGluon in the main paper.

To statistically test our results, we estimate the effect of different modeling components in a mixed-
effects regression analysis. We use the leaderboard position of all our experiments as the target
variable. The samples are all our experiments with leaderboard evaluations resulting from all dataset-
preprocessing-model-HPO combinations. To control for different dataset difficulty, we use the dataset
as a random effect. The fixed effects are:

• Featue Engineering {0, 1}: 1 if feature engineering (with and without TTA) was applied;

• Test-Time Adaptation {0, 1}: 1 if test-time adaptation was applied;

28

• Model Selection {-1, 0, 1}: -1 if CatBoost is the model, 1 if the model is the best of all
models on a dataset-preprocessing-HPO combination;

• Light HPO {0,1}: 1 if light HPO was applied;
• Extensive HPO {0,1}: 1 if extensive HPO was applied;

The results in Table 18 confirm the strong overall importance of feature engineering and the relevance
of HPO and test-time adaptation. Furthermore, it can be seen that using a model other than CatBoost
does not lead to significant gains on average. We want to emphasize that while this reflects the
general trend across all experiments, for some constellations, other models achieve strong gains over
CatBoost.

Model: MixedLM Dependent Variable: leaderboard position
No. Observations: 546 Method: REML
No. Groups: 10 Scale: 0.0380
Min. group size: 42 Log-Likelihood: 88.5557
Max. group size: 63 Converged: Yes
Mean group size: 54.6

Coef. Std.Err. z P> |z| [0.025 0.975]
Intercept 0.485 0.041 11.898 0.000 0.405 0.565
Feature Engineering 0.201 0.019 10.561 0.000 0.164 0.238
Test-Time Adaptation 0.080 0.023 3.437 0.001 0.034 0.126
Model Selection 0.004 0.016 0.240 0.810 -0.027 0.034
Light HPO 0.085 0.020 4.163 0.000 0.045 0.125
Extensive HPO 0.125 0.020 6.137 0.000 0.085 0.165
Dataset (Group Variable) 0.013 0.035

Table 18: Mixed Linear Model Regression Results

D.5 Evaluation At Different Snapshots of the Competitions

In the main paper, we evaluated results w.r.t. the end of the competition as a reference snapshot.
All publicly available metadata from Kaggle competitions is available at Meta Kaggle,(https://
www.kaggle.com/datasets/kaggle/meta-kaggle). This allows us to additionally use different
points in time when the competition took place. Table 19 shows the performance of the best model
in the standardized preprocessing pipeline after varying number of days in the competition. For
most datasets, scoring high positions at the first day without feature engineering is possible with our
framework. This shows that our framework can be of use for participants in Kaggle competitions to
obtain first baseline results.

D.6 Using Our Framework for Evaluating New Methods

In Section 5 we identified directions for future work. These directions were based on general insights
of our analysis for the tabular data field. This subsection will showcase how our framework can be
utilized to develop new approaches and compare them to expert solutions. Our framework contains,
to our knowledge, the largest collection of implemented expert solutions for relevant datasets. Hence,
our framework is especially useful to researchers developing AutoML solutions, especially focusing
on feature engineering. Furthermore, our framework can be useful to researchers developing model-
specific and data-agnostic preprocessing pipelines, i.e., for novel neural networks. In addition, our
framework can be used to develop test-time adaptation methods for tabular data. Figure 11 shows four
particular challenges for future work in tabular Deep Learning and AutoML for which our framework
can serve as a benchmark to measure progress: A) Develop a neural network not relying on feature
engineering techniques; B) Develop a neural network capable of test-time adaptation to replace the
often infeasible test-time feature engineering. C) Create a universal model-agnostic automated feature
engineering pipeline that surpasses expert feature engineering; D) Enhance AutoML solutions to
outperform expert modeling pipelines;

29

https://www.kaggle.com/datasets/kaggle/meta-kaggle
https://www.kaggle.com/datasets/kaggle/meta-kaggle

1 7 14 21 28 45 60 end

MBGM Best single 1.0 0.998 0.997 0.996 0.997 0.994 0.994 0.994
AutoGluon 0.87 0.814 0.706 0.67 0.653 0.616 0.616 0.616

SVPC Best single 1.0 1.0 1.0 1.0 1.0 0.991 0.964 0.946
AutoGluon 1.0 1.0 1.0 1.0 1.0 0.985 0.873 0.794

AEAC Best single 1.0 1.0 0.996 0.991 0.989 0.982 0.958 0.953
AutoGluon 0.98 0.894 0.781 0.739 0.698 0.667 0.638 0.616

OGPCC Best single 0.996 0.994 0.987 0.984 0.977 0.963 0.908 0.896
AutoGluon 1.0 1.0 1.0 0.999 1.0 0.998 0.996 0.996

SCS Best single 1.0 0.978 0.972 0.95 0.905 0.865 0.825 0.825
AutoGluon 1.0 0.972 0.966 0.936 0.885 0.837 0.792 0.792

BPCCM Best single 1.0 0.998 0.996 0.997 0.997 0.993 0.991 0.986
AutoGluon 1.0 1.0 0.998 0.997 0.997 0.997 0.995 0.992

SCTP Best single 0.991 0.895 0.893 0.865 0.681 0.551 0.511 0.511
AutoGluon 0.986 0.867 0.865 0.822 0.655 0.531 0.493 0.493

HQC Best single 1.0 1.0 1.0 1.0 0.998 0.999 0.995 0.992
AutoGluon 1.0 1.0 1.0 1.0 1.0 1.0 0.995 0.993

IFD Best single 1.0 0.991 0.985 0.978 0.922 0.776 0.694 0.621
AutoGluon 0.14 0.145 0.165 0.185 0.187 0.178 0.17 0.192

PSSDP Best single 0.995 0.969 0.889 0.845 0.781 0.696 0.638 0.638
AutoGluon 0.968 0.889 0.786 0.727 0.667 0.593 0.552 0.552

Table 19: Private leaderboard position at different points in time of the competitions. For each
competition, the performance of the best model trained in the standardized preprocessing pipeline is
reported. The columns represent days after the competition started.

0.5 1.0

Standardized

0.69

+FE

0.90

Challenge A: Model-inherent Feature Engineering

0.5 1.0

FE

0.85

+TTA

0.89

Challenge B: Model-inherent Test-Time Adaptation

0.5 1.0

Standardized

0.86

FE

0.97

Challenge C: Automated Feature Engineering

0.5 1.0

AutoGluon

0.73

Expert (24h)

0.91

(Final)

0.97

Challenge D: Expert-level AutoML

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 11: Challenges for further automating deep learning and AutoML for tabular data. Challenge
A compares the best neural networks within the standardized and feature engineering pipelines after
extensive HPO. Challenge B compares the best neural networks within the feature engineering and
the test-time adaptation pipeline after extensive HPO. Challenge C compares the best model within
the standardized pipeline to the best model within the feature engineering pipeline. Challenge D
compares AutoGluon to the best submission after 24 hours and the best models within the feature
engineering pipeline.

E Discussion of Limitations

The main goal of our experiments was to showcase the limitations of evaluation frameworks currently
prevalent in tabular Machine Learning. This required extensive experiments in different preprocessing
pipelines. Some limitations arising from this scope are:

• We use Kaggle competitions in an effort to evaluate more realistic tasks than in related work.
It is important to highlight that the competition setup on Kaggle does not always reflect
real-world tasks. However, due to the involvement of companies and institutions and the
poor availability of high-quality tabular datasets [41], these are arguably among the most
realistic datasets available as open-source data. Furthermore, one of our contributions was

30

to separate aspects from the main learning task that made competitions unrealistic (i.e.,
data leaks or, for some applications, test-time adaptation). This additionally improves the
real-world transferability of our experiments.

• We split the overall expert preprocessing into feature engineering and test-time adaptation.
However, pipelines could be differentiated further, or single-feature engineering techniques
could be investigated. For instance, we could separate the expert feature engineering pipeline
by whether expert feature selection is applied. However, due to the extent of our experiments,
we focus on a pipeline perspective and leave fine-grained analyses of specific techniques for
future work.

• It is worth mentioning that the implemented feature engineering steps for each dataset
were always extracted from modeling pipelines were they worked well in combination with
specific models, mostly tree-based. It might be the case that some models would addition-
ally benefit from other preprocessing techniques that were not part of the implemented
pipeline. A general observation was that feature engineering techniques working well for
one model often also work well for others. Only for one dataset, the expert solution (slightly)
differentiated between tree-based and neural network preprocessing.

• We use the leaderboard percentile as the main evaluation measure to have an external
reference for the top performance on a dataset. A possible issue of that design choice is
that the leaderboard of each dataset is differently distributed. Hence, what appears to be
a large jump on a dataset might actually only be a small increase on the metric, while for
another dataset, the same leaderboard increase might amount to a substantial increase in
performance. However, averaging over datasets has a natural interpretation when using
the leaderboard position, which is not there when using normalized versions of entirely
different metrics. In addition to the evaluation in the main paper, we include evaluations on
the original metrics in Appendix F. The results indicate that our claims similarly hold when
evaluating using the original metrics.

• Another possible issue with using the leaderboard as a metric is the suggestive wording
possibly leading to misinterpretations of what expert solutions in our context are. First, not
all submitted solutions are expert solutions and the leaderboard is skewed. Users of our
framework should avoid formulations such as "beating 99% of experts", as it is unclear
which of the submitted solutions can be considered expert level. Instead, factually correct
statements such as "top 1% of all competition participants" should be used.

• Our evaluation framework does not allow to assess whether one model is generally better
than another model. We only claim that model comparisons change and that feature
engineering and preprocessing greatly influence model comparison on our datasets. For a
more generalizable model comparison using more datasets, we refer to related work [26].

• Due to the extent of our experiments (over 200,000 trained models), it was infeasible to
repeat the experiments multiple times to obtain error bars. Nevertheless, our experiments
include randomness (e.g., CV splits, weight initialization for deep learning models, or
bagging for the tree-based models), limiting the generalizability of our results. However, the
extent of our experiments and the clear differences between the implemented preprocessing
pipelines over multiple models and datasets make the risk of randomness affecting our main
claims very low despite not being explicitly quantified for all models.

• Due to the focus on incentivized Kaggle competitions, most datasets are from the finance
domain and from North America or Europe. Hence, non-profit domains and other continents
are underrepresented. To mitigate this, our analysis could be extended through competitions
on other platforms such as Zindi [80]. However, as we wanted our framework to be easy to
use, we focused on Kaggle, which contains an API for effortlessly downloading datasets
and submitting predictions.

F Evaluation on the Original Task Metrics

This Section lists the main results using the original task metrics for all experiments. An overview of
important components per dataset and model can be seen in Figure 12. All experimental results on
the original metrics can be seen in Tables 20, 21, 22, and 23. Further results can be seen in our code.
Overall, the evaluation using the original metrics aligns with our main findings.

31

.52

.52

.53

.53

.54

.54

.55

MBGM

.34

.36

.38

.40

.42

.44

.46
SVPC

.84

.86

.88

.90

.92
AEAC

.53

.54

.55

.56

.57

.58

.59

OGPCC

.82

.82

.82

.82

SCS

XG
B

LG
B CB

Re
sN

et FT
T

M
LP

PL
R

GR
AN

DE

Au
to

Gl
uo

n

.42

.44

.46

.48

.50

.52

.54

.56
BPCCM

XG
B

LG
B CB

Re
sN

et FT
T

M
LP

PL
R

GR
AN

DE

Au
to

Gl
uo

n

.87

.88

.89

.90

.91

.92
SCTP

XG
B

LG
B CB

Re
sN

et FT
T

M
LP

PL
R

GR
AN

DE

Au
to

Gl
uo

n.96

.96

.96

.96

.96

HQC
XG

B

LG
B CB

Re
sN

et FT
T

M
LP

PL
R

GR
AN

DE

Au
to

Gl
uo

n
.86

.87

.88

.89

.90

.90

.92

.93

IFD

XG
B

LG
B CB

Re
sN

et FT
T

M
LP

PL
R

GR
AN

DE

Au
to

Gl
uo

n

.27

.27

.28

.28

.29

PSSDP

Default Light HPO Extensive HPO Expert FE FE-TTA

Figure 12: Performance gains from different modeling components on the original metrics of the
Kaggle competitions. Higher values correspond to better performance. The original metric was
reversed for SVPC, OGPCC, and BPCCM to align with the higher-is-better notation. ’Default’
corresponds to the model performance with default hyperparameters in a standardized preprocessing
pipeline. Light and extensive HPO correspond to tuning hyperparameters in the same preprocessing
pipeline. Expert FE and FE-TTA correspond to the model performance with extensively tuned
hyperparameters in the feature engineering and the test-time adaptation pipeline respectively.

32

XGBoost LightGBM CatBoost ResNet FTT MLP-PLR GRANDE

Default MBGM 0.5276 0.5363 0.554 0.5366 0.5398 0.5483 0.52
SVPC 0.3666 0.419 0.3945 0.3348 0.3433 0.4041 0.3249
AEAC 0.8754 0.881 0.9005 0.8653 0.8738 0.8707 0.8302
OGPCC 0.5525 0.5501 0.5482 0.5293 0.5356 0.5443 0.5259
SCS 0.8239 0.8232 0.824 0.8205 0.825 0.8223 0.8206
BPCCM 0.525 0.5295 0.5539 0.5262 0.5295 0.5325 0.4148
SCTP 0.8892 0.893 0.8965 0.8666 0.894 0.8863 0.8942
HQC 0.96 0.9612 0.9679 0.9636 0.9664 0.9651 0.966
IFD 0.8989 0.9006 0.9121 0.8799 0.9065 0.8965 0.859
PSSDP 0.2703 0.2724 0.2843 0.274 0.283 0.2655 0.2766

Light MBGM 0.5474 0.5416 0.5543 0.5402 0.5441 0.5499 0.5489
SVPC 0.4201 0.4316 0.3972 0.3454 0.343 0.4405 0.4129
AEAC 0.8738 0.8873 0.9056 0.8874 0.8811 0.8757 0.8548
OGPCC 0.5556 0.5664 0.5491 0.5305 0.5404 0.551 0.4905
SCS 0.8251 0.8247 0.8248 0.8208 0.8277 0.8245 0.8218
BPCCM 0.5436 0.538 0.5584 0.53 0.5325 0.5354 0.5057
SCTP 0.8968 0.8951 0.8968 0.8756 0.8956 0.8978 0.8956
HQC 0.9677 0.965 0.9685 0.9636 0.9667 0.967 0.9669
IFD 0.9097 0.9126 0.9135 0.8782 0.9012 0.8923 0.8688
PSSDP 0.2863 0.2799 0.2855 0.2739 0.2835 0.2878 0.2805

Extensive MBGM 0.5461 0.5465 0.5545 0.5425 0.5457 0.5513 0.5484
SVPC 0.4256 0.4421 0.4024 0.3453 0.3455 0.4428 0.4239
AEAC 0.8771 0.8868 0.9086 0.887 0.8825 0.8793 0.8546
OGPCC 0.5662 0.5685 0.5575 0.5345 0.5387 0.5638 0.5443
SCS 0.8255 0.8258 0.8247 0.8197 0.8271 0.8241 0.8228
BPCCM 0.5439 0.5421 0.561 0.5315 0.534 0.5359 0.5053
SCTP 0.898 0.8964 0.8977 0.877 0.8959 0.8981 0.8977
HQC 0.9678 0.9648 0.9688 0.965 0.9671 0.9671 0.9674
IFD 0.9132 0.9194 0.914 0.8794 0.912 0.8924 0.8864
PSSDP 0.2878 0.2824 0.2864 0.2735 0.2853 0.2878 0.281

Table 20: Performance of models trained with varying hyperparameter optimization regimes on
private test competition datasets after standardized preprocessing. Higher values correspond to better
performance. The original metric was reversed for SVPC, OGPCC, and BPCCM to align with the
higher-is-better notation. The best model is highlighted. A model is considered better if it achieves
a score that is one leaderboard standard deviation (std) larger than the other. The std is determined
based on all top 1% submissions to only focus on the best models.

33

XGBoost LightGBM CatBoost ResNet FTT MLP-PLR GRANDE

Default MBGM 0.5499 0.5473 0.5546 0.5485 0.5488 0.5524 0.5483
SVPC 0.4683 0.4643 0.4646 0.4369 0.457 0.4665 0.4409
AEAC 0.8947 0.8992 0.9039 0.8881 0.901 0.8168 0.816
OGPCC 0.5504 0.5473 0.5484 0.528 0.5327 0.5359 0.5227
SCS 0.8249 0.8261 0.8254 0.8203 0.8267 0.8239 0.8216
BPCCM 0.5672 0.5676 0.5668 0.5627 0.5667 0.5681 0.5651
SCTP 0.885 0.8939 0.8962 0.8643 0.8942 0.8906 0.8952
HQC 0.9618 0.9631 0.968 0.9661 0.968 0.9642 0.9628
IFD 0.9275 0.9255 0.9255 0.8759 0.9233 0.9173 0.9097
PSSDP 0.2841 0.283 0.2895 0.2848 0.2911 0.2779 0.2788

Light MBGM 0.5534 0.5512 0.555 0.5503 0.551 0.5518 0.5531
SVPC 0.4694 0.4682 0.4642 0.4461 0.4582 0.4647 0.4653
AEAC 0.8941 0.9033 0.9059 0.9002 0.8981 0.8874 0.8619
OGPCC 0.5538 0.5589 0.5501 0.529 0.5403 0.5563 0.4857
SCS 0.8265 0.8261 0.8263 0.8212 0.8266 0.8248 0.8244
BPCCM 0.5666 0.5649 0.5678 0.5643 0.5664 0.5682 0.5688
SCTP 0.8961 0.8963 0.8973 0.868 0.8936 0.8973 0.8966
HQC 0.9686 0.9668 0.9686 0.9659 0.9684 0.9682 0.9673
IFD 0.9316 0.9289 0.9278 0.8684 0.922 0.9145 0.9237
PSSDP 0.2891 0.2889 0.2893 0.2887 0.2901 0.2894 0.2861

Extensive MBGM 0.5522 0.5516 0.5537 0.55 0.5517 0.5521 0.5522
SVPC 0.4694 0.4682 0.4645 0.4446 0.4611 0.465 0.4626
AEAC 0.8972 0.9038 0.9028 0.8988 0.898 0.8892 0.8701
OGPCC 0.5615 0.56 0.557 0.5311 0.5415 0.5622 0.5444
SCS 0.8271 0.8271 0.8263 0.8209 0.8256 0.8252 0.8256
BPCCM 0.5659 0.5653 0.5692 0.5647 0.5662 0.5662 0.5689
SCTP 0.8982 0.8978 0.8987 0.8725 0.8942 0.8978 0.9002
HQC 0.9687 0.9667 0.9688 0.9663 0.9685 0.9684 0.9676
IFD 0.9319 0.9303 0.9268 0.8764 0.9196 0.9174 0.9229
PSSDP 0.2912 0.2902 0.2905 0.2883 0.2908 0.2909 0.2869

Table 21: Performance of models trained with varying hyperparameter optimization regimes on private
test competition datasets after feature engineering. Higher values correspond to better performance.
The original metric was reversed for SVPC, OGPCC, and BPCCM to align with the higher-is-better
notation. The best model is highlighted. A model is considered better if it achieves a score that is one
leaderboard standard deviation (std) larger than the other. The std is determined based on all top 1%
submissions to only focus on the best models.

34

XGBoost LightGBM CatBoost ResNet FTT MLP-PLR GRANDE

Default AEAC 0.9055 0.9066 0.9144 0.893 0.8967 0.8472 0.8388
OGPCC 0.5601 0.5578 0.5567 0.5312 0.5309 0.5452 0.5326
SCS 0.8247 0.8251 0.8255 0.8214 0.8268 0.8253 0.823
SCTP 0.9143 0.9154 0.9168 0.8797 0.9135 0.915 0.917
IFD 0.9307 0.9301 0.9284 0.8755 0.9254 0.9129 0.9132
PSSDP 0.284 0.2834 0.2895 0.2865 0.2906 0.2741 0.2786

Light AEAC 0.9069 0.9113 0.9171 0.9034 0.9052 0.898 0.8655
OGPCC 0.568 0.5729 0.5589 0.536 0.5412 0.5571 0.4878
SCS 0.8271 0.8263 0.8262 0.8227 0.8269 0.8251 0.8242
SCTP 0.9173 0.9172 0.9183 0.8864 0.9146 0.9193 0.9176
IFD 0.9343 0.9327 0.9314 0.8741 0.9209 0.9183 0.9186
PSSDP 0.2901 0.2898 0.2898 0.2895 0.2905 0.2889 0.287

Extensive AEAC 0.9087 0.9115 0.9172 0.9019 0.9035 0.9032 0.872
OGPCC 0.5743 0.5748 0.5652 0.5333 0.5447 0.5638 0.551
SCS 0.8273 0.8266 0.8269 0.82 0.8264 0.8259 0.8264
SCTP 0.9193 0.9189 0.9194 0.8908 0.9144 0.9202 0.9196
IFD 0.935 0.9352 0.9291 0.8698 0.9232 0.9186 0.9218
PSSDP 0.291 0.2906 0.2908 0.2894 0.2911 0.2914 0.2876

Table 22: Performance of models trained with varying hyperparameter optimization regimes on
private test competition datasets after test-time adaptation. Higher values correspond to better
performance. The original metric was reversed for SVPC, OGPCC, and BPCCM to align with the
higher-is-better notation. The best model is highlighted. A model is considered better if it achieves
a score that is one leaderboard standard deviation (std) larger than the other. The std is determined
based on all top 1% submissions to only focus on the best models.

MBGM SVPC AEAC OGPCC SCS BPCCM SCTP HQC IFD PSSDP

Def. 0.5505 0.366 0.8816 0.5979 0.827 0.565 0.8978 0.9689 0.871 0.2858
FE 0.5524 0.454 0.9087 0.5873 0.8285 0.5678 0.8984 0.9692 0.902 0.2889
TTA - - 0.9194 0.5971 0.8292 - 0.9194 - 0.908 0.2894

Table 23: Performance of AutoGluon on private test competition datasets after different preprocessing
applied. Higher values correspond to better performance. The original metric was reversed for
SVPC, OGPCC, and BPCCM to align with the higher-is-better notation. The best preprocessing is
highlighted.

35

	Introduction
	Related Work
	A Data-Centric Evaluation Framework for Tabular Machine Learning
	Collection of Relevant and Challenging Datasets
	Expert Solutions and Preprocessing Pipelines
	Modeling and Evaluation Framework

	Experimental Evaluation
	How Model Comparisons Change When Considering Dataset-specific Preprocessing
	Measurable Progress Through Recent Efforts
	Feature Engineering is Still the Most Important Factor for Top Performance
	The Importance of Test-Time Adaptation and Temporal Characteristics
	Limitations

	Implications for Future Work
	Datasets and Expert Solutions
	Dataset Selection
	Implemented Components of Expert Solutions
	Discussion on Test-Time Feature Engineering

	Experimental Details
	Software and Hardware
	Model-Specific Preprocessing
	Model Training and Hyperparameter Optimization

	Detailed Performance Results
	Additional Results
	Runtime analysis
	Model Ranking Variances Across Dataset
	Comparison of Preprocessing Pipelines per Model and Dataset
	Analysis of Modeling Components
	Evaluation At Different Snapshots of the Competitions
	Using Our Framework for Evaluating New Methods

	Discussion of Limitations
	Evaluation on the Original Task Metrics

