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Abstract

Textual Inversion remains a popular method for personalizing diffusion models, in order
to teach models new subjects and styles. We note that textual inversion has been under-
explored using alternatives to the UNet, and experiment with textual inversion with a vision
transformer. We also seek to optimize textual inversion using a strategy that does not require
explicit use of the UNet and its idiosyncratic layers, so we add bonus tokens and enforce
orthogonality. We find the use of the bonus token improves adherence to the source images
and the use of the vision transformer improves adherence to the prompt. Code is available
at REDACTED WHILE UNDER REVIEW.

1 Introduction

When the British pop singer Charli XCX sings "When you’re in the mirror, do you like what you see? When
you’re in the mirror, you’re just looking at me" in her song 360 (XCX, 2024), she is implicitly acknowledging
that mirrors show an instance of a subject. However, due to her eminence as an icon, the specific instance is
replaced with her. Charli XCX’s lyrics imply that it is very significant and meaningful which person appears
in the mirror when the audience looks in the mirror. Depicting a generic picture of a cat is less useful than
depicting a specific cat. The pop singer herself has admitted that she doesn’t just wear any pair of boots
but strongly prefers a very specific model of black Prada boots (GQ, 2024). This affinity towards specific
instances of subjects motivates the personalization of text-to-image models.

While most of the standard pre-trained diffusion models know a few specific instances of specific characters
or objects (for example, most off-the-shelf diffusion models can generate images of the Statue of Liberty, not
just a generic statue when prompted to do so), there has been no shortage of clever methods to expand their
output space to a new subject or style (Ruiz et al., 2022; Li et al., 2023; Ma et al., 2023; Purushwalkam
et al., 2024; Wang et al., 2024; Ye et al., 2023; Chen et al., 2024; Zhang et al., 2023a) We revisit one of the
earliest methods of personalizing diffusion models, known as Textual Inversion (Gal et al., 2022). Textual
inversion is most often used to teach diffusion models new subjects. However, it can also be used effectively
to teach new styles, similar to style transfer, but without a content image. We also note that most, if
not all, textual inversion literature is wedded to the use of the UNet, and many of the optimizations are
UNet-specific. While not all diffusion models use UNet the massive size of the text encoders used with
other models such as Vision Transformers (Dosovitskiy et al., 2021) can make textual inversion on them
difficult. However, this problem can be circumvented with the use of adapters (Zhao et al., 2024) that map
the embeddings of one text encoder into the space of another, opening up the possibility of textual inversion
on Vision Transformers. At the same time, we see that the fixation on UNet architecture has meant a dearth
of model-agnostic improvements to textual inversion. Given the state of the field, our contributions are as
follows:

• We apply textual inversion to a non-UNet architecture

• We use a new token method, which we call BRAT, that is agnostic to choice of denoising model

• We demonstrate that BRAT improves adherence to the source image, and the non-UNet architecture
improves human preference rating and prompt adherence
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2 Related Work

2.1 Text to Image

The Generative Adversarial Network (Goodfellow et al., 2014) was a milestone in using machine learning to
create new visual artifacts. Later works like Deepdream (Mordvintsev et al., 2015) and style transfer using
Gram matrices (Gatys et al., 2015) or CycleGAN (Zhu et al., 2020) could generate images conditioned on
source images. GANs were also implemented conditioned on text (Mirza & Osindero, 2014; Reed et al.,
2016), allowing users even more control of what these models could create. Recently, autoregressive methods
(Ramesh et al., 2021; Ding et al., 2021; Yu et al., 2022) and diffusion (Sohl-Dickstein et al., 2015; Ho et al.,
2020a; Podell et al., 2023) have emerged and produce even higher quality images than prior works. The
latter method usually consists of a denoising model, most commonly the Unet (Ronneberger et al., 2015),
conditioned on text embeddings from a pretrained text encoder, progressively tries to guess the amount of
random noise in a corrupted image or latent embedding of one, however the "denoising" task can predict
other forms of image corruption as well (Bansal et al., 2022; Liu et al., 2024).

2.2 Textual Inversion

Foundation models are trained on massive datasets. For example, stable diffusion (Rombach et al., 2022) was
trained on a few billion images (Schuhmann et al., 2022); DALLE-3 (Ramesh et al., 2023) was supposedly
trained on the data used for CLIP (Ramesh et al., 2021) and DALL-E (Radford et al., 2021), each containing
hundreds of millions of images. Subsequently, these models can accurately portray an extremely wide range
of concepts. However, they do not have the ability to consistently generate instances of a specific subject that
may be similar to things but not necessarily found in the training data. Emerging almost simultaneously,
Dreambooth (Ruiz et al., 2022) tuned the Unet, while Textual Inversion (Gal et al., 2022) tuned a new token
in the text encoder vocabulary to teach these models unique new concepts and optimized the embedding
to match a few example images. There were many modifications and expansions to Textual Inversion.
For example, DreamArtist (Dong et al., 2023) included a "negative" token, ProSpect (Zhang et al., 2023b)
used different tokens for different timesteps of the diffusion process, P+ (Voynov et al., 2023) and MATTE
(Agarwal et al., 2023) used different tokens for different layers of the UNet, and NeuralSpace (Alaluf et al.,
2023) trained an auxiliary network to modify the token, conditioned on the UNet layer and timestep. Similar
to textual inversion, some works focus on optimizing a prompt description of an image without necessarily
introducing a new token into the vocabulary (Wen et al., 2023; Yu et al., 2024).

3 Method

3.1 Baseline

We describe standard textual inversion. Given:

• Image dimensions Height H ∈ N, Width W ∈ N and Channels C ∈ N

• Image x ∈ RH×W ×C drawn from real dataset D

• Latent Height LH <<< H ∈ N, Latent Width LW <<< W ∈ N and Latent Channels LC ∈ N

• Variational Autoencoder (Kingma & Welling, 2014) E : RH×W ×C → RLH ×LW ×LC

• Timestep t ∈ [0, T ], where T is the maximum number of timesteps

• Time-conditioned noise ϵ ∼ N (0, 1|t)

• Noised Latent Embedding zt, where zt = E(x) + ϵ

• Text token embedding dimension M ∈ N, Text vocab size V ∈ N, M <<< V , prompt length N ∈ N

• Prompt p ∈ text
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• Text Encoder cϕ : text → RN×M , parameterized by ϕ

• Denoising model, ϵθ parameterized by θ

The traditional Latent Diffusion Model denoising training objective is

LLDM = Ez∼E(x),x∼D,t,p||ϵ − ϵθ(zt, t, cϕ(p))||22

Usually the θ parameters are optimized. For textual inversion, θ and ϕ are frozen, and the only trainable
parameter is the embedding of the new token. The new token is usually a pseudoword added to the vocabulary
such as "<sks>", and the embedding is represented as v∗. The dataset is much smaller than the original
dataset used to train the diffusion model, and is instead 3-5 pictures of the subject. The prompts are usually
very basic, along the lines of "a picture of <sks>" or "a photo of <sks>".

3.2 Adapting Text Encoders to Different Denoisers

Traditionally, textual inversion finetunes off of a transformer and a UNet. Many of the optimizations have
been based on leveraging unique features of the UNet, such as how different layers correspond to different
attributes of an image (Voynov et al., 2023; Agarwal et al., 2023; Alaluf et al., 2023). A challenge to using
textual inversion with different combinations of text encoder and denoiser is larger text encoders can be
harder to train; refer to appendix A.5 for some examples. Work by Zhao et al. (2024) allows us to use a
pretrained adapter module that maps the embeddings of one text encoder into the space of another. For
example, the PixArt-α vision transformer (Chen et al., 2023) architecture has impressive visual results, but
uses a text encoder of a few billion parameters. Training and optimizing this text encoder with textual
inversion requires more memory, and thus more expensive hardware. However, using an adapter, we can
perform textual inversion on a smaller model of only a few million parameters.

3.3 BRAT: Bonus Orthogonal Token

Given that many of the textual inversion improvements are UNet-specific, we would like to try a token
strategy that is agnostic to our choice of denoiser. We also investigate if one token may be insufficient to
capture all the relevant information of one concept. Many concepts are better described with multiple words
than just one; "orange cat" is more descriptive than "cat". We add an auxiliary pseudoword "<fkf>", which
we refer to as the "bonus" token, and corresponding embedding w∗. However, we don’t want w∗ = v∗ or
w∗ = −v∗, as that essentially means w∗ and v∗ embed the exact same information. We want to encourage
the two embeddings to be orthogonal, so we introduce a new regularization term:

LSpare = λ[cos(w∗, v∗)2]

Where cos = cosine similarity and λ is a scalar weight coefficient, which we choose to be 0.01. This loss
penalizes cosine similarity of 1 and -1 the same, thus discouraging w∗ = v∗ and w∗ = −v∗ and penalizes a
cosine similarity of 0, encouraging w∗ and v∗, to be orthogonal and capture different aspects of the subject.
The prompts follow the format of baseline textual inversion, such as "a picture of <sks> <fkf> " or "a
photo of <sks> <fkf>". The objective becomes

L = LSpare + LLDM

Where the only tunable parameters are the embeddings w∗, v∗. We can then expand this to any number of
bonus tokens, all of which are trained to be orthogonal to each other and the initial pseudoword. For our
experiments we try with one and three bonus tokens. We call our method BRAT, for Bonus oRthogonAl
Token.
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4 Experiments

4.1 Datasets

Following Gal et al. (2022), we used textual inversion to teach new subjects and styles. All images were
converted to RGB, padded to be square, resized to 512 × 512 × 3 using bilinear interpolation and normalized
to be between [−1, 1].

4.1.1 Subject Data

For the subject data, Dsub, we used the 30 non-human subjects (cans, dogs, toys) from the original Dream-
booth paper (Ruiz et al., 2022), retrieved from https://github.com/google/dreambooth. We only used
three images for each subject, even though many of the images in the source repository had more than three
images. Each subject was already labeled. We used the embedding of the subject label to initialize the
custom placeholder token and spare token embeddings. Sometimes, this subject label had multiple words or
extraneous numbers (for example, colorful_sneaker or cat2). In that case, we removed any numbers and/or
only used the embedding of the second word (fancy_boot became boot, dog3 became dog, etc.).

4.1.2 Style Data

For the style data, Dsty, we selected sixteen artists off of deviantart.com, and chose an image from each one
that we felt reflected their unique artistic style. Refer to appendix A.1 to see them. New token embeddings
were simply initialized with the embedding of the word "art". We should caveat that the task for the style
dataset is not style transfer; there is no content image that we are attempting to imbue a style unto; we
want to generate a new image with the stylistic features of the source image.

4.2 Metrics

We used six different metrics for evaluation:

• CLIP Similarity (CLIP Sim): CLIP (Radford et al., 2021) Image encodings do not disentangle
content and style but are the standard way of condensing images into a vector space. For both
datasets, for each source image, we found the average cosine distance between the CLIP embedding
of each source image and each validation image and reported the average distance across subjects.

• CLIP Consistency (CLIP Cons): For both datasets, given the CLIP embeddings of each valida-
tion image, we calculated the distance between each pair and averaged them to get the consistency
score

• Style/Content Similarity (Style/Cont Sim): Previous works (Tumanyan et al., 2022; Kwon &
Ye, 2023) have found that using the activations of the intermediate layers of the vision transformer
loaded from the dino-vits16 checkpoint (Caron et al., 2021) are good embeddings of the content of
an image. For each subject, we found the average cosine distance between the content embedding of
each source image and each validation image and reported the average distance across subjects. For
each style, we found the average cosine distance between the style embedding of the single source
image and each validation image and reported the average distance across subjects.

• Style/Content Consistency (Style/Cont Cons): For each subject, given the content embed-
dings of each validation image, we calculated the distance between each pair and averaged them
to get the consistency score. For each style, given the style embeddings of each validation image,
we calculated the distance between each pair and averaged them to get the consistency score. This
metric measured how consistent the representation of the subject was across different prompts.

• Image Reward (Img Rew): In order to approximate subjective human preferences on whether an
image is "good" or not, we used the pretrained Image Reward model (Xu et al., 2023) downloaded
from the python package image-reward and used the ImageReward-v1.0 checkpoint to score
each validation image, and averaged them for this metric.
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• Prompt Similarity (Pro Sim): The CLIP model is multimodal and can embed texts and images
into the same space. So, for each validation prompt and subsequent generated image, we can extract
embeddings of both prompt and image and find the cosine similarity to compute how close to the
prompt the image is. We found the cosine similarity between each validation image and its source
prompt and averaged them for this metric.

4.3 Models

We used 2 types of denoising model: a UNet, specifically the stable-diffusion-v1-4 checkpoint from
https://huggingface.co/CompVis/stable-diffusion-v1-4, and PixArt-α vision transformer (Chen
et al., 2023), based off of Peebles & Xie (2023), specifically the PixArt-XL-2-512x512 checkpoint from
https://huggingface.co/PixArt-alpha/PixArt-XL-2-512x512. By default, the UNet uses a CLIP
encoder, specifically the transformer-based text encoder used in clip-vit-large-patch14, downloaded
from https://huggingface.co/CompVis/stable-diffusion-v1-4 (but identical to the checkpoint from
https://huggingface.co/openai/clip-vit-large-patch14). The vision transformer uses an extremely
large T5 encoder, specifically the 4.3B Flan-T5-XXL checkpoint downloaded from https://huggingface.
co/PixArt-alpha/PixArt-XL-2-512x512, respectively. We found that training the vision transformer with
the 4.3B Flan-T5-XXL encoder was extremely slow to converge even with a higher learning rate and more
training epochs, so we did not explore this. Refer to appendix section A.5 for some visual examples.

However, we also leverage the pretrained adapters (Zhao et al., 2024) from https://huggingface.co/
shihaozhao/LaVi-Bridge so that we can use alternative text encoders. This repository contained only
three adapters, adapting a t5-large encoder to a unet, adapting a t5-large encoder to a vision transformer
and adapting a llama encoder to a unet. We used the t5-large checkpoint from https://huggingface.co/
google-t5/t5-large (which is a few million parameters, unlike the other T5 encoder) for both the UNet and
vision transformer. At a high level, a UNet differs from a vision transformer in that it uses skip connections,
and a vision transformer breaks images into patches before applying attention to them. It is best to refer to
Ronneberger et al. (2015) or Peebles & Xie (2023) for deeper discussions of the UNet and Vision Transformer
architectures, respectively. We experimented with the Llama-2-7b-hf checkpoint (Touvron et al., 2023),
but we found this often failed to learn the target concept, just like the larger transformer encoder. Refer to
appendix section A.5 for some visual examples. This gives us three different combinations of noise predictor
and text encoder, as detailed in table 1.

Name Text Encoder Denoiser Uses Adapter?
T5 Trans t5-large PixArt-XL-2-512x512 ✓
T5 UNet t5-large stable-diffusion-v1-4 ✓

CLIP UNet clip-vit-large-patch14 stable-diffusion-v1-4 ×

Table 1: Caption

We tested a few token strategies for each model:

1. Default: identical to Gal et al. (2022).

2. Multi 10: based off of ProSpect (Zhang et al., 2023b), we have ten tokens, each corresponding to
five inference steps

3. Multi 50: based off of ProSpect (Zhang et al., 2023b), we have a separate token for each inference
step, for a total of 50 tokens.

4. Negative: based off DreamArtist (Dong et al., 2023), we use a negative token p−, and the loss is
||ϵ − f(ϵθ(zt, t, cϕ(p)), ϵθ(zt, t, cϕ(p−))), where f(a, b) = b + γ(a − b).

5. Bonus: using a bonus token in addition to the placeholder token, with the orthogonal loss between
the original placeholder token and the bonus
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6. Triple Spare: using three bonus tokens in addition to the placeholder token, with the orthogonal
loss between all combinations of the placeholder and bonus tokens (i.e. for one placeholder token
and three spares, we would have 12 different orthogonal loss terms)

4.4 Prompts

We used a set of prompts for training and a set of prompts for testing. For subjects, the training prompts
were similar to the training prompts used in past works, such as "a photo of a nice {}" The test set, short
prompts, was similar to the prompts used in past works (Gal et al., 2022), such as "a picture of {} as a
policeman". For style prompts, we based our training prompts off of the style prompts used in the repo for
Dong et al. (2023), such as "a cropped painting, art by {}", and based our test prompts off of those used for
subjects, such as "a police officer, art by {}" Refer to Appendix A.2 for a list of all prompts.

4.5 Quantitative Results

Tables 2 and 3 show the quantitative results. For each metric, for each model, we bolded the highest
score. All relevant training hyperparameters are listed in Appendix A.4.1. Each method is named for the
encoder-denoiser combination used and the token strategy used.

Method CLIP Sim CLIP Cons Cont Sim Cont Cons Img Rew Pro Sim
T5 Trans Default 0.6048 0.5968 0.2952 0.3085 0.2234 0.2785
T5 Trans Bonus 0.6393 0.6427 0.3054 0.3235 0.1217 0.276

T5 Trans Triple Bonus 0.6287 0.644 0.2998 0.3197 -0.0625 0.2668
T5 Trans Multi 10 0.5718 0.5581 0.2895 0.3043 0.2604 0.2802

T5 Trans Multi 0.5161 0.5293 0.2804 0.3078 0.3046 0.2772
t5 Trans Negative 0.4884 0.527 0.2745 0.3111 0.2758 0.2741
T5 UNet Default 0.6044 0.5859 0.2853 0.2711 -0.0436 0.2738
T5 UNet Bonus 0.622 0.6201 0.2885 0.2734 -0.0686 0.269

T5 UNet Triple Bonus 0.6575 0.6493 0.2991 0.2904 -0.2908 0.2635
T5 UNet Multi 10 0.4747 0.5157 0.2551 0.2482 0.2796 0.2728

T5 UNet Multi 0.4679 0.5187 0.249 0.2414 0.2554 0.2707
T5 UNet Negative 0.5081 0.5435 0.2621 0.2586 0.1888 0.2789

CLIP UNet Default 0.7801 0.7999 0.3149 0.2963 -1.9338 0.2032
CLIP UNet Bonus 0.7696 0.7819 0.3201 0.3015 -1.624 0.2169

CLIP UNet Triple Bonus 0.8045 0.8224 0.3471 0.335 -1.8263 0.2101
CLIP UNet Multi 10 0.8307 0.8605 0.4019 0.4228 -1.9432 0.2057

CLIP Unet Multi 0.7959 0.7956 0.3672 0.3542 -1.2943 0.2301
CLIP Unet Negative 0.5382 0.5805 0.2589 0.2461 0.1165 0.2756

Table 2: Subject Scores

Across all models, the use of the bonus token(s) improves content/style similarity and consistency scores
compared to the default, at the expense of lower prompt similarity. This reflects the comparison of methods
as shown in (Avrahami et al., 2024), where different subject-to-image methods often exist on a Pareto
frontier where higher prompt similarity comes at the expense of lower consistency and vice versa. In general,
prompt similarity varied little across models and methods, while Image Reward varied a lot, but for both
the CLIP UNet architecture had a tendency to fare poorly compared to the T5 UNet and T5 Trans; given
that Image Reward is conditioned on the text prompt and implicitly measures alignment as well as human
"appreciation". We theorize that this is the result of using a frozen adapter between the text and encoder
and the denoiser. The adapter maps tokens from the embedding space of the text encoder to the embedding
space of the denoiser. Given that the new tokens are created in the embedding space of the text encoder,
the denoiser never sees the new tokens and is thus prevented from overfitting to a particular token.
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Method CLIP Sim CLIP Cons Sty Sim Sty Cons Img Rew Pro Sim
T5 Trans Default 0.5837 0.6053 0.2338 0.2536 0.493 0.2867
T5 Trans Bonus 0.6325 0.6431 0.3152 0.3431 0.3458 0.2802

T5 Trans Triple Bonus 0.6167 0.6202 0.264 0.2957 0.6289 0.2955
T5 Trans Multi 10 0.5821 0.6226 0.2295 0.2475 0.6131 0.2882
T5 Trans Multi 50 0.5571 0.6068 0.19 0.2148 0.7548 0.293
T5 Trans Negative 0.5411 0.599 0.166 0.1973 0.6017 0.2912
T5 UNet Default 0.5945 0.6228 0.2825 0.3815 0.8184 0.2795
T5 UNet Bonus 0.6154 0.6332 0.2988 0.4135 0.4593 0.275

T5 UNet Triple Bonus 0.61 0.6326 0.2889 0.4007 0.7614 0.2837
T5 UNet Multi 10 0.5523 0.6113 0.2108 0.2936 1.1392 0.292
T5 UNet Multi 50 0.5546 0.616 0.2017 0.2865 1.0833 0.2915
T5 UNet Negative 0.5507 0.6049 0.2066 0.2731 1.0446 0.2903

CLIP UNet Default 0.8003 0.8302 0.5693 0.7011 -1.4752 0.2151
CLIP UNet Bonus 0.8284 0.8496 0.6262 0.732 -1.4739 0.2204

CLIP UNet Triple Bonus 0.8361 0.865 0.6707 0.7651 -1.5033 0.2168
CLIP UNet Multi 10 0.8835 0.9001 0.7632 0.825 -1.7364 0.2137
CLIP UNet Multi 50 0.8776 0.8821 0.7333 0.7627 -1.6204 0.2186
CLIP UNet Negative 0.6177 0.5998 0.292 0.2952 0.6837 0.2986

Table 3: Style Scores

4.6 Visual Results

We display some visual results. Each image was generated with the same prompt. Subjectively, we find that
the CLIP UNet tends to "overfit" and sometimes ignore the prompt completely, which is consistent with
quantitative results where using the T5 text encoder improved Image Reward and Prompt Similarity.
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Figure 1: Subject Images, generated with caption "a photo of {} wearing sunglasses"
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Figure 2: Style Images, generated with caption "a person with a city in the background, art by {}"
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4.7 Discussion

5 Conclusion

To summarize, we observed that textual inversion for personalizing diffusion models was wedded to the UNet
architecture, so we experimented with textual inversion that relied on the vision transformer instead, and
used BRAT to optimize the tokens for such. We saw each of our contributions reflected a movement along
the prompt similarity-content adherence pareto frontier. Further work could entail expanding this approach
to more alternatives to the UNet, or longer training times on larger text encoders that may capture richer,
more meaningful information in their embedding space.

Broader Impact Statement

Many people are worried about the effects of generative AI. By creating art, this technology encroaches
on an area once solely occupied by humans. Companies have faced criticism for potentially using AI, and
many creatives, such as screenwriters and actors, have expressed concerns about the security of their jobs.
However, AI can assist humans by enhancing efficiency, providing inspiration, and generating new ideas.
The future of copyright protection for AI-generated art remains uncertain, as current laws are based on the
principle that creative works originate from human authors. To mitigate harm and maximize benefits for
everyone, clear and consistent policies from governments, industries, and academic groups will be necessary.
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A Appendix

A.1 Style Dataset

The style data can be found at https://huggingface.co/datasets/jlbaker361/stylization. A list of
the artists, and links to their profiles across whatever platforms could be found, is as follows:

1. Lois van Baarle Deviantart: https://www.deviantart.com/loish; Instagram: https://www.
instagram.com/loisvb; Personal Website: https://loish.net/
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2. Kerem Beyit Deviantart: https://www.deviantart.com/kerembeyit; Instagram: https://www.
instagram.com/kerembeyit

3. sandara Deviantart: https://www.deviantart.com/sandara

4. yuumei Deviantart: https://www.deviantart.com/yuumei; Personal Website: https://www.
yuumeiart.com/

5. Gabriel Picolo Deviantart: https://www.deviantart.com/picolo-kun; Instagram: https://
www.instagram.com/_picolo/

6. Ilya Kuvshinov Deviantart: https://www.deviantart.com/kuvshinov-ilya; Instagram:
https://www.instagram.com/kuvshinov_ilya/

7. Cryptid Creations Deviantart: https://www.deviantart.com/cryptid-creations

8. alicexz Deviantart: https://www.deviantart.com/alicexz

9. Atey Ghailan Deviantart: https://www.deviantart.com/snatti89; Tumblr: https://snatti.
tumblr.com/; Instagram: https://www.instagram.com/snatti89/

10. cat-meff Deviantart: https://www.deviantart.com/cat-meff

11. Gonzalo Ordonez Arias Deviantart: https://www.deviantart.com/genzoman; Instagram:
https://www.instagram.com/mrgenzoman/; Tumblr: https://www.tumblr.com/genzoman

12. Geoffroy Thoorens Deviantart: https://www.deviantart.com/djahal; Instagram: https://
www.instagram.com/djahal/?hl=en; Personal Website: https://djahalland.com/

13. Shingo Matsunuma Deviantart: https://www.deviantart.com/shichigoro756; Personal Web-
site: https://shichigoro.com/en/home/

14. Stjepan Sejic Deviantart: https://www.deviantart.com/nebezial;

15. Cyril Rolando Deviantart: https://www.deviantart.com/aquasixio; Instagram: https://
www.instagram.com/aquasixio/?hl=en; Tumblr: https://cyrilrolando.tumblr.com/

16. Sophia von Yhlen Deviantart: https://www.deviantart.com/fealasy; Instagram: https://
www.instagram.com/fealasy/

These images are shown in figure 3

A.2 Prompts

Tables 4 and 5 list the training prompts used for the subjects and styles, respectively. Tables 6 and 7 list
the evaluation prompts for subjects and styles, respectively.

a photo of a {} a rendering of a {} a cropped photo of the {}
the photo of a {} a photo of a clean {} a photo of a dirty {}

a dark photo of the {} a photo of my {} a photo of the cool {}
a close-up photo of a {} a bright photo of the {} a cropped photo of a {}

a photo of the {} a good photo of the {} a photo of one {}
a close-up photo of the {} a rendition of the {} a photo of the clean {}

a rendition of a {} a photo of a nice {} a good photo of a {}
a photo of the nice {} a photo of the small {} a photo of the weird {}
a photo of the large {} a photo of a cool {} a photo of a small {}

Table 4: Subject Prompts

14

https://www.deviantart.com/kerembeyit
https://www.instagram.com/kerembeyit
https://www.instagram.com/kerembeyit
https://www.deviantart.com/sandara
https://www.deviantart.com/yuumei
https://www.yuumeiart.com/
https://www.yuumeiart.com/
https://www.deviantart.com/picolo-kun
https://www.instagram.com/_picolo/
https://www.instagram.com/_picolo/
https://www.deviantart.com/kuvshinov-ilya
https://www.instagram.com/kuvshinov_ilya/
https://www.deviantart.com/cryptid-creations
https://www.deviantart.com/alicexz
https://www.deviantart.com/snatti89
https://snatti.tumblr.com/
https://snatti.tumblr.com/
https://www.instagram.com/snatti89/
https://www.deviantart.com/cat-meff
https://www.deviantart.com/genzoman
https://www.instagram.com/mrgenzoman/
https://www.tumblr.com/genzoman
https://www.deviantart.com/djahal
https://www.instagram.com/djahal/?hl=en
https://www.instagram.com/djahal/?hl=en
https://djahalland.com/
https://www.deviantart.com/shichigoro756
https://shichigoro.com/en/home/
https://www.deviantart.com/nebezial
https://www.deviantart.com/aquasixio
https://www.instagram.com/aquasixio/?hl=en
https://www.instagram.com/aquasixio/?hl=en
https://cyrilrolando.tumblr.com/
https://www.deviantart.com/fealasy
https://www.instagram.com/fealasy/
https://www.instagram.com/fealasy/


Under review as submission to TMLR

Figure 3: Source Images, labeled by their deviantart usernames
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a painting, art by {} a rendering, art by {} a cropped painting, art by {}
the painting, art by {} a clean image, art by {} a dirty image, art by {}
a dark image, art by {} an image, art by {} a cool picture, art by {}

a close-up picture, art by {} a bright picture, art by {} a cropped picture, art by {}
a good painting, art by {} a close-up painting, art by {} a rendition, art by {}

a nice painting, in the style of {} a small painting, in the style of {} a weird painting, in the style of {}
a large painting, in the style of {}

Table 5: Style Prompts

a photo of {} at the beach a photo of {} in the jungle
a photo of {} in the snow a photo of {} in the street

a photo of {} with a city in the background a photo of {} with a mountain in the background
a photo of {} with the Eiffel Tower in the background a photo of {} near the Statue of Liberty

a photo of {} near the Sydney Opera House a photo of {} floating on top of water
a photo of {} eating a burger a photo of {} drinking a beer

a photo of {} wearing a blue hat a photo of {} wearing sunglasses
a photo of {} playing with a ball a photo of {} as a police officer

Table 6: Subject Evaluation Prompt

the beach, art by {} the jungle, art by {}
the snow, art by {} the street, art by {}

a person with a city in the background, art by {} a person with a mountain in the background, art by {}
the Eiffel Tower, art by {} the Statue of Liberty, art by {}

the Sydney Opera House, art by {} person floating on top of water, art by {}
eating a burger, art by {} drinking a beer, art by {}

wearing a blue hat, art by {} wearing sunglasses, art by {}
playing with a ball, art by {} a police officer, art by {}

Table 7: Style Evaluation Prompts
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A.3 Additional Images

Figure 4: Images generated with the prompt "a photo of {} eating a burger"
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Figure 5: Images generated with prompt "a person with a mountain in the background, art by {}"
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A.4 Training

All experiments were done using an A100 GPU with 40GB RAM. All code was written in Python 3.11,
leveraging libraries such as PyTorch (Paszke et al., 2019), Diffusers (von Platen et al., 2022), TRL (von
Werra et al., 2020), Accelerate (Gugger et al., 2022) and Wandb (Biewald, 2020).

A.4.1 Hyperparameters

Training Hyperparameters are listed in table 8. Training for the style and subject datasets used all of the
same hyperparameters except for the number of epochs.

Parameter Value
Epochs (Subjects) 250
Epochs (Styles) 500
Learning Rate 0.08

Gradient Accumulation Steps 8
Batch Size 1

Spare λ 0.01
Noise Scheduler DDPM

Max Gradient Norm 10.0

Table 8: Hyperparameters

A.5 Failed Methods

We briefly experimented with large text encoders with more than a billion parameters. The PixArt-XL-2-
512x512 text encoder had roughly 4.7 billion parameters, and the Llama-2-7b-hf had roughly 6.7 billion
parameters. We found these very difficult to train, failing to capture the subjects at all. We attempted
training with both traditional textual inversion and using the spare token. We used 750 epochs, instead of
250. Nonetheless, we found unsatisfying results. Figures 6, 7, 8 and 9 show some examples. The left-most
column of each figure shows the source images from the personalization dataset, and each row shows the
image generated from the same prompt, where each column denotes a different combination of learning rate
for training (0.08 or 0.4) and scheduler (DDIM (Song et al., 2022) or DDPM (Ho et al., 2020b)).
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Figure 6: PixArt
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Figure 7: PixArt (With Bonus Token)
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Figure 8: Llama
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Figure 9: Llama (With Bonus Token)
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