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Abstract

Audio-visual event parsing plays a crucial role in understanding multimodal video
content, but existing methods typically rely on offline processing of entire videos
with huge model sizes, limiting their real-time applicability. We introduce Online
Audio-Visual Event Parsing (On-AVEP), a novel paradigm for parsing audio, vi-
sual, and audio-visual events by sequentially analyzing incoming video streams.
The On-AVEP task necessitates models with two key capabilities: (1) Accurate
online inference, to effectively distinguish events with unclear and limited con-
text in online settings, and (2) Real-time efficiency, to balance high performance
with computational constraints. To cultivate these, we propose the Predictive
Future Modeling (PreFM) framework featured by (a) predictive multimodal future
modeling to infer and integrate beneficial future audio-visual cues, thereby en-
hancing contextual understanding and (b) modality-agnostic robust representation
along with focal temporal prioritization to improve precision and generalization.
Extensive experiments on the UnAV-100 and LLP datasets show PreFM signifi-
cantly outperforms state-of-the-art methods by a large margin with significantly
fewer parameters, offering an insightful approach for real-time multimodal video
understanding. Code is available at https://github.com/XiaoYu-1123/PreFM.

1 Introduction

Multimodal learning [5, 72, 38, 79] is a significant topic in the machine learning research area.
Among various modalities, audio [62] and vision [60, 47] are the primary ways humans perceive the
world, making audio-visual learning (AVL) [19, 42, 35, 15] essential. Among various progress [43,
45, 31, 34] related to AVL, audio-visual event parsing (AVEP), i.e., understanding events in videos,
becomes increasingly important with the explosive growth of video content on streaming platforms.

AVEP involves processing both modality-aligned (audio-visual) and modality-misaligned (audio-only
or visual-only) events in video content. Prevailing methods [13, 14, 78] operate offline, analyzing
entire video sequences to utilize global context for accurate video events understanding. Though
offering precise predictions, the necessity of whole-video processing, often coupled with large
models and consequently high computational costs, makes these approaches unsuitable for real-time
applications that require immediate detection and swift responses in dynamic environments such as
autonomous driving [65, 70], wearable devices [26, 2], and human-robot interaction [50, 32].

To tackle these limitations, we introduce Online Audio-Visual Event Parsing (On-AVEP), a new
paradigm that parses audio, visual, and audio-visual events in streaming videos with an online
processing manner. The core characteristic of On-AVEP is to perceive the environmental state and
generate timely feedback using only historical and current multimodal information, while balancing
model performance and efficiency particularly in resource-aware and dynamic environments.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/XiaoYu-1123/PreFM


Online

Unavailable �

PreFM

Predictive Multimodal 
Future Modeling

Pseudo Future  

T

��=�

T

��=�

model

(a) (b)

v
a

v
a

UnAV
28.6

139.4M

UniAV
30.3

130.8M

CCNet
37.0

238.8MPreFM
46.3
6.5M

PreFM+
51.5

13.8M

25

30

35

40

45

50

0 50 100 150 200 250

Av
g 

F1
 S

co
re

↑

Params (M)↓
(c)

�

modelMRR

Streaming Video

T T+1T-1T-2

What is he doing at time T?      
Singing?   or   Speaking?

Available

Figure 1: (a) Illustration of parsing events in online scenarios: if a man opens his mouth and
produces a vocal sound at time T , it is unclear based solely on information from 0 to T whether this
marks the beginning of a musical phrase (as part of “singing”) or the start of a conversation (as in
“speaking”). Precisely parsing events with these limited context is crucial for accurate online inference.
(b) Simplified architecture of our PreFM framework, highlighting predictive future modeling and
modality-agnostic robust representation (MRR). (c) Comparison of performance and efficiency
against SOTA methods on the UnAV-100 [13] dataset.

Specifically, On-AVEP necessitates the model possess two key capabilities: (1) Accurate Online
Inference: This requires that the model adapts to complex and dynamic scene variations and
accurately predicts ongoing events by relying exclusively on past and current information without
any future context. As illustrated in Figure 1(a), the model needs to distinguish similar events with
unclear, limited context due to the lack of future information. (2) Real-time Efficiency: To meet the
immediate response demands of On-AVEP applications, the model needs to achieve accurate event
parsing with low computational cost, balancing performance and complexity well to satisfy the needs
of online video processing.

To cultivate these essential capabilities, we introduce the Predictive Future Modeling (PreFM)
framework as illustrated in Figure 1(b). PreFM aims to predict future states through effective
temporal-modality feature fusion and leverage knowledge distillation and temporal prioritization for
training efficiency. To achieve (1) accurate online inference, PreFM employs predictive multimodal
future modeling, using available data and fusing their features to infer beneficial future audio-visual
cues. The cross-temporal and cross-modal feature interactions are utilized to effectively reduce noise
within the pseudo-future context and enhance current representations. For (2) balancing real-time
efficiency and overall parsing performance, PreFM integrates two designs during training: modality-
agnostic robust representation distills rich, modality-agnostic knowledge from a large pre-trained
teacher model for more generalized representation, and focal temporal prioritization encourages
the model to focus on the most temporally critical information for online decisions, thereby boosting
the model’s inference accuracy while keeping high inference efficiency.

Extensive experiments on two challenging datasets, UnAV-100 [13] and LLP [54], demonstrate that
the PreFM framework significantly outperforms existing state-of-the-art (SOTA) methods in both
segment-level and event-level metrics. Moreover, PreFM exhibits substantial advantages in model
efficiency, striking a superior balance between performance and model complexity, with the margin
of +9.3 in event-level average F1 score and merely 2.7% parameters as highlighted in Figure 1(c).

In summary, our main contributions are:

• (I) We introduce Online Audio-Visual Event Parsing (On-AVEP), a new paradigm for real-time
multimodal understanding. To our knowledge, this is the first work to systematically address
the challenge of parsing audio, visual, and audio-visual events from streaming video. We further
establish that success in this paradigm requires two critical capabilities: (a) accurate online inference
from limited context, and (b) real-time efficiency to balance performance with computational cost.

• (II) We propose the PreFM framework, a novel and efficient architecture for On-AVEP. PreFM’s
core innovations include: (a) Predictive Multimodal Future Modeling mechanism to overcome the
critical problem of missing future context; and (b) a combination of Modality-agnostic Robust
Representation and Focal Temporal Prioritization to enhance model robustness and efficiency
during training, providing an insightful approach to multimodal real-time video understanding.
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• (III) We establish new SOTA performance with unprecedented efficiency. Extensive experiments
on two public datasets show that PreFM drastically outperforms previous methods (e.g., +9.3 Avg
F1-score on UnAV-100), while using a fraction of the computational resources (e.g., only 2.7% of
the parameters of the next best model), validating it as a powerful and practical solution.

2 Related Work

Online Video Understanding encompasses online action detection for identifying actions [56, 7,
44], action anticipation for predicting future [6, 73], and online temporal action localization [48, 51]
for determining action boundaries. Frameworks like JOADAA [17], TPT [67] and MAT [58] jointly
model detection and anticipation tasks, bridging the present and future. Recent research focuses on
model reliability through uncertainty quantification [18] and adaptability through open-vocabulary
detection [61]. Concurrent advancements explore leveraging large language models for complex
online understanding tasks [33, 3, 69]. However, these methods rely solely on the visual modality and
neglect the crucial auditory perception, motivating our research into online audio-visual event parsing
aiming to integrate both sensory streams for a more robust and holistic real-time understanding.

Audio Visual Video Parsing (AVVP) aims to temporally classify videos within segments as
audible or visible events. Early weakly-supervised methods [54, 66] use attention to infer temporal
structure. Subsequent works [10–12, 4] further address modality imbalance and interaction. A
significant recent trend involves leveraging external knowledge, using language prompts [9] or
pre-trained models like CLIP [46]/CLAP [8] to denoise or generate finer pseudo-labels from weak
supervision [29, 77, 30]. Building on this, methods such as CoLeaF [49], NREP [27], and MM-
CSE [71] focuse on sophisticated feature disentanglement and interaction for improved performance.

Audio Visual Event Localization (AVEL) is first introduced to temporally locate events that
are both visually and auditorily present within trimmed video clips [53]. Subsequent methods [63,
41, 28, 36, 23, 74] leverage cross-modal attention, background suppression, contrastive smaples
and adapters to improve localization accuracy. AVE-PM [37] is developed to handle portrait-mode
short videos, while OV-AVEL [75] extends the task into an open-vocabulary setting. For densely
annotated, untrimmed videos featuring multiple overlapping events, UnAV [13] releases the UnAV-
100 benchmark and inspires models like UniAV [14], LOCO [64], FASTEN [39] and CCNet [78],
which employ multi-temporal fusion, local correspondence correction and cross-modal consistency
for dense event localization. Recent efforts [68, 15, 52, 40] also aim to omni-understanding using
powerful large language models. However, these approaches generally rely on full-video inputs
and huge model sizes, making them unsuitable for real-time parsing. Our work distinguishes itself
by unifying AVEL and AVVP into a comprehensive online audio-visual event parsing framework,
designed for efficient real-time processing and capable of identifying events regardless of whether
they are solely auditory, visual or audio-visual.

3 Methods

In this section, we first introduce the problem setup in Sec. 3.1 and present a brief overview of our
method in Sec. 3.2, with core designs: Predictive Multimodal Future Modeling (Sec. 3.3), Modality-
agnostic Robust Representation (Sec. 3.4), and Focal Temporal Prioritization (Sec. 3.5). Finally, we
discuss the specifics of our approach during training and online inference in Sec. 3.6.

3.1 Preliminaries

On-AVEP involves predicting events within streaming videos by sequentially processing multimodal
information. This task is primarily divided into two sub-tasks: online audio-visual event localization
(On-AVEL) and online audio-visual video parsing (On-AVVP). In the former, given a sequence of
audio-visual data pairs {Vt, At}Tt=1 and the corresponding label yt=T , where T denotes the current
time step, the model is required to predict the multi-label event vector ŷt=T ∈ {0, 1}Cav , where Cav

represents the total number of audio-visual event categories. While the latter task involves predicting
ŷt=T ∈ {0, 1}Ca+Cv , where Ca and Cv represent the number of audio-only and visual-only events,
respectively. In both sub-tasks, models typically take the pre-processed visual-audio feature vectors
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Figure 2: The pipeline of PreFM. It takes real-time audio-visual streams, using predictive modeling to
generate multimodal future context, modality-agnostic robust representation to enhance performance
by transferring knowledge, and focal temporal prioritization to emphasize the current time step T .

{fa
t }Tt=1 and {fv

t }Tt=1 ∈ RT×D (D: feature dimension) within existing video datasets [54, 25, 53, 13]
for subsequent operations.

3.2 Overview

As illustrated in Figure 2, during online inference, PreFM sequentially processes incoming audio and
visual features F a

c , F
v
c available up to the current time T . To address the challenge of missing future

information, which is crucial for event disambiguation, the core Predictive Multimodal Future
Modeling network (Sec. 3.3) dynamically generates pseudo-future multimodal sequences. This
process starts with a Pseudo-Future Mechanism that fuses current-time multimodal features and
subsequently models initial pseudo-future predictions F̃ a

f , F̃
v
f , then Temporal-Modality Cross Fusion

where pseudo-future cues and current representations are mutually enhanced through comprehensive
cross-temporal and cross-modal interactions. The resulting contextually augmented representations
F̂ a
c , F̂

v
c are then utilized for event parsing at time T .

To train an effective and efficient PreFM model, in addition to direct supervision on predictions
for both the current window and the pseudo-future sequences, PreFM utilizes Modality-agnostic
Robust Representation (MRR, Sec. 3.4). Through MRR, event labels yt are transformed into
target modality-agnostic features ft using a pre-trained teacher model; PreFM’s internal event
representations ŷavt are then guided to align with these target features via a dedicated distillation loss
term. Furthermore, Focal Temporal Prioritization (Sec. 3.5) is implemented by reweighting the
contributions of different relative time steps, encouraging the model to make precise predictions at
current time.

3.3 Predictive Multimodal Future Modeling Network

Inspired by advances in online action detection [58, 17, 67], our approach to On-AVEP centers
on predictively modeling multimodal pseudo-future sequences using only currently available data.
To help PreFM better utilize and consolidate all available modal and temporal cues, we propose a
Universal Hybrid Attention (UHA) block to bridge different modalities across time. Given the target
query sequence Q and the flexible list of k context sets {Fi}ki=1 where each Fi can represent various
temporal segments of different modalities, UHA merges these features into Q as follows:

UHA(Q, {Fi}ki=1) = FFN(LN(Q+

k∑
i=1

Attn(Q,Fi, Fi))) (1)

Where Attn is multi-head attention [57], LN is Layer Normalization, and FFN is a Feed-Forward
Network. UHA serves as the foundational attention block for subsequent fusion operations.
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Pseudo-Future Mechanism This mechanism first fuses current audio-visual information and then
models an initial prediction of the future sequence. Given input features up to current time T ,
{(fv

t , f
a
t )}Tt=1, we define a current working window of length Lc. This yields the initial current

audio and visual features F a
c = {fa

t }Tt=T−Lc+1 and F v
c = {fv

t }Tt=T−Lc+1, both in RLc×D.

First, we perform an initial feature fusion between F a
c and F v

c . Each sequence is processed by our
UHA block with both as context. The fused current features F̃ a

c , F̃
v
c ∈ RLc×D are produced by:

F̃m
c = UHA(Fm

c , {F a
c , F

v
c }),m ∈ {a, v} (2)

Next, future modeling generates initial pseudo-future sequences of length Lf . We use learnable
tokens Qa, Qv ∈ RLf×D as queries. These attend to the corresponding fused current features:

F̃m
f = Attn(Qm, F̃m

c , F̃m
c ),m ∈ {a, v} (3)

This step yields the initial multimodal pseudo-future sequences F̃ a
f , F̃

v
f ∈ RLf×D.

Temporal-Modality Cross Fusion Having obtained the fused current features (F̃ a
c , F̃

v
c ) and ini-

tial pseudo-future sequences (F̃ a
f , F̃

v
f ), this stage performs further interactions to mutually refine

them, reducing potential noise within the pseudo-future, while simultaneously enriching the current
representations with foresight gleaned from the modeled future.

MHAMHAMHAMHA MHAMHA

Add & LN

FFNFFN

Q K V Q K V Q K V

Add & LN

෩𝑭𝒇
𝒗 ෩𝑭𝒇

𝒂 ෩𝑭𝒄
𝒗

෡𝑭𝒇
𝒗

Figure 3: Temporal-modality cross
fusion for the pseudo-future F̂ v

f .

First, future augmentation refines the initial pseudo-future pre-
dictions with UHA block:

F̂m
f = UHA(F̃m

f , {F̃ a
f , F̃

v
f , F̃

m
c }),m ∈ {a, v} (4)

This yields augmented pseudo-future sequences F̂ a
f , F̂

v
f ∈

RLf×D. Notably, the context list within the UHA block en-
ables a rich combination of self-attention, as well as cross-
interactions across modalities and time. For instance, the aug-
mented visual pseudo-future F̂ v

f is obtained by interacting with
F̃ v
f (for self-attention), F̃ a

f (for cross-modal attention), and F̃ v
c

(for cross-temporal attention) as shown in Figure 3.

Next, current refinement integrates the augmented future back
into the current representations:

F̂m
c = UHA(F̃m

c , {F̃ a
c , F̃

v
c , F̂

m
f }),m ∈ {a, v} (5)

This results in the final contextually-aware current feature sequences F̂ a
c , F̂

v
c ∈ RLc×D.

Finally, these augmented current and future features are projected by a shared classification head h(·)
and a Sigmoid function S(·) to obtain event predictions ŷc ∈ RLc×C (for the current window) and
ŷf ∈ RLf×C (for the future window):

ŷc = S(h(Concat(F̂ a
c , F̂

v
c ))), ŷf = S(h(Concat(F̂ a

f , F̂
v
f ))) (6)

Here, Concat denotes feature concatenation, and C is the event class count (either Cav or Ca + Cv).
For online inference, the prediction in ŷc corresponding to time T is used. While during training, ŷc
and ŷf are supervised across the time steps of [T −Lc+1, T +Lf ], using BCE loss with annotations
yc ∈ RLc×C and yf ∈ RLf×C :

Lc = BCE(ŷc, yc),Lf = BCE(ŷf , yf ) (7)

3.4 Modality-agnostic Robust Representation

Learning from the rich, modality-agnostic event representations established by powerful pre-trained
teacher models [46, 8, 16, 59, 20] is efficient to obtain robust and generalizable representations
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while maintaining efficiency. For each time step t, we convert the event labels yt into “a/an
audio/visual/audio-visual event of [cls]” as text prompt, which is then processed by the text encoder
of frozen teacher model OnePeace [59] to obtain modality-agnostic event features ft. Simultaneously,
the student’s representation f̂av

t = Concat(f̂a
t , f̂

v
t ) can be easily extracted from our PreFM model,

and distilled by the target representation ft. Cosine similarity is used as distillation loss as follows:

Lmrr =
1

Lc + Lf

T+Lf∑
t=T−Lc+1

(1− f̂av
t · h′(ft)

∥f̂av
t ∥ · ∥h′(ft)∥

) (8)

Where h′(·) denotes the projector module implemented by a linear layer to align different dimensions.

3.5 Focal Temporal Prioritization

To emphasize the predictions close to the present moment, we introduce a focal temporal prioritization
scheme to the loss calculation, highlighting the significance of prediction at time step T instead of a
uniform weighting. Specifically, we define temporal priorities using a Gaussian function centered at
the current time T : g(t, σ) = exp

(
− (t)2

2σ2

)
, where t is the relative temporal distance from time T ,

and σ controls the width of the focus. We define the temporal weights wc(t) ∈ [T − Lc + 1, T ] for
the current window, and wf (t) ∈ [T + 1, T + Lf ] for pseudo-future sequences,

wc(t− T ) =
Lc · g(t− T, Lc)∑T

k=T−Lc+1 g(k − T, Lc)
, wf (t− T ) =

Lf · g(t− T, Lf )∑T+Lf

k=T+1 g(k − T, Lf )
(9)

Let Lc(t), Lf (t) and Lmrr(t) be the per-timestep loss in Eq. 7 and Eq. 8. We use w(t − T ) =
Concat{wc(t − T ), wf (t − T )} to obtain the while weights sequence vector. The final loss is
computed as:

L =

T∑
t=T−Lc+1

wc(t−T ) ·Lc(t)+

T+Lf∑
t=T+1

wf (t−T ) ·Lf (t)+λ

T+Lf∑
t=T−Lc+1

w(t−T ) ·Lmrr(t) (10)

The hyperparameter λ balances the robust representation term (typically 1.0).

3.6 Training and Online Inference

Random Segment Sampling for Training To adapt training for the online nature of On-AVEP
and enhance data utilization, we design a random segment sampling strategy. During training, for a
video of total length Tall, the target prediction times Tk ∈ [1, Tall] are generated by Tk = kLc + δ.
Here, k serves as an index for iterating across the video, and δ ∈ [0, Lc − 1] is a periodically selected
random integer offset. The Lc-length feature sequences {(fv

t , f
a
t )}

Tk

t=Tk−Lc+1 act as model inputs,
and zero-padding is applied at the beginning if Tk < Lc − 1. This strategy provides diverse training
segments with a fixed history length Lc, suitable for the online setting.

Online Inference During inference, the model works in a truly online manner, processing the input
video stream with a sliding window of length Lc and stride 1. At each step Tinfer, the model takes
features from [Tinfer − Lc + 1, Tinfer], generates the multimodal pseudo-future context, and gets
the final event predictions for the current time step Tinfer.

4 Experiments

4.1 Experimental Setups

Dataset UnAV-100 [13] is a large-scale dataset designed for dense audio-visual event localization
in untrimmed videos. It contains 10,790 videos of varying lengths covering 100 event categories, with
over 30,000 annotated audio-visual event instances. LLP [54] provides 11,849 trimmed 10-second
clips across 25 categories for audio-only and visual-only event parsing. For online scenarios, we
concatenate LLP clips into longer video sequences. Specifically, half of these sequences are formed
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Table 1: Comparison with SOTA methods on On-AVEL task. Feature extractors: I.V. denotes
I3D [1]+VGGish [24], O. denotes OnePeace [59] and C.C. denotes CLIP [46]+CLAP [8]. “PreFM+”
replaces the feature extractor from CLIP/CLAP to OnePeace and the hidden dimension is expanded
from 256 to 512. Methods marked with “*” take the entire video as input, fully utilizing the complete
context.

Methods Extractors Segment-Level Event-Level Params↓ FLOPs↓ Inference
F1 mAP 0.1 0.3 0.5 0.7 0.9 Avg Memory↓ FPS↑ Latency ↓

UnAV [13] I.V. 47.5 58.3 50.9 37.1 28.7 18.2 9.4 28.6 139.4M 52.4G 764.7MB 10.6 94.3ms
UniAV [14] O. 47.8 66.9 50.3 38.9 29.9 21.1 12.3 30.3 130.8M 22.7G 1020.5MB 15.6 64.1ms
CCNet [78] O. 54.8 62.3 58.3 46.3 37.5 27.3 15.8 37.0 238.8M 72.1G 1179.4MB 7.5 133.3ms
PreFM (Ours) C.C. 59.1 70.1 61.5 53.6 46.9 39.6 29.2 46.3 6.5M 0.4G 56.4MB 51.9 19.3ms
PreFM+ (Ours) O. 62.4 70.6 66.3 58.2 52.2 44.5 35.4 51.5 13.8M 0.5G 144.2MB 42.0 23.8ms

UnAV* [13] I.V. 56.1 67.8 59.3 56.0 52.7 46.7 35.1 50.6 139.4M 52.4G 764.7MB 10.6 94.3ms
UniAV* [14] O. 59.2 70.0 62.8 59.0 55.1 48.7 35.0 52.9 130.8M 22.7G 1020.5MB 15.6 64.1ms
CCNet* [78] O. 65.0 70.6 69.0 65.1 61.0 53.1 40.1 58.3 238.8M 72.1G 1179.4MB 7.5 133.3ms

Table 2: Comparison with SOTA methods on On-AVVP task. Feature extractors: R.C.C. denotes
R3D [55]+CLIP [46]+CLAP [8] and R.R.V. denotes R3D [55]+ResNet152 [21]+Vsh: VGGish [24].
“PreFM+” increases the hidden dimension from 128 to 256. Methods marked with “*” take the entire
10-second video clips as input, fully utilizing the complete context.

Methods Extractors Segment-Level Event-Level Params↓ FLOPs↓ Inference
F1a F1v F1av mAPa mAPv mAPav 0.5a 0.5v 0.5av Avga Avgv Avgav Memory↓ FPS↑ Latency ↓

VALOR [29] R.C.C. 49.7 52.4 45.4 72.9 68.4 56.7 36.5 46.1 34.6 35.2 42.8 33.0 4.9M 0.45G 20.1MB 62.2 16.1ms
CoLeaF [49] R.R.V. 50.7 44.5 41.0 62.8 45.8 37.3 37.9 36.4 29.6 37.3 35.5 29.7 5.7M 0.25G 114.1MB 60.4 16.6ms
LEAP [76] R.R.V. 50.6 49.3 45.8 73.3 64.3 54.6 40.1 42.5 35.9 38.4 39.6 34.3 52.0M 1.09G 204.7MB 19.3 51.8ms
NREP [27] R.C.C. 53.7 51.4 45.5 66.5 52.7 42.3 38.9 45.6 34.2 38.3 42.3 33.5 9.6M 1.69G 90.2MB 26.4 37.9ms
MM-CSE [71] R.C.C. 53.3 56.5 48.9 74.6 70.0 57.5 39.4 50.8 38.4 37.7 46.9 36.2 6.2M 0.91G 33.0MB 36.1 27.7ms
PreFM (Ours) R.C.C. 60.0 59.3 53.3 80.0 73.7 61.3 47.1 50.9 42.0 46.3 50.6 41.2 3.3M 0.22G 20.7MB 94.4 10.6ms
PreFM+ (Ours) R.C.C. 61.0 60.0 54.6 80.2 73.8 61.4 48.5 51.7 43.1 47.6 51.0 42.2 12.1M 0.48G 55.9MB 53.5 18.7ms

VALOR* [29] R.C.C. 65.6 61.8 56.5 81.4 73.7 61.4 55.1 54.9 46.7 54.0 54.2 46.0 4.9M 0.45G 20.1MB 62.2 16.1ms
CoLeaF* [49] R.R.V. 60.5 58.0 52.4 71.7 60.7 49.3 48.3 53.0 42.1 48.7 51.8 42.5 5.7M 0.25G 114.1MB 60.4 16.6ms
LEAP* [76] R.R.V. 61.6 61.5 56.5 80.6 71.3 60.2 52.3 56.4 47.7 51.2 55.0 46.7 52.0M 1.09G 204.7MB 19.3 51.8ms
NREP* [27] R.C.C. 67.3 63.7 57.9 77.4 66.2 53.9 55.9 57.5 47.8 54.9 56.7 47.1 9.6M 1.69G 90.2MB 26.4 37.9ms
MM-CSE* [71] R.C.C. 67.0 64.0 57.6 82.3 74.8 61.7 56.9 56.8 47.3 54.7 56.0 46.1 6.2M 0.91G 33.0MB 36.1 27.7ms

by randomly concatenating clips to simulate the rapid scene variations often encountered in online
streaming content; the other half are formed by concatenating clips from the same event category
to represent longer, continuous event occurrences. Following recent works [29, 77, 9, 49, 27, 71],
segment-wise pseudo labels from CLIP [46, 22] and CLAP [8] are used for supervision.

Metric For model performance, we follow prior work [58, 54], using F1-score and mean Average
Precision (mAP) as segment-level metrics. For event-level evaluation, consecutive positive segments
are treated as a complete event instance. We calculate event-level F1-scores by setting tiou =
[0.1:0.1:0.9] [13] and average F1-score (Avg F1-score) for overall performance. For the On-AVVP
task, we adhere to the established protocol from VALOR [29], evaluating audio-only (A), visual-only
(V), and combined audio-visual (AV, denoted with subscript “av”) events. Regarding model efficiency,
we assess the number of trainable parameters, FLOPs per inference, peak inference memory and FPS.

Implementation details For both tasks, we set 60 training epochs, with the first 10 epochs dedicated
to warm-up. A batch size of 128 is used, and AdamW serves as the optimizer with a weight decay
of 1e−4. We set the value Lc of 10 and Lf of 5 as the default setting. CLIP [46] and CLAP [8] are
used to extract visual and audio features with a temporal stride set to 1 second, respectively. All
experiments are conducted on a single RTX 3090. For the learning rate and the hidden dimension
within the attention block, we use 1e−3 and 256 for On-AVEL, 5e−4 and 128 for On-AVVP.

4.2 Comparison with Existing Work

Our method is benchmarked against recent SOTA methods UnAV [13], UniAV [14] and CCNet [78]
on UnAV-100 [13] for the On-AVEL task, while VALOR [29], CoLeaf [49], LEAP [76], NREP [27],
and MM-CSE [71] on LLP [54] for the On-AVVP task. We provide two versions of our method: the
basic version “PreFM”, and the improved version “PreFM+” with larger hidden size.

Performance Comparison As shown in Table 1, PreFM clearly achieves new SOTA results for On-
AVEL task, surpassing the second-best method with significant improvement of +7.8 in mAP and +9.3
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in Avg F1-score. Furthermore, our enhanced version, PreFM+, extends these gains to +8.3 in mAP
and +14.5 in Avg F1-score with only a moderate increase in parameters, highlighting the excellent
scalability of the PreFM architecture for applications requiring higher precision. Similarly for On-
AVVP task shown in Table 2, PreFM demonstrates consistent advantages, achieving improvements
of +3.8 in mAPav and +5.0 in Avg F1-scoreav and PreFM+ further elevating performance to +3.9
in mAPav and +6.0 in Avg F1-scoreav over the second-best methods. Notably, we also present the
original offline results of these baseline methods (marked with “*”) to show their performance under
full-context conditions. Even when compared to these results, our online PreFM achieves comparable
performance despite predicting with limited context.

These substantial performance gains across both tasks are largely attributed to our core predictive
multimodal future modeling (PMFM) design. By dynamically generating and integrating pseudo-
future contextual cues from streaming data, PMFM empowers our method to effectively parse
environmental states and accurately capture temporal boundaries.

Efficiency Analysis Regarding the On-AVEL task (Table 1), PreFM’s efficiency is remarkable.
PreFM utilizes merely 2.7% parameters (6.5M vs 238.8M) compared to the next best performing
method, and it requires only 0.6% FLOPs (0.4G vs 72.1G) and 4.8% peak memory (56.4MB vs
1179.4MB) for a single inference, while running at an impressive 51.9 FPS with merely a latency of
19.3ms. The compelling efficiency advantage is also evident in the On-AVVP task (Table 2). Such
ability to deliver SOTA performance with drastically reduced overhead highlights that PreFM is
designed with a strong emphasis on practical deployability, rendering it a highly suitable and efficient
solution for resource-constrained real-time applications.

4.3 Ablation Studies

Main Component To systematically evaluate the contribution of each proposed component, we
conduct comprehensive ablation studies on the On-AVEL task, with results presented in Table 3(a).
The simple prediction strategy (row 1) uses only data at time T and performs badly. Our baseline
(row 2), which just extends accessible data to context Lc but no more improvements, achieves an
Avg F1-score of 40.8%. Introducing the pseudo future mechanism (PF , row 3) significantly boosts
performance to 42.4 (+1.6 vs baseline), underscoring the importance of future context modeling
over relying solely on past or current information. Further incorporating modality-agnostic robust
representation (Lmrr, row 5) or random segment sampling (RS, row 6) individually builds upon
this, yielding Avg F1-scores of 44.2 (+3.4 vs baseline) and 44.0 (+3.2 vs baseline) respectively,
demonstrating their distinct benefits. The focal temporal prioritization (w(t)) consistently improves
results when applied (e.g., row 4 vs 3, and row 7 vs 5), confirming its effectiveness in focusing
the model on critical information at the current moment. Finally, our full PreFM model (row
8), integrating all components, achieves a final Avg F1-score of 46.3, marking a substantial +5.5
improvement over the baseline and validating the collective effectiveness of our design.

Impact of future-oriented losses We investigate the impact of direct future supervision Lf and
future part of robust representation loss Lmrr,f used in pseudo-future (PF ) mechanism. Results
are shown in Table 3(b). A comparison of the first two rows shows that merely incorporating the
extra parameters in the future module without applying any future supervision yields negligible
performance gains. Conversely, the results in the subsequent three rows indicate that designing
losses to explicitly guide the model in anticipating and modeling the future, whether through direct
supervision or robust representation distillation, enhances model performance. These findings clearly
demonstrate that the performance benefits derived from our pseudo-future mechanism are primarily
attributable to the effective learning guided by these targeted future-oriented losses, rather than merely
an increase in model capacity.

Impact of temporal-modality cross fusion Generating reliable audio-visual pseudo-future is
challenging due to inherent predictive noise. Table 3(c) compares our Temporal-Modality Cross
Fusion (TMCF) with ablated variants that utilize only self-attention (Self), audio-visual modality
fusion (M only), or temporal-only fusion (T only), focusing on their accuracy in predicting the future
(the first three relative time steps) and overall event parsing performance. The inferior performance of
these simplified variants underscores that uni-dimensional interactions are insufficient for producing
robust future sequences, leaving its reliability and noise levels suboptimal. In contrast, our full TMCF,
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Table 3: (a) Overall ablation study. PF : the pseudo future mechanism, w(t): focal temporal
prioritization, Lmrr: modality-agnostic robust representation, RS: random segment sampling. (b)
Ablation studies for future-oriented losses. (c) Ablation studies for temporal-modality cross fusion.
Params: trainable parameters, S-L: Segment-Level, E-L: Event-Level.

PF w(t) Lmrr RS
S-L E-L

mAP Avg

(1) Simple Predictions 66.6 29.9
(2) ✗ ✗ ✗ ✗ 69.1 40.8+0.0
(3) ✓ ✗ ✗ ✗ 69.7 42.4+1.6

(4) ✓ ✓ ✗ ✗ 69.7 43.0+2.2
(5) ✓ ✗ ✓ ✗ 69.8 44.2+3.4
(6) ✓ ✗ ✗ ✓ 70.5 44.0+3.2
(7) ✓ ✓ ✓ ✗ 69.4 45.4+4.6

(8) ✓ ✓ ✓ ✓ 70.1 46.3+5.5

(a)

Lf Lmrr,f PF Params S-L E-L
mAP Avg

✗ ✗ ✗ 2.6M 69.8 44.7+0.0
✗ ✗ ✓ 6.5M 69.6 44.8+0.1
✗ ✓ ✓ 6.5M 69.9 45.2+0.5
✓ ✗ ✓ 6.5M 69.6 45.5+0.8
✓ ✓ ✓ 6.5M 70.1 46.3+1.6

(b)

S-L F1 E-L
T+1 T+2 T+3 Avg

Self 55.4 54.6 53.7 44.644.6

T only 56.7 56.0 55.5 45.345.3

M only 56.6 55.7 55.1 45.045.0

TMCF 57.5 56.5 55.4 46.3TMCF 57.5 56.5 55.4 46.3

(c)

Table 4: (a) Ablation studies for different length of past and future. (c) Ablation studies for different
pre-trained teacher models.

Lc Lf
Seg-Level Event-Level
F1 mAP 0.5 Avg

(1) 10 1 58.8 70.1 46.8 45.9
(2) 10 5 59.1 70.1 46.9 46.3
(3) 10 10 57.3 69.9 46.4 45.4
(4) 5 5 57.2 69.9 44.1 43.5
(5) 20 5 48.9 65.7 38.9 38.5

(a)

Models Dimensions Seg-Level Event-Level
F1 mAP 0.5 Avg

AudioClip [20] 1024 58.7 70.2 46.6 46.2
ImageBind [16] 1024 58.3 70.0 47.2 45.9

ONE-PEACE [59] 1536 59.1 70.1 46.9 46.3

(b)

by collaboratively leveraging both cross-modal and cross-temporal interactions from available content,
generates more accurate and dependable pseudo-future sequences. This results in a higher-quality
predictive context that more effectively mitigates noise and aids robust real-time event parsing.

Impact of context lengths Lc and Lf We investigate the impact of varying lengths for the working
area Lc and the pseudo-future sequence Lf , with results presented in Table 4(a). The optimal
performance, achieving an Avg F1-score of 46.3, is obtained with our default configuration of
Lc = 10 and Lf = 5 (row 2). Analysis of Lf (rows 1, 2, 3, with Lc = 10 fixed) indicates that while
a very short future window (Lf = 1) provides insufficient predictive insight, an overly long one
(Lf = 10) can introduce distracting noise, both degrading performance. Similarly, examining Lc

(rows 2, 4, 5, with Lf = 5 fixed) reveals that too little historical context (Lc = 5) offers inadequate
support, whereas excessive history (Lc = 20) may include outdated or irrelevant information. These
findings confirm the importance of appropriately sized context windows, with Lc = 10 and Lf = 5
providing the most effective balance for the immediate event parsing task.

Different teacher models in MRR We evaluate the influence of different pre-trained teacher
models on our modality-agnostic robust representation (MRR) module. Specifically, we compare
OnePeace [59], ImageBind [16], and AudioClip [20] across multiple metrics. As the results demon-
strate in Table 4(b), no single model consistently outperforms the others on every measure. However,
OnePeace delivers better segment-level F1-scores and average event-level performance, which lead
us to adopt it as our default teacher.

Temporal impact of the pseudo-future Figure 4(a) illustrates how our pseudo future (PF )
mechanism affects prediction accuracy across time steps relative to the current moment T . From
the orange line, we observe that the model’s peak performance occurs significantly earlier (around
relative time T − 6), with accuracy declining as it approaches T , indicating a strong reliance on full
context. In contrast, the purple line shows that incorporating the PF not only achieves generally
higher accuracy but also shifts its performance peak much closer to the actual target time T (around
T − 2). These observations underscore a fundamental principle in event parsing: accurate event
identification intrinsically depends on a comprehensive contextual window. Thus, the reliance on
future context presents a significant hurdle for online systems. Our PF mechanism effectively
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Figure 4: (a) The performance across different relative time steps. (b) t-SNE visualization of the
pre-classifier features. We use nine animal events from UnAV-100 [13] for better illustration.
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Figure 5: (a) The visualization on the On-AVEL task. (b) The visualization on the On-AVVP task.
GT: ground truth. The red dotted box indicates the area of mispredictions.

anticipates event trends, models and utilizes audio-visual future information to enhance prediction
accuracy near the present moment, thereby mitigating immediate contextual limitations.

Impact of MRR on latent feature representation Figure 4(b) qualitatively evaluates our modality-
agnostic robust representation (MRR) via t-SNE visualization of latent features from nine predefined
animal events from UnAV-100 [13]. With MRR, event classes form more compact and well-separated
clusters, unlike the more chaotic clusters from the model without MRR. This suggests that while
MRR may shift the latent space, it guides the model towards more discriminative representations,
enhancing event separability and overall performance.

4.4 Qualitative Analysis

Figure 5 presents a qualitative comparison of our PreFM with SOTA methods UnAV [13], CCNet [78]
on On-AVEL task and MM-CSE [71] on On-AVVP tasks. Prior methods often exhibit limitations
such as missed detections (e.g., “trombone” by UnAV, “piano” by CCNet, “cheering” by MM-CSE),
fragmented predictions (e.g., “trumpet” by UnAV) depicted by red dotted box. In stark contrast,
PreFM’s predictions exhibit strong temporal continuity and precise event boundary localization,
without the interruptions or errors in other methods. These visualizations intuitively showcase
PreFM’s enhanced recognition accuracy and the coherent, continuous nature of its event parsing.

5 Conclusions

In this work, we introduce online audio-visual event parsing to enable real-time multimodal event
understanding in streaming videos. We identify accurate online inference and real-time efficiency as
two crucial capabilities in this setting, and propose the PreFM framework, featuring a novel predictive
multimodal future modeling to infer future context and modality-agnostic robust representation
together with focal temporal prioritization for model’s generalization. Extensive experiments on the
UnAV-100 and LLP datasets validate that PreFM significantly outperforms prior methods, achieving
state-of-the-art performance while offering a superior balance between accuracy and computational
efficiency, thus presenting a viable solution for practical real-time multimodal applications.
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has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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the asset’s creators.
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Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: Our paper does not release new assets.
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• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their
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• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
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well as details about compensation (if any)?
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Justification: Our paper does not involve crowdsourcing nor research with human subjects.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
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• Including this information in the supplemental material is fine, but if the main contribu-
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
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may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
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Justification: Our method does not involve LLMs as any important, original, or non-standard
components.
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• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Technical Appendices and Supplementary Material

A.1 Limitations and Broader Impact

Limitations While PreFM demonstrates promising results in online audio-visual event parsing,
we identify a couple of key avenues for future exploration and enhancement. Firstly, the current
PreFM design is primarily tailored for event detection and localization. Further research can extend
its capabilities to more complex, semantically rich tasks such as video question answering or detailed
captioning, and enhance its capacity for long-range temporal reasoning, potentially through integration
with large language models. Secondly, while PreFM’s predictive modeling of pseudo-future context
is a key component for enhancing online inference, the inherent nature of future prediction means
that the generated cues may not always perfectly foresee subsequent events. Although our temporal-
modality cross fusion (TMCF) (detailed in Sec. 3.3) is designed to refine these predictions and
mitigate potential noise by leveraging cross-modal and cross-temporal interactions—with its positive
impact analyzed in Sec. 4.3— the noise may somewhat degrade performance. While TMCF offers an
initial solution, further research can be developed to enhance the reliability and effectiveness of the
future.

Broader Impact Our work on online audio-visual event parsing, using methods like PreFM, can
greatly improve real-time AI systems. However, we must think carefully about serious ethical issues
when using audio and video data. Important issues include protecting people’s privacy from unwanted
watching or access, reducing unfair biases that the AI might learn from its data should be considered.

A.2 Additional Results and Analysis

Quantitative Analysis of the Pseudo-Future’s Quality We evaluate them from two perspectives,
their semantic similarity to ground-truth event features, and their effectiveness in predicting future
events: Top-k Similarity Accuracy: We measure if a generated feature vector at a relative future time
step (T+1-T+5) is the Top-1 or Top-5 closest match to its corresponding ground-truth class feature
embedding, among all 100 classes in UnAV-100. Future Prediction F1-Score: We also report the
standard segment-level F1-score for predictions made for future time steps. The results are presented
in the Table 5.

This results provides two key insights: First, the pseudo-future features are remarkably realistic. The
Top-5 Similarity Accuracy of over 94% demonstrates that the correct event feature is almost always
ranked among the top candidates. Second, these high-quality features enable strong future prediction
performance, as evidenced by the solid F1-scores.

Table 5: The quantitative results of the pseudo-future’s quality.

Metric T+1 T+2 T+3 T+4 T+5

Top-1 Similarity 45.4 44.6 44.0 43.3 42.6
Top-5 Similarity 95.5 95.3 95.1 94.8 94.3

F1 57.5 56.5 55.4 54.7 54.1

Ablation study on hyperparams The ablation study on the loss weighting hyperparameter λ is
shown in Table 6. The results indicate that performance diminishes at the tested extreme values
(λ = 0.1 and λ = 10), while the model exhibits stable and strong performance across a moderate
range (from λ = 0.5 to λ = 2). Therefore, we adopt λ = 1 as the default setting in our experiments
for simplicity.
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Table 6: Ablation studies for hyperparams, loss weight λ.

λ
Seg-Level Event-Level
F1 mAP 0.5 Avg

0.1 58.3 70.8 46.9 45.8
0.5 58.9 70.2 47.2 46.2
1 59.1 70.1 46.9 46.3

1.5 58.4 69.9 47.2 46.2
2 59.2 70.0 47.5 46.6
5 55.9 68.9 44.3 43.7
10 13.2 50.8 9.4 9.5

Different feature extractors Table 7 presents the ablation study on different feature extractors, eval-
uating their impact on the performance and efficiency of On-AVEP task. The results clearly indicate
that employing more powerful foundation models as feature extractors generally leads to significant
improvements in parsing performance. Specifically, while the I3D [1]+VGGish [24] combination
is relatively lightweight, its performance is comparatively limited. In contrast, AudioClip [20] and
CLIP [46]+CLAP [8] offer a favorable balance between performance and computational efficiency.
Although OnePeace [59] achieves the best parsing results, its substantial computational requirements
may hinder its practical deployment in real-world scenarios. Notably, the computational complexity
of our proposed PreFM module remain relatively stable and low across all tested feature extractors.
This underscores that the feature extraction stage constitutes the primary performance bottleneck and
source of computational load, directly impacting the system’s online processing capabilities.

Table 7: Ablation studies for different feature extractors. a: audio extractor part, v: visual extractor
part.

Methods Seg-Level Event-Level Dimensions FLOPS↓
F1 mAP 0.5 Avg a v a v PreFM

I3D [1]+VGGish [24] 30.7 48.7 23.7 24.0 128 2048 0.9G 3.5G 0.3G
AudioClip [20] 48.0 63.6 37.7 37.0 1024 1024 2.7G 5.4G 0.1G

CLIP [46]+CLAP [8] 59.1 70.1 46.9 46.3 768 768 23.1G 77.8G 0.5G
ONE-PEACE [59] 62.4 70.6 52.2 51.5 1536 1536 78.8G 389.8G 0.4G

Failure cases The quantitative findings and analysis about failure cases are shown below:

Confusion Between Similar Events We analyze the events with the lowest performance and their most
common confusions in Table 8. This results reveal that PreFM struggles to distinguish between events
that are semantically or acoustically similar. We hypothesize this is because our current framework
does not explicitly incorporate a contrastive learning design to better separate the representations of
events originating from similar audio-visual sources.

Table 8: The quantitative analysis of confusion between similar events.

Event Precision Recall F1 Most confused with

People slurping 0.55 0.17 0.25 People eating, man speaking
People shouting 0.42 0.19 0.27 Baby laughter, engine knocking

Performance in Dense Scenes We analyze the impact of event density (the number of event classes
within a video) on event-level performance in Table 9. These results show that PreFM’s performance
degrade in complex videos containing a large number of distinct event classes. This suggests that
while our future modeling is effective, its benefits are less pronounced in scenarios with very rapid
scene changes and drastic context shifts.
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Table 9: The quantitative analysis of PreFM in dense scenes.

Num events Event-Level Avg

1-3 0.54
4-6 0.23
>6 0.13

A.3 Additional Details

The detailed process of modality-agnostic representation refinement (MRR) For the MRR
process, we select OnePeace [59] as the pre-trained teacher model. The generation of target teacher
features ft at each time step t involves the following steps: First, ground-truth event labels yt are
converted into textual prompts using the template “a/an audio/visual/audio-visual event of [cls]”.
These prompts are then processed by the OnePeace text encoder to yield the modality-agnostic event
features. If multiple events are active at time t, the final ft is computed by averaging the features
corresponding to all active event classes. Concurrently, the student model’s representation f̂av

t is
prepared. We extract the audio features f̂a

t and visual features f̂v
t from our model at time t, specifically

from the layer before the final classification head h(·). These extracted features are subsequently
concatenated in feature dimension to form the student’s representation: f̂av

t = Concat(f̂a
t , f̂

v
t ).

Specific values for focal temporal prioritization As detailed in Eq. 9 and Eq. 10, our focal
temporal prioritization are designed to emphasize predictions closer to the current time T while
maintaining the overall loss scale. This scale preservation ensures that the sum of weights for the
context window,

∑T
t=T−Lc+1 wc(t), equals Lc, and for the future window,

∑T+Lf

t=T+1 wf (t), equals
Lf . Table 10 presents the specific numerical values of these weights for each relative time step,
calculated with our default settings of Lc = 10 and Lf = 5.

Table 10: Specific values of the focal temporal prioritization for current time steps (t ∈ [T − 9, T ])
and future prediction time steps (t ∈ [T + 1, T + 5]).

Time step Current Future
T-9 T-8 T-7 T-6 T-5 T-4 T-3 T-2 T-1 T T+1 T+2 T+3 T+4 T+5

Weight value 0.76 0.83 0.89 0.95 1.01 1.06 1.09 1.12 1.14 1.14 1.12 1.10 1.03 0.94 0.81

Difference between random segment sampling and normal sampling The details of our random
segment sampling strategy are described in Sec. 3.6. In contrast, normal sampling strategy just
involves dividing a video of total length Tall into a sequence of k non-overlapping chunks, each
of length Lc. For such a normal approach, the target prediction time Tk for each k-th chunk is
deterministically set to its final time step, specifically defined as Tk = kLc − 1. This means that
predictions are consistently targeted only at the very end of these fixed chunks, unlike the more varied
and diverse target prediction times generated by our random segment sampling method.

Dataset modification for online setting For the UnAV-100 dataset [13], while its original anno-
tations specify continuous time segments for events (e.g.,[cls, Tstart, Tend]), we convert these into
frame-level discrete labels for our online task. Specifically, for any given time T and a particular
event within a video stream, a label of 1 indicates the event is currently occurring, while 0 indicates it
is not.
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Figure 6: Visualization of the LLP dataset adaptation for the online setting. Various colored rectangles
represent video clips of different categories. Video clips are processed by random concatenation and
consistent concatenation.

The LLP dataset [54] initially provides 11,849 10-second video clips. To adapt it for our online
evaluation setting, we concatenate 11,849 new, untrimmed video streams as shown in Figure 6. Each
new stream is created by using the original 10-second clips as its base and concatenating additional
clips. These resulting streams are specifically constructed to achieve one of six distinct target total
durations: 10 seconds (representing the original clip itself), 20 seconds, 30 seconds, 40 seconds, 50
seconds, or 60 seconds. Approximately an equal number of streams are generated for each of these
six target durations.

This concatenation process employs two distinct strategies: half of the 11,849 streams are formed by
random concatenation, randomly combining clips from different categories. This aims to simulate the
rapid and complex within-second scene variations commonly observed in current streaming content.
The other half are constructed by consistent concatenation, identifying the first event category present
in the base clip and then concatenating multiple additional clips that also contain this specific event,
thereby simulating longer videos with a consistent, ongoing event context. This approach allows
us to assess the model’s adaptability to complex dynamic scenes and its capability for consistent
understanding and discrimination within extended event contexts.

Regarding other datasets: The case of LFAV The LFAV dataset [25], comprising 5175 untrimmed
videos with diverse audio, visual, and audio-visual events, is designed for long-form audio-visual
video parsing and thus appears initially relevant for the On-AVEP task. However, we identify two
critical limitations that preclude its effective use with our PreFM framework.

Firstly, complete access to the original video data is restricted. Of the officially stated 3721 training,
486 validation, and 968 test samples, our attempts allow us to retrieve only 3512, 461, and 910
samples respectively (totaling 4883 out of 5175 raw videos). The LFAV benchmark provides pre-
extracted features using VGGish [24], ResNet18 [21], and R3D [55]. This reliance on fixed features
prevents us from employing different feature extractors or leveraging pre-trained models (such as
OnePeace [59] for our modality-agnostic robust representation) directly on the raw video data, which
is a key aspect of our method.

Secondly, LFAV is curated under a weak supervision paradigm, offering only video-level annotations
for its training set. The absence of readily available segment-level ground truth makes LFAV
unsuitable for training critical components of our PreFM model. Specifically, mechanisms like
our predictive future modeling and focal temporal prioritization require finer-grained temporal
supervision than what LFAV’s training annotations provide, rendering it incompatible with the
training requirements for our online streaming prediction approach.

More online inference details All methods are evaluated using their officially provided checkpoints;
for those without an available checkpoint, we reproduce the results using their official code. For any
prediction at time T in online testing, only data from 0 to T is available.

For On-AVEL tasks, SOTA methods [13, 14, 78] pad the entire video beyond T + 1 with zeros as
input because these methods originally utilize the complete video, and we use this padding to ensure
a uniform input length under online settings. Our method, in contrast, does not use all available
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historical data up to T ; instead, it processes the segment [T − Lc + 1, T ] as input to derive the
prediction at time T .

For On-AVVP tasks, SOTA approaches [29, 49, 76, 27, 71] employ the segment [T − 9, T ] as input,
since these methods are designed for 10-second video clips. Similarly, our method utilizes the
segment [T − Lc + 1, T ] as input for making predictions at time T .

Re-evaluation of efficiency metrics for fair comparison Table 11 (for the On-AVEL task) and
Table 12 (for the On-AVVP task) present side-by-side comparisons of efficiency metrics. These
include figures from our standardized re-evaluation (denoted as “Our Eval.”) and those originally
published in the respective papers (denoted as “Reported”).

For our evaluations, we adhere to a strict and consistent protocol. The number of trainable param-
eters for all models is calculated as the sum of elements in all parameters requiring gradients (us-
ing sum(p.numel() for p in model.parameters() if p.requires_grad)). To measure
FLOPs, we consistently employ the thop library for all methods, assessing a single forward pass
(via flops, _ = profile(model, inputs=(input,))). All our efficiency tests are conducted
under identical environmental conditions to ensure reproducibility and a fair basis for comparison.

Discrepancies may be observed between our “Our Eval.” figures and the “Reported” values from
the original publications. Such differences can arise from variations in measurement methodologies,
specific versions of libraries used, or the underlying hardware and software environments. We present
both sets of values to offer a transparent perspective, respecting the data from original publications
while providing a benchmark that is directly comparable across methods under our unified testing
framework.

Table 11: Comparison of re-evaluated (“Our Eval.”) and originally reported (“Reported”) efficiency
metrics on the On-AVEL task. (“-” indicates the metric was not provided in the original paper.

Methods Params FLOPs
Our Eval. Reported Our Eval. Reported

UnAV [13] (CVPR2023) 139.4M - 52.4G -
UniAV [14] (Arxiv2404) 130.8M 130M 22.7G -
CCNet [78] (AAAI2025) 238.8M - 72.1G -

PreFM 12.3M none 0.4G none
PreFM+ 36.9M none 0.5G none

Table 12: Comparison of re-evaluated (“Our Eval.”) and originally reported (“Reported”) efficiency
metrics on the On-AVVP task. “-” indicates the metric was not provided in the original paper.

Methods Params FLOPs
Our Eval. Reported Our Eval. Reported

VALOR [29] (NeurIPS2023) 4.9M 5.1M 0.45G 0.45G
Coleaf [49] (ECCV2024) 5.7M - 0.25G 48.2G
LEAP [76] (ECCV2024) 52.0M 52.0M 1.09G 0.79G

NREP [27] (TNNLS2024) 9.6M 9.6M 1.69G 0.37G
MM-CSE [71] (AAAI2025) 6.2M 4.5M 0.91G 0.80G

PreFM 3.3M none 0.22G none
PreFM+ 12.1M none 0.48G none

A.4 More Qualitative Analysis

On-AVEL Figure 7 provides further qualitative validation of our method’s on the On-AVEL task
through four distinct examples, comparing our results (“Ours”) against the state-of-the-art CCNet [78]
model (“SOTA”). These visualizations collectively demonstrate that our approach consistently yields
event localizations that are more aligned with the ground truth annotations compared to CCNet.
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Figure 8: More visualization results on the On-AVVP task.

GT

Ours

SOTA

0s 10s 20s 30s 0s 10s 20s 30s 40s

people clapping singing choirfemale singing wind noise sailingsea waves

0s 5s 10s 15s 25s

GT

Ours

SOTA

kid speaking playing ukulelechild singing

20s

playing 
acoustic guitar

playing 
cello

playing
violin

0s 10s 20s 30s 40s

playing 
flute

Figure 7: More visualization results on the On-AVEL task.

On-AVVP Similarly, we provide further qualitative results of our method’s on the On-AVVP task
through four distinct examples, comparing our results (“Ours”) against the state-of-the-art MM-
CSE [71] model (“SOTA”). The visualization results are shown in Figure 8. These visualizations
highlight our method’s superior performance in precisely parsing events and reducing errors compared
to the SOTA model.

This robust handling of both unimodal and multimodal event characteristics signifies a key advantage
of our approach for the online audio-visual event parsing task.
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