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DIRECT REWARD FINE-TUNING ON POSES FOR
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Figure 1: We propose DRPOSE, a method to post-train a multi-view diffusion model for enhanced
posture of reconstructed 3D humans in dynamic and acrobatic scenarios.

ABSTRACT

Single-view 3D human reconstruction has achieved remarkable progress through
the adoption of multi-view diffusion models, yet the recovered 3D humans of-
ten exhibit unnatural poses. This phenomenon becomes pronounced when recon-
structing 3D humans with dynamic or challenging poses, which we attribute to
the limited scale of available 3D human datasets with diverse poses. To address
this limitation, we introduce DRPOSE, a Direct Reward fine-tuning algorithm on
Poses, which enables post-training of a multi-view diffusion model on diverse
poses without requiring expensive 3D human assets. DRPOSE trains a model us-
ing only human poses paired with single-view images, employing a direct reward
fine-tuning to maximize POSESCORE, which is our proposed differentiable re-
ward that quantifies consistency between a generated multi-view latent image and
a ground-truth human pose. This optimization is conducted on DRPOSE15K, a
novel dataset that was constructed from an existing human motion dataset and
a pose-conditioned video generative model. Constructed from abundant human
pose sequence data, DRPOSE15K exhibits a broader pose distribution compared
to existing 3D human datasets. We validate our approach through evaluation on
conventional benchmark datasets, in-the-wild images, and a newly constructed
benchmark, with a particular focus on assessing performance on challenging hu-
man poses. Our results demonstrate consistent qualitative and quantitative im-
provements across all benchmarks.

1 INTRODUCTION

3D human models are essential assets across multiple industries, including visual media production
(such as games and movies), product and industrial design, and e-commerce platforms for fashion.
While multi-view scanning systems and manual design processes currently dominate 3D human
crafting workflows, single-view 3D human reconstruction technology has garnered attention due to
rapid technical advances and its practical advantages in scenarios where capturing multiple camera
angles is either impractical or impossible.

Recent advances in this technology have been driven by the adoption of image-to-multi-view (I2MV)
diffusion models, which have enhanced reconstruction quality for occluded body parts invisible in
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the input image (Pan et al., 2024; Peng et al., 2024; Li et al., 2024b; He et al., 2024; Xue et al., 2024;
Ho et al., 2023a). This approach typically employs a two-stage pipeline: first generating multi-
view images from a single input using a diffusion model, then lifting these views into 3D space
through either implicit reconstruction (Saito et al., 2019; Ho et al., 2023a) or explicit reconstruction
techniques (Li et al., 2024b; Palfinger, 2022; Xiu et al., 2022a). Compared to previous works, which
directly reconstruct a 3D structure from the input-view feature (Saito et al., 2019; 2020) or works
utilizing an estimated SMPL model (Xiu et al., 2022b;a), multi-view diffusion-based approaches
have the benefit of using more fine-detailed cues for the unseen parts from the input-view.

Despite these advancements, a bottleneck persists that limits real-world applicability. Reconstructed
3D humans often exhibit unnatural postures, especially when target poses are dynamic and challeng-
ing, such as extreme athletic movements or acrobatic postures. We argue that this limitation stems
from the limited scale of publicly available training datasets (Yu et al., 2021; Han et al., 2023; Ho
et al., 2023b) with diverse poses. This scarcity arises from the costs of recruiting diverse subjects
and capturing them in varied poses using multi-view stereo setups, which are further compounded
by privacy concerns that complicate the release of public data.

Our key insight to overcome this challenge is that, instead of requiring expensive 3D human as-
sets for training, we can leverage available 3D pose sequence data (Lin et al., 2023) and a pose-
conditioned video generative model (Men et al., 2025) to construct a DRPOSE15K, a dataset consist-
ing of single-view images for input and corresponding ground-truth poses. To this end, we introduce
DRPOSE, a method to post-train an I2MV model on this dataset using a direct reward fine-tuning
algorithm (Liu et al., 2024; Clark et al., 2023; Xu et al., 2023; Prabhudesai et al., 2024). In DRPOSE,
given an input image, a pre-trained I2MV model generates multi-view latent images through an it-
erative denoising process. Then, the latents are compared with the ground-truth 3D pose to compute
POSESCORE, our proposed differentiable reward function that quantifies the consistency between
them. The pretrained I2MV model is optimized to maximize POSESCORE, across the DRPOSE15K,
which has a broader pose distribution coverage than the existing 3D human datasets.

Our evaluation demonstrates that I2MV models fine-tuned with DRPOSE achieve improvements in
single-view 3D human reconstruction quality both quantitatively and qualitatively. These improve-
ments are consistent across all datasets, including conventional benchmarks (Yu et al., 2021; Ho
et al., 2023b), in-the-wild images, and MIXAMORP, our new evaluation benchmark designed to
assess performance on complex and dynamic human poses.

Our key contributions are:

• We propose DRPOSE, a novel post-training approach for enhancing the alignment of an
image-to-multi-view (I2MV) model with natural poses in dynamic and complex scenarios.

• We construct DRPOSE15K, a dataset comprising human poses from a motion dataset (Lin
et al., 2023) paired with generated single-view images conditioned on each pose.

• Through quantitative evaluation, we demonstrate that our method achieves consistent im-
provements across all datasets, including conventional benchmarks and our proposed MIX-
AMORP.

2 RELATED WORKS

2.1 SINGLE-VIEW 3D HUMAN RECONSTRUCTION

Single-view 3D human reconstruction remains a long-standing challenge in computer vision and
graphics. Early approaches focused on recovering parametric human models (Loper et al., 2023;
Pavlakos et al., 2019) but often lacked fine-grained details such as clothing and facial features (Bogo
et al., 2016; Zhang et al., 2021; 2023a; Sun et al., 2021). A major advance was introduced by
PIFu (Saito et al., 2019), which demonstrated that detailed 3D human shapes could be learned from
a single image using implicit functions trained on 3D scan datasets. This inspired numerous exten-
sions, including methods that (1) utilize normal maps to enhance surface quality (Saito et al., 2020;
Xiu et al., 2022b;a), (2) utilizing SMPL prior (Xiu et al., 2022b;a; Zhang et al., 2023b; Zhuang
et al., 2025), (3) recover relightable textures (Alldieck et al., 2022), and (4) generate animation-
ready avatars (Huang et al., 2020; He et al., 2021; Peng et al., 2024). Recently, generative models
have further advanced the field by improving reconstruction quality for previously unseen views by
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adopting score distillation sampling (Huang et al., 2023; Wang et al., 2025; AlBahar et al., 2023;
Wang et al., 2024) or training a multi-view diffusion model (Pan et al., 2024; Peng et al., 2024;
Li et al., 2024b; He et al., 2024; Xue et al., 2024; Hu et al., 2025). However, when these models
receive images with out-of-distribution poses as input, they show results that exhibit unnatural pos-
tures. To address this, we propose a new approach that leverages motion data (Lin et al., 2023) to
augment pose coverage and fine-tune multi-view diffusion models, thereby improving performance
on diverse poses.

2.2 DIRECT REWARD FINE-TUNING OF DIFFUSION MODEL

Recent research has explored methods for post-training diffusion models to align them with human
preferences better, building on the success of reinforcement learning techniques in large language
models. This alignment process typically involves three key components: (1) starting with a pre-
trained text-to-image diffusion model, (2) developing a reward model that evaluates attributes such
as aesthetic quality, detail fidelity, and semantic alignment, and (3) optimizing the diffusion model to
maximize these reward signals. Initial approaches utilized reinforcement learning (RL) objectives to
maximize human preferences, though these methods are non-differentiable (Lee et al., 2023; Black
et al., 2023; Fan et al., 2023). Building on human preference data, researchers have developed dif-
ferentiable neural networks that can evaluate input images (Xu et al., 2023; Kirstain et al., 2023; Wu
et al., 2023). Leveraging these advances, direct reward fine-tuning methods have recently emerged
that post-train diffusion models using differentiable reward scores (Prabhudesai et al., 2024; Clark
et al., 2023; Wu et al., 2024), demonstrating faster convergence compared to RL-based approaches.
In this work, we adopt DRTune (Wu et al., 2024), a state-of-the-art reward fine-tuning method, as
the foundation for DRPOSE.

3 PRELIMINARIES

3.1 IMAGE-TO-MULTI-VIEW (I2MV) DIFFUSION MODEL

We adopt an image-to-multi-view (I2MV) diffusion model to our single-view 3D human reconstruc-
tion pipeline to provide fine-detailed cues for the unseen regions of the human subject from the input
view. Era3D (Li et al., 2024a), a state-of-the-art I2MV model, introduces a row-wise attention layer
as an additional layer to the stable diffusion’s denoising U-Net. This layer performs self-attention
across pixels in the same row, spanning all multi-view images, thereby maintaining multi-view con-
sistency during generation. Unlike previous multi-view attention layers (Shi et al., 2023; Wang &
Shi, 2023; Höllein et al., 2024) that apply self-attention across all pixels in the multi-view images,
the row-wise approach reduces computational overhead from O(N2S4) to O(N2S3), where S de-
notes the spatial resolution and N represents the number of views. For our base I2MV diffusion
model, we adopt the denoising U-Net from PSHuman (Li et al., 2024b), which extends Era3D (Li
et al., 2024a) by incorporating a body-face cross-scale diffusion architecture that enhances the qual-
ity of face region generation.

3.2 3D HUMAN RECONSTRUCTION WITH EXPLICIT CARVING

As illustrated in Figure 2, we employ an explicit carving in our pipeline to reconstruct 3D humans
from multi-view images generated by our post-trained diffusion model, following Li et al. (2024b).
The pipeline generates both normal maps and RGB images across multiple viewpoints using a dif-
fusion model conditioned on the input view. 3D human mesh recovery then proceeds through three
sequential steps: SMPL-X initialization, differentiable remeshing (Palfinger, 2022), and appearance
fusion. This approach delivers superior geometric detail compared to methods using pretrained
implicit networks (Ho et al., 2023a; Pan et al., 2024)

4 METHOD

This section describes our proposed method for aligning an image-to-multi-view (I2MV) diffusion
model to natural postures in dynamic or complex cases, thereby enhancing the quality of its in-
tegrated single-view 3D human reconstruction pipeline. We begin in Sec. 4.1 by describing the
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Figure 2: Overview of our 3D human reconstruction pipeline. In this pipeline, the multi-view normal
and RGB images are generated from the input image using a image-to-multi-view (I2MV) diffusion
model. Then these images are converted into 3D representation using explicit human carving (Li
et al., 2024b). In this work, we propose post-training the I2MV diffusion model to achieve better
alignment with accurate poses in dynamic and acrobatic scenarios. For clarity, only 3 of the 6 multi-
view images are displayed for normal maps and RGB images.

construction of DRPOSE15K, our proposed training dataset with diverse pose coverage. Sec. 4.2
then presents DRPOSE, which enables post-training of an I2MV model on DRPOSE15K.

Pose-conditioned Image-to-Video Model

Generated Frames

SMPL-X Pose Sequence Reference Image

Figure 3: Construction process for DR-
POSE15K. We employ a pose-conditioned
image-to-video model Men et al. (2025) to gen-
erate input-view images corresponding to the
ground-truth poses.

THuman2.1
(std=6.646)

CustomHumans
(std=7.623)

DRPose15K
(std=11.53)

Figure 4: Comparison of pose diversity between
conventional 3D human datasets (Yu et al.,
2021; Ho et al., 2023b) and our proposed DR-
POSE15K. Our dataset has a higher standard
deviation of SMPL-X joint locations than other
datasets.

4.1 CONSTRUCTION OF DRPOSE15K

We construct DRPOSE15K, a training dataset containing dynamic and challenging 3D human poses
paired with single-view images, by leveraging Motion-X (Lin et al., 2023), a human motion dataset
and MIMO (Men et al., 2025), a pose-conditioned image-to-video(I2V) model as illustrated in Fig-
ure 3. From the Motion-X dataset, we utilize the AIST (Li et al., 2021) subset due to its comprehen-
sive coverage of diverse pose distributions. To reduce redundancy from the 300K available poses,
we apply farthest point sampling to select 1.5K poses. Then, we add the 9 temporal neighbors for
each selected pose to create a pose sequence for input to the MIMO, yielding a total of 15K poses.
Finally, we use MIMO to animate full-body human images from Photos (2025) according to these
pose sequences, generating corresponding single-view images for each 3D pose in our dataset.

To quantitatively assess the pose diversity of DRPOSE15K compared to conventional 3D human
datasets (Ho et al., 2023b; Yu et al., 2021), we compute the standard deviation of SMPL-X joint
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Figure 5: Overview of DRPOSE. Given a 3D human pose θ and input image I (generated from θ as
described in Sec 4.1), the denoising multi-view U-Net ϵω is trained to minimize Ltotal = Lreward +
wKL · LKL. Here, Lreward measures the distance between θ and the generated latent image x0, while
LKL computes the KL divergence between ϵw and the frozen initial U-Net ϵw0

(Sec 4.2). For clarity,
only 3 of 6 multi-view images are shown for normal maps and RGB visualization.

positions across each dataset, focusing exclusively on the 22 body joints while excluding facial and
hand joints. Note that for conventional datasets, we include both training and test splits in this
analysis. As shown in Figure 4, DRPOSE15K exhibits a 1.73× larger standard deviation compared
to THuman2.1 (Yu et al., 2021). Moreover, with 14.7K poses compared to 647 in CustomHumans
and 2,445 in THuman2.1, TrainSet provides broader pose distribution coverage.

4.2 DRPOSE (DIRECT REWARD FINE-TUNING ON POSES)

Algorithm 1 DRPOSE

Dataset: Image-pose pairs D = {Ii, θi}
Inputs: I2MV diffusion model with initial
weights ω0, reward model r, the number of
training timesteps K, maximum early stop
timestep m
Initialize ω = ω0

while not converged do
s = randint(1, T −K⌊ T

K
⌋)

ttrain = {s+ i
⌊

T
K

⌋
| i = 0, 1, . . . ,K − 1}

tmin = randint(1,m)
(I, θ) ∼ D
xT ∼ N (0, I)
LKL = 0
for t = T, · · · , 1 do

ϵ̂ = ϵω(stop grad(xt), I, t)
if t /∈ ttrain then

ϵ̂ = stop grad(ϵ̂)
else

ϵ̂0 = ϵω0(stop grad(xt), I, t)
LKL = LKL + E(||ϵ̂− ϵ̂0||)

x̂0 = (xt − σtϵ̂)/αt

if t == tmin then
break

xt−1 = αt−1x̂0 + σt−1ϵ̂

Lreward = 1− r(x̂0, θ)
ω ← ω − η∇ω(Lreward + wKL · LKL)

We introduce DRPOSE, an algorithm to post-train an
I2MV diffusion model on DRPOSE15K, denoted as
D = {Ii, θi}, where Ii, θi are an input image and
the ground-truth human pose. The core idea is to
maximize POSESCORE, our proposed differentiable
reward that quantifies consistency between the gen-
erated multi-view latent images from Ii and θi, bet-
ter aligning the pretrained I2MV diffusion model to
diverse poses in D.

DRPOSE builds upon previous direct reward fine-
tuning algorithms (Wu et al., 2024; Prabhudesai
et al., 2024). The method generates latent images
x0 at timestep t = 0 through an iterative denois-
ing process, then computes the reward loss Lreward
using POSESCORE, a differentiable reward function
denoted as r. Since maintaining gradients for all
timesteps would require prohibitive GPU memory,
we sample a subset of timesteps ttrain for gradient
computation. Following DRTune (Wu et al., 2024),
DRPOSE samples equally spaced timesteps from the
full denoising trajectory, enabling optimization of
early denoising steps while maintaining computa-
tional efficiency.

To address the reward hacking problem, where re-
ward scores increase during training while image
quality degrades, DRPOSE incorporates a KL diver-
gence regularization term LKL in addition to Lreward. This regularization computes E(||ϵ̂ − ϵ̂0||),
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where ϵ̂ represents the predicted noise from the trainable diffusion model at some timestep t ∈ ttrain,
and ϵ̂0 is the corresponding prediction from the initial diffusion model. This constraint prevents the
model’s generated images from deviating excessively from its original results while optimizing for
reward maximization.

To summarize, DRPOSE operates the steps in Algorithm 1 to minimize the following objective:

min
ω

E(I,θ)∼D [Lreward (I, θ) + wKL · LKL (I)] . (1)

Differentiable Reward. To quantify the consistency a multi-view latent image x0 and a GT pose
θ, we develop POSESCORE, a differentiable reward model denoted as r. To compute the consistency,
it first projects both x0 and θ to the Îskel and Iskel, images where the human skeletal structure are
drawn. To convert x0 into Îskel, a U-Net based skeletal image predictor gskel is pretrained on the
existing 3D human datasets (Ho et al., 2023b; Yu et al., 2021). Moreover, Iskel can be drawn from θ,
by drawing the projected the 3D human joints J(θ) from the pose parameter θ into the image planes
same with the generated images’ viewpoints. Then the reward is compute as follows:

r(x0, θ) = −E(||Îskel − Iskel||) = −E(||gskel(x0)−R(J(θ))||), (2)

where R is the rendering of the 3D human joints into the skeletal images into the viewpoints of x0.

5 EXPERIMENTS

5.1 IMPLEMENTATION DETAILS

Denoising U-Net We initialize our model ϵω0
with the denoising U-Net architecture from PSHu-

man (Li et al., 2024b). The model is fine-tuned on four NVIDIA H100 GPUs using a batch size of 4
with gradient accumulation over 2 steps for 5.5K iterations. During training, we employ the DDIM
sampler with T = 20 total denoising steps and K = 2 training steps. We set the maximum early
stop timestep to m = 8 and weight the KL divergence loss as wKL = 0.01. For computing LKL,
we use mean squared error to estimate ||ϵ̂− ϵ̂0||. At inference time, we use the DDIM sampler with
T = 40 denoising steps and apply classifier-free guidance (Ho & Salimans, 2022) with a scale of
3.0.

Differentiable Reward For computing the reward, we use binary cross entropy loss and LPIPS to
estimate ||Îskel − Iskel||. The skeletal images Îskel and Iskel both have 23 channels, with each chan-
nel corresponding to one skeleton. We use THuman2.1 (Yu et al., 2021) and the training subset of
CustomHumans (Ho et al., 2023b) as our training datasets, comprising approximately 3K scans. To
get six-view normal and color images, we render the 3D scans using Blender’s Cycles engine (Com-
munity, 2018) with an orthographic camera configuration. The reward model is trained on four
NVIDIA RTX 6000 Ada GPUs with a batch size of 16 over 10K iterations.

5.2 SINGLE-VIEW 3D HUMAN RECONSTRUCTION

Baselines & Benchmarks We compare our approach against single-view 3D human reconstruc-
tion methods guided by SMPL (Xiu et al., 2022a; Ho et al., 2023a), as well as multi-view diffusion-
based methods (Wu et al., 2023; Li et al., 2024a;b).

• ECON (Xiu et al., 2022a) estimates front and back depth maps using an estimated SMPL-
X prior, then fuses these depth maps for a complete 3D human body. It does not support
texture reconstruction and trains its depth estimation network on 500 scans from THu-
man2.0 (Yu et al., 2021). The depth estimation network is trained on 500 scans from
THuman2.0.

• SiTH (Ho et al., 2023a) generates 512×512 px. RGB images for front and back views using
an estimated SMPL-X prior, subsequently converting them to 3D via an SDF network. The
diffusion model is trained on THuman2.0.

• Human3Diffusion (Xue et al., 2024) produces four 256×256 px. RGB multi-view images,
which are then converted to 3D using a 3DGS reconstruction network. The multi-view
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Table 1: Quantitative comparisons of geometry quality on single-view human reconstruction bench-
marks. Our proposed benchmark MIXAMORP is described in Appendix A.2. Era3D* represents the
original Era3D model fine-tuned on CustomHumans and THuman2.1 training splits using conven-
tional DDPM loss. Ours (Era3D) denotes the Era3D model post-trained with our proposed DRPOSE
on DRPOSE15K.

THuman2.1-test CustomHumans-test MIXAMORP

Method CD↓ NC↑ f-Score↑ CD↓ NC↑ f-Score↑ CD↓ NC↑ f-Score↑
ECON 57.8809 0.6760 13.5307 70.0954 0.6552 10.4112 187.5267 0.5655 4.7752
SiTH 64.8460 0.6677 14.2759 77.5391 0.6504 11.5578 146.5484 0.5764 6.8088
Era3D* 54.2934 0.7018 15.1518 62.3912 0.7056 14.0601 111.0537 0.6163 8.6145
PSHuman 48.0357 0.7202 17.8297 57.0701 0.7099 15.4065 101.8600 0.6244 9.5673

Ours (Era3D) 39.8191 0.7387 19.3195 43.1307 0.7425 18.9756 90.8153 0.6307 10.3593
Ours 37.6248 0.7434 20.7005 44.7405 0.7381 18.1897 94.3054 0.6274 9.8742

Table 2: Quantitative evaluation of 3D human reconstruction quality. Six RGB views evenly dis-
tributed in azimuth are rendered to compute appearance metrics. Our proposed benchmark MIX-
AMORP is described in Appendix A.2. Era3D* represents the original Era3D model fine-tuned
on CustomHumans and THuman2.1 training splits using conventional DDPM loss. Ours (Era3D)
denotes the Era3D model post-trained with our proposed DRPOSE on DRPOSE15K.

THuman2.1-test CustomHumans-test MIXAMORP

Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
SiTH 16.8538 0.7884 0.1743 15.7267 0.7773 0.2098 13.5855 0.7604 0.2748
Era3D* 18.7502 0.8226 0.1380 18.9253 0.8355 0.1326 17.5337 0.8623 0.1519
PSHuman 19.0605 0.8259 0.1285 19.0814 0.8373 0.1273 17.6624 0.8641 0.1497

Ours (Era3D) 19.1135 0.8406 0.1242 19.1135 0.8406 0.1242 17.5568 0.8662 0.1475
Ours 19.3110 0.8303 0.1243 19.3404 0.8411 0.1224 17.6631 0.8646 0.1471

diffusion model is trained on 6K human scans combining public datasets (Yu et al., 2021;
Ho et al., 2023b; Han et al., 2023) and commercial datasets (AXYZ design, 2023; Render-
people, 2023; Treedy, 2023; Twindom, 2023).

• Era3D (Li et al., 2024a) generates six 512×512 px. normal and RGB images using a
diffusion network trained on Objaverse (Deitke et al., 2023). For fair comparison, we
fine-tune this model on 3K scans from THuman2.1 and CustomHumans (Ho et al., 2023b)
datasets.

• PSHuman (Li et al., 2024b) produces six 768×768 px. normal and RGB images using a
diffusion network trained on THuman2.1 and CustomHumans datasets.

All models above are evaluated quantitatively in the following three benchmarks:

• THumans2.1-test contains 60 human scans selected from the full THumans2.1 (Yu et al.,
2021) dataset. The split follows Li et al. (2024b).

• CustomHumans-test contains 60 human scans selected from the full CustomHumans
dataset, which consists of 600 human scans. The split follows Ho et al. (2023a).

• MIXAMORP is our proposed benchmark containing 60 human scans, constructed by as-
signing 60 distinct poses collected from Mixamo animation, to 15 different Renderpeople
3D models, with 4 poses per a model(see Appendix A.2 for more details).

Test splits from CustomHumans (Ho et al., 2023b) and THuman2.1 (Yu et al., 2021) are com-
monly used benchmarks for evaluating single-view 3D human reconstruction methods. While these
benchmarks include dynamic poses such as dancing or jumping, they lack extremely complex poses
(see Figure 4) like breakdancing or bat swinging. To establish new evaluation criteria for 3D hu-
man reconstruction under extreme pose variations, we introduce MIXAMORP, a novel benchmark
specifically designed to assess reconstruction performance on challenging pose configurations. See
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Figure 6: Qualitative evaluation on the internet-source images. Era3D* denotes Era3D fine-tuned
on CustomHumans and THuman2.1 datasets.

Appendix A.2 for the complete list of Renderpeople (Renderpeople, 2023) characters and corre-
sponding Mixamo (Inc., 2025) animations used in our dataset.

Evaluation protocol For each mesh scan, we render input images from 3 evenly distributed az-
imuthal views, yielding 180 input views per benchmark. To evaluate geometric accuracy, we report
three metrics in Table 1: Chamfer Distance (CD), Normal Consistency (NC), and F-Score. For
computing Chamfer Distance, we uniformly sample 100K points per mesh.

For appearance evaluation, we report three metrics in Table 2: PSNR, SSIM, and LPIPS. To compute
these metrics, we render images of both the prediction and ground truth from 6 evenly distributed
azimuthal views that are distinct from the input views.

Results As Table 1 and Table 2 presents, our results demonstrate that DRPOSE consistently im-
proves reconstruction quality of the base model across all benchmarks. This is thanks to our pro-
posed DRPOSE’s ability to enhance the accuracy of reconstructed posture on diverse poses, as seen
in the Figure 6 and Figure 7.

Ablation Study on the base model We conduct an ablation study on the base model by post-
training Era3D* using DRPOSE. As reported in Table 1 and Table 2, the Era3D-based model shows
similar performance across all benchmarks. However, since the PSHuman-based model shows better
results on face regions qualitatively, we chose PSHuman as our base model.

5.3 ANALYSIS ON POSESCORE

Table 3: Quantitative evaluation of gskel in POS-
ESCORE

Benchmark PSNR SSIM LPIPS

THuman2.1-test 22.4807 0.9337 0.0580
CustomHumans-test 24.4081 0.9536 0.0430

In the Figure 8, we provide the analysis of the
trained gskel of POSESCORE introduced in Sec-
tion 4.2. Figure 8 and Table 3. The evaluation
is conducted on the SMPL and scan mesh pairs
on the test splits of CustomHumans and THu-
man2.1. The scan meshes are rendered into the
multi-view normal and color images to be con-
verted into the latent images via PSHuman’s VAE. These latent images are fed into gskel, producing
the skeletal images. The metrics and qualitative results show that gskel reliable enough to use it as a
measure for the consistency between latent images and poses.
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Figure 7: Qualitative evaluation on the CustomHumans dataset. Era3D* denotes Era3D fine-tuned
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Figure 8: Visualization of gskel in POSESCORE. gskel converts the multi-view latent images encoded
from the normal and RGB images using the base model’s VAE.

6 CONCLUSION

We propose a novel approach to improve the pose accuracy of 3D humans reconstructed by multi-
view diffusion models. Our method comprises three key contributions: (1) DRPOSE15K, a dataset
featuring diverse poses with corresponding single-view images, (2) DRPOSE, an algorithm that en-
ables post-training of multi-view diffusion models on this dataset; and (3) MIXAMORP, a bench-
mark for evaluating reconstruction under challenging poses. Our post-trained model shows consis-
tent quality improvements across all benchmarks.

Limitations Similar to previous single-image-to-3D human modeling approaches, our pipeline
requires segmented input images. When input images contain imperfect segmentation, artifacts
such as floating geometry appear in the boundary regions of the generated 3D humans, as illustrated
in Figure 9.

Although DRPOSE employs gradient stopping and gradient checkpointing techniques, it requires
substantial GPU memory, as it generates 24 images of size 768×768 px, through an iterative denois-
ing process to compute POSESCORE. We believe improved efficiency in future multi-view diffusion
models will alleviate this issue.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

ETHICS STATEMENT

Demographic Bias Our base model, PSHuman (Li et al., 2024b), is trained on THuman2.1 (Yu
et al., 2021) and CustomHumans (Ho et al., 2023b), which exhibit demographic imbalances. THu-
man2.1 contains 2,445 human subjects who are predominantly of Asian ethnicity, while CustomHu-
mans, though more ethnically diverse, comprises only 647 subjects. This imbalanced representation
may result in biased reconstruction performance that favors demographics overrepresented in the
training data, leading to reduced quality and accuracy for underrepresented groups.

Potential for Misuse The generated 3D human models pose risks for creating misleading or harm-
ful content. These reconstructions can be integrated into 3D scenes and animated using standard
rigging techniques, potentially enabling the creation of for disinformation or deepfake content.

Industrial Impact The automation capabilities of image-to-3D human modeling technology may
impact employment in creative industries, affecting 3D artists, character designers, and digital con-
tent creators who specialize in human modeling While this technology can enhance productivity and
accessibility, it also raises questions about the displacement of skilled professionals.

REPRODUCIBILITY STATEMENT

DRPOSE15K is constructed from the publicly available Motion-X dataset (Lin et al., 2023) and
MIMO model (Men et al., 2025). MIXAMORP is constructed from scans of RenderPeople (Ren-
derpeople, 2023) and motions from Mixamo (Inc., 2025); while both resources are available, Ren-
derPeople is a commercial product. In Section 4, we explain the high-level concepts underlying our
approach and provide pseudocode and experimental details in Algorithm 1 and Section 5.1 to ensure
reproducibility.
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A APPENDIX

A.1 ADDITIONAL RESULTS

We provide additional qualitative comparisons in Figure 13 and 14.

A.2 MIXAMORP

As mentioned in Section 5.2, we constructed MIXAMORP using Renderpeople’s rigged 3D mod-
els and Mixamo animations. Table 5 details character names, animations, descriptions, and frame
indices for reproducibility. Each row represents a unique mesh with challenging poses. Figure 15
visualizes the dataset.

A.3 LIMITATIONS

Our pipeline inherits limitations from prior single-image-to-3D approaches, shown in Figure 9. First,
imperfect input segmentation causes floating geometry artifacts at boundaries. Second, while im-
proving overall shape and pose, our method struggles with fine details like hands.

Input Image PSHuman Ours

Figure 9: Our pipeline is sensitive to the quality of the segmented masks, producing artifacts.

A.4 ANALYSIS ON EFFICIENCY

We report the latency of each model for reconstructing a single sample in Table 4. Ours have the
same efficiency as PSHuman since we use it as our base model, while Ours (Era3D) have the same
efficiency as the Era3D.

Table 4: Reconstruction latency per sample for each model.

ECON SiTH Era3D PSHuman Ours (Era3D) Ours

183.27 sec. 117.35 sec. 15.24 sec. 42.70 sec. 15.24 sec. 42.70 sec.

A.5 NETWORK ARCHITECTURE

Figures 10, 11, and 12 show the network design for the Denoising U-Net in the multi-view diffusion
used in the pipeline illustrated in Fig 2, the Denoising U-Net in the MIMO Men et al. (2025), a
pose-conditioned video generator, and the skeletal image predictor in the POSESCORE introduced
in Sec 4.2.

A.6 USE OF LARGE LANGUAGE MODELS

We employ a large language model to refine the manuscript text by correcting grammatical errors
and enhancing sentence fluency. The LLM is not involved in research ideation, methodology devel-
opment, experimental design, or the generation of original content. All intellectual contributions,
including the research direction, analyses, and conclusions, are made entirely by the authors.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Latent Image Latent Image
Denoising U-Net

𝑥! 𝑥!"#

Input Image

concatenate

𝜏 ℰ

Figure 10: Architecture of the Denoising U-Net for multi-view diffusion in our pipeline inspired
from Li et al. (2024b) (illustrated in Fig 2). The denoising U-Net follows the architecture of PSHu-
man (Li et al., 2024b). The input image is conditioned into the denoising process through two
parallel pathways: (1) A VAE encoder E encodes the input image, which is then concatenated with
the latent image xt. (2) A CLIP image encoder τ encodes the input image, and the generated tokens
are fed into the cross-attention layers of the denoising U-Net.

Latent Video Denoising U-Net

𝑣!"#

Latent Video

𝒞$%

𝒞&'
𝒞('
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Figure 11: Architecture of the denoising U-Net for the pose-conditioned image-to-video model used
in the DRPOSE15K construction process (illustrated in Fig. 3). The denoising U-Net follows the
architecture of MIMO (Men et al., 2025) and takes three conditioning signals: (1) scene code Cso, (2)
motion code Cmo, and (3) identity code Cid. The scene code Cso is first concatenated with the latent
video vt and then added to the motion code Cmo. The identity code Cid is fed into the cross-attention
layers of the denoising U-Net. Note that the temporal layers of the denoising U-Net (Guo et al.,
2023) are omitted in this figure.

Latent Image Skeletal Image
Skeletal Image Predictor

Figure 12: Architecture of the Skeletal Image Predictor in our POSESCORE introduced in Sec 4.2.
The network follows a U-Net architecture with an encoder-decoder structure. Multi-view latents are
processed through initial convolutions, then flattened and passed through four downsampling blocks
(reducing spatial resolution from 64×64 to 4×4 while increasing channels from 32 to 512), followed
by four upsampling blocks with skip connections that restore the original resolution. The output
produces predicted skeletal images for all views simultaneously.
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OursSiTH Era3D*Input PSHuman
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Figure 13: Additinoal qualitative evaluation on the internet-source images. Era3D* denotes Era3D
fine-tuned on CustomHumans and THuman2.1 datasets.
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Figure 14: Additinoal qualitative evaluation on the internet-source images. Era3D* denotes Era3D
fine-tuned on CustomHumans and THuman2.1 datasets.
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Table 5: MIXAMORP dataset specification

Character Animation Description Frame number(s)

Carla Drop Kick - 35, 46, 62
Carla Start Plank - 137
Claudia Freehang Climb - 47, 67
Claudia Flying Knee Punch Combo - 29, 79
Eric Swing To Land Swing Backflip To Crouched Land 26, 58
Eric Standing Up Sitting To Standing 41, 88
Henry Situp To Idle - 15, 49, 70
Henry Female Standing Pose On Left Leg, Right Hand... 1
Johanna Twist Dance - 163
Johanna Jump Push Up - 25
Johanna Sitting Laughing - 67
Johanna Praying ...Prayer To Standing Up 1
Kumar Rifle Turn And Kick - 40, 48
Kumar Dancing Twerk - 179
Kumar Crouch Turn Left 90 Turning 90 Degrees Left 6
Michael Pain Gesture - 20
Michel Breakdance 1990 ...Handstand Spin Start 1, 82, 100
Mira Change Direction - 25
Mira Mma Kick Mma Medium Kick 15, 22
Mira Beckoning - 26
Otto Throw Grenade ...While In Prone Position 65
Otto Run Backwards ...Backwards To Crouched Stop 37
Otto Hurricane Kick - 16
Otto Grabbing Ammo - 74
Sebastian Pistol Kneeling Idle - 1
Sebastian Crawling - 34
Sebastian Dig And Plant Seeds - 15, 70
Sheila Shuffling - 33
Sheila Great Sword Slash Great Sword Combo Slash 47, 55, 62
Sydney Sword And Shield Attack Sword And Shield High Attack 17, 26
Sydney Running Jump Jumping From A Sprint 7, 22
Tiffany Samba Dancing Afoxe Samba Reggae Dance 139
Tiffany Stable Sword Inward Slash - 5, 27
Toshiro Martelo 2 - 17
Toshiro Jump Attack - 11, 27, 53
Victoria Great Sword Crouching ...Sword Crouch To Block 10
Victoria Chapa-Giratoria - 61
Victoria Jab Cross Boxing Jab Cross Medium 22
Victoria Jump Jump In Place 35
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Figure 15: Representative visualizations for the MIXAMORP benchmark. The 48 meshes shown
were randomly sampled from the complete dataset containing 60 meshes
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