
000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 DIRECT REWARD FINE-TUNING ON POSES FOR SINGLE IMAGE TO 3D HUMAN IN THE WILD

Anonymous authors

Paper under double-blind review

Figure 1: We propose DRPOSE, a method to post-train a multi-view diffusion model for enhanced posture of reconstructed 3D humans in dynamic and acrobatic scenarios.

ABSTRACT

Single-view 3D human reconstruction has achieved remarkable progress through the adoption of multi-view diffusion models, yet the recovered 3D humans often exhibit unnatural poses. This phenomenon becomes pronounced when reconstructing 3D humans with dynamic or challenging poses, which we attribute to the limited scale of available 3D human datasets with diverse poses. To address this limitation, we introduce DRPOSE, a Direct Reward fine-tuning algorithm on Poses, which enables post-training of a multi-view diffusion model on diverse poses without requiring expensive 3D human assets. DRPOSE trains a model using only human poses paired with single-view images, employing a direct reward fine-tuning to maximize POSESCORE, which is our proposed differentiable reward that quantifies consistency between a generated multi-view latent image and a ground-truth human pose. This optimization is conducted on DRPOSE15K, a novel dataset that was constructed from an existing human motion dataset and a pose-conditioned video generative model. Constructed from abundant human pose sequence data, DRPOSE15K exhibits a broader pose distribution compared to existing 3D human datasets. We validate our approach through evaluation on conventional benchmark datasets, in-the-wild images, and a newly constructed benchmark, with a particular focus on assessing performance on challenging human poses. Our results demonstrate consistent qualitative and quantitative improvements across all benchmarks.

1 INTRODUCTION

3D human models are essential assets across multiple industries, including visual media production (such as games and movies), product and industrial design, and e-commerce platforms for fashion. While multi-view scanning systems and manual design processes currently dominate 3D human crafting workflows, single-view 3D human reconstruction technology has garnered attention due to rapid technical advances and its practical advantages in scenarios where capturing multiple camera angles is either impractical or impossible.

Recent advances in this technology have been driven by the adoption of image-to-multi-view (I2MV) diffusion models, which have enhanced reconstruction quality for occluded body parts invisible in

054 the input image (Pan et al., 2024; Peng et al., 2024; Li et al., 2024b; He et al., 2024; Xue et al., 2024;
055 Ho et al., 2023a). This approach typically employs a two-stage pipeline: first generating multi-
056 view images from a single input using a diffusion model, then lifting these views into 3D space
057 through either implicit reconstruction (Saito et al., 2019; Ho et al., 2023a) or explicit reconstruction
058 techniques (Li et al., 2024b; Palfinger, 2022; Xiu et al., 2022a). Compared to previous works, which
059 directly reconstruct a 3D structure from the input-view feature (Saito et al., 2019; 2020) or works
060 utilizing an estimated SMPL model (Xiu et al., 2022b;a), multi-view diffusion-based approaches
061 have the benefit of using more fine-detailed cues for the unseen parts from the input-view.

062 Despite these advancements, a bottleneck persists that limits real-world applicability. Reconstructed
063 3D humans often exhibit unnatural postures, especially when target poses are dynamic and challeng-
064 ing, such as extreme athletic movements or acrobatic postures. We argue that this limitation stems
065 from the limited scale of publicly available training datasets (Yu et al., 2021; Han et al., 2023; Ho
066 et al., 2023b) with diverse poses. This scarcity arises from the costs of recruiting diverse subjects
067 and capturing them in varied poses using multi-view stereo setups, which are further compounded
068 by privacy concerns that complicate the release of public data.

069 Our key insight to overcome this challenge is that, instead of requiring expensive 3D human as-
070 sets for training, we can leverage available 3D pose sequence data (Lin et al., 2023) and a pose-
071 conditioned video generative model (Men et al., 2025) to construct a DRPOSE15K, a dataset consist-
072 ing of single-view images for input and corresponding ground-truth poses. To this end, we introduce
073 DRPOSE, a method to post-train an I2MV model on this dataset using a *direct reward fine-tuning*
074 *algorithm* (Liu et al., 2024; Clark et al., 2023; Xu et al., 2023; Prabhudesai et al., 2024). In DRPOSE,
075 given an input image, a pre-trained I2MV model generates multi-view latent images through an it-
076 erative denoising process. Then, the latents are compared with the ground-truth 3D pose to compute
077 POSESCORE, our proposed differentiable reward function that quantifies the consistency between
078 them. The pretrained I2MV model is optimized to maximize POSESCORE, across the DRPOSE15K,
079 which has a broader pose distribution coverage than the existing 3D human datasets.

080 Our evaluation demonstrates that I2MV models fine-tuned with DRPOSE achieve improvements in
081 single-view 3D human reconstruction quality both quantitatively and qualitatively. These improve-
082 ments are consistent across all datasets, including conventional benchmarks (Yu et al., 2021; Ho
083 et al., 2023b), in-the-wild images, and MIXAMORP, our new evaluation benchmark designed to
084 assess performance on complex and dynamic human poses.

085 Our key contributions are:

- 086 • We propose DRPOSE, a novel post-training approach for enhancing the alignment of an
087 image-to-multi-view (I2MV) model with natural poses in dynamic and complex scenarios.
- 088 • We construct DRPOSE15K, a dataset comprising human poses from a motion dataset (Lin
089 et al., 2023) paired with generated single-view images conditioned on each pose.
- 090 • Through quantitative evaluation, we demonstrate that our method achieves consistent im-
091 provements across all datasets, including conventional benchmarks and our proposed MIX-
092 AMORP.

094 2 RELATED WORKS

097 2.1 SINGLE-VIEW 3D HUMAN RECONSTRUCTION

098 Single-view 3D human reconstruction remains a long-standing challenge in computer vision and
099 graphics. Early approaches focused on recovering parametric human models (Loper et al., 2023;
100 Pavlakos et al., 2019) but often lacked fine-grained details such as clothing and facial features (Bogo
101 et al., 2016; Zhang et al., 2021; 2023a; Sun et al., 2021). A major advance was introduced by
102 PIFu (Saito et al., 2019), which demonstrated that detailed 3D human shapes could be learned from
103 a single image using implicit functions trained on 3D scan datasets. This inspired numerous exten-
104 sions, including methods that (1) utilize normal maps to enhance surface quality (Saito et al., 2020;
105 Xiu et al., 2022b;a), (2) utilizing SMPL prior (Xiu et al., 2022b;a; Zhang et al., 2023b; Zhuang
106 et al., 2025), (3) recover relightable textures (Alldieck et al., 2022), and (4) generate animation-
107 ready avatars (Huang et al., 2020; He et al., 2021; Peng et al., 2024). Recently, generative models
have further advanced the field by improving reconstruction quality for previously unseen views by

108 adopting *score distillation sampling* (Huang et al., 2023; Wang et al., 2025; AlBahar et al., 2023;
109 Wang et al., 2024) or training a multi-view diffusion model (Pan et al., 2024; Peng et al., 2024;
110 Li et al., 2024b; He et al., 2024; Xue et al., 2024; Hu et al., 2025). However, when these models
111 receive images with out-of-distribution poses as input, they show results that exhibit unnatural pos-
112 tures. To address this, we propose a new approach that leverages motion data (Lin et al., 2023) to
113 augment pose coverage and fine-tune multi-view diffusion models, thereby improving performance
114 on diverse poses.

115

116 2.2 DIRECT REWARD FINE-TUNING OF DIFFUSION MODEL

117

118 Recent research has explored methods for post-training diffusion models to align them with human
119 preferences better, building on the success of reinforcement learning techniques in large language
120 models. This alignment process typically involves three key components: (1) starting with a pre-
121 trained text-to-image diffusion model, (2) developing a reward model that evaluates attributes such
122 as aesthetic quality, detail fidelity, and semantic alignment, and (3) optimizing the diffusion model to
123 maximize these reward signals. Initial approaches utilized reinforcement learning (RL) objectives to
124 maximize human preferences, though these methods are non-differentiable (Lee et al., 2023; Black
125 et al., 2023; Fan et al., 2023). Building on human preference data, researchers have developed dif-
126 ferentiable neural networks that can evaluate input images (Xu et al., 2023; Kirstain et al., 2023; Wu
127 et al., 2023). Leveraging these advances, direct reward fine-tuning methods have recently emerged
128 that post-train diffusion models using differentiable reward scores (Prabhudesai et al., 2024; Clark
129 et al., 2023; Wu et al., 2024), demonstrating faster convergence compared to RL-based approaches.
130 In this work, we adopt DRTune (Wu et al., 2024), a state-of-the-art reward fine-tuning method, as
131 the foundation for DRPOSE.

132

133 3 PRELIMINARIES

134

135 3.1 IMAGE-TO-MULTI-VIEW (I2MV) DIFFUSION MODEL

136

137 We adopt an image-to-multi-view (I2MV) diffusion model to our single-view 3D human reconstruc-
138 tion pipeline to provide fine-detailed cues for the unseen regions of the human subject from the input
139 view. Era3D (Li et al., 2024a), a state-of-the-art I2MV model, introduces a row-wise attention layer
140 as an additional layer to the stable diffusion’s denoising U-Net. This layer performs self-attention
141 across pixels in the same row, spanning all multi-view images, thereby maintaining multi-view con-
142 sistency during generation. Unlike previous multi-view attention layers (Shi et al., 2023; Wang &
143 Shi, 2023; Höller et al., 2024) that apply self-attention across all pixels in the multi-view images,
144 the row-wise approach reduces computational overhead from $O(N^2S^4)$ to $O(N^2S^3)$, where S de-
145 notes the spatial resolution and N represents the number of views. For our base I2MV diffusion
146 model, we adopt the denoising U-Net from PSHuman (Li et al., 2024b), which extends Era3D (Li
147 et al., 2024a) by incorporating a body-face cross-scale diffusion architecture that enhances the qual-
148 ity of face region generation.

149

150 3.2 3D HUMAN RECONSTRUCTION WITH EXPLICIT CARVING

151

152 As illustrated in Figure 2, we employ an explicit carving in our pipeline to reconstruct 3D humans
153 from multi-view images generated by our post-trained diffusion model, following Li et al. (2024b).
154 The pipeline generates both normal maps and RGB images across multiple viewpoints using a dif-
155 fusion model conditioned on the input view. 3D human mesh recovery then proceeds through three
156 sequential steps: SMPL-X initialization, differentiable remeshing (Palfinger, 2022), and appearance
157 fusion. This approach delivers superior geometric detail compared to methods using pretrained
158 implicit networks (Ho et al., 2023a; Pan et al., 2024)

159

160 4 METHOD

161

162 This section describes our proposed method for aligning an image-to-multi-view (I2MV) diffusion
163 model to natural postures in dynamic or complex cases, thereby enhancing the quality of its in-
164 tegrated single-view 3D human reconstruction pipeline. We begin in Sec. 4.1 by describing the

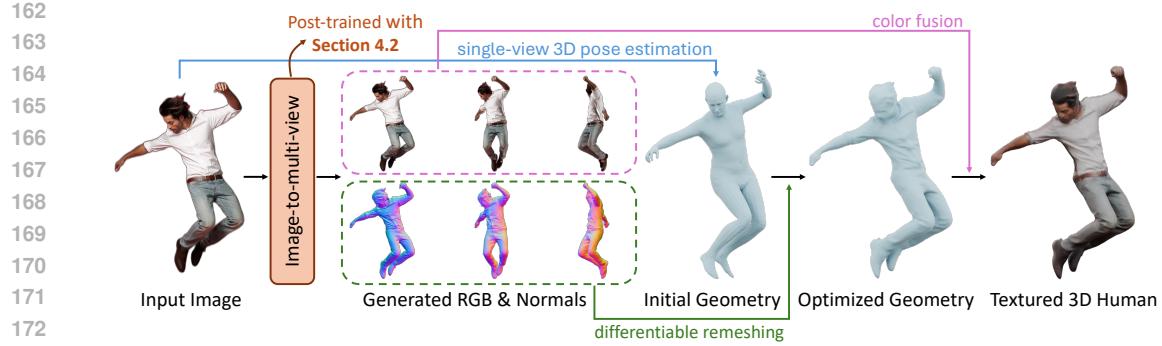


Figure 2: Overview of our 3D human reconstruction pipeline. In this pipeline, the multi-view normal and RGB images are generated from the input image using a image-to-multi-view (I2MV) diffusion model. Then these images are converted into 3D representation using explicit human carving (Li et al., 2024b). In this work, we propose post-training the I2MV diffusion model to achieve better alignment with accurate poses in dynamic and acrobatic scenarios. For clarity, only 3 of the 6 multi-view images are displayed for normal maps and RGB images.

construction of DRPOSE15K, our proposed training dataset with diverse pose coverage. Sec. 4.2 then presents DRPOSE, which enables post-training of an I2MV model on DRPOSE15K.

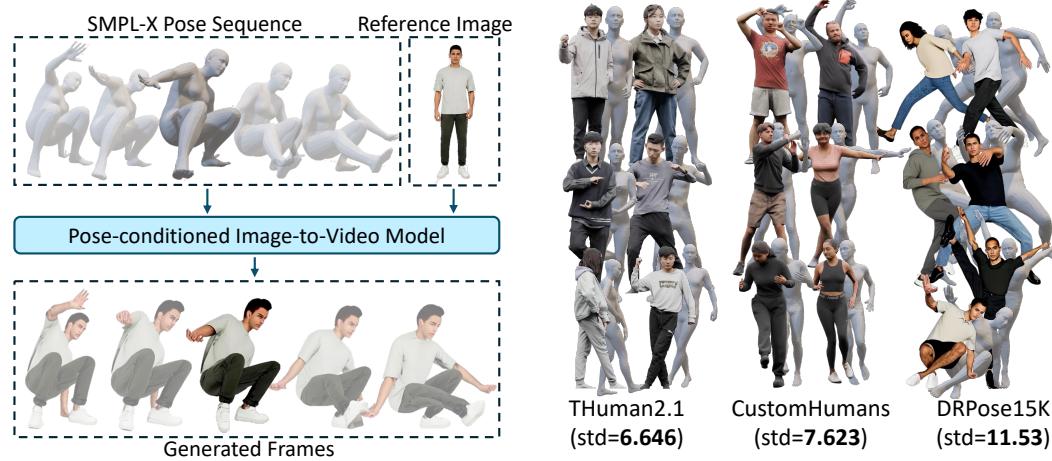


Figure 3: Construction process for DRPOSE15K. We employ a pose-conditioned image-to-video model Men et al. (2025) to generate input-view images corresponding to the ground-truth poses.

4.1 CONSTRUCTION OF DRPOSE15K

We construct DRPOSE15K, a training dataset containing dynamic and challenging 3D human poses paired with single-view images, by leveraging Motion-X (Lin et al., 2023), a human motion dataset and MIMO (Men et al., 2025), a pose-conditioned image-to-video(I2V) model as illustrated in Figure 3. From the Motion-X dataset, we utilize the AIST (Li et al., 2021) subset due to its comprehensive coverage of diverse pose distributions. To reduce redundancy from the 300K available poses, we apply farthest point sampling to select 1.5K poses. Then, we add the 9 temporal neighbors for each selected pose to create a pose sequence for input to the MIMO, yielding a total of 15K poses. Finally, we use MIMO to animate full-body human images from Photos (2025) according to these pose sequences, generating corresponding single-view images for each 3D pose in our dataset.

To quantitatively assess the pose diversity of DRPOSE15K compared to conventional 3D human datasets (Ho et al., 2023b; Yu et al., 2021), we compute the standard deviation of SMPL-X joint

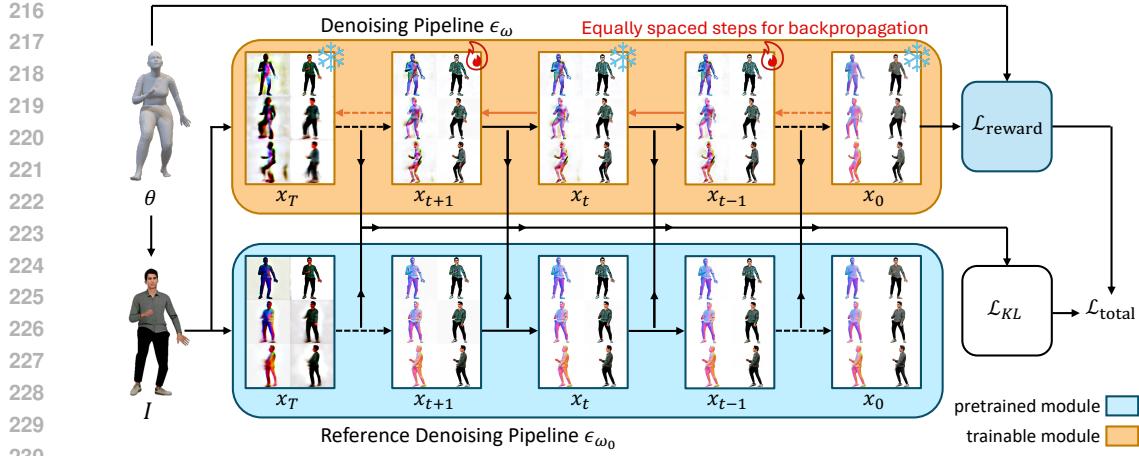


Figure 5: Overview of DRPOSE. Given a 3D human pose θ and input image I (generated from θ as described in Sec 4.1), the denoising multi-view U-Net ϵ_ω is trained to minimize $\mathcal{L}_{\text{total}} = \mathcal{L}_{\text{reward}} + w_{\text{KL}} \cdot \mathcal{L}_{\text{KL}}$. Here, $\mathcal{L}_{\text{reward}}$ measures the distance between θ and the generated latent image x_0 , while \mathcal{L}_{KL} computes the KL divergence between ϵ_ω and the frozen initial U-Net ϵ_{ω_0} (Sec 4.2). For clarity, only 3 of 6 multi-view images are shown for normal maps and RGB visualization.

positions across each dataset, focusing exclusively on the 22 body joints while excluding facial and hand joints. Note that for conventional datasets, we include both training and test splits in this analysis. As shown in Figure 4, DRPOSE15K exhibits a **1.73x** larger standard deviation compared to THuman2.1 (Yu et al., 2021). Moreover, with 14.7K poses compared to 647 in CustomHumans and 2,445 in THuman2.1, TrainSet provides broader pose distribution coverage.

4.2 DRPOSE (DIRECT REWARD FINE-TUNING ON POSES)

We introduce DRPOSE, an algorithm to post-train an I2MV diffusion model on DRPOSE15K, denoted as $D = \{I_i, \theta_i\}$, where I_i, θ_i are an input image and the ground-truth human pose. The core idea is to maximize POSESCORE, our proposed differentiable reward that quantifies consistency between the generated multi-view latent images from I_i and θ_i , better aligning the pretrained I2MV diffusion model to diverse poses in D .

DRPOSE builds upon previous direct reward fine-tuning algorithms (Wu et al., 2024; Prabhudesai et al., 2024). The method generates latent images x_0 at timestep $t = 0$ through an iterative denoising process, then computes the reward loss L_{reward} using POSESCORE, a differentiable reward function denoted as r . Since maintaining gradients for all timesteps would require prohibitive GPU memory, we sample a subset of timesteps t_{train} for gradient computation. Following DRTune (Wu et al., 2024), DRPOSE samples equally spaced timesteps from the full denoising trajectory, enabling optimization of early denoising steps while maintaining computational efficiency.

To address the reward hacking problem, where reward scores increase during training while image quality degrades, DRPOSE incorporates a KL divergence regularization term L_{KL} in addition to L_{reward} .

Algorithm 1 DRPOSE

Dataset: Image-pose pairs $D = \{I_i, \theta_i\}$
Inputs: I2MV diffusion model with initial weights ω_0 , reward model r , the number of training timesteps K , maximum early stop timestep m
Initialize $\omega = \omega_0$
while not converged **do**
 $s = \text{randint}(1, T - K \lfloor \frac{T}{K} \rfloor)$
 $t_{\text{train}} = \{s + i \lfloor \frac{T}{K} \rfloor \mid i = 0, 1, \dots, K - 1\}$
 $t_{\text{min}} = \text{randint}(1, m)$
 $(I, \theta) \sim D$
 $\mathbf{x}_T \sim \mathcal{N}(0, \mathbf{I})$
 $\mathcal{L}_{\text{KL}} = 0$
for $t = T, \dots, 1$ **do**
 $\hat{\epsilon} = \epsilon_\omega(\text{stop_grad}(\mathbf{x}_t), I, t)$
if $t \notin t_{\text{train}}$ **then**
 $\hat{\epsilon} = \text{stop_grad}(\hat{\epsilon})$
else
 $\hat{\epsilon}_0 = \epsilon_{\omega_0}(\text{stop_grad}(\mathbf{x}_t), I, t)$
 $\mathcal{L}_{\text{KL}} = \mathcal{L}_{\text{KL}} + \mathbb{E}(\|\hat{\epsilon} - \hat{\epsilon}_0\|)$
 $\hat{\mathbf{x}}_0 = (\mathbf{x}_t - \sigma_t \hat{\epsilon}) / \alpha_t$
if $t == t_{\text{min}}$ **then**
break
 $\mathbf{x}_{t-1} = \alpha_{t-1} \hat{\mathbf{x}}_0 + \sigma_{t-1} \hat{\epsilon}$
 $\mathcal{L}_{\text{reward}} = 1 - r(\hat{\mathbf{x}}_0, \theta)$
 $\omega \leftarrow \omega - \eta \nabla_\omega (\mathcal{L}_{\text{reward}} + w_{\text{KL}} \cdot \mathcal{L}_{\text{KL}})$

This regularization computes $\mathbb{E}(\|\hat{\epsilon} - \hat{\epsilon}_0\|)$,

270 where $\hat{\epsilon}$ represents the predicted noise from the trainable diffusion model at some timestep $t \in t_{\text{train}}$,
271 and $\hat{\epsilon}_0$ is the corresponding prediction from the initial diffusion model. This constraint prevents the
272 model’s generated images from deviating excessively from its original results while optimizing for
273 reward maximization.

274 To summarize, DRPOSE operates the steps in Algorithm 1 to minimize the following objective:
275

$$\min_{\omega} \mathbb{E}_{(I, \theta) \sim D} [\mathcal{L}_{\text{reward}}(I, \theta) + w_{\text{KL}} \cdot \mathcal{L}_{\text{KL}}(I)]. \quad (1)$$

278 **Differentiable Reward.** To quantify the consistency a multi-view latent image \mathbf{x}_0 and a GT pose
279 θ , we develop POSESCORE, a differentiable reward model denoted as r . To compute the consistency,
280 it first projects both \mathbf{x}_0 and θ to the \hat{I}_{skel} and I_{skel} , images where the human skeletal structure are
281 drawn. To convert \mathbf{x}_0 into \hat{I}_{skel} , a U-Net based skeletal image predictor g_{skel} is pretrained on the
282 existing 3D human datasets (Ho et al., 2023b; Yu et al., 2021). Moreover, I_{skel} can be drawn from θ ,
283 by drawing the projected the 3D human joints $J(\theta)$ from the pose parameter θ into the image planes
284 same with the generated images’ viewpoints. Then the reward is compute as follows:
285

$$r(\mathbf{x}_0, \theta) = -\mathbb{E}(\|\hat{I}_{\text{skel}} - I_{\text{skel}}\|) = -\mathbb{E}(\|g_{\text{skel}}(\mathbf{x}_0) - \mathcal{R}(J(\theta))\|), \quad (2)$$

287 where \mathcal{R} is the rendering of the 3D human joints into the skeletal images into the viewpoints of \mathbf{x}_0 .
288

289 5 EXPERIMENTS

291 5.1 IMPLEMENTATION DETAILS

293 **Denoising U-Net** We initialize our model ϵ_{ω_0} with the denoising U-Net architecture from PSHuman
294 (Li et al., 2024b). The model is fine-tuned on four NVIDIA H100 GPUs using a batch size of 4
295 with gradient accumulation over 2 steps for 5.5K iterations. During training, we employ the DDIM
296 sampler with $T = 20$ total denoising steps and $K = 2$ training steps. We set the maximum early
297 stop timestep to $m = 8$ and weight the KL divergence loss as $w_{\text{KL}} = 0.01$. For computing \mathcal{L}_{KL} ,
298 we use mean squared error to estimate $\|\hat{\epsilon} - \hat{\epsilon}_0\|$. At inference time, we use the DDIM sampler with
299 $T = 40$ denoising steps and apply classifier-free guidance (Ho & Salimans, 2022) with a scale of
300 3.0.

301 **Differentiable Reward** For computing the reward, we use binary cross entropy loss and LPIPS to
302 estimate $\|\hat{I}_{\text{skel}} - I_{\text{skel}}\|$. The skeletal images \hat{I}_{skel} and I_{skel} both have 23 channels, with each channel
303 corresponding to one skeleton. We use THuman2.1 (Yu et al., 2021) and the training subset of
304 CustomHumans (Ho et al., 2023b) as our training datasets, comprising approximately 3K scans. To
305 get six-view normal and color images, we render the 3D scans using Blender’s Cycles engine (Community,
306 2018) with an orthographic camera configuration. The reward model is trained on four
307 NVIDIA RTX 6000 Ada GPUs with a batch size of 16 over 10K iterations.
308

309 5.2 SINGLE-VIEW 3D HUMAN RECONSTRUCTION

311 **Baselines & Benchmarks** We compare our approach against single-view 3D human reconstruction
312 methods guided by SMPL (Xiu et al., 2022a; Ho et al., 2023a), as well as multi-view diffusion-
313 based methods (Wu et al., 2023; Li et al., 2024a;b).

- 315 • **ECON** (Xiu et al., 2022a) estimates front and back depth maps using an estimated SMPL-
316 X prior, then fuses these depth maps for a complete 3D human body. It does not support
317 texture reconstruction and trains its depth estimation network on 500 scans from THu-
318 man2.0 (Yu et al., 2021). The depth estimation network is trained on 500 scans from
319 THuman2.0.
- 320 • **SiTH** (Ho et al., 2023a) generates 512×512 px. RGB images for front and back views using
321 an estimated SMPL-X prior, subsequently converting them to 3D via an SDF network. The
322 diffusion model is trained on THuman2.0.
- 323 • **Human3Diffusion** (Xue et al., 2024) produces four 256×256 px. RGB multi-view images,
which are then converted to 3D using a 3DGS reconstruction network. The multi-view

324 Table 1: Quantitative comparisons of geometry quality on single-view human reconstruction bench-
 325 marks. Our proposed benchmark MIXAMORP is described in Appendix A.2. Era3D* represents the
 326 original Era3D model fine-tuned on CustomHumans and THuman2.1 training splits using conven-
 327 tional DDPM loss. Ours (Era3D) denotes the Era3D model post-trained with our proposed DRPOSE
 328 on DRPOSE15K.

329 330 331 Method	332 THuman2.1-test			333 CustomHumans-test			334 MIXAMORP		
	335 CD↓	336 NC↑	337 f-Score↑	335 CD↓	336 NC↑	337 f-Score↑	335 CD↓	336 NC↑	337 f-Score↑
ECON	57.8809	0.6760	13.5307	70.0954	0.6552	10.4112	187.5267	0.5655	4.7752
SiTH	64.8460	0.6677	14.2759	77.5391	0.6504	11.5578	146.5484	0.5764	6.8088
Era3D*	54.2934	0.7018	15.1518	62.3912	0.7056	14.0601	111.0537	0.6163	8.6145
PSHuman	48.0357	0.7202	17.8297	57.0701	0.7099	15.4065	101.8600	0.6244	9.5673
Ours (Era3D)	39.8191	0.7387	19.3195	43.1307	0.7425	18.9756	90.8153	0.6307	10.3593
Ours	37.6248	0.7434	20.7005	44.7405	0.7381	18.1897	94.3054	0.6274	9.8742

338 Table 2: Quantitative evaluation of 3D human reconstruction quality. Six RGB views evenly dis-
 339 tributed in azimuth are rendered to compute appearance metrics. Our proposed benchmark MIX-
 340 AMORP is described in Appendix A.2. Era3D* represents the original Era3D model fine-tuned
 341 on CustomHumans and THuman2.1 training splits using conventional DDPM loss. Ours (Era3D)
 342 denotes the Era3D model post-trained with our proposed DRPOSE on DRPOSE15K.

344 345 Method	346 THuman2.1-test			347 CustomHumans-test			348 MIXAMORP		
	349 PSNR↑	350 SSIM↑	351 LPIPS↓	349 PSNR↑	350 SSIM↑	351 LPIPS↓	349 PSNR↑	350 SSIM↑	351 LPIPS↓
SiTH	16.8538	0.7884	0.1743	15.7267	0.7773	0.2098	13.5855	0.7604	0.2748
Era3D*	18.7502	0.8226	0.1380	18.9253	0.8355	0.1326	17.5337	0.8623	0.1519
PSHuman	19.0605	0.8259	0.1285	19.0814	0.8373	0.1273	17.6624	0.8641	0.1497
Ours (Era3D)	19.1135	0.8406	0.1242	19.1135	0.8406	0.1242	17.5568	0.8662	0.1475
Ours	19.3110	0.8303	0.1243	19.3404	0.8411	0.1224	17.6631	0.8646	0.1471

352
 353 diffusion model is trained on 6K human scans combining public datasets (Yu et al., 2021;
 354 Ho et al., 2023b; Han et al., 2023) and commercial datasets (AXYZ design, 2023; Render-
 355 people, 2023; Treedy, 2023; Twindom, 2023).

356
 357 • **Era3D** (Li et al., 2024a) generates six 512×512 px. normal and RGB images using a
 358 diffusion network trained on Objaverse (Deitke et al., 2023). For fair comparison, we
 359 fine-tune this model on 3K scans from THuman2.1 and CustomHumans (Ho et al., 2023b)
 360 datasets.
 361 • **PSHuman** (Li et al., 2024b) produces six 768×768 px. normal and RGB images using a
 362 diffusion network trained on THuman2.1 and CustomHumans datasets.

363 All models above are evaluated quantitatively in the following three benchmarks:
 364

365
 366 • **THumans2.1-test** contains 60 human scans selected from the full THumans2.1 (Yu et al.,
 367 2021) dataset. The split follows Li et al. (2024b).
 368 • **CustomHumans-test** contains 60 human scans selected from the full CustomHumans
 369 dataset, which consists of 600 human scans. The split follows Ho et al. (2023a).
 370 • **MIXAMORP** is our proposed benchmark containing 60 human scans, constructed by
 371 assigning 60 distinct poses collected from Mixamo animation, to 15 different Renderpeople
 372 3D models, with 4 poses per a model(see Appendix A.2 for more details).

373 Test splits from CustomHumans (Ho et al., 2023b) and THuman2.1 (Yu et al., 2021) are com-
 374 monly used benchmarks for evaluating single-view 3D human reconstruction methods. While these
 375 benchmarks include dynamic poses such as dancing or jumping, they lack extremely complex poses
 376 (see Figure 4) like breakdancing or bat swinging. To establish new evaluation criteria for 3D hu-
 377 man reconstruction under extreme pose variations, we introduce MIXAMORP, a novel benchmark
 378 specifically designed to assess reconstruction performance on challenging pose configurations. See

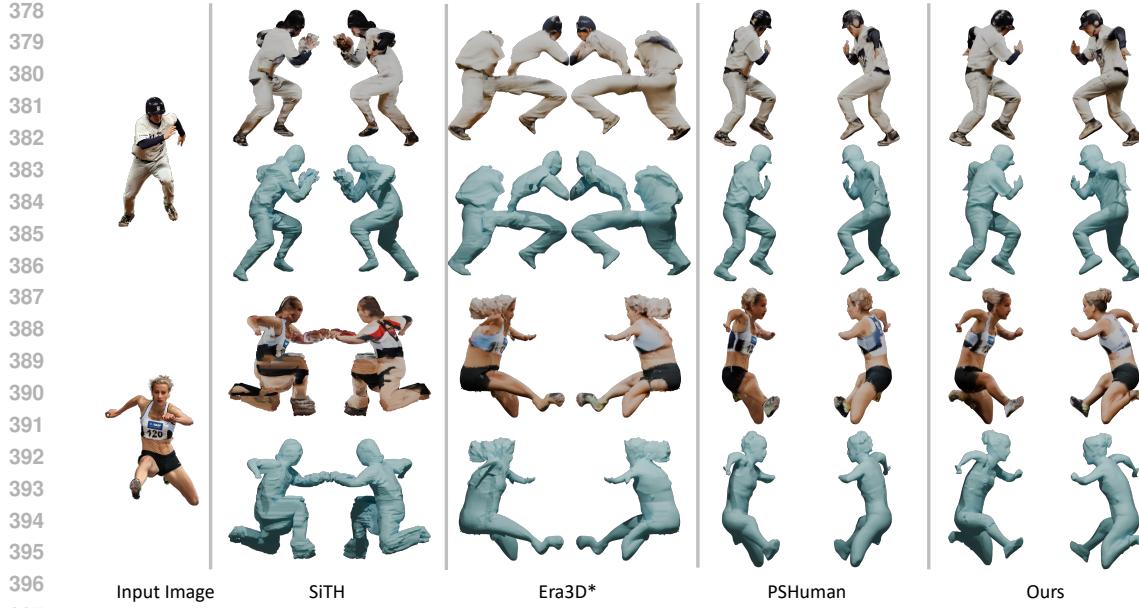


Figure 6: Qualitative evaluation on the internet-source images. Era3D* denotes Era3D fine-tuned on CustomHumans and THuman2.1 datasets.

Appendix A.2 for the complete list of Renderpeople (Renderpeople, 2023) characters and corresponding Mixamo (Inc., 2025) animations used in our dataset.

Evaluation protocol For each mesh scan, we render input images from 3 evenly distributed azimuthal views, yielding 180 input views per benchmark. To evaluate geometric accuracy, we report three metrics in Table 1: Chamfer Distance (CD), Normal Consistency (NC), and F-Score. For computing Chamfer Distance, we uniformly sample 100K points per mesh.

For appearance evaluation, we report three metrics in Table 2: PSNR, SSIM, and LPIPS. To compute these metrics, we render images of both the prediction and ground truth from 6 evenly distributed azimuthal views that are distinct from the input views.

Results As Table 1 and Table 2 presents, our results demonstrate that DRPOSE consistently improves reconstruction quality of the base model across all benchmarks. This is thanks to our proposed DRPOSE’s ability to enhance the accuracy of reconstructed posture on diverse poses, as seen in the Figure 6 and Figure 7.

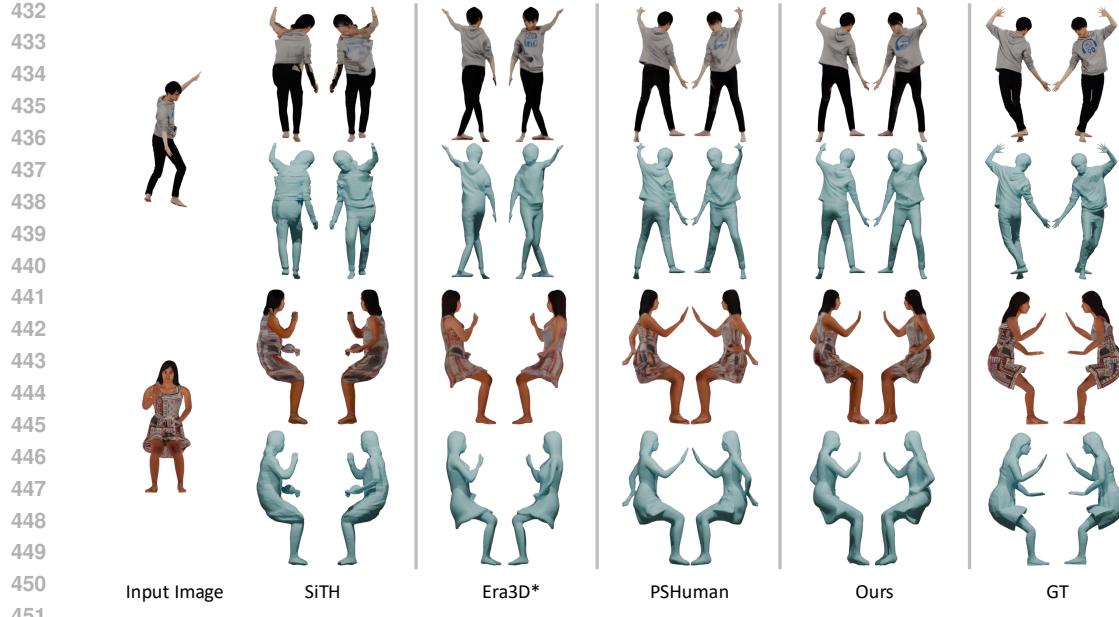
Ablation Study on the base model We conduct an ablation study on the base model by post-training Era3D* using DRPOSE. As reported in Table 1 and Table 2, the Era3D-based model shows similar performance across all benchmarks. However, since the PSHuman-based model shows better results on face regions qualitatively, we chose PSHuman as our base model.

5.3 ANALYSIS ON POSESCORE

In the Figure 8, we provide the analysis of the trained g_{skel} of POSESCORE introduced in Section 4.2. Figure 8 and Table 3. The evaluation is conducted on the SMPL and scan mesh pairs on the test splits of CustomHumans and THuman2.1. The scan meshes are rendered into the multi-view normal and color images to be converted into the latent images via PSHuman’s VAE. These latent images are fed into g_{skel} , producing the skeletal images. The metrics and qualitative results show that g_{skel} reliable enough to use it as a measure for the consistency between latent images and poses.

Table 3: Quantitative evaluation of g_{skel} in POS-ESCORE

Benchmark	PSNR	SSIM	LPIPS
THuman2.1-test	22.4807	0.9337	0.0580
CustomHumans-test	24.4081	0.9536	0.0430



452 Figure 7: Qualitative evaluation on the CustomHumans dataset. Era3D* denotes Era3D fine-tuned
453 on CustomHumans and THuman2.1 datasets.

465 Figure 8: Visualization of g_{skel} in POSESCORE. g_{skel} converts the multi-view latent images encoded
466 from the normal and RGB images using the base model's VAE.

6 CONCLUSION

469 We propose a novel approach to improve the pose accuracy of 3D humans reconstructed by multi-
470 view diffusion models. Our method comprises three key contributions: (1) DRPOSE15K, a dataset
471 featuring diverse poses with corresponding single-view images, (2) DRPOSE, an algorithm that en-
472 ables post-training of multi-view diffusion models on this dataset; and (3) MIXAMORP, a bench-
473 mark for evaluating reconstruction under challenging poses. Our post-trained model shows consis-
474 tent quality improvements across all benchmarks.

475 **Limitations** Similar to previous single-image-to-3D human modeling approaches, our pipeline
476 requires segmented input images. When input images contain imperfect segmentation, artifacts
477 such as floating geometry appear in the boundary regions of the generated 3D humans, as illustrated
478 in Figure 9.

480 Although DRPOSE employs gradient stopping and gradient checkpointing techniques, it requires
481 substantial GPU memory, as it generates 24 images of size 768x768 px, through an iterative denois-
482 ing process to compute POSESCORE. We believe improved efficiency in future multi-view diffusion
483 models will alleviate this issue.

486 ETHICS STATEMENT
487

488 **Demographic Bias** Our base model, PSHuman (Li et al., 2024b), is trained on THuman2.1 (Yu
489 et al., 2021) and CustomHumans (Ho et al., 2023b), which exhibit demographic imbalances. THu-
490 man2.1 contains 2,445 human subjects who are predominantly of Asian ethnicity, while CustomHu-
491 mans, though more ethnically diverse, comprises only 647 subjects. This imbalanced representation
492 may result in biased reconstruction performance that favors demographics overrepresented in the
493 training data, leading to reduced quality and accuracy for underrepresented groups.

494 **Potential for Misuse** The generated 3D human models pose risks for creating misleading or harm-
495 ful content. These reconstructions can be integrated into 3D scenes and animated using standard
496 rigging techniques, potentially enabling the creation of for disinformation or deepfake content.
497

498 **Industrial Impact** The automation capabilities of image-to-3D human modeling technology may
499 impact employment in creative industries, affecting 3D artists, character designers, and digital con-
500 tent creators who specialize in human modeling. While this technology can enhance productivity and
501 accessibility, it also raises questions about the displacement of skilled professionals.
502

503 REPRODUCIBILITY STATEMENT
504

505 DRPOSE15K is constructed from the publicly available Motion-X dataset (Lin et al., 2023) and
506 MIMO model (Men et al., 2025). MIXAMORP is constructed from scans of RenderPeople (Ren-
507 derpeople, 2023) and motions from Mixamo (Inc., 2025); while both resources are available, Ren-
508 derPeople is a commercial product. In Section 4, we explain the high-level concepts underlying our
509 approach and provide pseudocode and experimental details in Algorithm 1 and Section 5.1 to ensure
510 reproducibility.

511 REFERENCES
512

513 Badour AlBahar, Shunsuke Saito, Hung-Yu Tseng, Changil Kim, Johannes Kopf, and Jia-Bin
514 Huang. Single-image 3d human digitization with shape-guided diffusion. In *SIGGRAPH Asia*
515 2023 Conference Papers, pp. 1–11, 2023.

516 Thiemo Alldieck, Mihai Zanfir, and Cristian Sminchisescu. Photorealistic monocular 3d reconstruc-
517 tion of humans wearing clothing. In *CVPR*, 2022.

518 AXYZ design. Axyz, November 2023. URL <https://secure.axyz-design.com>. Ac-
519 cessed on 7, 34, 36.

520 Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov, and S. Levine. Training diffusion models
521 with reinforcement learning. *arXiv.org*, 2023. doi: 10.48550/arxiv.2305.13301.

522 Federica Bogo, Angjoo Kanazawa, Christoph Lassner, Peter Gehler, Javier Romero, and Michael J
523 Black. Keep it smpl: Automatic estimation of 3d human pose and shape from a single image. In
524 *Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, Octo-
525 ber 11–14, 2016, Proceedings, Part V 14*, pp. 561–578. Springer, 2016.

526 Kevin Clark, Paul Vicol, Kevin Swersky, and David J. Fleet. Directly fine-tuning diffusion models
527 on differentiable rewards. *arXiv.org*, 2023. doi: 10.48550/arxiv.2309.17400.

528 Blender Online Community. Blender - a 3d modelling and rendering package, 2018. URL <http://www.blender.org>.

529 Matt Deitke, Dustin Schwenk, Jordi Salvador, Luca Weihs, Oscar Michel, Eli VanderBilt, Ludwig
530 Schmidt, Kiana Ehsani, Aniruddha Kembhavi, and Ali Farhadi. Objaverse: A universe of anno-
531 tated 3d objects. In *Proceedings of the IEEE/CVF conference on computer vision and pattern
532 recognition*, pp. 13142–13153, 2023.

533 Ying Fan, Olivia Watkins, Yuqing Du, Hao Liu, M. Ryu, Craig Boutilier, P. Abbeel,
534 M. Ghavamzadeh, Kangwook Lee, and Kimin Lee. Dpok: Reinforcement learning for fine-tuning
535 text-to-image diffusion models. *arXiv.org*, 2023. doi: 10.48550/arxiv.2305.16381.

540 Yuwei Guo, Ceyuan Yang, Anyi Rao, Zhengyang Liang, Yaohui Wang, Yu Qiao, Maneesh
541 Agrawala, Dahua Lin, and Bo Dai. Animatediff: Animate your personalized text-to-image diffu-
542 sion models without specific tuning. *arXiv preprint arXiv:2307.04725*, 2023.

543 Sang-Hun Han, Min-Gyu Park, Ju Hong Yoon, Ju-Mi Kang, Young-Jae Park, and Hae-Gon Jeon.
544 High-fidelity 3d human digitization from single 2k resolution images. In *IEEE Conference on*
545 *Computer Vision and Pattern Recognition (CVPR2023)*, June 2023.

546 Tong He, Yuanlu Xu, Shunsuke Saito, Stefano Soatto, and Tony Tung. Arch++: Animation-ready
547 clothed human reconstruction revisited. *IEEE International Conference on Computer Vision*,
548 2021. doi: 10.1109/iccv48922.2021.01086.

549 Xu He, Xiaoyu Li, Di Kang, Jiangnan Ye, Chaopeng Zhang, Liyang Chen, Xiangjun Gao, Han
550 Zhang, Zhiyong Wu, and Hao-Wen Zhuang. Magicman: Generative novel view synthesis of
551 humans with 3d-aware diffusion and iterative refinement. *arXiv.org*, 2024. doi: 10.48550/arxiv.
552 2408.14211.

553 Hsuan-I Ho, Jie Song, and Otmar Hilliges. Sith: Single-view textured human reconstruction with
554 image-conditioned diffusion. *arXiv.org*, 2023a. doi: 10.48550/arxiv.2311.15855.

555 Hsuan-I Ho, Lixin Xue, Jie Song, and Otmar Hilliges. Learning locally editable virtual humans.
556 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
557 21024–21035, 2023b.

558 Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. *arXiv preprint*
559 *arXiv:2207.12598*, 2022.

560 Lukas Höller, Aljaž Božič, Norman Müller, David Novotny, Hung-Yu Tseng, Christian Richardt,
561 Michael Zollhöfer, and Matthias Nießner. Viewdiff: 3d-consistent image generation with text-
562 to-image models. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
563 *recognition*, pp. 5043–5052, 2024.

564 Shoukang Hu, Takuya Narihira, Kazumi Fukuda, Ryosuke Sawata, Takashi Shibuya, and Yuki
565 Mitsufuji. Humangif: Single-view human diffusion with generative prior. *arXiv preprint*
566 *arXiv:2502.12080*, 2025.

567 Yangyi Huang, Hongwei Yi, Yuliang Xiu, Tingting Liao, Jiaxiang Tang, Deng Cai, and Justus Thies.
568 Tech: Text-guided reconstruction of lifelike clothed humans. *arXiv.org*, 2023. doi: 10.48550/
569 arxiv.2308.08545.

570 Zeng Huang, Yuanlu Xu, Christoph Lassner, Hao Li, and Tony Tung. Arch: Animatable recon-
571 struction of clothed humans. *Computer Vision and Pattern Recognition*, 2020. doi: 10.1109/
572 cvpr42600.2020.00316.

573 Adobe Inc. Mixamo, 2025. URL <https://www.mixamo.com/>. Accessed on September 24,
574 2025. Provides online tools for animating 3D characters, automatic character rigging, and motion
575 captured animations for games, films, and interactive experiences.

576 Yuval Kirstain, Adam Polyak, Uriel Singer, Shahbuland Matiana, Joe Penna, and Omer Levy. Pick-
577 a-pic: An open dataset of user preferences for text-to-image generation. *arXiv.org*, 2023. doi:
578 10.48550/arxiv.2305.01569.

579 Kimin Lee, Hao Liu, M. Ryu, Olivia Watkins, Yuqing Du, Craig Boutilier, P. Abbeel,
580 M. Ghavamzadeh, and S. Gu. Aligning text-to-image models using human feedback. *arXiv.org*,
581 2023. doi: 10.48550/arxiv.2302.12192.

582 Peng Li, Yuan Liu, Xiaoxiao Long, Feihu Zhang, Cheng Lin, Mengfei Li, Xingqun Qi, Shanghang
583 Zhang, Wenhan Luo, Ping Tan, Wenping Wang, Qi-fei Liu, and Yi-Ting Guo. Era3d: High-
584 resolution multiview diffusion using efficient row-wise attention. *arXiv.org*, 2024a. doi: 10.
585 48550/arxiv.2405.11616.

586 Peng Li, Wangguandong Zheng, Yuan Liu, Tao Yu, Yangguang Li, Xingqun Qi, Mengfei Li, Xi-
587 aowei Chi, Siyu Xia, Wei Xue, et al. Pshuman: Photorealistic single-view human reconstruction
588 using cross-scale diffusion. *arXiv preprint arXiv:2409.10141*, 2024b.

594 Rui long Li, Shan Yang, David A Ross, and Angjoo Kanazawa. Ai choreographer: Music con-
595 ditioned 3d dance generation with aist++. In *Proceedings of the IEEE/CVF international conference*
596 *on computer vision*, pp. 13401–13412, 2021.

597

598 Jing Lin, Ailing Zeng, Shunlin Lu, Yuanhao Cai, Ruimao Zhang, Haoqian Wang, and Lei Zhang.
599 Motion-x: A large-scale 3d expressive whole-body human motion dataset. *Advances in Neural*
600 *Information Processing Systems*, 36:25268–25280, 2023.

601 Buhua Liu, Shitong Shao, Bao Li, Lichen Bai, Zhiqiang Xu, Haoyi Xiong, James Kwok, Sumi
602 Helal, and Zeke Xie. Alignment of diffusion models: Fundamentals, challenges, and future.
603 *arXiv preprint arXiv:2409.07253*, 2024.

604

605 Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and Michael J Black. Smpl:
606 A skinned multi-person linear model. *Seminal Graphics Papers: Pushing the Boundaries, Volume*
607 *2*, pp. 851–866, 2023.

608

609 Yifang Men, Yuan Yao, Miaomiao Cui, and Liefeng Bo. Mimo: Controllable character video syn-
610 thesis with spatial decomposed modeling. In *Proceedings of the Computer Vision and Pattern*
611 *Recognition Conference*, pp. 21181–21191, 2025.

612 Werner Palfinger. Continuous remeshing for inverse rendering. *Computer Animation and Vir-*
613 *tual Worlds*, 33(5):e2101, 2022. doi: <https://doi.org/10.1002/cav.2101>. URL <https://onlinelibrary.wiley.com/doi/abs/10.1002/cav.2101>.

614

615 Panwang Pan, Zhuo Su, Chenguo Lin, Zhen Fan, Yongjie Zhang, Zeming Li, Tingting Shen, Yadong
616 Mu, and Yebin Liu. Humansplat: Generalizable single-image human gaussian splatting with
617 structure priors. *arXiv.org*, 2024. doi: 10.48550/arxiv.2406.12459.

618

619 Georgios Pavlakos, Vasileios Choutas, Nima Ghorbani, Timo Bolkart, Ahmed AA Osman, Dimitrios
620 Tzionas, and Michael J Black. Expressive body capture: 3d hands, face, and body from a single
621 image. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
622 pp. 10975–10985, 2019.

623

624 H. Peng, Jia-Peng Zhang, Meng-Hao Guo, Yan-Pei Cao, and Shi-Min Hu. Charactergen: Efficient
625 3d character generation from single images with multi-view pose canonicalization. *ACM trans-*
626 *actions on graphics*, 2024. doi: 10.1145/3658217.

627

628 Generated Photos. Generated photos datasets. <https://generated.photos/datasets>,
629 2025. Free to use for academic research.

630

631 Mihir Prabhudesai, Anirudh Goyal, Deepak Pathak, and Katerina Fragkiadaki. Aligning text-to-
632 image diffusion models with reward backpropagation. In *ICLR*, 2024.

633

634 Renderpeople. Renderpeople, November 2023. URL <https://renderpeople.com/>. Ac-
635 cessed on 7, 34.

636

637 Shunsuke Saito, Zeng Huang, Ryota Natsume, S. Morishima, Angjoo Kanazawa, and Hao Li. Pifu:
638 Pixel-aligned implicit function for high-resolution clothed human digitization. *IEEE International*
639 *Conference on Computer Vision*, 2019. doi: 10.1109/iccv.2019.00239.

640

641 Shunsuke Saito, Tomas Simon, Jason Saragih, and Hanbyul Joo. Pifuhd: Multi-level pixel-aligned
642 implicit function for high-resolution 3d human digitization. *computer vision and pattern recog-*
643 *nition*, 2020. doi: 10.1109/cvpr42600.2020.00016.

644

645 Yichun Shi, Peng Wang, Jianglong Ye, Mai Long, Kejie Li, and Xiao Yang. Mvdream: Multi-view
646 diffusion for 3d generation. *arXiv preprint arXiv:2308.16512*, 2023.

647

648 Yu Sun, Qian Bao, Wu Liu, Yili Fu, Michael J Black, and Tao Mei. Monocular, one-stage, regression
649 of multiple 3d people. In *Proceedings of the IEEE/CVF international conference on computer*
650 *vision*, pp. 11179–11188, 2021.

651

652 Treedy. Treedy, November 2023. URL <https://treedys.com/>. Accessed on 7, 34.

648 Twindom. Twindom, November 2023. URL <https://web.twindom.com/>. Accessed on 7,
649 10, 34, 36.
650

651 Peng Wang and Yichun Shi. Imagedream: Image-prompt multi-view diffusion for 3d generation.
652 *arXiv.org*, 2023. doi: 10.48550/arxiv.2312.02201.

653 Wentao Wang, Hang Ye, Fangzhou Hong, Xue Yang, Jianfu Zhang, Yizhou Wang, Ziwei Liu, and
654 Liang Pan. Geneman: Generalizable single-image 3d human reconstruction from multi-source
655 human data. *arXiv preprint arXiv:2411.18624*, 2024.

656

657 Zilong Wang, Zhiyang Dou, Yuan Liu, Cheng Lin, Xiao Dong, Yunhui Guo, Chenxu Zhang, Xin
658 Li, Wenping Wang, and Xiaohu Guo. Wonderhuman: Hallucinating unseen parts in dynamic 3d
659 human reconstruction. *arXiv preprint arXiv:2502.01045*, 2025.

660

661 Xiaoshi Wu, Keqiang Sun, Feng Zhu, Rui Zhao, and Hongsheng Li. Human preference score:
662 Better aligning text-to-image models with human preference. *IEEE International Conference on
Computer Vision*, 2023. doi: 10.1109/iccv51070.2023.00200.

663

664 Xiaoshi Wu, Yiming Hao, Manyuan Zhang, Keqiang Sun, Zhaoyang Huang, Guanglu Song, Yu Liu,
665 and Hongsheng Li. Deep reward supervisions for tuning text-to-image diffusion models. In
666 *European Conference on Computer Vision*, pp. 108–124. Springer, 2024.

667

668 Yuliang Xiu, Jinlong Yang, Xu Cao, Dimitrios Tzionas, and Michael J. Black. Econ: Explicit clothed
669 humans optimized via normal integration. *Computer Vision and Pattern Recognition*, 2022a. doi:
10.1109/cvpr52729.2023.00057.

670

671 Yuliang Xiu, Jinlong Yang, Dimitrios Tzionas, and Michael J Black. Icon: Implicit clothed hu-
672 mans obtained from normals. In *2022 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR)*, pp. 13286–13296. IEEE, 2022b.

673

674 Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao
675 Dong. Imagereward: Learning and evaluating human preferences for text-to-image generation.
676 *arXiv.org*, 2023. doi: 10.48550/arxiv.2304.05977.

677

678 Yuxuan Xue, Xianghui Xie, R. Marin, and Gerard Pons-Moll. Human 3diffusion: Realistic avatar
679 creation via explicit 3d consistent diffusion models. *arXiv.org*, 2024. doi: 10.48550/arxiv.2406.
08475.

680

681 Tao Yu, Zerong Zheng, Kaiwen Guo, Pengpeng Liu, Qionghai Dai, and Yebin Liu. Function4d:
682 Real-time human volumetric capture from very sparse consumer rgbd sensors. In *Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition*, pp. 5746–5756, 2021.

683

684 Hongwen Zhang, Yating Tian, Xinchi Zhou, Wanli Ouyang, Yebin Liu, Limin Wang, and Zhenan
685 Sun. Pymaf: 3d human pose and shape regression with pyramidal mesh alignment feedback loop.
686 In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 11446–11456,
687 2021.

688

689 Hongwen Zhang, Yating Tian, Yuxiang Zhang, Mengcheng Li, Liang An, Zhenan Sun, and Yebin
690 Liu. Pymaf-x: Towards well-aligned full-body model regression from monocular images. *IEEE
Transactions on Pattern Analysis and Machine Intelligence*, 45(10):12287–12303, 2023a.

691

692 Zechuan Zhang, Zongxin Yang, and Yi Yang. Sifu: Side-view conditioned implicit function for real-
693 world usable clothed human reconstruction. *arXiv.org*, 2023b. doi: 10.48550/arxiv.2312.06704.

694

695 Yiyu Zhuang, Jiaxi Lv, Hao Wen, Qing Shuai, Ailing Zeng, Hao Zhu, Shifeng Chen, Yujiu Yang,
696 Xun Cao, and Wei Liu. Idol: Instant photorealistic 3d human creation from a single image.
697 In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 26308–26319,
698 2025.

699

700

701

702 **A APPENDIX**
703

704 **A.1 ADDITIONAL RESULTS**
705

706 We provide additional qualitative comparisons in Figure 13 and 14.
707

708 **A.2 MIXAMORP**
709

710 As mentioned in Section 5.2, we constructed MIXAMORP using Renderpeople’s rigged 3D
711 models and Mixamo animations. Table 5 details character names, animations, descriptions, and frame
712 indices for reproducibility. Each row represents a unique mesh with challenging poses. Figure 15
713 visualizes the dataset.

714 **A.3 LIMITATIONS**
715

716 Our pipeline inherits limitations from prior single-image-to-3D approaches, shown in Figure 9. First,
717 imperfect input segmentation causes floating geometry artifacts at boundaries. Second, while im-
718 proving overall shape and pose, our method struggles with fine details like hands.
719

720 **Figure 9:** Our pipeline is sensitive to the quality of the segmented masks, producing artifacts.
721
722
723
724
725
726
727
728

729 **A.4 ANALYSIS ON EFFICIENCY**
730

731 We report the latency of each model for reconstructing a single sample in Table 4. Ours have the
732 same efficiency as PSHuman since we use it as our base model, while Ours (Era3D) have the same
733 efficiency as the Era3D.
734

735 **Table 4:** Reconstruction latency per sample for each model.
736

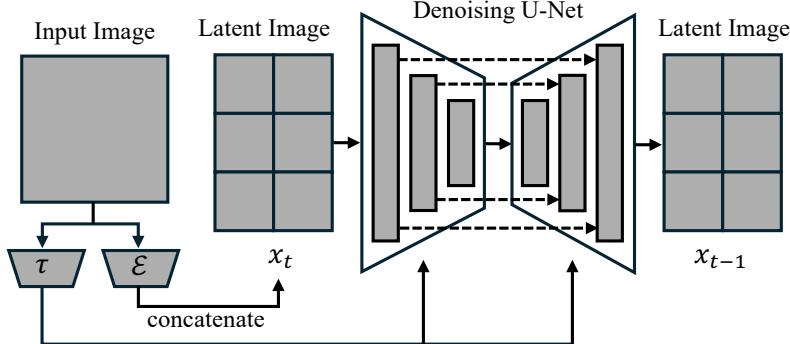
ECON	SiTH	Era3D	PSHuman	Ours (Era3D)	Ours
183.27 sec.	117.35 sec.	15.24 sec.	42.70 sec.	15.24 sec.	42.70 sec.

743 **A.5 NETWORK ARCHITECTURE**
744

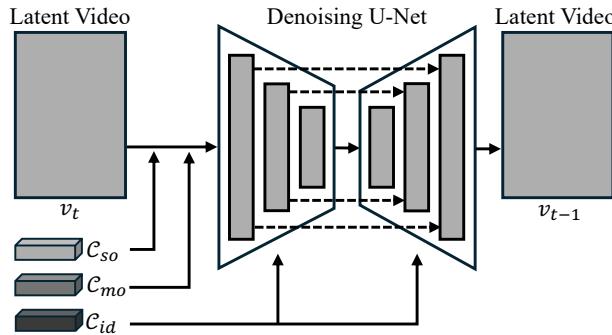
745 Figures 10, 11, and 12 show the network design for the Denoising U-Net in the multi-view diffusion
746 used in the pipeline illustrated in Fig 2, the Denoising U-Net in the MIMO Men et al. (2025), a
747 pose-conditioned video generator, and the skeletal image predictor in the POSESCORE introduced
748 in Sec 4.2.

749 **A.6 USE OF LARGE LANGUAGE MODELS**
750

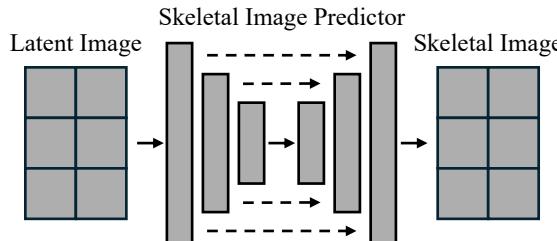
751 We employ a large language model to refine the manuscript text by correcting grammatical errors
752 and enhancing sentence fluency. The LLM is not involved in research ideation, methodology devel-
753 opment, experimental design, or the generation of original content. All intellectual contributions,
754 including the research direction, analyses, and conclusions, are made entirely by the authors.
755



769 Figure 10: Architecture of the Denoising U-Net for multi-view diffusion in our pipeline inspired
770 from Li et al. (2024b) (illustrated in Fig 2). The denoising U-Net follows the architecture of PSHu-
771 man (Li et al., 2024b). The input image is conditioned into the denoising process through two
772 parallel pathways: (1) A VAE encoder \mathcal{E} encodes the input image, which is then concatenated with
773 the latent image x_t . (2) A CLIP image encoder τ encodes the input image, and the generated tokens
774 are fed into the cross-attention layers of the denoising U-Net.



787 Figure 11: Architecture of the denoising U-Net for the pose-conditioned image-to-video model used
788 in the DRPOSE15K construction process (illustrated in Fig. 3). The denoising U-Net follows the
789 architecture of MIMO (Men et al., 2025) and takes three conditioning signals: (1) scene code \mathcal{C}_{so} , (2)
790 motion code \mathcal{C}_{mo} , and (3) identity code \mathcal{C}_{id} . The scene code \mathcal{C}_{so} is first concatenated with the latent
791 video v_t and then added to the motion code \mathcal{C}_{mo} . The identity code \mathcal{C}_{id} is fed into the cross-attention
792 layers of the denoising U-Net. Note that the temporal layers of the denoising U-Net (Guo et al.,
793 2023) are omitted in this figure.



804 Figure 12: Architecture of the Skeletal Image Predictor in our POSESCORE introduced in Sec 4.2.
805 The network follows a U-Net architecture with an encoder-decoder structure. Multi-view latents are
806 processed through initial convolutions, then flattened and passed through four downsampling blocks
807 (reducing spatial resolution from 64x64 to 4x4 while increasing channels from 32 to 512), followed
808 by four upsampling blocks with skip connections that restore the original resolution. The output
809 produces predicted skeletal images for all views simultaneously.

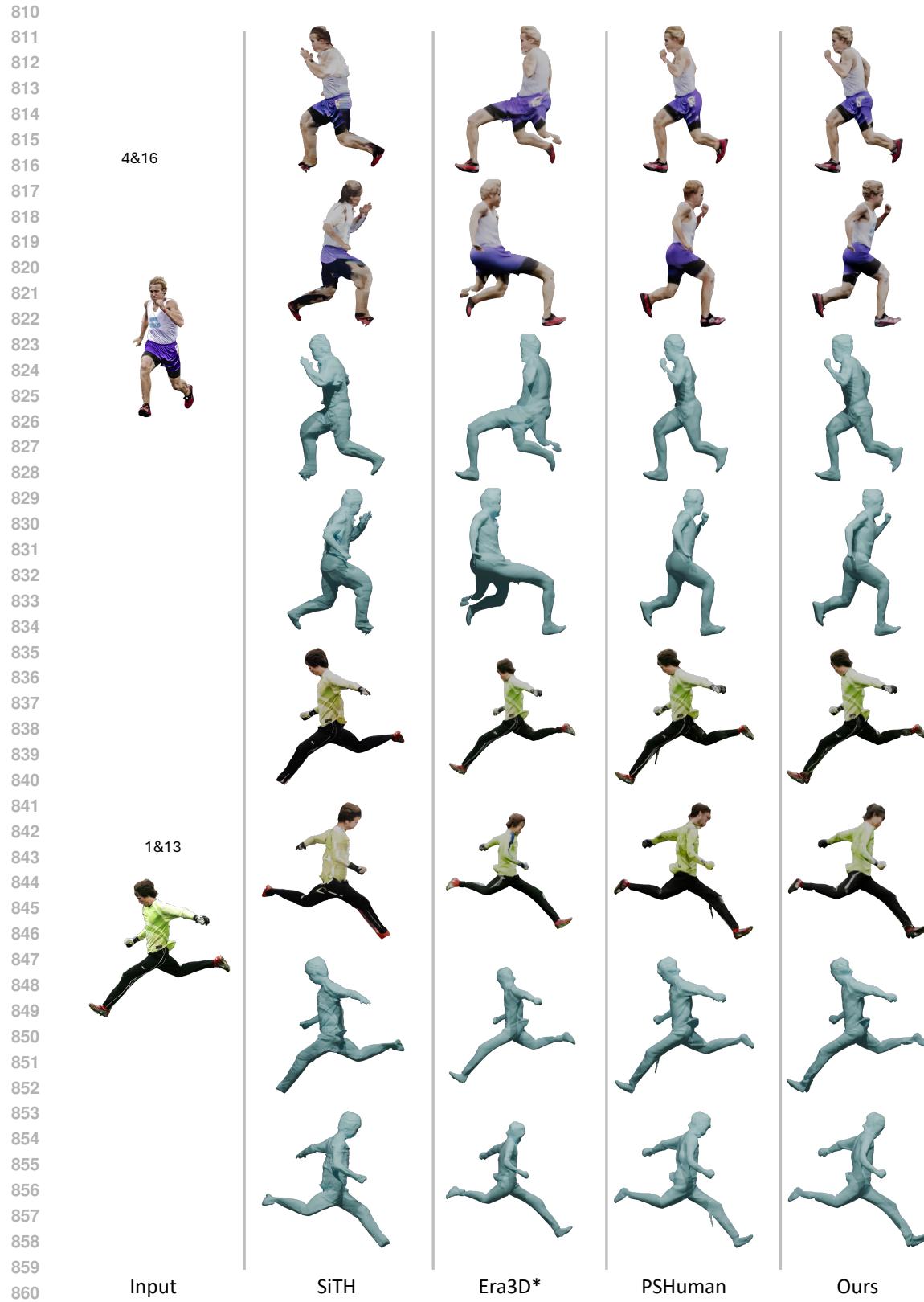


Figure 13: Additinoal qualitative evaluation on the internet-source images. Era3D* denotes Era3D fine-tuned on CustomHumans and THuman2.1 datasets.

Figure 14: Additinoal qualitative evaluation on the internet-source images. Era3D* denotes Era3D fine-tuned on CustomHumans and THuman2.1 datasets.

918
919
920
921
922
923
924
925
926
927
Table 5: MIXAMORP dataset specification

928 Character	929 Animation	930 Description	931 Frame number(s)
930 Carla	931 Drop Kick	932 -	933 35, 46, 62
931 Carla	932 Start Plank	933 -	934 137
932 Claudia	933 Freehang Climb	934 -	935 47, 67
933 Claudia	934 Flying Knee Punch Combo	935 -	936 29, 79
934 Eric	935 Swing To Land	936 Swing Backflip To Crouched Land	937 26, 58
935 Eric	936 Standing Up	937 Sitting To Standing	938 41, 88
936 Henry	937 Situp To Idle	938 -	939 15, 49, 70
937 Henry	938 Female Standing Pose	939 On Left Leg, Right Hand...	940 1
938 Johanna	939 Twist Dance	940 -	941 163
939 Johanna	940 Jump Push Up	941 -	942 25
940 Johanna	941 Sitting Laughing	942 -	943 67
941 Johanna	942 Praying	943 ...Prayer To Standing Up	944 1
942 Kumar	943 Rifle Turn And Kick	944 -	945 40, 48
943 Kumar	944 Dancing Twerk	945 -	946 179
944 Kumar	945 Crouch Turn Left 90	946 Turning 90 Degrees Left	947 6
945 Michael	946 Pain Gesture	947 -	948 20
946 Michel	947 Breakdance 1990	948 ...Handstand Spin Start	949 1, 82, 100
947 Mira	948 Change Direction	949 -	950 25
948 Mira	949 Mma Kick	950 Mma Medium Kick	951 15, 22
949 Mira	950 Beckoning	951 -	952 26
950 Otto	951 Throw Grenade	952 ...While In Prone Position	953 65
951 Otto	952 Run Backwards	953 ...Backwards To Crouched Stop	954 37
952 Otto	953 Hurricane Kick	954 -	955 16
953 Otto	954 Grabbing Ammo	955 -	956 74
954 Sebastian	955 Pistol Kneeling Idle	956 -	957 1
955 Sebastian	956 Crawling	957 -	958 34
956 Sebastian	957 Dig And Plant Seeds	958 -	959 15, 70
957 Sheila	958 Shuffling	960 -	961 33
958 Sheila	959 Great Sword Slash	962 Great Sword Combo Slash	963 47, 55, 62
959 Sydney	960 Sword And Shield Attack	964 Sword And Shield High Attack	965 17, 26
960 Sydney	961 Running Jump	966 Jumping From A Sprint	967 7, 22
961 Tiffany	962 Samba Dancing	967 Afoxe Samba Reggae Dance	968 139
962 Tiffany	963 Stable Sword Inward Slash	969 -	970 5, 27
963 Toshiro	964 Martelo 2	971 -	972 17
964 Toshiro	965 Jump Attack	972 -	973 11, 27, 53
965 Victoria	966 Great Sword Crouching	973 ...Sword Crouch To Block	974 10
966 Victoria	967 Chapa-Giratoria	974 -	975 61
967 Victoria	968 Jab Cross	975 Boxing Jab Cross Medium	976 22
968 Victoria	969 Jump	976 Jump In Place	977 35

965
966
967
968
969
970
971

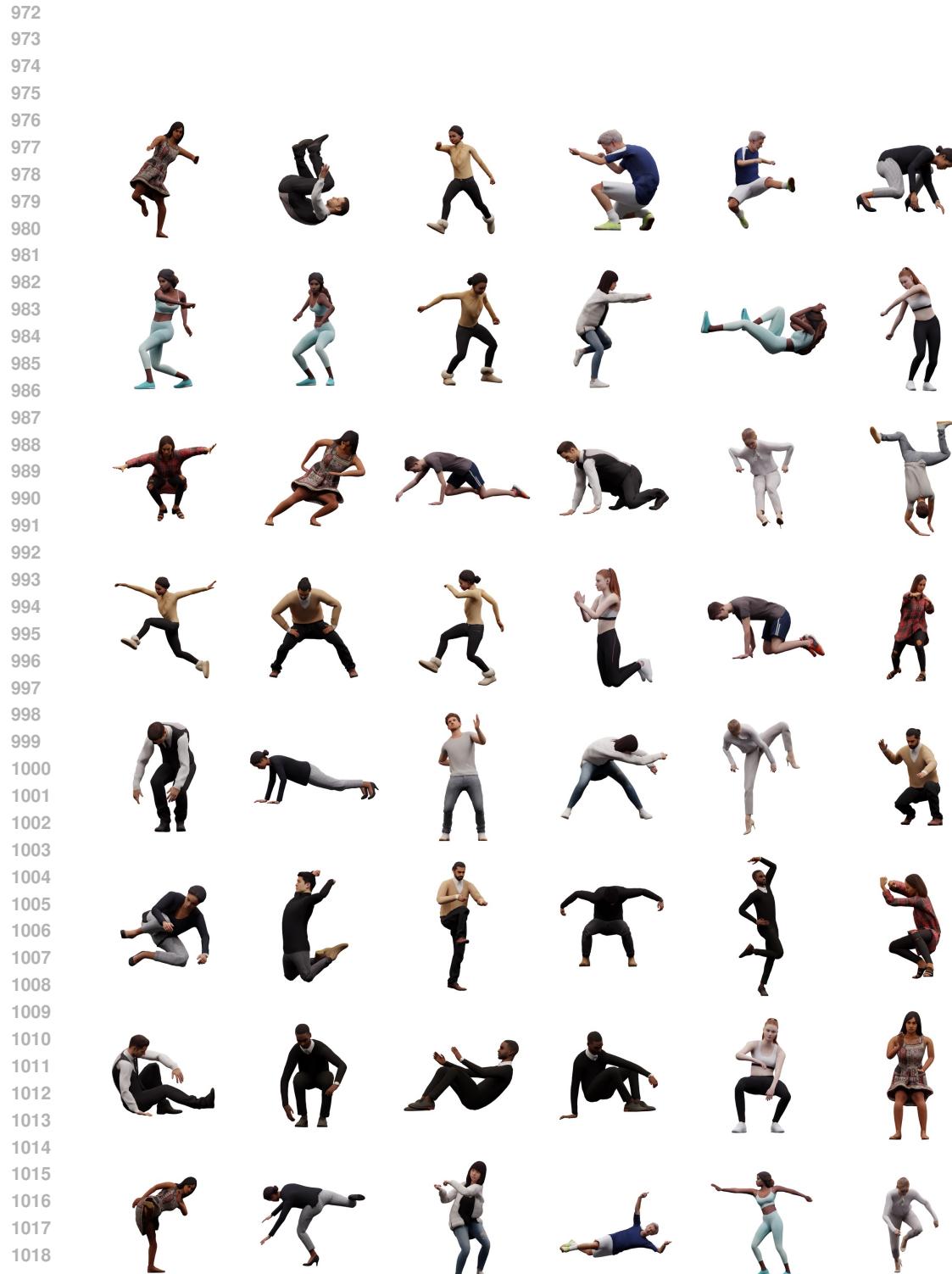


Figure 15: Representative visualizations for the MIXAMORP benchmark. The 48 meshes shown were randomly sampled from the complete dataset containing 60 meshes