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Figure 1: We propose DRPOSE, a method to post-train a multi-view diffusion model for enhanced
posture of reconstructed 3D humans in dynamic and acrobatic scenarios.

ABSTRACT

Single-view 3D human reconstruction has achieved remarkable progress through
the adoption of multi-view diffusion models, yet the recovered 3D humans of-
ten exhibit unnatural poses. This phenomenon becomes pronounced when recon-
structing 3D humans with dynamic or challenging poses, which we attribute to
the limited scale of available 3D human datasets with diverse poses. To address
this limitation, we introduce DRPOSE, a Direct Reward fine-tuning algorithm on
Poses, which enables post-training of a multi-view diffusion model on diverse
poses without requiring expensive 3D human assets. DRPOSE trains a model us-
ing only human poses paired with single-view images, employing a direct reward
fine-tuning to maximize POSESCORE, which is our proposed differentiable re-
ward that quantifies consistency between a generated multi-view latent image and
a ground-truth human pose. This optimization is conducted on DRPOSE15K, a
novel dataset that was constructed from an existing human motion dataset and
a pose-conditioned video generative model. Constructed from abundant human
pose sequence data, DRPOSE15K exhibits a broader pose distribution compared
to existing 3D human datasets. We validate our approach through evaluation on
conventional benchmark datasets, in-the-wild images, and a newly constructed
benchmark, with a particular focus on assessing performance on challenging hu-
man poses. Our results demonstrate consistent qualitative and quantitative im-
provements across all benchmarks.

1 INTRODUCTION

3D human models are essential assets across multiple industries, including visual media production
(such as games and movies), product and industrial design, and e-commerce platforms for fashion.
While multi-view scanning systems and manual design processes currently dominate 3D human
crafting workflows, single-view 3D human reconstruction technology has garnered attention due to
rapid technical advances and its practical advantages in scenarios where capturing multiple camera
angles is either impractical or impossible.

Recent advances in this technology have been driven by the adoption of image-to-multi-view (I2MV)
diffusion models, which have enhanced reconstruction quality for occluded body parts invisible in



the input image (Pan et al.|[2024; [Peng et al., |2024; |Li et al.| [ 2024b; He et al., | 2024; | Xue et al.,2024;
Ho et al., [2023a)). This approach typically employs a two-stage pipeline: first generating multi-
view images from a single input using a diffusion model, then lifting these views into 3D space
through either implicit reconstruction (Saito et al.l 2019; Ho et al.,[2023a)) or explicit reconstruction
techniques (Li et al., 2024b; [Palfinger}, 2022; |Xiu et al.,2022a). Compared to previous works, which
directly reconstruct a 3D structure from the input-view feature (Saito et al., 2019; [2020) or works
utilizing an estimated SMPL model (Xiu et al.| 2022bjal), multi-view diffusion-based approaches
have the benefit of using more fine-detailed cues for the unseen parts from the input-view.

Despite these advancements, a bottleneck persists that limits real-world applicability. Reconstructed
3D humans often exhibit unnatural postures, especially when target poses are dynamic and challeng-
ing, such as extreme athletic movements or acrobatic postures. We argue that this limitation stems
from the limited scale of publicly available training datasets (Yu et al., 2021} Han et al., |2023; |Ho
et al., 2023b) with diverse poses. This scarcity arises from the costs of recruiting diverse subjects
and capturing them in varied poses using multi-view stereo setups, which are further compounded
by privacy concerns that complicate the release of public data.

Our key insight to overcome this challenge is that, instead of requiring expensive 3D human as-
sets for training, we can leverage available 3D pose sequence data (Lin et al., 2023)) and a pose-
conditioned video generative model (Men et al.,[2025) to construct a DRPOSE15K, a dataset consist-
ing of single-view images for input and corresponding ground-truth poses. To this end, we introduce
DRPOSE, a method to post-train an I2MV model on this dataset using a direct reward fine-tuning
algorithm (Liu et al.,[2024; Clark et al.| 2023} Xu et al., 2023}; [Prabhudesai et al.,2024). In DRPOSE,
given an input image, a pre-trained I2MV model generates multi-view latent images through an it-
erative denoising process. Then, the latents are compared with the ground-truth 3D pose to compute
POSESCORE, our proposed differentiable reward function that quantifies the consistency between
them. The pretrained 2MV model is optimized to maximize POSESCORE, across the DRPOSE15K,
which has a broader pose distribution coverage than the existing 3D human datasets.

Our evaluation demonstrates that I2MV models fine-tuned with DRPOSE achieve improvements in
single-view 3D human reconstruction quality both quantitatively and qualitatively. These improve-
ments are consistent across all datasets, including conventional benchmarks (Yu et al.| [2021; [Ho
et al.l 2023b), in-the-wild images, and MIXAMORP, our new evaluation benchmark designed to
assess performance on complex and dynamic human poses.

Our key contributions are:

* We propose DRPOSE, a novel post-training approach for enhancing the alignment of an
image-to-multi-view (IZMV) model with natural poses in dynamic and complex scenarios.

* We construct DRPOSE15K, a dataset comprising human poses from a motion dataset (Lin
et al.,[2023)) paired with generated single-view images conditioned on each pose.

* Through quantitative evaluation, we demonstrate that our method achieves consistent im-
provements across all datasets, including conventional benchmarks and our proposed M1X-
AMORP.

2 RELATED WORKS

2.1 SINGLE-VIEW 3D HUMAN RECONSTRUCTION

Single-view 3D human reconstruction remains a long-standing challenge in computer vision and
graphics. Early approaches focused on recovering parametric human models (Loper et al., 2023
Pavlakos et al.,[2019) but often lacked fine-grained details such as clothing and facial features (Bogo
et al., |2016; [Zhang et al) [2021; [2023a; Sun et al.l [2021). A major advance was introduced by
PIFu (Saito et al.,|2019), which demonstrated that detailed 3D human shapes could be learned from
a single image using implicit functions trained on 3D scan datasets. This inspired numerous exten-
sions, including methods that (1) utilize normal maps to enhance surface quality (Saito et al.| |2020;
Xiu et al., [2022bga), (2) utilizing SMPL prior (Xiu et al.l [2022bja; [Zhang et al., |2023bj |[Zhuang
et al.l 2025)), (3) recover relightable textures (Alldieck et al) 2022), and (4) generate animation-
ready avatars (Huang et al., 2020} [He et al., 2021} [Peng et al., 2024)). Recently, generative models
have further advanced the field by improving reconstruction quality for previously unseen views by



adopting score distillation sampling (Huang et al., 2023} Wang et al.| [2025; |AlBahar et al.| [2023;
Wang et al., [2024) or training a multi-view diffusion model (Pan et al., |2024; Peng et al., [2024;
Li et al.l 2024b; He et al.| 2024; Xue et al., 2024; Hu et al., [2025). However, when these models
receive images with out-of-distribution poses as input, they show results that exhibit unnatural pos-
tures. To address this, we propose a new approach that leverages motion data (Lin et al., |2023)) to
augment pose coverage and fine-tune multi-view diffusion models, thereby improving performance
on diverse poses.

2.2 DIRECT REWARD FINE-TUNING OF DIFFUSION MODEL

Recent research has explored methods for post-training diffusion models to align them with human
preferences better, building on the success of reinforcement learning techniques in large language
models. This alignment process typically involves three key components: (1) starting with a pre-
trained text-to-image diffusion model, (2) developing a reward model that evaluates attributes such
as aesthetic quality, detail fidelity, and semantic alignment, and (3) optimizing the diffusion model to
maximize these reward signals. Initial approaches utilized reinforcement learning (RL) objectives to
maximize human preferences, though these methods are non-differentiable (Lee et al.| 2023} |Black
et al., 2023} [Fan et al.} [2023)). Building on human preference data, researchers have developed dif-
ferentiable neural networks that can evaluate input images (Xu et al.| 2023} |Kirstain et al., 2023 Wu
et al} |2023). Leveraging these advances, direct reward fine-tuning methods have recently emerged
that post-train diffusion models using differentiable reward scores (Prabhudesai et al., 2024} |Clark
et al.| 2023} [Wu et al.| |2024)), demonstrating faster convergence compared to RL-based approaches.
In this work, we adopt DRTune (Wu et al., [2024), a state-of-the-art reward fine-tuning method, as
the foundation for DRPOSE.

3 PRELIMINARIES

3.1 IMAGE-TO-MULTI-VIEW (I2MV) DIFFUSION MODEL

We adopt an image-to-multi-view (I2ZMV) diffusion model to our single-view 3D human reconstruc-
tion pipeline to provide fine-detailed cues for the unseen regions of the human subject from the input
view. Era3D (Li et al.,[2024a)), a state-of-the-art 2MV model, introduces a row-wise attention layer
as an additional layer to the stable diffusion’s denoising U-Net. This layer performs self-attention
across pixels in the same row, spanning all multi-view images, thereby maintaining multi-view con-
sistency during generation. Unlike previous multi-view attention layers (Shi et al., 2023} [Wang &
Shil 2023 [Hollein et al., [2024])) that apply self-attention across all pixels in the multi-view images,
the row-wise approach reduces computational overhead from O(N25%) to O(N?253), where S de-
notes the spatial resolution and N represents the number of views. For our base I2MV diffusion
model, we adopt the denoising U-Net from PSHuman (Li et al., 2024b)), which extends Era3D (L1
et al.| [2024a)) by incorporating a body-face cross-scale diffusion architecture that enhances the qual-
ity of face region generation.

3.2 3D HUMAN RECONSTRUCTION WITH EXPLICIT CARVING

As illustrated in Figure [2] we employ an explicit carving in our pipeline to reconstruct 3D humans
from multi-view images generated by our post-trained diffusion model, following Li et al.| (2024b).
The pipeline generates both normal maps and RGB images across multiple viewpoints using a dif-
fusion model conditioned on the input view. 3D human mesh recovery then proceeds through three
sequential steps: SMPL-X initialization, differentiable remeshing (Palfinger} 2022)), and appearance
fusion. This approach delivers superior geometric detail compared to methods using pretrained
implicit networks (Ho et al.l 2023a; [Pan et al., [2024)

4 METHOD

This section describes our proposed method for aligning an image-to-multi-view (I2MV) diffusion
model to natural postures in dynamic or complex cases, thereby enhancing the quality of its in-
tegrated single-view 3D human reconstruction pipeline. We begin in Sec. by describing the
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Figure 2: Overview of our 3D human reconstruction pipeline. In this pipeline, the multi-view normal
and RGB images are generated from the input image using a image-to-multi-view (I2MV) diffusion
model. Then these images are converted into 3D representation using explicit human carving
2024b). In this work, we propose post-training the I2MV diffusion model to achieve better
alignment with accurate poses in dynamic and acrobatic scenarios. For clarity, only 3 of the 6 multi-
view images are displayed for normal maps and RGB images.

construction of DRPOSE15K, our proposed training dataset with diverse pose coverage. Sec. .2
then presents DRPOSE, which enables post-training of an I2MV model on DRPOSE15K.
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Figure 3: Construction process for DR- Figure 4: Comparison of pose diversity between
POSEISK. We employ a pose-conditioned ~conventional 3D human datasets
image-to-video model [Men et al] (2023) to gen- 2021}, Ho et all 2023b) and our proposed DR-

erate input-view images corresponding to the T OSELISK. Our dataset has a higher standard
ground-truth poses. deviation of SMPL-X joint locations than other

datasets.

4.1 CONSTRUCTION OF DRPOSE15K

We construct DRPOSE15K, a training dataset containing dynamic and challenging 3D human poses
paired with single-view images, by leveraging Motion-X 2023)), a human motion dataset
and MIMO 2025), a pose-conditioned image-to-video(I2V) model as illustrated in Fig-
ure[3] From the Motion-X dataset, we utilize the AIST 2021) subset due to its comprehen-
sive coverage of diverse pose distributions. To reduce redundancy from the 300K available poses,
we apply farthest point sampling to select 1.5K poses. Then, we add the 9 temporal neighbors for
each selected pose to create a pose sequence for input to the MIMO, yielding a total of 15K poses.
Finally, we use MIMO to animate full-body human images from according to these
pose sequences, generating corresponding single-view images for each 3D pose in our dataset.

To quantitatively assess the pose diversity of DRPOSE15K compared to conventional 3D human
datasets (Ho et al.| [2023D} [Yu et all [2021), we compute the standard deviation of SMPL-X joint
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Figure 5: Overview of DRPOSE. Given a 3D human pose 6 and input image / (generated from € as
described in Sec @), the denoising multi-view U-Net ¢, is trained to minimize Ly = Lreward +
wkr - Lxr,- Here, Lewarq measures the distance between 6 and the generated latent image xo, while
Lx1, computes the KL divergence between ¢,, and the frozen initial U-Net €,,, (Sec @) For clarity,
only 3 of 6 multi-view images are shown for normal maps and RGB visualization.

positions across each dataset, focusing exclusively on the 22 body joints while excluding facial and
hand joints. Note that for conventional datasets, we include both training and test splits in this
analysis. As shown in Figure 4] DRPOSE15K exhibits a 1.73x larger standard deviation compared
to THuman2.1 (Yu et al., 2021)). Moreover, with 14.7K poses compared to 647 in CustomHumans
and 2,445 in THuman2.1, TrainSet provides broader pose distribution coverage.

4.2 DRPOSE (DIRECT REWARD FINE-TUNING ON POSES)

We introduce DRPOSE, an algorithm to post-train an
12MV diffusion model on DRPOSE15K, denoted as
D = {I;,6;}, where I;,0; are an input image and ~ Dataset: Image-pose pairs D = {I;,6;}
the ground-truth human pose. The core idea is to ~ Inputs: [2MV diffusion model with initial
maximize POSESCORE, our proposed differentiable ::;ilfik:s ‘;ji;ersizvirdf(moﬁixﬁmilg r:;rrilbe;t:))f
reward that quantifies consistency between the gen- timest egp m p ’ y stop
erated multi-view latent images from I; and 6;, bet-

L. | . ] Initialize w = wo
ter aligning the pretrained 2MV diffusion model to while not converged do

Algorithm 1 DRPOSE

diverse poses in D. s = randint(1,7 — K[ Z )
DRPOSE builds upon previous direct reward fine- bain = {s +i [ %] [i=0,1,..., K -1}
tuning algorithms (Wu et all 2024, [Prabhudesai i'}i"a):ialgmt(l’ m)
et al.l 2024). The method generates latent images XT’ < N(0,T)
xo at timestep ¢ = 0 through an iterative denois- Ll =0 ’
ing process, then computes the reward 10SS Lyeward fort="7T,---,1do
using POSESCORE, a differentiable reward function é = e, (stop_grad(z;),I,t)
denoted as r. Since maintaining gradients for all ift ¢ tirain then
timesteps would require prohibitive GPU memory, € = stop-grad(é)
we sample a subset of timesteps ty.n for gradient else
computation. Following DRTune (Wu et al.} [2024), €0 = €w (st OP—g{ad§$t)7 I,t)
DRPOSE samples equally spaced timesteps from the Lxw = Ly + E([|€ — &)
full denoising trajectory, enabling optimization of ®o = (X — 01€) [
early denoising steps while maintaining computa- if t == tin then
tional efficiency. break . .
Ti—1 = Qt—1%o + O¢—1€
To address the reward hacking problem, where re- Liewad = 1 — 1(%0, 0)
ward scores increase during training while image w 4+ w — NV (Lreward + WkL - LKL)

quality degrades, DRPOSE incorporates a KL diver-
gence regularization term Lk in addition to Lyewaq. This regularization computes E(||é — éo|),



where € represents the predicted noise from the trainable diffusion model at some timestep ¢ € tin,
and € is the corresponding prediction from the initial diffusion model. This constraint prevents the
model’s generated images from deviating excessively from its original results while optimizing for
reward maximization.

To summarize, DRPOSE operates the steps in Algorithm [I|to minimize the following objective:

minE g)~p [Lrewara (1,0) + wkr - Lxr, (1)] - (1

Differentiable Reward. To quantify the consistency a multi-view latent image ¢ and a GT pose
0, we develop POSESCORE, a differentiable reward model denoted as r. To compute the consistency,
it first projects both xy and 6 to the fskel and I, images where the human skeletal structure are
drawn. To convert x into fskel, a U-Net based skeletal image predictor gge is pretrained on the
existing 3D human datasets (Ho et al.,2023b; Yu et al., [2021). Moreover, I can be drawn from 6,
by drawing the projected the 3D human joints J(¢) from the pose parameter 6 into the image planes
same with the generated images’ viewpoints. Then the reward is compute as follows:

r(20,60) = —E(||lwer — Lall) = —E(/[gskea(o) — R(J(6))]]), )

where R is the rendering of the 3D human joints into the skeletal images into the viewpoints of x.

5 EXPERIMENTS

5.1 IMPLEMENTATION DETAILS

Denoising U-Net We initialize our model ¢, with the denoising U-Net architecture from PSHu-
man (Li et al., 2024b)). The model is fine-tuned on four NVIDIA H100 GPUs using a batch size of 4
with gradient accumulation over 2 steps for 5.5K iterations. During training, we employ the DDIM
sampler with 7" = 20 total denoising steps and K = 2 training steps. We set the maximum early
stop timestep to m = 8 and weight the KL divergence loss as wg;, = 0.01. For computing Lk,
we use mean squared error to estimate ||€ — €g||. At inference time, we use the DDIM sampler with
T = 40 denoising steps and apply classifier-free guidance (Ho & Salimans| [2022) with a scale of
3.0.

Differentiable Reward For computing the reward, we use binary cross entropy loss and LPIPS to
estimate ||fske] — Iel||- The skeletal images Ier and Iy both have 23 channels, with each chan-
nel corresponding to one skeleton. We use THuman?2.1 (Yu et al.l 2021)) and the training subset of
CustomHumans (Ho et al.l 2023b) as our training datasets, comprising approximately 3K scans. To
get six-view normal and color images, we render the 3D scans using Blender’s Cycles engine (Com-
munity, 2018) with an orthographic camera configuration. The reward model is trained on four
NVIDIA RTX 6000 Ada GPUs with a batch size of 16 over 10K iterations.

5.2 SINGLE-VIEW 3D HUMAN RECONSTRUCTION

Baselines & Benchmarks We compare our approach against single-view 3D human reconstruc-
tion methods guided by SMPL (Xi1u et al., [2022a; Ho et al.,2023a)), as well as multi-view diffusion-
based methods (Wu et al.l [2023; |Li et al.| 2024 agb)).

* ECON (Xiu et al.,|2022a) estimates front and back depth maps using an estimated SMPL-
X prior, then fuses these depth maps for a complete 3D human body. It does not support
texture reconstruction and trains its depth estimation network on 500 scans from THu-
man2.0 (Yu et al} [2021). The depth estimation network is trained on 500 scans from
THuman?2.0.

» SiTH (Ho et al.,[2023a)) generates 512x512 px. RGB images for front and back views using
an estimated SMPL-X prior, subsequently converting them to 3D via an SDF network. The
diffusion model is trained on THuman2.0.

* Human3Diffusion (Xue et al., 2024} produces four 256x256 px. RGB multi-view images,
which are then converted to 3D using a 3DGS reconstruction network. The multi-view



Table 1: Quantitative comparisons of geometry quality on single-view human reconstruction bench-
marks. Our proposed benchmark MIXAMORP is described in Appendix[A.2] Era3D* represents the
original Era3D model fine-tuned on CustomHumans and THuman?2.1 training splits using conven-
tional DDPM loss. Ours (Era3D) denotes the Era3D model post-trained with our proposed DRPOSE
on DRPOSEI5K.

‘ THuman?2.1-test CustomHumans-test MIXAMORP
Method | CD|  NCt f-Scoret| CD|  NCt f-Scoret| CDJ NCt  f-Scoret
ECON 57.8809 0.6760 13.5307 | 70.0954 0.6552 10.4112 | 187.5267 0.5655 4.7752
SiTH 64.8460 0.6677 14.2759 | 77.5391 0.6504 11.5578 | 146.5484 0.5764 6.8088
Era3D* 54.2934 0.7018 15.1518 | 62.3912 0.7056 14.0601 | 111.0537 0.6163 8.6145
PSHuman 48.0357 0.7202 17.8297 | 57.0701 0.7099 15.4065 | 101.8600 0.6244 9.5673

Ours (Era3D) | 39.8191 0.7387 19.3195 | 43.1307 0.7425 18.9756 | 90.8153 0.6307 10.3593
Ours 37.6248 0.7434 20.7005 | 44.7405 0.7381 18.1897 | 94.3054 0.6274 9.8742

Table 2: Quantitative evaluation of 3D human reconstruction quality. Six RGB views evenly dis-
tributed in azimuth are rendered to compute appearance metrics. Our proposed benchmark MIx-
AMORP is described in Appendix [A.2] Era3D* represents the original Era3D model fine-tuned
on CustomHumans and THuman2.1 training splits using conventional DDPM loss. Ours (Era3D)
denotes the Era3D model post-trained with our proposed DRPOSE on DRPOSE15K.

\ THuman?2.1-test CustomHumans-test MIXAMORP
Method | PSNRT SSIM? LPIPS| | PSNRT SSIM? LPIPS| | PSNRT SSIMt LPIPS|
SiTH 16.8538 0.7884 0.1743 | 15.7267 0.7773 0.2098 | 13.5855 0.7604 0.2748
Era3D* 18.7502 0.8226 0.1380 | 18.9253 0.8355 0.1326 | 17.5337 0.8623 0.1519
PSHuman 19.0605 0.8259 0.1285 | 19.0814 0.8373 0.1273 | 17.6624 0.8641 0.1497

Ours (Era3D) | 19.1135 0.8406 0.1242
Ours 19.3110 0.8303 0.1243

19.1135 0.8406 0.1242
19.3404 0.8411 0.1224

17.5568 0.8662 0.1475
17.6631 0.8646 0.1471

diffusion model is trained on 6K human scans combining public datasets (Yu et al., 2021}
Ho et al.||2023b; |Han et al., [2023)) and commercial datasets (AXYZ design, |2023; Render-
peoplel [2023; Treedyl 2023} [Twindoml 2023)).

* Era3D (Li et al.| 2024a) generates six 512x512 px. normal and RGB images using a
diffusion network trained on Objaverse (Deitke et al., 2023). For fair comparison, we
fine-tune this model on 3K scans from THuman?2.1 and CustomHumans (Ho et al., 2023b)
datasets.

e PSHuman (Li et al.| 2024b) produces six 768x768 px. normal and RGB images using a
diffusion network trained on THuman2.1 and CustomHumans datasets.

All models above are evaluated quantitatively in the following three benchmarks:

¢« THumans2.1-test contains 60 human scans selected from the full THumans2.1 (Yu et al.,
2021) dataset. The split follows |Li et al.| (2024b).

¢ CustomHumans-test contains 60 human scans selected from the full CustomHumans
dataset, which consists of 600 human scans. The split follows Ho et al.|(2023a).

* MIXAMORP is our proposed benchmark containing 60 human scans, constructed by as-
signing 60 distinct poses collected from Mixamo animation, to 15 different Renderpeople
3D models, with 4 poses per a model(see Appendix [A.2for more details).

Test splits from CustomHumans (Ho et al.| 2023b) and THuman2.1 (Yu et al., [2021) are com-
monly used benchmarks for evaluating single-view 3D human reconstruction methods. While these
benchmarks include dynamic poses such as dancing or jumping, they lack extremely complex poses
(see Figure ) like breakdancing or bat swinging. To establish new evaluation criteria for 3D hu-
man reconstruction under extreme pose variations, we introduce MIXAMORP, a novel benchmark
specifically designed to assess reconstruction performance on challenging pose configurations. See
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Figure 6: Qualitative evaluation on the internet-source images. Era3D* denotes Era3D fine-tuned
on CustomHumans and THuman2.1 datasets.

Appendix for the complete list of Renderpeople (Renderpeoplel [2023) characters and corre-
sponding Mixamo 2025) animations used in our dataset.

Evaluation protocol For each mesh scan, we render input images from 3 evenly distributed az-
imuthal views, yielding 180 input views per benchmark. To evaluate geometric accuracy, we report
three metrics in Table m Chamfer Distance (CD), Normal Consistency (NC), and F-Score. For
computing Chamfer Distance, we uniformly sample 100K points per mesh.

For appearance evaluation, we report three metrics in Table[2} PSNR, SSIM, and LPIPS. To compute
these metrics, we render images of both the prediction and ground truth from 6 evenly distributed
azimuthal views that are distinct from the input views.

Results As Table |I| and Table [2] presents, our results demonstrate that DRPOSE consistently im-
proves reconstruction quality of the base model across all benchmarks. This is thanks to our pro-
posed DRPOSE’s ability to enhance the accuracy of reconstructed posture on diverse poses, as seen
in the Figure[6|and Figure[7]

Ablation Study on the base model We conduct an ablation study on the base model by post-
training Era3D* using DRPOSE. As reported in Table [T]and Table 2] the Era3D-based model shows
similar performance across all benchmarks. However, since the PSHuman-based model shows better
results on face regions qualitatively, we chose PSHuman as our base model.

5.3 ANALYSIS ON POSESCORE

In the Figure [8] we provide the analysis of the Table 3: Quantitative evaluation of g in POS-
trained gg.] of POSESCORE introduced in Sec- ESCORE

tion[4.2] Figure [8]and Table 3] The evaluation

is conducted on the SMPL and scan mesh pairs Benchmark | PSNR  SSIM  LPIPS
on the test splits of CustomHumans and THu-
man2.1. The scan meshes are rendered into the
multi-view normal and color images to be con-
verted into the latent images via PSHuman’s VAE. These latent images are fed into gy, producing
the skeletal images. The metrics and qualitative results show that g reliable enough to use it as a
measure for the consistency between latent images and poses.

THuman?2.1-test 22.4807 0.9337 0.0580
CustomHumans-test | 24.4081 0.9536 0.0430
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Figure 7: Qualitative evaluation on the CustomHumans dataset. Era3D* denotes Era3D fine-tuned
on CustomHumans and THuman2.1 datasets.
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Figure 8: Visualization of g in POSESCORE. gy converts the multi-view latent images encoded
from the normal and RGB images using the base model’s VAE.

6 CONCLUSION

We propose a novel approach to improve the pose accuracy of 3D humans reconstructed by multi-
view diffusion models. Our method comprises three key contributions: (1) DRPOSE15K, a dataset
featuring diverse poses with corresponding single-view images, (2) DRPOSE, an algorithm that en-
ables post-training of multi-view diffusion models on this dataset; and (3) MIXAMORP, a bench-
mark for evaluating reconstruction under challenging poses. Our post-trained model shows consis-
tent quality improvements across all benchmarks.

Limitations Similar to previous single-image-to-3D human modeling approaches, our pipeline
requires segmented input images. When input images contain imperfect segmentation, artifacts
such as floating geometry appear in the boundary regions of the generated 3D humans, as illustrated
in Figure[9]

Although DRPOSE employs gradient stopping and gradient checkpointing techniques, it requires
substantial GPU memory, as it generates 24 images of size 768x768 px, through an iterative denois-
ing process to compute POSESCORE. We believe improved efficiency in future multi-view diffusion
models will alleviate this issue.



ETHICS STATEMENT

Demographic Bias Our base model, PSHuman (Li et al., |2024b), is trained on THuman2.1 (Yu
et al} 2021)) and CustomHumans (Ho et al., [2023b)), which exhibit demographic imbalances. THu-
man2.1 contains 2,445 human subjects who are predominantly of Asian ethnicity, while CustomHu-
mans, though more ethnically diverse, comprises only 647 subjects. This imbalanced representation
may result in biased reconstruction performance that favors demographics overrepresented in the
training data, leading to reduced quality and accuracy for underrepresented groups.

Potential for Misuse The generated 3D human models pose risks for creating misleading or harm-
ful content. These reconstructions can be integrated into 3D scenes and animated using standard
rigging techniques, potentially enabling the creation of for disinformation or deepfake content.

Industrial Impact The automation capabilities of image-to-3D human modeling technology may
impact employment in creative industries, affecting 3D artists, character designers, and digital con-
tent creators who specialize in human modeling While this technology can enhance productivity and
accessibility, it also raises questions about the displacement of skilled professionals.

REPRODUCIBILITY STATEMENT

DRPOSE15K is constructed from the publicly available Motion-X dataset (Lin et al., [2023) and
MIMO model (Men et al.| [2025). MIXAMORP is constructed from scans of RenderPeople (Ren-
derpeople, [2023) and motions from Mixamo (Inc.,[2025); while both resources are available, Ren-
derPeople is a commercial product. In Section[4} we explain the high-level concepts underlying our
approach and provide pseudocode and experimental details in Algorithm[T]and Section[5.1]to ensure
reproducibility.
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A APPENDIX

A.1 ADDITIONAL RESULTS

We provide additional qualitative comparisons in Figure[I3|and [I4]

A.2 MIixAMORP

As mentioned in Section 5.2} we constructed MIXAMORP using Renderpeople’s rigged 3D mod-
els and Mixamo animations. Table |§] details character names, animations, descriptions, and frame
indices for reproducibility. Each row represents a unique mesh with challenging poses. Figure [I3]
visualizes the dataset.

A.3 LIMITATIONS

Our pipeline inherits limitations from prior single-image-to-3D approaches, shown in Figure[9] First,
imperfect input segmentation causes floating geometry artifacts at boundaries. Second, while im-
proving overall shape and pose, our method struggles with fine details like hands.

Input Image PSHuman Ours

Figure 9: Our pipeline is sensitive to the quality of the segmented masks, producing artifacts.

A.4 ANALYSIS ON EFFICIENCY
We report the latency of each model for reconstructing a single sample in Table [d] Ours have the

same efficiency as PSHuman since we use it as our base model, while Ours (Era3D) have the same
efficiency as the Era3D.

Table 4: Reconstruction latency per sample for each model.

ECON SiTH Era3D PSHuman Ours (Era3D) Ours
183.27 sec. 117.35sec. 15.24sec. 42.70 sec. 15.24 sec. 42.70 sec.

A.5 NETWORK ARCHITECTURE

Figures[I0} [TT] and[T2]show the network design for the Denoising U-Net in the multi-view diffusion
used in the pipeline illustrated in Fig 2} the Denoising U-Net in the MIMO [Men et al] (2023), a
pose-conditioned video generator, and the skeletal image predictor in the POSESCORE introduced

in Secd.2

A.6 USE OF LARGE LANGUAGE MODELS

We employ a large language model to refine the manuscript text by correcting grammatical errors
and enhancing sentence fluency. The LLM is not involved in research ideation, methodology devel-
opment, experimental design, or the generation of original content. All intellectual contributions,
including the research direction, analyses, and conclusions, are made entirely by the authors.
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Denoising U-Net
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Figure 10: Architecture of the Denoising U-Net for multi-view diffusion in our pipeline inspired
from|Li et al.| (2024b) (illustrated in Fig[2). The denoising U-Net follows the architecture of PSHu-
man (L1 et al, 2024b). The input image is conditioned into the denoising process through two
parallel pathways: (1) A VAE encoder £ encodes the input image, which is then concatenated with
the latent image ;. (2) A CLIP image encoder 7 encodes the input image, and the generated tokens
are fed into the cross-attention layers of the denoising U-Net.

Latent Video Denoising U-Net Latent Video

v

Ut
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Figure 11: Architecture of the denoising U-Net for the pose-conditioned image-to-video model used
in the DRPOSE15K construction process (illustrated in Fig. [3). The denoising U-Net follows the
architecture of MIMO (Men et al.,2025)) and takes three conditioning signals: (1) scene code Cy,, (2)
motion code Cp,, and (3) identity code Cig. The scene code Cy, is first concatenated with the latent
video v; and then added to the motion code Cy,,. The identity code Cyq is fed into the cross-attention
layers of the denoising U-Net. Note that the temporal layers of the denoising U-Net (Guo et al.,
2023)) are omitted in this figure.

Skeletal Image Predictor

Latent Image p—y _ ______ » [ Skeletal Image
-———
-————
| |~~~ ~ - —

Figure 12: Architecture of the Skeletal Image Predictor in our POSESCORE introduced in Sec
The network follows a U-Net architecture with an encoder-decoder structure. Multi-view latents are
processed through initial convolutions, then flattened and passed through four downsampling blocks
(reducing spatial resolution from 64x64 to 4x4 while increasing channels from 32 to 512), followed
by four upsampling blocks with skip connections that restore the original resolution. The output
produces predicted skeletal images for all views simultaneously.
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Figure 13: Additinoal qualitative evaluation on the internet-source images. Era3D* denotes Era3D
fine-tuned on CustomHumans and THuman?2.1 datasets.
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Figure 14: Additinoal qualitative evaluation on the internet-source images. Era3D* denotes Era3D
fine-tuned on CustomHumans and THuman?2.1 datasets.



Table 5: MIXAMORP dataset specification

Character | Animation

| Description

| Frame number(s)

Carla
Carla
Claudia
Claudia
Eric
Eric
Henry
Henry
Johanna
Johanna
Johanna
Johanna
Kumar
Kumar
Kumar
Michael
Michel
Mira
Mira
Mira
Otto
Otto
Otto
Otto
Sebastian
Sebastian
Sebastian
Sheila
Sheila
Sydney
Sydney
Tiffany
Tiffany
Toshiro
Toshiro
Victoria
Victoria
Victoria
Victoria

Drop Kick

Start Plank

Freehang Climb

Flying Knee Punch Combo
Swing To Land
Standing Up

Situp To Idle

Female Standing Pose
Twist Dance

Jump Push Up

Sitting Laughing
Praying

Rifle Turn And Kick
Dancing Twerk

Crouch Turn Left 90
Pain Gesture
Breakdance 1990
Change Direction

Mma Kick

Beckoning

Throw Grenade

Run Backwards
Hurricane Kick
Grabbing Ammo

Pistol Kneeling Idle
Crawling

Dig And Plant Seeds
Shuffling

Great Sword Slash
Sword And Shield Attack
Running Jump

Samba Dancing

Stable Sword Inward Slash
Martelo 2

Jump Attack

Great Sword Crouching
Chapa-Giratoria

Jab Cross

Jump

Swing Backflip To Crouched Land
Sitting To Standing

On Left Leg, Right Hand...

...Prayer To Standing Up

Turning 90 Degrees Left

...Handstand Spin Start

Mma Medium Kick
...While In Prone Position
...Backwards To Crouched Stop

Great Sword Combo Slash
Sword And Shield High Attack
Jumping From A Sprint

Afoxe Samba Reggae Dance

...Sword Crouch To Block

Boxing Jab Cross Medium
Jump In Place

35, 46, 62
137

47, 67
29,79
26, 58
41, 88

15, 49,70
1

163
25

67

1

40, 48
179

6

20

1, 82, 100
25
15,22
26

65

37

16

74

1

34
15,70
33
47,55, 62
17,26
7,22
139
5,27
17
11,27, 53
10

61

22

35
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Figure 15: Representative visualizations for the MIXAMORP benchmark. The 48 meshes shown
were randomly sampled from the complete dataset containing 60 meshes
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