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Abstract

Graph-structured data is ubiquitous in scientific
domains, where models often face imbalanced
learning settings. In imbalanced regression, do-
main preferences focus on specific target value
ranges representing the most scientifically valu-
able cases; we observe a significant lack of re-
search. In this paper, we present Spectral Mani-
fold Harmonization (SMH), a novel approach for
addressing this imbalanced regression challenge
on graph-structured data by generating synthetic
graph samples that preserve topological properties
while focusing on often underrepresented target
distribution regions. Conventional methods fail
in this context because they either ignore graph
topology in case generation or do not target spe-
cific domain ranges, resulting in models biased to-
ward average target values. Experimental results
demonstrate the potential of SMH on chemistry
and drug discovery benchmark datasets, show-
ing consistent improvements in predictive perfor-
mance for target domain ranges.

1. Introduction
Graph-structured data has become increasingly important
in scientific domains, particularly drug discovery, materials
science, and genomics. Graph Neural Networks (GNNs)
have revolutionized the modeling of such data by operating
directly on graph structures, enabling more accurate pre-
dictions of molecular properties, material characteristics,
and biological interactions, for example. In drug discov-
ery alone, GNNs have demonstrated significant promise
for tasks such as property prediction (Xiong et al., 2020),
molecular design (Jin et al., 2018), and drug-target inter-
action prediction (Lim et al., 2019). The pharmaceutical
industry has embraced these methods to accelerate the tra-
ditionally slow and expensive drug development pipeline,
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which typically costs over $1 billion and spans more than a
decade from discovery to market (Vamathevan et al., 2019).

While considerable research has targeted imbalanced classi-
fication problems in graph learning (Almeida et al., 2024;
Xia et al., 2024), the regression setting has received com-
paratively little attention (Ribeiro & Moniz, 2020; Liu et al.,
2023). Many crucial scientific problems involve predict-
ing continuous properties where the most valuable cases
are rare, e.g., in drug discovery, high-potency compounds
represent a tiny fraction of the chemical space but are the
most scientifically interesting (Silva et al., 2022). Standard
machine learning approaches, including GNNs, typically op-
timize for average performance across the entire distribution,
resulting in poorly performing models on these infrequent
but valuable cases. Also, existing oversampling techniques
for imbalanced data fail to preserve the complex topolog-
ical properties inherent in graph-structured scientific data,
limiting their effectiveness in these domains.

In this paper, we present Spectral Manifold Harmonization
(SMH), a novel approach for tackling imbalanced regression
on graph-structured data. SMH (Figure 1) operates in the
graph spectral domain—the eigenspace of the graph Lapla-
cian—to generate synthetic graph samples that preserve
essential topological properties while focusing on underrep-
resented target distribution regions. Our approach builds on
the concept of relevance in imbalanced regression (Ribeiro
& Moniz, 2020), which maps target values to non-uniform
domain preferences, assigning higher importance to specific
domain ranges. SMH learns a continuous manifold of valid
graph structures by establishing a mapping between target
regression values and the spectral domain, allowing us to
generate new samples with targeted properties.

Novelty. This approach overcomes the limitations of ex-
isting oversampling techniques in regression settings by
operating in a space that captures the structural properties of
graphs, enabling the generation of realistic synthetic exam-
ples that address the imbalance problem without distorting
the underlying graph topology.

Findings. Experimental results show that SMH consid-
erably improves predictive performance on target ranges
in benchmark datasets from drug discovery. Specifically,
models trained with SMH-augmented datasets improve the
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Figure 1: Visual description of the Spectral Manifold Har-
monization method’s workflow.

accurate prediction of rare compounds, while maintaining or
improving performance on average cases. We also demon-
strate how synthetic graphs generated by SMH preserve
essential structural characteristics of the original data, con-
firming the effectiveness of our spectral approach.

2. Related Work
The challenge of imbalanced distributions in graph learn-
ing tasks has received increasing attention, particularly in
scientific domains where rare values are critical. Recent
research by Almeida et al. (2024) demonstrated that class
imbalances in drug discovery datasets can be effectively
addressed through techniques like oversampling and loss
function manipulation when using Graph Neural Networks
(GNNs). Despite these advances, most approaches operate
directly in graph space rather than the spectral domain, limit-
ing their ability to maintain global structural constraints. Bo
et al. (2023b) published a comprehensive survey on spectral
GNNs, highlighting their unique ability to capture global
information and provide better expressiveness than spatial
approaches. Wang & Zhang (2022) further analyzed the
theoretical expressive power of spectral GNNs, proving that
they can produce arbitrary graph signals under specific con-
ditions. However, these methods usually focus on balanced
datasets, illustrating the novelty and significance of SMH.

2.1. Spectral Graph Methods

Spectral graph theory has a rich history in machine learn-
ing, with applications spanning dimensionality reduction,
clustering, and graph signal processing. Recent work in
spectral methods includes Specformer (Bo et al., 2023a),
combining spectral GNNs with transformer architectures
to create learnable set-to-set spectral filters, or the work by
(Li et al., 2025) to enhance the scalability of spectral GNNs
without decoupling the network architecture, addressing

a key limitation in previous approaches. These advanced
spectral methods demonstrate improved performance on
various graph learning tasks, but do not specifically target
the regression setting or leverage the spectral domain for
manifold harmonization in imbalanced scenarios. Our SMH
method extends these ideas to regression, enabling targeted
generation in underrepresented regions while maintaining
global graph properties.

2.2. Manifold Learning for Structured Data

Manifold learning principles underpin many approaches to
generating synthetic structured data. Recently, Zhong et al.
(2024) described how models can be enhanced by incorpo-
rating structured knowledge representations and latent man-
ifold embeddings, in the context of knowledge-augmented
graph machine learning for drug discovery. Similarly, Baum-
gartner et al. (2023) demonstrated that incorporating man-
ifold information improves synthetic oversampling tech-
niques for high-dimensional spectral data where standard
approaches often fail. Our SMH approach differs from
these works by explicitly modeling the regression target-to-
spectrum mapping and performing manifold learning in the
spectral domain, making it particularly suited for scientific
applications with imbalanced regression targets.

2.3. Graph Sampling and Synthesis in Scientific
Domains

Due to domain-specific constraints and validity require-
ments, scientific applications pose unique challenges for
graph-based methods. Yao et al. (2024) provided a com-
prehensive bibliometric analysis of GNN applications in
drug discovery, showing significant growth in this area and
highlighting the need for methods to handle the inherent
data imbalances in these domains. Similarly, Fan et al.
(2024) addressed the challenge of overconfident errors in
molecular property classification, demonstrating the impor-
tance of uncertainty quantification in imbalanced datasets.
These approaches focus primarily on classification rather
than regression tasks, and do not specifically utilize spectral
representations to address imbalance.

On regression tasks, a review on GNNs for predicting syn-
ergistic drug combinations (Zhang & Tu, 2023) noted that
graph-based models often suffer from imbalanced data dis-
tributions, affecting their performance. They emphasized
the need for methods to handle such imbalances to improve
predictive accuracy effectively. Our SMH method offers a
domain-agnostic approach that incorporates scientific va-
lidity constraints while focusing on generating underrepre-
sented regions of the target distribution, bridging critical
gaps in existing methodologies for imbalanced regression
on graph-structured data in scientific applications.
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3. Methods: Spectral Manifold Harmonization
Our Spectral Manifold Harmonization (SMH) method ad-
dresses imbalanced regression on graph-structured data by
learning to generate synthetic graph samples in underrep-
resented regions of the target distribution while preserving
their topological properties. The key insight is that operat-
ing in the graph spectral domain allows us to construct a
continuous manifold of valid graph structures, making it pos-
sible to sample new graphs with targeted properties. SMH
integrates the concept of relevance from recent work on
imbalanced regression (Ribeiro & Moniz, 2020; Silva et al.,
2022) and consists of five main components (Figure 1): we
first transform graphs into their spectral representation, learn
how target values map to this spectral space with emphasis
on relevant regions, model the manifold of valid spectral
representations, strategically sample from underrepresented
areas, and finally transform back to generate new graph
instances that address the imbalance problem.

3.1. Graph Spectral Representation and Relevance
Concept

Let G = (V,E) be a graph with |V | = n nodes and a set
of edges E. We define the adjacency matrix A ∈ Rn×n

where Aij = 1 if (i, j) ∈ E, 0 otherwise, the degree ma-
trix D with Dii =

∑
j Aij , and the normalized Laplacian

Lnorm = I−D−1/2AD−1/2. The spectral decomposition of
Lnorm yields Lnorm = UΛUT , where U = [u1, u2, ..., un]
contains the eigenvectors and Λ = diag(λ1, λ2, ..., λn) con-
tains the eigenvalues with 0 = λ1 ≤ λ2 ≤ ... ≤ λn ≤ 2.
For any graph signal x ∈ Rn, its Graph Fourier Transform
(GFT) is given by x̂ = UTx, where x̂ represents the signal
in the spectral domain.

A key concept in addressing imbalanced regression is rel-
evance, which maps target values to non-uniform domain
preferences (Ribeiro & Moniz, 2020). In this context, a
continuous, domain-dependent relevance function ϕ(Y ) :
Y → [0, 1] expresses the application-specific bias concern-
ing the target variable Y . A domain expert ideally defines
the relevance function for the specific task where the expert
inputs information on the available target value-relevance
pairs, i.e., which value is considered low or high-relevance.
When this information is unavailable, the function can be
interpolated from boxplot-based statistics where extreme
values are considered high-relevance and the distribution
median is considered the lowest point of relevance.

3.2. Relevance-Guided Target-to-Spectrum Mapping

Given a dataset D = {(Gi, yi)}Ni=1 of graph-label pairs,
we learn a parameterized function fθ : R → Rk that maps
regression target values to spectral coefficients, where k < n
is the number of significant eigenmodes. The mapping

function is implemented as a neural network:

fθ(y) = WL·σ(WL−1·σ(· · ·σ(W1·y+b1) · · · )+bL−1)+bL

(1)

where σ is a non-linear activation function, and Wl,bl

are learnable parameters. We incorporate the relevance
concept into our optimization objective by weighting the
loss according to the importance of each target value:

L(θ) = 1

N

N∑
i=1

ϕ(yi) · ∥si − fθ(yi)∥2 + α · Ω(θ) (2)

where si = UT
i xi are spectral coefficients of graph Gi, α

is a regularization parameter, and Ω(θ) is a regularization
term. This relevance-weighted loss function ensures that
the model focuses more on learning the mapping for high-
relevance target values.

3.3. Manifold Learning in Spectral Space

We model the distribution of spectral coefficients condi-
tioned on target values as a multivariate Gaussian:

p(s|y) = N (µ(y),Σ(y)) (3)

where µ(y) = fθ(y) and Σ(y) is estimated using a
relevance-weighted covariance:

Σ(y) =

N∑
i=1

wi(y) · (si − µ(y))(si − µ(y))T (4)

with weights determined by target similarity:

wi(y) =
K(y, yi)∑N
j=1 K(y, yj)

(5)

where K(y, yi) = exp(−γ(y − yi)
2) is a Gaussian kernel.

This weighting scheme ensures that the manifold captures
the variability in of each region more accurately when mod-
eling the covariance structure.

3.4. Constrained Sampling for Underrepresented
Regions

To address target distribution imbalance, we first estimate
the density p(y) using kernel density estimation:

p(y) =
1

Nh

N∑
i=1

K
(y − yi

h

)
(6)
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where K is a kernel function and h is the bandwidth param-
eter. We define a sampling weight function that combines
both the inverse density and the relevance:

w(y) = ϕ(y) · (p(y) + ϵ)−1 (7)

where ϵ is a small constant to prevent division by zero. This
function prioritizes regions that are underrepresented (low
density) and highly relevant. To generate new samples, we:

1. Sample target values ynew with probability proportional
to w(y)

2. Generate spectral coefficients snew ∼
N (µ(ynew),Σ(ynew))

3.5. Inverse Spectral Transformation

Finally, to reconstruct graphs, given s, we:

1. Reconstruct spectral representation x̂ = [svalid,0]

2. Apply inverse GFT: x̃ = Ux̂

3. Construct adjacency matrix: Ãij = σ(x̃i · x̃j), where
σ is a sigmoid function

The resulting graph G̃ preserves essential topological prop-
erties while targeting underrepresented yet relevant regions
of the target distribution, effectively augmenting the training
set to improve regression performance on rare but valuable
cases. By integrating the concept of relevance throughout
our method, we ensure that the synthetic samples generated
by SMH focus specifically on the regions of the target space
that are most important for the application domain.

4. Experiments
In this section, we evaluate the effectiveness of SMH in
generating synthetic samples that preserve key structural
patterns from the original molecular dataset and improve pre-
diction performance in domain-relevant target value ranges.

We address the following research questions:

RQ1 Do synthetic graphs generated by SMH follow the
molecular structure patterns of the original dataset?

RQ2 Does the use of SHM improve predictive accuracy in
target ranges considered scientifically important?

RQ3 How do SMH’s that focus on specific domain regions
impact the overall performance?

RQ4 How does manifold learning and constrained sampling
perform in comparison with traditional augmentation?

RQ5 How does SMH perform in comparison with pre-
trained models?

These questions guide our analysis of the structural fidelity
of generated samples and the practical impact of SMH on
regression performance across diverse benchmarks.

4.1. Methods

We converted the SMILES into a networkx (Hagberg &
Conway, 2020) graph to build the spectral manifold harmo-
nization space. Then, we used XGBoost to train a model
to predict the eigenvalues from a given target. For prop-
erty prediction, we then convert the networkx graph for-
mat for PyTorch Geometric data format and input it in a
Graph Isomorphism Network (GIN) (Xu et al., 2018), as
it has emerged as a powerful tool for graph-based machine
learning tasks due to of its capability to effectively differ-
entiate between different graph structures, using MSE as
a loss function. The hyperparameter is presented in Ap-
pendix A with a 5-fold cross-validation. We also compared
our relevance-guided target-to-spectrum transformation and
constrained sampling approach with SMOGN (Branco et al.,
2017). For the Spectral+SMOGN baseline, we first com-
pute the spectral representation as described in Section 3.1,
and then apply the SMOGN method. The inverse transfor-
mation used for decoding remains the same. The code
is available at: https://github.com/brendacnogueira/smh-
graph-imbalance.git. To compare with a pre-trained model,
we used HiMol (Zang et al., 2023), which is a framework to
learn molecule graph representation for property prediction.

4.2. Data

Our experimental evaluation focuses on molecular data, us-
ing regression tasks from MoleculeNet (Wu et al., 2018):
ESOL, FreeSolv, and Lipophilicity (Lipo). The datasets
are briefly described in Table 1. The datasets exhibit a
long-tailed distribution toward the lower end of the property
range, and we define our relevance function to assign higher
importance to these.

Table 1: Summary of Molecular Property Datasets

Dataset # of Compounds Description

ESOL 1,128 Water solubility dataset
FreeSolv 642 Hydration free energy of small molecules in water
Lipophilicity 4,200 Octanol/water distribution coefficient of molecules

5. Results and Discussion
This section addresses the research questions raised in Sec-
tion 3, specifically concerning SMH’s ability to generate
synthetic graphs and model performance when using the
SMH method for generating and leveraging such data.
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5.1. Synthetic Generated Graphs

An illustration of the graphs selected for augmentation and
the corresponding synthetic graphs generated using the ap-
proach described in Section 3 is presented in Figure 2. Re-
sults show that the generated samples follow the molecular
structure patterns of the original dataset. Importantly, they
are not simple copies but exhibit structural variations, indi-
cating that the method produces diverse, meaningful graphs.

Figure 2: Illustration of graphs selected for augmentation
and the corresponding synthetic graphs generated using the
approach described in Section 3, for the ESOL dataset.

A comparison of the mean and standard deviation of node
and edge counts between the original and synthetic graphs
is provided in Table 2. The number of nodes remains nearly
identical across SHM and SMOGN. Minor differences are
observed in the number of edges and graph density, with
the synthetic graphs showing slightly lower mean values.
However, these differences remain within an acceptable
range, supporting the validity of the generated graphs (RQ1).
Further validation on the generated graphs can be addressed.

5.2. Model Performance

The experimental results are reported in Table 3, and Fig-
ure 3 illustrates each dataset’s improvement across different
domain regions. The results show noticeable improvements
in the lower range of the domain (RQ2), where our aug-
mentation is focused and where training data is scarce, with
minimal or no degradation in the higher range (RQ3). This
results in an improvement in the SERA evaluation metric

Table 2: Comparison of Mean and Standard Deviation of
Node and Edge Counts Between Original and Synthetic
Graphs.

DATA SET NODE EDGE DENSITY

FREESOLV BASELINE 8.7± 4.19 8.4± 4.79 0.3± 0.15
SMH 10.1± 3.10 5.0± 4.63 0.1± 0.12

SPECTRAL+SMOGN 10.6± 2.72 10.8± 3.69 0.2± 0.07
ESOL BASELINE 13.3± 6.93 13.7± 8.00 0.2± 0.13

SMH 20.5± 4.40 11.3± 11.42 0.1± 0.06
SMOGN 20.8± 3.43 22.6± 3.71 0.1± 0.02

LIPO BASELINE 27.1± 7.34 29.5± 8.12 0.1± 0.03
SMH 23.8± 12.69 14.5± 14.28 0.1± 0.05

SPECTRAL+SMOGN 23.7± 16.59 30.3± 23.64 0.1± 0.08

and similar results in other metrics. When compared to
Spectral+SMOGN, our method improves performance on
the most relevant ranges, demonstrating the effectiveness of
manifold learning and constrained sampling in generating
augmented graphs and their potential for further improve-
ment (RQ4). In comparison with a pre-trained model, our
approach demonstrates very comparable results with sig-
nificant improvements in the low range part of the domain
(RQ5).

Table 3: Experimental results for the FreeSolv, ESOL, and
LIPO datasets, using the SERA, MAE, RMSE, and R2

evaluation metrics. Arrows signal the direction for best
results, also noted in bold.

FreeSolv
Metric Baseline SHM Spectral+SMOGN HiMol

SERA ↓ 0.83± 0.9 0.55± 0.35 0.69± 0.58 0.71± 0.93
MAE ↓ 1.07± 0.16 1.25± 0.17 1.06± 0.14 0.95± 0.17
RMSE ↓ 1.67± 0.33 1.81± 0.3 1.59± 0.32 1.46± 0.41
R2 ↑ 0.81± 0.07 0.77± 0.11 0.83± 0.06 0.85± 0.08

ESOL
Metric Baseline SHM Spectral+SMOGN HiMol

SERA ↓ 0.07± 0.03 0.08± 0.03 0.06± 0.02 0.08± 0.01
MAE ↓ 0.56± 0.05 0.59± 0.04 0.56± 0.02 0.51± 0.02
RMSE ↓ 0.73± 0.07 0.77± 0.05 0.73± 0.04 0.7± 0.02
R2 ↑ 0.87± 0.03 0.86± 0.02 0.88± 0.02 0.89± 0.01

Lipo
Metric Baseline SHM Spectral+SMOGN HiMol

SERA ↓ 0.11± 0.03 0.08± 0.01 0.09± 0.02 0.08± 0.01
MAE ↓ 0.49± 0.01 0.47± 0.02 0.46± 0.01 0.42± 0.02
RMSE ↓ 0.66± 0.01 0.64± 0.02 0.62± 0.03 0.57± 0.01
R2 ↑ 0.57± 0.02 0.6± 0.03 0.62± 0.04 0.67± 0.01

6. Conclusion
In this work, we introduced Spectral Manifold Harmoniza-
tion (SMH), a novel method for addressing the challenge
of imbalanced regression on graph-structured data. By gen-
erating synthetic samples in the spectral domain of graphs,
SMH maintains topological integrity while focusing learn-
ing on underrepresented but domain-relevant target value
regions. Our approach bridges a critical gap in the liter-
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Figure 3: Distribution of train dataset with and without synthetic augmentation, along with the improvements for each part
of the test set domain, for each dataset.

ature by combining domain-specific relevance modeling
with structure-preserving augmentation, enabling improved
predictive performance in settings such as drug discovery
where rare cases are of great interest.

Experimental results on benchmark datasets demonstrate
that models trained with SMH-augmented data outperform
conventional approaches, particularly in low-frequency tar-
get regions, without sacrificing performance elsewhere.
Structural analyses confirm that generated graphs remain
faithful to the original distribution regarding key topologi-
cal properties. SMH thus offers a principled and effective
augmentation strategy for improving learning in scientific
domains where data imbalance and structural complexity
often limit model effectiveness.

6.1. Future Improvements

Spectral Manifold Harmonization (SMH) has shown strong
potential for addressing imbalanced regression on graph-
structured data, but several avenues remain for further en-
hancement. First, integrating domain-specific constraints
into the graph generation process could improve the realism
and scientific validity of the synthetic graphs. Second, the
absence of semantic context in the current synthesis process
limits the interpretability and relevance of the generated
data, highlighting the need for a hybrid spectral-semantic

approach. Future work will also involve evaluating SMH
across a wider range of benchmark datasets and predictive
models to further optimize performance. Additionally, we
plan to conduct more comprehensive comparisons with ex-
isting state-of-the-art methods and expand the application
domains beyond drug discovery, including areas such as
biology and materials science, to better assess the generaliz-
ability of our method.

To this end, we aim to develop a hybrid framework that inte-
grates semantic information into the generation and model-
ing pipeline to further enhance prediction performance and
scientific relevance.
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A. Model Details.
This section provides additional information about the models used in our experiments. The hyperparameters tested for
XGBoost, the property prediction model, and the augmentation strategies are summarized in Table 4. Given the relatively
small dimensionality of the eigenvalue vectors (fewer than 50 features), XGBoost outperformed neural networks in our
evaluations. Model selection was based on performance on the validation split, using the SERA metric.

Table 4: Hyperparameter search space

Parameter Values Tested
XGBoost Number of estimators 10, 50, 100, 250

Learning rate 0.001, 0.01, 0.1
Max depth 3, 5, 10

GIN Model Learning rate 0.01, 0.005, 0.001
Batch size 16
Hidden dimension 32, 64
Number of layers 2, 5
Epochs 500

SMH γ 1.0, 0.5
Augmentation sampling 0.20, 0.15, 0.10
Binarization cut-off 0.3, 0.2, 0.1

SMOGN Relevance threshold 0.95, 0.99

We defined a relevance function ϕ(y) using the extremes method with three control points:

ϕ(y) =


1 if y = min(Y)

0.025 if y = µ = mean(Y)

0 if y = max(Y)

where Y denotes the set of target values in the training data. The relevance function smoothly interpolates between these
points to emphasize extreme values.

The training and validation losses are presented in Figure 4.

Figure 4: Training and validation performance of property value prediction for each dataset for original and augmented
training sets.
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