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ABSTRACT

There is an open question of what types of numeric representations can emerge
in neural systems. To what degree do neural networks induce abstract, mutable,
slot-like numeric variables, and in what situations do these representations emerge?
How do these representations change over the course of learning, and how can we
understand the neural implementations in ways that are unified across different
models’ implementations? In this work, we approach these questions by first train-
ing sequence based neural systems using Next Token Prediction (NTP) objectives
on numeric cognitive tasks. We then seek to understand the neural solutions at
the level of causal abstractions or symbolic programs. We use a combination of
causal interventions and visualization methods to find that models of sufficient
dimensionality do indeed develop strong analogs of interchangeable, mutable num-
ber variables purely from the NTP objective. We then ask how variations on the
tasks and model architectures affect the models’ learned solutions to find that these
symbol-like numeric representations do not form for every variant of the task, and
transformers solve the problem differently than their recurrent counterparts. Lastly,
we show that in all cases, some degree of gradience exists in the neural symbols,
highlighting the difficulty of finding simple, interpretable symbolic stories of how
neural networks perform numeric tasks. Taken together, our results are consistent
with the view that neural networks can approximate interpretable symbolic pro-
grams of number cognition, but the particular program they approximate and the
extent to which they approximate it can vary widely, depending on the network
architecture, training data, extent of training, and network size.

1 INTRODUCTION

Both biological and artificial Neural Networks (NNs) have powerful modeling abilities. We can see
an example of this in biological NNs (BNNs) from the impressive capabilities of human cognition,
and we can see this in artificial NNs (ANNs) where recent advances have had such great success that
ANNs have been crowned the “gold standard” in many machine learning communities (Alzubaidi
et al., 2021). The inner workings of NNs, however, are still often opaque. This is, in part, due to their
representations being highly distributed. Individual neurons can play multiple roles within a network
(Rumelhart et al., 1986; McClelland et al., 1986; Smolensky, 1988; Olah et al., 2017; 2020; Elhage
et al., 2022; Scherlis et al., 2023; Olah, 2023).

Symbolic algorithms/programs, in contrast, defined as processes that manipulate distinct, typed
entities according to explicit rules and relations, can have the benefit of consistency, transparency,
and generalization when compared to their neural counterparts. A concrete example of a symbolic
algorithm is a computer program, where the variables are abstract, mutable entities, able to represent
many different values, and these variables are processed by well defined functions. Human designed
symbolic systems, however, can lack the expressivity and performance of NNs. This is apparent in
the field of natural language processing where neural architectures trained on vast amounts of data
(Vaswani et al., 2017; Brown et al., 2020; Kaplan et al., 2020) have swept the field, surpassing the pre-
existing symbolic approaches. Furthermore, there are many existing theories that posit the necessity
of algorithmic, symbolic, processing for higher level cognition (Do & Hasselmo, 2021; Fodor &
Pylyshyn, 1988; Fodor, 1975; 1987; Newell, 1980; 1982; Pylyshyn, 1980; Marcus, 2018; Lake et al.,
2017). While the aforementioned successes of neural systems may call such cognitive claims into
question, it might be argued that neural systems actually implement such symbolic algorithms; or,
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Figure 1: Visual depiction of different architecture’s solutions achieving the same accuracy on the
same numeric equivalence task. The rectangles represent token types for a task in which the T token
indicates that the model must produce the same number of Rs as it witnessed Ds, and must end
the sequence with an EOS (see Methods for more details). The thought bubbles represent causally
discovered, neural variables encoded within subspaces of the models’ representations. The recurrent
models encode a mutable count that increments up and then back down to indicate the end of the
task. Transformers learn a solution in which they recompute the task relevant information from the
context in their attention at each step in the sequence. All NoPE transformers align with the displayed
solution, where they assign opposite numeric values to the D and R tokens and then recompute their
sum in the attention mechanism at each step in the sequence, knowing to stop when the difference
equals 0. RoPE transformers trained on a variant of the task that breaks number-positional correlations
also align to this specific solution.

they may approximate them well enough that seeking to find the most aligned symbolic algorithm
would be a powerful step toward an accessible, unified understanding of the complex neural behavior.
This approach of seeking to characterize the mechanisms of a NN-based system in terms of the most
aligned symbolic algorithm is, in some sense, the goal of most cognitive science, neuroscience, and
mechanistic interpretability.

In this work, we narrow our focus to numeric cognition and ask, how we can understand neural
implementations of numeric concepts at the level of symbolic algorithms? Numeric reasoning has the
advantage of being well studied in humans of different ages and with different numeric experience,
providing a powerful domain for comparisons between BNNs and ANNs (Di Nuovo & Jay, 2019).
We focus on a numeric equivalence task that was used to test the numeric abilities of humans whose
language lacks explicit number words (Gordon, 2004). The task is formulated as a sequence of tokens,
requiring the subject to produce the same number of response tokens as a quantity of demonstration
tokens initially observed at the beginning of the task. This task is interesting for computational
settings because the training labels vary in both type and length, and the numeric structures of interest
are never explicitly labeled. Similar versions of this task have also used in previous theoretical and
computational work (El-Naggar et al., 2023; Weiss et al., 2018; Behrens et al., 2024). These works
provide a platform to expand upon in order to understand how to unify seemingly disparate systems.

What sorts of representations do ANNs use to solve such a task and how do they arrive at these
representations? Do the networks represent numbers in a unified number system? Do they use
different solutions for different situations? Do the answers to these questions change over the course
of training, and do the answers vary based on task and architectural details? How can we unify these
solutions in satisfying ways for cognitive scientists, neuroscientists, and computer scientists alike?
We wish to understand the degree to which a neural system might implement a mutable, abstract
numeric variable, similar to the kind we might assign to an allocated storage location in a computer
program.

In this work, we pursue these interests by training recurrent and attention based ANNs on Next Token
Prediction (NTP) tasks and perform both causal and correlative analyses to understand their neural
solutions. Our contributions are as follows:

1. We find causal alignments between neural variables (subspaces of the activations) and
symbolic/causal variables from a counting program that increments and decrements a count
variable.
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2. We show that transformer architectures solve the task by referencing and recomputing
information from the context at each step in the sequence, contrasted against the recurrent
solution of storing a cumulative, Markovian state.

3. We show the importance of finding aligned neural subspaces for causal interventions, rather
than causally intervening directly on activations.

4. We show that the recurrent models’ alignment to the counting program can be strongly
influenced by task details that are seemingly unrelated to the underlying numeric principles.

5. We show that the symbol-like neural variables are graded, with inferior interchangeability
between larger numbers and between numbers that have a greater difference in magnitude.

6. We examine the neural variables over the course of training to find a correlation between
task accuracy and strength of the alignment.

7. Lastly, we show an effect of model size, where models of minimal size have a greater degree
of gradience in their alignment, while larger models have more precise neural variables.

We use these results to encourage use of multiple interpretability tools for any representational
analysis, to highlight functional differences that might emerge from architectural constraints like
Markovian states vs attention based structures, and to highlight the varying degrees of gradience in
neural implementations of causal variables—adding to discussions on mechanistic interpretability.

2 RELATED WORK

We wish to highlight the importance of using causal manipulations for interpreting neural functions in
this work. Causal inference broadly refers to methods that isolate the particular effects of individual
components within a larger system (Pearl, 2010). An abundance of causal interpretability variants
have been used to determine what functions are being performed by the models’ activations (or
circuits) (Olah et al., 2018; 2020; Wang et al., 2022; Geva et al., 2023; Merrill et al., 2023; Bhaskar
et al., 2024; Wu et al., 2024). Vig et al. (2020) is a recent review that provides an integrative review
of the rationale for and utility of causal mediation in neural model analyses. We rely heavily on DAS
for our analyses. This method can be thought of as a specific type of activation patching (also referred
to as causal tracing) (Meng et al., 2023; Vig et al., 2020). DAS mainly differs from the other methods
in that it uses a learned rotation matrix to target a specific subspace for the substitutions.

Many publications explore ANNs’ abilities to perform counting tasks (Di Nuovo & McClelland,
2019; Fang et al., 2018; Sabathiel et al., 2020; Kondapaneni & Perona, 2020; Nasr et al., 2019;
Zhang et al., 2018; Trott et al., 2018). Our tasks and modeling paradigms differ from many of these
publications in that numbers are only latent in the structure of our tasks without explicit teaching of
distinct symbols for distinct numeric values. El-Naggar et al. (2023) provided a theoretical treatment
of Recurrent Neural Network (RNN) solutions to a parentheses closing task, and Weiss et al. (2018)
explored Long Short-Term Memory RNNs (LSTMs) (Hochreiter & Schmidhuber, 1997) and Gated
Recurrent Units (GRUs) (Cho et al., 2014) in a similar numeric equivalence task looking at the
activations. These works showed correlates of a magnitude scaling solution in both theoretical and
practically trained ANNs. Our work builds on their findings by using causal methods for our analyses,
and by expanding the models considered. Lastly, we mention Behrens et al. (2024), who explored
transformer counting solutions in a task similar to ours. Our work builds upon their findings by
including positional encodings in our transformers and providing causal interventions.

3 METHODS

In this work, we train models on numeric equivalence tasks and then use interpretability methods
such as Distributed Alignment Search (DAS) (Geiger et al., 2021; 2023) to understand the manner in
which the models solve the task.

3.1 NUMERIC EQUIVALENCE TASKS

Each task we consider is defined by varying length sequences of tokens. Each sequence starts with a
Beginning of Sequence (BOS) token and ends with an End of Sequence (EOS) token. Each sequence
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Figure 2: The activation values for each neuron at each step in the trial with a target count of 15 for
individual models. Values are averaged over 15 trials. We highlight the specific neurons used in a
causal intervention described in Sections 3.5 and 4.1.
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Figure 3: (a) and (b) Theoretical neural solutions to the numeric tasks. The purple arrows represent
incoming demo tokens, the darker arrows indicate the trigger token, the lighter colored arrows indicate
increments to the response tokens, the green dot indicates the starting point. (d) and (e) show the
first two principal components of a Same-Object and Multi-Object GRUs. Multiple trajectories are
shown, each point is a projected latent state in a trajectory. The lines trace individual trajectories.
(See Appendix 17 and 15 for expanded details.) (c) and (f) show the attention weights for different
transformers in the Multi-Object Task (see Supplement A.6 for details).

is defined by a uniformly sampled target quantity from the inclusive range of 1 to 20. The sequence is
constructed as the combination of two phases. The first phase, called the demonstration phase (demo
phase), starts with the BOS token and continues with a series of demo tokens equal in quantity to the
sampled target quantity. Following the demo tokens is the Trigger token (T), indicating the end of
the demo phase and the beginning of the response phase (resp phase). The resp phase consists of
a series of resp tokens equal in number to target quantity. The EOS token follows the resp tokens,
denoting the end of the sequence.

During the initial model training, we include all tokens in the autoregressive loss. During model
evaluation and DAS trainings, we only consider tokens in the resp phase—which are fully determined
by the demo phase. During model trainings, we hold out the target quantities 4, 9, 14, and 17. A trial
is considered correct when all resp tokens and the EOS token are correctly predicted by the model
after the trigger. We include three variants of this task differing only in their demo and resp token
types.

Multi-Object Task: there are 3 demo token types {D1, D2, D3} with a single response token type,
R. The demo tokens are uniformly sampled from the 3 possible token types. An example
sequence with a target quantity of 2 could be: "BOS D3 D1 T R R EOS"

Single-Object Task: there is a single demo token type, D, and a single response token type, R. An
example with a target quantity of 2 is: "BOS D D T R R EOS"

Same-Object Task: there is a single token type, C, used by both the demo and resp phases. An
example with a target quantity of 2 would be: "BOS C C T C C EOS".
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3.2 MODEL ARCHITECTURES

The recurrent models in this paper consist of Gated Recurrent Units (GRUs) (Cho et al., 2014),
and Long Short-Term Memory networks (LSTMs) (Hochreiter & Schmidhuber, 1997). These
architectures both have a Markovian, hidden state vector that bottlenecks all predictive computations
following the structure:

ht+1 = f(ht, xt) (1)

x̂t+1 = g(ht+1) (2)

Where ht is the hidden state vector at step t, xt is the input token at step t, f is the recurrent function
(either a GRU or LSTM cell), and g is a multi-layer perceptron (MLP) used to make a prediction,
denoted x̂t+1, of the token at step t+ 1. We contrast the recurrent architectures against transformer
architectures (Vaswani et al., 2017; Touvron et al., 2023; Su et al., 2023) in that the transformers use
a history of input tokens, Xt = [x1, x2, ..., xt], at each time step, t, to make a prediction:

x̂t+1 = f(Xt) (3)

Where f now represents the transformer architecture. We show results from 2 layer, single attention
head transformers that use RoPE positional encodings (Su et al., 2023). Refer to Supplement A.4
and Figure 7 for more model and architectural details. We consider transformers with No Positional
Encodings (NoPE) in Supplemental section A.4. Except for in the training curves in Figure 5, we
first train the models to >99.99% accuracy on their respective tasks before performing analyses.
The models are evaluated on 15 sampled sequences of each of the 16 trained and 4 held out target
quantities. We train 6 model seeds for each training condition. Model seeds that failed to achieve
this standard were dropped from the analyses, including 3 model seeds from the LSTM models in
the Same-Object task and one seed from the transformer models in each of the Single-Object and
Same-Object tasks.

3.3 SYMBOLIC PROGRAMS

In this work, we examine the alignment of 3 different symbolic programs to the models’ distributed
representations.

1. Up-Down Program: uses a single numeric variable, called the Count, to track the difference
between the number of demo tokens and resp tokens at each step in the sequence. It also
contains a Phase variable to determine whether it is in the demo or resp phase. The program
ends when the Count is equal to 0 during the resp phase.

2. Up-Up Program: uses two numeric variables—the Demo Count and Resp Count—in
addition to a Phase variable to track quantity at each step in the sequence. This program
increments the Demo Count during the demo phase and increments the Resp Count during
the resp phase. It ends when the Demo Count is equal to the Resp Count during the resp
phase.

3. Context Distributed (Ctx-Distr) Program: queries a history of inputs at each step in the
sequence to determine when to stop rather than encoding a cumulative quantity variable.
A more specific version of this program (that appears to emerge under some conditions)
is is one in which the program assigns a value of 1 to each demo token and a -1 to each
resp token (or visa-versa) and computes their combined sum at each step in the sequence to
determine the count. This program knows to stop when the sum is 0.

We include Algorithms 1, 2, and 3 in the supplement which show the pseudocode used to implement
the Up-Down, Up-Up, and Ctx-Distr programs in simulations. Refer to Figure 1 for an illustration of
the Up-Down strategy and the more specific version of the Ctx-Distr strategy that is only observed in
some transformers.

It is important to note that there are an infinite number of causally equivalent implementations of
these programs. For example, the Up-Down program could immediately add and subtract 1 from
the Count at every step of the task in addition to carrying out the rest of the program as previously
described. We do not discriminate between programs that are causally indistinct from one another in
this work.
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3.4 DISTRIBUTED ALIGNMENT SEARCH (DAS)

DAS is a hypothesis testing framework for finding alignments between distributed systems and
symbolic programs/algorithms (also referred to as causal abstractions) by performing interchange
interventions (equivalently referred to as causal interventions, patches, or substitutions) (Geiger et al.,
2021; 2023). For all DAS experiments, we freeze the model weights before performing the analysis.

In general, DAS measures the degree of alignment between the best subspace of a distributed model’s
representations with the variables from a specified symbolic program. The method uses causal
interventions to both train the alignment and to make claims about the degree of alignment. For a
given variable from the symbolic program, DAS learns an orthogonal rotation matrix,R ∈ Rm×m,
that orients a subspace of the distributed representations along a subset of the dimensions in the
representation, allowing the subspace to be freely interchanged between representations. The method
relies on the notion of counterfactual behavior to train the rotation matrix. For a given symbolic
program, we know what the program’s behavior should be after performing a causal intervention.
This counterfactual behavior can be used as the training signal for the rotation matrices. The matrices
are trained to convergence and are then validated on unseen causal interventions to determine the
success of the alignment.

Concretely, we uniformly sample a time point from two separate sequences respectively. These time
points are t for what we will call the target sequence and u for the source sequence, where target
refers to the sequence and representations that will be intervened upon, and source refers to the
sequence and representations that will be harvested from for the intervention. We run the model on
each sequence until time point t and u respectively. We then take the latent representations from
a prespecified layer in the model at these points t and u. We refer to these representations as the
target and source vectors, htrg

t ∈ Rm and hsrc
u ∈ Rm, where m is the number of neurons in each

distributed representation. We then rotate htrg
t and hsrc

u usingR resulting in rtrgt and rsrcu , and then
we replace a pre-specified number of dimensions in rtrgt with the same dimensions from rsrcu . Lastly
we apply the inverse of the rotation to rtrgu resulting in a new vector, denoted hv

t . This can be written
formally as:

hv
t = R−1((1−D)Rhtrg

t +DRhsrc
u ) (4)

Where D ∈ Rm×m is a diagonal, binary matrix used to isolate the desired set of dimensions to
replace. In this work, we pre-specify the number of non-zero entries in D to be half of m. The
indices of these non-zero dimensions in D are unimportant as the orthogonal matrix can equivalently
learn each basis in any row order. Finally, we discard hsrc

u and allow the model to continue making
token predictions from point t in the target sequence using hv

t . We use the counterfactual behavior
(tokens) of the symbolic program as the training sequence in the autoregressive loss to train the
rotation matrix.

Once our rotation matrix has converged, we can evaluate the quality of the alignment using the
accuracy of the model’s predictions on the counterfactual outputs in held out causal interventions.
This accuracy has been referred to as the Interchange Intervention Accuracy (IIA) in previous work
(Geiger et al., 2023).

For the LSTM architecture, we perform DAS on a concatenation of the h and c recurrent state vectors.
In the GRUs, we operate on the recurrent hidden state. In the transformers, we operate on the hidden
state following the first transformer layer (see Figure 7). Unless otherwise stated, we use 10000
intervention samples for training and 1000 samples for validation and testing. We uniformly sample
target quantities and intervention time points, t and u, for both the original and source sequences
in the training, validation, and testing sets. We orthogonalize the rotation matrix using PyTorch’s
orthogonal parameterization with default settings. We train the rotation matrix for 1000, with a batch
size of 512, selecting the checkpoint with the best validation performance for analysis. We use a
learning rate of 0.003 and an Adam optimizer.

3.5 ADDITIONAL INTERVENTIONS

A sufficient experiment to demonstrate the lack of use of a cumulative count variable is to look
for unchanged behavior after performing a full activation vector substitution on relevant hidden
representations. Concretely, one of our tests for the Ctx-Distr is to replace a full activation vector at
time step t with the full activation vector at time step u from a different set of inputs. We provide

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 4: Interchange intervention accuracy (IIA) on variables from different symbolic programs for
different tasks faceted by architecture type. The displayed IIA in the Up-Down program is taken
from the Count variable. The IIA in the Up-Up program is taken as the better performing of the two
possible count variables for each model type respectively. All IIA measurements show the proportion
of trials in which the model successfully predicts all counterfactual R and EOS tokens following a
causal intervention.

further detail in Supplement A.5 as to why this experiment is sufficient for the claim. We trivially
apply these interventions on the recurrent hidden states in the RNNs, and we apply these interventions
to the hidden states from Layer 1 in the transformer architectures. If the model is using the Ctx-
Distr program, we would expect the models’ subsequent token predictions to be unaffected by this
intervention. We include a further DAS analysis to align the Last Value variable in the Ctx-Distr
program (representing the increment value of the previous input token). These alignments are applied
to the embeddings in the GRUs and to the embeddings that are projected into the k and v vectors in
the Transformers. We leave the pre-query embeddings unperturbed.

We also include an exploration of direct substitution of individual artificial neuron activation values
in the Multi-Object trained models. In these experiments, we directly substitute the activation value
of a specific neuron at time step t with the value of the same neuron at time step u from a different
sequence. We include one additional activation intervention on the activations of neurons 12 and
18 from the LSTM shown in Figure 2, where we substitute both values in the interventions. In all
direct interventions detailed in this section, we evaluate the model’s IIA on counterfactual behavior
assuming a transfer of the Count.

4 RESULTS

4.1 CAUSAL ABSTRACTIONS

We first turn our attention to Figure 4 where we can see DAS performance as a function of the causal
abstraction used in the alignment. In the recurrent models (GRUs and LSTMs), we see that the most
aligned causal abstraction is the Up-Down program. The results are compared against the Up-Up
program and the Ctx-Distr program which have significantly lower, albeit non-zero IIAs. We use this
as evidence in favor of the interpretation that the recurrent models develop a count up, count down
strategy to track quantities within the task.

To determine how the transformer architectures were performing the task, we first looked at the
attention weights for both of the two transformer layers (see Figures 3 and 7). The transformers with
positional encodings gave surprisingly little attention to the resp tokens when producing resp and
EOS tokens. This pattern of attention is supportive of the idea that they are not encoding a cumulative
state variable of the count within each time step. As predicted, swapping two non-terminal hidden
states within the same phase did not appreciably change the position of the models’ EOS token
predictions. We can see the results of these interventions in Figure 4. We include an additional DAS
analysis on the Last Value variable from the specific form of the Ctx-Distr program in the RoPE
Transformers and GRUs. The resulting IIA for the Multi-Object transformers was a value of 0.827.
The relatively low IIA is supportive of the notion that the Multi-Object transformers partially rely on
a positional readout to solve the task. We introduce a Variable-Length variant of the Multi-Object

7
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Figure 5: Left: Interchange intervention accuracy (IIA) on the Up-Down program in the GRU models
on the Multi-Object task as a function of increasing hidden state dimensionality (model size). We
see that the mean of the IIA increases as the number of dimensions increases while the variability
decreases with increasing model size. Right: Both task accuracy and IIA (symbolic alignment) on
held out data over the course of training for different model sizes (also GRUs on the Multi-Object
task). We see a correlation between the first epoch with non-zero in both the IIA and task accuracy;
the first non-zero epoch occurs more consistently, earlier with greater model size; and we see greater
variability in the IIA with smaller model sizes.

task where non-counting tokens can appear with some probability at each step in the demo phase to
break count-position correlations. These Variable-Length transformers achieved an IIA of 0.960 (see
Figure 10). In addition, we provide a theoretical analysis with simulations of No Positional Encoding
(NoPE) transformers in Supplement A.4. We use these results to support the claims in Figure 1.

We include an analysis involving the direct substitution of activation values in the models’ representa-
tions. Of all the neurons and models we analyzed, the best IIA was 0.399 in these interventions. This
IIA was achieved when transferring the activations for neurons 12 and 18 in the LSTM model shown
in Figure 2. We use Figure 2 to highlight the importance of learning the rotation in DAS. Interpreting
and intervening on the activations directly is a difficult task that can be misleading.

4.2 MODEL DIMENSIONALITY AND LEARNING TRAJECTORIES

We can see from Figure 5 that although many model sizes can solve the Multi-Object task, increasing
the number of dimensions in the hidden states of the GRUs improves IIA in alignments with the
Up-Down program. We can also see in Figure 6 that the larger models tend to have less graded
alignments. We examine the symbolic alignments over the course of training in Figure 5. Of note
is the correlation between alignment and performance. This is especially pronounced in the larger
models. And we note the relatively flat curves of the alignment trajectories after the models solve the
task.

4.3 TASKS

An interesting result is the impact of demonstration token type on the resulting alignment of the
recurrent models with the Up-Down program. We can see from Figure 4 that recurrent models trained
on the Same-Object task—in which the demo tokens are the same type as the resp tokens—have
poor alignment with any of the proposed symbolic programs. We use this result to highlight the
significance of the unified, interchangeable numeric representations found in the Multi-Object and
Single-Object tasks.

We present a number of theoretical neural solutions to the counting task in Figure 3 as examples of
possible neural solutions to each of the tasks. The Overlap Solution, shown in blue in Panel 3(a), is an
example of how some solutions may fail to align with the Up-Down solution. In the Overlap Solution,
we see that the Count is entangled with the phase of the trial due to the overlap of the trajectory on
the vertical axis. In this model, we would be unable to distinguish between a count of n in the demo
phase and a count of n+ 1 in the response phase at the overlapping points in the trajectories. We do
not make claims in this work about how the Same-Object models are solving the task.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

4.4 SYMBOLIC GRADIENCE

We now shift towards a more nuanced perspective of symbolic alignments with neural systems, where
we highlight the graded nature of the neural symbols. We can see from Figure 6 that the GRU models
trained on the Multi-Object task have worse IIA when the quantities involved in the intervention
are larger, and when the intervention quantities have a greater absolute difference. We point out
that the task training data forces the models to have more experience with smaller numbers, as they
necessarily interact with smaller numbers every time they interact with larger numbers. This is
perhaps a causal factor for the more graded representations at larger numbers. The DAS training data
suffers from a similar issue, where we use a uniform sampling of the target quantities that define the
training sequences and then we uniformly sample the intervention indices from these sequences. This
results in a disproportionately large number of training interventions containing smaller values.

5 DISCUSSION/CONCLUSION

In this work we used causal methods to demonstrate the existence of symbol-like variables within NN
solutions to numeric equivalence tasks. We showed that these numeric neural variables emerge purely
from an NTP objective and represent abstract information that is only latent in the task structure.
These findings are a proof of principle that neural systems do not need explicit exposure to discrete
numeric symbols for symbol-like representations of number to emerge. Nor do neural systems need
built-in counting principles to inform their numeric learning.

0 5 10 15 20
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0.4

0.6

0.8

1.0

IIA Source Count
4
8
12
16
20

0 5 10 15 20
Intervention Count Difference

0.4
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IIA Hidden Dim.
8
16
20
32
48
96

Figure 6: Left: DAS IIA where the x-axis shows the existing count in the original sequence before
the interchange intervention. The colors denote the counts that replace the original count after the
intervention. The data is from GRUs trained on the Multi-Object task of all reported sizes that are
listed in in the right panel. The cyan, dashed line represents the mean IIA, highlighting the greater
number of samples for the lower number interventions. Right: DAS IIA where the x-axis shows the
absolute difference in magnitude between the original, pre-existing count and the source count (the
count used to replace the original). The different dashes indicate different model sizes. We can see
from both panels that the contents of the interventions affect the IIA in a relatively smooth fashion.

We also demonstrated differences in the high-level solutions used by different model architectures
in different tasks. Namely, we showed that increasing the dimensionality of the recurrent models
improved their symbolic alignment, we showed that transformers solved the tasks by recomputing the
relevant information at each step in the sequence—contrasted against the cumulative count variables
discovered in the recurrent models—and we showed that different solutions arise in the Same-Object
Task compared to the other two. An interesting phenomenon in the LLM literature is the effect
of model scale on performance (Brown et al., 2020; Kaplan et al., 2020). Although our scaling
results are for GRUs on toy tasks, they are provocative for understanding why size might improve
autoregressive results. Perhaps increased dimensionality allows the models to find more symbol-like,
disentangled solutions when solving their next-token prediction tasks. This is consistent with the
early learning and strong correlation between performance and symbolic alignment demonstrated
in larger models in Figure 5. We conjecture the possibility that this result can be explained by the
lottery ticket hypothesis (Frankle & Carbin, 2019) combined with lazy learning dynamics (Jacot et al.,
2020). Perhaps the majority of what these models learn are linear functions of their initial features,
and increasing the dimensionality of the model increases the number of potential pathways/features
that the model can use to solve the task.
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We are unsure if the "stateless", time-distributed solution exhibited by the transformers generalizes
beyond the counting tasks presented in this work. It is possible that this finding is representative of
a more general principle—that transformers avoid solutions that use cumulative, Markovian state
variables. We provide an analysis in Supplement A.4 of a one-layer transformer without positional
encodings trained on a variant of the Single-Object task without a BOS token, and without a T token.
We experimentally and mathematically support the idea that this minimal model solves the task by
assigning opposite numeric values to the demo and resp tokens and averaging their values at each step
in the sequence. Although it seems as though the transformers presented in Figure 4 might rely in part
on a positional readout from the relatively low alignment with the Last Value variable in Figure 10,
we managed to get a much higher alignment when using transformers trained on a variant of the task
that breaks correlations between the position and count of the sequence (see Supplement A.6). We
find it worth noting that the Ctx-Distr solution exhibited by the transformers lends itself to the type of
solutions that might be predicted by RASP-L (Zhou et al., 2023).

Models trained on the Same-Object Task failed to align with any of the symbolic algorithms that
we presented in this paper. To address this, we included Figure 3 showing the first two principal
components of a Same-Object GRU model over different trial trajectories. We also included a number
of theoretical models to assist conceptualization of why some symbolic algorithms might align with
the neural solutions whereas others would not. We note that there are symbolic programs that use
memorization that could trivially align with each of the recurrent models. One such solution might
involve a single variable that encodes each possible Count-Phase combination. In this case, the
alignment would simply learn to transfer the complete state at each causal intervention. As mentioned
earlier in this work, we are only concerned with solutions that are causally distinct from one another.
We leave a more thorough, causal analysis of the Same-Object models to future work.

An important aspect of our work is demonstrating the potential for misleading conclusions in the
absence of causal analysis methods. We can see this in Figure 2 where the activations for the LSTM
might be mistaken for being sufficient to change the model’s count. Similarly, the PCA projections
in Figure 3 might fail to provide predictions of neural variable interchangeability, and the attention
weights might mislead on token value interchangeability. We note, however, that these non-causal
techniques are fruitful for exploration and conceptualization, complementing causal methods.

We now expand upon the learning trajectories displayed in Figure 5. We can see from the performance
curves that both the models’ task performance and alignment performance begin a transition away
from 0% at similar epochs and plateau at similar epochs. This result can be contrasted with an
alternative result in which the alignment curves significantly lagged behind the task performance of
the models. Alternatively, there could have been a stronger upward slope of the IIA following the
initial performance jump. In these hypothetical cases, a possible interpretation could have been that
the network first develops more complex solutions or unique solutions for many different input-output
pairs, and subsequently unifies them over training. The pattern we observe instead is consistent with
the idea that the networks are biased towards the simplest, unified strategies from the beginning of
training. Perhaps our result is to be expected in light of works like Saxe et al. (2019) and Saxe et al.
(2022) which show an inherent tendency for NNs trained via gradient descent to find solutions that
share network pathways. This would explain the driving force towards the demo and response phases
sharing the same representation of a Countvariable.

Lastly, we demonstrated that the symbol-like, neural subspaces illuminated by DAS are not always
perfectly symbolic, often exhibiting a smooth, graded influence from the content of the variables
being intervened upon. We interpret these results as a reminder that representations in distributed
systems exist on a continuum despite seemingly discrete, symbolic performance on tasks. These
results have an analogy to children’s number cognition in which children may appear to possess a
symbol-like understanding of exact numbers and their associated principles, but when probed deeper,
the symbol-like picture falls apart (Wynn, 1992; Davidson et al., 2012). Perhaps the graded nature of
the neural representations reinforces the utility of thinking about network solutions as trajectories
in a dynamical system, where the values along a set of dimensions are analogous to the values of
high-level, causal variables. We use our findings about symbolic gradience as a reminder that although
NNs may discover approximations to interpretable, symbol-like solutions, their representations are
still ultimately graded—adding nuance to the effort to find in them exact implementations of any
symbolic computer program.
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A APPENDIX / SUPPLEMENTAL MATERIAL

A.1 ADDITIONAL FIGURES
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Figure 7: Diagram of the main transformer architecture used in this work. The white rectangles
represent activation vectors. The arrows represent model operations. Unless otherwise stated, all
interchange interventions were performed on the Hidden State activations from Layer 1 or the
Residual Stream 0 within Layer 1 for the key and value projections. All normalizations are Layer
Norms (Ba et al., 2016).
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Figure 8: Left: The model performance on the tasks. This result includes the Multi-Object, Single-
Object, and Same-Object tasks. Each target quantity includes 15 sampled sequences (even when
only one configuration exists for that target quantity). 3 model seeds were dropped from the LSTM
models in the Same-Object task due to lower than 99% accuracy. One seed was dropped from the
transformer models in each the Single-Object and Same-Object tasks for the same reason. Right: The
GRU performance on the tasks facetted by model size (hidden dimensionality). This result is only for
GRUs train on the Multi-Object task.
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Figure 9: Interchange intervention accuracy (IIA) on variables from different symbolic programs for
different tasks faceted by architecture type. The y-axis shows the proportion of trials in which the
model predicts all counterfactual tokens correctly after a causal intervention for the corresponding
variable on held out data.

A.2 MODEL DETAILS

All artificial neural network models were implemented and trained using PyTorch (Paszke et al., 2019)
on Nvidia Titan X GPUs. Unless otherwise stated, all models used an embedding and hidden state size
of 20 dimensions. To make the token predictions, each model used a two layer multi-layer perceptron
(MLP) with GELU nonlinearities, with a hidden layer size of 4 times the hidden state dimensionality
with 50% dropout on the hidden layer. The GRU and LSTM model variants each consisted of a single
recurrent cell followed by the output MLP. Unless otherwise stated, the transformer architecture
consisted of two layers using Rotary positional encodings (Su et al., 2023). Each model variant used
the same learning rate scheduler, which consisted of the original transformer (Vaswani et al., 2017)
scheduling of warmup followed by decay. We used 100 warmup steps, a maximum learning rate of
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Figure 10: Interchange intervention accuracy (IIA) comparing the Ctx-Distr results from the GRU and
Transformer architectures displayed in Figure 4 with the DAS alignment to the Last Value variable.
We include results from a transformer trained on the Variable-Length version of the Multi-Object
Task. The Ctx-Distr interventions consist of full replacements of the hidden states to determine the
degree to which the models accumulate a state encoding of the important information for the task.
The Last Value variable is a value of +1, -1, or 0 assigned to each incoming token. We apply DAS on
the model embeddings, and only to the embeddings leading into the key and value projections in the
transformers. We can see that although the Variable-Length and Multi-Object transformers both use
an anti-Markovian solution (they avoid using a cumulative state) as demonstrated by the Ctx-Distr
interventions, the Variable-Length transformers align much better to the Last Value variable. This is
consistent with an interpretation in which the Multi-Object transformers rely, to some degree, on a
positional encoding readout. This reliance is broken when the task breaks the correlation between
position and count. We include the GRU results to show that the GRUs also, to some degree, assign a
numeric value to each incoming embedding independent of the phase.

0.001 , a minimum of 1e-7, and a decay rate of 0.5. We used a batch size of 128, which caused each
epoch to consist of 8 gradient update steps.

A.3 DAS TRAINING DETAILS

A.3.1 ROTATION MATRIX TRAINING

To train the DAS rotation matrices, we applied PyTorch’s default orthogonal parametrization to a
square matrix of the same size as the model’s state dimensionality. PyTorch creates the orthogonal
matrix as the exponential of a skew symmetric matrix. In all experiments, we selected the number
of dimensions to intervene upon as half of the dimensionality of the state. We chose this value
after an initial hyperparameter search that showed the number of dimensions had little impact on
performance between 5-15 dimensions. We sampled 10000 sequence pairs and for each of these
pairs, we uniformly sampled corresponding indices to perform the interventions. We excluded the
BOS, and EOS tokens from possible intervention sample indices. When intervening upon a state in
the demo phase, we uniformly sampled 0-3 steps to continue the demo phase before changing the
phase by inserting the trigger token. We used a learning rate of 0.003 and a batch size of 512.

A.3.2 SYMBOLIC PROGRAM ALGORITHMS

A.4 SIMPLIFIED TRANSFORMER

The self-attention calculation for a single query qr ∈ Rd from a response token, denoted by the
subscript r, is as follows:

Attention(qr,K, V ) = V
(
softmax(

K⊤qr√
d

)
)
=

n∑
i=1

e
q⊤r ki√

d∑n
j=1 e

q⊤r kj√
d

vi =

n∑
i=1

sri∑n
j=1 s

r
j

vi (5)
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Algorithm 1 One sequence step of the Up-Down Program

q ← Count
p← Phase
y ← input token
if y == BOS then ▷ BOS is beginning of sequence token

q ← 0, p← 0
return sample(D) ▷ sample a demo token

else if y ∈ D then ▷ D is set of demo tokens
q ← q + 1
return sample(D)

else if y == T then ▷ T is trigger token
p← 1

else if y == R then ▷ R is response token
q ← q − 1

end if
if (q == 0) & (p == 1) then

return EOS ▷ EOS is end of sequence token
end if
return R

Algorithm 2 One sequence step of the Up-Up Program

d← Demo Count
r ← Resp Count
p← Phase
y ← input token
if y == BOS then ▷ BOS is beginning of sequence token

d← 0, r ← 0, p← 0
return sample(D) ▷ sample a demo token

else if y ∈ D then ▷ D is set of demo tokens
d← d+ 1
return sample(D)

else if y == T then ▷ T is trigger token
p← 1

else if y == R then ▷ R is response token
r ← r + 1

end if
if (d == r) & (p == 1) then

return EOS ▷ EOS is end of sequence token
end if
return R
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Algorithm 3 One sequence step of the specific Ctx-Distr Program

v ← list of previous values excluding the most recent step
ℓ← Last Value ▷ The value of the most recent token
p← Phase ▷ 0 indicates the demo phase, 1 is the response phase
y ← input token

v.append(ℓ)
s← SUM(v)
if y == BOS then ▷ BOS is beginning of sequence token

ℓ← 0, p← 0
return sample(D) ▷ sample a demo token

else if s ≤ 0 and p == 1 then ▷ Sum is 0 or less in the response phase
return EOS ▷ EOS is end of sequence token

else if y == T or y == R then ▷ T is trigger token, R is response token
p← 1
ℓ← −1
return R

else if y ∈ D then ▷ D is set of demo tokens
ℓ← 1

end if

if p == 1 then
return R

else
return sample(D)

end if
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Figure 11: Attention weights for a single transformer model with two layers and using rotary
positional encodings. Queries are displayed on the vertical axis in order of their appearance starting
at the top. Keys are displayed on the horizontal axis starting from the left. Queries are only able to
attend to themselves and preceding keys.

Where d is the dimensionality of the model, n is the sequence length, K ∈ Rd×n is a matrix of

column vector keys, V ∈ Rd×n is a matrix of column vector values, and sri = e
q⊤r ki√

d , using r to
denote the token type that produced q. We refer to sri vi as the strength value of the ith token for the
query qr.
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Figure 12: Attention weights for a single transformer model seed with two layers and no positional
encodings (NPE). Queries are displayed on the vertical axis in order of their appearance starting at
the top. Keys are displayed on the horizontal axis starting from the left. Queries are only able to
attend to themselves and preceding keys.
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Figure 13: Left: Attention weights for a single transformer model seed with one layer and no
positional encodings. Right: Attention weights for a single transformer seed with one layer and no
positional encodings trained without the BOS and trigger token types. In both figures, queries are
displayed on the vertical axis in order of their appearance in the sequence starting at the top. Keys are
displayed on the horizontal axis starting from the left. Queries are only able to attend to themselves
and preceding keys.

In a transformer without positional encodings, each of the queries for the response tokens will produce
equal strength values to one another for a given key-value pair. Thus, under the assumption that the
attention mechanism is performing a sum of the count contributions from each token in the sequence,
we should be able to use the sri vi to increment and decrement the number of tokens the model will
produce for a given sequence in the following way:

IncrementedAttention(qr,K, V ) =
1

srr +
∑n

j=1 s
r
j

(
srrvr +

n∑
i=1

sivi
)

(6)

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Where the subscript r denotes the strength sr and value vr were calculated from a response key-value
pair. Similarly, we can decrement the count using a key-value pair from a demonstration token, D, in
the following way.

DecrementedAttention(qr,K, V ) =
1

srD +
∑n

j=1 s
r
j

(
srDvD +

n∑
i=1

sivi
)

(7)

As a sanity check we use single layer transformers without positional encodings and add and subtract
from the transformer’s count using the strength values as described in this section. We are able to
change the position at which it produces the EOS token with 100% accuracy.

A.5 ADDITIONAL INTERVENTIONS CONTINUED

We detail in this section why our activation transfers are sufficient to demonstrate that the transformers
use a solution that re-references/recomputes the relevant information to solve the tasks at each step
in the sequence. The hidden states in Layer 1 are a bottleneck at which a cumulative counting
variable must exist if it were to use a strategy like the Up-Down or Up-Up programs. This is because
the Attention Outputs of Layer 1 are the first activations that have had an opportunity to cross
communicate between token positions. This means that the representations between the Residual
Stream 1 of Layer 1 up to the Residual Stream 0 of Layer 2 cannot have read off a cumulative state
from the previous token position other than reading off the positional information from the previous
positional encodings. The 2-layer architecture is then limited in that it has only one more opportunity
to transfer information between positions—the attention mechanism in Layer 2. Thus, if a hidden
state at time t were to have encoded a cumulative representation of the count that will be used by the
model at time t+ 1, that cumulative representation must exist in the activation vectors between the
Residual Stream 1 in Layer 1 and the Residual Stream 0 of Layer 2. If it is using such a cumulative
representation, then when we perform a full activation swap in the Layer 1 hidden states then the
resulting predictions should be influenced by the swap. As Figures 4 and 14 indicate, the resulting
transformer predictions are mostly unchanged by the intervention, demonstrating a recomputing of
information at each step in the task.

A.6 VARIABLE-LENGTH TASK VARIANTS

Here we include additional tasks to prevent the transformers with positional encodings from learning
a solution that relies on reading out positional information. We introduce Variable-Length variants of
each of the Multi-Object, Single-Object, and Same-Object tasks. In the Variable-Length versions,
each token in the demo phase has a 0.2 probability of being sampled as a unique "void" token type,
V, that should be ignored when determining the target count of the sequence. The number of demo
tokens will still be equal to the target count when the trigger token is presented. We include these
void tokens as a way to vary the length of the demo phase for a given target count, thus breaking
correlations between positional information and target quantities. As an example, consider the
possible sequence with a target count of 2: "BOS V D V V D T R R EOS".

We show the transformer performance and the IIA for the Ctx-Distr interventions in Figure 14.
Although we do not make strong claims about the manner in which these transformers solve these
new tasks, we do highlight the fact that the transformers can no longer use a direct positional
encoding readout to achieve 100% accuracy. These results are consistent with the hypothesis that the
transformers are using the more specific, summing version of the Ctx-Distr strategy to solve these
tasks, much as the no-positional encoding transformers do.
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Figure 14: Left: The transformer performance on variable length variants of the 3 tasks. Right: The
interchange intervention accuracy using the Ctx-Distr program for the transformer models on the
variable length tasks. In both panels, 4 model seeds were dropped from the models in the variable
length Same-Object task due to lower than 99% accuracy, and one seed was dropped from the variable
length Single-Object task for the same reason.

A.7 PRINCIPLE COMPONENTS ANALYSIS
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Figure 15: Principal Components Analysis of a single GRU model seed including hidden state
representations over 10 trials for each target quantity from 1 to 20 in the Multi-Object task variant.
Green points indicate the start of a plotted trajectory, black points indicate an intermediate step, and
red points indicate the end of a plotted trajectory. The blue line plots a single trajectory from start to
finish with a target quantity of 3. Similarly, the orange and green lines follow single trajectories of 7
and 15 respectively.
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Figure 16: Principal Components Analysis of a single GRU model seed including hidden state
representations over 10 trials for each target quantity from 1 to 20 in the Single Object task variant.
Green points indicate the start of a plotted trajectory, black points indicate an intermediate step, and
red points indicate the end of a plotted trajectory. The blue line plots a single trajectory from start to
finish with a target quantity of 3. Similarly, the orange and green lines follow single trajectories of 7
and 15 respectively.
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Figure 17: Principal Components Analysis of a single GRU model seed including hidden state
representations over 10 trials for each target quantity from 1 to 20 in the Same-Object task variant.
Green points indicate the start of a plotted trajectory, black points indicate an intermediate step, and
red points indicate the end of a plotted trajectory. The blue line plots a single trajectory from start to
finish with a target quantity of 3. Similarly, the orange and green lines follow single trajectories of 7
and 15 respectively.
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