
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

AC-SAMPLER: ACCELERATE AND CORRECT DIFFU-
SION SAMPLING WITH METROPOLIS-HASTINGS ALGO-
RITHM

Anonymous authors
Paper under double-blind review

ABSTRACT

Diffusion-based generative models have recently achieved state-of-the-art per-
formance in high-fidelity image synthesis. These models learn a sequence of
denoising transition kernels that gradually transform a simple prior distribution
into a complex data distribution. However, requiring many transitions not only
slows down sampling but also accumulates approximation errors. We introduce
the Accelerator-Corrector Sampler (AC-Sampler), which accelerates and corrects
diffusion sampling without fine-tuning. It generates samples directly from interme-
diate timesteps using the Metropolis–Hastings (MH) algorithm while correcting
them to target the true data distribution. We derive a tractable density ratio for
arbitrary timesteps with a discriminator, enabling computation of MH acceptance
probabilities. Theoretically, our method yields samples better aligned with the true
data distribution than the original model distribution. Empirically, AC-Sampler
achieves FID 2.38 with only 15.8 NFEs, compared to the base sampler’s FID 3.23
with 17 NFEs on unconditional CIFAR-10. On CelebA-HQ 256×256, it attains
FID 6.6 with 98.3 NFEs. AC-Sampler can be combined with existing acceleration
and correction techniques, demonstrating its flexibility and broad applicability.

1 INTRODUCTION

Diffusion-based generative models (Ho et al., 2020; Sohl-Dickstein et al., 2015; Song et al., 2021a)
have become one of the most popular approaches in recent years due to their strong ability to generate
diverse types of data such as high-fidelity images (Dhariwal & Nichol, 2021; Rombach et al., 2022)
and videos (Ho et al., 2022; Voleti et al., 2022). Building on these models, strong pre-trained variants
have emerged (Rombach et al., 2022; Karras et al., 2022), followed by many studies aiming to further
improve them (Kim et al., 2023; Na et al., 2024; Xu et al., 2023a). In spite of many variations, these
models share a fundamental structure: they start by sampling from a simple prior distribution and
iteratively transform the samples through a series of learned transition kernels to approximate the
complex data distribution. This iterative generation causes two problems. First, the sampling process
is slow due to the large number of kernel transition calculations required (Song et al., 2021b; Zhang
& Chen, 2023). Second, errors can accumulate during the sampling process if the kernel transition
does not accurately reflect the true reverse diffusion process (Xu et al., 2023a).

Speed and accuracy are usually considered separate research topics, as improving both simultaneously
is often challenging. Some approaches for acceleration diffusion sampling (Kim & Ye, 2023;
Zheng et al., 2023) focus on reducing the NFE while maintaining image quality, but they lack
theoretical analysis for converging to the true data distribution. On the contrary, previous correction
methods (Kim et al., 2023; Na et al., 2024; Xu et al., 2023a) maintain or even increase the NFE,
which makes the methods unscalable in real-world services.

To address both challenges, we propose Accelerator-Corrector Sampler (AC-Sampler). It ac-
celerates and corrects the diffusion sampling process without any fine-tuning of the pre-trained
model. Instead of sampling from the prior distribution, AC-Sampler directly proposes samples at
intermediate timesteps, which enables acceleration. Using Metropolis-Hastings correction, these
proposals are guaranteed to theoretically follow the true marginal distribution. Since the pre-trained
model approximates the score function, we can construct an effective proposal distribution using

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Langevin dynamics (Grenander & Miller, 1994). For computing the acceptance probability, we only
train a time-dependent discriminator (Kim et al., 2023; Na et al., 2024), which can be learned at a
much lower cost than the diffusion model itself.

Our contributions are as follows:

• We propose the AC-Sampler, which accelerates diffusion sampling by generating samples
from intermediate timesteps rather than the initial prior distribution. It also corrects the
accumulated error in the sampling process with Metropolis-Hastings (MH) algorithms.

• We provide a theoretical analysis showing that training the discriminator and following the
MH chain in our method leads to a tighter bound on the data distribution compared to that of
a pre-trained diffusion model. Furthermore, we provide a theoretic analysis of the expected
reduction in the number of function evaluations (NFE).

• We validate our theoretical claim through experiments on benchmark datasets and toy
settings, and demonstrate that our method applies effectively to diverse pre-trained models
in both unconditional and conditional settings.

• Our contribution is orthogonal to advances in training-free samplers, so the two gains are
complementary and can be realized simultaneously. Also, the utilize discriminator is simple
and does not require ad-hoc structures on the pretrained diffusion model.

2 RELATED WORK

Due to the high cost of training or fine-tuning pre-trained diffusion models, a growing body of work
focuses on keeping such models fixed and instead accelerating and correcting the sampling process.

Acceleration Methods To reduce the computational burden associated with additional training,
acceleration methods have been developed to speed up the sampling process without modifying
the original diffusion model. DDIM (Song et al., 2021a) reformulates the reverse diffusion as a
deterministic ODE, achieving significant speedups with fewer steps while preserving the pre-trained
network. Building on this foundation, various works have further improved ODE solvers through
high-order numerical methods and exponential integration, leading to significant gains in sampling
efficiency (Liu et al., 2022; Lu et al., 2022a;b; Dockhorn et al., 2022a; Karras et al., 2022; Zhang &
Chen, 2023; Zhao et al., 2023; Zheng et al., 2023).

In parallel, other lines of work have explored fundamentally different perspectives on diffusion
model acceleration. For example, PDS (Ma et al., 2022) treats diffusion sampling as an Markov
Chain Monte Carlo (MCMC) process, incorporating frequency-domain preconditioning to improve
high-frequency details. DLG (Kim & Ye, 2023) formulates the sampling process over the product
space of data and time, enabling joint Langevin-based Gibbs sampling. This sampling process
identifies the intermediate perturbed data with low noise for the initialization of the reverse process,
which shortens the subsequent diffusion trajectory. However, as shown in Appendix A.1, DLG lacks
theoretical convergence guarantees, leaving room for improvement.

Correction Methods Several studies have been conducted to improve the sampling quality of
pre-trained diffusion models. DG (Kim et al., 2023) proposes a correction method using a time-
dependent discriminator when score estimation is inaccurate, thereby improving the accuracy of the
transition kernel. Restart (Xu et al., 2023a) theoretically demonstrates that repeating forward and
backward steps within a fixed time interval [tmin, tmax] in a pre-trained model can reduce sampling
error. DiffRS (Na et al., 2024) aims to sample from the true distribution by applying a rejection
sampling scheme with a time-dependent discriminator. ES (Ning et al., 2024) proposes a training-
free correction schedule to compensate for the scale gap in score norms between the training and
sampling phases. However, there is no theoretical guarantee that simply matching the norms leads to
distributional equivalence. While these methods focus on sampling correction, they do not reduce the
base NFE and may even increase it, leading to slower sampling.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

3 PRELIMINARY

3.1 METROPOLIS-HASTINGS ALGORITHM AND LANGEVIN PROPOSAL

The Metropolis-Hastings algorithm (MH algorithm) (Metropolis et al., 1953; Hastings, 1970) is a
MCMC method used to sample from a target distribution when direct sampling is not possible. It
constructs a Markov chain whose stationary distribution is the target distribution by satisfying the
detailed balance condition. Based on this condition, the algorithm defines an acceptance probability,
which is used to determined whether to accept proposals drawn from a simple proposal distribution.

Given a target distribution q(·) and a proposal distribution pproposal(· | ·), the acceptance probability
for a proposed sample x̃ and current sample x is defined as:

α = min

(
1,

q(x̃) pproposal(x | x̃)
q(x) pproposal(x̃ | x)

)
, (1)

which guarantees that q(·) is the stationary distribution of the Markov chain.

Though the MH algorithm allows to sample from a complex distribution, a poor proposal distribution
leads to slow convergence to the target distribution. To improve mixing and convergence, gradient-
based proposals have been studied (Parisi, 1988; Neal et al., 2011), i.e. the Langevin proposal,
which leverages the gradient of the target distribution. Specifically, the proposal is derived from the
Euler–Maruyama discretization of the overdamped Langevin dynamics (Roberts & Tweedie, 1996).
Formally, with the target distribution q(x), the Langevin proposal is defined as:

x̃ = x+
η

2
∇x log q(x) +

√
η · ϵ, ϵ ∼ N (0, I), (2)

where η is the step size and ∇x log q(x) is the score function of q(x). This method is commonly
referred to as the Metropolis-Adjusted Langevin Algorithm (MALA) (Grenander & Miller, 1994).

3.2 DIFFUSION MODELS

Diffusion models (Ho et al., 2020; Song et al., 2021b) are probabilistic generative models that
approximate data distributions by adding noise and reversing this process. They consist of a forward
process that corrupts data into noise and a reverse process that removes noise to generate samples.

Let q0(x0) denote the true data distribution and pθ0(x0) denote the distribution of generated samples
from the model. In particular, the forward process is a fixed Markov chain where Gaussian noise is
added using a pre-defined variance schedule. This creates a sequence of random variables x1:T :

q1:T |0(x1:T |x0) :=
∏T

t=1 qt|t−1(xt|xt−1), (3)

where each qt|t−1(xt|xt−1) is a Gaussian transition with increasing noise levels. This process
transforms the data distribution into a tractable prior distribution (e.g., standard Gaussian) as t→ T .
The reverse process is modeled as a Gaussian distribution that denoises a prior distribution pT (xT)
iteratively:

p0:T (x0:T) := pT (xT)
∏T

t=1 p
θ
t−1|t(xt−1|xt), (4)

where pθt−1|t is the transition kernel that generate data from prior distribution pT . The model is
trained by maximizing a variational bound on the log-likelihood of the data. In practice, this can be
achieved via denoising score matching loss (Vincent, 2011; Ho et al., 2020), given by:

LDSM(θ) = Et∼U [0,1],x0∼q(x0),xt∼q(xt|x0)

[∥∥sθ(xt, t)−∇xt log qt|0(xt|x0)
∥∥2
2

]
, (5)

With this loss, sθ(xt, t) optimizes to follow the true score ∇xt
log qt(xt). The transition kernel is

parameterized as a Gaussian distribution whose mean is a function of the score function:

pθt−1|t(xt−1|xt) := N (xt−1;µt(xt, s
θ(xt, t)), σ

2
t I), (6)

where σ2
t I denotes time-dependent variance. After training, samples are generated by iteratively

applying the reverse kernel from t = T to t = 0.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 1: Overall figure of AC-Sampler.

Figure 2: FID–NFE graph on uncond.
CIFAR-10: (Top) Correction methods
(Bottom) Acceleration methods.

We assume that we have access to a pre-trained diffusion model1, denoted by θ. Let qt(xt) and pθt (xt)
denote the marginal distributions at timestep t, defined by forward diffusion processes starting from
q0(x0) and pθ0(x0), respectively. Pre-trained diffusion model provides sθ(xt, t) ≈ ∇xt

log qt(xt).
The mean of the transition kernel depends on both xt and the score function sθ(xt, t). Therefore,
we treat the score function and the transition kernel pθt−1|t(xt−1|xt) as equivalent parametrizations,
since both are derived from the same model.

Due to this structure, diffusion models are inherently limited by slow sampling speed from the large
number of transition steps, and by the accumulation of approximation errors in the transition kernels.

4 METHOD

To address the two key challenges previously discussed, we propose AC-Sampler, a novel diffusion
sampling framework. The overall sampling procedure is as follows. First, we perform denoising
from the prior distribution up to a target timestep τ , which serves as the initial sample of the MCMC
chain. Starting from this initial sample, we repeatedly generate new candidates using a score-based
proposal distribution. At each step, MH correction is applied. These steps are performed as described
in Algorithm. 1. After sufficient burn-in period, the resulting samples are corrected to true marginal
distribution, qτ . Finally, each accepted sample is further denoised to obtain the final outputs. The
overall sampling process is illustrated in Fig. 1.

This approach has two advantages. First, samples are created directly at τ without denoising from
T , which enables faster sampling (denoted as Acceleration Gain in Fig. 1). Second, because of MH
correction, the resulting samples follow a true marginal distribution, which yields more accurate
samples(denoted as Correction Gain in Fig. 1). Our method accelerates and corrects the sampling
process without requiring any fine-tuning of the underlying diffusion model. To implement this
process, we require the design of the proposal distribution (Sec. 4.1) and the computation of the
acceptance probability (Sec. 4.2).

4.1 PROPOSAL DISTRIBUTION

To sample from the intermediate timestep t, we use Metropolis-Adjusted Langevin Algorithm
(MALA). We set the target distribution to be qt(xt), and construct the proposal distribution using its
score function. Since pre-trained score model sθ(xt, t) approximates the score ∇xt log qt(xt), we

1This assumption reflects realistic applications, since many pre-trained diffusion models can readily incorpo-
rate AC-Sampler without retraining.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 MALAOneStep

Input: Target timestep τ , Previous sample xτ , Score output s := sθ(xτ , τ),
Likelihood ratio Lϕτ := dϕ(xτ ,τ)

1−dϕ(xτ ,τ)
, Score network sθ, Discriminator dϕ

Output: Next sample x̃τ

1: repeat
2: Propose x̃τ from proposal distribution pθproposal,τ (· | xτ) (Eq. 7)

3: Get score s̃← sθ(x̃τ , τ), and likelihood ratio L̃ϕτ ←
dϕ(x̃τ ,τ)

1−dϕ(x̃τ ,τ)

4: Calculate acceptance probability α← α̂(xτ , x̃τ , s, s̃, L
ϕ
τ , L̃

ϕ
τ) (Eq. 11)

5: Sample u ∼ U(0, 1)
6: until u < α
7: return x̃τ , s̃, L̃

ϕ
τ

leverage sθ(xt, t) to construct the proposal distribution as follows:

pθproposal,t(·|xt) = N
(
xt +

η

2
sθ(xt, t), ηI

)
, (7)

where η is Langevin step size. We adaptively set the value of η to maintain a constant signal-to-noise
ratio (SNR) during sampling. An important advantage of our framework is that both the denoising
step and the MCMC-based proposal distribution rely on the same score value. As a result, a single
network evaluation is sufficient for both operations, enabling efficient integration of denoising and
exploration within AC-Sampler.

4.2 ACCEPTANCE PROBABILITY

The target distribution is qt(·), so the acceptance probability is α = min

(
1,

qt(x̃t)p
θ
proposal,t(xt|x̃t)

qt(xt)pθ
proposal,t(x̃t|xt)

)
,

where x̃t is a sample from the proposal distribution pθproposal,t(·|xt). To make the acceptance probabil-
ity tractable, we first decompose qt(x̃t)/qt(xt) as stated in the following theorem.
Theorem 4.1. Let xt and x̃t be two arbitrary samples at diffusion timestep t. Then, for any fixed
xt−1, the density ratio of the true marginal distribution qt is given by:

qt(x̃t)

qt(xt)
=

qt|t−1(x̃t | xt−1)

qt|t−1(xt | xt−1)
· Lt(x̃t, t)

Lt(xt, t)
·
pθt−1|t(xt−1 | xt)

pθt−1|t(xt−1 | x̃t)
, (8)

where Lt(xt, t) := qt(xt)/p
θ
t (xt) denotes the likelihood ratio between the data and model marginal

distributions at timestep t.

Proof is provided in Appendix A.3. Let µt(xt, s
θ(xt, t)) denote the mean of the reverse transition

kernel pθt−1|t. Since Theorem 4.1 holds for arbitrary xt−1, choose

x̂t−1 := 1
2

(
µt(xt, s

θ(xt, t)) + µt(x̃t, s
θ(x̃t, t))

)
.

With this choice, the transition kernel related terms in Eq. 8 are
pθ
t−1|t(x̂t−1|xt)

pθ
t−1|t(x̂t−1|x̃t)

, which cancel in the

density ratio because both kernels are Gaussian with the same variance and x̂t−1 is equidistant from
their means. We therefore obtain the acceptance probability as follows:

α = min

(
1,

qt|t−1(x̃t | x̂t−1)

qt|t−1(xt | x̂t−1)
· Lt(x̃t, t)

Lt(xt, t)
·
pθproposal,t(xt|x̃t)

pθproposal,t(x̃t|xt)

)
(9)

To access Lt(xt), we use time-dependent discriminator dϕ, following the approach of DG (Kim
et al., 2023). The discriminator is trained to distinguish between qt and pθt at all timesteps. To achieve
this, weighted binary cross-entropy loss is used for training the discriminator:

LBCE(ϕ) =

∫
λ(t)

[
Ext∼qt [− log dϕ(xt, t)] + Ext∼pθ

t
[− log(1− dϕ(xt, t))]

]
dt, (10)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

The optimal discriminator satisfies dϕ
∗
(xt, t) =

qt(xt)

qt(xt)+pθ
t (xt)

, so the density ratio qt(xt)

pθ
t (xt)

becomes
dϕ∗

(xt,t)
1−dϕ∗ (xt,t)

. Having access to qt(xt)
pθ(xt)

≈ dϕ(xt,t)
1−dϕ(xt,t)

=: Lϕt (xt, t), the acceptance probability can be
calculated as below:

α̂(xt, x̃t, s, s̃, L, L̃) = min

1,
qt|t−1(x̃t | x̂t−1)

qt|t−1(xt | x̂t−1)︸ ︷︷ ︸
Forward term

· L̃

L︸︷︷︸
Likelihood ratio

·
pθproposal,t(xt|x̃t)

pθproposal,t(x̃t|xt)︸ ︷︷ ︸
Proposal term

 (11)

where s, s̃, L, L̃ denotes sθ(xt, t), s
θ(x̃t, t), L

ϕ
t (xt, t), L

ϕ
t (x̃t, t), respectively. The acceptance prob-

ability consists of three terms. The forward and proposal terms are tractable Gaussian distributions,
and the likelihood ratio is computed using a discriminator. Together, these components make the ac-
ceptance probability fully tractable. Note that with any tractable proposal distribution, the acceptance
probability also remains tractable.

4.3 THEORETICAL ANALYSIS

We prove that our method can theoretically achieve sampling acceleration and correction.
Proposition 4.2. Let the reverse diffusion process have total timestep T and the AC-sampler target
timestep be τ . Let NFER be the average NFE reduction per sample with AC-Sampler. If the
acceptance probability satisfies α > 1

T−τ+1 , then,

lim
l→∞

E[NFER] > 0, lim
l→∞

Var(NFER) = 0 (12)

where l is the length of Markov Chain at timestep τ .

Since, in practice, T − τ is pretty big, the threshold α > 1
T−τ+1 is mild and typically easy to

satisfy. Moreover, because our proposals are guided by the score network, acceptance rates are
sufficiently high that substantial NFE reduction can be achieved even with a small chain length l.
Further discussion of the acceptance probability is provided in Appendix C.

To show that our method not only accelerates sampling but also corrects errors, we theoretically
demonstrate that the data distribution induced by our sampler is closer to the true data distribution
than that of the baseline model.
Theorem 4.3. Let pθ0 , pθ,ϕ

∗

0 denote the model distribution and refined distribution by AC-Sampler
with optimal discriminator ϕ∗, respectively. Then, the KL divergence between the true data distribu-
tion q0 and the refined distribution pθ,ϕ

∗

0 is bounded by:

DKL(q0(x0)||pθ,ϕ
∗
(x0)) ≤ DKL(q0(x0)||pθ(x0)) (13)

Theorem 4.4. Let Tτ be the transition kernel of MALA at timestep τ . Also, pθ,ϕ
∗,(l)

τ denotes marginal
distribution at timestep τ after the l-th MALA transition from pθτ , and p

θ,ϕ∗,(l)
0 denotes the data

distribution generated from p
θ,ϕ∗,(l)
τ with denoising transition kernel pθt−1|t. L

p denotes a space

of function which satisfies (
∫
R |f |

pdx)
1
p <∞. If qτ (xτ) ∈ Lα, log

(
pθ,ϕ∗,(l)
τ (xτ)
qτ (xτ)

)
∈ Lβ , Tτ ∈ Lγ ,

where α, β, γ ∈ [1,∞] satisfy 1
α + 1

β + 1
γ = 1, then the KL divergence between the true data

distribution q0 and the refined distribution p
θ,ϕ∗,(l+1)
0 is bounded by:

DKL(q0(x0)||pθ,ϕ
∗,(l+1)

0 (x0)) ≤ DKL(q0(x0)||pθ,ϕ
∗,(l)

0 (x0)) (14)

The proofs of each theoretical result and detailed analysis are provided in Appendix A.4 and A.5,
respectively. When our model has sufficiently converged, Theorem 4.3 suggests that it can generate
samples that are closer to the true data distribution than those produced by the baseline model.
Theorem 4.4 further shows that applying more MALA steps progressively moves the samples closer
to the true data distribution. Note that l = 0 denotes the base diffusion model, without MALA.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Performance on unconditional CIFAR-
10 generation. Values that are better compared
to the baseline are highlighted in bold.

Model FID↓ NFE↓
Unconditional Generation

VDM (Kingma et al., 2021) 7.41 1000
DDPM (Ho et al., 2020) 3.17 1000
iDDPM (Nichol & Dhariwal, 2021) 2.90 1000
DDIM (Song et al., 2021a) 4.16 100
ScoreSDE (Song et al., 2021b) 2.20 2000
Soft Truncation (Kim et al., 2022b) 2.33 2000
STF (Xu et al., 2022) 1.90 35
CLD-SGM (Dockhorn et al., 2022b) 2.25 312
INDM (Kim et al., 2022a) 2.28 2000
LSGM (Vahdat et al., 2021) 2.10 138
PFGM++ (Xu et al., 2023b) 1.93 35
PSLD (Pandey & Mandt, 2023) 2.10 246
Flow Matching (Lipman et al., 2023) 6.35 142
Rectified Flow (Liu et al., 2023) 2.58 127
ES (Ning et al., 2024) 1.95 35

EDM (Heun) (Karras et al., 2022) 2.01 35
EDM (Heun) + AC (Ours) 1.97 26.19

DDO (Heun)(Zheng et al., 2025) 1.42 35
DDO + AC (Ours) 1.41 29.41

Acceleration Method

DPM ++ (Lu et al., 2022a) 24.54 5
UniPC (Zhao et al., 2023) 23.52 5
DPM-v3 (Zheng et al., 2023) 12.41 5

DPM-v3 + AC (Ours) 9.88 4.78

Correction Method

Restart (Xu et al., 2023a) 1.95 43
DiffRS (Na et al., 2024) 2.02 30.73
DG (Kim et al., 2023) 1.93 27

DG + AC (Ours) 1.84 26.19

Table 2: Performance on unconditional CIFAR-
10 generation with (Top) correction and (Bottom)
acceleration methods.

Method FID↓ NFE↓ FID↓ NFE↓ FID↓ NFE↓

EDM (Heun) 2.05 27 2.23 23 3.23 17
+DiffRS (Na et al., 2024) 2.17 28.15 3.26 23.13 7.79 19.87
+DG (Kim et al., 2023) 1.93 27 2.12 23 3.62 17

+AC (Ours) 1.97 26.19 2.10 22.78 2.38 15.81

Method FID↓ NFE↓ FID↓ NFE↓ FID↓ NFE↓

DPM++ (Lu et al., 2022b) 11.85 6 4.36 8 2.91 10
UniPC (Zhao et al., 2023) 11.10 6 3.86 8 2.85 10
DPM-v3 (Zheng et al., 2023) 8.73 6 3.62 8 2.65 10

DPM-v3 + AC (Ours) 7.12 5.61 3.09 7.53 2.54 9.88

Table 3: FID and NFE on unconditional CelebA-
HQ 256 generation.

Method FID↓ NFE↓ FID↓ NFE↓ FID↓ NFE↓

ScoreSDE (KAR1) 121.27 40 122.74 98 125.15 198
+DLG (Kim & Ye, 2023) 20.19 21.21 29.12 47.21 30.72 107.21
+AC (Ours) 15.13 15.94 22.55 44.06 15.69 87.26

ScoreSDE (KAR2) 83.21 40 57.28 98 29.74 198
+DLG (Kim & Ye, 2023) 17.92 21.21 12.12 47.21 8.14 107.21
+AC (Ours) 8.45 20.05 9.55 40.05 6.60 98.27

Table 4: Performance on conditional ImageNet
(Top) 64×64, (Bottom) 256×256 generation.

Method FID↓ NFE↓ FID↓ NFE↓ FID↓ NFE↓

EDM (SDE) 2.30 61 1.78 127 1.43 511
+AC (Ours) 2.25 58.75 1.77 121.98 1.42 483.86

Method FID↓ NFE↓ Precision↑ Recall↑

DiT (DDPM) (Peebles & Xie, 2023) 2.35 250 0.829 0.576
+AC (Ours) 2.31 234.38 0.817 0.592

5 EXPERIMENTS

In this section, we present experimental results to validate the effectiveness of our method empirically.

Experimental setting We employ our methods on various pre-trained networks trained on
CIFAR-10 (Krizhevsky, 2009), ImageNet64×64 and 256×256 (Deng et al., 2009), CelebA-HQ
256×256 (Karras et al., 2017). We report the Fréchet Inception Distance (FID) (Heusel et al.,
2017), Precision/Recall (Kynkäänniemi et al., 2019). We use Heun, SDE sampler Karras et al.
(2022), KAR1(deterministic), KAR2(stochastic) sampler (Kim & Ye, 2023), and DDPM sampler (Ho
et al., 2020). We highlight the best-performing results compare to baseline model in bold. Detailed
hyperparameters and experimental settings are provided in Appendix C and G.

5.1 UNCONDITIONAL GENERATION

CIFAR-10 The upper part of Table 1 shows results for unconditional generation on CIFAR-10. Our
method is compatible with both EDM and DDO checkpoints. Both methods were re-tested without
applying seed fixing as in the EDM setting. For the EDM checkpoint, our sampler improves the FID
from 2.01 with 35 NFE to 1.97 with only 26.19 NFE. For the stronger DDO checkpoint, we achieve
1.41 FID while reducing NFE from 35 to 29.41. Although the gain in FID is marginal for highly
capable pre-trained models, our method consistently reduces the NFE, demonstrating its efficiency.

CelebA-HQ 256×256 We employ the pre-trained time classifier released by DLG to reproduce
their reported performance. For the AC-Sampler, we extend the MALA algorithm in the joint space of
(xτ , τ), as detailed in the Appendix B, to support effective sampling in high-dimensional benchmark

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 3: Effect of an
MH correction on AC-
Sampler.

Figure 4: Mode cover
with different τ in 25-
Gaussian toy experiment

Table 5: Performance of AC-Sampler apply
on EDM. Time denotes the wall-clock sec-
onds required to generate 100 images.

Method FID↓ NFE↓ Precision↑ Recall↑ Time↓
EDM (Heun) 2.01 35 0.704 0.627 6.46
+AC 1.97 26.19 0.703 0.628 5.26
EDM (Heun) 2.24 23 0.703 0.625 4.30
+AC 2.21 20.67 0.707 0.632 4.15
EDM (Heun) 3.32 17 0.683 0.622 3.20
+AC 2.41 15.78 0.699 0.623 3.19

datasets. As shown in Table 3, the AC-Sampler demonstrates a clear improvement in FID compared
to other methods with lower NFE.

Method Compatibility The lower part of Table 1 reports results when applying AC-Sampler on
top of existing acceleration and correction methods. When combined with DPM-v3, which originally
yields 12.41 FID at 5 NFEs, our method improves performance to 9.88 FID with only 4.78 NFEs.
Similarly, DG achieves 1.93 FID at 27 NFEs, while AC-Sampler applied to DG further reduces this
to 1.84 FID at 26.19 NFEs. These experiments highlight that our method is orthogonal to existing
acceleration and correction methods, and can flexibly enhance them. Table 2 and Figure 2 present the
FID–NFE trade-offs of our method compared to existing acceleration and correction techniques. We
observe that our method achieves better trade-offs in most NFE regimes.

5.2 CLASS-CONDITIONAL GENERATION

Figure 5: AC-Sampler on CelebA-HQ 256×256 (Top, un-
conditional) and ImageNet 256×256 (Bottom, condition on
“Weasel”). Panel presents the final results of the MALA
chains, ordered from left to right.

ImageNet Table 4 presents the re-
sults on conditional ImageNet 64×64
and 256×256 generation. For Ima-
geNet 64×64, we employed a condi-
tional score network, while for Ima-
geNet 256×256, we used classifier-
free guided generation with a CFG
scale of 1.5. In both cases, we find
effective improvements in NFE and
slight improvements in FID. Although
class-conditioned settings inherently
limit the length of the MCMC chain,
our results demonstrate that the pro-
posed method can still be applied effectively under this constraint. We provide a further discussion of
the class diversity and related experiments in Appendix F.2.

5.3 ABLATION STUDIES

Distribution Alignment In our method, the acceptance probability is computed using the density
ratio provided by the discriminator. If this density ratio is inaccurate, effective distribution alignment
through MH correction becomes difficult. To examine this, we retained the overall framework of our
method but removed the MH accept–reject step. As shown in Fig. 3, without MH correction, the FID
degrades significantly. This result demonstrates that our method effectively corrects the distribution
through MH correction.

Sample Diversity Because our method relies on MH, successive samples can be correlated. Thus,
assessing whether it still produces diverse samples is crucial. In Table 5, the recall metric, which
is an indicator of sample diversity, is comparable to the base sampler. These results indicate that,
our method can preserve sample diversity. Together with the improved FID and reduced NFE, these
results demonstrate both the effectiveness and efficiency of our approach. The MALA chains on
benchmark datasets are shown in Fig. 5, where we observe that our method successfully generates
diverse and high-quality images. Further analysis is provided in Appendix D.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(a) DDPM (NFE=1000) (b) +AC (NFE=504.5)

Figure 6: Toy experiment results. Red circles
denote uncovered mode.

Toy experiment We applied our method to a 25-
Gaussian toy task: we generated 100 samples and
define a mode covered if any sample lay within 2σ
of its mean. Over 10 trials, the baseline DDPM cov-
ered on average 23.5 modes, while ours consistently
covered all 25 modes as in Fig. 4. The solid lines indi-
cate the mean, and the shaded areas are the standard
deviation. This confirms that our method effectively
performs distribution correction and ensures diverse
mode coverage. When low-τ regimes, more samples
are required for sufficient cover. Fig. 6 shows the
results with 100 generated samples. Red circles de-
note uncovered modes. Ours reduces NFE while fully
covering all modes of the 25-Gaussian mixture.

Hyperparameter Metrics

τ SNR FID ↓ NFE ↓ Recall ↑
0.10 2.89 25.13 0.550

13 0.20 2.06 25.65 0.620
0.23 1.97 26.19 0.628

0.10 8.77 15.21 0.200
8 0.20 6.14 15.75 0.422

0.23 6.73 16.70 0.441

0.10 62.67 5.29 0
3 0.20 46.60 5.75 0

0.23 43.96 6.26 0

Table 6: Hyperparameter analysis.

Hyperparameter We primarily tune two parameters: the
target timestep τ and the signal-to-noise ratio (SNR) of the
Langevin proposal. The SNR controls the proposal step size
η. Larger SNR yields larger steps. With T = 18, we vary τ
and SNR and report the resulting FID, NFE and Recall. As τ
decreases (i.e., closer to the data distribution), the distribution be-
comes sharper, and MALA mixing deteriorates. Also, if the SNR
is too small, proposals change little from the current sample, also
leading to slow exploration. Given the constraints of limited
number of generation, the choice of the target timestep τ and the
proposal SNR is crucial. A detailed analysis of hyperparameter
is provided in Appendix C.

Faster sampling: Wall-clock time Since our method employs an additional discriminator at
inference time, the wall-clock time could potentially be slower even with the same NFE. To evaluate
this, we measured the average time (in seconds) required to generate 100 samples using both the
base sampler and our method on a single RTX 3090. As shown in Table 5, our approach not only
improved sample quality but also achieved faster wall-clock time. Unlike conventional approaches
that reduce NFE by enlarging the time step and thereby increasing discretization error, our method
generates intermediate samples without coarsening the time grid. As a result, the improvement in
sample quality is particularly pronounced in the low-NFE regime.

Table 7: Comparison of conven-
tional MH (MHC) and Alg. 1.

Method FID↓ NFE↓ Recall↑

EDM (Base) 2.05 27 0.627
+AC with MHC 3.22 25.08 0.580
+AC with Alg. 1 1.97 26.19 0.628

Jump Markov Chain In conventional Metropolis-Hastings, re-
jected proposals are also retained as part of the chain, which
ensures detailed balance but is inefficient when the goal is sam-
ple generation under limited capacity. As shown in Table 7, this
often manifests as reduced class diversity, making the standard
formulation impractical in generative settings. To address this, in
Algorithm 1 we adopt a propose-until-accept design: proposals
are repeatedly drawn until one is accepted, and only the accepted
sample is recorded. This prevents duplicate retention of the same sample and promotes greater
diversity in the generated outputs. This variant can be formally understood as a Jump Markov
chain (Rosenthal et al., 2021), and further details are provided in Appendix E.

6 CONCLUSION

We introduced AC-Sampler, which accelerates and corrects diffusion sampling via Metropo-
lis–Hastings with a Langevin proposal. By sampling from intermediate timesteps and using time-
dependent discriminators for density ratio estimation, it improves sample quality and provides faster
inference speed without retraining. AC-Sampler theoretically reduces KL divergence at each refine-
ment step and empirically achieves better FID with fewer NFEs across datasets. It also integrates
smoothly with prior acceleration and correction methods.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Haldun Akoglu. User’s guide to correlation coefficients. Turkish journal of emergency medicine, 18
(3):91–93, 2018.

Theodore G Birdsall, Kurt Metzger, Matthew A Dzieciuch, and John Spiesberger. Integrated
autocorrelation phase at one period lag. The Journal of the Acoustical Society of America, 96(4):
2353–2356, 1994.

Valentin De Bortoli, James Thornton, Jeremy Heng, and Arnaud Doucet. Diffusion schrödinger
bridge with applications to score-based generative modeling. Advances in Neural Information
Processing Systems, 34:17695–17709, 2021.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition,
pp. 248–255, 2009. doi: 10.1109/CVPR.2009.5206848.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780–8794, 2021.

Tim Dockhorn, Arash Vahdat, and Karsten Kreis. Genie: Higher-order denoising diffusion solvers. In
S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural
Information Processing Systems, volume 35, pp. 30150–30166. Curran Associates, Inc., 2022a.

Tim Dockhorn, Arash Vahdat, and Karsten Kreis. Score-based generative modeling with critically-
damped langevin diffusion. In International Conference on Learning Representations, 2022b.

Ulf Grenander and Michael I Miller. Representations of knowledge in complex systems. Journal of
the Royal Statistical Society: Series B (Methodological), 56(4):549–581, 1994.

WK Hastings. Monte carlo sampling methods using markov chains and their applications. Biometrika,
57(1):97–109, 1970.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium. Advances in neural
information processing systems, 30, 2017.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J
Fleet. Video diffusion models. Advances in Neural Information Processing Systems, 35:8633–8646,
2022.

O. Hölder. Über ein mittelwertsatz. Nachrichten von der Gesellschaft der Wissenschaften zu
Göttingen, Mathematisch-Physikalische Klasse, pp. 38–47, 1889.

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans for
improved quality, stability, and variation. arXiv preprint arXiv:1710.10196, 2017.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho
(eds.), Advances in Neural Information Processing Systems, 2022.

Beomsu Kim and Jong Chul Ye. Denoising mcmc for accelerating diffusion-based generative models.
In International Conference on Machine Learning, pp. 16955–16977. PMLR, 2023.

Dongjun Kim, Byeonghu Na, Se Jung Kwon, Dongsoo Lee, Wanmo Kang, and Il-chul Moon.
Maximum likelihood training of implicit nonlinear diffusion model. In S. Koyejo, S. Mohamed,
A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Information Processing
Systems, volume 35, pp. 32270–32284. Curran Associates, Inc., 2022a.

Dongjun Kim, Seungjae Shin, Kyungwoo Song, Wanmo Kang, and Il-Chul Moon. Soft truncation: A
universal training technique of score-based diffusion model for high precision score estimation. In
International Conference on Machine Learning, pp. 11201–11228. PMLR, 2022b.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Dongjun Kim, Yeongmin Kim, Se Jung Kwon, Wanmo Kang, and Il-Chul Moon. Refining generative
process with discriminator guidance in score-based diffusion models. In Andreas Krause, Emma
Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), Pro-
ceedings of the 40th International Conference on Machine Learning, volume 202 of Proceedings
of Machine Learning Research, pp. 16567–16598. PMLR, 23–29 Jul 2023.

Diederik Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models. Advances
in neural information processing systems, 34:21696–21707, 2021.

A Krizhevsky. Learning multiple layers of features from tiny images. Master’s thesis, University of
Toronto, 2009.

Tuomas Kynkäänniemi, Tero Karras, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Improved
precision and recall metric for assessing generative models. Advances in Neural Information
Processing Systems, 32, 2019.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow matching
for generative modeling. In The Eleventh International Conference on Learning Representations,
2023.

Luping Liu, Yi Ren, Zhijie Lin, and Zhou Zhao. Pseudo numerical methods for diffusion models
on manifolds. In International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=PlKWVd2yBkY.

Xingchao Liu, Chengyue Gong, and qiang liu. Flow straight and fast: Learning to generate and transfer
data with rectified flow. In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=XVjTT1nw5z.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast
ode solver for diffusion probabilistic model sampling in around 10 steps. Advances in Neural
Information Processing Systems, 35:5775–5787, 2022a.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver++: Fast
solver for guided sampling of diffusion probabilistic models. arXiv preprint arXiv:2211.01095,
2022b.

Hengyuan Ma, Li Zhang, Xiatian Zhu, and Jianfeng Feng. Accelerating score-based generative
models with preconditioned diffusion sampling. In European conference on computer vision, pp.
1–16. Springer, 2022.

Nicholas Metropolis, Arianna W Rosenbluth, Marshall N Rosenbluth, Augusta H Teller, and Edward
Teller. Equation of state calculations by fast computing machines. The journal of chemical physics,
21(6):1087–1092, 1953.

Byeonghu Na, Yeongmin Kim, Minsang Park, Donghyeok Shin, Wanmo Kang, and Il-Chul Moon.
Diffusion rejection sampling. In Proceedings of the 41st International Conference on Machine
Learning, pp. 37097–37121, 2024.

Radford M Neal et al. Mcmc using hamiltonian dynamics. Handbook of markov chain monte carlo,
2(11):2, 2011.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
In International Conference on Machine Learning, pp. 8162–8171. PMLR, 2021.

Mang Ning, Mingxiao Li, Jianlin Su, Albert Ali Salah, and Itir Onal Ertugrul. Elucidating the exposure
bias in diffusion models. In The Twelfth International Conference on Learning Representations,
2024.

Kushagra Pandey and Stephan Mandt. A complete recipe for diffusion generative models. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4261–4272,
2023.

Giorgio Parisi. Numerical simulations: Old and new problems. Nonperturbative Quantum Field
Theory, pp. 427–432, 1988.

11

https://openreview.net/forum?id=PlKWVd2yBkY
https://openreview.net/forum?id=PlKWVd2yBkY
https://openreview.net/forum?id=XVjTT1nw5z

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 4195–4205, 2023.

Gareth O Roberts and Richard L Tweedie. Exponential convergence of langevin distributions and
their discrete approximations. 1996.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Jeffrey S Rosenthal, Aki Dote, Keivan Dabiri, Hirotaka Tamura, Sigeng Chen, and Ali Sheikholeslami.
Jump markov chains and rejection-free metropolis algorithms. Computational Statistics, 36(4):
2789–2811, 2021.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learning,
pp. 2256–2265. pmlr, 2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In Interna-
tional Conference on Learning Representations, 2021a.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
In Proceedings of the 33rd International Conference on Neural Information Processing Systems,
pp. 11918–11930, 2019.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In International
Conference on Learning Representations, 2021b.

Dimiter Tsvetkov, Lyubomir Hristov, and Ralitsa Angelova-Slavova. On the convergence of the
metropolis-hastings markov chains. Serdica Math. J, 43(2):93–110, 2017.

Arash Vahdat, Karsten Kreis, and Jan Kautz. Score-based generative modeling in latent space.
Advances in Neural Information Processing Systems, 34:11287–11302, 2021.

Pascal Vincent. A connection between score matching and denoising autoencoders. Neural computa-
tion, 23(7):1661–1674, 2011.

Vikram Voleti, Alexia Jolicoeur-Martineau, and Chris Pal. Mcvd-masked conditional video diffusion
for prediction, generation, and interpolation. Advances in neural information processing systems,
35:23371–23385, 2022.

Yilun Xu, Shangyuan Tong, and Tommi S Jaakkola. Stable target field for reduced variance score esti-
mation in diffusion models. In The Eleventh International Conference on Learning Representations,
2022.

Yilun Xu, Mingyang Deng, Xiang Cheng, Yonglong Tian, Ziming Liu, and Tommi Jaakkola. Restart
sampling for improving generative processes. Advances in Neural Information Processing Systems,
36:76806–76838, 2023a.

Yilun Xu, Ziming Liu, Yonglong Tian, Shangyuan Tong, Max Tegmark, and Tommi Jaakkola.
PFGM++: Unlocking the potential of physics-inspired generative models. In Andreas Krause,
Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett
(eds.), Proceedings of the 40th International Conference on Machine Learning, volume 202 of
Proceedings of Machine Learning Research, pp. 38566–38591. PMLR, 23–29 Jul 2023b.

Qinsheng Zhang and Yongxin Chen. Fast sampling of diffusion models with exponential integrator.
In The Eleventh International Conference on Learning Representations, 2023.

Wenliang Zhao, Lujia Bai, Yongming Rao, Jie Zhou, and Jiwen Lu. Unipc: A unified predictor-
corrector framework for fast sampling of diffusion models. Advances in Neural Information
Processing Systems, 36:49842–49869, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Kaiwen Zheng, Cheng Lu, Jianfei Chen, and Jun Zhu. Dpm-solver-v3: Improved diffusion ode solver
with empirical model statistics. In Thirty-seventh Conference on Neural Information Processing
Systems, 2023.

Kaiwen Zheng, Yongxin Chen, Huayu Chen, Guande He, Ming-Yu Liu, Jun Zhu, and Qinsheng
Zhang. Direct discriminative optimization: Your likelihood-based visual generative model is
secretly a gan discriminator. In Forty-second International Conference on Machine Learning,
2025.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A PROOFS AND MATHEMATICAL EXPLANATIONS

In this section, we provide a mathematical explanation and formal derivation of the theorems presented
in the main body of the paper.

A.1 THEORETICAL ANALYSIS OF DLG (KIM & YE, 2023)

Proposition A.1. Let q(x, t) be the true joint distribution over data x and diffusion timestep t, and
pθ(x, t) be the model joint distribution .

Suppose that there is an optimal time classifier ψ∗, i.e., pψ
∗
(t | x) = q(t | x),∀x, t. If the model

marginal distribution pθ(x) does not match the true marginal distribution, i.e.,∃ x s.t. pθ(x) ̸= q(x),
then the Markov chain defined by Gibbs sampling between pθ(x | t) and pψ

∗
(t | x) does not have

q(x, t) as its stationary distribution.

Proof. Let’s assume that the true joint distribution q(xt, t) is a stationary distribution of Gibbs
Sampling, whose transition kernel is T ((x, t) → (x′, t′)) = pθ(x′ | t)pψ∗

(t′ | x′). Let (x, t) ∼
q(·, ·), and (x′, t′) is a sample drawn from the transition kernel T ((x, t)→ (·, ·)). Since the stationary
distribution should satisfy the invariance condition, for arbitrary x′ the following equation holds:

q(x′, t′) =

∫∫
q(x, t)T ((x, t)→ (x′, t′)) dx dt (15)

=

∫∫
q(x, t)pθ(x′ | t)pψ

∗
(t′ | x′) dx dt (16)

=

∫∫
q(x, t)pθ(x′ | t)q(t′ | x′) dx dt (17)

=

∫
q(t)pθ(x′ | t)q(t′ | x′) dt (18)

=

∫
q(t)

pθ(t | x′)pθ(x′)

pθ(t)
q(t′ | x′) dt (19)

=

∫
pθ(t | x′)pθ(x′)q(t′ | x′) dt (20)

= pθ(x′)q(t′ | x′)

∫
pθ(t | x′) dt (21)

= pθ(x′)q(t′ | x′) (22)

Note that the marginal distribution q(t) = pθ(t) for every t is an uniform distribution. To satisfy the
invariance, ∀x′, pθ(x′) = q(x′) so the proof holds due to the contradiction.

Proposition A.1 states that even if the time-classifier in DLG(Kim & Ye, 2023) is optimal, it is
impossible to sample from the true distribution. So we leverage Metropolis-Hastings Correction with
this proposal distribution. Detailed explanation is given in Appendix B.

A.2 PROOF OF PROPOSITION 4.2

Proposition 4.2. Let the reverse diffusion process have total timestep T and the AC-sampler target
timestep be τ . Let NFER be the average NFE reduction per sample with AC-Sampler. If the
acceptance probability satisfies α > 1

T−τ+1 , then,

lim
l→∞

E[NFER] > 0, lim
l→∞

Var(NFER) = 0 (12)

where l is the length of Markov Chain at timestep τ .

Proof. Let’s assume that the acceptance probability α is fixed in (0, 1], and that there is no burn-in
process in the AC-Sampler for simplicity.2

2We can get same result with burn-in process easily

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Let R denote the total NFE required at timestep τ for the MCMC step. At timestep τ , Algorithm 1 runs
l times. Since we make proposals until it is accepted, R follows the Negative Binomial distribution,
i.e., R ∼ NB(l, α). Let NFET denote the total NFE required in the AC-Sampler sampling step. Then
the following decomposition holds:

NFET = T − τ︸ ︷︷ ︸
Initial denoising step

+ R︸︷︷︸
MALA step

+ l(τ − 1)︸ ︷︷ ︸
Denoising step after MALA

. (23)

Since we obtain the score value of each proposal at the MALA step and denoise total of l samples,
the denoising step after MALA is l(τ − 1). Since R follows a negative binomial distribution, we
have E[NFET] = T − τ + l

α + l(τ − 1) and Var(NFET) =
l(1−α)

α2 . Then, the mean of NFER is as
follows:

E[NFER] = T − E[NFET]

l
(24)

= T − T − τ

l
− 1

α
− (τ − 1) (25)

= T − τ + 1− 1

α
− T − τ

l
. (26)

Taking limits on both sides yields

lim
l→∞

E[NFER] = T − τ + 1− 1

α
(27)

> 0

(
∵ α >

1

T − τ + 1

)
(28)

Moreover, Var(NFER) = 1−α
α2 · 1l , and thus taking limits gives liml→∞ Var(NFER) = 0, which

concludes the proof.

A.3 PROOF OF THEOREM 4.1

Theorem 4.1. Let xt and x̃t be two arbitrary samples at diffusion timestep t. Then, for any fixed
xt−1, the density ratio of the true marginal distribution qt is given by:

qt(x̃t)

qt(xt)
=

qt|t−1(x̃t | xt−1)

qt|t−1(xt | xt−1)
· Lt(x̃t, t)

Lt(xt, t)
·
pθt−1|t(xt−1 | xt)

pθt−1|t(xt−1 | x̃t)
, (8)

where Lt(xt, t) := qt(xt)/p
θ
t (xt) denotes the likelihood ratio between the data and model marginal

distributions at timestep t.

Proof. We derive the marginal density ratio as follows:
qt(x̃t)

qt(xt)
=

qt−1(xt−1)

qt−1(xt−1)
·
qt|t−1(x̃t | xt−1)

qt|t−1(xt | xt−1)
·
qt−1|t(xt−1 | xt)

qt−1|t(xt−1 | x̃t)
(29)

=
qt|t−1(x̃t | xt−1)

qt|t−1(xt | xt−1)
·
qt−1|t(xt−1 | xt)

qt−1|t(xt−1 | x̃t)
(30)

=
qt|t−1(x̃t | xt−1)

qt|t−1(xt | xt−1)
·
qt−1|t(xt−1 | xt)

pθt−1|t(xt−1 | xt)
·
pθt−1|t(xt−1 | x̃t)

qt−1|t(xt−1 | x̃t)
·
pθt−1|t(xt−1 | xt)

pθt−1|t(xt−1 | x̃t)
(31)

Following the derivation process of DiffRS (Na et al., 2024), Eq. 31 can be expressed as follows:

=
qt|t−1(x̃t | xt−1)

qt|t−1(xt | xt−1)
· Lt−1(xt−1, t− 1)

Lt(xt, t)
· Lt(x̃t, t)

Lt−1(xt−1, t− 1)
·
pθt−1|t(xt−1 | xt)

pθt−1|t(xt−1 | x̃t)
(32)

=
qt|t−1(x̃t | xt−1)

qt|t−1(xt | xt−1)︸ ︷︷ ︸
Forward term

· Lt(x̃t, t)

Lt(xt, t)︸ ︷︷ ︸
Likelihood ratio

·
pθt−1|t(xt−1 | xt)

pθt−1|t(xt−1 | x̃t)︸ ︷︷ ︸
Transition kernel term

(33)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

The Forward term and Transition kernel term are tractable since it is a gaussian distribution. By
approximating the Likelihood ratio by a discriminator, we can derive a tractable form of the acceptance
probability.

A.4 PROOF OF THEOREM 4.3

Theorem 4.3. Let pθ0 , pθ,ϕ
∗

0 denote the model distribution and refined distribution by AC-Sampler
with optimal discriminator ϕ∗, respectively. Then, the KL divergence between the true data distribu-
tion q0 and the refined distribution pθ,ϕ

∗

0 is bounded by:

DKL(q0(x0)||pθ,ϕ
∗
(x0)) ≤ DKL(q0(x0)||pθ(x0)) (13)

Proof. First, let τ be a timestep that MALA occurs in AC-Sampler framework. From (Ho et al.,
2020), the upper bound of KL divergence between the true data distribution and the model distribution
can be written as follows:

DKL[q0 ∥ pθ0] = Eq0

[
log

q0(x0)

pθ0(x0)

]
(34)

= Eq0 [− log pθ0(x0)]−H(q0) (35)

= Eq0

[
− log

∫
q1:τ |0(x1:τ | x0)

pθ0:τ (x0:τ)

q1:τ |0(x1:τ | x0)
dx1:τ

]
−H(q0) (36)

≤ Eq0

[
−
∫

q1:τ |0(x1:τ | x0) log
pθ0:τ (x0:τ)

q1:τ |0(x1:τ | x0)
dx1:τ

]
−H(q0) (37)

= Eq0:τ

[
− log pθτ (xτ)−

τ∑
i=1

log
pθi−1|i(xi−1 | xi)

qi−1|i(xi−1 | xi)
· qi(xi)

qi−1(xi−1)

]
−H(q0) (38)

= Eq0:τ

[
log

qτ (xτ)

pθτ (xτ)
− log q0(x0)−

τ∑
i=1

log
pθi−1|i(xi−1 | xi)

qi−1|i(xi−1 | xi)

]
−H(q0) (39)

= DKL[qτ ∥ pθτ] + Eq0:τ

[
τ∑

i=1

log
qi−1|i(xi−1 | xi)

pθi−1|i(xi−1 | xi)

]
(40)

= DKL[qτ ∥ pθτ] +
τ∑

i=1

Eqi

[
DKL[qi−1|i(xi−1 | xi) ∥ pθi−1|i(xi−1 | xi)]

]
(41)

By substituting pθτ with pθ,ϕ
∗

τ , the following bounded relation also holds:

DKL[q0 ∥ pθ,ϕ
∗

0] ≤ DKL[qτ ∥ pθ,ϕ
∗

τ] +

τ∑
i=1

Eqi

[
DKL[qi−1|i(xi−1 | xi) ∥ pθ,ϕ

∗

i−1|i(xi−1 | xi)]
]

(42)

Since pθ,ϕ
∗

i−1|i(xi−1 | xi) = pθi−1|i(xi−1 | xi) ∀i ≤ τ , it is sufficient to show

DKL[qτ ∥ pθ,ϕ
∗

τ] ≤ DKL[qτ ∥ pθτ] (43)

When the discriminator is optimal and the burn-in process has been sufficiently performed, pθ,ϕ
∗

τ =
qτ , so DKL[qτ ∥ pθ,ϕ

∗

τ] = 0. Since the KL-Divergence is non-negative, the proof is complete.

The stationary distribution at timestep τ is pθτL
ϕ
τ . The gap between the two distributions in Eq. 43 is

as follows:

DKL[qτ ∥ pθτ]−DKL[qτ ∥ pθ,ϕτ] =

∫
qτ log

qτ
pθτ

dxτ −
∫

qτ log
qτ

pθ,ϕτ

dxτ (44)

=

∫
qτ log

qτ
pθτ

dxτ −
∫

qτ log
qτ

pθτL
ϕ
τ

dxτ (45)

=

∫
qτ logL

ϕ
τ dxτ (46)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

If the discriminator cannot distinguish between the two distributions pθt , qt at all, i.e., Lϕt (xt, t) = 1
for all xt, t, then the target distribution of Metropolis-Hastings algorithm becomes pθτ . As a result the
gap between the two KL divergences in Eq. 46 becomes 0. By training the discriminator, the gap
converges to DKL[qτ∥pθτ] (≥ 0), indicating that the bound becomes tighter.

A.5 PROOF OF THEOREM 4.4

Theorem 4.4. Let Tτ be the transition kernel of MALA at timestep τ . Also, pθ,ϕ
∗,(l)

τ denotes marginal
distribution at timestep τ after the l-th MALA transition from pθτ , and p

θ,ϕ∗,(l)
0 denotes the data

distribution generated from p
θ,ϕ∗,(l)
τ with denoising transition kernel pθt−1|t. L

p denotes a space

of function which satisfies (
∫
R |f |

pdx)
1
p <∞. If qτ (xτ) ∈ Lα, log

(
pθ,ϕ∗,(l)
τ (xτ)
qτ (xτ)

)
∈ Lβ , Tτ ∈ Lγ ,

where α, β, γ ∈ [1,∞] satisfy 1
α + 1

β + 1
γ = 1, then the KL divergence between the true data

distribution q0 and the refined distribution p
θ,ϕ∗,(l+1)
0 is bounded by:

DKL(q0(x0)||pθ,ϕ
∗,(l+1)

0 (x0)) ≤ DKL(q0(x0)||pθ,ϕ
∗,(l)

0 (x0)) (14)

Proof. As in Theorem 4.3, it suffices to show that

DKL[qτ ∥ pθ,ϕ
∗,(l+1)

τ] ≤ DKL[qτ ∥ pθ,ϕ
∗,(l)

τ]

Then the below equation holds. We refer to the proof procedure in (Tsvetkov et al., 2017).

DKL[qτ ∥ pθ,ϕ
∗,(l+1)

τ] =

∫
qτ (xτ) log

qτ (xτ)

p
θ,ϕ∗,(l+1)
τ (xτ)

(47)

= −
∫

qτ (xτ) log p
θ,ϕ∗,(l+1)
τ (xτ) dxτ −H(qτ) (48)

= −
∫

qτ (xτ) log

{∫
pθ,ϕ

∗,(l)
τ (x̃τ)Tτ (x̃τ → xτ) dx̃τ

}
dxτ −H(qτ)

(49)

= −
∫

qτ (xτ) log

{∫
p
θ,ϕ∗,(l)
τ (x̃τ)

qτ (x̃τ)
qτ (x̃τ)Tτ (x̃τ → xτ) dx̃τ

}
dxτ −H(qτ)

(50)

= −
∫

qτ (xτ) log

{∫
p
θ,ϕ∗,(l)
τ (x̃τ)

qτ (x̃τ)
qτ (xτ)Tτ (xτ → x̃τ) dx̃τ

}
dxτ −H(qτ)

(51)

= −
∫

qτ (xτ) log

{
qτ (xτ)

∫
p
θ,ϕ∗,(l)
τ (x̃τ)

qτ (x̃τ)
Tτ (xτ → x̃τ) dx̃τ

}
dxτ −H(qτ)

(52)

= −
∫

qτ (xτ) log

{∫
p
θ,ϕ∗,(l)
τ (x̃τ)

qτ (x̃τ)
Tτ (xτ → x̃τ) dx̃τ

}
dxτ (53)

≤ −
∫∫

qτ (xτ)

[
log

{
p
θ,ϕ∗,(l)
τ (x̃τ)

qτ (x̃τ)

}
Tτ (xτ → x̃τ)

]
dx̃τdxτ (54)

Since 1
α + 1

β + 1
γ = 1, we can apply Hölder’s inequality (Hölder, 1889) in Eq. 54∫∫

qτ (xτ)

[
log

{
p
θ,ϕ∗,(l)
τ (x̃τ)

qτ (x̃τ)

}
Tτ (xτ → x̃τ)

]
dx̃τdxτ (55)

≤
(∫∫

|qτ (xτ)|α dx̃τdxτ

) 1
α

∫∫ ∣∣∣∣∣log
{
p
θ,ϕ∗,(l)
τ (x̃τ)

qτ (x̃τ)

}∣∣∣∣∣
β

dx̃τdxτ

 1
β (∫∫

|Tτ (xτ → x̃τ)|γ dx̃τdxτ

) 1
γ

(56)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Since there exist α, β, and γ such that qτ (xτ) ∈ Lα, log
(

pθ,ϕ∗,(l)
τ (xτ)
qτ (xτ)

)
∈ Lβ , and Tτ ∈ Lγ holds,

Eq. 54 is absolute convergence. Therefore, by Fubini’s theorem, the order of integration can be
interchanged.

= −
∫

log

(
p
θ,ϕ∗,(l)
τ (x̃τ)

qτ (x̃τ)

)[∫
qτ (xτ)T (xτ → x̃τ) dxτ

]
dx̃τ (57)

= −
∫

log

(
p
θ,ϕ∗,(l)
τ (x̃τ)

qτ (x̃τ)

)
qτ (x̃τ) dx̃τ (58)

= DKL[qτ ∥ pθ,ϕ
∗,(l)

τ] (59)

The assumption in Theorem 4.4 is made solely to satisfy Fubini’s theorem, and we note that the
theorem is commonly adopted in prior works (De Bortoli et al., 2021; Lipman et al., 2023).

B METROPOLIS HASTINGS ALGORITHM IN JOINT SPACE

For the CelebA-HQ 256×256 dataset, we observed that the method which performed well on low-
dimensional datasets did not perform well. We provide an analysis on this issue based on the following
points:

• In high-dimensional data, the data manifold is more complex compared to low-dimensional
cases. This makes it difficult to estimate the true score accurately.

• As a result, the proposal distribution becomes misaligned with the target distribution, and
Langevin dynamics can easily drift away from the data manifold at timestep τ .

In DLG (Kim & Ye, 2023), a time classifier was proposed to detect whether a sample had left the
manifold after Langevin dynamics at timestep t. The proposal distribution of DLG is as follows:

pθ,ψproposal(x̃, t̃ | x, t) = pθproposal(x̃ | x, t) ·p
ψ
proposal(t̃ | x, t, x̃) = pθproposal(x̃ | x, t) ·p

ψ
proposal(t̃ | x̃) (60)

First, given (x, t), sample x̃ using one step of Langevin dynamics. After that, sample t̃ using the time
classifier conditioned on x̃. The proposal distribution in the joint space depends not only on the score
network but also on the time classifier.

However, as we showed in Proposition A.1, this approach cannot converge to the true joint distribution
even when the time classifier is optimal, i.e., pψ

∗
(t|x) = q(t|x). To address this issue, we perform

the Metropolis-Hastings algorithm in the joint space of time and data. To compute the acceptance
probability in the joint distribution, we extend the density ratio formulation presented in Theorem 4.1.
This extension is proposed in the following corollary.

Corollary B.1. Let x, x̃ be arbitrary samples at diffusion timesteps t, τ , respectively, and let xτ

be any fixed point at timestep τ . If τ < min(t, t̃) is satisfied, the density ratio of the true joint
distribution q(·, ·) is given by:

q(x̃, t̃)

q(x, t)
=

qt̃|τ (x̃|xτ)

qt|τ (x|xτ)
· Lt̃(x̃, t̃)

Lt(x, t)
·
pθτ |t(xτ |x)
pθ
τ |t̃(xτ |x̃)

(61)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Algorithm 2 JointMALAOneStep(x, t, s, Lt,θ,ϕ,ψ)

Input: x, t, s, Lt

Output: Accepted sample x̃τ

1: repeat
2: Sample x̃ ∼ pθproposal,t(· | x, t)
3: Sample t̃ ∼ pψproposal(· | x̃)
4: Compute s̃ = sθ(x̃, t̃) and L̃t̃ = Lϕ

t̃
(x̃, t̃)

5: Compute acceptance probability: α̂joint(x, x̃, s, s̃, Lt, L̃t̃, τ)
6: Sample u ∼ U(0, 1)
7: until u < α
8: return x̃, t̃, s̃, L̃t̃

Proof. For ∀xτ with τ < t, t̃, the below equation holds.

q(x̃, t̃)

q(x, t)
=

q(x̃ | t̃)
q(x | t)

· q(t̃)
q(t)

(62)

=
qt̃(x̃)

qt(x)
(63)

=
qt̃|τ (x̃ | xτ)

qt|τ (x | xτ)
·
qτ |t(xτ |x)
qτ |t̃(xτ |x̃)

· qτ (xτ)

qτ (xτ)
(64)

=
qt̃|τ (x̃ | xτ)

qt|τ (x | xτ)
·
qτ |t(xτ |x)
qτ |t̃(xτ |x̃)

(65)

=
qt̃|τ (x̃ | xτ)

qt|τ (x | xτ)
·
qτ |t(xτ |x)
pθτ |t(xτ |x)

·
pθ
τ |t̃(xτ |x̃)
qτ |t̃(xτ |x̃)

·
pθτ |t(xτ |x)
pθ
τ |t̃(xτ |x̃)

(66)

=
qt̃|τ (x̃ | xτ)

qt|τ (x | xτ)
· Lτ (xτ , τ)

Lt(x, t)
· Lt̃(x̃, t̃)

Lτ (xτ , τ)
·
pθτ |t(xτ |x)
pθ
τ |t̃(xτ |x̃)

(67)

=
qt̃|τ (x̃ | xτ)

qt|τ (x | xτ)
· Lt̃(x̃, t̃)

Lt(x, t)
·
pθτ |t(xτ |x)
pθ
τ |t̃(xτ |x̃)

(68)

The density of the proposal distribution, pθproposal(x̃ | x, t) · p
ψ
proposal(t̃ | x̃), is tractable. In detail,

pθproposal(x̃ | x, t) is a Langevin proposal, which follows a Gaussian distribution and pψproposal(t̃ | x̃)
can be evaluated using the output of the time classifier. Therefore, the acceptance probability in the
joint space can be computed. The acceptance probability is given as follows:

α̂joint(x, x̃, s, s̃, L, L̃, τ)

= min

1,
qt̃|τ (x̃ | x̂τ)

qt|τ (x | x̂τ)︸ ︷︷ ︸
Forward term

· L̃

L︸︷︷︸
Likelihood ratio

·
pθτ |t(xτ |x)
pθ
τ |t̃(xτ |x̃)︸ ︷︷ ︸

Transition kernel term

·
pθproposal(x | x̃, t̃) · p

ψ
proposal(t | x)

pθproposal(x̃ | x, t) · p
ψ
proposal(t̃ | x̃)︸ ︷︷ ︸

Proposal term

 (69)

τ, x̂τ can be any point. We choose the value of τ such that it does not deviate significantly from
the original timestep t. In our experiments, we empirically set τ so that the standard deviation of
qτ |0(xτ | x0) differs from that of qmin(t,t̃)|0(xmin(t,t̃) | x0) by 0.1, based on the VESDE(Song et al.,
2021b) parameterization. We set x̂τ = 1

2 (µt(x, s
θ(x, t)) + µt̃(x̃, s

θ(x̃, t̃))). The detailed process is
in Algorithm 2.

Since the timestep is proposed for every update of Alg. 2 , we need to reassign the starting timestep
t for denoising. We first fix the total number of steps T , and perform T − t steps of denoising

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 8: FID and NFE on unconditional CelebA-HQ 256×256 generation with ScoreSDE (Song
et al., 2021b), DLG (Kim & Ye, 2023), AC (marginal), and AC (joint).

FID↓ NFE↓ FID↓ NFE↓ FID↓ NFE↓

ScoreSDE (KAR1) 121.27 40 122.74 98 125.15 198
+DLG 20.19 21.21 29.12 47.21 30.72 107.21
+AC (marginal) 103.81 19.78 75.51 41.83 87.40 84.13
+AC (joint) 15.13 15.94 22.55 44.06 15.69 87.26

ScoreSDE (KAR2) 83.21 40 57.28 98 29.74 198
+DLG 17.92 21.21 12.12 47.21 8.14 107.21
+AC (marginal) 45.74 19.55 19.48 42.97 9.45 94.34
+AC (joint) 8.45 20.05 9.55 40.05 6.60 98.27

from t down to the proposed timestep t̃. Then, we perform t steps of denoising from t̃ to 0. Our
methodology generalizes the approach of DLG (Kim & Ye, 2023). While DLG generates samples
from the joint space of time and data using Gibbs sampling, we introduce the Metropolis-Hastings
algorithm to correct samples toward the true data distribution by additionally training a time-dependent
discriminator. We adopt the time classifier from the official code of DLG and use the argmax of
the classifier output as the proposed timestep, following their original approach. Since using the
argmax results in a deterministic time proposal distribution, we set pψ(t | x) = 1 when computing
the acceptance probability.

For fair comparison, we reproduced the experimental setting of DLG. We first obtained the best
parameters for both the KAR1 and KAR2 samplers as reported in DLG, and then reproduced their
performance using these optimal settings. Subsequently, we increased the number of denoising steps
while keeping the remaining parameters unchanged.

C HYPERPARAMETER DETAIL

As described in the main text, our method treats the MH target diffusion timestep τ and the Langevin
step size (controlled by the signal-to-noise ratio, SNR) as the primary parameters. In addition, we
employ several auxiliary hyperparameters: the number of skipped steps nskip, the burn-in length
nburn-in, and the number of parallel chains nchain. Their roles are summarized as follows:

• nskip: Controls how many intermediate steps are skipped between proposals.

• nburn-in: Specifies the number of initial iterations discarded to reduce initialization bias.

• nchain: Denotes the length of MCMC chains. With one initial point, we can get nchain
samples.

Among the hyperparameters, we regard the choice of τ as the most critical. As τ decreases—i.e., as
the state approaches the data distribution—the marginal distribution becomes sharper. This sharpness
increases the computational burden of moving across the space via MCMC. While smaller τ brings
the chain closer to the true data distribution (see proof of Theorem 4.2), it also requires a larger
number of samples to sufficiently cover the support. Conversely, if τ is set too low, the effective
reduction in NFE diminishes and distributional alignment becomes less pronounced. Therefore,
selecting an appropriate τ is essential. Empirically, we found that setting τ between 1

2T and 3
4T

achieves the most effective trade-off.

The second key parameter is the SNR, which controls the step size η of the Langevin proposal:

√
η = SNR×

(
2 · |ϵ|
|s|

)
. (70)

A too-small SNR yields excessively small step sizes, limiting sample diversity, while a too-large SNR
hampers convergence of the MH correction. Based on prior works that adopted Langevin sampling in
diffusion models (e.g., Song & Ermon (2019); Song et al. (2021b)), we set the SNR in the range of
0.1–0.25.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Experimental results on varying these two key parameters are reported in Table 9. We conducted
experiments with the total number of timesteps fixed at 18, while keeping nskip, nburn-in, and nchain
constant. As shown in the Table, when τ is set too small, the MCMC chain tends to remain in a limited
region of the space for a long time. Consequently, covering the entire distribution requires significantly
higher computational cost, which is reflected in the degraded FID and Recall metrics. Furthermore, as
the SNR increases, the acceptance probability gradually decreases. Across our overall experimental
setup, the SNR satisfies SNR ≤ 0.25, which allows us to maintain an acceptance probability of
approximately α ≳ 0.25 (see Table 9). Because α is sufficiently large, as argued in the main text,
substantial NFE reduction can be achieved even with a small chain length l. These experimental
results support the preceding analysis in Proposition 4.2.

Method τ SNR FID↓ NFE↓ Recall↑ C.I of α
EDM (Base) - - 2.01 35 0.627 -

13

0.1 2.89 25.13 0.550 0.9150± 0.0023
0.2 2.06 25.65 0.620 0.6248± 0.0033

+AC 0.23 1.97 26.19 0.628 0.4703± 0.0030
0.27 2.09 28.11 0.625 0.2493± 0.0019

8

0.1 8.77 15.21 0.200 0.8689± 0.0027
0.2 6.14 15.75 0.422 0.6560± 0.0039

+AC 0.23 6.73 16.70 0.441 0.4671± 0.0034
0.27 9.45 18.66 0.448 0.2733± 0.0022

3

0.1 62.67 5.29 0 0.8525± 0.0046
0.2 46.60 5.75 0 0.6590± 0.0054

+AC 0.23 43.96 6.26 0 0.4812± 0.0054
0.27 39.44 9.13 0 0.2703± 0.0022

Table 9: Results for different τ values and SNR settings, including FID, NFE, Recall, and acceptance
probabilities with 95% confidence intervals.

Method nskip FID↓ NFE↓ Recall↑
EDM - 2.01 35 0.627

0 1.97 26.19 0.628
1 1.98 28.25 0.631
2 1.94 30.28 0.634

+ AC 3 1.97 32.30 0.638
4 2.00 34.39 0.640
5 2.02 36.38 0.623

Table 10: FID and NFE for dif-
ferent skip steps.

Method nchain FID↓ NFE↓ Recall↑
EDM - 2.01 35 0.627

10 2.03 29.28 0.622
50 2.00 26.69 0.630

+ AC 100 2.07 26.38 0.624
300 1.97 26.19 0.629
500 2.02 26.12 0.625

Table 11: FID and NFE for differ-
ent chain steps.

Method nburn-in FID↓ NFE↓ Recall↑
EDM - 2.01 35 0.627

0 1.99 36.23 0.640
1 2.02 37.46 0.624
2 2.01 38.69 0.633

+ AC 5 1.99 42.37 0.632
10 1.97 48.54 0.629
20 1.97 60.81 0.632
50 1.98 97.58 0.629

Table 12: FID and NFE for dif-
ferent burn-in steps.

The following reports the results of varying each auxiliary parameter. Tables 10, 11, and 12 present the
outcomes for changing nskip, nchain, and nburn-in, respectively. Unless otherwise noted, all experiments
are conducted with T = 18, τ = 13.

Table 10 reports the effect of varying nskip while fixing SNR = 0.23, nchain = 300, and nburn-in = 10.
The parameter nskip helps reduce autocorrelation between samples; however, excessively large values
increase the NFE, limiting the achievable acceleration gain. Empirically, we set nskip = 0 ∼ 1 for
CIFAR-10 and ImageNet, and maximum 4 for CelebA-HQ 256× 256.

Table 11 shows the results obtained by varying nchain while fixing SNR = 0.23 and nburn-in = 10.
When SNR is too small, recall may vary with nchain, but under reasonable SNR values the recall is
largely insensitive to nchain. Nevertheless, setting nchain too small can hinder effective NFE reduction.

Table 12 investigates the role of the burn-in process by varying nburn-in while fixing SNR = 0.16 and
nchain = 1. We set nchain = 1 in order to isolate and examine the effect of correction on each sample.
We observe that after about 10 burn-in steps, the chain sufficiently converges, indicating that the
score-based proposal distribution indeed allows proper convergence. In practice, we set nburn-in ≤ 10.

D MCMC MIXING

Images are high-dimensional data, which makes direct statistical evaluation of Markov chain mixing
challenging. To address this, we assess mixing indirectly by analyzing the class labels of generated

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

images. We trained a ResNet based classifier that achieves 95% accuracy on the CIFAR-10 test set,
and used it to assign class labels to each generated image, thus forming a class sequence along the
MCMC chain. We constructed Markov chains of length 300.

We measured Integrated Autocorrelation Time(IACT) (Birdsall et al., 1994) 30 times with a maximum
lag of 100. With Table 14 we observed trends consistent with Recall metrics. Lower IACT values
indicate better mixing, suggesting that our method yields well-mixed samples. However, we note that
IACT is originally defined for continuous variables, and applying it to categorical class labels can be
limiting.

Lag Cramér’s V ± std

1 0.360 ± 0.035
2 0.259 ± 0.037
3 0.214 ± 0.044
4 0.182 ± 0.042
5 0.172 ± 0.036

Table 13: Cramér’s
V across lags.

To complement IACT, we also computed Cramér’s V (Akoglu, 2018) 30 times
to assess class autocorrelation in the discrete label space in Table 13. Under
the best-performing setting (τ = 5,SNR = 0.23), the value at lag 1 shows
a relatively strong correlation (Akoglu, 2018), which is expected since our
sampler proposes candidates based on local gradients. Nevertheless, both
improvements in the Recall metric and our toy experiment 5.3 demonstrate
that, despite such correlations, the chain is able to generate sufficiently diverse
samples.

Method τ SNR FID ↓ Recall ↑ IACT of class sequence ↓
EDM (Base) - - 2.01 0.627 -

13

0.1 2.89 0.550 8.71± 10.02
0.2 2.06 0.620 2.45± 3.23

+AC 0.23 1.97 0.628 1.53± 1.70
0.27 2.09 0.625 1.89± 1.35

8

0.1 8.77 0.200 29.47± 26.86
0.2 6.14 0.422 21.65± 24.84

+AC 0.23 6.73 0.441 20.92± 24.50
0.27 9.45 0.448 24.39± 25.55

3

0.1 62.67 0 38.45± 27.39
0.2 46.60 0 34.93± 27.83

+AC 0.23 43.96 0 22.51± 23.15
0.27 39.44 0 24.45± 32.90

Table 14: IACT of class sequence for different τ values and
SNR settings.

E METROPOLIS-HASTINGS ALGORITHM AND ALGORITHM 1

Algorithm 1 employs a propose-until-accept update: at each step, proposals are repeatedly drawn and
subjected to the MH accept–reject test until one is accepted, and the accepted proposal is then emitted
as the next sample. We adopted this design for empirical reasons, namely to mitigate stagnation and
preserve sample diversity. In canonical Metropolis–Hastings, however, a rejection corresponds to
a self-transition, which is essential for preserving detailed balance. Eliminating self-transitions by
proposing until acceptance alters the transition kernel and can introduce stationary bias.

This variant can be interpreted as a Jump Markov chain (Rosenthal et al., 2021). In such chains,
the target distribution is implicitly modified because the rejection mechanism no longer permits
self-transitions. Following Rosenthal et al. (2021), the stationary distribution of the jump chain,
denoted π̂, can be expressed in terms of the original stationary distribution π as

π̂(x) = cα(x)π(x), (71)

where α(x) := 1 − Ptransition(x|x) is the escape probability at state x, and c = Ey∼π[α(y)]
−1 is a

normalizing constant. Here Ptransition(·|·) denotes the transition probability of the original MH chain.
The KL divergence between π and π̂ is then

DKL[π||π̂] = Ex∼π

[
log

π(x)

π̂(x)

]
= Ex∼π

[
log

1

cα(x)

]
= Ex∼π

[
log

Ey∼π[α(y)]

α(x)

]
. (72)

This formulation shows that the jump chain introduces a KL divergence bias. When α(x) is constant
over the support of π, no bias arises; otherwise, the deviation can be non-negligible. Despite the
strong empirical performance of our method, a distributional gap remains. We leave a rigorous
theoretical analysis of this gap to future work.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

F ADDITIONAL EXPERIMENT

F.1 EXTEND AC-SAMPLER TO CORRECT EACH SAMPLES : MULTI STEP CORRECTION &
REFINED PROPOSAL WITH A DISCRIMINATOR

After the burn-in process of the Metropolis-Hastings algorithm, the samples generated from our
method can be regarded as samples drawn from the true distribution. This demonstrates that the
Metropolis-Hastings algorithm can be used not only to accelerate sampling, but also to correct
intermediate samples to better match the target distribution.

Focusing solely on the correction perspective, our proposed framework naturally incor-
porates the following methodological components: multi-step correction and refined pro-
posal with a discriminator. As discussed in the main text, we initially present our al-
gorithm using a single-step formulation for simplicity. However, applying our method
in a multi-step setting is straightforward and does not pose any conceptual or techni-
cal difficulties. Therefore, we also conducted experiments under the multi-step setting.

Table 15: Comparison of FID and sampling settings under differ-
ent configurations

Sampling FID↓ NFE↓ T τ SNR nburn-in nchain

EDM 1.97 35 18 – – – –

2.18 51 18 1, 3, 5, 7 0.16 3 1
EDM + PC 2.13 51 18 7, 9, 11, 13 0.16 3 1

2.00 51 18 11, 13, 15, 17 0.16 3 1

1.94 54.66 18 1, 3, 5, 7 0.16 3 1
EDM + AC 1.96 55.33 18 7, 9, 11, 13 0.16 3 1

1.93 54.91 18 11, 13, 15, 17 0.16 3 1

1.98 54.65 18 1, 3, 5, 7 0.16 3 1
EDM + AC + DGp 1.87 54.56 18 7, 9, 11, 13 0.16 3 1

1.92 54.17 18 11, 13, 15, 17 0.16 3 1

Furthermore, DG (Kim et al.,
2023) proposed correcting the
score network using the gradient
information from a discrimina-
tor. Since we adopt exactly the
same training scheme for the dis-
criminator as in DG, it is reason-
able to apply a refined proposal
based on the corrected score net-
work. This implies that the dis-
criminator trained at timestep τ
not only provides a likelihood ra-
tio estimate, but also enables re-
fining the proposal distribution
pθproposal,τ . It is possible to use
DGp in accelerating, but DGp needs gradient calculation and this made sampling speed slow.

We present the results of both extensions in Table 15. We denote this discriminator-guided proposal
scheme as DGp. The result demonstrates the effect of MALA correction across various choices of
the correction timestep τ . Although the correction timestep increases while maintaining the same
SNR, AC-Sampler either improves or maintains the baseline FID score. Furthermore, we observe that
incorporating the DG scheme into AC-Sampler leads to a meaningful reduction in FID with shorter
length of chain. In contrast, PC-Sampler (Song et al., 2021b) often fails to correct samples at large
correction timesteps.

In the table, setting nchain = 1 indicates that Metropolis-Hastings correction is applied for each
individual sample. While this setting does not reduce the number of function evaluations (NFE), it
effectively corrects each intermediate sample.

F.2 DISCUSSION ABOUT TRADE-OFF IN CLASS-CONDITIONAL GENERATION

Table 16: FID and NFE results
on ImageNet 64×64 across
different (SNR, τ) settings.

Method SNR τ FID↓ NFE↓

EDM – – 2.30 61

+AC
0.12 8 2.28±0.05 52.91
0.12 9 2.29±0.03 51.30

When performing class-conditional generation, the number of inde-
pendent class samples plays an important role. For FID evaluation,
we use 50K images. With nchain = 10, the baseline involves 50,000
independent class samplings, whereas only 5,000 samplings occur
with our method, which may lead to class imbalance. If this effect
did not exist, the NFE reduction could be even more effective. To
evaluate our method fairly under this setting, we generate 250K
samples with nchain = 5 (this setting makes total of 50K independent
class samplings) and compute the FID five times using randomly
selected subsets of 50K samples. We report the mean and stan-

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

dard deviation of the resulting FID. Table 16 presents this analysis, showing that our method can
significantly reduce NFE while maintaining a comparable FID.

F.3 CIFAR-10 WITH SCORESDE

We also conduct experiments with Score-SDE (Song et al., 2021b) and DLG (Kim & Ye, 2023).
Table 17 and Figure 7 reports our reproductions of the base models (Score-SDE and DLG) alongside
our method. Because the publicly released Score-SDE checkpoint is configured for sampling
with roughly 1,000 NFE, achieving strong performance at substantially lower NFE is inherently
challenging. Following the evaluation protocol described in the DLG paper, our reproduced results
improved over the base checkpoint but did not exactly match the values reported in the original work.
Under the same setting, applying our method yielded consistent distribution correction and quality
improvements, even in the low-NFE regime.

FID↓ NFE↓ FID↓ NFE↓ FID↓ NFE↓
ScoreSDE (Base) 27.35 16 26.58 26 26.72 36

+DLG 25.95 11.23 24.86 21.23 24.25 52.23
+AC (Ours) 25.18 10.95 23.83 19.13 23.14 29.07

Table 17: Experiment results on CIFAR-10 with ScoreSDE

Figure 7: ScoreSDE base ex-
periment on CIFAR-10

G EXPERIMENT SETTING

G.1 EXPERIMENTAL SETUP

Setups. We evaluate on CIFAR-10, CelebA-HQ 256×256, ImageNet 64×64, and Ima-
geNet 256×256. On CIFAR-10, we assess EDM (Karras et al., 2022) and DDO (Zheng et al.,
2025) using the Heun sampler as in EDM, ScoreSDE (Song et al., 2021b) adopting samplers KAR1
(deterministic) and KAR2 (stochastic) (Kim & Ye, 2023). For ScoreSDE, refer Appendix F.3. On
CelebA-HQ, we use the ScoreSDE (Song et al., 2021b) checkpoint within the DLG codebase (Kim &
Ye, 2023) with KAR1, KAR2 sampler. On ImageNet 64×64, we use the EDM checkpoint with the
SDE sampler from (Karras et al., 2022); on ImageNet 256×256, we use the DiT checkpoint (Peebles
& Xie, 2023) with a DDPM sampler (Ho et al., 2020).

Codebases and checkpoints. Our experiments use the official repositories of EDM3, DLG4, DG5,6,
DDO7, ScoreSDE8, and DiT9.

Discriminator training. We train a time-dependent discriminator per network following DG (Kim
et al., 2023), using the pre-trained ADM classifier (Dhariwal & Nichol, 2021) as the feature extractor.
Compared to training a diffusion model, discriminator training is substantially cheaper.

Metrics. We report FID and the mean number of function evaluations (NFE) of the score network
(as in DLG (Kim & Ye, 2023)), since NFE varies across samples in our method. FID is computed on
50K generated samples against the 50K test images; for CelebA-HQ 256×256, we report 10K FID.
Also we report Precision / Recall metric to assess both the fidelity and diversity of generated images.
The computation of FID follows the official implementation provided by DG (Kim et al., 2023). We
measure the Precision and Recall using the ADM codebase (Dhariwal & Nichol, 2021).

3https://github.com/NVlabs/edm
4https://github.com/1202kbs/DMCMC
5https://github.com/aailabkaist/DG
6https://github.com/alsdudrla10/DG_imagenet
7https://github.com/NVlabs/DDO
8https://github.com/yang-song/score_sde_pytorch
9https://github.com/facebookresearch/DiT

24

https://github.com/NVlabs/edm
https://github.com/1202kbs/DMCMC
https://github.com/aailabkaist/DG
https://github.com/alsdudrla10/DG_imagenet
https://github.com/NVlabs/DDO
https://github.com/yang-song/score_sde_pytorch
https://github.com/facebookresearch/DiT

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

All experiments were conducted on NVIDIA RTX 3090, 4090 GPU and A100 GPU using Python
3.8, PyTorch 1.12, and CUDA 11.4.

Table 18: Sampling configuration and performance metrics (FID / NFE) with various diffusion and
sampler combinations.

Dataset Task Base Model Base Sampler T SNR nchain nburn-in nskip τ FID NFE

CIFAR-10 Uncond. EDM EDM (Heun) 18 0.23 50 10 0 11 2.10 22.78

18 0.23 300 10 0 13 1.97 26.19

18 0.23 500 10 0 13 2.02 26.12

18 0.23 3,4,5 5 4 13,14,15 1.93 44.40

14 0.2 50 0 0 6 2.38 15.82

10 0.2 11 0 0 5 3.24 10.57

CIFAR-10 Uncond. DDO EDM (Heun) 16 0.175 2 0 2 13 1.41 29.41

CIFAR-10 Uncond. EDM DPM-Solver-v3 6 0.16 10 0 0 5 7.12 5.62

8 0.16 10 0 0 7 3.09 7.54

8 0.1 7 0 0 4 9.88 4.78

10 0.15 3 0 0 9 2.55 9.93

CIFAR-10 Uncond. ScoreSDE KAR1 18 0.23 250 10 1 13 23.14 29.08

18 0.23 250 10 1 11 23.80 25.18

18 0.23 250 10 0 14 23.83 19.13

ImageNet 64×64 Cond. EDM EDM (SDE) 32 0.16 2 1 0 26 2.25 58.75

64 0.18 2 5 1 50 1.77 121.98

256 0.1 2 5 1 225 1.42 483.86

CelebA-HQ 256×256 Uncond. ScoreSDE KAR1 20 0.16 25 10 0 13 15.13 15.94

49 0.16 100 10 4 30 22.55 44.07

99 0.16 25 10 3 60 15.69 87.26

CelebA-HQ 256×256 Uncond. ScoreSDE KAR2 20 0.16 25 10 1 12 8.45 20.05

49 0.16 50 10 4 33 9.55 40.05

99 0.18 25 10 3 55 6.60 98.27

ImageNet 256×256 Cond. DiT DDPM 250 0.12 2 190 0 10 2.31 234.38

G.2 DISCRIMINATOR DETAILS

To implement the time-dependent discriminator, we directly used the official DG codebase and
followed their approach. On CIFAR-10, we used the discriminator checkpoint provided by DG
only when the base diffusion model was EDM and the NFE of the EDM (Heun) sampler was
set to 35. For all other cases, we trained the discriminator ourselves using the DG codebase.

Table 19: FID-NFE with dif-
ferent training epochs of dis-
criminator.

Method Epoch FID↓ NFE↓
EDM - 3.23 17.00

AC w.o. MH - 3.40 15.26

+AC 1 2.56 15.80
2 2.59 15.80
5 2.64 15.81

10 2.39 15.81
20 2.43 15.82
60 2.38 15.81

Our discriminators were trained on a single NVIDIA RTX 3090 GPU.
For the feature extractor, we used a commonly adopted (Na et al.,
2024; Kim et al., 2023) pre-trained classifier from ADM10 (Dhariwal
& Nichol, 2021). The discriminator takes the features extracted by
this network as input, and during training, we only updated the
parameters of the discriminator network. Detailed training settings
are provided in Table 20.

Indeed, while our method requires training an additional discrimina-
tor, we would like to emphasize that the training cost is significantly
lower compared to that of the score model. As summarized in the
table 21, our discriminator is much smaller and faster to train than
the pre-trained score network. Compared to fine-tuning a pre-trained

10https://github.com/openai/guided-diffusion

25

https://github.com/openai/guided-diffusion

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 20: Configurations of the discriminator.

CIFAR-10 ImageNet 64×64 CelebA-HQ 256×256 ImageNet 256×256

Diffusion Backbone
Model EDM DDO ScoreSDE EDM ScoreSDE DiT-XL/2
Conditional model ✗ ✗ ✗ ✔ ✗ ✔

Feature Extractor
Model ADM ADM ADM ADM ADM ADM
Architecture U-Net encoder U-Net encoder U-Net encoder U-Net encoder U-Net encoder U-Net encoder
Pre-trained ✔ ✔ ✔ ✔ ✔ ✔
Depth 4 4 4 4 4 4
Width 128 128 128 128 128 128
Attention Resolutions 32,16,8 32,16,8 32,16,8 32,16,8 32,16,8 32,16,8
Input shape (data) (B,32,32,3) (B,32,32,3) (B,32,32,3) (B,64,64,3) (B,256,256,3) (B,32,32,3)
Output shape (feature) (B,8,8,512) (B,8,8,512) (B,8,8,512) (B,8,8,512) (B,8,8,512) (B,8,8,384)

Discriminator
Model ADM ADM ADM ADM ADM ADM
Architecture U-Net encoder U-Net encoder U-Net encoder U-Net encoder U-Net encoder U-Net encoder
Depth 2 2 2 2 2 2
Width 128 128 128 128 128 128
Attention Resolutions 32,16,8 32,16,8 32,16,8 32,16,8 32,16,8 32,16,8
Input shape (feature) (B,8,8,512) (B,8,8,512) (B,8,8,512) (B,8,8,512) (B,8,8,512) (B,8,8,384)
Output shape (logit) (B,1) (B,1) (B,1) (B,1) (B,1) (B,1)

Discriminator Training
Time scheduling VP VP VP Cosine VP VP VP
Time sampling Importance Importance Importance Importance Importance Importance
Time weighting g2

σ2
g2

σ2
g2

σ2
g2

σ2
g2

σ2
g2

σ2

Batch size 128 128 128 128 20 512
data samples 50,000 50,000 50,000 50,000 30,000 50,000
generated samples 50,000 50,000 50,000 50,000 30,000 50,000
Epoch 60 70 60 20 50 50

Table 21: Training cost comparison of the score model and discriminator. CIFAR-10

Training Parameter Size Training GPU Training Time

Score (EDM) 55.7M 8×V100 GPUs ∼2 days
Discriminator 2.9M 1×RTX 3090 <2 hours

diffusion model, our approach introduces substantially lower com-
putational overhead and does not modify the pre-trained model in any way. Importantly, we enable
both acceleration and correction purely through discriminator training only. Table.22 shows the
robustness of our time-dependent discriminator. To evaluate the performance of our discriminator at
different timesteps, we conducted experiments with nchain = 1 ensuring that each sample is corrected
independently. (No acceleration was applied, as our goal was to isolate the effect of the discriminator
across timesteps) Using a fixed SNR, we applied the AC-Sampler at various τ values with the same
random seed. The results consistently showed improvements in FID across timesteps, suggesting that
the discriminator effectively approximates the density ratio qτ

pθ
τ

at multiple temporal locations.
Table 22: FID and NFE
comparison of AC with
different chain lengths.

Method τ FID↓ NFE↓
EDM - 2.01 35

+AC 3 2.02 48.51
5 1.97 48.53
7 1.99 48.54

10 2.00 48.72
12 1.92 49.89
15 2.00 49.03

To evaluate the robustness of our method under an imperfect discriminator,
we conducted experiments using partially trained discriminators. We
observed that as the discriminator training progressed, the quality of
the generated samples consistently improved. Moreover, our method
significantly outperformed where all proposals are accepted without a
discriminator. These results indicate that even an imperfectly trained
discriminator can still yield meaningful performance gains. This supports
the theoretical claim in Appendix A.4, where we show that continued
discriminator training leads to improvements in KL divergence.

H THE USE OF LARGE LANGEUAGE MODELS (LLMS)

We acknowledge the use of a Large Language Model (LLM) during the
preparation of this manuscript. The LLM was employed solely as a
general-purpose writing assistant to improve readability, grammar, and clarity of exposition. It was
not involved in the ideation of research questions, the design of experiments, the development of

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

methods, or the interpretation of results. The scientific contributions of this work, including problem
formulation, methodology, theoretical analysis, and empirical evaluation, were conceived and carried
out entirely by the authors. The role of the LLM was limited to helping refine the presentation of the
text, and it did not contribute substantively to the research process itself.

I GENERATED IMAGES

We provide uncurated sample images at Figure 8, 9, 10, 11, 12 generated by our sampler. These are
non-cherry-picked samples generated by applying our algorithm to the baseline models and samplers,
used in our experiments.

Figure 8: The uncurated generated images of AC-sampler on unconditional CIFAR-10 with EDM
(EDM(Heun) sampler, NFE=26.19, FID=1.97).

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Figure 9: The uncurated generated images of AC-sampler on unconditional CIFAR-10 with ScoreSDE
(KAR1 sampler, NFE=29.07, FID=23.14).

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Figure 10: The uncurated generated images of AC-sampler on conditional ImageNet 64×64 with
EDM (EDM(SDE) sampler, NFE=59.30, FID=2.27).

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Figure 11: The uncurated generated images of AC-sampler on unconditional CelebA-HQ 256×256
with ScoreSDE (KAR1 sampler, NFE=15.94, FID=15.13).

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Figure 12: The uncurated generated images of AC-sampler on unconditional CelebA-HQ 256×256
with ScoreSDE(KAR2 sampler, NFE=20.05, FID=8.45).

31

	Introduction
	Related Work
	Preliminary
	Metropolis-Hastings Algorithm and Langevin Proposal
	Diffusion Models

	Method
	Proposal distribution
	Acceptance Probability
	Theoretical Analysis

	Experiments
	Unconditional Generation
	class-conditional generation
	Ablation Studies

	Conclusion
	Proofs and Mathematical Explanations
	Theoretical analysis of DLG kim2023denoising
	Proof of Proposition 4.2
	Proof of Theorem 4.1
	Proof of Theorem 4.3
	Proof of Theorem 4.4

	Metropolis Hastings Algorithm In Joint Space
	Hyperparameter detail
	MCMC Mixing
	Metropolis-Hastings algorithm and Algorithm 1
	Additional Experiment
	Extend AC-Sampler to correct each samples : Multi step correction & Refined proposal with a discriminator
	Discussion about Trade-off in Class-conditional Generation
	CIFAR-10 with ScoreSDE

	Experiment Setting
	Experimental Setup
	Discriminator details

	The Use of Large Langeuage Models (LLMs)
	Generated Images

