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ABSTRACT

Diffusion-based generative models have recently achieved state-of-the-art per-
formance in high-fidelity image synthesis. These models learn a sequence of
denoising transition kernels that gradually transform a simple prior distribution
into a complex data distribution. However, requiring many transitions not only
slows down sampling but also accumulates approximation errors. We introduce
the Accelerator-Corrector Sampler (AC-Sampler), which accelerates and corrects
diffusion sampling without fine-tuning. It generates samples directly from interme-
diate timesteps using the Metropolis—Hastings (MH) algorithm while correcting
them to target the true data distribution. We derive a tractable density ratio for
arbitrary timesteps with a discriminator, enabling computation of MH acceptance
probabilities. Theoretically, our method yields samples better aligned with the true
data distribution than the original model distribution. Empirically, AC-Sampler
achieves FID 2.38 with only 15.8 NFEs, compared to the base sampler’s FID 3.23
with 17 NFEs on unconditional CIFAR-10. On CelebA-HQ 256x256, it attains
FID 6.6 with 98.3 NFEs. AC-Sampler can be combined with existing acceleration
and correction techniques, demonstrating its flexibility and broad applicability.

1 INTRODUCTION

Diffusion-based generative models (Ho et al., 2020; Sohl-Dickstein et al., [2015; [Song et al., 2021a)
have become one of the most popular approaches in recent years due to their strong ability to generate
diverse types of data such as high-fidelity images (Dhariwal & Nichol, 2021; Rombach et al., 2022)
and videos (Ho et al.,|2022; Voleti et al.,|2022). Building on these models, strong pre-trained variants
have emerged (Rombach et al.| [2022} Karras et al., 2022), followed by many studies aiming to further
improve them (Kim et al.} 2023 |Na et al., 2024; Xu et al.,2023a). In spite of many variations, these
models share a fundamental structure: they start by sampling from a simple prior distribution and
iteratively transform the samples through a series of learned transition kernels to approximate the
complex data distribution. This iterative generation causes two problems. First, the sampling process
is slow due to the large number of kernel transition calculations required (Song et al., [2021bj [Zhang
& Chenl 2023). Second, errors can accumulate during the sampling process if the kernel transition
does not accurately reflect the true reverse diffusion process (Xu et al., 2023a)).

Speed and accuracy are usually considered separate research topics, as improving both simultaneously
is often challenging. Some approaches for acceleration diffusion sampling (Kim & Yel 2023}
Zheng et al.} [2023)) focus on reducing the NFE while maintaining image quality, but they lack
theoretical analysis for converging to the true data distribution. On the contrary, previous correction
methods (Kim et al., 2023} [Na et al., [2024; [ Xu et al.| [2023a)) maintain or even increase the NFE,
which makes the methods unscalable in real-world services.

To address both challenges, we propose Accelerator-Corrector Sampler (AC-Sampler). It ac-
celerates and corrects the diffusion sampling process without any fine-tuning of the pre-trained
model. Instead of sampling from the prior distribution, AC-Sampler directly proposes samples at
intermediate timesteps, which enables acceleration. Using Metropolis-Hastings correction, these
proposals are guaranteed to theoretically follow the true marginal distribution. Since the pre-trained
model approximates the score function, we can construct an effective proposal distribution using
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Langevin dynamics (Grenander & Miller,|1994)). For computing the acceptance probability, we only
train a time-dependent discriminator (Kim et al.} 2023} [Na et al.| [2024)), which can be learned at a
much lower cost than the diffusion model itself.

Our contributions are as follows:

* We propose the AC-Sampler, which accelerates diffusion sampling by generating samples
from intermediate timesteps rather than the initial prior distribution. It also corrects the
accumulated error in the sampling process with Metropolis-Hastings (MH) algorithms.

* We provide a theoretical analysis showing that training the discriminator and following the
MH chain in our method leads to a tighter bound on the data distribution compared to that of
a pre-trained diffusion model. Furthermore, we provide a theoretic analysis of the expected
reduction in the number of function evaluations (NFE).

* We validate our theoretical claim through experiments on benchmark datasets and toy
settings, and demonstrate that our method applies effectively to diverse pre-trained models
in both unconditional and conditional settings.

* Our contribution is orthogonal to advances in training-free samplers, so the two gains are
complementary and can be realized simultaneously. Also, the utilize discriminator is simple
and does not require ad-hoc structures on the pretrained diffusion model.

2 RELATED WORK

Due to the high cost of training or fine-tuning pre-trained diffusion models, a growing body of work
focuses on keeping such models fixed and instead accelerating and correcting the sampling process.

Acceleration Methods To reduce the computational burden associated with additional training,
acceleration methods have been developed to speed up the sampling process without modifying
the original diffusion model. DDIM (Song et al., 2021a) reformulates the reverse diffusion as a
deterministic ODE, achieving significant speedups with fewer steps while preserving the pre-trained
network. Building on this foundation, various works have further improved ODE solvers through
high-order numerical methods and exponential integration, leading to significant gains in sampling
efficiency (Liu et al., 2022} |Lu et al., [2022ajb; [Dockhorn et al., 2022a; [Karras et al., [2022} |[Zhang &
Chenl, 2023} Zhao et al.| 2023 |[Zheng et al., 2023).

In parallel, other lines of work have explored fundamentally different perspectives on diffusion
model acceleration. For example, PDS (Ma et al.| [2022) treats diffusion sampling as an Markov
Chain Monte Carlo (MCMC) process, incorporating frequency-domain preconditioning to improve
high-frequency details. DLG (Kim & Ye} |2023)) formulates the sampling process over the product
space of data and time, enabling joint Langevin-based Gibbs sampling. This sampling process
identifies the intermediate perturbed data with low noise for the initialization of the reverse process,
which shortens the subsequent diffusion trajectory. However, as shown in Appendix [A.T| DLG lacks
theoretical convergence guarantees, leaving room for improvement.

Correction Methods Several studies have been conducted to improve the sampling quality of
pre-trained diffusion models. DG (Kim et al., 2023)) proposes a correction method using a time-
dependent discriminator when score estimation is inaccurate, thereby improving the accuracy of the
transition kernel. Restart (Xu et al.||2023a)) theoretically demonstrates that repeating forward and
backward steps within a fixed time interval [¢min, tmax] in @ pre-trained model can reduce sampling
error. DiffRS (Na et al., 2024) aims to sample from the true distribution by applying a rejection
sampling scheme with a time-dependent discriminator. ES (Ning et al.,2024) proposes a training-
free correction schedule to compensate for the scale gap in score norms between the training and
sampling phases. However, there is no theoretical guarantee that simply matching the norms leads to
distributional equivalence. While these methods focus on sampling correction, they do not reduce the
base NFE and may even increase it, leading to slower sampling.
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3 PRELIMINARY

3.1 METROPOLIS-HASTINGS ALGORITHM AND LANGEVIN PROPOSAL

The Metropolis-Hastings algorithm (MH algorithm) (Metropolis et al., |1953} [Hastings|, |1970) is a
MCMC method used to sample from a target distribution when direct sampling is not possible. It
constructs a Markov chain whose stationary distribution is the target distribution by satisfying the
detailed balance condition. Based on this condition, the algorithm defines an acceptance probability,
which is used to determined whether to accept proposals drawn from a simple proposal distribution.

Given a target distribution ¢(-) and a proposal distribution pproposal (- | -), the acceptance probability
for a proposed sample x and current sample x is defined as:

q(x) pproposal(x | i))
q(x) pproposal(i | x) ’

o = min (1, (1)

which guarantees that g(+) is the stationary distribution of the Markov chain.

Though the MH algorithm allows to sample from a complex distribution, a poor proposal distribution
leads to slow convergence to the target distribution. To improve mixing and convergence, gradient-
based proposals have been studied (Parisi, [1988; [Neal et al., 2011), i.e. the Langevin proposal,
which leverages the gradient of the target distribution. Specifically, the proposal is derived from the
Euler—-Maruyama discretization of the overdamped Langevin dynamics (Roberts & Tweediel |1996).
Formally, with the target distribution ¢(x), the Langevin proposal is defined as:

i:x—kgvxlogq(x)—l—ﬁf, e~ N(0,1), 2)

where 7 is the step size and Vy log ¢(x) is the score function of ¢(x). This method is commonly
referred to as the Metropolis-Adjusted Langevin Algorithm (MALA) (Grenander & Miller;, [1994)).

3.2 DIFFUSION MODELS

Diffusion models (Ho et al., [2020; Song et al.l 2021b) are probabilistic generative models that
approximate data distributions by adding noise and reversing this process. They consist of a forward
process that corrupts data into noise and a reverse process that removes noise to generate samples.

Let go(xo) denote the true data distribution and p§(x¢) denote the distribution of generated samples
from the model. In particular, the forward process is a fixed Markov chain where Gaussian noise is
added using a pre-defined variance schedule. This creates a sequence of random variables x1.7:

q1:7)0(X1:7[X0) = Hthl Qeje—1(X¢]Xe—1), 3)

where each gy (x¢|x;—1) is a Gaussian transition with increasing noise levels. This process
transforms the data distribution into a tractable prior distribution (e.g., standard Gaussian) as t — 1.
The reverse process is modeled as a Gaussian distribution that denoises a prior distribution pr(x7r)
iteratively:

po:T(XO:T) = pT(XT) Hthl p?_1|t(xt—1\xt)7 4

where pf_ll ; 1s the transition kernel that generate data from prior distribution pr. The model is

trained by maximizing a variational bound on the log-likelihood of the data. In practice, this can be
achieved via denoising score matching loss (Vincent, [2011; [Ho et al.}|2020), given by:

2
£DSM(0) = EtNU[O,l],x0~q(x0),xt~q(xt|x0) [HSO(Xta t) - VXt lOg qt|0(xt|X0)||2} ) (5)

With this loss, s%(x;, t) optimizes to follow the true score Vy, log g(x;). The transition kernel is
parameterized as a Gaussian distribution whose mean is a function of the score function:

pte—l\t(xt—1|xt) = N(Xt—l; :u't(xta Se(xtv t))v Utzl)’ (6)

where 2T denotes time-dependent variance. After training, samples are generated by iteratively
applying the reverse kernel fromt =T tot = 0.
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We assume that we have access to a pre-trained diffusion mode denoted by 0. Let ¢;(x;) and p? (x;)
denote the marginal distributions at timestep ¢, defined by forward diffusion processes starting from
qo(x0) and p§(xo), respectively. Pre-trained diffusion model provides s (x;,t) ~ V., log ¢;:(x;).
The mean of the transition kernel depends on both x; and the score function s?(x;, t). Therefore,
we treat the score function and the transition kernel pf_l‘ . (x¢—1|x) as equivalent parametrizations,
since both are derived from the same model.

Due to this structure, diffusion models are inherently limited by slow sampling speed from the large
number of transition steps, and by the accumulation of approximation errors in the transition kernels.

4 METHOD

To address the two key challenges previously discussed, we propose AC-Sampler, a novel diffusion
sampling framework. The overall sampling procedure is as follows. First, we perform denoising
from the prior distribution up to a target timestep 7, which serves as the initial sample of the MCMC
chain. Starting from this initial sample, we repeatedly generate new candidates using a score-based
proposal distribution. At each step, MH correction is applied. These steps are performed as described
in Algorithm. [} After sufficient burn-in period, the resulting samples are corrected to true marginal
distribution, ¢-. Finally, each accepted sample is further denoised to obtain the final outputs. The
overall sampling process is illustrated in Fig. [T}

This approach has two advantages. First, samples are created directly at 7 without denoising from
T', which enables faster sampling (denoted as Acceleration Gain in Fig.[I). Second, because of MH
correction, the resulting samples follow a true marginal distribution, which yields more accurate
samples(denoted as Correction Gain in Fig.[I). Our method accelerates and corrects the sampling
process without requiring any fine-tuning of the underlying diffusion model. To implement this
process, we require the design of the proposal distribution (Sec. A1) and the computation of the
acceptance probability (Sec. [4.2).

4.1 PROPOSAL DISTRIBUTION

To sample from the intermediate timestep ¢, we use Metropolis-Adjusted Langevin Algorithm
(MALA). We set the target distribution to be ¢;(x;), and construct the proposal distribution using its
score function. Since pre-trained score model s®(x;, ) approximates the score Vy, log g;(x;), we

IThis assumption reflects realistic applications, since many pre-trained diffusion models can readily incorpo-
rate AC-Sampler without retraining.
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Algorithm 1 MALAOneStep

Input: Target timestep 7, Previous sample x,, Score output s := s?(x,, 1),

b
Likelihood ratio L® := %, Score network s?, Discriminator d?
Output: Next sample X,
1: repeat

2:  Propose x, from proposal distribution pgmposalﬁﬁ | x;) (Eq.
3. Getscore § « s?(X,,7), and likelihood ratio LY %

4:  Calculate acceptance probability o < &(x,,%X,s,s, L?, Ef) (Eq.
5: Sample u ~ U(0,1)

6: until u < «

7:

return X,,s, L?

leverage s?(x;, t) to construct the proposal distribution as follows:

n
pgroposal,t('|xt) =N (Xt + 550 (xt,1), 771) ) @)

where 7 is Langevin step size. We adaptively set the value of 7 to maintain a constant signal-to-noise
ratio (SNR) during sampling. An important advantage of our framework is that both the denoising
step and the MCMC-based proposal distribution rely on the same score value. As a result, a single
network evaluation is sufficient for both operations, enabling efficient integration of denoising and
exploration within AC-Sampler.

4.2 ACCEPTANCE PROBABILITY

~ 2] ~
0t (%) Poponat 1 (%2151 )
9’

7 Gt (%4 ) PG oposar, « (Xt [%2)

The target distribution is ¢;(-), so the acceptance probability is & = min (1
where X; is a sample from the proposal distribution pgmposaht (+|x¢). To make the acceptance probabil-
ity tractable, we first decompose ¢;(X:)/q:(x:) as stated in the following theorem.
Theorem 4.1. Let x; and X; be two arbitrary samples at diffusion timestep t. Then, for any fixed
X1, the density ratio of the true marginal distribution q; is given by:
- - - 0
q(X¢) Qee—1(Xe | Xe—-1) . Li(%¢,1) . pt,m(xtq | x¢)
qe(xe)  que—1(Xe | xe-1)  La(xe, 1) pf_l‘t(xt—l | X¢)’

®

where Li(x;,1) == q;(x¢)/pf (x¢) denotes the likelihood ratio between the data and model marginal
distributions at timestep t.

Proof is provided in Appendix Let p(x¢,s%(x¢,t)) denote the mean of the reverse transition
kernel pf_l‘ ;- Since Theorem 4.1 holds for arbitrary x;_1, choose

X1 = %(ut(xt,se(xt,t)) + ut(it,se(it,t))) .

] ~
Pr_1je (Re—1l%¢)

With this choice, the transition kernel related terms in Eq. [8|are —5 which cancel in the

Py (Rim1lRe)’
density ratio because both kernels are Gaussian with the same variance and X;_ is equidistant from
their means. We therefore obtain the acceptance probability as follows:

~ N - 9 ~
o — min (1’ Qje—1(Xe | Xe—1) . Ly(%¢,t) ) pproposal,t(xtxt)> ©)

rje—1(Xe | Xe—1)  Le(Xest) DG oposar s (XelX2)
To access L:(x;), we use time-dependent discriminator d?®, following the approach of DG (Kim

et al.,[2023). The discriminator is trained to distinguish between ¢; and pf at all timesteps. To achieve
this, weighted binary cross-entropy loss is used for training the discriminator:

Lace(o) = / A1) [Equt[—logdth,t)]+1Exwpf[—1og(1_d¢(xt,t))]} dt,  (10)
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g1 (x¢)
pd(x¢)

qe(xt)
qt (Xt)‘H)f (x¢)?

The optimal discriminator satisfies d” (x;,t) = so the density ratio becomes

®* @
%. Having access to gf,((’;i)) ~ li dg,’;;:?t) =: L?(x,1), the acceptance probability can be
calculated as below:
~ “ ~ 9 ~
Qtlt—l(xt ‘ thl) £ . Pproposal, ¢ (Xt|Xt)

é(x¢,%4,8,8,L, L) =min | 1, (11)

Qt|t71(xt ‘ }A(t—l) N L , pgroposal}t(iﬂxt)
—_—

Likelihood ratio
Forward term Proposal term

where s, 8, L, L denotes 9 (x;, t),s? (%, t), L? (x¢,t), L? (Xy, t), respectively. The acceptance prob-
ability consists of three terms. The forward and proposal terms are tractable Gaussian distributions,
and the likelihood ratio is computed using a discriminator. Together, these components make the ac-

ceptance probability fully tractable. Note that with any tractable proposal distribution, the acceptance
probability also remains tractable.

4.3 THEORETICAL ANALYSIS

We prove that our method can theoretically achieve sampling acceleration and correction.

Proposition 4.2. Let the reverse diffusion process have total timestep T and the AC-sampler target
timestep be 7. Let NFER be the average NFE reduction per sample with AC-Sampler. If the

acceptance probability satisfies o > ﬁ, then,
lim E[NFER] >0, lim Var(NFER) =0 (12)
l—o0 l—o0

where [ is the length of Markov Chain at timestep .

Since, in practice, T' — T is pretty big, the threshold o > T%T_H is mild and typically easy to
satisfy. Moreover, because our proposals are guided by the score network, acceptance rates are
sufficiently high that substantial NFE reduction can be achieved even with a small chain length .
Further discussion of the acceptance probability is provided in Appendix [C]

To show that our method not only accelerates sampling but also corrects errors, we theoretically
demonstrate that the data distribution induced by our sampler is closer to the true data distribution
than that of the baseline model.

Theorem 4.3. Let pf, pg"b* denote the model distribution and refined distribution by AC-Sampler
with optimal discriminator ¢*, respectively. Then, the KL divergence between the true data distribu-

tion qo and the refined distribution pg’d’* is bounded by:
Drcr(g0(x0)|[p??" (x0)) < Dic.(g0(x0)|[p? (x0)) (13)

Theorem 4.4. Let T, be the transition kernel of MALA at timestep 7. Also, pg’d’* 'O denotes marginal

distribution at timestep T after the -th MALA transition from p?, and pg’d) ‘D denotes the data

distribution generated from p2’¢ O yith denoising transition kernel pfﬁl‘t. LP denotes a space

of function which satisfies ( [ \f|pdx)% < o0 If g-(x;) € L% ]log (M> € LA T, €L,

qr(xr)
where a, 3,7 € [1,00] satisfy é + % + % = 1, then the KL divergence between the true data

distribution qy and the refined distribution pg 5D G bounded by:
Dicr(q0(x0)llpg " (x0)) < Dicr (a0 (x0)llpg® " (x0)) (14)

The proofs of each theoretical result and detailed analysis are provided in Appendix [A.4]and[A.3]
respectively. When our model has sufficiently converged, Theorem [4.3|suggests that it can generate
samples that are closer to the true data distribution than those produced by the baseline model.
Theorem [4.4] further shows that applying more MALA steps progressively moves the samples closer
to the true data distribution. Note that [ = 0 denotes the base diffusion model, without MALA.
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Table 1: Performance on unconditional CIFAR-  Table 2: Performance on unconditional CIFAR-
10 generation. Values that are better compared 10 generation with (Top) correction and (Bottom)

to the baseline are highlighted in bold. acceleration methods.
Model FID| NFE| Method | FID, NFE| |FID| NFE| |FID| NFE|
Unconditional Generation EDM (Heun) 205 27 | 223 23 |323 17
- - +DiffRS (Na et al. 2024} | 2.17 28.15| 326 23.13 | 7.79 19.87
VDM (Kingma et al.; 2021) 7.41 1000 +DG (Kimetal.[2023] | 1.93 27 [212 23 [362 17
DDPM (Ho et a’.[]2020) 3.17 1000 AC (Ours 197 2619 210 2278 | 238 15.81
iDDPM (Nichol & Dhariwall2021) ~ 2.90 1000 +AC (Ours) : 13| 2 78 | 2 -
DDIM (Song et al.[[2021a) . 4.16 100 Method | FID, NFE| | FID| NFE||FID| NFE|
ScoreSDE (Song et a’ [|2U21b) 2202000 DPM++ (Luetal|p022b] [1185 6 |436 8 |291 10
Soft Truncation (Kim et al.|[2022b) 2.33 2000 UnipC P Yo 1o 6 |3s6 s | 285 10
ST (Xu et al J2U22) . 19035 DPM-v3 (Zheng etal2023] | 873 6 | 362 8 |265 10
CLD-SGM (Dockhorn et al.||2022b) 2.25 312
INDM (Kim et al.|[2022a) 228 2000 DPM-v3 + AC (Ours) | 712 561|309 753|254 988
LSGM (Vahdat et al.|[2021) 2.10 138
PFGM++ (Xu et al.|[2023b) 1.93 35 . ..
PSLD (Pandey & Mandi|2023) 210 246 Table 3: FID anq NEFE on unconditional CelebA-
Flow Matching (Cipman et al.|[2023) 635 142 HQ 256 generation.
Rectified Flow (Liu et al.|[2023) 2.58 127
ES (Ning et al.| 2024} 195 35 Method | FIDL NFE|| FID] NFE|| FID] NFE|
- ScoreSDE (KAR1 ) 12127 40 |12274 98 |125.15 198
EDM (Heun) (Karras et al.;|2022) 2.01 35 +DLG (Kim & Yel[2023) | 20.19 2121 | 29.12 4721 | 30.72 107.21
EDM (Heun) + AC (Ours) 1.97  26.19 +AC (Ours) 1513 1594 | 2255 44.06 1569 87.26
DDO (Heun)(Zheng et al..[2025) 1.42 35 ScoreSDE (KAR2) 8321 40 | 5728 98 | 29.74 198
DDO + AC (Ours) 141 29.41 +DLG (Kim & Yel[2023) | 17.92 2121 | 12.12 47.21 | 8.14 107.21
+AC (Ours) 845 20.05| 955 40.05 6.60 9827
Acceleration Method
DPM ++ (Lu et al.|[2022a) 24.54 5 . ..
UniPC (Zhao et al-| 2033 2150 5 Table 4: Performance on conditional ImageNet
DPM-v3 (Zheng et al.]2023) 12.41 5 (Top) 64 x64, (Bottom) 256 <256 generation.
DPM-v3 + AC (Ours) 9.88  4.78 Method | FID| NFE| | FID| NFE| |FID| NFE|
Correction Method EDM (SDE) ‘ 230 61 ‘ 178 127 ‘ 143 511
Restart (Xu et al.) 2023a| 1.95 43 +AC (Ours) 2.25 58.75 1.77 12198 | 1.42 483.86
DiffRS (Na et al./[2024) 2.02 30.73 .
DG (Kim et al|p023) 193 27 Method ‘ FID| NFE| Precisiont Recallf
DiT (DDPM) (Peebles & Xiel[2023} | 235 250 0.829  0.576
DG + AC (Ours) 184  26.19 +AC (Ours) 231 23438 0817 0592

5 EXPERIMENTS
In this section, we present experimental results to validate the effectiveness of our method empirically.

Experimental setting We employ our methods on various pre-trained networks trained on
CIFAR-10 (Krizhevsky} 2009), ImageNet64 x 64 and 256256 (Deng et al., 2009), CelebA-HQ
256x256 (Karras et al. [2017). We report the Fréchet Inception Distance (FID) (Heusel et al.|
2017), Precision/Recall (Kynkddnniemi et al) [2019). We use Heun, SDE sampler |[Karras et al.
(2022), KAR1(deterministic), KAR2(stochastic) sampler (Kim & Ye,[2023), and DDPM sampler (Ho
et al.| 2020). We highlight the best-performing results compare to baseline model in bold. Detailed
hyperparameters and experimental settings are provided in Appendix [C|and [G]

5.1 UNCONDITIONAL GENERATION

CIFAR-10 The upper part of Table[I|shows results for unconditional generation on CIFAR-10. Our
method is compatible with both EDM and DDO checkpoints. Both methods were re-tested without
applying seed fixing as in the EDM setting. For the EDM checkpoint, our sampler improves the FID
from 2.01 with 35 NFE to 1.97 with only 26.19 NFE. For the stronger DDO checkpoint, we achieve
1.41 FID while reducing NFE from 35 to 29.41. Although the gain in FID is marginal for highly
capable pre-trained models, our method consistently reduces the NFE, demonstrating its efficiency.

CelebA-HQ 256x256 We employ the pre-trained time classifier released by DLG to reproduce
their reported performance. For the AC-Sampler, we extend the MALA algorithm in the joint space of
(x-,7), as detailed in the Appendix [B] to support effective sampling in high-dimensional benchmark
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+AC 241 1578 0.699 0.623 3.19

Sampler. Gaussian toy experiment

datasets. As shown in Table[3] the AC-Sampler demonstrates a clear improvement in FID compared
to other methods with lower NFE.

Method Compatibility The lower part of Table[I|reports results when applying AC-Sampler on
top of existing acceleration and correction methods. When combined with DPM-v3, which originally
yields 12.41 FID at 5 NFEs, our method improves performance to 9.88 FID with only 4.78 NFEs.
Similarly, DG achieves 1.93 FID at 27 NFEs, while AC-Sampler applied to DG further reduces this
to 1.84 FID at 26.19 NFEs. These experiments highlight that our method is orthogonal to existing
acceleration and correction methods, and can flexibly enhance them. Table [2]and Figure 2] present the
FID-NFE trade-offs of our method compared to existing acceleration and correction techniques. We
observe that our method achieves better trade-offs in most NFE regimes.

5.2 CLASS-CONDITIONAL GENERATION

= 2

ImageNet Table [4 presents the re-  MALA Chain
geNet 256x256, we used classifier-
class-conditioned settings inherently ‘“Weasel”). Panel presents the final results of the MALA

sults on conditional ImageNet 64 x 64
and 256x256 generation. For Ima-
geNet 64 x 64, we employed a condi-
tional score network, while for Ima- ; l ! o

<
free guided generation with a CFG - A’ E"\# ﬁ
scale of 1.5. In both cases, we find
effective improvements in NFE and Figure 5: AC-Sampler on CelebA-HQ 256x256 (Top, un-
slight improvements in FID. Although conditional) and ImageNet 256x256 (Bottom, condition on
limit the length of the MCMC chain, chains, ordered from left to right.
our results demonstrate that the pro-
posed method can still be applied effectively under this constraint. We provide a further discussion of
the class diversity and related experiments in Appendix [F.2]

5.3 ABLATION STUDIES

Distribution Alignment In our method, the acceptance probability is computed using the density
ratio provided by the discriminator. If this density ratio is inaccurate, effective distribution alignment
through MH correction becomes difficult. To examine this, we retained the overall framework of our
method but removed the MH accept-reject step. As shown in Fig. [3] without MH correction, the FID
degrades significantly. This result demonstrates that our method effectively corrects the distribution
through MH correction.

Sample Diversity Because our method relies on MH, successive samples can be correlated. Thus,
assessing whether it still produces diverse samples is crucial. In Table[3] the recall metric, which
is an indicator of sample diversity, is comparable to the base sampler. These results indicate that,
our method can preserve sample diversity. Together with the improved FID and reduced NFE, these
results demonstrate both the effectiveness and efficiency of our approach. The MALA chains on
benchmark datasets are shown in Fig.[5] where we observe that our method successfully generates
diverse and high-quality images. Further analysis is provided in Appendix
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Toy experiment We applied our method to a 25-
Gaussian toy task: we generated 100 samples and
define a mode covered if any sample lay within 20 .o
of its mean. Over 10 trials, the baseline DDPM cov-
ered on average 23.5 modes, while ours consistently
covered all 25 modes as in Fig. ] The solid lines indi- .- O
cate the mean, and the shaded areas are the standard
deviation. This confirms that our method effectively O
performs distribution correction and ensures diverse
mode coverage. When low-7 regimes, more samples
are required for sufficient cover. Fig. [f] shows the
results with 100 generated samples. Red circles de-
note uncovered modes. Ours reduces NFE while fully
covering all modes of the 25-Gaussian mixture.

(2) DDPM (NFE=1000) (b) +AC (NFE=504.5)

Figure 6: Toy experiment results. Red circles
denote uncovered mode.

Hyperparameter We primarily tune two parameters: the

C . 3 . Hyperparameter Metrics

target timestep 7 and the signal-to-noise ratio (SNR) of t.he - SNR FID, NFE, Recall ]
Langevin proposa}l. The SNR controlg the proposal step size 010 28 3513 055
n. Larger SNR yields larger steps. With 7' = 18, we vary 7 13 020 206 2565  0.620
and SNR and report the resulting FID, NFE and Recall. As 7 0.23 197 2619  0.628
decreases (i.e., closer to the data distribution), the distribution be- X 8 ég gﬁ }2% ; 8&22
comes sharper, and MALA mixing deteriorates. Also, if the SNR 0.23 673 1670 0441
is too small, proposals change little from the current sample, also 0.10 6267 529 0
leading to slow exploration. Given the constraints of limited 3 020 4660 575 0

. . . 023 4396 626 0
number of generation, the choice of the target timestep 7 and the

proposal SNR is crucial. A detailed analysis of hyperparameter
is provided in Appendix [C|

Table 6: Hyperparameter analysis.

Faster sampling: Wall-clock time Since our method employs an additional discriminator at
inference time, the wall-clock time could potentially be slower even with the same NFE. To evaluate
this, we measured the average time (in seconds) required to generate 100 samples using both the
base sampler and our method on a single RTX 3090. As shown in Table 5] our approach not only
improved sample quality but also achieved faster wall-clock time. Unlike conventional approaches
that reduce NFE by enlarging the time step and thereby increasing discretization error, our method
generates intermediate samples without coarsening the time grid. As a result, the improvement in
sample quality is particularly pronounced in the low-NFE regime.

Jump Markov Chain In conventional Metropolis-Hastings, re-  Typle 7: Comparison of conven-
jected proposals are also retained as part of the chain, which ;5h41 MH (MH¢) and Alg.m
ensures detailed balance but is inefficient when the goal is sam-
ple generation under limited capacity. As shown in Table|7/| this
often manifests as reduced class diversity, making the standard

. . . . . h .. EDM (Base)
formulation impractical in generative settings. To address this, in | zc wih MH
Algorithm [T we adopt a propose-until-accept design: proposals — +AC with Alg/i]
are repeatedly drawn until one is accepted, and only the accepted
sample is recorded. This prevents duplicate retention of the same sample and promotes greater
diversity in the generated outputs. This variant can be formally understood as a Jump Markov
chain (Rosenthal et al.|[2021), and further details are provided in Appendix E}

Method | FID| | NFE} | Recallt

2.05
322
1.97

27
25.08
26.19

0.627
0.580
0.628

6 CONCLUSION

We introduced AC-Sampler, which accelerates and corrects diffusion sampling via Metropo-
lis—Hastings with a Langevin proposal. By sampling from intermediate timesteps and using time-
dependent discriminators for density ratio estimation, it improves sample quality and provides faster
inference speed without retraining. AC-Sampler theoretically reduces KL divergence at each refine-
ment step and empirically achieves better FID with fewer NFEs across datasets. It also integrates
smoothly with prior acceleration and correction methods.
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A PROOFS AND MATHEMATICAL EXPLANATIONS

In this section, we provide a mathematical explanation and formal derivation of the theorems presented
in the main body of the paper.

A.1 THEORETICAL ANALYSIS OF DLG (KiM & YE, |2023))

Proposition A.1. Ler q(x,t) be the true joint distribution over data x and diffusion timestep t, and
p?(x,t) be the model joint distribution .

Suppose that there is an optimal time classifier ¥*, i.e., p¥” (t | x) = q(t | x),Vx,t. If the model
marginal distribution p° (x) does not match the true marginal distribution, i.e.,3 x s.t. p°(x) # q(x),
then the Markov chain defined by Gibbs sampling between p° (x | t) and p¥” (t | x) does not have
q(x,t) as its stationary distribution.

Proof. Let’s assume that the true joint distribution ¢(x:,t) is a stationary distribution of Gibbs
Sampling, whose transition kernel is T((x,t) — (x/,t')) = p®(x" | t)p¥ (¢’ | x'). Let (x,t) ~
q(+,+),and (x’, t') is a sample drawn from the transition kernel 7'((x, t) — (-,)). Since the stationary
distribution should satisfy the invariance condition, for arbitrary x’ the following equation holds:

q(x',t') = // q(x, )T ((x,t) — (X', ") dx dt (15)
- / / a(x, )P’ (' | )p¥" (t' | %) dx dt (16)
— [[atx 0w | yate’ | x) a7
- / B (x | Dq(t! | x) dt (18)
(2] N0 ('

Pl xp°x)
= [ q(t)———————=q(t' | x")dt (19)

Jat =S )
= [ ([ )P ()t | x') dt (20)
= alt | ) [ o] %) ey
=p’(x)g(t" | ¥) (22)
Note that the marginal distribution q(t) = p®(t) for every ¢ is an uniform distribution. To satisfy the
invariance, Vx', p%(x’) = ¢(x’) so the proof holds due to the contradiction. O

Proposition E] states that even if the time-classifier in DLG(Kim & Ye, |2023) is optimal, it is
impossible to sample from the true distribution. So we leverage Metropolis-Hastings Correction with
this proposal distribution. Detailed explanation is given in Appendix

A.2 PROOF OF PROPOSITION[4.2]

Proposition 4.2. Let the reverse diffusion process have total timestep T' and the AC-sampler target
timestep be 7. Let NFER be the average NFE reduction per sample with AC-Sampler. If the

acceptance probability satisfies o > T%T_H, then,
lim E[NFER] >0, lim Var(NFEg) =0 (12)
l—o00 l—o0

where [ is the length of Markov Chain at timestep T.

Proof. Let’s assume that the acceptance probability « is fixed in (0, 1], and that there is no burn-in
process in the AC-Sampler for simplicity.

We can get same result with burn-in process easily

14
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Let R denote the total NFE required at timestep 7 for the MCMC step. At timestep 7, Algorithm[T]runs
[ times. Since we make proposals until it is accepted, R follows the Negative Binomial distribution,
i.e., R ~ NB(l, o). Let NFE7 denote the total NFE required in the AC-Sampler sampling step. Then
the following decomposition holds:
NFEr = T—T1 + R + I(r—1) . (23)
—— ~~

Initial denoising step  MALA step  penoising step after MALA

Since we obtain the score value of each proposal at the MALA step and denoise total of [ samples,
the denoising step after MALA is I(7 — 1). Since R follows a negative binomial distribution, we
have E[NFE7] =T — 7+ L + (7 — 1) and Var(NFE7) = 1(10(;201) Then, the mean of NFEp, is as
follows:

E[NFE
E[NFEg] =T — % (24)
T—-7 1
=l—— ——— (-1 25
l o (r=1) (25)
1 T-
=T—74+1——— zT (26)
Taking limits on both sides yields
1
lim E[NFER| =T —-7+1— — 27)
=00 o
>0 Ta> ! (28)
SRR g

Moreover, Var(NFEg) = 1(;2‘”‘ . % and thus taking limits gives lim;_,, Var(NFEg) = 0, which
concludes the proof.

O

A.3 PROOF OF THEOREM [4.]]
Theorem 4.1. Let x; and X; be two arbitrary samples at diffusion timestep t. Then, for any fixed
X¢_1, the density ratio of the true marginal distribution q; is given by:
- - - 0
a(Xe) Qe (Xe | Xe—1) CLy(xe,t) Py (k-1 | x¢)
qe(xe)  que—1(xe | xe-1)  Li(x, 1) pfﬁl‘t(xt,l | %)’

where Ly (x¢,t) := q1(x¢)/p! (x¢) denotes the likelihood ratio between the data and model marginal
distributions at timestep t.

®)

Proof. We derive the marginal density ratio as follows:

(X)) _ q-1(x-1)  que—1(Ke | xe1)  @eoape (a1 [ x4)

= Z (29)
qt(xt)  qr—1(x¢-1) Qt\t—l(xt | Xeo1)  qeoap(Xe—1 | X¢)
_ Qt\tfl(xt | x¢—1) ) Qt71|t(xt71 |)~(t) (30)
Qt\t—l(Xt | x¢-1) Qt—1|t(Xt—1 | X¢)
@ (Xe [ Xe—1) qeoape(Xe—1 | xe) .ptefl\t(xtfl | Xt) pt071|t(xt*1 | %:) G1)

Qt\t—l(xt | x¢-1) pf_ut(xt—l | x¢) Qt—1|t(xt—1 | X¢) p?_ut(xt—l | X¢)

Following the derivation process of DiffRS (Na et al., [2024), Eq. @] can be expressed as follows:

~ ~ (7]
B Qeje—1(Xe | x¢—1) . Liq(x¢—1,t —1) . Li(X¢,1) . pt71|t(xt71 | x¢) (32)
qt\t—l(xt | Xt—l) Lt(Xt,t) Lt—l(xt—lat - 1) pte_ut(xt—l ‘ it)
~ ~ (]
Qrje—1(Xe [ Xe—1)  Li(Xe, t) ptfllf(xt*1 | xt)
_ ) s _ (33)
Qeje—1(Xe | xe-1)  Le(Xe,t) - ] (xe-1 | Re)
~— —
Forward term Likelihood ratio v, nition kernel term
L]
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The Forward term and Transition kernel term are tractable since it is a gaussian distribution. By
approximating the Likelihood ratio by a discriminator, we can derive a tractable form of the acceptance
probability.

A.4 PROOF OF THEOREM [4.3]

Theorem 4.3. Let pg, pg’d’* denote the model distribution and refined distribution by AC-Sampler
with optimal discriminator ¢*, respectively. Then, the KL divergence between the true data distribu-

tion qo and the refined distribution pg’d’* is bounded by:
Dicr(go(%0)I[p% % (x0)) < Dicr.(g0(x0)|17° (%0)) (13)

Proof. First, let 7 be a timestep that MALA occurs in AC-Sampler framework. From (Ho et al.,
2020), the upper bound of KL divergence between the true data distribution and the model distribution
can be written as follows:

D o _5, |1 qO(XO)} (34)
kL[qo || po] = Eqq & 8 (x0)
= Eq, [~ log pf (x0)] — H(q0) (35)
r 0
pO:T(XOIT) :|
=E, |-1lo slo(X1r | X)) ————————dx1.. | — H 36
qo L g/Q1 |O( ! | O)QI:T|O(X1:T | XO) ! (qO) ( )
<E -—/q (x1.7 | xo)logmdxl. } — H(qo) (37)
- L Ll 7 ql T|O(X1:‘r | XO) .
(Xi 1 |Xz) q(x)
=E,,_ |-logp?(x,) log Pl S CAS. PR (N 5 38
o ng Z q@ i(Xic1 | %6)  qim1(xio1) (@) 38
T (]
- ar(xr) _ I S LON I
= Eao., |log P9 (x;) 1og o(3x0) — log Gi—1)i(Xi—1 | %) Hla) 9
ql 1\1(Xz—1 | X;)
=D - P8 B log 5————= (40)
KL[q ||p (]0 lz Z 1‘Z(X’L—1 |Xz)
= Dxwlg- | P2 + ZEqi [DKL[C]¢71|1'(X1‘—1 %) || PY 15 (i | Xi)]} (41)

=1

By substituting p® with p®¢", the following bounded relation also holds:
Dxvlgo || po? '] < Dkilgr | p2%7] + ZE [DKL Gi—1)i(Xi—1 | X4) HE 1|Z(xz 1 x7)]} (42)

Since p; ?‘l(xz 1] xi) = pz‘—1|i(xi—1 | x;) Vi < 7, itis sufficient to show

Dxvlg-||p??"] < Dxula- | p7] (43)
When the discriminator is optimal and the burn-in process has been sufficiently performed, pf_*d’* =
qr, 50 Dxi[g- || p2®"] = 0. Since the KL-Divergence is non-negative, the proof is complete. ~ [J

The stationary distribution at timestep 7 is p? L?. The gap between the two distributions in Eq. EIS
as follows:

dr
Dxuv[g- || p2] — Dxvlg- || p2® / 9 / q- log deT (44)
- lo dXT (45)

/ o 2 / 8 e pr
— [arogL2ax, (46)
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If the discriminator cannot distinguish between the two distributions p?, ¢; at all, i.e., Lf’(xt7 t)y=1
for all x;, ¢, then the target distribution of Metropolis-Hastings algorithm becomes p?. As a result the
gap between the two KL divergences in Eq. 6] becomes 0. By training the discriminator, the gap
converges to Dxy [¢, [|[p®] (> 0), indicating that the bound becomes tighter.

A.5 PROOF OF THEOREM [4.4]

Theorem 4.4. Let T'; be the transition kernel of MALA at timestep 7. Also, pf’d’* ‘D denotes marginal

distribution at timestep T after the l-th MALA transition from pf, and pg’¢*’(l) denotes the data

distribution generated from pg 470
8 (1)

of function which satisfies ( [ \f|pdx)% < o0. If ¢r (x;) € L% ]og (%x()xf)) €LPT, €L,

where «, 8,y € [1,00] satisfy é + % + % = 1, then the KL divergence between the true data

with denoising transition kernel p‘tg_l‘ . LP denotes a space

distribution qu and the refined distribution p9’¢*’(l+1) is bounded by:
Dicr(ao(x0)lpg® " (x0)) < Dicr.(qo(x0)lpp " (x0)) (14)

Proof. As in Theorem[4.3] it suffices to show that
Dxwgr || p2% Y] < Dy [gr || p2 1)
Then the below equation holds. We refer to the proof procedure in (Tsvetkov et al., 2017)).

Diclg 118470 = [ gy, g 58705 )
pr (x-)
= 7/ + (%) log p& @) (x ) dx, — H(q,) (48)
= qT Xr) log{ 00" (%, T (Xr — X7) de} dx, — H(qr)
(49)
947 (l) )
= qT X;) { — 4, (X)) T (X = %) diT} dx, — H(q;)
(50)
9¢> (1) (%,)
= T\ AT T T T ~‘r d ~7' d T H T
qx qTXT) (X )T (% = X)) dX; o dx (¢r)
(51)
9¢ (l)( ;) 3 .
= q., X, log{ ) — T (x; > X;) de} dx, — H(qr)
(52)
p7? V(%)
=~ [g(x)1 br X0 (x, - %) d%, b dx, 53
Jartenon] [P DT (e, s %) 53)

1 ()( ) T, X, )| dX.d 54
//qT X;) log{ PRES) } T(XT—>X7-)‘| X,dx, (54)

Since é + % + % = 1, we can apply Holder’s inequality (Holder, |1889) in Eq.

/ / qr(%7) [10g { "ZT(T:T() )}TT(XT - iT)] dx,dx, (55)
< (//Iqr(xf)ladmxr) // log{ NXE (z>(> )} ﬁddeXT s <//TT(XT —>5<T)|”dirdxr>i

(56)
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0.0 .(1)
Since there exist «, 8, and «y such that ¢, (x,) € L%, log (pffx()x*)) € L8, and T, € £ holds,
Eq. is absolute convergence. Therefore, by Fubini’s theorem, the order of integration can be

interchanged.

0.¢6",(1)
_ / log (W) [ / 4 (%) T (x5 — gT)de] d%, 57)
0,0",(1) 12
- - / log <pq(x()x)> ¢r (%,) d%, (58)
= Dicfor 2470 59

The assumption in Theorem [{.4]is made solely to satisfy Fubini’s theorem, and we note that the
theorem is commonly adopted in prior works (De Bortoli et al., 2021 |[Lipman et al., [2023).

B METROPOLIS HASTINGS ALGORITHM IN JOINT SPACE

For the CelebA-HQ 256256 dataset, we observed that the method which performed well on low-
dimensional datasets did not perform well. We provide an analysis on this issue based on the following
points:

* In high-dimensional data, the data manifold is more complex compared to low-dimensional
cases. This makes it difficult to estimate the true score accurately.

* As a result, the proposal distribution becomes misaligned with the target distribution, and
Langevin dynamics can easily drift away from the data manifold at timestep 7.

In DLG (Kim & Yel 2023)), a time classifier was proposed to detect whether a sample had left the
manifold after Langevin dynamics at timestep ¢. The proposal distribution of DLG is as follows:

0, -z 0 - - . 0 - s
ppr;ﬁosal(x?t | X, t) = pproposal(x | X, t) 'p;)ﬁoposa](t | X, t’ X) = pproposal(x | X, t) 'pg;oposal(t ‘ X) (60)

First, given (x, t), sample X using one step of Langevin dynamics. After that, sample £ using the time
classifier conditioned on x. The proposal distribution in the joint space depends not only on the score
network but also on the time classifier.

However, as we showed in Proposition[A.T] this approach cannot converge to the true joint distribution
even when the time classifier is optimal, i.e., p¥  (t|x) = g(t|x). To address this issue, we perform
the Metropolis-Hastings algorithm in the joint space of time and data. To compute the acceptance
probability in the joint distribution, we extend the density ratio formulation presented in Theorem 4.1}
This extension is proposed in the following corollary.

Corollary B.1. Let x,X be arbitrary samples at diffusion timesteps t, T, respectively, and let x.
be any fixed point at timestep . If T < min(t,t) is satisfied, the density ratio of the true joint
distribution q(-,-) is given by:

(61)
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Algorithm 2 JointMALAOneStep(x,t,s, L, 0, ¢, )

Input: x,t,s, L;

Output: Accepted sample X,
1: repeat
2: Sample X~ pgroposal,t(' | X, t)
3:  Samplet ~ p;/;oposa](- | %) i
4:  Compute § = s9(%,%) and L; = L?(i{, t)
5:  Compute acceptance probability: &;oint(X, X, s, S, Ly, I~/,g, T)
6:  Sample u ~ U(0,1)
7 untilu <o
8: return x,t,s,L;

Proof. For Vx, with 7 < t, 1, the below equation holds.

q(x,t)  q(x|t) q(f)
- 4l 62
WD) x| ald) ©
q;(X)
- 63
0 (%) (63)
qﬂ‘r(i | XT) qT‘t(XT|X) qT(X‘r)
_ . *) 64
(%) g l®) 2 e) 9
G- (X[ X7)  qrpe(x7|%)
_ . X 65
(K15 4,700 ) ©
_ ag- (X | x-) e (X7[x) pg|f(XT|5‘) .pf|t(XT|X) 66)
Qt|‘r(x | X‘F) p?—|t(xr‘x) q7—|f(XT|)~() p?.ﬁ(x‘l"i)
@R %) Le(xp,m)  Li(k,d) PR (xrl) 6
X [x) Libxt)  Lo(xr) 9,60 )
q1§|7—()~( | XT) L{(f(, E) p?—|t(XT|X)
_ . - (68)
qt|‘r(x | XT) Lt(xa t) p7|f(XT|X)
0

t | %), is tractable. In detail,

The density of the proposal distribution, pgmposal (x| x,t) - pgioposal(

pgmposal(i | x,t) is a Langevin proposal, which follows a Gaussian distribution and p;ﬁoposal(f | X)
can be evaluated using the output of the time classifier. Therefore, the acceptance probability in the
joint space can be computed. The acceptance probability is given as follows:

ajoint(xy X, 8,8, L7 L7 T)

~ | A 9 I
qﬂr(x | %7) pTlt(XT‘X) .pgroposal(x | X, t) 'p:)/;oposa]( )

L t]x

. _ . 5 — - —
qt‘T(X | XT) \[,/./ p‘r|t~(x""x) pgroposal(x | X, t) 'pg;oposal(t | X)
Likelihood ratio

=min | 1, (69)

Forward term Transition kernel term Proposal term

T,X, can be any point. We choose the value of 7 such that it does not deviate significantly from
the original timestep ¢. In our experiments, we empirically set 7 so that the standard deviation of
qrjo(Xr | Xo) differs from that of gy, ¢ 70 (Xmin(2,7) | X0) by 0.1, based on the VESDE(Song et al.,
2021b) parameterization. We set X, = 3 (g4 (x, 8% (x,t)) + pz(x,s%(x,1))). The detailed process is
in Algorithm 2]

Since the timestep is proposed for every update of Alg.[2], we need to reassign the starting timestep
t for denoising. We first fix the total number of steps 7', and perform 1" — ¢ steps of denoising
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Table 8: FID and NFE on unconditional CelebA-HQ 256 x256 generation with ScoreSDE (Song
et al.l 2021b), DLG (Kim & Ye,[2023), AC (marginal), and AC (joint).

| FID, NPFE| | FID, NFE| | FID| NFE|

ScoreSDE (KAR1) | 121.27 40 122.74 98 125.15 198

+DLG 20.19  21.21 29.12  47.21 | 30.72 107.21
+AC (marginal) 103.81 19.78 | 75.51  41.83 | 87.40 84.13
+AC (joint) 1513 1594 | 2255 44.06 | 15.69 87.26
ScoreSDE (KAR2) | 83.21 40 57.28 98 29.74 198

+DLG 17.92  21.21 12.12 4721 8.14 107.21
+AC (marginal) 45.74  19.55 19.48 4297 9.45 94.34
+AC (joint) 8.45 20.05 9.55 40.05 6.60 98.27

from ¢ down to the proposed timestep . Then, we perform ¢ steps of denoising from  to 0. Our
methodology generalizes the approach of DLG (Kim & Ye} 2023). While DLG generates samples
from the joint space of time and data using Gibbs sampling, we introduce the Metropolis-Hastings
algorithm to correct samples toward the true data distribution by additionally training a time-dependent
discriminator. We adopt the time classifier from the official code of DLG and use the argmazx of
the classifier output as the proposed timestep, following their original approach. Since using the
argmaz results in a deterministic time proposal distribution, we set p¥ (¢ | x) = 1 when computing
the acceptance probability.

For fair comparison, we reproduced the experimental setting of DLG. We first obtained the best
parameters for both the KAR1 and KAR2 samplers as reported in DLG, and then reproduced their
performance using these optimal settings. Subsequently, we increased the number of denoising steps
while keeping the remaining parameters unchanged.

C HYPERPARAMETER DETAIL

As described in the main text, our method treats the MH target diffusion timestep 7 and the Langevin
step size (controlled by the signal-to-noise ratio, SNR) as the primary parameters. In addition, we
employ several auxiliary hyperparameters: the number of skipped steps nip, the burn-in length
Tburn-in» and the number of parallel chains nchain. Their roles are summarized as follows:

* ngip: Controls how many intermediate steps are skipped between proposals.
* Npum-in: Specifies the number of initial iterations discarded to reduce initialization bias.

* Nehain: Denotes the length of MCMC chains. With one initial point, we can get ngpain
samples.

Among the hyperparameters, we regard the choice of 7 as the most critical. As 7 decreases—i.e., as
the state approaches the data distribution—the marginal distribution becomes sharper. This sharpness
increases the computational burden of moving across the space via MCMC. While smaller 7 brings
the chain closer to the true data distribution (see proof of Theorem 4.2), it also requires a larger
number of samples to sufficiently cover the support. Conversely, if 7 is set too low, the effective
reduction in NFE diminishes and distributional alignment becomes less pronounced. Therefore,
selecting an appropriate 7 is essential. Empirically, we found that setting 7 between %T and %T
achieves the most effective trade-off.

The second key parameter is the SNR, which controls the step size 7 of the Langevin proposal:

/7= SNR x (2 |'S||€|> . (70)

A too-small SNR yields excessively small step sizes, limiting sample diversity, while a too-large SNR
hampers convergence of the MH correction. Based on prior works that adopted Langevin sampling in
diffusion models (e.g.,/Song & Ermon| (2019);|Song et al.|(2021b))), we set the SNR in the range of
0.1-0.25.
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Experimental results on varying these two key parameters are reported in Table[0] We conducted
experiments with the total number of timesteps fixed at 18, while keeping nkip, Tburn-in> a0d Nchain
constant. As shown in the Table, when 7 is set too small, the MCMC chain tends to remain in a limited
region of the space for a long time. Consequently, covering the entire distribution requires significantly
higher computational cost, which is reflected in the degraded FID and Recall metrics. Furthermore, as
the SNR increases, the acceptance probability gradually decreases. Across our overall experimental
setup, the SNR satisfies SNR < 0.25, which allows us to maintain an acceptance probability of
approximately o 2 0.25 (see Table EI) Because « is sufficiently large, as argued in the main text,
substantial NFE reduction can be achieved even with a small chain length [. These experimental
results support the preceding analysis in Proposition .2}

Method 7 SNR FID] NFE| Recallt Clof «
EDM (Base) - - 2.01 35 0.627 -
0.1 289 2513  0.550  0.9150 £ 0.0023
13 02 206 2565 0.620 0.6248 +0.0033
+AC 023 197 26.19 0.628  0.4703 £ 0.0030
027 2.09 28.11 0.625 0.2493 £+ 0.0019
0.1 877 1521 0.200  0.8689 £ 0.0027
02 6.14 1575 0422  0.6560 4 0.0039

+AC 023 673 1670 0.441 0.4671 £ 0.0034
027 945 18.66 0.448  0.2733 £0.0022

0.1  62.67 529 0 0.8525 £+ 0.0046

3 02 46.60 5.75 0 0.6590 £ 0.0054

+AC 023 4396 6.26 0 0.4812 4 0.0054
0.27 39.44 9.13 0 0.2703 & 0.0022

Table 9: Results for different 7 values and SNR settings, including FID, NFE, Recall, and acceptance
probabilities with 95% confidence intervals.

Method _ny;, FID] NFE| Recalll Method Method  niumin  FID] NFE] Recallt

Nenain FID]  NFE|  Recall

EDM - 201 35 067 “EDM - 201 35 0627 — e e 0y
0 197 2619 0638 . 230,
I 198 2825 0631 10203 2928  0.622 1 202 3746 0.624
5 194 3008 o634 50 200 2669 0.630 2 201 3860 0633
PAC 3 197 3230 0638 +AC 100 207 2638 0.624 LAC 5 199 4237 0632
4 200 3439  0.640 300 197 2619  0.629 ;8 }33 ggg? 8‘23
5 202 3638 0623 500 202 2612 0.625 200 197 g8 063

Table 10: FID and NFE for dif- Table 11: FID and NFE for differ- Typle 12: FID and NFE for dif-
ferent skip steps. ent chain steps. ferent burn-in steps.

The following reports the results of varying each auxiliary parameter. Tables[I0} [IT} and[I2]present the
outcomes for changing nkip, Nchain» and Tpurn-in, T€Spectively. Unless otherwise noted, all experiments
are conducted with T" = 18, 7 = 13.

Table@reports the effect of varying ng;, while fixing SNR = 0.23, nchain = 300, and npypmin = 10.
The parameter 7., helps reduce autocorrelation between samples; however, excessively large values
increase the NFE, limiting the achievable acceleration gain. Empirically, we set ngg, = 0 ~ 1 for
CIFAR-10 and ImageNet, and maximum 4 for CelebA-HQ 256 x 256.

Table shows the results obtained by varying ncp,in While fixing SNR = 0.23 and npym.in = 10.
When SNR is too small, recall may vary with ngp,i,, but under reasonable SNR values the recall is
largely insensitive to nchain. Nevertheless, setting nchain too small can hinder effective NFE reduction.

Table [I2]investigates the role of the burn-in process by varying npym-in While fixing SNR = 0.16 and
Nchain = 1. We set nepain = 1 in order to isolate and examine the effect of correction on each sample.
We observe that after about 10 burn-in steps, the chain sufficiently converges, indicating that the
score-based proposal distribution indeed allows proper convergence. In practice, we set npym.in < 10.

D MCMC MIXING

Images are high-dimensional data, which makes direct statistical evaluation of Markov chain mixing
challenging. To address this, we assess mixing indirectly by analyzing the class labels of generated
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images. We trained a ResNet based classifier that achieves 95% accuracy on the CIFAR-10 test set,
and used it to assign class labels to each generated image, thus forming a class sequence along the
MCMC chain. We constructed Markov chains of length 300.

We measured Integrated Autocorrelation Time(IACT) (Birdsall et al.,[1994) 30 times with a maximum
lag of 100. With Table|14|we observed trends consistent with Recall metrics. Lower IACT values
indicate better mixing, suggesting that our method yields well-mixed samples. However, we note that
IACT is originally defined for continuous variables, and applying it to categorical class labels can be
limiting.

To complement IACT, we also computed Cramér’s V (Akoglu, [2018)) 30 times

. . . £ Lag Cramér’s V &£ std
to assess class autocorrelation in the discrete label space in Table[I3] Under

I 03600035
the best-performing setting (7 = 5, SNR = 0.23), the value at lag 1 shows 2 02590037
a relatively strong correlation (Akoglul [2018), which is expected since our 3 0213=0.0%
sampler proposes candidates based on local gradients. Nevertheless, both 5 0.172+0.036

improvements in the Recall metric and our toy experiment [5.3] demonstrate
that, despite such correlations, the chain is able to generate sufficiently diverse Table 13: Cramér’s

samples. V across lags.
Method 7 SNR FID| RecallT IACT of class sequence |
EDM (Base) - - 2.01 0.627 -
0.1 2.89 0.550 8.71 +£10.02
13 02 206 0.620 2.45+3.23
+AC 023 1.97 0.628 1.53 £1.70
0.27  2.09 0.625 1.89 +£1.35
0.1 8.77 0.200 29.47 £ 26.86
8 0.2 6.14 0.422 21.65 £ 24.84
+AC 023 6.73 0.441 20.92 + 24.50
027 945 0.448 24.39 £ 25.55
0.1 62.67 0 38.45 £ 27.39
3 02 46.60 0 34.93 + 27.83
+AC 0.23  43.96 0 22.51 £ 23.15
0.27 3944 0 24.45 £ 32.90

Table 14: IACT of class sequence for different 7 values and
SNR settings.

E METROPOLIS-HASTINGS ALGORITHM AND ALGORITHM ]

Algorithm [T]employs a propose-until-accept update: at each step, proposals are repeatedly drawn and
subjected to the MH accept-—reject test until one is accepted, and the accepted proposal is then emitted
as the next sample. We adopted this design for empirical reasons, namely to mitigate stagnation and
preserve sample diversity. In canonical Metropolis—Hastings, however, a rejection corresponds to
a self-transition, which is essential for preserving detailed balance. Eliminating self-transitions by
proposing until acceptance alters the transition kernel and can introduce stationary bias.

This variant can be interpreted as a Jump Markov chain (Rosenthal et al.| [2021). In such chains,
the target distribution is implicitly modified because the rejection mechanism no longer permits
self-transitions. Following Rosenthal et al. (2021), the stationary distribution of the jump chain,
denoted 7, can be expressed in terms of the original stationary distribution 7 as

#(z) = ca(z)n(z), (71)

where () := 1 — Pyansition (|2 is the escape probability at state z, and ¢ = E,[a(y)] " is a
normalizing constant. Here Pyansition(-|-) denotes the transition probability of the original MH chain.
The KL divergence between 7 and 7 is then

()

This formulation shows that the jump chain introduces a KL divergence bias. When «(z) is constant
over the support of 7, no bias arises; otherwise, the deviation can be non-negligible. Despite the
strong empirical performance of our method, a distributional gap remains. We leave a rigorous
theoretical analysis of this gap to future work.

Dxp[7||7] = Epmorn {log ] =Epon {log } =FEpon {log w] . (72)

ca(x) a(x)
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F ADDITIONAL EXPERIMENT

F.1 EXTEND AC-SAMPLER TO CORRECT EACH SAMPLES : MULTI STEP CORRECTION &
REFINED PROPOSAL WITH A DISCRIMINATOR

After the burn-in process of the Metropolis-Hastings algorithm, the samples generated from our
method can be regarded as samples drawn from the true distribution. This demonstrates that the
Metropolis-Hastings algorithm can be used not only to accelerate sampling, but also to correct
intermediate samples to better match the target distribution.

Focusing solely on the correction perspective, our proposed framework naturally incor-
porates the following methodological components: multi-step correction and refined pro-
posal with a discriminator. As discussed in the main text, we initially present our al-
gorithm using a single-step formulation for simplicity. = However, applying our method
in a multi-step setting is straightforward and does not pose any conceptual or techni-
cal difficulties.  Therefore, we also conducted experiments under the multi-step setting.

Furthermore, DG (Kim et al. Table 15: Comparison of FID and sampling settings under differ-

2023) proposed correcting the ©nt configurations

score network using the gradient
information from a discrimina-

: Sampling | FID| | NFE| | T | T | SNR | Topumin | 7echain
tor. Since we adopt exactly the
S . EDM | 197 | 35 |18 ] - | -] - | -
same training scheme for the dis-

L . L 208 | 51 | 18] 1,3,57 |016] 3 1
criminator as in DG, it is reason-  gpy + pc 213 | 51 | 18| 7,9,11,13 | 016 | 3 1
able to apply a refined proposal 200 | 51 | 18 | 11,13,15,17 | 0.16 3 1
based on the corrected score net- 194 | 5466 | 18 | 1,3,57 | 0.16 3 1

s i . EDM+AC 196 | 5533 | 18 | 7,9,11,13 | 0.16 | 3 I

wgrk_. This 1mplles thgt the dis 193 | 5491 | 18 | 11,13,15,17 | 0.16 | 3 1
criminator trained at timestep 7

) des a likelihood 198 | 5465 | 18 | 1,3,57 | 016 | 3 1

not only provides a likelihood ra-  gpmM+ AC+DG, | 187 | 5456 | 18 | 7,9,11,13 | 0.16 | 3 1

tio estimate, but also enables re- 1.92 | 54.17 | 18 | 11,13,15,17 | 0.16 3 1

fining the proposal distribution
Pproposal,-- 1t 1s possible to use
DG, in accelerating, but DG,, needs gradient calculation and this made sampling speed slow.

We present the results of both extensions in Table[I5] We denote this discriminator-guided proposal
scheme as DG,,. The result demonstrates the effect of MALA correction across various choices of
the correction timestep 7. Although the correction timestep increases while maintaining the same
SNR, AC-Sampler either improves or maintains the baseline FID score. Furthermore, we observe that
incorporating the DG scheme into AC-Sampler leads to a meaningful reduction in FID with shorter
length of chain. In contrast, PC-Sampler (Song et al.,|2021b) often fails to correct samples at large
correction timesteps.

In the table, setting nchan = 1 indicates that Metropolis-Hastings correction is applied for each
individual sample. While this setting does not reduce the number of function evaluations (NFE), it
effectively corrects each intermediate sample.

F.2 DISCUSSION ABOUT TRADE-OFF IN CLASS-CONDITIONAL GENERATION

When performing class-conditiqnal generation, the number of ir}de— Table 16: FID and NFE results
pendent class samples plays an important role. For FID evaluation,
we use 50K images. With n¢p.in = 10, the baseline involves 50,000
independent class samplings, whereas only 5,000 samplings occur
with our method, which may lead to class imbalance. If this effect
did not exist, the NFE reduction could be even more effective. To

evaluate our method fairly und'er this setting, we generate 250K M TREEE z.zgig.os 5; ;1
samples with nepain = 5 (this setting makes total of 50K independent ~ *A€ 012 9 2294003 5130
class samplings) and compute the FID five times using randomly

selected subsets of 50K samples. We report the mean and stan-

on ImageNet 64x64 across
different (SNR, 7) settings.

Method | SNR 7 FID| NFE/
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dard deviation of the resulting FID. Table [16] presents this analysis, showing that our method can
significantly reduce NFE while maintaining a comparable FID.

F.3 CIFAR-10 WITH SCORESDE

We also conduct experiments with Score-SDE (Song et al., [2021b) and DLG (Kim & Ye| [2023)).
Table[I7)and Figure [7]reports our reproductions of the base models (Score-SDE and DLG) alongside
our method. Because the publicly released Score-SDE checkpoint is configured for sampling
with roughly 1,000 NFE, achieving strong performance at substantially lower NFE is inherently
challenging. Following the evaluation protocol described in the DLG paper, our reproduced results
improved over the base checkpoint but did not exactly match the values reported in the original work.
Under the same setting, applying our method yielded consistent distribution correction and quality
improvements, even in the low-NFE regime.

| FID] NFE| | FID| NFE| | FID| NFE| » \//

ScoreSDE (Base) | 27.35 16 | 2658 26 |2672 36 N
+DLG 2595 11.23 | 24.86 21.23 | 2425 5223

- —— ScoreSDE (Base)
N —— DLG
+AC (Ours) 2518 10.95 | 23.83 19.13 | 23.14 29.07 — AC(Ous)
Table 17: Experiment results on CIFAR-10 with ScoreSDE \/

EE] E) 0 EIEY E) L)

NFE

FID

Figure 7: ScoreSDE base ex-
periment on CIFAR-10
G EXPERIMENT SETTING

G.1 EXPERIMENTAL SETUP

Setups. We evaluate on CIFAR-10, CelebA-HQ 256x256, ImageNet 64x64, and Ima-
geNet 256x256. On CIFAR-10, we assess EDM (Karras et al. 2022) and DDO (Zheng et al.|
2025)) using the Heun sampler as in EDM, ScoreSDE (Song et al., 2021b) adopting samplers KAR1
(deterministic) and KAR?2 (stochastic) (Kim & Yel 2023)). For ScoreSDE, refer Appendix On
CelebA-HQ, we use the ScoreSDE (Song et al.,2021b)) checkpoint within the DLG codebase (Kim &
Ye, [2023)) with KAR1, KAR2 sampler. On ImageNet 64 x 64, we use the EDM checkpoint with the
SDE sampler from (Karras et al., [2022); on ImageNet 256 <256, we use the DiT checkpoint (Peebles
& Xie),|2023) with a DDPM sampler (Ho et al.l 2020).

Codebases and checkpoints. Our experiments use the official repositories of EDMﬂ DLCﬂ Dcﬂﬂ
DDJ} ScoreSDHY} and DiT{}

Discriminator training. We train a time-dependent discriminator per network following DG (Kim
et al.| 2023)), using the pre-trained ADM classifier (Dhariwal & Nicholl 2021])) as the feature extractor.
Compared to training a diffusion model, discriminator training is substantially cheaper.

Metrics. We report FID and the mean number of function evaluations (NFE) of the score network
(as in DLG (Kim & Ye} 2023)), since NFE varies across samples in our method. FID is computed on
50K generated samples against the SOK test images; for CelebA-HQ 256 x256, we report 10K FID.
Also we report Precision / Recall metric to assess both the fidelity and diversity of generated images.
The computation of FID follows the official implementation provided by DG (Kim et al., [2023). We
measure the Precision and Recall using the ADM codebase (Dhariwal & Nichol, 2021)).

*https://github.com/NVlabs/edm
‘nttps://github.com/1202kbs/DMCMC
Shttps://github.com/aailabkaist/DG
®https://github.com/alsdudrlal0/DG_imagenet
"https://github.com/NVlabs/DDO
8https://github.com/yangfsong/score_sde_pytorch
https://github.com/facebookresearch/DiT
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All experiments were conducted on NVIDIA RTX 3090, 4090 GPU and A100 GPU using Python
3.8, PyTorch 1.12, and CUDA 11.4.

Table 18: Sampling configuration and performance metrics (FID / NFE) with various diffusion and
sampler combinations.

Dataset Task  BaseModel BaseSampler T | SNR s oumin  7ap r | FID  NFE
CIFAR-10 Uncond. EDM EDM (Heun) 18 | 023 50 10 0 11 210 2278
18 | 023 300 10 0 13 197 26.19
18 023 50 10 0 13 202 26.12
18 | 023 345 5 4 13,1415 | 193 4440
14 | 02 50 0 6 238 15.82
0] 02 11 0 5 324 1057
CIFAR-10 Uncond. DDO EDM (Hewn) 16 | 0175 2 0 2 13 141 2941
CIFAR-10 Uncond. EDM DPM-Solver-v3 6 0.16 10 0 0 5 7.12 5.62
8 | 016 10 0 0 7 300 7.54
8 01 7 0 0 4 988 478
10 | 015 3 0 0 9 255 993
CIFAR-10 Uncond.  ScoreSDE  KARI 18 | 023 25 10 1 13 | 2314 2908
18 | 023 250 10 1 11 | 238 2518
18 023 250 10 0 14 | 238 19.13
TmageNet 64x64 Cond.  EDM EDM(SDE) 32 | 016 2 1 0 26 225 5875
64 | 018 2 5 1 50 177 121.98
56| 01 2 5 1 25 | 142 483.86
CelebA-HQ 256x256 Uncond. ScoreSDE  KARI 20 | 016 25 T 13 ]1513 1594
49 | 016 100 10 4 30 | 2255  44.07
99 | 016 25 0 3 60 | 1569 87.26
CelebA-HQ 256x256 Uncond. ScoreSDE  KAR2 20 | 016 25 10 1 12 845  20.05
49 | 016 50 10 4 33 955  40.05
99 | 018 25 0 3 55 660 9827
ImageNet 256x256  Cond.  DiT DDPM 250 | 012 2 190 0 10 231 23438

G.2 DISCRIMINATOR DETAILS

To implement the time-dependent discriminator, we directly used the official DG codebase and
followed their approach. On CIFAR-10, we used the discriminator checkpoint provided by DG
only when the base diffusion model was EDM and the NFE of the EDM (Heun) sampler was
set to 35. For all other cases, we trained the discriminator ourselves using the DG codebase.

Our discriminators were trained on a single NVIDIA RTX 3090 GPU. Table 19: FID-NFE with dif-
For the feature extractor, we used a commonly adopted (Na et al, fe?er}t training epochs of dis-
2024;|Kim et al., 2023) pre-trained classifier from ADNEF] (Dhariwal ~criminator.

& Nichol, |2021). The discriminator takes the features extracted by

this network as input, and during training, we only updated the _Mchd Epoch FID| NFE}
parameters of the discriminator network. Detailed training settings ~_EPM - 323 1700
are provided in Table ACwo.MH - 340 1526

+AC 1 256 1580
Indeed, while our method requires training an additional discrimina- 2259 1580
tor, we would like to emphasize that the training cost is significantly B 3123 o
lower compared to that of the score model. As summarized in the 20 243 1582

o . . 60 238 1581
table 21] our discriminator is much smaller and faster to train than

the pre-trained score network. Compared to fine-tuning a pre-trained

Yhttps://github.com/openai/quided-diffusion
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Table 20: Configurations of the discriminator.

CIFAR-10 ImageNet 64x64  CelebA-HQ 256x256 ImageNet 256 X256
Diffusion Backbone
Model EDM DDO ScoreSDE EDM ScoreSDE DiT-XL/2
Conditional model X X X v X v
Feature Extractor
Model ADM ADM ADM ADM ADM ADM
Architecture U-Net encoder U-Net encoder  U-Net encoder U-Net encoder U-Net encoder U-Net encoder
Pre-trained
Depth 4 4 4 4 4 4
Width 128 128 128 128 128 128
Attention Resolutions 32,16,8 32,16,8 32,16,8 32,16,8 32,16,8 32,16,8
Input shape (data) (B,32,32,3) (B,32,32,3) (B,32,32,3) (B,64,64,3) (B,256,256,3) (B,32,32,3)
Output shape (feature) (B,8,8,512) (B,8,8,512) (B,8,8,512) (B,8,8,512) (B,8,8,512) (B,8,8,384)
Discriminator
Model ADM ADM ADM ADM ADM ADM
Architecture U-Net encoder U-Net encoder U-Netencoder  U-Net encoder U-Net encoder U-Net encoder
Depth 2 2 2 2 2 2
Width 128 128 128 128 128 128
Attention Resolutions 32,16,8 32,16,8 32,16,8 32,16,8 32,16,8 32,16,8
Input shape (feature) (B,8,8,512) (B,8,8,512) (B,8,8,512) (B,8,8,512) (B,8,8,512) (B,8,8,384)
Output shape (logit) (B,1) (B,1) (B,1) (B,1) (B,1) (B,1)
Discriminator Training
Time scheduling VP VP VP Cosine VP VP VP
Time sampling Importance Importance Importance Importance Importance Importance
Time weighting g Zé ij r% g ’é
Batch size 128 128 128 128 20 512
# data samples 50,000 50,000 50,000 50,000 30,000 50,000
# generated samples 50,000 50,000 50,000 50,000 30,000 50,000
# Epoch 60 70 60 20 50 50

Table 21: Training cost comparison of the score model and discriminator. CIFAR-10

Training \ Parameter Size ~ Training GPU  Training Time
Score (EDM) 55.7M 8x V100 GPUs ~2 days
Discriminator 2.9M 1 xRTX 3090 <2 hours

diffusion model, our approach introduces substantially lower com-

putational overhead and does not modify the pre-trained model in any way. Importantly, we enable
both acceleration and correction purely through discriminator training only. Table[22] shows the
robustness of our time-dependent discriminator. To evaluate the performance of our discriminator at
different timesteps, we conducted experiments with n¢p.i, = 1 ensuring that each sample is corrected
independently. (No acceleration was applied, as our goal was to isolate the effect of the discriminator
across timesteps) Using a fixed SNR, we applied the AC-Sampler at various 7 values with the same
random seed. The results consistently showed improvements in FID across timesteps, suggesting that
the discriminator effectively approximates the density ratio g—g at multiple temporal locations.

Table 22: FID and NFE
comparison of AC with
different chain lengths.

To evaluate the robustness of our method under an imperfect discriminator,
we conducted experiments using partially trained discriminators. We
observed that as the discriminator training progressed, the quality of
the generated samples consistently improved. Moreover, our method
significantly outperformed where all proposals are accepted without a
discriminator. These results indicate that even an imperfectly trained

Method r FID| NFE]
EDM - 201 35

discriminator can still yield meaningful performance gains. This supports ~ *A¢ 3 202 483]
the theoretical claim in Appendix where we show that continued 7199 4854

discriminator training leads to improvements in KL divergence. ig ?gg ig;g

15 200 49.03

H THE USE OF LARGE LANGEUAGE MODELS (LLMS)

We acknowledge the use of a Large Language Model (LLM) during the
preparation of this manuscript. The LLM was employed solely as a
general-purpose writing assistant to improve readability, grammar, and clarity of exposition. It was
not involved in the ideation of research questions, the design of experiments, the development of
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methods, or the interpretation of results. The scientific contributions of this work, including problem
formulation, methodology, theoretical analysis, and empirical evaluation, were conceived and carried
out entirely by the authors. The role of the LLM was limited to helping refine the presentation of the
text, and it did not contribute substantively to the research process itself.

I GENERATED IMAGES

We provide uncurated sample images at Figure 8] [0} [T0} [TT} [T2] generated by our sampler. These are
non-cherry-picked samples generated by applying our algorithm to the baseline models and samplers,
used in our experiments.

ol ARG

Figure 8: The uncurated generated images of AC-sampler on unconditional CIFAR-10 with EDM
(EDM(Heun) sampler, NFE=26.19, FID=1.97).
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Figure 9: The uncurated generated images of AC-sampler on unconditional CIFAR-10 with ScoreSDE
(KARI1 sampler, NFE=29.07, FID=23.14).
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Figure 10: The uncurated generated images of AC-sampler on conditional ImageNet 64 x 64 with
EDM (EDM(SDE) sampler, NFE=59.30, FID=2.27).
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Figure 11: The uncurated generated images of AC-sampler on unconditional CelebA-HQ 256 x256
with ScoreSDE (KAR1 sampler, NFE=15.94, FID=15.13).
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Figure 12: The uncurated generated images of AC-sampler on unconditional CelebA-HQ 256 x256
with ScoreSDE(KAR2 sampler, NFE=20.05, FID=8.45).
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