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ABSTRACT

Diffusion-based generative models have recently achieved state-of-the-art per-
formance in high-fidelity image synthesis. These models learn a sequence of
denoising transition kernels that gradually transform a simple prior distribution
into a complex data distribution. However, requiring many transitions not only
slows down sampling but also accumulates approximation errors. We introduce
the Accelerator-Corrector Sampler (AC-Sampler), which accelerates and corrects
diffusion sampling without fine-tuning. It generates samples directly from interme-
diate timesteps using the Metropolis–Hastings (MH) algorithm while correcting
them to target the true data distribution. We derive a tractable density ratio for
arbitrary timesteps with a discriminator, enabling computation of MH acceptance
probabilities. Theoretically, our method yields samples better aligned with the true
data distribution than the original model distribution. Empirically, AC-Sampler
achieves FID 2.38 with only 15.8 NFEs, compared to the base sampler’s FID 3.23
with 17 NFEs on unconditional CIFAR-10. On CelebA-HQ 256×256, it attains
FID 6.6 with 98.3 NFEs. AC-Sampler can be combined with existing acceleration
and correction techniques, demonstrating its flexibility and broad applicability.

1 INTRODUCTION

Diffusion-based generative models (Ho et al., 2020; Sohl-Dickstein et al., 2015; Song et al., 2021a)
have become one of the most popular approaches in recent years due to their strong ability to generate
diverse types of data such as high-fidelity images (Dhariwal & Nichol, 2021; Rombach et al., 2022)
and videos (Ho et al., 2022; Voleti et al., 2022). Building on these models, strong pre-trained variants
have emerged (Rombach et al., 2022; Karras et al., 2022), followed by many studies aiming to further
improve them (Kim et al., 2023; Na et al., 2024; Xu et al., 2023a). In spite of many variations, these
models share a fundamental structure: they start by sampling from a simple prior distribution and
iteratively transform the samples through a series of learned transition kernels to approximate the
complex data distribution. This iterative generation causes two problems. First, the sampling process
is slow due to the large number of kernel transition calculations required (Song et al., 2021b; Zhang
& Chen, 2023). Second, errors can accumulate during the sampling process if the kernel transition
does not accurately reflect the true reverse diffusion process (Xu et al., 2023a).

Speed and accuracy are usually considered separate research topics, as improving both simultaneously
is often challenging. Some approaches for acceleration diffusion sampling (Kim & Ye, 2023;
Zheng et al., 2023) focus on reducing the NFE while maintaining image quality, but they lack
theoretical analysis for converging to the true data distribution. On the contrary, previous correction
methods (Kim et al., 2023; Na et al., 2024; Xu et al., 2023a) maintain or even increase the NFE,
which makes the methods unscalable in real-world services.

To address both challenges, we propose Accelerator-Corrector Sampler (AC-Sampler). It ac-
celerates and corrects the diffusion sampling process without any fine-tuning of the pre-trained
model. Instead of sampling from the prior distribution, AC-Sampler directly proposes samples at
intermediate timesteps, which enables acceleration. Using Metropolis-Hastings correction, these
proposals are guaranteed to theoretically follow the true marginal distribution. Since the pre-trained
model approximates the score function, we can construct an effective proposal distribution using
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Langevin dynamics (Grenander & Miller, 1994). For computing the acceptance probability, we only
train a time-dependent discriminator (Kim et al., 2023; Na et al., 2024), which can be learned at a
much lower cost than the diffusion model itself.

Our contributions are as follows:

• We propose the AC-Sampler, which accelerates diffusion sampling by generating samples
from intermediate timesteps rather than the initial prior distribution. It also corrects the
accumulated error in the sampling process with Metropolis-Hastings (MH) algorithms.

• We provide a theoretical analysis showing that training the discriminator and following the
MH chain in our method leads to a tighter bound on the data distribution compared to that of
a pre-trained diffusion model. Furthermore, we provide a theoretic analysis of the expected
reduction in the number of function evaluations (NFE).

• We validate our theoretical claim through experiments on benchmark datasets and toy
settings, and demonstrate that our method applies effectively to diverse pre-trained models
in both unconditional and conditional settings.

• Our contribution is orthogonal to advances in training-free samplers, so the two gains are
complementary and can be realized simultaneously. Also, the utilize discriminator is simple
and does not require ad-hoc structures on the pretrained diffusion model.

2 RELATED WORK

Due to the high cost of training or fine-tuning pre-trained diffusion models, a growing body of work
focuses on keeping such models fixed and instead accelerating and correcting the sampling process.

Acceleration Methods To reduce the computational burden associated with additional training,
acceleration methods have been developed to speed up the sampling process without modifying
the original diffusion model. DDIM (Song et al., 2021a) reformulates the reverse diffusion as a
deterministic ODE, achieving significant speedups with fewer steps while preserving the pre-trained
network. Building on this foundation, various works have further improved ODE solvers through
high-order numerical methods and exponential integration, leading to significant gains in sampling
efficiency (Liu et al., 2022; Lu et al., 2022a;b; Dockhorn et al., 2022a; Karras et al., 2022; Zhang &
Chen, 2023; Zhao et al., 2023; Zheng et al., 2023).

In parallel, other lines of work have explored fundamentally different perspectives on diffusion
model acceleration. For example, PDS (Ma et al., 2022) treats diffusion sampling as an Markov
Chain Monte Carlo (MCMC) process, incorporating frequency-domain preconditioning to improve
high-frequency details. DLG (Kim & Ye, 2023) formulates the sampling process over the product
space of data and time, enabling joint Langevin-based Gibbs sampling. This sampling process
identifies the intermediate perturbed data with low noise for the initialization of the reverse process,
which shortens the subsequent diffusion trajectory. However, as shown in Appendix A.1, DLG lacks
theoretical convergence guarantees, leaving room for improvement.

Correction Methods Several studies have been conducted to improve the sampling quality of
pre-trained diffusion models. DG (Kim et al., 2023) proposes a correction method using a time-
dependent discriminator when score estimation is inaccurate, thereby improving the accuracy of the
transition kernel. Restart (Xu et al., 2023a) theoretically demonstrates that repeating forward and
backward steps within a fixed time interval [tmin, tmax] in a pre-trained model can reduce sampling
error. DiffRS (Na et al., 2024) aims to sample from the true distribution by applying a rejection
sampling scheme with a time-dependent discriminator. ES (Ning et al., 2024) proposes a training-
free correction schedule to compensate for the scale gap in score norms between the training and
sampling phases. However, there is no theoretical guarantee that simply matching the norms leads to
distributional equivalence. While these methods focus on sampling correction, they do not reduce the
base NFE and may even increase it, leading to slower sampling.
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3 PRELIMINARY

3.1 METROPOLIS-HASTINGS ALGORITHM AND LANGEVIN PROPOSAL

The Metropolis-Hastings algorithm (MH algorithm) (Metropolis et al., 1953; Hastings, 1970) is a
MCMC method used to sample from a target distribution when direct sampling is not possible. It
constructs a Markov chain whose stationary distribution is the target distribution by satisfying the
detailed balance condition. Based on this condition, the algorithm defines an acceptance probability,
which is used to determined whether to accept proposals drawn from a simple proposal distribution.

Given a target distribution q(·) and a proposal distribution pproposal(· | ·), the acceptance probability
for a proposed sample x̃ and current sample x is defined as:

α = min

(
1,

q(x̃) pproposal(x | x̃)
q(x) pproposal(x̃ | x)

)
, (1)

which guarantees that q(·) is the stationary distribution of the Markov chain.

Though the MH algorithm allows to sample from a complex distribution, a poor proposal distribution
leads to slow convergence to the target distribution. To improve mixing and convergence, gradient-
based proposals have been studied (Parisi, 1988; Neal et al., 2011), i.e. the Langevin proposal,
which leverages the gradient of the target distribution. Specifically, the proposal is derived from the
Euler–Maruyama discretization of the overdamped Langevin dynamics (Roberts & Tweedie, 1996).
Formally, with the target distribution q(x), the Langevin proposal is defined as:

x̃ = x+
η

2
∇x log q(x) +

√
η · ϵ, ϵ ∼ N (0, I), (2)

where η is the step size and ∇x log q(x) is the score function of q(x). This method is commonly
referred to as the Metropolis-Adjusted Langevin Algorithm (MALA) (Grenander & Miller, 1994).

3.2 DIFFUSION MODELS

Diffusion models (Ho et al., 2020; Song et al., 2021b) are probabilistic generative models that
approximate data distributions by adding noise and reversing this process. They consist of a forward
process that corrupts data into noise and a reverse process that removes noise to generate samples.

Let q0(x0) denote the true data distribution and pθ0(x0) denote the distribution of generated samples
from the model. In particular, the forward process is a fixed Markov chain where Gaussian noise is
added using a pre-defined variance schedule. This creates a sequence of random variables x1:T :

q1:T |0(x1:T |x0) :=
∏T

t=1 qt|t−1(xt|xt−1), (3)

where each qt|t−1(xt|xt−1) is a Gaussian transition with increasing noise levels. This process
transforms the data distribution into a tractable prior distribution (e.g., standard Gaussian) as t→ T .
The reverse process is modeled as a Gaussian distribution that denoises a prior distribution pT (xT )
iteratively:

p0:T (x0:T ) := pT (xT )
∏T

t=1 p
θ
t−1|t(xt−1|xt), (4)

where pθt−1|t is the transition kernel that generate data from prior distribution pT . The model is
trained by maximizing a variational bound on the log-likelihood of the data. In practice, this can be
achieved via denoising score matching loss (Vincent, 2011; Ho et al., 2020), given by:

LDSM(θ) = Et∼U [0,1],x0∼q(x0),xt∼q(xt|x0)

[∥∥sθ(xt, t)−∇xt log qt|0(xt|x0)
∥∥2
2

]
, (5)

With this loss, sθ(xt, t) optimizes to follow the true score ∇xt
log qt(xt). The transition kernel is

parameterized as a Gaussian distribution whose mean is a function of the score function:

pθt−1|t(xt−1|xt) := N (xt−1;µt(xt, s
θ(xt, t)), σ

2
t I), (6)

where σ2
t I denotes time-dependent variance. After training, samples are generated by iteratively

applying the reverse kernel from t = T to t = 0.

3
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Figure 1: Overall figure of AC-Sampler.

Figure 2: FID–NFE graph on uncond.
CIFAR-10: (Top) Correction methods
(Bottom) Acceleration methods.

We assume that we have access to a pre-trained diffusion model1, denoted by θ. Let qt(xt) and pθt (xt)
denote the marginal distributions at timestep t, defined by forward diffusion processes starting from
q0(x0) and pθ0(x0), respectively. Pre-trained diffusion model provides sθ(xt, t) ≈ ∇xt

log qt(xt).
The mean of the transition kernel depends on both xt and the score function sθ(xt, t). Therefore,
we treat the score function and the transition kernel pθt−1|t(xt−1|xt) as equivalent parametrizations,
since both are derived from the same model.

Due to this structure, diffusion models are inherently limited by slow sampling speed from the large
number of transition steps, and by the accumulation of approximation errors in the transition kernels.

4 METHOD

To address the two key challenges previously discussed, we propose AC-Sampler, a novel diffusion
sampling framework. The overall sampling procedure is as follows. First, we perform denoising
from the prior distribution up to a target timestep τ , which serves as the initial sample of the MCMC
chain. Starting from this initial sample, we repeatedly generate new candidates using a score-based
proposal distribution. At each step, MH correction is applied. These steps are performed as described
in Algorithm. 1. After sufficient burn-in period, the resulting samples are corrected to true marginal
distribution, qτ . Finally, each accepted sample is further denoised to obtain the final outputs. The
overall sampling process is illustrated in Fig. 1.

This approach has two advantages. First, samples are created directly at τ without denoising from
T , which enables faster sampling (denoted as Acceleration Gain in Fig. 1). Second, because of MH
correction, the resulting samples follow a true marginal distribution, which yields more accurate
samples(denoted as Correction Gain in Fig. 1). Our method accelerates and corrects the sampling
process without requiring any fine-tuning of the underlying diffusion model. To implement this
process, we require the design of the proposal distribution (Sec. 4.1) and the computation of the
acceptance probability (Sec. 4.2).

4.1 PROPOSAL DISTRIBUTION

To sample from the intermediate timestep t, we use Metropolis-Adjusted Langevin Algorithm
(MALA). We set the target distribution to be qt(xt), and construct the proposal distribution using its
score function. Since pre-trained score model sθ(xt, t) approximates the score ∇xt log qt(xt), we

1This assumption reflects realistic applications, since many pre-trained diffusion models can readily incorpo-
rate AC-Sampler without retraining.
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Algorithm 1 MALAOneStep

Input: Target timestep τ , Previous sample xτ , Score output s := sθ(xτ , τ),
Likelihood ratio Lϕτ := dϕ(xτ ,τ)

1−dϕ(xτ ,τ)
, Score network sθ, Discriminator dϕ

Output: Next sample x̃τ

1: repeat
2: Propose x̃τ from proposal distribution pθproposal,τ (· | xτ ) (Eq. 7)

3: Get score s̃← sθ(x̃τ , τ), and likelihood ratio L̃ϕτ ←
dϕ(x̃τ ,τ)

1−dϕ(x̃τ ,τ)

4: Calculate acceptance probability α← α̂(xτ , x̃τ , s, s̃, L
ϕ
τ , L̃

ϕ
τ ) (Eq. 11)

5: Sample u ∼ U(0, 1)
6: until u < α
7: return x̃τ , s̃, L̃

ϕ
τ

leverage sθ(xt, t) to construct the proposal distribution as follows:

pθproposal,t(·|xt) = N
(
xt +

η

2
sθ(xt, t), ηI

)
, (7)

where η is Langevin step size. We adaptively set the value of η to maintain a constant signal-to-noise
ratio (SNR) during sampling. An important advantage of our framework is that both the denoising
step and the MCMC-based proposal distribution rely on the same score value. As a result, a single
network evaluation is sufficient for both operations, enabling efficient integration of denoising and
exploration within AC-Sampler.

4.2 ACCEPTANCE PROBABILITY

The target distribution is qt(·), so the acceptance probability is α = min

(
1,

qt(x̃t)p
θ
proposal,t(xt|x̃t)

qt(xt)pθ
proposal,t(x̃t|xt)

)
,

where x̃t is a sample from the proposal distribution pθproposal,t(·|xt). To make the acceptance probabil-
ity tractable, we first decompose qt(x̃t)/qt(xt) as stated in the following theorem.
Theorem 4.1. Let xt and x̃t be two arbitrary samples at diffusion timestep t. Then, for any fixed
xt−1, the density ratio of the true marginal distribution qt is given by:

qt(x̃t)

qt(xt)
=

qt|t−1(x̃t | xt−1)

qt|t−1(xt | xt−1)
· Lt(x̃t, t)

Lt(xt, t)
·
pθt−1|t(xt−1 | xt)

pθt−1|t(xt−1 | x̃t)
, (8)

where Lt(xt, t) := qt(xt)/p
θ
t (xt) denotes the likelihood ratio between the data and model marginal

distributions at timestep t.

Proof is provided in Appendix A.3. Let µt(xt, s
θ(xt, t)) denote the mean of the reverse transition

kernel pθt−1|t. Since Theorem 4.1 holds for arbitrary xt−1, choose

x̂t−1 := 1
2

(
µt(xt, s

θ(xt, t)) + µt(x̃t, s
θ(x̃t, t))

)
.

With this choice, the transition kernel related terms in Eq. 8 are
pθ
t−1|t(x̂t−1|xt)

pθ
t−1|t(x̂t−1|x̃t)

, which cancel in the

density ratio because both kernels are Gaussian with the same variance and x̂t−1 is equidistant from
their means. We therefore obtain the acceptance probability as follows:

α = min

(
1,

qt|t−1(x̃t | x̂t−1)

qt|t−1(xt | x̂t−1)
· Lt(x̃t, t)

Lt(xt, t)
·
pθproposal,t(xt|x̃t)

pθproposal,t(x̃t|xt)

)
(9)

To access Lt(xt), we use time-dependent discriminator dϕ, following the approach of DG (Kim
et al., 2023). The discriminator is trained to distinguish between qt and pθt at all timesteps. To achieve
this, weighted binary cross-entropy loss is used for training the discriminator:

LBCE(ϕ) =

∫
λ(t)

[
Ext∼qt [− log dϕ(xt, t)] + Ext∼pθ

t
[− log(1− dϕ(xt, t))]

]
dt, (10)

5
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The optimal discriminator satisfies dϕ
∗
(xt, t) =

qt(xt)

qt(xt)+pθ
t (xt)

, so the density ratio qt(xt)

pθ
t (xt)

becomes
dϕ∗

(xt,t)
1−dϕ∗ (xt,t)

. Having access to qt(xt)
pθ(xt)

≈ dϕ(xt,t)
1−dϕ(xt,t)

=: Lϕt (xt, t), the acceptance probability can be
calculated as below:

α̂(xt, x̃t, s, s̃, L, L̃) = min

1,
qt|t−1(x̃t | x̂t−1)

qt|t−1(xt | x̂t−1)︸ ︷︷ ︸
Forward term

· L̃

L︸︷︷︸
Likelihood ratio

·
pθproposal,t(xt|x̃t)

pθproposal,t(x̃t|xt)︸ ︷︷ ︸
Proposal term

 (11)

where s, s̃, L, L̃ denotes sθ(xt, t), s
θ(x̃t, t), L

ϕ
t (xt, t), L

ϕ
t (x̃t, t), respectively. The acceptance prob-

ability consists of three terms. The forward and proposal terms are tractable Gaussian distributions,
and the likelihood ratio is computed using a discriminator. Together, these components make the ac-
ceptance probability fully tractable. Note that with any tractable proposal distribution, the acceptance
probability also remains tractable.

4.3 THEORETICAL ANALYSIS

We prove that our method can theoretically achieve sampling acceleration and correction.
Proposition 4.2. Let the reverse diffusion process have total timestep T and the AC-sampler target
timestep be τ . Let NFER be the average NFE reduction per sample with AC-Sampler. If the
acceptance probability satisfies α > 1

T−τ+1 , then,

lim
l→∞

E[NFER] > 0, lim
l→∞

Var(NFER) = 0 (12)

where l is the length of Markov Chain at timestep τ .

Since, in practice, T − τ is pretty big, the threshold α > 1
T−τ+1 is mild and typically easy to

satisfy. Moreover, because our proposals are guided by the score network, acceptance rates are
sufficiently high that substantial NFE reduction can be achieved even with a small chain length l.
Further discussion of the acceptance probability is provided in Appendix C.

To show that our method not only accelerates sampling but also corrects errors, we theoretically
demonstrate that the data distribution induced by our sampler is closer to the true data distribution
than that of the baseline model.
Theorem 4.3. Let pθ0 , pθ,ϕ

∗

0 denote the model distribution and refined distribution by AC-Sampler
with optimal discriminator ϕ∗, respectively. Then, the KL divergence between the true data distribu-
tion q0 and the refined distribution pθ,ϕ

∗

0 is bounded by:

DKL(q0(x0)||pθ,ϕ
∗
(x0)) ≤ DKL(q0(x0)||pθ(x0)) (13)

Theorem 4.4. Let Tτ be the transition kernel of MALA at timestep τ . Also, pθ,ϕ
∗,(l)

τ denotes marginal
distribution at timestep τ after the l-th MALA transition from pθτ , and p

θ,ϕ∗,(l)
0 denotes the data

distribution generated from p
θ,ϕ∗,(l)
τ with denoising transition kernel pθt−1|t. L

p denotes a space

of function which satisfies (
∫
R |f |

pdx)
1
p <∞. If qτ (xτ ) ∈ Lα, log

(
pθ,ϕ∗,(l)
τ (xτ )
qτ (xτ )

)
∈ Lβ , Tτ ∈ Lγ ,

where α, β, γ ∈ [1,∞] satisfy 1
α + 1

β + 1
γ = 1, then the KL divergence between the true data

distribution q0 and the refined distribution p
θ,ϕ∗,(l+1)
0 is bounded by:

DKL(q0(x0)||pθ,ϕ
∗,(l+1)

0 (x0)) ≤ DKL(q0(x0)||pθ,ϕ
∗,(l)

0 (x0)) (14)

The proofs of each theoretical result and detailed analysis are provided in Appendix A.4 and A.5,
respectively. When our model has sufficiently converged, Theorem 4.3 suggests that it can generate
samples that are closer to the true data distribution than those produced by the baseline model.
Theorem 4.4 further shows that applying more MALA steps progressively moves the samples closer
to the true data distribution. Note that l = 0 denotes the base diffusion model, without MALA.

6
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Table 1: Performance on unconditional CIFAR-
10 generation. Values that are better compared
to the baseline are highlighted in bold.

Model FID↓ NFE↓
Unconditional Generation

VDM (Kingma et al., 2021) 7.41 1000
DDPM (Ho et al., 2020) 3.17 1000
iDDPM (Nichol & Dhariwal, 2021) 2.90 1000
DDIM (Song et al., 2021a) 4.16 100
ScoreSDE (Song et al., 2021b) 2.20 2000
Soft Truncation (Kim et al., 2022b) 2.33 2000
STF (Xu et al., 2022) 1.90 35
CLD-SGM (Dockhorn et al., 2022b) 2.25 312
INDM (Kim et al., 2022a) 2.28 2000
LSGM (Vahdat et al., 2021) 2.10 138
PFGM++ (Xu et al., 2023b) 1.93 35
PSLD (Pandey & Mandt, 2023) 2.10 246
Flow Matching (Lipman et al., 2023) 6.35 142
Rectified Flow (Liu et al., 2023) 2.58 127
ES (Ning et al., 2024) 1.95 35

EDM (Heun) (Karras et al., 2022) 2.01 35
EDM (Heun) + AC (Ours) 1.97 26.19

DDO (Heun)(Zheng et al., 2025) 1.42 35
DDO + AC (Ours) 1.41 29.41

Acceleration Method

DPM ++ (Lu et al., 2022a) 24.54 5
UniPC (Zhao et al., 2023) 23.52 5
DPM-v3 (Zheng et al., 2023) 12.41 5

DPM-v3 + AC (Ours) 9.88 4.78

Correction Method

Restart (Xu et al., 2023a) 1.95 43
DiffRS (Na et al., 2024) 2.02 30.73
DG (Kim et al., 2023) 1.93 27

DG + AC (Ours) 1.84 26.19

Table 2: Performance on unconditional CIFAR-
10 generation with (Top) correction and (Bottom)
acceleration methods.

Method FID↓ NFE↓ FID↓ NFE↓ FID↓ NFE↓

EDM (Heun) 2.05 27 2.23 23 3.23 17
+DiffRS (Na et al., 2024) 2.17 28.15 3.26 23.13 7.79 19.87
+DG (Kim et al., 2023) 1.93 27 2.12 23 3.62 17

+AC (Ours) 1.97 26.19 2.10 22.78 2.38 15.81

Method FID↓ NFE↓ FID↓ NFE↓ FID↓ NFE↓

DPM++ (Lu et al., 2022b) 11.85 6 4.36 8 2.91 10
UniPC (Zhao et al., 2023) 11.10 6 3.86 8 2.85 10
DPM-v3 (Zheng et al., 2023) 8.73 6 3.62 8 2.65 10

DPM-v3 + AC (Ours) 7.12 5.61 3.09 7.53 2.54 9.88

Table 3: FID and NFE on unconditional CelebA-
HQ 256 generation.

Method FID↓ NFE↓ FID↓ NFE↓ FID↓ NFE↓

ScoreSDE (KAR1 ) 121.27 40 122.74 98 125.15 198
+DLG (Kim & Ye, 2023) 20.19 21.21 29.12 47.21 30.72 107.21
+AC (Ours) 15.13 15.94 22.55 44.06 15.69 87.26

ScoreSDE (KAR2) 83.21 40 57.28 98 29.74 198
+DLG (Kim & Ye, 2023) 17.92 21.21 12.12 47.21 8.14 107.21
+AC (Ours) 8.45 20.05 9.55 40.05 6.60 98.27

Table 4: Performance on conditional ImageNet
(Top) 64×64, (Bottom) 256×256 generation.

Method FID↓ NFE↓ FID↓ NFE↓ FID↓ NFE↓

EDM (SDE) 2.30 61 1.78 127 1.43 511
+AC (Ours) 2.25 58.75 1.77 121.98 1.42 483.86

Method FID↓ NFE↓ Precision↑ Recall↑

DiT (DDPM) (Peebles & Xie, 2023) 2.35 250 0.829 0.576
+AC (Ours) 2.31 234.38 0.817 0.592

5 EXPERIMENTS

In this section, we present experimental results to validate the effectiveness of our method empirically.

Experimental setting We employ our methods on various pre-trained networks trained on
CIFAR-10 (Krizhevsky, 2009), ImageNet64×64 and 256×256 (Deng et al., 2009), CelebA-HQ
256×256 (Karras et al., 2017). We report the Fréchet Inception Distance (FID) (Heusel et al.,
2017), Precision/Recall (Kynkäänniemi et al., 2019). We use Heun, SDE sampler Karras et al.
(2022), KAR1(deterministic), KAR2(stochastic) sampler (Kim & Ye, 2023), and DDPM sampler (Ho
et al., 2020). We highlight the best-performing results compare to baseline model in bold. Detailed
hyperparameters and experimental settings are provided in Appendix C and G.

5.1 UNCONDITIONAL GENERATION

CIFAR-10 The upper part of Table 1 shows results for unconditional generation on CIFAR-10. Our
method is compatible with both EDM and DDO checkpoints. Both methods were re-tested without
applying seed fixing as in the EDM setting. For the EDM checkpoint, our sampler improves the FID
from 2.01 with 35 NFE to 1.97 with only 26.19 NFE. For the stronger DDO checkpoint, we achieve
1.41 FID while reducing NFE from 35 to 29.41. Although the gain in FID is marginal for highly
capable pre-trained models, our method consistently reduces the NFE, demonstrating its efficiency.

CelebA-HQ 256×256 We employ the pre-trained time classifier released by DLG to reproduce
their reported performance. For the AC-Sampler, we extend the MALA algorithm in the joint space of
(xτ , τ), as detailed in the Appendix B, to support effective sampling in high-dimensional benchmark
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Figure 3: Effect of an
MH correction on AC-
Sampler.

Figure 4: Mode cover
with different τ in 25-
Gaussian toy experiment

Table 5: Performance of AC-Sampler apply
on EDM. Time denotes the wall-clock sec-
onds required to generate 100 images.

Method FID↓ NFE↓ Precision↑ Recall↑ Time↓
EDM (Heun) 2.01 35 0.704 0.627 6.46
+AC 1.97 26.19 0.703 0.628 5.26
EDM (Heun) 2.24 23 0.703 0.625 4.30
+AC 2.21 20.67 0.707 0.632 4.15
EDM (Heun) 3.32 17 0.683 0.622 3.20
+AC 2.41 15.78 0.699 0.623 3.19

datasets. As shown in Table 3, the AC-Sampler demonstrates a clear improvement in FID compared
to other methods with lower NFE.

Method Compatibility The lower part of Table 1 reports results when applying AC-Sampler on
top of existing acceleration and correction methods. When combined with DPM-v3, which originally
yields 12.41 FID at 5 NFEs, our method improves performance to 9.88 FID with only 4.78 NFEs.
Similarly, DG achieves 1.93 FID at 27 NFEs, while AC-Sampler applied to DG further reduces this
to 1.84 FID at 26.19 NFEs. These experiments highlight that our method is orthogonal to existing
acceleration and correction methods, and can flexibly enhance them. Table 2 and Figure 2 present the
FID–NFE trade-offs of our method compared to existing acceleration and correction techniques. We
observe that our method achieves better trade-offs in most NFE regimes.

5.2 CLASS-CONDITIONAL GENERATION

Figure 5: AC-Sampler on CelebA-HQ 256×256 (Top, un-
conditional) and ImageNet 256×256 (Bottom, condition on
“Weasel”). Panel presents the final results of the MALA
chains, ordered from left to right.

ImageNet Table 4 presents the re-
sults on conditional ImageNet 64×64
and 256×256 generation. For Ima-
geNet 64×64, we employed a condi-
tional score network, while for Ima-
geNet 256×256, we used classifier-
free guided generation with a CFG
scale of 1.5. In both cases, we find
effective improvements in NFE and
slight improvements in FID. Although
class-conditioned settings inherently
limit the length of the MCMC chain,
our results demonstrate that the pro-
posed method can still be applied effectively under this constraint. We provide a further discussion of
the class diversity and related experiments in Appendix F.2.

5.3 ABLATION STUDIES

Distribution Alignment In our method, the acceptance probability is computed using the density
ratio provided by the discriminator. If this density ratio is inaccurate, effective distribution alignment
through MH correction becomes difficult. To examine this, we retained the overall framework of our
method but removed the MH accept–reject step. As shown in Fig. 3, without MH correction, the FID
degrades significantly. This result demonstrates that our method effectively corrects the distribution
through MH correction.

Sample Diversity Because our method relies on MH, successive samples can be correlated. Thus,
assessing whether it still produces diverse samples is crucial. In Table 5, the recall metric, which
is an indicator of sample diversity, is comparable to the base sampler. These results indicate that,
our method can preserve sample diversity. Together with the improved FID and reduced NFE, these
results demonstrate both the effectiveness and efficiency of our approach. The MALA chains on
benchmark datasets are shown in Fig. 5, where we observe that our method successfully generates
diverse and high-quality images. Further analysis is provided in Appendix D.
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(a) DDPM (NFE=1000) (b) +AC (NFE=504.5)

Figure 6: Toy experiment results. Red circles
denote uncovered mode.

Toy experiment We applied our method to a 25-
Gaussian toy task: we generated 100 samples and
define a mode covered if any sample lay within 2σ
of its mean. Over 10 trials, the baseline DDPM cov-
ered on average 23.5 modes, while ours consistently
covered all 25 modes as in Fig. 4. The solid lines indi-
cate the mean, and the shaded areas are the standard
deviation. This confirms that our method effectively
performs distribution correction and ensures diverse
mode coverage. When low-τ regimes, more samples
are required for sufficient cover. Fig. 6 shows the
results with 100 generated samples. Red circles de-
note uncovered modes. Ours reduces NFE while fully
covering all modes of the 25-Gaussian mixture.

Hyperparameter Metrics

τ SNR FID ↓ NFE ↓ Recall ↑
0.10 2.89 25.13 0.550

13 0.20 2.06 25.65 0.620
0.23 1.97 26.19 0.628

0.10 8.77 15.21 0.200
8 0.20 6.14 15.75 0.422

0.23 6.73 16.70 0.441

0.10 62.67 5.29 0
3 0.20 46.60 5.75 0

0.23 43.96 6.26 0

Table 6: Hyperparameter analysis.

Hyperparameter We primarily tune two parameters: the
target timestep τ and the signal-to-noise ratio (SNR) of the
Langevin proposal. The SNR controls the proposal step size
η. Larger SNR yields larger steps. With T = 18, we vary τ
and SNR and report the resulting FID, NFE and Recall. As τ
decreases (i.e., closer to the data distribution), the distribution be-
comes sharper, and MALA mixing deteriorates. Also, if the SNR
is too small, proposals change little from the current sample, also
leading to slow exploration. Given the constraints of limited
number of generation, the choice of the target timestep τ and the
proposal SNR is crucial. A detailed analysis of hyperparameter
is provided in Appendix C.

Faster sampling: Wall-clock time Since our method employs an additional discriminator at
inference time, the wall-clock time could potentially be slower even with the same NFE. To evaluate
this, we measured the average time (in seconds) required to generate 100 samples using both the
base sampler and our method on a single RTX 3090. As shown in Table 5, our approach not only
improved sample quality but also achieved faster wall-clock time. Unlike conventional approaches
that reduce NFE by enlarging the time step and thereby increasing discretization error, our method
generates intermediate samples without coarsening the time grid. As a result, the improvement in
sample quality is particularly pronounced in the low-NFE regime.

Table 7: Comparison of conven-
tional MH (MHC) and Alg. 1.

Method FID↓ NFE↓ Recall↑

EDM (Base) 2.05 27 0.627
+AC with MHC 3.22 25.08 0.580
+AC with Alg. 1 1.97 26.19 0.628

Jump Markov Chain In conventional Metropolis-Hastings, re-
jected proposals are also retained as part of the chain, which
ensures detailed balance but is inefficient when the goal is sam-
ple generation under limited capacity. As shown in Table 7, this
often manifests as reduced class diversity, making the standard
formulation impractical in generative settings. To address this, in
Algorithm 1 we adopt a propose-until-accept design: proposals
are repeatedly drawn until one is accepted, and only the accepted
sample is recorded. This prevents duplicate retention of the same sample and promotes greater
diversity in the generated outputs. This variant can be formally understood as a Jump Markov
chain (Rosenthal et al., 2021), and further details are provided in Appendix E.

6 CONCLUSION

We introduced AC-Sampler, which accelerates and corrects diffusion sampling via Metropo-
lis–Hastings with a Langevin proposal. By sampling from intermediate timesteps and using time-
dependent discriminators for density ratio estimation, it improves sample quality and provides faster
inference speed without retraining. AC-Sampler theoretically reduces KL divergence at each refine-
ment step and empirically achieves better FID with fewer NFEs across datasets. It also integrates
smoothly with prior acceleration and correction methods.
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A PROOFS AND MATHEMATICAL EXPLANATIONS

In this section, we provide a mathematical explanation and formal derivation of the theorems presented
in the main body of the paper.

A.1 THEORETICAL ANALYSIS OF DLG (KIM & YE, 2023)

Proposition A.1. Let q(x, t) be the true joint distribution over data x and diffusion timestep t, and
pθ(x, t) be the model joint distribution .

Suppose that there is an optimal time classifier ψ∗, i.e., pψ
∗
(t | x) = q(t | x),∀x, t. If the model

marginal distribution pθ(x) does not match the true marginal distribution, i.e.,∃ x s.t. pθ(x) ̸= q(x),
then the Markov chain defined by Gibbs sampling between pθ(x | t) and pψ

∗
(t | x) does not have

q(x, t) as its stationary distribution.

Proof. Let’s assume that the true joint distribution q(xt, t) is a stationary distribution of Gibbs
Sampling, whose transition kernel is T ((x, t) → (x′, t′)) = pθ(x′ | t)pψ∗

(t′ | x′). Let (x, t) ∼
q(·, ·), and (x′, t′) is a sample drawn from the transition kernel T ((x, t)→ (·, ·)). Since the stationary
distribution should satisfy the invariance condition, for arbitrary x′ the following equation holds:

q(x′, t′) =

∫∫
q(x, t)T ((x, t)→ (x′, t′)) dx dt (15)

=

∫∫
q(x, t)pθ(x′ | t)pψ

∗
(t′ | x′) dx dt (16)

=

∫∫
q(x, t)pθ(x′ | t)q(t′ | x′) dx dt (17)

=

∫
q(t)pθ(x′ | t)q(t′ | x′) dt (18)

=

∫
q(t)

pθ(t | x′)pθ(x′)

pθ(t)
q(t′ | x′) dt (19)

=

∫
pθ(t | x′)pθ(x′)q(t′ | x′) dt (20)

= pθ(x′)q(t′ | x′)

∫
pθ(t | x′) dt (21)

= pθ(x′)q(t′ | x′) (22)

Note that the marginal distribution q(t) = pθ(t) for every t is an uniform distribution. To satisfy the
invariance, ∀x′, pθ(x′) = q(x′) so the proof holds due to the contradiction.

Proposition A.1 states that even if the time-classifier in DLG(Kim & Ye, 2023) is optimal, it is
impossible to sample from the true distribution. So we leverage Metropolis-Hastings Correction with
this proposal distribution. Detailed explanation is given in Appendix B.

A.2 PROOF OF PROPOSITION 4.2

Proposition 4.2. Let the reverse diffusion process have total timestep T and the AC-sampler target
timestep be τ . Let NFER be the average NFE reduction per sample with AC-Sampler. If the
acceptance probability satisfies α > 1

T−τ+1 , then,

lim
l→∞

E[NFER] > 0, lim
l→∞

Var(NFER) = 0 (12)

where l is the length of Markov Chain at timestep τ .

Proof. Let’s assume that the acceptance probability α is fixed in (0, 1], and that there is no burn-in
process in the AC-Sampler for simplicity.2

2We can get same result with burn-in process easily
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Let R denote the total NFE required at timestep τ for the MCMC step. At timestep τ , Algorithm 1 runs
l times. Since we make proposals until it is accepted, R follows the Negative Binomial distribution,
i.e., R ∼ NB(l, α). Let NFET denote the total NFE required in the AC-Sampler sampling step. Then
the following decomposition holds:

NFET = T − τ︸ ︷︷ ︸
Initial denoising step

+ R︸︷︷︸
MALA step

+ l(τ − 1)︸ ︷︷ ︸
Denoising step after MALA

. (23)

Since we obtain the score value of each proposal at the MALA step and denoise total of l samples,
the denoising step after MALA is l(τ − 1). Since R follows a negative binomial distribution, we
have E[NFET ] = T − τ + l

α + l(τ − 1) and Var(NFET ) =
l(1−α)

α2 . Then, the mean of NFER is as
follows:

E[NFER] = T − E[NFET ]

l
(24)

= T − T − τ

l
− 1

α
− (τ − 1) (25)

= T − τ + 1− 1

α
− T − τ

l
. (26)

Taking limits on both sides yields

lim
l→∞

E[NFER] = T − τ + 1− 1

α
(27)

> 0

(
∵ α >

1

T − τ + 1

)
(28)

Moreover, Var(NFER) = 1−α
α2 · 1l , and thus taking limits gives liml→∞ Var(NFER) = 0, which

concludes the proof.

A.3 PROOF OF THEOREM 4.1

Theorem 4.1. Let xt and x̃t be two arbitrary samples at diffusion timestep t. Then, for any fixed
xt−1, the density ratio of the true marginal distribution qt is given by:

qt(x̃t)

qt(xt)
=

qt|t−1(x̃t | xt−1)

qt|t−1(xt | xt−1)
· Lt(x̃t, t)

Lt(xt, t)
·
pθt−1|t(xt−1 | xt)

pθt−1|t(xt−1 | x̃t)
, (8)

where Lt(xt, t) := qt(xt)/p
θ
t (xt) denotes the likelihood ratio between the data and model marginal

distributions at timestep t.

Proof. We derive the marginal density ratio as follows:
qt(x̃t)

qt(xt)
=

qt−1(xt−1)

qt−1(xt−1)
·
qt|t−1(x̃t | xt−1)

qt|t−1(xt | xt−1)
·
qt−1|t(xt−1 | xt)

qt−1|t(xt−1 | x̃t)
(29)

=
qt|t−1(x̃t | xt−1)

qt|t−1(xt | xt−1)
·
qt−1|t(xt−1 | xt)

qt−1|t(xt−1 | x̃t)
(30)

=
qt|t−1(x̃t | xt−1)

qt|t−1(xt | xt−1)
·
qt−1|t(xt−1 | xt)

pθt−1|t(xt−1 | xt)
·
pθt−1|t(xt−1 | x̃t)

qt−1|t(xt−1 | x̃t)
·
pθt−1|t(xt−1 | xt)

pθt−1|t(xt−1 | x̃t)
(31)

Following the derivation process of DiffRS (Na et al., 2024), Eq. 31 can be expressed as follows:

=
qt|t−1(x̃t | xt−1)

qt|t−1(xt | xt−1)
· Lt−1(xt−1, t− 1)

Lt(xt, t)
· Lt(x̃t, t)

Lt−1(xt−1, t− 1)
·
pθt−1|t(xt−1 | xt)

pθt−1|t(xt−1 | x̃t)
(32)

=
qt|t−1(x̃t | xt−1)

qt|t−1(xt | xt−1)︸ ︷︷ ︸
Forward term

· Lt(x̃t, t)

Lt(xt, t)︸ ︷︷ ︸
Likelihood ratio

·
pθt−1|t(xt−1 | xt)

pθt−1|t(xt−1 | x̃t)︸ ︷︷ ︸
Transition kernel term

(33)
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The Forward term and Transition kernel term are tractable since it is a gaussian distribution. By
approximating the Likelihood ratio by a discriminator, we can derive a tractable form of the acceptance
probability.

A.4 PROOF OF THEOREM 4.3

Theorem 4.3. Let pθ0 , pθ,ϕ
∗

0 denote the model distribution and refined distribution by AC-Sampler
with optimal discriminator ϕ∗, respectively. Then, the KL divergence between the true data distribu-
tion q0 and the refined distribution pθ,ϕ

∗

0 is bounded by:

DKL(q0(x0)||pθ,ϕ
∗
(x0)) ≤ DKL(q0(x0)||pθ(x0)) (13)

Proof. First, let τ be a timestep that MALA occurs in AC-Sampler framework. From (Ho et al.,
2020), the upper bound of KL divergence between the true data distribution and the model distribution
can be written as follows:

DKL[q0 ∥ pθ0 ] = Eq0

[
log

q0(x0)

pθ0(x0)

]
(34)

= Eq0 [− log pθ0(x0)]−H(q0) (35)

= Eq0

[
− log

∫
q1:τ |0(x1:τ | x0)

pθ0:τ (x0:τ )

q1:τ |0(x1:τ | x0)
dx1:τ

]
−H(q0) (36)

≤ Eq0

[
−
∫

q1:τ |0(x1:τ | x0) log
pθ0:τ (x0:τ )

q1:τ |0(x1:τ | x0)
dx1:τ

]
−H(q0) (37)

= Eq0:τ

[
− log pθτ (xτ )−

τ∑
i=1

log
pθi−1|i(xi−1 | xi)

qi−1|i(xi−1 | xi)
· qi(xi)

qi−1(xi−1)

]
−H(q0) (38)

= Eq0:τ

[
log

qτ (xτ )

pθτ (xτ )
− log q0(x0)−

τ∑
i=1

log
pθi−1|i(xi−1 | xi)

qi−1|i(xi−1 | xi)

]
−H(q0) (39)

= DKL[qτ ∥ pθτ ] + Eq0:τ

[
τ∑

i=1

log
qi−1|i(xi−1 | xi)

pθi−1|i(xi−1 | xi)

]
(40)

= DKL[qτ ∥ pθτ ] +
τ∑

i=1

Eqi

[
DKL[qi−1|i(xi−1 | xi) ∥ pθi−1|i(xi−1 | xi)]

]
(41)

By substituting pθτ with pθ,ϕ
∗

τ , the following bounded relation also holds:

DKL[q0 ∥ pθ,ϕ
∗

0 ] ≤ DKL[qτ ∥ pθ,ϕ
∗

τ ] +

τ∑
i=1

Eqi

[
DKL[qi−1|i(xi−1 | xi) ∥ pθ,ϕ

∗

i−1|i(xi−1 | xi)]
]

(42)

Since pθ,ϕ
∗

i−1|i(xi−1 | xi) = pθi−1|i(xi−1 | xi) ∀i ≤ τ , it is sufficient to show

DKL[qτ ∥ pθ,ϕ
∗

τ ] ≤ DKL[qτ ∥ pθτ ] (43)

When the discriminator is optimal and the burn-in process has been sufficiently performed, pθ,ϕ
∗

τ =
qτ , so DKL[qτ ∥ pθ,ϕ

∗

τ ] = 0. Since the KL-Divergence is non-negative, the proof is complete.

The stationary distribution at timestep τ is pθτL
ϕ
τ . The gap between the two distributions in Eq. 43 is

as follows:

DKL[qτ ∥ pθτ ]−DKL[qτ ∥ pθ,ϕτ ] =

∫
qτ log

qτ
pθτ

dxτ −
∫

qτ log
qτ

pθ,ϕτ

dxτ (44)

=

∫
qτ log

qτ
pθτ

dxτ −
∫

qτ log
qτ

pθτL
ϕ
τ

dxτ (45)

=

∫
qτ logL

ϕ
τ dxτ (46)
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If the discriminator cannot distinguish between the two distributions pθt , qt at all, i.e., Lϕt (xt, t) = 1
for all xt, t, then the target distribution of Metropolis-Hastings algorithm becomes pθτ . As a result the
gap between the two KL divergences in Eq. 46 becomes 0. By training the discriminator, the gap
converges to DKL[qτ∥pθτ ] (≥ 0), indicating that the bound becomes tighter.

A.5 PROOF OF THEOREM 4.4

Theorem 4.4. Let Tτ be the transition kernel of MALA at timestep τ . Also, pθ,ϕ
∗,(l)

τ denotes marginal
distribution at timestep τ after the l-th MALA transition from pθτ , and p

θ,ϕ∗,(l)
0 denotes the data

distribution generated from p
θ,ϕ∗,(l)
τ with denoising transition kernel pθt−1|t. L

p denotes a space

of function which satisfies (
∫
R |f |

pdx)
1
p <∞. If qτ (xτ ) ∈ Lα, log

(
pθ,ϕ∗,(l)
τ (xτ )
qτ (xτ )

)
∈ Lβ , Tτ ∈ Lγ ,

where α, β, γ ∈ [1,∞] satisfy 1
α + 1

β + 1
γ = 1, then the KL divergence between the true data

distribution q0 and the refined distribution p
θ,ϕ∗,(l+1)
0 is bounded by:

DKL(q0(x0)||pθ,ϕ
∗,(l+1)

0 (x0)) ≤ DKL(q0(x0)||pθ,ϕ
∗,(l)

0 (x0)) (14)

Proof. As in Theorem 4.3, it suffices to show that

DKL[qτ ∥ pθ,ϕ
∗,(l+1)

τ ] ≤ DKL[qτ ∥ pθ,ϕ
∗,(l)

τ ]

Then the below equation holds. We refer to the proof procedure in (Tsvetkov et al., 2017).

DKL[qτ ∥ pθ,ϕ
∗,(l+1)

τ ] =

∫
qτ (xτ ) log

qτ (xτ )

p
θ,ϕ∗,(l+1)
τ (xτ )

(47)

= −
∫

qτ (xτ ) log p
θ,ϕ∗,(l+1)
τ (xτ ) dxτ −H(qτ ) (48)

= −
∫

qτ (xτ ) log

{∫
pθ,ϕ

∗,(l)
τ (x̃τ )Tτ (x̃τ → xτ ) dx̃τ

}
dxτ −H(qτ )

(49)

= −
∫

qτ (xτ ) log

{∫
p
θ,ϕ∗,(l)
τ (x̃τ )

qτ (x̃τ )
qτ (x̃τ )Tτ (x̃τ → xτ ) dx̃τ

}
dxτ −H(qτ )

(50)

= −
∫

qτ (xτ ) log

{∫
p
θ,ϕ∗,(l)
τ (x̃τ )

qτ (x̃τ )
qτ (xτ )Tτ (xτ → x̃τ ) dx̃τ

}
dxτ −H(qτ )

(51)

= −
∫

qτ (xτ ) log

{
qτ (xτ )

∫
p
θ,ϕ∗,(l)
τ (x̃τ )

qτ (x̃τ )
Tτ (xτ → x̃τ ) dx̃τ

}
dxτ −H(qτ )

(52)

= −
∫

qτ (xτ ) log

{∫
p
θ,ϕ∗,(l)
τ (x̃τ )

qτ (x̃τ )
Tτ (xτ → x̃τ ) dx̃τ

}
dxτ (53)

≤ −
∫∫

qτ (xτ )

[
log

{
p
θ,ϕ∗,(l)
τ (x̃τ )

qτ (x̃τ )

}
Tτ (xτ → x̃τ )

]
dx̃τdxτ (54)

Since 1
α + 1

β + 1
γ = 1, we can apply Hölder’s inequality (Hölder, 1889) in Eq. 54∫∫

qτ (xτ )

[
log

{
p
θ,ϕ∗,(l)
τ (x̃τ )

qτ (x̃τ )

}
Tτ (xτ → x̃τ )

]
dx̃τdxτ (55)

≤
(∫∫

|qτ (xτ )|α dx̃τdxτ

) 1
α

∫∫ ∣∣∣∣∣log
{
p
θ,ϕ∗,(l)
τ (x̃τ )

qτ (x̃τ )

}∣∣∣∣∣
β

dx̃τdxτ

 1
β (∫∫

|Tτ (xτ → x̃τ )|γ dx̃τdxτ

) 1
γ

(56)
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Since there exist α, β, and γ such that qτ (xτ ) ∈ Lα, log
(

pθ,ϕ∗,(l)
τ (xτ )
qτ (xτ )

)
∈ Lβ , and Tτ ∈ Lγ holds,

Eq. 54 is absolute convergence. Therefore, by Fubini’s theorem, the order of integration can be
interchanged.

= −
∫

log

(
p
θ,ϕ∗,(l)
τ (x̃τ )

qτ (x̃τ )

)[∫
qτ (xτ )T (xτ → x̃τ ) dxτ

]
dx̃τ (57)

= −
∫

log

(
p
θ,ϕ∗,(l)
τ (x̃τ )

qτ (x̃τ )

)
qτ (x̃τ ) dx̃τ (58)

= DKL[qτ ∥ pθ,ϕ
∗,(l)

τ ] (59)

The assumption in Theorem 4.4 is made solely to satisfy Fubini’s theorem, and we note that the
theorem is commonly adopted in prior works (De Bortoli et al., 2021; Lipman et al., 2023).

B METROPOLIS HASTINGS ALGORITHM IN JOINT SPACE

For the CelebA-HQ 256×256 dataset, we observed that the method which performed well on low-
dimensional datasets did not perform well. We provide an analysis on this issue based on the following
points:

• In high-dimensional data, the data manifold is more complex compared to low-dimensional
cases. This makes it difficult to estimate the true score accurately.

• As a result, the proposal distribution becomes misaligned with the target distribution, and
Langevin dynamics can easily drift away from the data manifold at timestep τ .

In DLG (Kim & Ye, 2023), a time classifier was proposed to detect whether a sample had left the
manifold after Langevin dynamics at timestep t. The proposal distribution of DLG is as follows:

pθ,ψproposal(x̃, t̃ | x, t) = pθproposal(x̃ | x, t) ·p
ψ
proposal(t̃ | x, t, x̃) = pθproposal(x̃ | x, t) ·p

ψ
proposal(t̃ | x̃) (60)

First, given (x, t), sample x̃ using one step of Langevin dynamics. After that, sample t̃ using the time
classifier conditioned on x̃. The proposal distribution in the joint space depends not only on the score
network but also on the time classifier.

However, as we showed in Proposition A.1, this approach cannot converge to the true joint distribution
even when the time classifier is optimal, i.e., pψ

∗
(t|x) = q(t|x). To address this issue, we perform

the Metropolis-Hastings algorithm in the joint space of time and data. To compute the acceptance
probability in the joint distribution, we extend the density ratio formulation presented in Theorem 4.1.
This extension is proposed in the following corollary.

Corollary B.1. Let x, x̃ be arbitrary samples at diffusion timesteps t, τ , respectively, and let xτ

be any fixed point at timestep τ . If τ < min(t, t̃) is satisfied, the density ratio of the true joint
distribution q(·, ·) is given by:

q(x̃, t̃)

q(x, t)
=

qt̃|τ (x̃|xτ )

qt|τ (x|xτ )
· Lt̃(x̃, t̃)

Lt(x, t)
·
pθτ |t(xτ |x)
pθ
τ |t̃(xτ |x̃)

(61)
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Algorithm 2 JointMALAOneStep(x, t, s, Lt,θ,ϕ,ψ)

Input: x, t, s, Lt

Output: Accepted sample x̃τ

1: repeat
2: Sample x̃ ∼ pθproposal,t(· | x, t)
3: Sample t̃ ∼ pψproposal(· | x̃)
4: Compute s̃ = sθ(x̃, t̃) and L̃t̃ = Lϕ

t̃
(x̃, t̃)

5: Compute acceptance probability: α̂joint(x, x̃, s, s̃, Lt, L̃t̃, τ)
6: Sample u ∼ U(0, 1)
7: until u < α
8: return x̃, t̃, s̃, L̃t̃

Proof. For ∀xτ with τ < t, t̃, the below equation holds.

q(x̃, t̃)

q(x, t)
=

q(x̃ | t̃)
q(x | t)

· q(t̃)
q(t)

(62)

=
qt̃(x̃)

qt(x)
(63)

=
qt̃|τ (x̃ | xτ )

qt|τ (x | xτ )
·
qτ |t(xτ |x)
qτ |t̃(xτ |x̃)

· qτ (xτ )

qτ (xτ )
(64)

=
qt̃|τ (x̃ | xτ )

qt|τ (x | xτ )
·
qτ |t(xτ |x)
qτ |t̃(xτ |x̃)

(65)

=
qt̃|τ (x̃ | xτ )

qt|τ (x | xτ )
·
qτ |t(xτ |x)
pθτ |t(xτ |x)

·
pθ
τ |t̃(xτ |x̃)
qτ |t̃(xτ |x̃)

·
pθτ |t(xτ |x)
pθ
τ |t̃(xτ |x̃)

(66)

=
qt̃|τ (x̃ | xτ )

qt|τ (x | xτ )
· Lτ (xτ , τ)

Lt(x, t)
· Lt̃(x̃, t̃)

Lτ (xτ , τ)
·
pθτ |t(xτ |x)
pθ
τ |t̃(xτ |x̃)

(67)

=
qt̃|τ (x̃ | xτ )

qt|τ (x | xτ )
· Lt̃(x̃, t̃)

Lt(x, t)
·
pθτ |t(xτ |x)
pθ
τ |t̃(xτ |x̃)

(68)

The density of the proposal distribution, pθproposal(x̃ | x, t) · p
ψ
proposal(t̃ | x̃), is tractable. In detail,

pθproposal(x̃ | x, t) is a Langevin proposal, which follows a Gaussian distribution and pψproposal(t̃ | x̃)
can be evaluated using the output of the time classifier. Therefore, the acceptance probability in the
joint space can be computed. The acceptance probability is given as follows:

α̂joint(x, x̃, s, s̃, L, L̃, τ)

= min

1,
qt̃|τ (x̃ | x̂τ )

qt|τ (x | x̂τ )︸ ︷︷ ︸
Forward term

· L̃

L︸︷︷︸
Likelihood ratio

·
pθτ |t(xτ |x)
pθ
τ |t̃(xτ |x̃)︸ ︷︷ ︸

Transition kernel term

·
pθproposal(x | x̃, t̃) · p

ψ
proposal(t | x)

pθproposal(x̃ | x, t) · p
ψ
proposal(t̃ | x̃)︸ ︷︷ ︸

Proposal term

 (69)

τ, x̂τ can be any point. We choose the value of τ such that it does not deviate significantly from
the original timestep t. In our experiments, we empirically set τ so that the standard deviation of
qτ |0(xτ | x0) differs from that of qmin(t,t̃)|0(xmin(t,t̃) | x0) by 0.1, based on the VESDE(Song et al.,
2021b) parameterization. We set x̂τ = 1

2 (µt(x, s
θ(x, t)) + µt̃(x̃, s

θ(x̃, t̃))). The detailed process is
in Algorithm 2.

Since the timestep is proposed for every update of Alg. 2 , we need to reassign the starting timestep
t for denoising. We first fix the total number of steps T , and perform T − t steps of denoising
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Table 8: FID and NFE on unconditional CelebA-HQ 256×256 generation with ScoreSDE (Song
et al., 2021b), DLG (Kim & Ye, 2023), AC (marginal), and AC (joint).

FID↓ NFE↓ FID↓ NFE↓ FID↓ NFE↓

ScoreSDE (KAR1) 121.27 40 122.74 98 125.15 198
+DLG 20.19 21.21 29.12 47.21 30.72 107.21
+AC (marginal) 103.81 19.78 75.51 41.83 87.40 84.13
+AC (joint) 15.13 15.94 22.55 44.06 15.69 87.26

ScoreSDE (KAR2) 83.21 40 57.28 98 29.74 198
+DLG 17.92 21.21 12.12 47.21 8.14 107.21
+AC (marginal) 45.74 19.55 19.48 42.97 9.45 94.34
+AC (joint) 8.45 20.05 9.55 40.05 6.60 98.27

from t down to the proposed timestep t̃. Then, we perform t steps of denoising from t̃ to 0. Our
methodology generalizes the approach of DLG (Kim & Ye, 2023). While DLG generates samples
from the joint space of time and data using Gibbs sampling, we introduce the Metropolis-Hastings
algorithm to correct samples toward the true data distribution by additionally training a time-dependent
discriminator. We adopt the time classifier from the official code of DLG and use the argmax of
the classifier output as the proposed timestep, following their original approach. Since using the
argmax results in a deterministic time proposal distribution, we set pψ(t | x) = 1 when computing
the acceptance probability.

For fair comparison, we reproduced the experimental setting of DLG. We first obtained the best
parameters for both the KAR1 and KAR2 samplers as reported in DLG, and then reproduced their
performance using these optimal settings. Subsequently, we increased the number of denoising steps
while keeping the remaining parameters unchanged.

C HYPERPARAMETER DETAIL

As described in the main text, our method treats the MH target diffusion timestep τ and the Langevin
step size (controlled by the signal-to-noise ratio, SNR) as the primary parameters. In addition, we
employ several auxiliary hyperparameters: the number of skipped steps nskip, the burn-in length
nburn-in, and the number of parallel chains nchain. Their roles are summarized as follows:

• nskip: Controls how many intermediate steps are skipped between proposals.

• nburn-in: Specifies the number of initial iterations discarded to reduce initialization bias.

• nchain: Denotes the length of MCMC chains. With one initial point, we can get nchain
samples.

Among the hyperparameters, we regard the choice of τ as the most critical. As τ decreases—i.e., as
the state approaches the data distribution—the marginal distribution becomes sharper. This sharpness
increases the computational burden of moving across the space via MCMC. While smaller τ brings
the chain closer to the true data distribution (see proof of Theorem 4.2), it also requires a larger
number of samples to sufficiently cover the support. Conversely, if τ is set too low, the effective
reduction in NFE diminishes and distributional alignment becomes less pronounced. Therefore,
selecting an appropriate τ is essential. Empirically, we found that setting τ between 1

2T and 3
4T

achieves the most effective trade-off.

The second key parameter is the SNR, which controls the step size η of the Langevin proposal:

√
η = SNR×

(
2 · |ϵ|
|s|

)
. (70)

A too-small SNR yields excessively small step sizes, limiting sample diversity, while a too-large SNR
hampers convergence of the MH correction. Based on prior works that adopted Langevin sampling in
diffusion models (e.g., Song & Ermon (2019); Song et al. (2021b)), we set the SNR in the range of
0.1–0.25.
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Experimental results on varying these two key parameters are reported in Table 9. We conducted
experiments with the total number of timesteps fixed at 18, while keeping nskip, nburn-in, and nchain
constant. As shown in the Table, when τ is set too small, the MCMC chain tends to remain in a limited
region of the space for a long time. Consequently, covering the entire distribution requires significantly
higher computational cost, which is reflected in the degraded FID and Recall metrics. Furthermore, as
the SNR increases, the acceptance probability gradually decreases. Across our overall experimental
setup, the SNR satisfies SNR ≤ 0.25, which allows us to maintain an acceptance probability of
approximately α ≳ 0.25 (see Table 9). Because α is sufficiently large, as argued in the main text,
substantial NFE reduction can be achieved even with a small chain length l. These experimental
results support the preceding analysis in Proposition 4.2.

Method τ SNR FID↓ NFE↓ Recall↑ C.I of α
EDM (Base) - - 2.01 35 0.627 -

13

0.1 2.89 25.13 0.550 0.9150± 0.0023
0.2 2.06 25.65 0.620 0.6248± 0.0033

+AC 0.23 1.97 26.19 0.628 0.4703± 0.0030
0.27 2.09 28.11 0.625 0.2493± 0.0019

8

0.1 8.77 15.21 0.200 0.8689± 0.0027
0.2 6.14 15.75 0.422 0.6560± 0.0039

+AC 0.23 6.73 16.70 0.441 0.4671± 0.0034
0.27 9.45 18.66 0.448 0.2733± 0.0022

3

0.1 62.67 5.29 0 0.8525± 0.0046
0.2 46.60 5.75 0 0.6590± 0.0054

+AC 0.23 43.96 6.26 0 0.4812± 0.0054
0.27 39.44 9.13 0 0.2703± 0.0022

Table 9: Results for different τ values and SNR settings, including FID, NFE, Recall, and acceptance
probabilities with 95% confidence intervals.

Method nskip FID↓ NFE↓ Recall↑
EDM - 2.01 35 0.627

0 1.97 26.19 0.628
1 1.98 28.25 0.631
2 1.94 30.28 0.634

+ AC 3 1.97 32.30 0.638
4 2.00 34.39 0.640
5 2.02 36.38 0.623

Table 10: FID and NFE for dif-
ferent skip steps.

Method nchain FID↓ NFE↓ Recall↑
EDM - 2.01 35 0.627

10 2.03 29.28 0.622
50 2.00 26.69 0.630

+ AC 100 2.07 26.38 0.624
300 1.97 26.19 0.629
500 2.02 26.12 0.625

Table 11: FID and NFE for differ-
ent chain steps.

Method nburn-in FID↓ NFE↓ Recall↑
EDM - 2.01 35 0.627

0 1.99 36.23 0.640
1 2.02 37.46 0.624
2 2.01 38.69 0.633

+ AC 5 1.99 42.37 0.632
10 1.97 48.54 0.629
20 1.97 60.81 0.632
50 1.98 97.58 0.629

Table 12: FID and NFE for dif-
ferent burn-in steps.

The following reports the results of varying each auxiliary parameter. Tables 10, 11, and 12 present the
outcomes for changing nskip, nchain, and nburn-in, respectively. Unless otherwise noted, all experiments
are conducted with T = 18, τ = 13.

Table 10 reports the effect of varying nskip while fixing SNR = 0.23, nchain = 300, and nburn-in = 10.
The parameter nskip helps reduce autocorrelation between samples; however, excessively large values
increase the NFE, limiting the achievable acceleration gain. Empirically, we set nskip = 0 ∼ 1 for
CIFAR-10 and ImageNet, and maximum 4 for CelebA-HQ 256× 256.

Table 11 shows the results obtained by varying nchain while fixing SNR = 0.23 and nburn-in = 10.
When SNR is too small, recall may vary with nchain, but under reasonable SNR values the recall is
largely insensitive to nchain. Nevertheless, setting nchain too small can hinder effective NFE reduction.

Table 12 investigates the role of the burn-in process by varying nburn-in while fixing SNR = 0.16 and
nchain = 1. We set nchain = 1 in order to isolate and examine the effect of correction on each sample.
We observe that after about 10 burn-in steps, the chain sufficiently converges, indicating that the
score-based proposal distribution indeed allows proper convergence. In practice, we set nburn-in ≤ 10.

D MCMC MIXING

Images are high-dimensional data, which makes direct statistical evaluation of Markov chain mixing
challenging. To address this, we assess mixing indirectly by analyzing the class labels of generated
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images. We trained a ResNet based classifier that achieves 95% accuracy on the CIFAR-10 test set,
and used it to assign class labels to each generated image, thus forming a class sequence along the
MCMC chain. We constructed Markov chains of length 300.

We measured Integrated Autocorrelation Time(IACT) (Birdsall et al., 1994) 30 times with a maximum
lag of 100. With Table 14 we observed trends consistent with Recall metrics. Lower IACT values
indicate better mixing, suggesting that our method yields well-mixed samples. However, we note that
IACT is originally defined for continuous variables, and applying it to categorical class labels can be
limiting.

Lag Cramér’s V ± std

1 0.360 ± 0.035
2 0.259 ± 0.037
3 0.214 ± 0.044
4 0.182 ± 0.042
5 0.172 ± 0.036

Table 13: Cramér’s
V across lags.

To complement IACT, we also computed Cramér’s V (Akoglu, 2018) 30 times
to assess class autocorrelation in the discrete label space in Table 13. Under
the best-performing setting (τ = 5,SNR = 0.23), the value at lag 1 shows
a relatively strong correlation (Akoglu, 2018), which is expected since our
sampler proposes candidates based on local gradients. Nevertheless, both
improvements in the Recall metric and our toy experiment 5.3 demonstrate
that, despite such correlations, the chain is able to generate sufficiently diverse
samples.

Method τ SNR FID ↓ Recall ↑ IACT of class sequence ↓
EDM (Base) - - 2.01 0.627 -

13

0.1 2.89 0.550 8.71± 10.02
0.2 2.06 0.620 2.45± 3.23

+AC 0.23 1.97 0.628 1.53± 1.70
0.27 2.09 0.625 1.89± 1.35

8

0.1 8.77 0.200 29.47± 26.86
0.2 6.14 0.422 21.65± 24.84

+AC 0.23 6.73 0.441 20.92± 24.50
0.27 9.45 0.448 24.39± 25.55

3

0.1 62.67 0 38.45± 27.39
0.2 46.60 0 34.93± 27.83

+AC 0.23 43.96 0 22.51± 23.15
0.27 39.44 0 24.45± 32.90

Table 14: IACT of class sequence for different τ values and
SNR settings.

E METROPOLIS-HASTINGS ALGORITHM AND ALGORITHM 1

Algorithm 1 employs a propose-until-accept update: at each step, proposals are repeatedly drawn and
subjected to the MH accept–reject test until one is accepted, and the accepted proposal is then emitted
as the next sample. We adopted this design for empirical reasons, namely to mitigate stagnation and
preserve sample diversity. In canonical Metropolis–Hastings, however, a rejection corresponds to
a self-transition, which is essential for preserving detailed balance. Eliminating self-transitions by
proposing until acceptance alters the transition kernel and can introduce stationary bias.

This variant can be interpreted as a Jump Markov chain (Rosenthal et al., 2021). In such chains,
the target distribution is implicitly modified because the rejection mechanism no longer permits
self-transitions. Following Rosenthal et al. (2021), the stationary distribution of the jump chain,
denoted π̂, can be expressed in terms of the original stationary distribution π as

π̂(x) = cα(x)π(x), (71)

where α(x) := 1 − Ptransition(x|x) is the escape probability at state x, and c = Ey∼π[α(y)]
−1 is a

normalizing constant. Here Ptransition(·|·) denotes the transition probability of the original MH chain.
The KL divergence between π and π̂ is then

DKL[π||π̂] = Ex∼π

[
log

π(x)

π̂(x)

]
= Ex∼π

[
log

1

cα(x)

]
= Ex∼π

[
log

Ey∼π[α(y)]

α(x)

]
. (72)

This formulation shows that the jump chain introduces a KL divergence bias. When α(x) is constant
over the support of π, no bias arises; otherwise, the deviation can be non-negligible. Despite the
strong empirical performance of our method, a distributional gap remains. We leave a rigorous
theoretical analysis of this gap to future work.
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F ADDITIONAL EXPERIMENT

F.1 EXTEND AC-SAMPLER TO CORRECT EACH SAMPLES : MULTI STEP CORRECTION &
REFINED PROPOSAL WITH A DISCRIMINATOR

After the burn-in process of the Metropolis-Hastings algorithm, the samples generated from our
method can be regarded as samples drawn from the true distribution. This demonstrates that the
Metropolis-Hastings algorithm can be used not only to accelerate sampling, but also to correct
intermediate samples to better match the target distribution.

Focusing solely on the correction perspective, our proposed framework naturally incor-
porates the following methodological components: multi-step correction and refined pro-
posal with a discriminator. As discussed in the main text, we initially present our al-
gorithm using a single-step formulation for simplicity. However, applying our method
in a multi-step setting is straightforward and does not pose any conceptual or techni-
cal difficulties. Therefore, we also conducted experiments under the multi-step setting.

Table 15: Comparison of FID and sampling settings under differ-
ent configurations

Sampling FID↓ NFE↓ T τ SNR nburn-in nchain

EDM 1.97 35 18 – – – –

2.18 51 18 1, 3, 5, 7 0.16 3 1
EDM + PC 2.13 51 18 7, 9, 11, 13 0.16 3 1

2.00 51 18 11, 13, 15, 17 0.16 3 1

1.94 54.66 18 1, 3, 5, 7 0.16 3 1
EDM + AC 1.96 55.33 18 7, 9, 11, 13 0.16 3 1

1.93 54.91 18 11, 13, 15, 17 0.16 3 1

1.98 54.65 18 1, 3, 5, 7 0.16 3 1
EDM + AC + DGp 1.87 54.56 18 7, 9, 11, 13 0.16 3 1

1.92 54.17 18 11, 13, 15, 17 0.16 3 1

Furthermore, DG (Kim et al.,
2023) proposed correcting the
score network using the gradient
information from a discrimina-
tor. Since we adopt exactly the
same training scheme for the dis-
criminator as in DG, it is reason-
able to apply a refined proposal
based on the corrected score net-
work. This implies that the dis-
criminator trained at timestep τ
not only provides a likelihood ra-
tio estimate, but also enables re-
fining the proposal distribution
pθproposal,τ . It is possible to use
DGp in accelerating, but DGp needs gradient calculation and this made sampling speed slow.

We present the results of both extensions in Table 15. We denote this discriminator-guided proposal
scheme as DGp. The result demonstrates the effect of MALA correction across various choices of
the correction timestep τ . Although the correction timestep increases while maintaining the same
SNR, AC-Sampler either improves or maintains the baseline FID score. Furthermore, we observe that
incorporating the DG scheme into AC-Sampler leads to a meaningful reduction in FID with shorter
length of chain. In contrast, PC-Sampler (Song et al., 2021b) often fails to correct samples at large
correction timesteps.

In the table, setting nchain = 1 indicates that Metropolis-Hastings correction is applied for each
individual sample. While this setting does not reduce the number of function evaluations (NFE), it
effectively corrects each intermediate sample.

F.2 DISCUSSION ABOUT TRADE-OFF IN CLASS-CONDITIONAL GENERATION

Table 16: FID and NFE results
on ImageNet 64×64 across
different (SNR, τ) settings.

Method SNR τ FID↓ NFE↓

EDM – – 2.30 61

+AC
0.12 8 2.28±0.05 52.91
0.12 9 2.29±0.03 51.30

When performing class-conditional generation, the number of inde-
pendent class samples plays an important role. For FID evaluation,
we use 50K images. With nchain = 10, the baseline involves 50,000
independent class samplings, whereas only 5,000 samplings occur
with our method, which may lead to class imbalance. If this effect
did not exist, the NFE reduction could be even more effective. To
evaluate our method fairly under this setting, we generate 250K
samples with nchain = 5 (this setting makes total of 50K independent
class samplings) and compute the FID five times using randomly
selected subsets of 50K samples. We report the mean and stan-
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dard deviation of the resulting FID. Table 16 presents this analysis, showing that our method can
significantly reduce NFE while maintaining a comparable FID.

F.3 CIFAR-10 WITH SCORESDE

We also conduct experiments with Score-SDE (Song et al., 2021b) and DLG (Kim & Ye, 2023).
Table 17 and Figure 7 reports our reproductions of the base models (Score-SDE and DLG) alongside
our method. Because the publicly released Score-SDE checkpoint is configured for sampling
with roughly 1,000 NFE, achieving strong performance at substantially lower NFE is inherently
challenging. Following the evaluation protocol described in the DLG paper, our reproduced results
improved over the base checkpoint but did not exactly match the values reported in the original work.
Under the same setting, applying our method yielded consistent distribution correction and quality
improvements, even in the low-NFE regime.

FID↓ NFE↓ FID↓ NFE↓ FID↓ NFE↓
ScoreSDE (Base) 27.35 16 26.58 26 26.72 36

+DLG 25.95 11.23 24.86 21.23 24.25 52.23
+AC (Ours) 25.18 10.95 23.83 19.13 23.14 29.07

Table 17: Experiment results on CIFAR-10 with ScoreSDE

Figure 7: ScoreSDE base ex-
periment on CIFAR-10

G EXPERIMENT SETTING

G.1 EXPERIMENTAL SETUP

Setups. We evaluate on CIFAR-10, CelebA-HQ 256×256, ImageNet 64×64, and Ima-
geNet 256×256. On CIFAR-10, we assess EDM (Karras et al., 2022) and DDO (Zheng et al.,
2025) using the Heun sampler as in EDM, ScoreSDE (Song et al., 2021b) adopting samplers KAR1
(deterministic) and KAR2 (stochastic) (Kim & Ye, 2023). For ScoreSDE, refer Appendix F.3. On
CelebA-HQ, we use the ScoreSDE (Song et al., 2021b) checkpoint within the DLG codebase (Kim &
Ye, 2023) with KAR1, KAR2 sampler. On ImageNet 64×64, we use the EDM checkpoint with the
SDE sampler from (Karras et al., 2022); on ImageNet 256×256, we use the DiT checkpoint (Peebles
& Xie, 2023) with a DDPM sampler (Ho et al., 2020).

Codebases and checkpoints. Our experiments use the official repositories of EDM3, DLG4, DG5,6,
DDO7, ScoreSDE8, and DiT9.

Discriminator training. We train a time-dependent discriminator per network following DG (Kim
et al., 2023), using the pre-trained ADM classifier (Dhariwal & Nichol, 2021) as the feature extractor.
Compared to training a diffusion model, discriminator training is substantially cheaper.

Metrics. We report FID and the mean number of function evaluations (NFE) of the score network
(as in DLG (Kim & Ye, 2023)), since NFE varies across samples in our method. FID is computed on
50K generated samples against the 50K test images; for CelebA-HQ 256×256, we report 10K FID.
Also we report Precision / Recall metric to assess both the fidelity and diversity of generated images.
The computation of FID follows the official implementation provided by DG (Kim et al., 2023). We
measure the Precision and Recall using the ADM codebase (Dhariwal & Nichol, 2021).

3https://github.com/NVlabs/edm
4https://github.com/1202kbs/DMCMC
5https://github.com/aailabkaist/DG
6https://github.com/alsdudrla10/DG_imagenet
7https://github.com/NVlabs/DDO
8https://github.com/yang-song/score_sde_pytorch
9https://github.com/facebookresearch/DiT
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All experiments were conducted on NVIDIA RTX 3090, 4090 GPU and A100 GPU using Python
3.8, PyTorch 1.12, and CUDA 11.4.

Table 18: Sampling configuration and performance metrics (FID / NFE) with various diffusion and
sampler combinations.

Dataset Task Base Model Base Sampler T SNR nchain nburn-in nskip τ FID NFE

CIFAR-10 Uncond. EDM EDM (Heun) 18 0.23 50 10 0 11 2.10 22.78

18 0.23 300 10 0 13 1.97 26.19

18 0.23 500 10 0 13 2.02 26.12

18 0.23 3,4,5 5 4 13,14,15 1.93 44.40

14 0.2 50 0 0 6 2.38 15.82

10 0.2 11 0 0 5 3.24 10.57

CIFAR-10 Uncond. DDO EDM (Heun) 16 0.175 2 0 2 13 1.41 29.41

CIFAR-10 Uncond. EDM DPM-Solver-v3 6 0.16 10 0 0 5 7.12 5.62

8 0.16 10 0 0 7 3.09 7.54

8 0.1 7 0 0 4 9.88 4.78

10 0.15 3 0 0 9 2.55 9.93

CIFAR-10 Uncond. ScoreSDE KAR1 18 0.23 250 10 1 13 23.14 29.08

18 0.23 250 10 1 11 23.80 25.18

18 0.23 250 10 0 14 23.83 19.13

ImageNet 64×64 Cond. EDM EDM (SDE) 32 0.16 2 1 0 26 2.25 58.75

64 0.18 2 5 1 50 1.77 121.98

256 0.1 2 5 1 225 1.42 483.86

CelebA-HQ 256×256 Uncond. ScoreSDE KAR1 20 0.16 25 10 0 13 15.13 15.94

49 0.16 100 10 4 30 22.55 44.07

99 0.16 25 10 3 60 15.69 87.26

CelebA-HQ 256×256 Uncond. ScoreSDE KAR2 20 0.16 25 10 1 12 8.45 20.05

49 0.16 50 10 4 33 9.55 40.05

99 0.18 25 10 3 55 6.60 98.27

ImageNet 256×256 Cond. DiT DDPM 250 0.12 2 190 0 10 2.31 234.38

G.2 DISCRIMINATOR DETAILS

To implement the time-dependent discriminator, we directly used the official DG codebase and
followed their approach. On CIFAR-10, we used the discriminator checkpoint provided by DG
only when the base diffusion model was EDM and the NFE of the EDM (Heun) sampler was
set to 35. For all other cases, we trained the discriminator ourselves using the DG codebase.

Table 19: FID-NFE with dif-
ferent training epochs of dis-
criminator.

Method Epoch FID↓ NFE↓
EDM - 3.23 17.00

AC w.o. MH - 3.40 15.26

+AC 1 2.56 15.80
2 2.59 15.80
5 2.64 15.81

10 2.39 15.81
20 2.43 15.82
60 2.38 15.81

Our discriminators were trained on a single NVIDIA RTX 3090 GPU.
For the feature extractor, we used a commonly adopted (Na et al.,
2024; Kim et al., 2023) pre-trained classifier from ADM10 (Dhariwal
& Nichol, 2021). The discriminator takes the features extracted by
this network as input, and during training, we only updated the
parameters of the discriminator network. Detailed training settings
are provided in Table 20.

Indeed, while our method requires training an additional discrimina-
tor, we would like to emphasize that the training cost is significantly
lower compared to that of the score model. As summarized in the
table 21, our discriminator is much smaller and faster to train than
the pre-trained score network. Compared to fine-tuning a pre-trained

10https://github.com/openai/guided-diffusion
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Table 20: Configurations of the discriminator.

CIFAR-10 ImageNet 64×64 CelebA-HQ 256×256 ImageNet 256×256

Diffusion Backbone
Model EDM DDO ScoreSDE EDM ScoreSDE DiT-XL/2
Conditional model ✗ ✗ ✗ ✔ ✗ ✔

Feature Extractor
Model ADM ADM ADM ADM ADM ADM
Architecture U-Net encoder U-Net encoder U-Net encoder U-Net encoder U-Net encoder U-Net encoder
Pre-trained ✔ ✔ ✔ ✔ ✔ ✔
Depth 4 4 4 4 4 4
Width 128 128 128 128 128 128
Attention Resolutions 32,16,8 32,16,8 32,16,8 32,16,8 32,16,8 32,16,8
Input shape (data) (B,32,32,3) (B,32,32,3) (B,32,32,3) (B,64,64,3) (B,256,256,3) (B,32,32,3)
Output shape (feature) (B,8,8,512) (B,8,8,512) (B,8,8,512) (B,8,8,512) (B,8,8,512) (B,8,8,384)

Discriminator
Model ADM ADM ADM ADM ADM ADM
Architecture U-Net encoder U-Net encoder U-Net encoder U-Net encoder U-Net encoder U-Net encoder
Depth 2 2 2 2 2 2
Width 128 128 128 128 128 128
Attention Resolutions 32,16,8 32,16,8 32,16,8 32,16,8 32,16,8 32,16,8
Input shape (feature) (B,8,8,512) (B,8,8,512) (B,8,8,512) (B,8,8,512) (B,8,8,512) (B,8,8,384)
Output shape (logit) (B,1) (B,1) (B,1) (B,1) (B,1) (B,1)

Discriminator Training
Time scheduling VP VP VP Cosine VP VP VP
Time sampling Importance Importance Importance Importance Importance Importance
Time weighting g2

σ2
g2

σ2
g2

σ2
g2

σ2
g2

σ2
g2

σ2

Batch size 128 128 128 128 20 512
# data samples 50,000 50,000 50,000 50,000 30,000 50,000
# generated samples 50,000 50,000 50,000 50,000 30,000 50,000
# Epoch 60 70 60 20 50 50

Table 21: Training cost comparison of the score model and discriminator. CIFAR-10

Training Parameter Size Training GPU Training Time

Score (EDM) 55.7M 8×V100 GPUs ∼2 days
Discriminator 2.9M 1×RTX 3090 <2 hours

diffusion model, our approach introduces substantially lower com-
putational overhead and does not modify the pre-trained model in any way. Importantly, we enable
both acceleration and correction purely through discriminator training only. Table.22 shows the
robustness of our time-dependent discriminator. To evaluate the performance of our discriminator at
different timesteps, we conducted experiments with nchain = 1 ensuring that each sample is corrected
independently. (No acceleration was applied, as our goal was to isolate the effect of the discriminator
across timesteps) Using a fixed SNR, we applied the AC-Sampler at various τ values with the same
random seed. The results consistently showed improvements in FID across timesteps, suggesting that
the discriminator effectively approximates the density ratio qτ

pθ
τ

at multiple temporal locations.
Table 22: FID and NFE
comparison of AC with
different chain lengths.

Method τ FID↓ NFE↓
EDM - 2.01 35

+AC 3 2.02 48.51
5 1.97 48.53
7 1.99 48.54

10 2.00 48.72
12 1.92 49.89
15 2.00 49.03

To evaluate the robustness of our method under an imperfect discriminator,
we conducted experiments using partially trained discriminators. We
observed that as the discriminator training progressed, the quality of
the generated samples consistently improved. Moreover, our method
significantly outperformed where all proposals are accepted without a
discriminator. These results indicate that even an imperfectly trained
discriminator can still yield meaningful performance gains. This supports
the theoretical claim in Appendix A.4, where we show that continued
discriminator training leads to improvements in KL divergence.

H THE USE OF LARGE LANGEUAGE MODELS (LLMS)

We acknowledge the use of a Large Language Model (LLM) during the
preparation of this manuscript. The LLM was employed solely as a
general-purpose writing assistant to improve readability, grammar, and clarity of exposition. It was
not involved in the ideation of research questions, the design of experiments, the development of
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methods, or the interpretation of results. The scientific contributions of this work, including problem
formulation, methodology, theoretical analysis, and empirical evaluation, were conceived and carried
out entirely by the authors. The role of the LLM was limited to helping refine the presentation of the
text, and it did not contribute substantively to the research process itself.

I GENERATED IMAGES

We provide uncurated sample images at Figure 8, 9, 10, 11, 12 generated by our sampler. These are
non-cherry-picked samples generated by applying our algorithm to the baseline models and samplers,
used in our experiments.

Figure 8: The uncurated generated images of AC-sampler on unconditional CIFAR-10 with EDM
(EDM(Heun) sampler, NFE=26.19, FID=1.97).
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Figure 9: The uncurated generated images of AC-sampler on unconditional CIFAR-10 with ScoreSDE
(KAR1 sampler, NFE=29.07, FID=23.14).
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Figure 10: The uncurated generated images of AC-sampler on conditional ImageNet 64×64 with
EDM (EDM(SDE) sampler, NFE=59.30, FID=2.27).
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Figure 11: The uncurated generated images of AC-sampler on unconditional CelebA-HQ 256×256
with ScoreSDE (KAR1 sampler, NFE=15.94, FID=15.13).
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Figure 12: The uncurated generated images of AC-sampler on unconditional CelebA-HQ 256×256
with ScoreSDE(KAR2 sampler, NFE=20.05, FID=8.45).
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