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Abstract

Podcasts are relatively new media in the form001
of spoken documents or conversations with a002
wide range of topics, genres, and styles. With003
a massive increase in the number of podcasts004
and their listener base, it is beneficial to un-005
derstand podcasts better, to derive insights into006
questions such as what makes certain podcasts007
more popular than others or which tags help in008
characterizing a podcast. In this work, we pro-009
vide a comprehensive analysis of hand-crafted010
features from two modalities, i.e., text and011
audio. We explore multiple feature combina-012
tions considering podcast popularity prediction013
and multi-label tag assignment as proxy down-014
stream tasks. In our experiments, we use doc-015
ument embeddings, affective features, named016
entities, tags, and topics as the textual features,017
while multi-band modulation and traditional018
speech processing features constitute the audio019
features. We find the audio feature prosody and020
textual affective features, sentiment and emo-021
tions are significant for both the downstream022
tasks. We observe that the combination of tex-023
tual and audio features helps in improving per-024
formance in the popularity prediction task.025

1 Introduction026

Podcasts have emerged as an exciting medium027

for entertainment, advertising, news, and informa-028

tion dissemination. According to Nielsen (Nielsen,029

September 2021), the total number of podcast ti-030

tles is reaching 2 million with a steady increase in031

listeners across all demographics. The Interactive032

Advertising Bureau (IAB) believes that the US-033

Podcast revenue will see a big jump from $842 mil-034

lion in 2020 to $2 billion by 2023. Content creator035

apps like Anchor (Anchor, 2022), and Riverside036

(Riverside.fm, 2022) provide an easy framework037

to record, edit, and publish a podcast on the media038

platforms. With a steady increase in the listener039

base and podcast content, several open problems040

in handling and accessing this information have041

emerged. Jones et al. (2021) highlights some of the 042

unique challenges and future directions in the do- 043

main of podcast information access. They point out 044

that the existing technologies addressing tasks such 045

as Search, Recommendation, Summarization, and 046

User experience are inadequate to handle the multi- 047

genre, multi-style and multi-format composition of 048

podcasts. As this opens up an exciting landscape 049

for future research, we believe that a comprehen- 050

sive feature analysis of podcasts can serve as an 051

important groundwork in tackling some of these 052

problems. These features need to address what 053

podcasts contain and how they are delivered. 054

Podcasts represent inherently heterogeneous 055

data consisting of music and speech in different 056

spoken and written styles and formats. With this 057

work, we investigate the efficacy of individual tra- 058

ditional features and their combinations in under- 059

standing whats and hows in the context of podcast 060

data. Textual and audio features such as tags, senti- 061

ment, emotions, and modulation-based features are 062

traditionally considered as a basis of downstream 063

applications. We formulate an application-oriented 064

framework to evaluate and understand the interplay 065

among these features. We consider two separate 066

applications, i.e., Podcast Popularity Prediction, 067

and Podcast Tag Assignment, each targeting a spe- 068

cific set of features and modality. For example, 069

we hypothesize that textual features may be more 070

informative in the tag assignment task, whereas 071

audio features may be more relevant in the popular- 072

ity prediction task, as audio captures the style and 073

listening experience important for popularity and 074

tags are more dependent on the content. We also 075

hypothesize that combining features from different 076

modalities can be more informative in characteriz- 077

ing a podcast. 078

To summarize, in this work, we evaluate various 079

hand-crafted features, from both podcast audio and 080

its textual transcript, that are necessary to under- 081

stand podcasts. We briefly describe each of these 082
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features and how they contribute to representing083

podcasts (Section 2). We consider the aforemen-084

tioned proxy downstream tasks to study and eval-085

uate these features. We compile and curate the086

dataset introduced in (Yang et al., 2019) (Section087

3). We experiment with multiple combinations of088

text and audio features to evaluate their effect and089

usefulness in the context of the tasks mentioned090

above (Section 4). We further provide an in-depth091

analysis on these features and their efficacy in the092

context of existing experiment setup (Section 5).093

Our contribution in this work is a detailed feature094

analysis useful for future research addressing pod-095

cast data.096

2 Features097

As a podcast is essentially an audio experience with098

focused textual content, we consider both text and099

audio modalities in this study. Specifically, we100

focus on widely used hand-crafted features for our101

experiments. Next, we present a brief overview of102

features and their characteristics in the context of a103

podcast.104

2.1 Audio Features105

Audio features we consider need to represent how106

a podcast is delivered. For audio modeling, we107

use short-time modulation features derived through108

multi-band filtering and energy operators and the109

other traditional speech processing features such110

as Mel-frequency Cepstrum Coefficients (MFCC),111

prosody features, and emotions to extract salient112

properties.113

Modulation: Short-time features like energy and114

absolute amplitude may assign less importance115

score to content-rich podcasts spoken with low116

amplitude. For example, the spectrogram and117

magnitude-based features typically used for pod-118

cast analysis may ignore the low energy and high-119

frequency sound (Dimitriadis et al., 2005). We120

believe such sound may contribute to predicting121

the popularity of a podcast. Though the magnitude122

information correlates well with the understanding123

of speech, the spectral content can also convey com-124

parable speech intelligibility and also provides in-125

formation about the speaker characteristics that we126

believe can distinguish popular podcasts (Boashash,127

1992). Here, we introduce the features that equally128

consider the energy, amplitude, and spectral con-129

tent. For any multi-component audio signal like130

the podcast, we need to break it down into its Am- 131

plitude, and Frequency modulation (AM-FM) com- 132

ponents (Boashash, 1992), since there could be 133

multiple frequencies varying as a function of time. 134

(Zlatintsi et al., 2012) use these AM-FM compo- 135

nents to assign a measure of interest (importance) 136

to audio frames for audio event detection and sum- 137

marization task. For this work, we believe that 138

these AM-FM components can prove beneficial in 139

predicting the popularity of a podcast since they 140

can capture the dynamic nature and preserve the 141

subtle harmonic structures present in audio (Dimi- 142

triadis et al., 2005). 143

Here, we compute the AM-FM features by multi- 144

band filtering the audio signal using 40 Gabor fil- 145

ters (Evangelopoulos and Maragos, 2006). A non- 146

linear energy tracking operator, the Teager Energy 147

Operator (TEO), estimates the squared product of 148

the instant amplitude and frequency for every multi- 149

band filtered signal. To extract these individual 150

features, we rely on the Energy Separation Algo- 151

rithm (ESA) (Evangelopoulos and Maragos, 2006; 152

Maragos et al., 1993). The ESA tracks a filter 153

that records the Maximum average Teager Energy 154

(MTE) and also computes their corresponding val- 155

ues of Mean Instantaneous Amplitude (MIA) and 156

Mean Instantaneous Frequency (MIF). We extract 157

1198-dimensional MTE, MIA, and MIF representa- 158

tions using 12s snippets of the leading 10 minutes 159

of every podcast (Yang et al., 2019). To reduce 160

the computational requirements, we resample the 161

podcast at 16kHz and use a window size of 25ms 162

and a window shift of 10ms. 163

MFCC: MFCC is based on the human auditory 164

system and employs a nonlinear scale to corre- 165

late with the human perception of the frequency 166

contents of a sound. We consider 39-dimensional 167

delta and double-delta MFCC representation us- 168

ing the similar parameters adopted for extracting 169

modulation-based features. 170

Prosody: Prosody (non-verbal) features effec- 171

tively capture the speaker characteristics, their 172

speaking style, emotional state, and approximately 173

identify the listener’s interest towards a section 174

of an audio (Adell et al., 2005). We use PRAAT 175

to extract 15-dimensional prosody features on the 176

entire podcast (Boersma and Van Heuven, 2001). 177

The prosody features include F0-median, F0- 178

mean, F0-standard deviation, F0-minimum, F0- 179

maximum, number of pulses, number of periods, 180

2



their mean and standard deviation, number of un-181

voiced frames, number and degree of voice breaks,182

mean autocorrelation, mean noise-to-harmonic and183

mean harmonic-to-noise ratio.184

Affective Audio Features: The emotional state185

in speech and audio is one of the most impor-186

tant paralinguistic messages captured during hu-187

man interactions. We use a Wav2Vec2 fine-188

tuned model on the IEMOCAP database to ex-189

tract 4-dimensional audio emotions features (neu-190

tral, happy, sad, and angry) of an entire podcast191

(Baevski et al., 2020; Yang et al., 2021).192

2.2 Textual Features193

According to a Nielsen report (Insights, 2020), pod-194

cast engagement has steadily seen growth in the195

number of heavy as well as light listeners owing196

to quality content being offered to the listeners.197

As an exercise to understand the characteristics of198

such content, we evaluate various textual features.199

We consider a set of textual features that can help200

understand what a podcast talks about.201

Tags: It is observed that every podcast is assigned202

a set of tags representing its categorization such203

as Arts, Society, Sports, Business, etc. This as-204

signment is often user-defined and captures the205

scope of the podcast. These tags are a mix of fine-206

grained and coarse-grained categories. We use an207

average 100-dimensional Glove embedding vector208

(Pennington et al., 2014) representing the assigned209

set of tags to the podcast.210

Topics: Even though there exist a set of tags de-211

scribing a podcast, topics give a detailed list of212

concepts covered. The topics along with the pre-213

assigned tags give a much wider representation of214

the podcast content. We use the unsupervised topic215

detection algorithm Top2Vec (Angelov, 2020) to216

generate a list of topics for a given podcast. The217

topic words are represented using an average 100-218

dimensional Glove embedding vector for a given219

podcast.220

Affective Textual Features: Emotions play an221

important role in human cognition, including per-222

ception, attention, learning, and reasoning (Tyng223

et al., 2017). Affective content is more engaging224

to users than neutral content (Xu et al., 2014). Ac-225

cordingly, we consider two perspectives of affective226

features given below.227

1. Sentiment: Sentiment of a podcast refers to 228

the inclination of the podcast content towards 229

positive or negative polarity. We use the NLTK 230

sentiment analyzer to extract the sentiment of 231

the content. We create a three-dimensional sen- 232

timent representation vector for each podcast 233

with scores corresponding to negative, neutral, 234

and positive sentiment that sum up to 1. 235

2. Text Emotions: We consider six basic human 236

emotions, i.e., anger, sad, happy, fear, disgust, 237

and neutral, assigned to sentences in podcast 238

transcripts. We use a zero-shot sentence clas- 239

sification setup with task-aware sentence repre- 240

sentations (Halder et al., 2020)1 to predict the 241

emotion and the corresponding confidence for 242

a sentence, which we further utilize to get an 243

emotion representation for a given podcast. 244

For each sentence of the podcast, the 245

model predicts one of the above six emo- 246

tions denoted by e1, e2, e3, e4, e5, e6 and gives 247

their respective confidence scores denoted by 248

s1, s2, s3, s4, s5, s6. We further denote the prob- 249

ability of an emotion ei by P (ei) = ci/n, where 250

ci is the corresponding count of emotion ei and 251

n denotes the count of all sentences with de- 252

tected emotions in the podcast. The confidence 253

score of a model m for a given emotion ei is de- 254

noted by si where P (m|ei) = si. For the final 255

representation of our emotion probability vec- 256

tor, we calculate posterior probability of each 257

emotion ei for a given model m as 258

P (ei|m) =
P (ei).P (m|ei)∑6
i=1 P (ei).P (m|ei)

259

Named Entities: Named entities like ‘person’ 260

and ‘organization’ can play a significant role in at- 261

tracting audience attention. These are generally not 262

covered in tags or topics features explained above. 263

We consider named entities in the podcast title as 264

one of the features. We predict named entities and 265

the corresponding confidence score using the TARS 266

(Halder et al., 2020) zero-shot sentence classifica- 267

tion setup. We predict named entities with four 268

dimensions: ‘Person’, ‘Organization’, ‘Location’, 269

and ‘Others’ represented by n1, n2, n3, and n4 re- 270

spectively. To obtain a four-dimensional named 271

1https://github.com/flairNLP/flair/
blob/master/resources/docs/TUTORIAL_10_
TRAINING_ZERO_SHOT_MODEL.md
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entities representation for a podcast, we use a sim-272

ilar formulation used in the text emotion feature273

representation.274

Document Embeddings: Pre-trained language275

models like BERT (Devlin et al., 2019) and Distil-276

BERT (Sanh et al., 2019) are often used to extract277

content representations. Specifically, we use con-278

textual embeddings to get vector representations for279

the text content. Considering the longer length of280

textual transcripts, we use Longformer embeddings281

(Beltagy et al., 2020) to extract podcast content282

representations.283

3 Dataset284

Yang et al. (2019) introduced a dataset of 6,511285

English language podcasts for the podcast popu-286

larity prediction task from various categories like287

Arts, Society, Sports, Business, etc. They scraped288

the publicly available iTunes podcast directory to289

get 46,358 episodes from 18,433 channels active290

from July 2016 to July 2017. They considered the291

ranking of channels on the iTunes chart as the ba-292

sis of channel (and episodes) popularity. Top-200293

podcast channels were considered popular, and all294

the episodes from the popular channels were la-295

beled as popular. The remaining episodes were296

labeled as unpopular. At most, one episode pub-297

lished in the most recent two weeks from a channel298

was considered in the dataset2. Joshi et al. (2020)299

use textual transcripts from this dataset to predict300

podcast popularity.301

For our experiments, we enhance this data fur-302

ther first by scraping the audio files of the podcasts303

using the links provided along with the dataset. We304

downloaded 3, 526 audio files out of the total 6, 511305

podcast episodes, as the remaining podcast links306

were broken or information was missing. In our ex-307

periments, we use the text transcripts as provided in308

the dataset. Since the transcript had no punctuation,309

we predict the punctuation in the transcripts using310

a bidirectional RNN and attention-based punctua-311

tion restoration technique (Tilk and Alumäe, 2016).312

Table 1 shows the distribution of the popular and313

unpopular episodes in the dataset. The percentage314

of popular and unpopular episodes are roughly the315

same in both modalities, though we have fewer316

audio files as compared to the text transcripts.317

For the analysis of text and audio features on318

multi-label tag assignment, we extract tags from319

2https://github.com/ylongqi/
podcast-data-modeling

Text Audio
Popular 837 (12.86%) 454 (12.87%)

Unpopular 5674 (87.14%) 3072 (87.13%)
Total 6511 3526

Table 1: Distribution of the popular and unpopular
podcasts in the dataset.

the RSS feed of the podcasts. Out of 3,526 podcasts 320

with both the text and audio data, the RSS feed 321

(and tags) is available for 3,306 podcasts. Table 322

2 shows the distribution of tags in 3,306 podcasts. 323

Originally, a podcast can be assigned one or more 324

tags from 105 fine-grained tags. Since we have a 325

small and highly imbalanced dataset, we manually 326

merge these 105 fine-grained tags into 19 coarse- 327

grained tags as described by Apple podcasts3. This 328

allows us to map fine-grained tags such as {‘Mu- 329

sic’, ‘Music Commentary’, ‘Music History’, and 330

‘Music Interviews’} under one coarse-grained tag 331

{‘Music’}. Table 3 shows the dataset distribution 332

after the dataset was split into 80:20 for train and 333

test set. 334

Tag #Podcasts
#Popular
Podcasts

%Sentiment
Difference

True Crime 18 13 3.14
Fiction 28 6 4.74

Government 41 10 5.90
History 71 9 4.12

Kids & Family 100 23 9.37
Science 126 25 6.21
Music 147 28 9.97

Technology 206 31 9.17
TV & Film 283 28 9.80

Religion & Spirituality 287 38 8.45
Comedy 313 50 8.39

Arts 359 38 9.19
Education 359 65 8.48

Sports 361 20 8.72
News 370 55 6.24

Health & Fitness 371 59 8.63
Leisure 376 38 9.05

Business 486 60 9.39
Society & Culture 514 51 8.12

Table 2: Distribution of tags and their popularity in
the dataset. Here, we consider 3,306 podcasts with
available data from both text and audio modalities. In
%Sentiment Difference column, we show the difference
in average %positive and %negative sentiment for each
tag.

3https://podcasts.apple.com/us/genre/
podcasts/id26
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Split #Podcasts #Tags #Tags per Podcast
Train 2671 19 1.46
Test 635 19 1.43

Table 3: Dataset distribution for the task of multi-label
tag prediction.

4 Experimental Setup335

The podcast data is observed to be multi-modal and336

heterogeneous, motivating us to experiment with337

combinations of diverse feature sets. Our experi-338

ments consist of studies with individual features339

as well as their combinations. We conduct our ex-340

periments using a 20 core CPU with 64GB RAM.341

To analyze and evaluate the efficacy of various fea-342

tures mentioned in Section 2 to characterize and343

understand podcast data, we use two formulations,344

i.e. podcast popularity prediction and podcast tag345

assignment.346

4.1 Podcast Popularity Prediction347

In this task, we seek to investigate the factors influ-348

encing the popularity of a podcast. We posit that349

multi-modal features capture important informa-350

tion to predict podcast popularity. We experiment351

with hand-crafted multi-modal features and ana-352

lyze their efficiency using a fine-tuned XGBoost353

and bagging classifier-based architecture. We per-354

form the grid search on hyperparameter space re-355

sulting in the best found combination for XGBoost356

as: gamma = 0.2, maximum depth = 14, estima-357

tors = 120, reg_alpha = 0.8, and reg_lambda = 1.2.358

Figure 1 shows our binary podcast popularity clas-359

sification model. We concatenate the features and360

use a 5-fold cross-validation as an initial step. We361

reduce the feature dimension using PCA with 256362

components in each fold. Since the data is highly363

imbalanced (as shown in Table 1), we upsample364

the minority class (i.e., popular) using the SMOTE365

algorithm (Chawla et al., 2002). Next, we train366

the XGBoost classifier on the upsampled training367

data. We then use the hyperparameter tuned bag-368

ging classifier with 80 estimators to further address369

the challenge of data imbalance and synthetic data,370

as it trains the base XGBoost classifier on the ran-371

dom subset of the original dataset and aggregates372

the predictions. We use the test data (with PCA373

and without upsampling) to predict the popularity374

of the podcasts. We report the results using the375

macro-F1 score.376

Feature 1

Feature 2

Feature N

... C
on

ca
te

na
tio

n

Fold 1

Fold 2

Fold 5

...
TestTrain

PCA

TestTrain

Upsample

XGBoost

PredictBagging
Classifier

Figure 1: XGBoost and bagging based architecture for
podcast popularity prediction. For every fold, the clas-
sification setup involves PCA, upsampling, XGBoost,
and a bagging classifier.

4.2 Podcast Tag Assignment 377

In the novel multi-label podcast tag assignment 378

task, we seek to automatically assign appropriate 379

tags to a given podcast. We consider tags available 380

from the RSS feed of the podcast as the ground 381

truth, since these tags are assigned by the hosts of 382

the podcast. As mentioned in Section 3, due to 383

the small and imbalanced nature of the dataset, we 384

manually merge the available 105 fine-grained tags 385

into 19 coarse-grained tags. A podcast can have 386

one or more coarse-grained tags associated with 387

it, similar to a multi-class, multi-label setup. We 388

want to observe the effect of various text and audio 389

features in only text, only audio, and text+audio 390

modalities. One approach to solve multi-label clas- 391

sification is using binary relevance, where we trans- 392

form the problem into multiple binary models with 393

a one-vs-rest setup. However, since we aim to do 394

feature analysis in different modalities, we create 395

a unified model for multi-label tag assignment by 396

using a simple two-layer perceptron network. For 397

this, we concatenate different combinations of text 398

and audio features and feed them through a fully 399

connected layer, followed by a dropout layer with 400

a dropout probability of 0.3 and another fully con- 401

nected layer. We use binary cross-entropy loss 402

function with class_weights to handle dataset im- 403

balance. We calculate class_weights for each tag l 404

as N/Nl, where N is the total number of podcasts 405

in the training dataset, and Nl denotes the numbers 406

of podcasts with tag l. Since the dataset is highly 407

imbalanced, we use the weighted-F1 score as the 408

primary evaluation metric. Similar to (Kar et al., 409

2018), we also evaluate the models on tag recall 410

5



Feature(s) Macro-F1
All Text 0.545
(−) Tags 0.500
(−) Text Emotions 0.537
(−) Sentiment 0.539
(−) Topics 0.547
(−) Named Entities 0.549

All Audio 0.802
(−) MIF 0.603
(−) Prosody 0.784
(−) MFCC 0.801
(−) MTE 0.801
(−) MIA 0.801
(−) Audio Emotions 0.802

All Audio + All Text 0.807

Table 4: Podcast popularity prediction results using
multi-modal features. The tags and MIF report the indi-
vidual best representation, whereas the combination of
all audio and text features proves to be more informative
in characterizing a podcast.

(TR) and unique tags learned (TL) by the model411

over weighted-F1 scores. Tag recall is the average412

recall per tag. Tag recall is calculated as follows:413

TR =

∑T
i=1Ri

|T |

Here, Ri is the recall of the ith tag, and |T | is414

the total number of tags. We train every setup415

for a maximum of 75 epochs with early stopping416

criteria. For all experiments, we use a learning rate417

of 0.0001, batch size of 4, and Adam optimizer.418

5 Results and Analysis419

In this section, we report our results and analy-420

sis on the performance of hand-crafted features421

in different modalities for the two aforementioned422

downstream tasks.423

5.1 Podcast Popularity Prediction424

In Table 4, we present the ablation study of macro-425

F1 scores using the text and audio features. The426

tags and MIF are the most significant features in427

predicting podcast popularity. Their exclusion re-428

sults in a performance drop of 9% and 33% w.r.t.429

the all text and audio features, respectively. This430

may be due to MIF’s ability to preserve the spectral431

content information (which otherwise is ignored432

in only energy-based computations) for the popu-433

larity prediction task. The affective features (senti-434

Feature(s) Macro-F1
Modulation + Prosody + Tags 0.820

(−) Modulation 0.520
(−) Prosody 0.803
(−) Tags 0.811

Modulation + Prosody + All Text 0.810
(−) Modulation 0.506
(−) Prosody 0.791
(−) Topics 0.798
(−) Sentiment 0.801
(−) Named Entities 0.802
(−) Tags 0.809
(−) Text Emotions 0.812

Table 5: Podcast popularity prediction results using the
top two combinations of multi-modal features with the
highest macro-F1 score. The modulation is the most
dominant representation of all multi-modal features.

ment and text emotions) contribute equally well to 435

the score. However, the topics and named entities 436

negatively contribute to the prediction results. On 437

their exclusion from all text features, we observe a 438

marginal rise of 0.36% (topics) and 0.73% (named 439

entities) in the macro-F1 score. We also observe an 440

insignificant contribution from the audio emotions 441

to the overall performance. Since the combina- 442

tions of all audio and text representations report the 443

highest macro-F1 score of 0.807, we further exper- 444

iment with different combinations of these features 445

to identify the best performing multi-modal feature 446

combination. 447

Table 5 shows the top two multi-modal feature 448

combinations (i.e., modulation + prosody + tags 449

and modulation + prosody + all text) with the high- 450

est macro-F1 score and their ablation results. As 451

can be seen from both the combinations, the modu- 452

lation features are the most significant ones in cap- 453

turing the intricacies of a podcast for this task. We 454

believe that this performance improvement is solely 455

due to the ability of modulation-based features in 456

modeling the dynamic and non-linear aspects of an 457

audio (Evangelopoulos and Maragos, 2006). 458

5.2 Podcast Tag Assignment 459

In Table 6, we present our multi-label tag assign- 460

ment results for text, audio, and multi-modal frame- 461

works with their ablation analysis. We observe that 462

the text modality significantly outperforms audio 463

and multi-modal frameworks with over 135% in- 464

crease in weighted-F1 score. Specifically, the ‘top- 465

ics’ emerge as the most prominent feature since its 466
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Feature(s) w-F1 TR TL
All Text 44.02 78.22 19

(−) Topics 35.31 76.34 19
(−) LF Embeddings 41.89 71.85 19
(−) Named Entities 43.37 79.44 19
(−) Sentiment 43.42 77.07 19
(−) Text Emotions 43.83 79.34 19

All Audio 18.79 80.40 18
(−) Prosody 16.26 57.89 14
(−) MIA 17.55 51.20 15
(−) MTE 17.87 40.78 15
(−) Audio Emotions 18.68 71.84 15
(−) MFCC 19.30 63.84 17
(−) MIF 22.54 70.39 17

All Text + Audio 18.62 69.36 17
(−) LF Embeddings 17.57 70.23 16
(−) Prosody 17.71 63.86 15
(−) MTE 17.90 53.89 15
(−) Audio Emotions 17.91 54.09 12
(−) Topics 18.36 71.92 16
(−) Sentiment 18.49 52.59 15
(−) Named Entities 18.60 59.59 17
(−) MIA 18.63 58.46 15
(−) Text Emotions 18.98 65.40 17
(−) MFCC 19.26 55.45 15
(−) MIF 31.14 55.47 16

Table 6: Ablation analysis of text and audio features for
multi-label tag assignment task. We use weighted-F1
(w-F1), tag recall (TR) and unique tags learned (TL) as
the evaluation metrics. LF Embeddings represent the
Longformer embeddings of the podcast transcript.

removal results in a 19.78% drop in the weighted-467

F1 score. Textual features like ‘topics’ provide468

a detailed list of concepts covered in the podcast.469

This is important in understanding what the podcast470

is about and, in turn, assigning relevant tags.471

Longformer Embeddings are the next most im-472

portant textual feature, followed by Named Entities,473

Sentiments, and Emotions. Overall, all the textual474

features play an essential role in tag assignment as475

the weighted-F1 scores drop after removing any of476

these features.477

The audio features as standalone representations478

do not perform well in tag assignment tasks. Even479

with all the audio features, the model fails to learn480

all the tags. After removing MFCC and MIF, the481

weighted-F1 scores increase by 2.71% and 19.95%,482

respectively. Even though these features can cap-483

ture human speech very well for the task of short-484

form audio classification (Bergstra et al., 2006), 485

they fail to provide desirable performance in the 486

case of long-form content like podcasts. This falls 487

in line with our hypothesis that textual features 488

competently capture the complex nature of pod- 489

casts for the task of tag assignment. However, 490

prosody features are the most dominant in the au- 491

dio modality as with its exclusion, the model fails 492

to learn five tags altogether while also producing 493

a significant drop of 13.46% and 27.99% in the 494

weighted-F1 score and tag recall, respectively. Sim- 495

ilarly, after excluding MTE features, we see a drop 496

of 04.89% and 49.27% in weighted-F1 and average 497

tag recall metrics, respectively. This may be due to 498

MTE features’ ability to retain the signal envelope 499

variations where a speech activity is detected. 500

The model also does not benefits from multi- 501

modal setup. Similar to the audio modality, the 502

MFCC, and MIF features fail to capture the tags 503

appropriately. We note an increase of 67.23% in 504

the weighted-F1 score with the removal of MIF 505

features. In a multi-modal framework, longformer 506

embeddings perform the best, followed by audio 507

emotions, prosody features, and sentiments. To 508

understand why sentiments perform well for tag 509

assignment in both text and multi-modal scenarios, 510

we take the average percentage of negative, neutral, 511

and positive sentiment across all podcasts under 512

each tag. On average, 82.6% of every podcast has 513

neutral sentiment irrespective of the tags. In Table 514

2 We report the difference between the average 515

%positive and %negative sentiment per tag. We 516

believe the model uses these differences to learn 517

mappings to corresponding tags. We can see that 518

the model fails to learn {‘True Crime’, ‘Fiction’, 519

‘Government’, and ‘Science’} tags completely in 520

the absence of sentiments. These amount to four 521

out of five tags with the lowest difference between 522

average positive and negative sentiment. 523

5.3 Results Summary 524

For the popularity prediction task, the tags and 525

MIF features are most effective for text modality 526

and audio modality experiments, respectively. The 527

MIF representation identifies the important events 528

in a podcast that may impact its popularity. We 529

observe that the model benefits from the inclusion 530

of the tags feature. We can identify from Table 531

2 that some tags such as ‘True Crime’ in general 532

are much more popular over tags like ‘Society & 533

Culture’. The combination of all audio and text 534
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features provides a more informative representation535

in predicting the popularity of a podcast (Table536

4). In particular, the combination of modulation,537

prosody, and tags yields the highest macro-F1 score538

for popularity prediction (Table 5).539

For tag assignment, topics and Longformer em-540

beddings are the most prominent features from text541

modality as they effectively capture the content542

within the podcast. The combination of all text fea-543

tures gives us the highest weighted-F1 score. The544

standalone audio and multi-modal frameworks give545

a mediocre performance for multi-label tag assign-546

ment. Prosody and affective text features are found547

to be essential in multi-modal setups irrespective548

of the downstream tasks.549

6 Related Work550

One of the first works introducing large-scale pod-551

cast data and relevant tasks is by Clifton et al.552

(Clifton et al., 2020) from Spotify. They com-553

piled a corpus of 100,000 podcast episodes com-554

prising nearly 60,000 hours of speech along with555

transcriptions. Recent work in Alexander et al.556

(2021) further enriches this dataset with precom-557

puted audio features based on prosody and MFCCs.558

They demonstrate how these features can be used559

in podcast segment categorization based on deliv-560

ery(e.g., entertaining, subjective, or discussion).561

We extract and use similar features in our analysis562

but on a different dataset. Earlier works based on563

this dataset, such as abstractive summarization in564

(Zheng et al., 2020), and PodSumm in (Vartakavi565

and Garg, 2020) consider pre-trained models such566

as BART, BERT, and T5. These works do not567

specifically consider hand-crafted audio and tex-568

tual features, and their efficacy remains relatively569

unexplored.570

Another similar dataset of note was compiled571

by Yang (Yang et al., 2019) consisting of data572

from nearly 88,728 podcast episodes on Apple573

iTunes. Along with data, they also introduce an574

Adversarial Learning-based Podcast Representa-575

tion (ALPR) that captures non-textual aspects of576

podcasts. They evaluate these representations in577

the context of podcast popularity prediction and578

prediction of seriousness-energy in podcasts report-579

ing state-of-the-art results. We enhance this data580

and use their insights to formulate our experimen-581

tal framework. Joshi et al. (Joshi et al., 2020)582

consider DistilBERT based embeddings as textual583

features with the triplet loss to address the popular-584

ity prediction task for the data introduced in (Yang 585

et al., 2019) with state-of-the-art results. They note 586

that polarity and subjectivity of features remain 587

similar with no marked difference, thus not very 588

informative for the popularity prediction. We seek 589

to investigate this further by considering various 590

hand-crafted features from both podcast audio and 591

its text transcript, along with enhanced data. While 592

the DistilBERT embeddings with triplet loss act as 593

a black box and are difficult to explain, we focus 594

on hand-crafted features for greater explainabil- 595

ity about how different features contribute towards 596

popularity. 597

(Dhanaraj and Logan, 2005) studied audio and 598

text modalities for popularity prediction of songs 599

using Support Vector Machine and boosting clas- 600

sifiers. A lot of work has been done in genre pre- 601

diction on short-form audio content using MFCCs 602

(Mandel et al., 2006)(Bergstra et al., 2006). Re- 603

cently, (Wilkes et al., 2021) performed feature anal- 604

ysis in text, audio, and video modalities for the task 605

of music genre prediction using machine learning 606

classifiers.(Cascante-Bonilla et al., 2019) use au- 607

dio, text, and video modalities from movie trailers, 608

posters, plots, and other metadata to predict movie 609

genre. However, to the best of our knowledge, no 610

one has explored multi-modal feature analysis on 611

podcasts on the task of multi-label tag assignment. 612

Inspired by these works, we seek to understand how 613

features from different modalities perform (sepa- 614

rately or combined) in the context of proxy appli- 615

cations. 616

7 Concluding Remarks 617

Podcasts are spoken-documents ranging across a 618

wide variety of genres, topics, and styles. Ow- 619

ing to the rapid growth in popularity and global 620

reach, there is a definite need to explore and inves- 621

tigate this new engagement medium and relevant 622

research landscape. In this work, we study differ- 623

ent hand-crafted features and their combinations 624

based on podcast audio and its textual transcript 625

to characterize the podcast data. As can be seen, 626

features capturing distinct qualities like speaker 627

style, content affect, and subject content coverage 628

(i.e., prosody, sentiment, emotions, and topics) are 629

significant irrespective of the downstream task. We 630

believe that the analysis can be helpful in several 631

other downstream tasks such as podcast summa- 632

rization, retrieval, and recommendation. 633
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