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ABSTRACT

We investigate the generalization error of statistical learning models in a Federated
Learning (FL) setting. Specifically, we study the evolution of the generalization error
with the number of communication rounds between the clients and the parameter server,
i.e., the effect on the generalization error of how often the local models as computed
by the clients are aggregated at the parameter server. In our setup, the more the clients
communicate with the server the less data they use for local training at each round. We
establish PAC-Bayes and rate-distortion theoretic bounds on the generalization error
that account explicitly for the effect of the number of rounds, say R P N˚, in addition
to the number of participating devices K and individual datasets size n. The bounds,
which apply in their generality for a large class of loss functions and learning algorithms,
appear to be the first of their kind for the FL setting. Furthermore, we apply our bounds
to FL-type Support Vector Machines (FSVM); and we derive (more) explicit bounds
on the generalization error in this case. In particular, we show that the generalization
bound of FSVM increases with R, suggesting that more frequent communication with
the parameter server diminishes the generalization power of such learning algorithms.
This implies that comparatively with the empirical risk, the population risk decreases
less faster with R. Moreover, our bound suggests that for every R, the generalization
error of the FSVM setting decreases faster than that of centralized learning by a factor
of Op

a

logpKq{Kq, thereby generalizing recent findings in this direction for R “ 1
(known as “one-shot” FL) to arbitrary number of rounds. Furthermore, we also provide
results of experiments that are obtained using neural networks (ResNet-56) which show
evidence that not only may our observations for FSVM hold more generally, but also
that the population risk may even start to increase beyond some value of R.

1 INTRODUCTION

A major focus of machine learning research over recent years has been the development of statistical
learning algorithms that can be applied to spatially distributed data. In part, this is due to the emergence
of new applications for which it is either not possible (due to lack of resources (Zinkevich et al., 2010;
Kairouz et al., 2021)) or not desired (due to privacy concerns (Truex et al., 2019; Wei et al., 2020; Mothukuri
et al., 2021)) to collect all the data at one point prior to applying a suitable machine learning algorithm
to it (Verbraeken et al., 2020; McMahan et al., 2017; Konečnỳ et al., 2016; Kasiviswanathan et al., 2011).
One popular such algorithm is Federated-Learning (FL) (McMahan et al., 2017; Yang et al., 2018; Kairouz
et al., 2019; Li et al., 2020; Reddi et al., 2020; Karimireddy et al., 2020; Yuan et al., 2021). In FL, there
are K clients or devices that hold each their own dataset and collaborate to collectively train a (global)
model without sharing their data. The distributions of the clients’ data can be identical (homogeneous) or
different (heterogeneous). The model is depicted in Figure 1 and described in Section 2. An FL algorithm
typically proceeds in R P N˚ communication rounds: at each round, every device by using some potentially
different local algorithms, e.g., Stochastic Gradient Descent (SGD), produces a local model. Then, all these
local models of all clients are sent to the parameter server (PS) which aggregates them into a (global)
model. This aggregated model is sent back to clients and used typically as an initialization point for the
local algorithms in the next round, although more general forms of statistical dependencies are allowed.

The multi-round interactions between clients and PS are critical to the FL algorithm. Despite its importance,
however, little is known about its effect on the performance of the algorithm. In fact, it was shown
theoretically (Stich, 2019; Haddadpour et al., 2019; Qin et al., 2022), and also observed experimentally
therein, that in FL-type algorithms the empirical risk generally decreases with the number of rounds. This
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Figure 1: Multi-round Federated Learning

observation is sometimes over-interpreted and it is believed
that more frequent communication of the devices with the
PS is generally beneficial for the performance of FL-type
algorithms during inference or test phases. This belief was
partially refuted in a very recent work (Chor et al., 2023)
where it was shown that the generalization error may increase
with the number of rounds. Their result, which is obtained by
studying the evolution of a bound on the generalization error
that they developed for their setup, relies strongly, however,
on the assumed assumptions, namely (i) linearity of the con-
sidered Bregman divergence loss with respect to the hypothesis, (ii) all the devices are constrained to run an
SGD with mini-batch size one at every iteration and (iii) linearity of the aggregated model with respect
to the devices’ individual models. Also, even for the restricted setting considered therein, their bound on
the generalization error (Chor et al., 2023, Theorem 1), which is essentially algebraic in nature, does not
exploit fully the distributed architecture of the learning problem. Moreover, the dependence on the number
of rounds is somewhat buried, at least in part, by decomposing the problem into several virtual one-client
SGDs which are inter-dependent among clients and rounds through their initializations.

The effect of the multi-round interactions on the performance of FL algorithms remains highly unexplored,
however, for general loss functions and algorithms. For example, with the very few exceptions that we
discuss in this paper (most of which pertain to the specific case R “ 1 (Yagli et al., 2020; Barnes et al.,
2022a;b; Sefidgaran et al., 2022a), and with relatively strong assumptions on the loss function and algorithm)
the existing literature crucially lacks true bounds on the generalization error for FL-type algorithms, i.e.,
ones that bring the analysis of the distributed architecture and rounds into the bound, and even less that
show some form of explicit dependency on R. One central mathematical difficulty in studying the behavior
of the expected generalization error is caused by the interactions with the PS inducing statistical correlations
among the devices’ models which become stronger with R and are not easy to handle. For example,
common tools that are generally applied in similar settings, such as the Leave-one-out Expansion Lemma
of Shalev-Shwartz et al. (2010), do not apply easily in this case.

Contributions. In this paper, we study the problem of how the generalization error of FL-type algorithms
evolves with the number of rounds R. Unless otherwise specified (for the specialization to Support Vector
Machines in Section 4), we assume no particular form for the devices’ individual algorithms or deterministic
aggregation function at the PS. For this general setting:

• We establish PAC-Bayes bounds (Theorems 1 and 2) and rate-distortion theoretic bounds (Theorem 3 and
Theorem 6 in the appendix) on the generalization error that account explicitly for the effect of the number
of rounds R, in addition to the number of participating devices K and the size of the dataset n. These
bounds appear to be the first of their kind for the problem that we study.

The established bounds reflect the structure of the distributed interactive learning algorithm in particular
by capturing the contribution of each client at each round to the generalization error of the final model.
Our bounds are in terms of averages of such contributions among the clients and rounds. In a sense, this
validates the intuition that, for a desired generalization error of the final model, some devices may be
allowed to overfit during some or all of the rounds as long as other devices compensate for that overfitting.
That is, the targeted generalization error level of the final model is suitably split among the devices and
rounds. This intuition is also captured, but in a different way, by our lossy bounds of Theorems 2, 3, and
6, in the form of a trade-off between the amounts of “lossy compressions” (or “distortion levels”) of all
clients across all rounds. Finally, we notice that the Kullback–Leibler divergence terms in our PAC-Bayes
bounds have the advantage of involving priors that are possibly distinct across devices and rounds. This
may be beneficial when these terms are used as regularizers during training. This direction, which can be
seen as an extension of the centralized online setup of Haddouche & Guedj (2022) is left for future works.

• We apply our bounds to Federated Support Vector Machines (FSVM); and derive (more) explicit bounds
on the generalization error in this case (Theorem 4). Interestingly, we show that the margin generalization
bound of FSVM decreases with K and increases with R. In particular, this suggests that more frequent
communication with the PS diminishes the generalization power of FSVM algorithms. As a consequence,
comparatively with the empirical risk, the population risk decreases less faster with R. Besides, our
bound suggests that for any R, the generalization error of the FSVM setting decreases faster than that
of centralized learning by a factor of Op

a

logpKq{Kq, thereby generalizing recent findings in this
direction (Sefidgaran et al., 2022a) for R “ 1 to any arbitrary number of rounds.
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• We validate our theoretical findings for FSVM through experiments. Moreover, we perform similar
experiments using neural networks (ResNet-56) and observe that our findings obtained for FSVM also
hold in this case. That is: (i) the generalization error increases with the number of rounds R, and (ii) due
to the tradeoff between the empirical risk and generalization error, there exists potentially an optimal
number of rounds R˚ that minimizes the population risk. We hasten to mention that the total number of
training data points and SGD iterations are kept fixed regardless of the value of R; hence, the observed
increase in the generalization error cannot be attributed to the classical “overfitting” phenomenon.

We remark that in the particular case of FL-based SGD, at a high level, there exists a connection between our
setup and LocalSGD (Stich, 2019; Haddadpour et al., 2019; Qin et al., 2022; Gu et al., 2023), which focuses
on the problem of parallel computing. The LocalSGD literature, however, mostly reports improvements in
convergence rates; and their proof techniques do not seem to be applicable for the study of the generalization
error. Our findings suggest that even in a centralized setup one may still achieve some performance gains,
from the viewpoint of generalizability and population risk, by splitting the available dataset into smaller
subsets, learning from each separately, aggregating the learned models, and then iterating.

Notations. We denote random variables (r.v.), their realizations, and their domains by upper-case, lower-
case, and calligraphy fonts, e.g., X, x, and X . We denote the distribution of X by PX and its support by
suppPX . A r.v. X is called σ-subgaussian, if for all t P R, logErexpptpX ´ ErXsqqs ď σ2t2{2, where E
denote the expectation. As an example, if X P ra, bs, then X is b´a

2 -subgaussian. For two distributions
P and Q with the Radon-Nikodym derivative dQ{dP of Q with respect to P , the Kullback–Leibler (KL)
divergence is defined as DKLpQ}P q :“ EQrlogpdQ{dP qs if Q ! P and 8 otherwise. The mutual
information between two r.v. pX,Y q with distribution PX,Y and marginals PX and PY is defined as
IpX;Y q :“ DKL

`

PX,Y }PXPY

˘

. The notation txiuiPrms is used to denote a collection of m real numbers.
The integer ranges t1, . . . ,Ku Ă N˚ and tK1, . . . ,K2u Ă N˚ are denoted by rKs and rK1 : K2s,
respectively. Finally, for k P rKs, we use the shorthand notation rKszk :“ t1, . . . ,Kuztku.

2 FORMAL PROBLEM SETUP

Consider the K-client federated learning model shown in Figure 1.

Datasets. For k P rKs, let Zk be some input data for client or device k distributed according to an
unknown distribution µk over some data space Zk “ Z. For example, in supervised learning settings
Zk :“ pXk, Ykq where Xk stands for a data sample at device k and Yk its associated label. The distributions
tµku are allowed to be distinct across devices. Each client is equipped with its own training dataset
Sk :“ tZk,1, . . . , Zk,nu Ď Zn, consisting of n independent and identically distributed (i.i.d.) data points
drawn according to the unknown distribution µk. We consider an R-round learning framework, R P N˚,
where every sample of a training dataset can be used during only one round by the device that holds it, but
possibly multiple times during that round. Accordingly, it is assumed that every device partitions its data
Sk into R disjoint subsets1 such that Sk “

Ť

rPrRs S
prq

k where S
prq

k is the dataset used by client k P rKs

during round r P rRs. This is a reasonable assumption that encompasses many practical situations in which
at each round every client has access to new data. For ease of the exposition, we assume that R divides n
and let nR :“ n{R and S

prq

k
:“ tZ

prq

k,1, . . . , Z
prq

k,nR
u. Also, throughout we will often find it convenient to

use the handy notation PSk
:“ µbn

k , P
S

prq

k

:“ µbnR

k and, for k P rKs and r P rRs,

S
prq

rKs
“ S

prq

1 , . . . , S
prq

K , S
rrs

rKs
“ S

rrs

1 , . . . , S
rrs

k “ S
p1q

rKs
, . . . , S

prq

rKs
,

S
rrs

k “ S
p1q

k , . . . , S
prq

k , S “ S
rRs

rKs
. (1)

Similar notations will be used for other variables, e.g., W prq

rKs
“W

prq

1 , . . . ,W
prq

K and W rRs
“W 1, . . . ,W pRq.

Overall algorithm. The devices collaboratively train a (global) model by performing both local com-
putations and updates based on R-round interactions with the parameter server (PS). Let Ak denote the
algorithm used by device k P rKs. An example is the popular SGD where in round r every device k takes
one or more gradient steps with respect to samples from the part Sprq

k of its local dataset Sk. It should be
emphasized that the algorithms tAku may be identical or not. During round r P rRs the algorithm Ak

produces a local model W prq

k . At the end of every round r, all the devices send their individual models

W
prq

k to the PS which aggregates them into a (global) model W prq
P W and sends it back to them. The

1The reader is referred to Appendix B for some extensions of this setup.
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aggregated model is used by every device in the next round pr ` 1q, together with the part Spr`1q

k of its

dataset Sk in order to obtain a new local model W pr`1q

k .

Local training at devices. Formally, the algorithm Ak is a possibly stochastic mapping Ak : ZnR ˆ W Ñ

W; and, for rPrRs, we have W prq

k
:“AkpS

prq

k ,W pr´1q
q – for convenience, we set W p0q

“H or some default
value. We denote the conditional distribution induced by Ak over W at round r by P

W
prq

k |S
prq

k ,W pr´1q .

Model aggregation. The aggregation function at the PS is set to be deterministic and arbitrary, such
that at round r this aggregation can be represented equivalently by a degenerate conditional distribution
P
W prq|W

prq

rKs

“ P
W prq|W

prq
1 ,...,W

prq

K

. A common choice is the simple averaging W prq
“

`
řK

k“1 W
prq

k

˘

{K.

The above process repeats until all R rounds are completed, and yields a final (global) model W pRq. Let
W “

`

W
rRs

rKs
,W rRs

˘

where the notation used here and throughout is similar to (1).

Induced probability distributions. The above-described algorithm, summarized in Algorithm 1 in the
appendices, induces the conditional distribution

PW|S “
â

rPrRs

"

â

kPrKs

´

P
W

prq

k |S
prq

k ,W pr´1q

¯

P
W prq|W

prq

rKs

*

, (2)

of models, whose joint distribution with S is

PS,W “
â

rPrRs

"

â

kPrKs

´

P
S

prq

k

P
W

prq

k |S
prq

k ,W pr´1q

¯

P
W prq|W

prq

rKs

*

. (3)

Hereafter, we will refer to the aforementioned algorithm for short as being an pPW|S,K,R, nq-FL model.

Generalization error. Let ℓ : Z ˆW Ñ R` be a given loss function. For a (global) model or hypothesis
wpRq

P W , its associated empirical and population risks are defined respectively as

L̂
`

s, wpRq
˘

“
1

nK

ÿK

k“1

ÿn

i“1
ℓ
`

zk,i, w
pRq

˘

, L
`

wpRq
˘

“
1

K

ÿK

k“1
EZk„µk

“

ℓ
`

Zk, w
pRq

˘‰

. (4)

Note that by letting L̂
`

s
prq

k , wpRq
˘

“ 1
nR

řnR
i“1 ℓ

`

z
prq

k,i , w
pRq

˘

, the empirical risk can be re-written as

L̂
`

s, wpRq
˘

“
1

KR

ÿR

r“1

ÿK

k“1
L̂
`

s
prq

k , wpRq
˘

. (5)

The generalization error of the model wpRq for dataset s “ ps1, . . . , sKq, sk “
ŤR

r“1 s
prq

k , is evaluated as

gen
`

s, wpRq
˘

“ L
`

wpRq
˘

´ L̂
`

s, wpRq
˘

“
1

KR

ÿR

r“1

ÿK

k“1
gen

`

s
prq

k , wpRq
˘

, (6)

where gen
`

s
prq

k , wpRq
˘

“ EZk„µk

“

ℓ
`

Zk, w
pRq

˘‰

´ L̂
`

s
prq

k , wpRq
˘

.

Example (FL-SGD). An important example is one in which every device runs Stochastic Gradient
Decent (SGD) or variants of it, such as mini-batch SGD. In this latter case, denoting by e the number of
epochs and by b the mini-batch size, at iteration t P re nR{bs client k updates its model as

W
prq

k,t “ Proj
ˆ

W
prq

k,t´1 `
ηr,t
b

ÿ

zPBk,r,t
∇ℓ̃

´

z,W
prq

k,t´1

¯

˙

, (7)

where ℓ̃ : Z ˆ W Ñ R` is some differentiable surrogate loss function used for optimization, ηr,t ą 0 is
the learning rate at iteration t of round r, Bk,r,t P S

prq

k is the mini-batch with size b chosen at iteration

t, and Proj
`

w1
˘

“ argminwPW }w ´ w1
}. Also, in this case we let W prq

k
:“ W

prq

k,τ , where τ :“ e nR{b.

Besides, here the aggregation function at the PS is typically set to be the arithmetic average W prq
“

`
ř

kPrKs W
prq

k

˘

{K. This example will be analyzed in the context of Support Vector Machines in Section 4.

3 GENERALIZATION BOUNDS FOR FEDERATED LEARNING ALGORITHMS

In this section, we consider a (general) pPW|S,K,R, nq-FL algorithm, as defined formally in Section 2;
and study the generalization error of the final (global) hypothesis W pRq as measured by (6). Note that the
statistical properties of W pRq are described by the induced distributions (2) and (3). We establish several
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bounds on the generalization error (6). The bounds, which are of PAC-Bayes type and rate-distortion
theoretic, have the advantage of taking the structure of the studied multi-round interactive learning problem
into account. Also, they account explicitly for the effect of the number of communication rounds R with
the PS, in addition to the number of devices K and the size n of each individual dataset. To the best of our
knowledge, they are the first of their kind for this problem.

3.1 PAC-BAYES BOUNDS

For convenience, we start with two lossless bounds, which can be seen as distributed versions of those
of McAllester (1998; 1999); Maurer (2004); Catoni (2003) tailored specifically for the multi-round interac-
tive FL problem at hand.
Theorem 1. Assume that the loss ℓpZk, wq is σ-subgaussian for every w P W and any k P rKs. Also, let
for every k P rKs and r P rRs, Pk,r denote a conditional prior on W

prq

k given W pr´1q. Then we have:

(i) With probability at least p1 ´ δq over S, for all PW|S, EW„PW|S

“

genpS,W pRq
q
‰

is bounded by
g

f

f

f

e

1
KR

ř

kPrKs,rPrRs EW pr´1q„P
W pr´1q|S

rr´1s

rKs

”

DKL

´

P
W

prq

k |S
prq

k ,W pr´1q }Pk,r

¯ı

` logp

?
2n?
Rδ

q

p2n{R ´ 1q{p4σ2q
.

(ii) For any FL-model PW|S, with probability at least p1 ´ δq over pS,Wq „ PS,W,

genpS,W pRq
q ď

g

f

f

f

e

1
KR

ř

kPrKs,rPrRs log

ˆdP
W

prq
k

|S
prq
k

,W pr´1q

dPk,r

˙

` logp

?
2n?
Rδ

q

p2n{R ´ 1q{p4σ2q
.

The proof of Theorem 1, stated in Appendix F.1, judiciously extends the technique of a variable-size
compressibility approach that was proposed recently in Sefidgaran & Zaidi (2023) in the context of
establishing data-dependent PAC-Bayes bounds for a centralized learning setting, i.e., K “ 1 and R “ 1, to
the more involved setting of FL. This extension is not trivial, however. For example, while the bound of the
part (i) of Theorem 1 involves KL-divergence terms that may seem typical of classic PAC-Bayes bounds,
the utility of the result is in expressing the bound in terms of average (over clients and rounds) of expected
KL-divergence terms, where for every r P rRs the expectation is over W pr´1q. This is important, and
non-intuitive, as the FL algorithm is not composed of KˆR independent centralized algorithms. Indeed, a
major technical difficulty in the analysis is to account properly for the problem’s distributed nature as well
as the statistical “couplings” among the devices’ models, induced by the multi-round interactions. In part,
these couplings are accounted for in the bound through the conditioning on W pr´1q. We refer the reader
to a discussion after Theorem 2, which is a “lossy” version of the result of Theorem 1, on how the proof
proceeds to break down the overall FL-algorithm into KˆR inter-dependent “centralized”-like algorithms.

It should also be noted that, in fact, one could still consider the R-round FL problem end-to-end and view
the entire system as a (virtual) centralized learning system with input the collection S “ pS1, . . . , SKq of
all devices’ datasets and output the final aggregated model W pRq and apply the results of Sefidgaran &
Zaidi (2023) (or those of McAllester (1998; 1999); Maurer (2004); Catoni (2003); Seeger (2002); Tolstikhin
& Seldin (2013)). The results obtained that way, however, do not account for the interactive and distributed
structure of the problem. In contrast, note that for example the first bound of Theorem 1 involves, for each
device k and round r the KL-divergence term EW pr´1q

”

DKL

´

P
W

prq

k |S
prq

k ,W pr´1q }Pk,r

¯ı

which can be
seen as accounting for (a bound on) the contribution of the model of that client at that round r to the overall
generalization error. In a sense, the theorem says that only the average of those KL divergence terms matters
for the bound, which could be interpreted as validating the intuition that some clients may be allowed to
“overfit” during some or all of the rounds as long as the overall generalization error budget is controlled
suitably by other devices. Also, as it can be seen from the result, the choice of priors is specifically tailored
for the multi-round multi-client setting in the sense that the prior of client k at round r could depend on all
past aggregated models wpr´1q and P

prq

k is allowed to depend on all local models and datasets till round
pr´ 1q. The result also has implications on the design of practical learning FL systems: for example, on one
aspect it suggests that the aforementioned KL-divergence term can be used as a round-dependent regularizer
which account better for the variation of the quality of the training datasets across devices and rounds.

Finally, by viewing our studied learning setup with disjoint datasets along the clients and rounds as some
form of distributed semi-online process, Theorem 1 may be seen as a suitable distributed version of the
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PAC-Bayes bound of Haddouche & Guedj (2022) established therein for a centralized online-learning setup.
Note that a direct extension of that result to our distributed setup would imply considering the generalization
error of client k at round r with respect to the intermediate aggregated model wprq

k , not the final wpRq

k as
we do. In fact, in that case, the problem reduces to an easier virtual one-round setup that was also studied
in (Barnes et al., 2022a;b) for Bregman divergences losses and linear and local Gaussian models; but at the
expense of analyzing alternate quantity in place of the true generalization error (6) that we study.

We now present a more general, lossy, version of the bound of Theorem 1. The improvement is allowed by
introducing a proper lossy compression that is defined formally below into the bound. This prevents the new
bound from taking large values for deterministic algorithms with continuous hypothesis spaces.

Lossy compression. Consider a quantization set Ŵ Ď W and let
␣

Ŵ
prq

k

(

kPrKs,rPrRs
, Ŵ

prq

k Ď

Ŵ , be a set of lossy versions of
␣

W
prq

k

(

kPrKs,rPrRs
, defined via some conditional Markov kernels

p
Ŵ

prq

k |S
prq

k ,W pr´1q , i.e., we consider lossy compression of W prq

k using only S
prq

k and the round-pr ´ 1q

aggregated model W pr´1q. For a given distortion level ϵ P R`, tp
Ŵ

prq

k |S
prq

k ,W pr´1q ukPrKs,rPrRs is said to

satisfy the ϵ-distortion criterion if following holds: for every s P ZnK ,
ˇ

ˇ

ˇ

ˇ

EPW|s

”

genps,W pRq
q

ı

´
1

KR

ÿ

kPrKs,rPrRs
EpPpqk,r

”

genps
prq

k , Ŵ
pRq

q

ı

ˇ

ˇ

ˇ

ˇ

ď ϵ{2, (8)

where pPpqk,r “ P
W pr´1q,W

prq

rKszk
|s

rr´1s

rKs
,s

prq

rKszk

p
Ŵ

prq

k |s
prq

k ,W pr´1q P
Ŵ

pRq
|W

prq

rKszk
,Ŵ

prq

k ,s
rr`1:Rs

rKs

. (9)

This condition can be simplified for Lipschitz losses, i.e., when @w,w1
P W , |ℓpz, wq ´ ℓpz, w1

q| ď

Lρpw,w1
q, for some distortion function ρ : W ˆ W Ñ R`. Then, a sufficient condition for (8) is

ÿ

kPrKs,rPrRs
EpPpqk,rP

W|s,W pr´1q,W
prq

rKszk

”

ρpW pRq, Ŵ
pRq

q

ı

ď KRϵ{p4Lq. (10)

Theorem 2. Suppose that ℓpz, wq P r0, Cs Ă R`. Let for every k P rKs and r P rRs, Pk,r be a conditional

prior on Ŵ
prq

k given W pr´1q. Fix any distortion level ϵ P R`. Consider any pPW|S,K,R, nq-FL model
and any choices of tp

Ŵ
prq

k |S
prq

k ,W pr´1q ukPrKs,rPrRs that satisfy the ϵ-distortion criterion. Then, with

probability at least p1 ´ δq over S „ PS, we have that EW„PW|S

”

genpS,W pRq
q

ı

is upper bounded by
g

f

f

f

e

1
KR

ř

kPrKs,rPrRs EW pr´1q„P
W pr´1q|S

rr´1s

rKs

”

DKL

´

p
Ŵ

prq

k |S
prq

k ,W pr´1q }Pk,r

¯ı

` logp

?
2n?
Rδ

q

p2n{R ´ 1q{C2
` ϵ.

A trivial extension of the lossy PAC-Bayes bounds for centralized algorithms could be done by considering
the quantization of the final aggregated model W pRq. Here, instead, for every k P rKs and round r P rRs,
we quantize the local model W prq

k separately while keeping the other devices’ local models at that round

i.e., the vector W prq

rKszk
, fixed. This allows us to study the amount of the “propagated” distortion till round

R. Note that by quantizing W
prq

k for a distortion constraint on the generalization error that is at most ν, the

immediate aggregated model W prq

k is guaranteed to have a generalization error within a distortion level of
at most ν{K from the true value. Also, interestingly, the distortion criterion (8) allows to “allocate” suitably
the targeted total distortion KRϵ{2 into smaller constituent levels among all clients and across all rounds.

Proof outline: Theorem 2 is proved in Appendix F.2 by breaking down the overall FL algorithm into KR
“centralized”-like algorithms, using the following high-level steps:

i. For every pair pk, rq, we define a virtual FL algorithm that is equivalent to the original one except for
round r of client k for which the “local quantized algorithm” p

Ŵ
prq

k |S
prq

k ,W pr´1q is considered instead

of P
W

prq

k |S
prq

k ,W pr´1q . This overall algorithm is denoted by pPpqk,r as given by (9). Also, we define
the overall algorithm with respect to the prior Pk,r. These choices allow us to define 2KR ‘virtual’
algorithms, each of them differing in one distinct (client, round)-local algorithm from the original.

ii. Next, by Lemma 3 we relate the probability that the generalization error exceeds a given threshold to
the supremum of the expected average generalization error of all KR-virtual algorithms pPPk,rqk,r.
The supremum is taken with respect to all joint distributions that are in the vicinity of µbnK .
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iii. Finally, we apply a change of measure argument by two successive applications of Donsker-Varadhan’s
inequality, from pPPk,rqk,r to pPPk,rqk,r and from νS to µbnK . Using the special form of pPPk,rqk,r ,
the KL-divergences DKL

`

pPPk,rqk,r}pPPk,rqk,r
˘

lead to the desired KL-divergence terms. This
allows in the last step of the proof to bound the cumulant generating function as needed.

3.2 RATE-DISTORTION THEORETIC BOUNDS

Define for k P rKs, r P rRs and ϵ P R, the rate-distortion function

RDpPS,W, k, r, ϵq “ infp
Ŵ

prq
k

|S
prq
k

,W pr´1q
IpS

prq

k ; Ŵ
prq

k |W pr´1q
q, (11)

where the mutual information is evaluated with respect to P
S

prq

k

PW pr´1qpŴ prq

k |S
prq

k ,W pr´1q and the infimum
is over all conditional Markov kernels p

Ŵ
prq

k |S
prq

k ,W pr´1q that satisfy

E
S,W,Ŵ

pRq

”

genpS
prq

k ,W pRq
q ´ genpS

prq

k , Ŵ
pRq

q

ı

ď ϵ, (12)

where the joint distribution of S,W, Ŵ
pRq

factorizes as PS,W p
Ŵ

prq

k |S
prq

k ,W pr´1qP
Ŵ

pRq
|W

prq

rKszk
,Ŵ

prq

k

.

Theorem 3. For any pPW|S,K,R, nq-FL model with distributed dataset S „ PS, if the loss ℓpZk, wq is
σ-subgaussian for every w P W and any k P rKs, then for every ϵ P R it holds that

ES,W„PS,W

”

genpS,W pRq
q

ı

ď

c

2σ2
ÿ

kPrKs,rPrRs
RDpPS,W, k, r, ϵk,rq{pnKq ` ϵ,

for any set of parameters tϵk,rukPrKs,rPrRs Ă R which satisfy 1
KR

ř

kPrKs

ř

rPrRs ϵk,r ď ϵ.

Similar to the PAC-Bayes type bounds of Theorem 1 and Theorem 2, the bound of Theorem 3 also shows
the “contribution” of each client’s local model during each round to (a bound on) the generalization error as
measured by (6). we refer the reader to Appendix F.3 for its proof, due to lack of space and the considerable
needed technicality details. As it will become clearer from the below, an extended version of this theorem,
stated in Appendix D.2, is particularly useful to study the Federated Support Vector Machines (FSVM)
of the next section. For instance, an application of that result will yield a (more) explicit bound on the
generalization error of FSVM in terms of the parameters K, R, and n.

Finally, a tail rate-distortion theoretic bound is derived in supplements. This result states loosely that having
a good generalization performance with high probability requires the algorithm to be compressible not only
under the true distribution PS,W, but also for all those distributions νS,W that are in the vicinity of PS,W.

4 FEDERATED SUPPORT VECTOR MACHINES (FSVM)
In this section, we study the generalization behavior of Support Vector Machines (SVM) (Cortes & Vapnik,
1995; Vapnik, 2006) when optimized in the FL setup using SGD. SVM is a popular model, mainly used for
binary classification, and is particularly powerful when used with high-dimensional kernels. For ease of
exposition, however, we only developed results for linear SVMs that can be extended easily to any kernels.

Consider a binary classification problem in which Z “ X ˆ Y , X Ď Rd with Y “ t´1,`1u. Using SVM
for this problem consists of finding a suitable hyperplane, represented by w P Rd, that properly separates
the data according to their labels. For convenience, we only consider the case with zero bias. In this case,
the label of an input x P Rd is estimated using the sign of xx,wy. The 0-1 loss ℓ0 : Z ˆ W Ñ R` is then
evaluated as ℓ0pz, wq :“ 1tyxx,wyą0u. For the specific cases of centralized (K “ R “ 1) and “one-shot”
FL (K ě 2, R “ 1) settings (Grønlund et al., 2020; Sefidgaran et al., 2022a), it was observed that if the
algorithm finds a hyperplane that separates the data with some margin then it generalizes well. Motivated by
this, we consider the 0-1 margin loss function ℓθ : Z ˆ W Ñ R` for θ P R` as ℓθpz, wq :“ 1tyxx,wyąθu.
Similar to previous studies, we consider the empirical risk with respect to the margin loss, i.e., L̂θps, wpRq

q “

1
nK

ř

kPrKs,iPrns ℓθpzk,i, w
pRq

q which is equal to 1
KR

ř

kPrKs,rPrRs L̂θps
prq

k , wpRq
q. The population risk

is considered with respect to 0-1 loss function ℓ0, i.e., LpwpRq
q “ 1

K

ř

kPrKs EZk„µk

“

ℓ0pZk, w
pRq

q
‰

. The

margin generalization error is then defined as genθps, wpRq
q “ LpwpRq

q ´ L̂θps, wpRq
q.

For the statement of the result that will follow, we make three assumptions on SGD. Due to lack of
space, these assumptions are attentively described and discussed in Appendix C, and here we only state
them informally. Consider an pK,R, n, e, bq-FL-SGD model. Let W “ Bdp1q, where Bdpνq denotes the
d-dimensional ball with origin center and radius ν ą 0.

7
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• Assumption 1: There exists some qe,b P R` such that for each client k P rKs at each round r P r2 : Rs,

the local models wprq

k and w
1prq

k attained by some initializations wpr´1q and w1pr´1q, respectively, satisfy
›

›w
prq

k ´ w
1prq

k

›

› ď qe,b
›

›wpr´1q
´ w1pr´1q

›

›. If qe,b ă 1, SGD is called to be contractive.

• Assumption 2: There exists some α P R` such that for each client k P rKs at each round r P r2 : Rs,
the local models wprq

k and w
1prq

k attained by some initializations wpr´1q and w1pr´1q :“ wpr´1q
`

wε
K ,

satisfy
›

›w
1prq

k ´
`

w
prq

k ` 1
KDk,r wε

˘›

› ď α
K2 }wε}

2 for some matrix Dk,r P Rdˆd, possibly dependent

on S
prq

k and wpr´1q, whose spectral norm is bounded by qe,b. Intuitively, this is an assumption on the
first-order approximation error of the local steps of SGD for one client at one round.

• Assumption 3: The number of clients K is sufficiently large, i.e., K ě fpqe,b, α,Rq for some function f
which is precised in Appendix C.

Now, we are ready to state our bound on the generalization error of FSVM.

Theorem 4. For FSVM optimized using pK,R, n, e, bq-FL-SGD with W “ Bdp1q, X “ BdpBq and
θ P R`, if Assumptions 1, 2, and 3 hold for some constants qe,b and α, then,

ES,W„PS,W

”

genθ

´

S,W pRq
¯ı

“ O

¨

˝

d

B2 logpnK
?
Kq

ř

rPrRs Lr

nK2θ2

˛

‚, (13)

where Lr “ inf
těqpR´rq

"

t logmax

ˆ

Kθ

Bt
, 2

˙*

ď q
2pR´rq

e,b logmax

¨

˝

Kθ

Bq
pR´rq

e,b

, 2

˛

‚. (14)

To the best of our knowledge, this result is the first of its kind for FSVM. We pause to state a few remarks
that are in order, before discussing some key elements of its proof technique. First, the bound of Theorem 4
shows an explicit dependence on the number of communication rounds R, in addition to the number of
participating devices K and the size of individual datasets n. In particular, the bound increases with R
for fixed pn,Kq. This suggests that the generalization power of FSVM may diminish by more frequent
communication with the PS, as illustrated also numerically in Section 5. As a consequence, the population
risk decreases less faster with R than the empirical risk. By taking into account the extra communication
cost of larger R, this means that during the training phase of such systems, one might choose deliberately to
stop before convergence (at some appropriate round R‹

ď R), accounting for the fact that while interactions
that are beyond R‹ indeed generally contribute to diminishing the empirical risk further their net effect on
the true measure of performance, which is the population risk, may be negligible. In the experiment section,
we show such net effect when local models are ResNet-56 could be even negative. Second, for fixed pn,Rq

the bound improves (i.e., gets smaller) with K with a factor of
a

logpKq{K. This behavior was previously
observed in different contexts and under different assumptions in Sefidgaran et al. (2022a) and Barnes et al.
(2022a;b), but in both works only for the “one-shot” FL setting, i.e., R “ 1. In fact, it is easily seen that for
the specific case R “ 1, the bound recovers the result of Sefidgaran et al. (2022a, Theorem 5).

Proof outline: Theorem 4 is proved in Appendix F.4 using an extended version of Theorem 3, i.e.,
Proposition 1 (in Appendix D.2), and by bounding the appearing rate-distortion terms therein. Intuitively,
rate-distortion terms are equal to the number of bits needed to represent an (optimal) quantized model given
certain quantization precision. To establish an appropriate upper bound that is independent of the dimension
d, we apply a quantization on a smaller d-independent dimension, using the Johnson-Lindenstrauss (JL)
dimension-reduction transformation (Johnson & Lindenstrauss, 1984), which is inspired by Grønlund
et al. (2020); Sefidgaran et al. (2022a); but with substantial extensions needed for the considered multiple-
client multi-round setup. In particular, the main difficulty here is that while in the rate-distortion terms
of Proposition 1, the mutual information term (11) does not depend on W pRq, the distortion criterion (12)
does. Thus, one needs to study the propagation of the distortion, induced by quantizing a local model, until
the last round. The distortion propagation differs depending on the round r where the local model is located.
Hence, for a fixed propagated distortion, the amount of dimension reduction should depend on r.

More precisely, for each k P rKs and r P rRs we first map the local models W prq

k to a space with a smaller

dimension of order mr “ O
´

B2 logpnK
?
Kq logpK{tq

K2θ2t2

¯

, for some t ě qpR´rq, using JL transformation.
As can be observed, we allow possibly different values of the dimensions for different values of r. For
a contractive SGD, mr decreases with r. Then, we define the quantized model subtly using this locally
mapped model, as defined in equation (63). This quantization together with a newly defined loss functionin

8
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(a) Generalization error (b) Bound of Theorem 4

Figure 2: Generalization error of FSVM and bound of Theorem 4 as functions of R, for n “ 100

(a) Generalization error (b) Empirical and population risks

Figure 3: Performance of FL-SGD with ResNet-56 local models as a function of R

equation (65) allow to study the propagation of such quantization distortion in two steps: first, we show that
the immediate aggregated model has K times smaller distortion level than that of client k. Next, we study
the evolution of distortion along SGD iterations till the end of the round R, using induction on the rounds
(see “Bounding (73)” in the proof) and by exploiting the properties of the JL transformation (see “Bounding
(74)” & “Bounding (75)” in the proof). Intuitively, for a contractive SGD, the distortion decreases. This is
why our mr decreases with r. For a non-contractive SGD, the opposite holds.

5 EXPERIMENTS

FSVM. We start by verifying the increasing behavior of the generalization error of FSVM with respect to
R, as suggested by Theorem 4. To do so, we consider a binary classification problem, with two extracted
classes (digits 1 and 6) of MNIST dataset. Details and further experiments can be found in Appendix E.

Fig. 2 shows the (estimated) expected generalization error ES,WrgenpS,W pRq
s and the computed bound

of Theorem 4 versus the number of communication rounds R, for fixed n “ 100 and for K P t10, 20, 50u.
The expectation is estimated over M “ 100 Monte-Carlo simulations. As can be observed, for any value of
K, the generalization error increases with R, as predicted by the bound of Theorem 4. We emphasize that
for Fig. 2 the total number of training data points and SGD iterations are kept fixed regardless of the number
of running communication rounds R (for every value of R the devices perform τ “ en{R local SGD
iterations per-round); and, hence, the increase in the generalization error cannot be attributed to the classical
“overfitting” phenomenon. Appendix E.4 also reports similar behavior in the context of heterogeneous data.

Additional experiments on generalization of FL. To numerically verify the validity of our findings
beyond FSVM, we conducted additional experiments using ResNet-56 as local models, and with CIFAR-10
dataset. Fig. 3a shows the generalization error of the global model as a function of R while Fig. 3b shows
the corresponding empirical and population risks. We provide average values over 5 runs and the shaded
areas correspond to the standard deviation values. Experimental details are given in Appendix E.

One can observe in Fig. 3a that the generalization error is increasing with R, showing that the behavior
suggested by Theorem 4, and observed in the above FSVM experiments, remains valid in a different setup.
The empirical risk in Fig. 3b is decreasing with R as expected. More importantly, the population risk
in Fig. 3b can be observed to have a global minimum for R˚

» 100, while the maximum number of
communication rounds is R “ 3600, thus showing that one can minimize the “true” objective i.e., the
population risk, while reducing communication from a large amount.2

2The question of estimating, prior to training, the optimal value R˚ of R is an important one, with
far-reaching consequences in practice, e.g., for the design of simultaneously communication-efficient and
generalizable FL algorithms. This is left for future works.
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Appendices
The appendices are organized as follows:

• Appendix A contains the algorithmic representation of the considered federated learning setup.

• Appendix B contains the discussion and some preliminary results on the case where the datasets
used by each client during different rounds of the federated learning algorithm are not disjoint.

• Appendix C contains the rigorous statement and discussion of the Assumptions made for estab-
lishing the generalization bound of FSVM in Theorem 4.

• Appendix D contains further theoretical results. Specifically, this section contains

– a rate-distortion theoretic tail bound in Appendix D.1,
– extensions of all lossy bounds, i.e., extensions of Theorems 2, 3, and 6 in Appendix D.2.

• Appendix E contains experiments details and further experiments, including:

– experimental details in Appendix E.1,
– empirical and population risk for FSVM (See. Section 5) in Appendix E.2,
– experiment on FSVM for different values of n in Appendix E.3,
– experiment on FSVM in a heterogeneous data setting in Appendix E.4,
– experimental verification of Assumption 1 of Theorem 4 in Appendix E.5.

• Appendix F contains the deferred proofs of all our theoretical results.

– Appendix F.1 contains the proof of Theorem 1,
– Appendix F.2 contains the proof of Theorem 2,
– Appendix F.3 contains the proof of Theorem 3,
– Appendix F.4 contains the proof of Theorem 4,
– Appendix F.5 contains the proof of Theorem 5,
– Appendix F.6 contains the proof of Theorem 6,
– Appendix F.7 contains the proof of Proposition 1,
– Appendices F.8, F.9, F.10, and F.11 contain the proofs of Lemmas 1, 2, 3, and 4, respectively.

A FEDERATED LEARNING ALGORITHM

Denote the deterministic aggregation function equivalent to the degenerate conditional distribution
P
W prq|W

prq

rKs

, r P rRs, by the mapping M : WK
ÞÑ W , such that

W prq
“ M

´

W
prq

rKs

¯

„ P
W prq|W

prq

rKs

.

Then, the federated learning setup, described in Section 2 can be stated alternatively as in Algorithm 1.

Algorithm 1 The federated learning algorithm

1: Inputs: number of rounds R, local algorithms Ak and dataset Sk “
Ť

rPrRs S
prq

k for k P rKs,
and the aggregation function M

2: Output: W pRq

3: W p0q “ H

4: for r “ 1, 2 . . . , R do
5: @k P rKs : W

prq

k “ AkpS
prq

k ,W pr´1qq

6: W prq “ M
´

W
prq

rKs

¯

7: end for

13



Under review as a conference paper at ICLR 2024

B EXTENSION OF THE CONSIDERED FEDERATED LEARNING SETUP

In this paper, as a first step towards understanding the generalization behavior of Federated Learning
algorithms, we considered a setup where in each round multiple “local epochs” e P N˚ can occur for each
client’s data but the used datapoints are not reused in other rounds. That is, at round r P rRs, client k P rKs

computes updates using S
prq

k Ď Sk in order to minimize the empirical risk. When e “ 1, our setup is then a
“distributed online learning” setup. Therefore, we have defined a variant of the online learning framework or
the “without replacement” setup with one epoch, that has been used before e.g., in (Haddouche & Guedj,
2022) for a similar one-client multi-round setup.

Here, we show that our framework and proof techniques can be extended to include multiple epochs of the
without replacement setup, i.e., when one data can be used in multiple rounds, as well. More precisely,
assume

Ť

rPrRs S
prq

k Ď Sk where S
prq

k is the dataset used by client k P rKs during round r P rRs with size

nk,r . Here, in contrast to the rest of the paper, we allow the datasets tS
prq

k urPrRs to have intersections for
each k P rKs, i.e., a given Zk,j P Sk, j P rns, may be used in multiple rounds and therefore belongs to

multiple S
prq

k , r P rRs. We denote the elements of Sprq

k by S
prq

k “ tZk,r,1, . . . , Zk,r,nk,r
u. Note that

ď

rPrRs

ď

jPrnk,rs

tZk,r,ju Ď tZk,1, . . . , Zk,nu.

The local training algorithm and the model aggregation are the same as before. In other words, PW|S is
similar to (2) defined as

PW|S “
â

rPrRs

"

â

kPrKs

´

P
W

prq

k |S
prq

k ,W pr´1q

¯

P
W prq|W

prq

rKs

*

. (15)

Generalization error. For a (global) model or hypothesis wpRq
P W , the population risk is defined as

before:

L
`

wpRq
˘

“
1

K

ÿK

k“1
EZk„µk

“

ℓ
`

Zk, w
pRq

˘‰

.

We define the empirical risk as

L̂
`

s, wpRq
˘

:“
1

KR

ÿK

k“1

ÿR

r“1
L̂
`

s
prq

k , wpRq
˘

(16)

“
1

KR

ÿK

k“1

ÿR

r“1

1

nk,r

ÿnk,r

j“1
ℓ
`

zk,r,j , w
pRq

˘

.

The generalization error of the model wpRq for dataset s “ s
rRs

rKs
is evaluated as

gen
`

s, wpRq
˘

“ L
`

wpRq
˘

´ L̂
`

s, wpRq
˘

“
1

KR

ÿR

r“1

ÿK

k“1
gen

`

s
prq

k , wpRq
˘

, (17)

where gen
`

s
prq

k , wpRq
˘

“ EZk„µk

“

ℓ
`

Zk, w
pRq

˘‰

´ L̂
`

s
prq

k , wpRq
˘

.

For this setup, we derive an equivalent lossless version of Theorem 3. The equivalent results for the lossy
version, as well as other theorems, can be established similarly, but with cumbersome notation and complex
dependencies between each round’s data for each client and their models at all rounds.

For every k P rKs and 1 ď r ď r1
ď R, denote

W
rr:r1

s

k
:“ W

prq

k ,W
pr`1q

k , . . . ,W
pr1

q

k ,

with the convention that W rr:rs

k
:“ W

prq

k .

Theorem 5. Assume that the loss ℓpZk, wq is σ-subgaussian for every w P W and any k P rKs. Then,

ES,W„PS,W

”

gen
´

S,W pRq
¯ı

ď

g

f

f

e

2σ2

KR

ÿ

kPrKs,rPrRs

1

nk,r
I
´

S
prq

k ;W pr´1q,W
rr:Rs

k

¯

. (18)

This result is proved in Section F.5.
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Using chain rule, we can write each term in the summation as

I
´

S
prq

k ;W pr´1q,W
rr:Rs

k

¯

“I
´

S
prq

k ;W pr´1q
¯

` I
´

S
prq

k ;W
prq

k

ˇ

ˇW pr´1q
¯

` I
´

S
prq

k ;W
pr`1q

k

ˇ

ˇW pr´1q,W
prq

k

¯

` . . .

` I
´

S
prq

k ;W
pRq

k

ˇ

ˇW pr´1q,W
rr:R´1s

k

¯

.

The term I
´

S
prq

k ;W pr´1q
¯

captures the dependence of Sprq

k on the aggregated model W pr´1q and accounts

for the appearance of elements of Sprq

k in the previous rounds. If tS
prq

k urPrRs are disjoint, i.e., one epoch
of the without replacement setup as considered throughout the paper, then this term is equal to zero.
Furthermore, the terms I

´

S
prq

k ;W
pr`1q

k

ˇ

ˇW pr´1q,W
prq

k

¯

, . . ., I
´

S
prq

k ;W
pRq

k

ˇ

ˇW pr´1q,W
rr:R´1s

k

¯

capture

the appearance of elements of Sprq

k in the following rounds. This term is also equal to zero for one epoch of

the without replacement setup. Thus, whenever tS
prq

k urPrRs are disjoint, Theorem 5 reduces to

ES,W„PS,W

”

gen
´

S,W pRq
¯ı

ď

g

f

f

e

2σ2

KR

ÿ

kPrKs,rPrRs

1

nk,r
I
´

S
prq

k ;W
prq

k

ˇ

ˇW pr´1q
¯

, (19)

which is the lossless version of Theorem 3. This result therefore extends the lossless version of Theorem 3.

Now, considering for example the round pr ` 1q of client k, then only few samples of Sprq

k are used in this

round (together with other samples from Sk) to generate W
pr`1q

k . Moreover, the samples used from S
prq

k

are also used before in round r to generate W
prq

k , which is then aggregated by other client models and used

as the initialization in round r ` 1. Thus, one expects I
´

S
prq

k ;W
pr`1q

k

ˇ

ˇW pr´1q,W
prq

k

¯

to be smaller than

I
´

S
prq

k ;W
prq

k

ˇ

ˇW pr´1q
¯

. In addition, the term I
´

S
prq

k ;W pr´1q
¯

captures the dependence of Sprq

k on the

aggregated model W pr´1q. Again, if the overlap between datasets used in different rounds is small and
if the number of clients K is sufficiently large, we can expect this term to be small. Thus, in the regime
where the amount of data used from previous rounds is small and the number of clients is large, then one
expects the RHS of (19) (which is the lossless version of Theorem 3) to be not very far from the RHS of
(18). However, this justification requires rigorous analysis which is left for future work.

Finally, suppose that the setup considered in Section A is repeated for e1
P N˚ epochs, i.e., in total e1R

rounds. This means that for every k P rKs and r P rRs, the sets tS
prq

k urPrRs are disjoint and

S
prq

k “ S
pR`rq

k “ ¨ ¨ ¨ “ S
ppe1

´1qR`rq

k .

Note that in this setup, the total number of rounds is e1R, and the final global model is W e1R. This setup
for each client is called “SingleShuffle” without-replacement SGD with e1-epochs (Ahn et al., 2020). It can
be easily verified that in this case, the bound of (19) can be further upper bounded as

ES,W„PS,W

”

gen
´

S,W peRq
¯ı

ď

g

f

f

e

2σ2

nK

ÿ

kPrKs,rPrRs

ÿ

jPre1s

I
´

S
prq

k ;W
ppj´1qR`rq

k

ˇ

ˇW ppj´1qR`r´1q
¯

.

(20)

Once again, intuitively, for each k and r, only the first few terms of the summation
ř

jPre1s I
´

S
prq

k ;W
ppj´1qR`rq

k

ˇ

ˇW ppj´1qR`r´1q
¯

are expected to form the dominant term.

C ASSUMPTIONS FOR GENERALIZATION BOUND OF FSVM

In this section, we state and discuss rigorously the Assumptions that are used for establishing the general-
ization bound of FSVM in Theorem 4 in Section 4.
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Assumption 1. Consider an pK,R, n, e, bq-FL-SGD model. For every r P r2 : Rs, every pair
pwpr´1q, w1pr´1q

q and every k P rKs, the following holds for any pair pw
prq

k , w
1prq

k q that are both generated

using s
prq

k with exactly similar mini-batches Bk,r,t Ď s
prq

k , t P re nR{bs: there exists qe,b P R`3 such that
›

›

›
w

prq

k ´ w
1prq

k

›

›

›
ď qe,b

›

›

›
wpr´1q

´ w1pr´1q
›

›

›
. (21)

If qe,b ă 1, we say that SGD is contractive. The contractivity property of SGD was previously studied and
theoretically proved under some assumptions, e.g., when the surrogate loss function ℓ̃ is smooth and strongly
convex as in (Dieuleveut et al., 2018; Park et al., 2022; Kozachkov et al., 2022). Note that in general the
value of qe,b ă 1 depends on the running round r and on the learning rate ηr,t. However, in our case, as
stated in Section 2, for simplicity we constrain the learning rates ηr,t to be identical across devices and
rounds. This is assumed only for the sake of simplicity, and Theorem 4 can be extended straightforwardly
to the case where qe,b could depend on r.

Theorem 4 holds for any value of qe,b. However, the result becomes particularly interesting when qe,b ď 1.
It can be shown that for a convex, Lipschitz, smooth (surrogate) loss function, qe,b is at most 1. For the
case of strict inequality, i.e. qe,b ă 1, as mentioned above strongly convex loss functions (with some extra
assumptions) indeed satisfy this condition. In FSVM, the considered surrogate loss, which is the hinge loss,
is convex, which becomes strongly convex when L2 regularizer is added. Even for the no-regularization
case, for which the loss is not strongly convex and we only know theoretically qe,b ď 1, the numerical
findings suggest that they are strictly less than one. Indeed, we computed the simulated values of qe,b with
respect to R as displayed in Fig. 9. There, the values are computed for K “ 50 clients and averaged over
10 runs. The standard deviation is extremely small. One can observe that all values are below 1.

Next, we state an assumption on the first-order approximation error of the local steps of SGD for one client
at one round.

Assumption 2. Consider the pK,R, n, e, bq-FL-SGD model with W “ Bdp1q. Consider any k P rKs,
r P r2 : Rs, and wpr´1q. Fix some dataset sprq

k as well as the mini-batches Bk,r,t Ď s
prq

k , t P re nR{bs.
Then, there exists a constant α P R`, such that for any wε P W ,

›

›

›

›

w
1prq

k ´

ˆ

w
prq

k `
1

K
Dpwpr´1q,tBk,r,tutq wε

˙
›

›

›

›

ď α }wε}
2
{K2, (22)

where w
prq

k and w
1prq

k are the local models of client k at round r, when initialized by wpr´1q and
wpr´1q

`
wε
K , respectively, and when the same mini-batches tBk,r,tut are used. Moreover, the matrix

Dpwpr´1q,tBk,r,tutq P Rdˆd represents the “overall gradient of SGD” of one client over one round, that

depends on the initialization wpr´1q and mini-batches tBk,r,tut. We further assume that the spectral norm
of this matrix is bounded by qe,b.

The inequality (22), which can be obtained using an easy expansion argument applied to the output of the
perturbed initialization, is reasonable for moderate or large values of K, e.g., by assuming the boundedness
of higher-order derivatives.

Moreover, it can be shown that

Dpwpr´1q,tBk,r,tutq “
ź

tPrτs

´

Id ´ Ht
pwpr´1q,tBk,r,t1 ut1Prtsq

¯

, (23)

where τ “ enR{b, Id is the d ˆ d identity matrix, and

Ht
pwpr´1q,tBk,r,t1 ut1Prtsq

:“ HessgBk,r,t

´

W
prq

k,t

¯

.

Here W
prq

k,t is the model achieved at iteration t, when initialized by wpr´1q and updated using the mini-
batches tBk,r,t1 ut1Prts, Hessgp¨q denotes the Hessian matrix, and

gBpwq :“
η

b

ÿ

zPB
ℓ̃pz, wq.

Lastly, we state an assumption on K being sufficiently large.

3Note that in general qe,b may depend on nR as well. However, the dependence is dropped for brevity.
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Assumption 3. Suppose Assumptions 1 & 2 hold for some constants qe,b and α. Then, for R ě 2,4 the
number of clients K satisfies at least one of the following conditions.

• Condition 1:

K2
ě min

βPp0,1s
max

¨

˚

˝

max
rPrR´2s

α2
´

pβ ` 1qq2e,b

¯r

βq2e,b
, max
rPrR´1s

6αB
´

qre,b ´

´

pβ ` 1qq2e,b

¯r¯

´

qe,b ´ pβ ` 1qq2e,b

¯

θ

˛

‹

‚

, (24)

• Condition 2: There exists some ν ě 0 such that 1
K2 ď

1´q2e,b
α ´ ν and

K2
ě max

rPrR´1s

6αB
´

qre,b ´ p1 ´ ανq
r
¯

`

qe,b ´ p1 ´ ανq
˘

θ
. (25)

This assumption is merely used for the simplification of the technical steps of the proof and more precisely
the recursive steps in the part Bounding (73) in the proof of Theorem 4 in Appendix F.4. We expect
Theorem 4 to hold for moderate values of K as well. It is insightful to note that in many cases the terms
involving the maximization over r in (24) and (25) are either maximized for r “ 1 or can be bounded by R,
and hence the conditions can be simplified. As an example, whenever qe,b ă 1, then a sufficient condition
to satisfy (24) is to have

K2
ě min

βPp0,minp1,1{q2e,b´1qs
max

¨

˚

˝

α2
pβ ` 1q{β, max

rPrR´1s

6αBrmax
´

qe,b, pβ ` 1qq2e,b

¯r´1

θ

˛

‹

‚

.

Note that the second term goes to zero as r Ñ 8. The above condition can be further made loose to achieve
the below sufficient condition

K2
ě min

βPp0,minp1,1{q2e,b´1qs
max

´

α2
pβ ` 1q{β, 6αBR{θ

¯

.

D ADDITIONAL THEORETICAL RESULTS

D.1 A RATE-DISTORTION THEORETIC TAIL BOUND ON FL

In this section, we state a rate-distortion theoretic tail bound. For this bound, let the randomness of
the learning algorithm used by client k P rks during round r P rRs be represented by some variable
U

prq

k , assumed to be independent of every other random variable. Denote U :“ U
rRs

rKs
. This assumption

implies that W prq

k is a deterministic function of Sprq

k , U prq

k , and the initialization W pr´1q. For any fixed
δ ą 0, denote Gδ

S,U,W :“
␣

νS,U,W : DKL

`

νS,U,W}PS,U,W

˘

ď logp1{δq
(

. Note that under ν, for every

k P rKs and r P rRs, W prq

k is a deterministic function of Sprq

k , U prq

k and W pr´1q. Moreover, W prq is a

deterministic function of W prq

rKs
. Hence, νW|S,U “ PW|S,U. Also, let for given νS,U,W

RDpνS,U,W, k, r, ϵq “ inf
p
Ŵ

prq
k

|S
prq
k

,U
prq
k

,W pr´1q

IpS
prq

k ; Ŵ
prq

k |U
prq

k ,W pr´1q
q, (26)

where the mutual information is calculated with respect to ν
S

prq

k ,U
prq

k ,W pr´1qpŴ prq

k |S
prq

k ,W pr´1q and the
infimum is over all conditional Markov kernels p

Ŵ
prq

k |S
prq

k ,W pr´1q that satisfy

EνS,U,W

”

genpS
prq

k ,W pRq
q

ı

´ EνS,Upνpqk,r

”

genpS
prq

k , Ŵ
pRq

q

ı

ď ϵ, (27)

with

pνpqk,r “ν
W pr´1q,W

prq

rKszk
|S

rrs

rKs
zS

prq

k ,U
rrs

rKs
zU

prq

k

p
Ŵ

prq

k |S
prq

k ,U
prq

k ,W pr´1q ν
Ŵ

pRq
|Ŵ

prq

k ,W
prq

rKszk
,S

rr`1:Rs

rKs
,U

rr`1:Rs

rKs

.

It can be easily seen that this definition is consistent with (11).

4No condition is needed for R “ 1.
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Theorem 6. Consider a pPW|S,K,R, nq-FL model with distributed dataset S „ PS. Suppose that the loss
ℓpZk, wq is σ-subgaussian for every w P W and any k P rKs. Fix any distortion level ϵ P R. Then, for any
δ ą 0, with probability at least p1 ´ δq, we have

genpS,W pRq
q ď

d

supνS,U,WPGδ
S,U,W

ř

kPrKs,rPrRs RDpνS,U,W, k, r, ϵk,rq ` logp1{δq

nK{p2σ2q
` ϵ,

for any tϵk,rukPrKs,rPrRs Ă R such that

1

KR

ÿ

kPrKs

ÿ

rPrRs
ϵk,r ď ϵ. (28)

In a sense, this result, proved in Appendix F.6, says that in order to have a good generalization performance
(not only in-expectation as in Theorem 3 but also in terms of tails), the algorithm should be compressible
not only under the true distribution PS,W but also for all all those distributions νS,U that are in the vicinity
of PS,U.

D.2 LOSSY COMPRESSION BOUNDS REVISITED

In all lossy bounds, i.e., Theorems 2, 3, and 6, we had three common assumptions on the quantizations of
the local models:

1. Ŵ Ď W ,

2. the loss and generalization error definitions considered for the models Ŵ are the same as the one
considered for W ,

3. the quantization of the model W prq

k is performed according to p
Ŵ

prq

k |W pr´1q,S
prq

k

.

These choices are natural and intuitive ones for the FL learning algorithms. However, it turns out that all
these conditions can be relaxed, i.e., in the following extended results, we consider

1. Ŵ to be any arbitrary set in Rm, for some arbitrary m P N˚,

2. the loss function ℓ̂pz, ŵq : Z ˆ Ŵ Ñ R` to be defined arbitrarily, possibly different than ℓ. The
generalization error for Ŵ is defined then with respect to this loss function,

3. for every k P rKs and r P rRs, quantizing the aggregated global model Ŵ
pRq

according to

p
Ŵ

pRq

k |W pr´1q,S
prq

k ,V
prq

k ,W
prq

rKszk
,S

rr`1:Rs

rKs
,V

rr`1:Rs

rKs

, (29)

where V prq

k P V presents some mutually independent available randomness used by client k during
round r. Note that unlike the Section 3.2, they do not necessarily represent all the randomness
used by client k during round r, e.g., they can be set to some constants or they can be set to be
U

prq

k which is all the used randomness. Denote V “ V
rRs

rKs
. Note that

PS,V,W “ PSPVPW|S,V. (30)

The new choice of the quantization distribution implies that for every k P rKs and r P rRs, in
a sense we fix W pr´1q,W

prq

rKszk
, V

rr`1:Rs

rKs
, S

rr`1:Rs

rKs
, and consider quantization of the different

global models obtained for different Sprq

k .

Now, we state the extended results. For the following results, consider arbitrary set Ŵ P Rm, loss function
ℓ̂pz, ŵq, and the generalization error that is defined with respect to this loss function. Next, we use the
shorthand notation:

Vk,r “

´

V
prq

k ,W pr´1q,W
prq

rKszk
, S

rr`1:Rs

rKs
, V

rr`1:Rs

rKs

¯

. (31)

First, we state the extended version of Theorem 3, that is used in the proof of Theorem 4. The proofs of
these extended results follow the same lines as the original results. As an example, we show the proof of
Proposition 1 in Appendix F.7. The rest of the proofs follow the proof of their corresponding theorems.
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For k P rKs, r P rRs and ϵ P R, let Pk,r include all conditional Markov kernels

p
Ŵ

pRq

k |S
prq

k ,Vk,r

, (32)

that satisfy

E
S,V,W,Ŵ

pRq

„

genpS
prq

k ,W pRq
q ´ genpS

prq

k , Ŵ
pRq

q

ȷ

ď ϵ, (33)

where the joint distribution of S,V,W, Ŵ
pRq

factorizes as PS,V,Wp
Ŵ

pRq

k |S
prq

k ,Vk,r

.

Now, define the rate-distortion function

RD‹
pPS,W, k, r, ϵq “ inf

Pk,r

IpS
prq

k ; Ŵ
pRq

k |Vk,rq, (34)

where the mutual information is evaluated with respect to

P
S

prq

k

PVk,r
p
Ŵ

pRq

k |S
prq

k ,Vk,r

. (35)

Proposition 1. For any pPW|S,K,R, nq-FL model with distributed dataset and randomness pS,Vq „

PSPV, if the loss ℓpZk, wq is σ-subgaussian for every w P W and any k P rKs, then for every ϵ P R it
holds that

ES,W„PS,W

”

genpS,W pRq
q

ı

ď

d

2σ2
ř

kPrKs,rPrRs RD‹
pPS,W, k, r, ϵk,rq

nK
` ϵ,

for any set of parameters tϵk,rukPrKs,rPrRs Ă R which satisfy

1

KR

ÿ

kPrKs

ÿ

rPrRs
ϵk,r ď ϵ.

Next, we state the extension of Theorem 2.

Proposition 2. Suppose that ℓpz, wq P r0, Cs Ă R`. Consider any set of priors
␣

Pk,r

(

kPrKs,rPrRs

where Pk,r is a conditional prior on Ŵ
pRq

given Vk,r. Fix any distortion level ϵ P R`. Consider any
pPW|S,K,R, nq-FL model and any choices of

"

p
Ŵ

pRq

k |S
prq

k ,Vk,r

*

kPrKs,rPrRs

, (36)

that for every s P ZnK satisfy the ϵ-distortion criterion
ˇ

ˇ

ˇ

ˇ

EPW|s

”

genps,W pRq
q

ı

´
1

KR

ÿ

kPrKs,rPrRs
EpPpq‹

k,r

”

genps
prq

k , Ŵ
pRq

q

ı

ˇ

ˇ

ˇ

ˇ

ď ϵ{2, (37)

where

pPpq
‹
k,r “ P

W pr´1q,W
prq

rKszk
|s

rr´1s

rKs
,s

prq

rKszk

P
V

prq

k ,V
rr`1:Rs

rKs

p
Ŵ

pRq
|S

prq

k ,Vk,r

.

Then, with probability at least p1 ´ δq over S „ PS, we have that EW„PW|S

”

genpS,W pRq
q

ı

is upper
bounded by

g

f

f

f

e

1
KR

ř

kPrKs,rPrRs E
„

DKL

ˆ

p
Ŵ

pRq

k |S
prq

k ,Vk,r

›

›

›

›

Pk,r

˙ȷ

` logp

?
2n?
Rδ

q

p2n{R ´ 1q{C2
` ϵ,

where the expectations are with respect to P
W pr´1q,W

prq

rKszk
|s

rr´1s

rKs
,s

prq

rKszk

P
V

prq

k ,V
rr`1:Rs

rKs

.

Finally, we present the extension of the rate-distortion theoretic tail bound. For the rest of this section,
assume that V prq

k “ U
prq

k , for k P rKs and r P rRs and for a better clarity, denote Vk,r by Uk,r for this
choice.
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Consider any νS,U,W P Gδ
S,U,W. For this distribution and k P rKs and r P rRs, let the Pν,k,r include all

conditional Markov kernels

p
Ŵ

pRq

k |S
prq

k ,Uk,r

, (38)

that satisfy

E
S,U,W,Ŵ

pRq

„

genpS
prq

k ,W pRq
q ´ genpS

prq

k , Ŵ
pRq

q

ȷ

ď ϵ, (39)

where the expectation is with respect to νS,U,Wp
Ŵ

pRq

k |S
prq

k ,Uk,r

. Now, let

RD‹
pνS,U,W, k, r, ϵq “ inf

Pν,k,r

IpS
prq

k ; Ŵ
pRq

k |Uk,rq, (40)

where the mutual information is calculated with respect to ν
S

prq

k ,Uk,r
p
Ŵ

pRq

k |S
prq

k ,Uk,r

.

Proposition 3. Consider a pPW|S,K,R, nq-FL model with distributed dataset and randomness pS,Uq „

PSPU. Suppose that the loss ℓpZk, wq is σ-subgaussian for every w P W and any k P rKs. Fix any
distortion level ϵ P R. Then, for any δ ą 0, with probability at least p1 ´ δq, we have

genpS,W pRq
q ď

g

f

f

e

supνS,U,WPGδ
S,U,W

ř

kPrKs,rPrRs RD‹
pνS,U,W, k, r, ϵk,rq ` logp1{δq

nK{p2σ2q
` ϵ,

for any tϵk,rukPrKs,rPrRs Ă R such that

1

KR

ÿ

kPrKs

ÿ

rPrRs
ϵk,r ď ϵ. (41)

E ADDITIONAL EXPERIMENTAL RESULTS & DETAILS

In this section, we first provide experimental and implementation details that were omitted in the main text.
Then, some additional numerical simulations are shown and described.

E.1 EXPERIMENTAL & IMPLEMENTATION DETAILS

Tasks description In our experiments, we simulate a Federated Learning (FL) framework, according
to the setup of this paper (see Section 1), on a single machine, where each “client” is an instance of the
SVM model, equipped with a dataset. All tasks are performed on the same machine and we do not consider
any communication constraint as it is not of interest in this paper. Once all clients’ models are trained,
their weights are averaged and used by another instance of the SVM model (meant to be the one at the
parameter server). This is utilized for computing the empirical risk L̂θpS,W q and population risk LpW q. In
particular, LpW q is estimated using a test set of fixed size Ntest. Using these quantities, the generalization
error genpS,W q is computed.

The (local) dataset of client # k P rKs, denoted as Sk, is composed of n samples that are drawn uniformly
without replacement from S. In other words, the dataset S is initially split into K subsets. Each local
dataset Sk is then further split into S

prq

k , r P rRs i.e., the training samples used at each round r by client k.

Datasets The learning task is binary image classification for the FSVM experiments. More precisely, we
trained the SVM model to classify images of digits 1 and 6 from the standard MNIST (LeCun et al., 2010),
which results in approximately 12000 training images and 2000 test images. Experiments were performed
for different pairs of digits, giving similar results, and thus are not reported. For the additional experiments
in Section 5, we considered the whole CIFAR-10 dataset (10-class classification) (Krizhevsky & Hinton,
2009) composed of 50000 training images and 10000 test images.

Model Each client is equipped with SVM with Radial Basis Function (RBF) kernel (FSVM experiments)
or ResNet-56 with batch normalization (additional experiments with NNs). Stochastic Gradient Descent
(SGD) is used for optimization.
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Hyperparameter Symbol Value
Local epochs e 40
Learning rate η 0.01

Batch size b 1
Kernel parameter γ 0.05

Dimension of the approximated kernel feature space d 4000

(a) FSVM

Hyperparameter Symbol Value
Number of clients K 16

Epochs e 150
Learning rate η 1.0

Batch size b 128

(b) Additional experiments (ResNet-56 with CIFAR-10)

Table 1: Hyperparameters for experiments in Section 5

(a) Empirical risk (b) Population risk

Figure 4: Empirical and population risk of FSVM w.r.t. R, for n “ 100

Training and hyperparameters All local models were trained with the same hyperparameters, which
are of common usage, and are given in Table 1. The data is scaled and normalized so as to get zero-mean
and unit variance.

The training scheme of the SVM experiments follows the setup described in 4. All clients have the same
fixed learning rate ηt “ η. Each local model is trained for e local epoch at each round r P rRs. A local
epoch refers to a pass over the training samples at each round r P rRs i.e., Sprq

k . Before each local epoch,

S
prq

k is shuffled. The training algorithm ends when each client # k P rKs has done e local epochs on each of

the subsets Sprq

k , r P rRs.

For the ResNet-56 simulations, we did not stick to the previous setup and used a more standard training
scheme. Precisely, each client does only one pass over its data S

prq

k at each round r “ 1, . . . , R. When the

R rounds are completed, a global epoch is achieved, and each client starts again to train with S
p1q

k until
another epoch is completed.

Hardware and implementation We performed our experiments on a server equipped with 56 CPUs
Intel Xeon E5-2690v4 2.60GHz and 4 GPUs Nvidia Tesla P-100 PCIe 16GB.

Our implementations use the Python language. The open-source machine learning library scikit-learn
(Pedregosa et al., 2011) is used to implement SVM. In particular, we use SGDClassifier to implement
SGD optimization and RBFSampler for the Gaussian kernel feature map approximation. The deep learning
library PyTorch is used for the CIFAR-10 experiments using ResNet-56.
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(a) (b)
Figure 5: Generalization error of FSVM and bound of Theorem 4 w.r.t. R, for K “ 10

(a) (b)
Figure 6: (a) Empirical risk and (b) population risk of FSVM w.r.t. R, for K “ 10

E.2 EMPIRICAL AND POPULATION RISK FOR FSVM

Fig. 4 shows the empirical risk L̂pS,W pRq
q and the (estimated) population risk LpW pRq

q, as functions of
R, for the FSVM experiment in Section 5. The population risk is estimated using the entire test dataset of
MNIST, for the two classes, with Ntest “ 2093. Interestingly, while the empirical risk keeps decreasing for
R ě 5, the population risk no longer decreases beyond R “ 5. This numerically validates the claim that the
population risk may “converge” faster than “empirical risk”. Hence, fewer rounds may be needed, if one
can effectively take the “estimated” generalization error into account.

E.3 GENERALIZATION ERROR OF FSVM FOR DIFFERENT VALUES OF n

Fig. 5 shows the (expected) generalization error (Fig. 5a) of FSVM and the bound of Theorem 4 (Fig. 5b)
with respect to R for K “ 10 fixed and n P t100, 200, 500u. Fig. 6 shows the empirical risk and the
estimated population risk.

These plots suggest that our observed behaviors in Section 5 hold for fixed K and for various values of n.
That is:

• The generalization error increases with R for any fixed n,
• For any fixed R, both the generalization error and bound improve as n increases,
• Above findings are compatible with the behavior predicted by the bound of Theorem 4,
• While the empirical risk keeps decreasing for R ě 5, the population seems to have reached its

minimum for R “ 5.

Note that similar results were obtained for other values of n.

E.4 EXPERIMENTS FOR A HETEROGENEOUS DATA SETTING

We simulate a heterogeneous data setting (i.e., non-i.i.d.) by adding Gaussian white noise with standard
deviation σ “ 0.2 to the training and testing images of a fraction f “ 0.2 of the clients. Therefore, as in the
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setup described in Section 1, the data distributions of clients µk, k P rKs are different. The hyperparameters
remain, however, identical as we aim at comparing the numerical results with the homogeneous data case.

Similar to Section 5, we compute the generalization error of FSVM, as well as the bound of Theorem 4,
with respect to R (see Fig. 7) and show the corresponding train and test risks (see Fig. 8).

The same observations can be made for the experiments in the homogeneous setting (Section 5). Remark
that, on one hand, in comparison to Fig. 4, the empirical risk values on Fig. 8 are larger. This is expected, as
the final global model is a simple arithmetic average of local models and hence may struggle to achieve
the optimum of each local objective function in the presence of data heterogeneity. Therefore, more
communication rounds R are needed to achieve the same level of optimization as in the homogeneous case.
On the other hand, the generalization error values (see Fig. 7a) are smaller than in the i.i.d. setup (see
Fig. 2a). The global model is indeed less likely to overfit due to the “noise” that is injected into some of the
local datasets.

(a) (b)
Figure 7: Generalization error of FSVM (non-iid setting) and bound of Theorem 4 w.r.t. R, for n “ 100

(a) (b)
Figure 8: Empirical risk and population risk for FSVM (non-iid setting) w.r.t. R, for n “ 100

E.5 EXPERIMENTAL VERIFICATION OF ASSUMPTION 1 FOR THEOREM 4

In this section, we show the computed values of the contraction coefficient qe,b in Assumption 1 of
Theorem 4 with respect to R and with K “ 50 clients. The values are averaged over 10 runs. The standard
deviation is extremely small. The reader is referred to Appendix C for the discussion about the assumption.

E.6 ADDITIONAL EXPERIMENTS FOR RESNET-56

The experiments on ResNet-56 presented on Fig. 3 were conducted for several sets of hyperparameters and
showed similar behaviors. For example, we provide on Fig. 10 the generalization error and the empirical
and population risks for two different values of the learning rate η. The other hyperparameters are similar to
the experiment of Fig. 3 and are hence provided in Table 1b.

One can observe the same increasing trend of the generalization error with respect to R that was observed in
the previous experiments. Also, the presence of a global minimizer R˚ for the population risk is noticeable.
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(a) K “ 20 (b) K “ 50

Figure 9: Estimated coefficient qe,b as function of R for FSVM

(a) Generalization error (b) Empirical and population risks

Figure 10: Performance of FL-SGD with ResNet-56 local models as a function of R for different learning rates

F PROOFS

In this section, we provide the proofs of all theoretical results established in the paper and the appendices,
by the order of their appearances.

F.1 PROOF OF THEOREM 1

Without loss of generality assume σ “ 1{2, otherwise, consider the properly scaled loss function.

F.1.1 PART I.

Proof. The proof of this theorem is a particular case of Theorem 2, proved in Appendix F.2 for bounded
losses and is similar for the σ-subgaussian case. We, however, provide the proof for the sake of completeness.

Similar to the proof of (Sefidgaran & Zaidi, 2023, Theorem 6), it is easy to see that for any choice of the
prior Pk,r, it suffices to only consider an arbitrary PW|S. Now, let λ :“ 2n{R ´ 1. Let the RHS of the
bound as

a

∆pSq, i.e., let

∆pSq :“

1
KR

ř

kPrKs,rPrRs EW pr´1q„P
W pr´1q|S

rr´1s

rKs

”

DKL

´

p
W

prq

k |S
prq

k ,W pr´1q }Pk,r

¯ı

` logp

?
2n?
Rδ

q

λ
.

Recall that

EW„PW|S

”

genpS,W pRq
q

ı

“
1

KR

ÿ

kPrKs,rPrRs

EW„PW|S

”

genpS
prq

k ,W pRq
q

ı

.

For any fixed δ ą 0, denote

Gδ
S :“ tνS : DKLpνS}PSq ď logp1{δqu, (42)

as the set of all distributions νS over ZnK , whose KL-divergence with PS “ µbnK does not exceed
logp1{δq. Then,

logPS

´

EW„PW|S

”

genpS,W pRq
q

ı

ą
a

∆pSq

¯
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“ logPS

ˆ

EW„PW|S

”

genpS,W pRq
q

ı2
ą ∆pSq

˙

paq

ď max

ˆ

logpδq, sup
νSPGδ

S

"

´ DKLpνS}PSq ´ λEνS

„

∆pSq ´ EW„PW|S

”

genpS,W pRq
q

ı2
ȷ*˙

,

pbq

ď max

ˆ

logpδq, sup
νSPGδ

S

"

´ DKLpνS}PSq ´ λEνS

»

–∆pSq ´
1

KR

ÿ

k,r

EW„PW|S

”

genpS
prq

k ,W pRq
q
2
ı

fi

fl

*˙

,

(43)

where paq is shown in the next lemma, proved in Appendix F.8, and pbq is due to the Jensen inequality.

Lemma 1. The inequality (43) holds.

Now, showing that the second term of (43) is bounded by logpδq completes the proof. For any s and any
k P rKs and r P rRs, we have

λEνSPW|S

”

genpS
prq

k ,W pRq
q
2
ı paq

ď DKL

´

νSPW|S}PSpPPk,rqk,r

¯

` logEPSpPPk,rqk,r

„

eλ genps
prq

k ,Ŵ
pRq

q
2
ȷ

pbq

ďDKL

´

νSPW|S}PSpPPk,rqk,r

¯

` logp
a

2n{Rq (44)

“EνSP
W pr´1q|S

rr´1s

rKs

”

DKL

´

P
W

prq

k |S
prq

k ,W pr´1q }P
W

prq

k |W pr´1q

¯ı

`DKL

´

νS}PS

¯

` logp
a

2n{Rq, (45)

where paq holds by Donsker-Varadhan’s inequality, and where

pPPk,rqk,r :“ P
W pr´1q,W

prq

rKszk
|S

rr´1s

rKs
,S

prq

rKszk

P
W

prq

k |W pr´1qPW pRq|W
prq

rKs
,S

rr`1:Rs

rKs

,

and pbq is derived by using (Wainwright, 2019) and the fact that genps
prq

k , Ŵ
pRq

q is 1{
a

4n{R-subgaussian.
More precisely, using (Wainwright, 2019, Theorem 2.6.IV.), we have that for any λ1 P r0, 1q,

E

»

–e

λ1 gen

ˆ

s
prq
k

,Ŵ
pRq

˙2

pR{2nq

fi

fl ď
1

?
1 ´ λ1

.

Now, letting λ1 “
2n{R´1
2n{R

“ λ
2n{R,

, we drive that

E

»

–e
λ gen

ˆ

s
prq

k ,Ŵ
pRq

˙2
fi

fl “ E

»

–e

λ1 gen

ˆ

s
prq
k

,Ŵ
pRq

˙2

p2R{nq

fi

fl ď
1

?
1 ´ λ1

“
a

2n{R.

Combining (45) with (43) completes the proof.

F.1.2 PART II.

Proof. Consider any FL-model PW|S. Consider any set of priors
␣

Pk,r

(

kPrKs,rPrRs
such that Pk,r could

depend on W pr´1q, i.e., Pk,r is a conditional prior on W
prq

K given W pr´1q. Let λ :“ 2n{R ´ 1. Let the
RHS of the bound as

a

∆pS,Wq, i.e., let

∆pS,Wq :“

1
KR

ř

kPrKs,rPrRs log

˜

dP
W

prq
k

|S
prq
k

,W pr´1q

dPk,rr

¸

` logp

?
2n?
Rδ

q

λ
.

Further, recall that

genpS,W pRq
q “

1

KR

ÿ

kPrKs,rPrRs

genpS
prq

k ,W pRq
q.
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Denote

pPPqk,r – P
W pr´1q,W

prq

rKszk
|S

rr´1s

rKs
,S

prq

rKszk

Pk,rPW pRq|W prq,S
rr`1:Rs
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, k P rKs, r P rRs.

For any fixed δ ą 0, denote

Gδ
S,W :“

␣

νS,W : DKL

`
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˘

ď logp1{δq
(

, (46)

as the set of all distributions νS,W over ZnK
ˆ Wpn`1qK , whose KL-divergence with PS,W does not

exceed logp1{δq. Then,

P
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q ě
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ě ∆pS,Wq

¯

pbq

ď max

ˆ

logpδq, sup
νS,WPGδ

S,W

"

´ DKLpνS,W}PS,Wq ´ λEνS,W

»

–∆pS,Wq ´
1

KR

ÿ

r,k

genpS
prq

k ,W pRq
q
2

fi

fl

*˙
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(48)

where paq holds by Jensen inequality for the convex function gpxq “ x2 and pbq is due Lemma 2, proved in
Appendix F.9.

Lemma 2. The inequality (48) holds.

Next, note that using Donsker-Varadhan’s inequality we have
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¯

` logEpPPqk,r

„

eλ genpS
prq

k ,W pRq
q
2
ȷȷ

ďDKL

`

νS,W}νSpPPqk,r
˘

` DKLpνS}PSq ` logEPSpPPqk,r

„

eλ genpS
prq

k ,W pRq
q
2
ȷ

ďDKL

`

νS,W}νSpPPqk,r
˘

` DKLpνS}PSq ` log
´

a

2n{R
¯

“DKL

´

νS,W}νSPW|S

¯

` EνS,W

«

log

˜

dP
W

prq

k |S
prq

k ,W pr´1q

dPk,rr

¸ff

` DKLpνS}PSq ` log
´

a

2n{R
¯

“DKL

`

νS,W}PS,W

˘

` EνS,W

«

log

˜

dP
W

prq

k |S
prq

k ,W pr´1q

dPk,rr

¸ff

` log
´

a

2n{R
¯

.

Putting everything together conclude that

´DKLpνS,W}PS,Wq´λEνS,W

»

–∆pS,Wq ´
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ÿ
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fi

fl ď logpδq.

This completes the proof.

F.2 PROOF OF THEOREM 2

Proof. Similar to the proof of (Sefidgaran & Zaidi, 2023, Theorem 6), it is easy to see that for any choice
of the prior Pk,r , it suffices to only consider an arbitrary PW|S. Furthermore, without loss of generality, we
can assume C “ 1, otherwise, one can re-scale the loss function.

Let λ :“ 2n{R ´ 1 and the RHS of the bound as
a

∆pSq, i.e., let

∆pSq :“

1
KR

ř

kPrKs,rPrRs EW pr´1q„P
W pr´1q|S

rr´1s
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¯ı

` logp

?
2n?
Rδ

q

λ
` ϵ,
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where pŴ|S satisfy the ϵ-distortion criterion:
ˇ
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Further, recall that
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Next, we state the following lemma, proved in Appendix F.10.

Lemma 3. For any δ ą 0,

logPS
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”
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˙
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´ DKLpνS}PSq ´ λEνS

”

∆pSq ´ ϵ ´ ∆̃pSq
2
ı

*˙

, (51)

where Gδ
S is defined in (42) and

∆̃pSq :“
1

KR

ÿ

r,k

EW„pPpqk,r

„

genps
prq

k , Ŵ
pRq

q

ȷ

.

Now, for any s, we have

λ∆̃pSq
2

paq

ď
1

KR

ÿ

r,k

EW„pPpqk,r

„

λ genps
prq

k , Ŵ
pRq

q
2
ȷ

pbq

ď
1

KR

ÿ

r,k

ˆ

DKL

´

pPpqk,r}pPPk,rqk,r

¯

` logEW„pPPk,rqk,r

„

eλ genps
prq

k ,Ŵ
pRq

q
2
ȷ˙

“
1

KR

ÿ

r,k

ˆ

EW pr´1q„P
W pr´1q|S

rr´1s

rKs

”

DKL

´

p
Ŵ

prq

k |s
prq

k ,W pr´1q }P
Ŵ

prq

k |W pr´1q

¯ı

` logEW„pPPk,rqk,r

„

eλ genps
prq

k ,Ŵ
pRq

q
2
ȷ˙

,

where paq is derived by using Jensen inequality for the function gpxq “ x2, pbq using Donsker-Varadhan’s
inequality, and where

pPPk,rqk,r :“ P
W pr´1q,W

prq

rKszk
|S

rr´1s

rKs
,S

prq

rKszk

P
Ŵ

prq

k |W pr´1qP
Ŵ

pRq
|W

prq

rKszk
,Ŵ

prq

k ,S
rr`1:Rs

rKs

.

Hence, for any νS, we have

´DKLpνS}PSq ´ λEνS

”

∆psq ´ ϵ ´ ∆̃pSq
2
ı

´ logpδq

ď ´ log

ˆ
?
2n

?
R

˙

´ DKLpνS}PSq `
1

KR

ÿ

r,k

ES„νS
logEW„pPPk,rqk,r

„

eλ genps
prq

k ,Ŵ
pRq

q
2
ȷ

paq

ď ´ log

ˆ
?
2n

?
R

˙

`
1

KR

ÿ

r,k

logES,W„PSpPPk,rqk,r

„

eλ genps
prq

k ,Ŵ
pRq

q
2
ȷ

“ ´ log

ˆ
?
2n

?
R

˙

`
1

KR

ÿ

r,k

logE
SzS

prq

k ,W„P
SzS

prq
k

pPPk,rqk,r
E
S

prq

k „µ
bpn{Rq

k

„

eλ genps
prq

k ,Ŵ
pRq

q
2
ȷ

ď0,

where paq holds due to Donsker-Varadhan’s inequality. This completes the proof.
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F.3 PROOF OF THEOREM 3

Proof. Consider any set of distributions
!

p
Ŵ

prq

k |S
prq

k ,W pr´1q

)

kPrKs,rPrRs
that satisfy the distortion criterion

(12) for any k P rKs and r P rRs. Then,

ES,W„PS,W

”

genpS,W pRq
q

ı

ď
1

KR

ÿ

kPrKs,rPrRs

¨

˝E
S

prq

k ,W pr´1q,W
prq

rKszk
,Ŵ

pRq
„P

S
prq
k

pPpqk,r

„

genpS
prq

k , Ŵ
pRq

q

ȷ

` ϵk,r

˛

‚

ď
1

KR

ÿ

kPrKs,rPrRs

E
S

prq

k ,W pr´1q,W
prq

rKszk
,Ŵ

pRq
„P

S
prq
k

pPpqk,r

„

genpS
prq

k , Ŵ
pRq

q

ȷ

` ϵ, (52)

where

pPpqk,r :“ P
W pr´1q,W

prq

rKszk

p
Ŵ

prq

k |S
prq

k ,W pr´1qP
Ŵ

pRq
|W

prq

rKszk
,Ŵ

prq

k

.

Let q
Ŵ

prq

k |W pr´1q be the marginal conditional distribution of Ŵ
prq

k given W pr´1q under
P
S

prq

k

p
Ŵ

prq

k |S
prq

k ,W pr´1q , and denote similarly

pPqqk,r :“ P
W pr´1q,W

prq

rKszk

q
Ŵ

prq

k |W pr´1qP
Ŵ

pRq
|W

prq

rKszk
,Ŵ

prq

k

.

Then,

λE
S

prq

k ,W pr´1q,W
prq

rKszk
,Ŵ

pRq
„PSpPpqk,r

„

genpS
prq

k , Ŵ
pRq

q

ȷ

paq

ď DKL

´

P
S

prq

k

pPpqk,r}P
S

prq

k

pPqqk,r

¯

` logEP
S

prq
k

pPqqk,r

„

eλ genpS
prq

k ,Ŵ
pRq

q

ȷ

“IpS
prq

k ; Ŵ
prq

k |W pr´1q
q ` logEpPqqk,r

EP
S

prq
k

„

eλ genpS
prq

k ,Ŵ
pRq

q

ȷ

pbq

ď IpS
prq

k ; Ŵ
prq

k |W pr´1q
q `

λ2σ2

2n{R
, (53)

where paq is deduced using Donsker-Varadhan’s inequality and pbq using the fact that for any w P W ,
genpS

prq

k , wq is σ{
a

n{R-subgaussian.

Combining (52) and (53), and taking the infimum over all admissible choices of the conditional Markov
kernels

!

p
Ŵ

prq

k |S
prq

k ,W pr´1q

)

kPrKs,rPrRs
, we get

ES,W„PS,W

”

genpS,W pRq
q

ı

ď
1

KR

ÿ

kPrKs,rPrRs

inf
p
Ŵ

prq
k

|S
prq
k

,W pr´1q

$

&

%

E
S

prq

k ,W pr´1q,W
prq

rKszk
,Ŵ

pRq
„P

S
prq
k

pPpqk,r

„

genpS
prq

k , Ŵ
pRq

q

ȷ

,

.

-

` ϵ

ď
1

KR

ÿ

kPrKs,rPrRs

RDpPS,W, k, r, ϵk,rq{λ `
λσ2

2n{R
` ϵ

paq

ď

d

2σ2
ř

kPrKs,rPrRs RDpPS,W, k, r, ϵk,rq

nK
` ϵ, (54)

where the last step is established by letting

λ :“

g

f

f

e

2n{R

σ2KR

ÿ

kPrKs,rPrRs

RDpPS,W, k, r, ϵk,rq.

This completes the proof.
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F.4 PROOF OF THEOREM 4

Proof. We use an extension of Theorem 3, that is Proposition 1, to prove this theorem. Let ϵk,r “ ϵ
for all k P rKs and r P rRs. Fix a k P rKs and r P rRs. We upper bound the rate-distortion term
RD‹

pPS,W, k, r, ϵk,rq, defined in (34). To this end, let V prq

k denote all the randomness in round r for client

k, i.e., given s
prq

k , all mini-batches
␣

Bk,r,t

(

t
will be fixed. We define a proper

p
Ŵ

pRq

k |S
prq

k ,Vk,r

, (55)

that satisfy (33), where

Vk,r “

´

V
prq

k ,W pr´1q,W
prq

rKszk
, S

rr`1:Rs

rKs
, V

rr`1:Rs

rKs

¯

. (56)

For simplicity, let

Uk,r “

´

W
prq

rKszk
, S

rr`1:Rs

rKs
, V

rr`1:Rs

rKs

¯

. (57)

To define p
Ŵ

pRq

k |S
prq

k ,Vk,r

, first we define p
Ŵ

pRq

k |W
prq

k ,Uk,r

. Then, we let

p
Ŵ

pRq

k |W
prq

k ,Vk,r,S
prq

k

“ p
Ŵ

pRq

k |W
prq

k ,Uk,r

. (58)

Now, we have

p
Ŵ

pRq

k |S
prq

k ,Vk,r

“ E
W

prq

k „P
W

prq
k

|S
prq
k

,V
prq
k

,W pr´1q

„

p
Ŵ

pRq

k |W
prq

k ,Uk,r

ȷ

. (59)

Note that P
W

prq

k |S
prq

k ,Vk,r
“ P

W
prq

k |S
prq

k ,V
prq

k ,W pr´1q . We proceed to define p
Ŵ

pRq

k |W
prq

k ,Uk,r

. Consider an

integer m P N˚. Fix an Uk,r , i.e., fix w
prq

rKszk
, ps

rr`1:Rs

rKs
, v

rr`1:Rs

rKs
q, and consequently all mini-batches

␣

Bj,r1,t

(

jPrKs,r1Prr`1:Rs,tPrτs
.

Assume the aggregated model at round prq to be

wprq,‹
“

1

K

ÿ

j‰k

w
prq

j . (60)

Then, with this aggregated model at step prq, and the considered fixed Uk,r, if r ă R, consider all the
induced D‹

pwpr1´1q,tBj,r1,tutq
, for j P rKs, r1

P rr ` 1 : Rs. Denote

D‹
r1 :“

1

K

ÿ

kPrKs

D‹

pwpr1´1q,tBk,r1,tutq
, r1

P rr ` 1 : Rs,

D‹ :“
ź

r1Prr`1:Rs

D‹
r1 . (61)

Denote also the resulting global model as wpRq,‹. If r “ R, let D‹
“ Id, where Id is the identity matrix.

Consider the random matrix A, whose elements are distributed in an i.i.d. manner according to N p0, 1{mq.
The matrix is used for Johnson-Lindenstrauss transformation (Johnson & Lindenstrauss, 1984). Considering
such matrix for dimension reduction in SVM for centralized and one-round distributed learning was
previously considered in (Grønlund et al., 2020; Sefidgaran et al., 2022a).

Fix some c1, c2, ν ą 0. Let

ϵ :“ 8e
´ m

7

˜

Kθ

6Bq
R´r
e,b

¸2

` 2e´0.21mpc21´1q
` 2e´0.21mpc22q

2pr´Rq

e,b ´1q
`

4mνm
?
π

e
´

pm`1q

2

´

Kθ
6c1νB

¯2

. (62)

Now, for a given w
prq

k , if }AD‹w
prq

k } ď c2, then let M be chosen uniformly over BmpAD‹w
prq

k , νq;
otherwise let M be chosen uniformly over Bmp0, νq. Define

Ŵ
pRq

:“ AW pRq,‹
`

1

K
M. (63)
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Note that we defined Ŵ
pRq

P Rm, while W pRq
P Rd. By this definition, we have

IpS
prq

k ; Ŵ
pRq

k |Vk,rq
paq

ď IpW
prq

k ; Ŵ
pRq

k |Vk,rq

pbq
“ IpW

prq

k ; Ŵ
pRq

k |Uk,rq

pcq
“ IpW

prq

k ;M |Uk,rq

“hpM |Uk,rq ´ hpM |W
prq

k ,Uk,rq

“hpM |Uk,rq ´ logpVolmpνqq

pdq

ď logpVolmpc2 ` νqq ´ logpVolmpνqq

“m logppc2 ` νq{νq, (64)

where Volmprq denote the volume of m-dimensional ball with radius r,

• paq follows by data-processing inequality,

• pbq and pcq due to the construction of Ŵ
pRq

k and since given Uk,r , D‹ is a fixed matrix,

• and pdq since M P Rm is bounded always in the ball of radius c2 ` ν.

Now, we investigate the distortion criterion (33). For this, first, we define the loss function ℓ̂. For fixed u
and A, let the 0-1 loss function ℓ̂ be,

ℓ̂u,A,θ

´

z, ŵ
pRq

¯

:“ 1
ty⟪x,ŵpRq⟫u,Aąθ{2u

, (65)

where we define

⟪x, ŵpRq⟫u,A :“ xx,wpRq,‹
y ´ xAx,AwpRq,‹

y ` xAx, ŵ
pRq

y. (66)

Note that wpRq,‹ and D‹ are deterministically determined by u.

It is easy to verify that

E
S,V,W,Ŵ

pRq

„

genθpS
prq

k ,W pRq
q ´ genpS

prq

k , Ŵ
pRq

q

ȷ

“EP
S

prq
k

,W
prq
k

,Uk,r,W pRq
Ep

Ŵ
pRq
k |W

prq
k

,Uk,r

„

genpS
prq

k ,W pRq
q ´ genpS

prq

k , Ŵ
pRq

q

ȷ

“EP
W

prq
k

,Uk,r,W pRq
Ep

Ŵ
pRq
k |W

prq
k

,Uk,r

EZk„µk

„

ℓ0pZk,W
pRq

q ´ ℓ̂U,A,θpZk, Ŵ
pRq

k q

ȷ

´ EP
S

prq
k

,W
prq
k

,Uk,r,W pRq
Ep

Ŵ
pRq
k |W

prq
k

,Uk,r

«

1

nR

nR
ÿ

i“1

ℓθpZk,r,i,W
pRq

k q ´ ℓ̂U,A,θpZk,r,i, Ŵ
pRq

k q

ff

ďEP
W

prq
k

,Uk,r,W pRq
Ep

Ŵ
pRq
k |W

prq
k

,Uk,r

EZk„µk

»

–1"
ˇ

ˇ

ˇ

ˇ

xXk,W pRqy´⟪Xk,Ŵ
pRq⟫u,A

ˇ

ˇ

ˇ

ˇ

ąθ{2

*

fi

fl

` EP
S

prq
k

,W
prq
k

,Uk,r,W pRq
Ep

Ŵ
pRq
k |W

prq
k

,Uk,r

»

–

1

nR

nR
ÿ

i“1

1"
ˇ

ˇ

ˇ

ˇ

xXk,r,i,W pRqy´⟪Xk,r,i,Ŵ
pRq⟫u,A

ˇ

ˇ

ˇ

ˇ

ąθ{2

*

fi

fl

:“EA. (67)

In the rest of the proof we show that

EArEAs ď8e
´ m

7

˜

Kθ

6Bq
R´r
e,b

¸2

` 2e´0.21mpc21´1q
` 2e´0.21mpc22q

2pr´Rq

e,b ´1q
`

4mνm
?
π

e
´

pm`1q

2

´

Kθ
6c1νB

¯2

“ϵ, (68)
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where ϵ is defined in (62). Then, this shows that there exists a least one A for which EA ď ϵ. Combining
this with (64), yields

RD‹
pPS,W, k, r, ϵq ď m logppc2 ` νq{νq.

Letting

m :“r252

ˆ

Bt

Kθ

˙2

logpnK
?
Kqs,

c1 :“

c

K2θ2

50B2t2
´ 1,

c2 :“qR´r
e,b

c

K2θ2

50B2t2
´ 1,

ν :“t{p2c1q, (69)

where t ě qR´r
e,n , and using Theorem 3 completes the proof.

Hence, it remains to show (68). A sufficient condition to show that is to prove for every x P Rd, and every
w

prq

k and uk,r , we have

Ep
Ŵ

pRq
k |w

prq
k

,uk,r

EA

»

–1"
ˇ

ˇ

ˇ

ˇ

xx,wpRqy´⟪x,Ŵ pRq⟫u,A

ˇ

ˇ

ˇ

ˇ

ąθ{2

*

fi

fl ď ϵ{2. (70)

Note that wpRq is a deterministic function of wprq

k and uk,r . Next, we decompose the difference of the inner
products into three terms:

ˇ

ˇ

ˇ

ˇ

xx,wpRq
y ´ ⟪x, Ŵ pRq⟫u,A

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

xx,∆y `
1

K
xx,D‹w

prq

k y ´
1

K
xAx,AD‹w

prq

k y `
1

K
xAx,AD‹w

prq

k ´ My

ˇ

ˇ

ˇ

ˇ

ď |xx,∆y| `
1

K

ˇ

ˇ

ˇ
xx,D‹w

prq

k y ´ xAx,AD‹w
prq

k y

ˇ

ˇ

ˇ
`

1

K

ˇ

ˇ

ˇ
xAx,AD‹w

prq

k ´ My

ˇ

ˇ

ˇ
, (71)

where

∆ :“ wpRq
´

ˆ

wpRq,‹
`

1

K
D‹w

prq

k

˙

. (72)

Note that ∆ is deterministic given w
prq

k and uk,r .

Hence,

Ep
Ŵ

pRq
k |w

prq
k

,uk,r

EA

»

–1"
ˇ

ˇ

ˇ

ˇ

xx,wpRqy´⟪x,Ŵ pRq⟫u,A

ˇ

ˇ

ˇ

ˇ

ąθ{2

*

fi

fl

ď1t|xx,∆y|ąθ{6u (73)

` EA

„

1! 1
K

ˇ

ˇ

ˇ
xx,D‹w

prq

k y´xAx,AD‹w
prq

k y

ˇ

ˇ

ˇ
ąθ{6

)

ȷ

(74)

` Ep
M|w

prq
k

EA

„

1! 1
K

ˇ

ˇ

ˇ
xAx,AD‹w

prq

k ´My

ˇ

ˇ

ˇ
ąθ{6

)

ȷ

. (75)

Now, we proceed to bound the probability that each of the three terms in the RHS of the above inequality.

Bounding (73). We show that with probability one, |xx,∆y| ă θ{6. Note that for r “ R, we have
D‹

“ Id and this term is zero. Now, for R ą 1, a sufficient condition to prove |xx,∆y| ă θ{6 is to show
that for any r ă R, we have }∆} ď θ{p6Bq, when (24) holds. We show this if any of two conditions in
Assumption 3 hold.

For r1
P rr ` 1 : Rs, define

ξr1 :“ wpr1
q

´

´

wpr1
q,‹

` D‹
r1

´

wpr1
´1q

´ wpr1
´1q,‹

¯¯

. (76)
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1. If Condition 1 holds: Assume (24) holds. Fix some β P p0, 1s. Then, first using induction we
simultaneously show that for r1

“ r ` 1, . . . , R,

}ξr1 } ď
αpp1 ` βqq2e,bq

r1
´r´1

K2
, (77)

}wpr1
´1q

´ wpr1
´1q,‹

}
2

ď
pp1 ` βqq2e,bq

r1
´r´1

K2
. (78)

For r1
“ r ` 1, due to Assumption 2, we have

}ξr`1} ď α}wprq
´ wprq,‹

}
2
{K2

“ α}w
prq

k }
2
{K2

ď α{K2. (79)

This proves the induction base for both (77) and (78).

Now, assume that (77) and (78) hold for r1
“ r ` 1, . . . , j, j ă R. We show that they hold, for j ` 1

as well. First, we have

}wpjq
´ wpjq,‹

}
2

“

›

›

›
ξj ` D‹

j

´

wpj´1q
´ wpj´1q,‹

¯›

›

›

2

paq

ď
›

›ξj
›

›

2
` q2e,b

›

›

›
wpj´1q

´ wpj´1q,‹
›

›

›

2

pbq

ď
α2

pp1 ` βqq2e,bq
2pj´r´1q

K4
` q2e,b

pp1 ` βqq2e,bq
j´r´1

K2

pcq

ď
pp1 ` βqq2e,bq

j´r

K2
, (80)

where paq holds due to the triangle inequality and since spectral norm of D‹
j is bounded by qe,b, pbq

using the assumption of the induction, and pcq holds when

K2
ą

α2
pp1 ` βqq2e,bq

j´r´1

βq2e,b
,

which holds by (24). Hence, (78) holds for r1
“ j ` 1 as well. Now, we show (77) also holds for

r1
“ j ` 1.

›

›ξj`1

›

› :“
›

›

›
wpj`1q

´

´

wpj`1q,‹
` D‹

j`1

´

wpjq
´ wpjq,‹

¯¯
›

›

›

paq

ď α
›

›

›
wpjq

´ wpjq,‹
›

›

›

2

pbq

ď
αpp1 ` βqq2e,bq

j´r

K2
, (81)

where paq holds due to Assumption 2 and pbq by (80). This completes the proof of the induction.

Now, for any r1
P rr ` 1 : R ´ 1s, denote

D‹
r1 :“

R
ź

j“r1`1

D‹
j , (82)

and D‹
R “ Id. Then,

›

›

›

›

wpRq
´

ˆ

wpRq,‹
`

1

K
D‹w

prq

k

˙
›

›

›

›

“

›

›

›

›

›

R
ÿ

r1“r`1

D‹
r1ξr1

›

›

›

›

›

ď

R
ÿ

r1“r`1

qR´r1

e,b }ξr1 }

ď

R
ÿ

r1“r`1

qR´r1

e,b

αpp1 ` βqq2e,bq
r1

´r´1

K2

“
αqR´r´1

e,b

K2

R
ÿ

r1“r`1

pp1 ` βqqe,bq
r1

´r´1

“

αqR´r´1
e,b

´

1 ´ pp1 ` βqqe,bq
R´r

¯

K2
`

1 ´ p1 ` βqqe,b
˘ . (83)
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This term is always less than θ{p6Bq, if

6αBqR´r´1
e,b

´

1 ´ pp1 ` βqqe,bq
R´r

¯

θ
`

1 ´ p1 ` βqqe,b
˘ ď K2,

which holds by (24). This completes the proof of this step.

2. If Condition 2 holds: Note that similar to the previous case, it can be shown that for r1
“

r ` 1, . . . , R

}ξr1 } ďα}wpr1
´1q

´ wpr1
´1q,‹

}
2, (84)

}wpr1
q

´ wpr1
q,‹

}
2

ď}ξr1 }
2

` q2e,b}wpr1
´1q

´ wpr1
´1q,‹

}
2. (85)

Define the sequence Bj P R`, j “ 0, . . . , R ´ r ´ 1, recursively as

Bj “ αB2
j´1 ` q2e,bBj´1,

where B0 “ 1
K2 . Inequalities (84) and (85) conclude that

}ξr1 } ď αBr1´1. (86)

We claim under Condition 2 in Assumption 3, Bj ď
1´q2e,b

α ´ ν. Once this claim is shown, then we
have

Bj “αB2
j´1 ` q2e,bBj´1

ďα

˜

1 ´ q2e,b
α

´ ν

¸

Bj´1 ` q2e,bBj´1

“p1 ´ ναqBj´1.

Hence Bj ď
p1´ανq

j

K2 , and }ξr1 } ď
αp1´ανq

j´1

K2 . Finally, similar to (83),

›

›

›

›

wpRq
´

ˆ

wpRq,‹
`

1

K
D‹w

prq

k

˙
›

›

›

›

“

›

›

›

›

›

R
ÿ

r1“r`1

D‹
r1ξr1

›

›

›

›

›

ď

R
ÿ

r1“r`1

qR´r1

e,b }ξr1 }

ď

R
ÿ

r1“r`1

qR´r1

e,b
αp1 ´ ανq

r1
´r´1

K2

“
αqR´r´1

e,b

K2

R
ÿ

r1“r`1

pp1 ´ ανq{qe,bq
r1

´r´1

“

α
´

qR´r
e,b ´ p1 ´ ανq

R´r
¯

K2
`

qe,b ´ p1 ´ ανq
˘ . (87)

This term is less than θ{p6Bq due to (25), which concludes this step. Hence, it remains to show the

claim that Bj ď
1´q2e,b

α ´ ν. To show this, first note that

B0 “
1

K2

paq

ď
1 ´ q2e,b

α
´ ν ď

1 ´ q2e,b
α

,

where paq holds by Assumption 3. Now, recursively, if Bj´1 ď
1´q2e,b

α , then

Bj “ αB2
j´1 ` q2e,bBj´1 ď Bj´1.

Hence the sequence tBju is non-increasing and

Bj ď B0 “
1

K2
ď

1 ´ q2e,b
α

´ ν.

This completes the proof of this part.
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Bounding (74). Note that }D‹w
prq

k } ď qR´r
e,b , due to the fact that spectral norm of all D˚

r1 are bounded

by qe,b due to Assumption 2. Then, for every w
prq

k ,

EA

„

1! 1
K

ˇ

ˇ

ˇ
xx,D‹w

prq

k y´xAx,AD‹w
prq

k y

ˇ

ˇ

ˇ
ąθ{6

)

ȷ

“PA

ˆ

1

K

ˇ

ˇ

ˇ
xx,D‹w

prq

k y ´ xAx,AD‹w
prq

k y

ˇ

ˇ

ˇ
ą θ{6

˙

ď4e
´ m

7

˜

Kθ

6Bq
R´r
e,b

¸2

, (88)

where the last step is due to (Grønlund et al., 2020, Lemma 8, part 2.).

Bounding (75). Fix some c1, c2 ą 0. Now, to bound this, we have

Ep
M|w

prq
k

EA

„

1! 1
K

ˇ

ˇ

ˇ
xAx,AD‹w

prq

k ´My

ˇ

ˇ

ˇ
ąθ{6

)

ȷ

ďPAp}Ax} ą c1Bq ` PA

´

}AD‹w
prq

k } ą c2

¯

` Ep
M|w

prq
k

EA

„

1! 1
K

ˇ

ˇ

ˇ
xAx,AD‹w

prq

k ´My

ˇ

ˇ

ˇ
ąθ{6

)

ˇ

ˇ

ˇ
}Ax} ď c1B, }AD‹w

prq

k } ď c2

ȷ

“PAp}Ax} ą c1Bq ` PA

´

}AD‹w
prq

k } ą c2

¯

` E
M„Unif

´

BmpAD‹w
prq

k ,νq

¯EA

„

1! 1
K

ˇ

ˇ

ˇ
xAx,AD‹w

prq

k ´My

ˇ

ˇ

ˇ
ąθ{6

)

ˇ

ˇ

ˇ
}Ax} ď c1B, }AD‹w

prq

k } ď c2

ȷ

“PAp}Ax} ą c1Bq ` PA

´

}AD‹w
prq

k } ą c2

¯

` EU„UnifpBmpνqqEA

”

1t 1
K |xAx,Uy|ąθ{6u

ˇ

ˇ

ˇ
}Ax} ď c1B

ı

ďe´0.21mpc21´1q
` e´0.21mpc22q

2pr´Rq

e,b ´1q
`

2mνm
?
π

e
´

pm`1q

2

´

Kθ
6c1νB

¯2

, (89)

where the last step follows from (Grønlund et al., 2020, Lemma 8, part 1.) and (Sefidgaran et al., 2022a,
Proof of Lemma 3), and since }D‹w

prq

k } ď qR´r
e,b .

This completes the proof.

F.5 PROOF OF THEOREM 5

Proof. We have

ES,W„PS,W

”

genpS,W pRq
q

ı

“
1

KR

ÿ

kPrKs,rPrRs

E
S

prq

k ,W pr´1q,W
rr:Rs

k ,W pRq„P
S

prq
k

Pk,r

”

genpS
prq

k ,W pRq
q

ı

, (90)

where

Pk,r :“ P
W pr´1q,W

rr:Rs

k |S
prq

k

P
W pRq|W pr´1q,W

rr:Rs

k

.

Let q
W pr´1q,W

rr:Rs

k

be the marginal distribution of pW pr´1q,W
rr:Rs

k q under P
S

prq

k

P
W pr´1q,W

rr:Rs

k |S
prq

k

,
and denote similarly

pPqqk,r :“ q
W pr´1q,W

rr:Rs

k

P
W pRq|W pr´1q,W

rr:Rs

k

.

Then for any λk,r ą 0,

λk,rES
prq

k ,W pr´1q,W
rr:Rs

k ,W pRq„P
S

prq
k

Pk,r

”

genpS
prq

k ,W pRq
q

ı

paq

ď DKL

´

P
S

prq

k

Pk,r}P
S

prq

k

pPqqk,r

¯

` logEP
S

prq
k

pPqqk,r

„

eλk,r genpS
prq

k ,W pRq
q

ȷ

“IpS
prq

k ;W pr´1q,W
rr:Rs

k q ` logEpPqqk,r
EP

S
prq
k

„

eλk,r genpS
prq

k ,W pRq
q

ȷ

pbq

ď IpS
prq

k ;W pr´1q,W
rr:Rs

k q `
λ2k,rσ

2

2nk,r
, (91)
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where paq is deduced using Donsker-Varadhan’s inequality and pbq using the fact that for any w P W ,
genpS

prq

k , wq is σ{
?
nk,r-subgaussian.

Combining (90) and (91) we get

ES,W„PS,W

”

genpS,W pRq
q

ı

ď
1

KR

ÿ

kPrKs,rPrRs

˜

IpS
prq

k ;W pr´1q,W
rr:Rs

k q{λk,r `
λk,rσ

2

2nk,r

¸

paq

ď

g

f

f

e

2σ2

KR

ÿ

kPrKs,rPrRs

1

nk,r
IpS

prq

k ;W pr´1q,W
rr:Rs

k q, (92)

where the last step is established by letting λk,r :“ nk,rλ and

λ :“

g

f

f

e

2

σ2KR

ÿ

kPrKs,rPrRs

1

nk,r
IpS

prq

k ;W pr´1q,W
rr:Rs

k q.

This completes the proof.

F.6 PROOF OF THEOREM 6

Proof. We start by a lemma proved in Appendix F.11.

Lemma 4. For any δ ą 0,

logP
´

genpS,W pRq
q ą ∆

¯

ď max

ˆ

logpδq, (93)

sup
νS,U,WPGδ

S,U,W

inf
"

p
Ŵ

prq
k

|S
prq
k

,U
prq
k

,W pr´1q
PQk,rpνS,U,Wq

*

kPrKs,rPrRs

inf
λě0

"

´ DKLpνS,U,W}PS,U,Wq ´
λ

KR

ÿ

r,k

Ck,rpν, pq

*˙

where

Ck,rpν, pq :“∆ ´ ϵ ´ EνS,Upνpqk,r

„

genpS
prq

k , Ŵ
pRq

q

ȷ

,

with the notation

pνpqk,r –ν
W pr´1q,W

prq

rKszk
|S

rrs

rKs
zS

prq

k ,U
rrs

rKs
zU

prq

k

p
Ŵ

prq

k |S
prq

k ,U
prq

k ,W pr´1q ν
Ŵ

pRq
|Ŵ

prq

k ,W
prq

rKszk
,S

rr`1:Rs

rKs
,U

rr`1:Rs

rKs

,

and where Qk,rpνS,U,Wq contains all distributions
!

p
Ŵk,r|S

prq

k ,U
prq

k ,W pr´1q

)

kPrKs,rPrRs
that satisfy

EνS,U,W

”

genpS,W pRq
q

ı

´
1

KR

ÿ

kPrKs,rPrRs

EνS,Upνpqk,r

„

genpS
prq

k , Ŵ
pRq

q

ȷ

ď ϵ. (94)

Next, consider the set Q̃k,rpνS,U,Wq that contains all distributions
!

p
Ŵk,r|S

prq

k ,U
prq

k ,W pr´1q

)

kPrKs,rPrRs

such that for any k P rks and r P rRs,

EνS,U,W

”

genpS
prq

k ,W pRq
q

ı

´EνS,Upνpqk,r

„

genpS
prq

k , Ŵ
pRq

q

ȷ

ď ϵk,r, (95)

where 1
KR

ř

kPrKs,rPrRs ϵk,r “ ϵ. Trivially, Q̃k,rpνS,U,Wq Ď Qk,rpνS,U,Wq, and hence, for a given

νS,U,W P Gδ
S,U,W, it suffices to bound

inf
"

p
Ŵ

prq
k

|S
prq
k

,W pr´1q
PQ̃k,rpνS,U,Wq

*

kPrKs,rPrRs

inf
λě0

"

´ DKLpνS,U,W}PS,U,Wq ´
λ

KR

ÿ

r,k

Ck,rpν, pq

*

.

(96)
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Fix a νS,U,W P Gδ
S,U,W. Let q

Ŵ
prq

k |U
prq

k ,W pr´1q be the marginal conditional distribution of Ŵ prq

k given

W pr´1q and U
prq

k under ν
S

prq

k ,U
prq

k ,W pr´1qpŴ prq

k |S
prq

k ,U
prq
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Ŵ
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|Ŵ
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,

Note that
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„

genpS
prq

k , Ŵ
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ȷ
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„
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„
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ȷȷ
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˘‰
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q
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S
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k
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prq
k

,W pr´1q

”

DKL

´

p
Ŵ

prq
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prq

k ,U
prq

k ,W pr´1q }q
Ŵ
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„
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q

ȷ
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prq
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prq

k |U
prq
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q `

λ2σ2

2n{R
, (97)

where paq and pbq are derived using Donsker-Varadhan’s inequality, pcq by definitions of pνpqk,r and

pνqqk,r , and pdq using the fact that for any w P W , genpS
prq

k , wq is σ{
a

n{R-subgaussian.

Hence,
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Ŵ
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prq
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2n{R

*
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where the last step is established by letting

λ :“

g

f

f

f

e

p2n{Rq

σ2

¨

˝

1

KR

ÿ

kPrKs,rPrRs

RDpνS,U,W, k, r, ϵk,rq ` logp1{δq

˛

‚.

This completes the proof.

F.7 PROOF OF PROPOSITION 1

Proof. Recall that

Vk,r “

´

V
prq

k ,W pr´1q,W
prq

rKszk
, S

rr`1:Rs

rKs
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rKs

¯

.
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Consider any set of distributions
"

p
Ŵ

pRq

k |S
prq

k ,Vk,r

*

kPrKs,rPrRs

that satisfy the distortion criterion (33) for

any k P rKs and r P rRs. Then,
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Let q
Ŵ
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be the marginal conditional distribution of Ŵ pRq
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S

prq

k

p
Ŵ
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Then,
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pRq

k |Vk,rq `
λ2σ2
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where paq is deduced using Donsker-Varadhan’s inequality and pbq using the fact that for any w P W ,
genpS

prq

k , wq is σ{
a

n{R-subgaussian,

Combining (99) and (100), and taking the infimum over all admissible
"

p
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k |S
prq
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*
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, we

get
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where the last step is established by letting

λ :“

g

f

f

e

2n{R

σ2KR

ÿ

kPrKs,rPrRs

RD‹
pPS,W, k, r, ϵk,rq .

This completes the proof.

F.8 PROOF OF LEMMA 1

Proof. This step is similar to (Sefidgaran et al., 2022b, Lemma 24) and (Sefidgaran & Zaidi, 2023,

Lemma 12). Denote B :“

"

s P supppPSq : EW„PW|s

”

genps,W pRq
q

ı2
ą ∆psq

*

. If PSpBq “ 0, then

the lemma is proved. Assume then PSpBq ą 0. Consider the distribution νS such that for any s P B,
νSpsq :“ PSpsq{PSpBq, and otherwise νSpsq :“ 0.

If νS R Gδ
S, then it means that DKLpνS}PSq ě logp1{δq. Hence,

logp1{δq ďDKLpνS}PSq “ ´ logpPSpBqq “ ´ logP
ˆ
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genps,W pRq
q
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,
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Thus, logP
ˆ

EW„PW|s

”

genps,W pRq
q

ı2
ą ∆psq

˙

ď logpδq. This completes the proof of the lemma.

Otherwise, suppose that νS P Gδ
S. Then, for this distribution
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„
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q

ı2
ȷ
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where paq holds by the way νS is constructed. Therefore, for this νS, since λ ě 0,
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ı2
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˙

.

This proves the lemma.

F.9 PROOF OF LEMMA 2

Proof. This step is similar to (Sefidgaran et al., 2022b, Lemma 24) and (Sefidgaran & Zaidi, 2023,
Lemma 12).

Denote fps, wpRq
q :“ 1

KR

ř

kPrKs,rPrRs genps
prq

k , wpRq
q
2 and define the set

B :“
!

ps,wq P supppPS,Wq : fps, wpRq
q ą ∆ps,wq

)

.

If PS,WpBq “ 0, then the lemma is proved. Assume then PS,WpBq ą 0. Consider the distribution νS,W
such that for any ps,wq P B, νS,Wps,wq :“ PS,Wps,wq{PS,WpBq, and otherwise νS,Wps,wq :“ 0.

If νS,W R Gδ
S,W, then it means that DKLpνS,W}PS,Wq ě logp1{δq. Hence,

logp1{δq ďDKLpνS,W}PS,Wq “ ´ logpPS,WpBqq “ ´ logP
´

fps, wpRq
q ą ∆ps,wq

¯

,

Thus, logP
´

fps, wpRq
q ą ∆ps,wq

¯

ď logpδq. This completes the proof of the lemma.

Otherwise, suppose that νS,W P Gδ
S,W. Then, for this distribution, we have

EνS,W

”

∆pS,Wq ´ fpS,W pRq
q

ı paq

ď 0,

where paq holds due to the way νS,W is constructed. Therefore, it is optimal to let λ “ 0 in pbq for this
distribution. Thus, the infimum over λ ą 0 of

´DKLpνS,W}PS,Wq ´ λEνS,W

”

∆pS,Wq ´ fpS,W pRq
q

ı

,

is equal to

´DKLpνS,W}PS,Wq “ logpPS,WpBqq “ logP
´

fpS,W pRq
q ą ∆pS,Wq

¯

.

This completes the proof of the lemma.

F.10 PROOF OF LEMMA 3

Proof. This step is similar to (Sefidgaran et al., 2022b, Lemma 24) and (Sefidgaran & Zaidi, 2023,

Lemma 12). Denote B :“

"

s P supppPSq : EW„PW|s

”

genps,W pRq
q

ı2
ą ∆psq

*

. If PSpBq “ 0, then

the lemma is proved. Assume then PSpBq ą 0. Consider the distribution νS such that for any s P B,
νSpsq :“ PSpsq{PSpBq, and otherwise νSpsq :“ 0.

If νS R Gδ
S, then it means that DKLpνS}PSq ě logp1{δq. Hence,

logp1{δq ďDKLpνS}PSq “ ´ logpPSpBqq “ ´ logP
ˆ

EW„PW|s

”

genps,W pRq
q

ı2
ą ∆psq

˙
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Thus, logP
ˆ

EW„PW|s

”

genps,W pRq
q

ı2
ą ∆psq

˙

,ď logpδq. This completes the proof of the lemma.

Otherwise, suppose that νS P Gδ
S. Then, for this distribution

EνS

”

∆pSq ´ ϵ ´ ∆̃pSq
2
ı paq

ďEνS

„

EW„PW|s

”

genps,W pRq
q

ı2
´ ϵ ´ ∆̃pSq

2
ȷ

pbq

ďEνS

”

2
ˇ

ˇ

ˇ
EW„PW|s

”

genps,W pRq
q

ı

´ ∆̃pSq

ˇ

ˇ

ˇ
´ ϵ

ı

pcq

ď0,

where paq holds by the way νS is constructed, pbq holds since the loss function is bounded by one, and pcq

due to (49).

Therefore, for this νS, since λ ě 0,

´DKLpνS}PSq ´ λEνS

”

∆pSq ´ ϵ ´ ∆̃pSq
2
ı

ě ´ DKLpνS}PSq

“ logpPSpBqq

“ logP
ˆ

EW„PW|s

”

genps,W pRq
q

ı2
ą ∆psq

˙

.

This proves the lemma.

F.11 PROOF OF LEMMA 4

Proof. Denote B :“
!

ps,u,wq P supppPS,U,Wq : genps, wpRq
q ą ∆

)

. If PS,U,WpBq “ 0, then the
lemma is proved. Assume then PS,U,WpBq ą 0. Consider the distribution νS,U,W such that for any
ps,u,wq P B, νS,U,Wps,u,wq :“ PS,U,Wps,u,wq{PS,U,WpBq, and otherwise νS,U,Wps,u,wq :“ 0.

If νS,U,W R Gδ
S,U,W, then it means that DKLpνS,U,W}PS,U,Wq ě logp1{δq. Hence,

logp1{δq ďDKLpνS,U,W}PS,U,Wq “ ´ logpPS,U,WpBqq “ ´ logP
´

genps, wpRq
q ą ∆

¯

,

Thus, logP
´

genps, wpRq
q ą ∆

¯

ď logpδq. This completes the proof of the lemma.

Otherwise, suppose that νS,U,W P Gδ
S,U,W. Then, for this distribution and any set of

inf"
p
Ŵ

prq
k

|S
prq
k

,U
prq
k

,W pr´1q
PQk,rpνS,U,Wq

*

kPrKs,rPrRs

, we have

1

KR

ÿ

k,r

Ck,rpν, pq

“∆ ´ ϵ ´
1

KR

ÿ

kPrKs,rPrRs

ˆ

EνS,Upνpqk,r

„

genk,rpS
prq

k , Ŵ
pRq

q

ȷ˙

paq

ďEνS,U,W

”

genpS,W pRq
q

ı

´
1

KR

ÿ

kPrKs,rPrRs

ˆ

EνS,Upνpqk,r

„

genk,rpS
prq

k , Ŵ
pRq

q

ȷ˙

´ ϵ

pbq

ď0,

where paq holds due to the way νS,W is constructed and pbq by distortion criterion (94).

Therefore, it is optimal to let λ “ 0 in (93)for this distribution. Thus, the infimum over λ ą 0 of

´DKLpνS,U,W}PS,U,Wq ´
λ

KR

ÿ

k,r

Ck,rpν, pq,

is equal to

´DKLpνS,U,W}PS,U,Wq “ logpPS,U,WpBqq “ logP
´

genpS,W pRq
q ą ∆

¯

.

This completes the proof.
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