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Abstract

Finding an ϵ-stationary point of a nonconvex function with a Lipschitz continuous
Hessian is a central problem in optimization. Regularized Newton methods are
a classical tool and have been studied extensively, yet they still face a trade-off
between global and local convergence. Whether a parameter-free algorithm of
this type can simultaneously achieve optimal global complexity and quadratic
local convergence remains an open question. To bridge this long-standing gap,
we propose a new class of regularizers constructed from the current and previous
gradients, and leverage the conjugate gradient approach with a negative curvature
monitor to solve the regularized Newton equation. The proposed algorithm is
adaptive, requiring no prior knowledge of the Hessian Lipschitz constant, and
achieves a global complexity of O(ϵ−

3
2 ) in terms of the second-order oracle calls,

and Õ(ϵ−
7
4 ) for Hessian-vector products, respectively. When the iterates converge

to a point where the Hessian is positive definite, the method exhibits quadratic
local convergence. Preliminary numerical results, including training the physics-
informed neural networks, illustrate the competitiveness of our algorithm.

1 Introduction

Nonconvex optimization lies at the heart of numerous scientific and engineering applications, in-
cluding machine learning [34] and computational physics [46]. In such settings, the objective is to
minimize a smooth nonconvex function φ : Rn → R with a globally Lipschitz continuous Hessian.
Given the intractability of finding a global minimum in general nonconvex problems, a more practical
goal is to find an ϵ-stationary point x∗ satisfying ∥∇φ(x∗)∥ ≤ ϵ for a prescribed accuracy ϵ > 0.

The Newton-type method is one of the most powerful tools for solving such problems, known for
its quadratic local convergence near a solution with positive definite Hessian. The classical Newton
method uses the second-order information at the current iterate xk to construct the following local
model mk(d) and generate the next iterate xk+1 = xk + dk by minimizing this model:

min
d∈Rn

{
mk(d) := d⊤∇φ(xk) +

1

2
d⊤∇2φ(xk)d

}
, where k ≥ 0. (1.1)

∗The corresponding author.
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Although this method enjoys a quadratic local rate, it is well-known that it may fail to converge
globally (i.e., converge from any initial point) even for a strongly convex function. Various globaliza-
tion techniques have been developed to ensure global convergence by introducing regularization or
constraints in (1.1) to adjust the direction dk, including Levenberg-Marquardt regularization [35, 39],
trust-region methods [8], and damped Newton methods with a linesearch procedure [44].

However, the original versions of these approaches exhibit a slow O(ϵ−2) worst-case perfor-
mance [8, 5], leading to extensive efforts to improve the global complexity of second-order methods.
Among these, the cubic regularization method [42] overcomes this issue and achieves an iteration
complexity of O(ϵ−

3
2 ), which has been shown to be optimal [4], while retaining the quadratic local

rate. Meanwhile, Levenberg-Marquardt regularization, also known as quadratic regularization, with
gradient norms as the regularization coefficients ρk, has also received several attentions due to its
simplicity and computational efficiency [36, 45]. This method approximately solves the regular-
ized subproblem mind

{
mk(d) +

ρk

2 ∥d∥
2
}

to generate dk and the next iterate xk+1 = xk + αkdk,
where αk is either fixed or one selected through a linesearch. When the regularized subproblem is
strongly convex, it is equivalent to solving the linear equation (∇2φ(xk) + ρkIn)dk = −∇φ(xk),
which is simpler than the cubic-regularized subproblem and can be efficiently implemented using
iterative methods such as the conjugate gradient (CG). Furthermore, each CG iteration only requires
a Hessian-vector product (HVP), facilitating large-scale problem-solving [53, 38, 37, 51, 55].

While such gradient regularization can preserve the superlinear local rate, the fast global rate has
remained unclear for some time. Recent studies have achieved such iteration complexity for convex
problems [41, 14]. Nevertheless, the regularized subproblem may become ill-defined for nonconvex
functions. Consequently, modifications to these methods are necessary to address cases involving
indefinite Hessians. A possible solution is to apply CG as if the Hessian is positive definite, and
choose a first-order direction if evidence of indefiniteness is found [44], although this may result in
a deterioration of the global rate. In contrast, Gratton et al. [24] introduced a method with a near-
optimal global rate of O(ϵ−

3
2 log 1

ϵ ) and a superlinear local rate. Instead of relying on a first-order
direction, their method switches to a direction constructed from the minimal eigenvalue and the
corresponding eigenvector when indefiniteness is encountered.

On the other hand, Royer et al. [49] proposed the capped CG by modifying the standard CG method
to monitor whether a negative curvature direction is encountered during the iterations, and switching
to such a direction if it exists. It is worth noting that this modification introduces only one additional
HVP throughout the entire CG iteration process, avoiding the need for the minimal eigenvalue
computation used in Gratton et al. [24]. Furthermore, when the regularizer is fixed, an O(ϵ−

3
2 ) global

rate can be proved [49]. Building on this method, He et al. [29, 30] improved the dependency of the
Lipschitz constant by adjusting the linesearch rule, and generalized it to achieve an optimal global rate
for Hölder continuous Hessian, without requiring prior knowledge of problem parameters. Despite
the appealing global performance, it is unclear whether the superlinear local rate can be preserved
using these regularizers. Along similar lines, Zhu and Xiao [56] combined the gradient regularizer
with capped CG and established a superlinear local convergence rate, assuming either the error bound
condition or global strong convexity. However, it remains unclear whether this holds for nonconvex
problems that exhibit local strong convexity.

Motivated by the discussions above, our goal is to figure out whether the optimal global order can
be achieved by a quadratic regularized Newton method (RNM) without incurring the logarithmic
factor, while simultaneously achieving quadratic local convergence. Since the Hessian Lipschitz
constant LH is typically unknown and large for many problems, we design our algorithm to avoid
both the computation of minimal eigenvalues and the reliance on prior knowledge of LH , yet still
attain optimal dependence on LH in the global complexity bound. In this work, we develop a
new class of regularizers and a parameter-free RNM that answers this question affirmatively and
close this long-standing gap in RNMs. Our approach demonstrates competitive performance against
other second-order methods on standard nonlinear optimization benchmarks, as well as in training
medium-scale physics-informed neural networks for solving partial differential equations [46].

The remaining parts of this article are organized as follows: We list the notations used throughout the
paper below. Background and our main results are provided in Section 2. Techniques of our method
are outlined in Section 3, with detailed proofs deferred to the appendix. Finally, we present some
preliminary numerical results to illustrate the performance of our algorithm in Section 4, and discuss
potential directions in Section 5. We also provide further discussions of related work in Section A.
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2 Background and our results

Notations We use N, [i], and Ii,j to denote the set of non-negative integers, {1, . . . , i}, and
{i, .., j − 1}, respectively. For a set S, |S| denotes its cardinality, and 1{j∈S} = 1 if j ∈ S, and 0
otherwise. For a symmetric matrix X , X ≻ (⪰) 0, λmin(X) and ∥X∥ denote the positive (semi-
)definiteness, minimal eigenvalue and spectral norm, respectively. In ∈ Rn×n is the identity matrix.
The Big-O notation f(x) = O(g(x)) means that there exists C > 0 such that |f(x)| ≤ C|g(x)|
for sufficiently large x, and f(x) = Õ(g(x)) has the same meaning, except that it suppresses
polylogarithmic factors in x. Similarly, f(x) = Ω(g(x)) denotes there exists c > 0 such that
|f(x)| ≥ c|g(x)| for suffciently large x. ∥x∥ is the Euclidean norm of x ∈ Rn. For a sequence
{xk}k≥0 generated by the algorithm, we define gk = ∥∇φ(xk)∥, ϵk = minj≤k gj , and ∆φ =
φ(x0)− inf φ, Uφ = supφ(x)≤φ(x0) ∥∇φ(x)∥.

Capped CG The capped CG proposed by Royer et al. [49] solves the equation H̄d̃ = −g using
the standard CG, where H̄ = H + 2ρIn. It also monitors whether the iterates generated by the
algorithm are negative curvature directions, or the algorithm converges slower than expected. If
such an evidence is found, the algorithm will output a negative curvature direction. Specifically, the
algorithm outputs a pair (d_type, d̃) with d_type ∈ {SOL, NC}. When d_type = NC, d̃ is a negative
curvature direction such that d̃⊤Hd̃ ≤ −ρ∥d̃∥2; and when d_type = SOL, d̃ approximately satisfies
the equation. In both cases, the solution can be found within min(n, Õ(ρ−

1
2 )) HVPs. We provide the

algorithm and its properties in Section B.

Complexity of RNMs Continuing from Section 1, we further discuss RNMs. The key to proving a
global rate is the following descent inequality, or its variants [2, 49, 41, 14, 30, 29, 56, 24]:

φ(xk+1)− φ(xk) ≤ −Cmin
(
g2k+1ρ

−1
k , ρ3k

)
, where k ≥ 0. (2.1)

The dependence on the future gradient gk+1 arises from the inability to establish a lower bound
on ∥dk∥ using only the information available at the current iterate, since once the iterations enter a
superlinear convergence region, the descent becomes small. If we were able to choose ρk such that
the descent were at least ϵ

3
2 , then by telescoping the sum we would obtain φ(xk)−φ(x0) ≤ −Ckϵ

3
2 .

The optimal global rate O(ϵ−
3
2 ) would follow from −Ckϵ

3
2 ≥ φ(xk)− φ(x0) ≥ −∆φ. Therefore,

the regularizer ρk plays a central rule in the global rate. In the thread of work starting from Royer
et al. [49], ρk ∝

√
ϵ, and the required descent is guaranteed as long as gk+1 ≥ ϵ; otherwise, xk+1 is

a solution. Another line of works related to Mishchenko [41] and Gratton et al. [24] use ρk ∝
√
gk.

With this choice, a g
3
2

k descent is achieved when gk+1 ≥ gk. However, when gk+1 < gk, the descent

becomes g2k+1g
− 1

2

k , but the control over gk+1 is lost. To resolve this issue, the iterations are divided
into two sets: a successful set Is = {k : gk+1 ≥ gk/2} and a failure set If = N \ Is. It is shown
that when |If | is large the gradient will decrease below ϵ rapidly; and otherwise, sufficient descent
is still achieved. The logarithmic factor in the complexity of Gratton et al. [24] can be understood
as follows: a sufficient descent occurs at least once in every O(log 1

ϵ ) iterations. Yet, as shown in
Theorem 3.2, it actually occurs in every O(log log 1

ϵ ) iterations.

Local convergence We say {gk}k≥0 has a superlinear local rate of order 1 + ν̄ if gk+1 = O(g1+ν̄
k )

for sufficiently large k, and a quadratic local rate corresponds to the case ν̄ = 1. Assuming
∇2φ(x∗) ≻ 0, then the classical Newton method achieves the quadratic local rate in a neighborhood
of x∗, which we refer to as the local region in this paper. In the nonconvex setting, identifying
whether an iterate lies within this region is challenging, as it requires knowledge of the solution
x∗. To assess whether a given regularizer is possible to attain quadratic local convergence, we can
consider the quadratic function φ(x) = ∥x∥2: the fixed regularizer ρk ∝

√
ϵ of Royer et al. [49]

yields linear convergence, while a gradient-based regularizer ρk ∝ gν̄k with ν̄ ∈ (0, 1] achieves a
superlinear rate of order 1 + ν̄ [12, 36, 19, 1, 40]. Hence, choosing ν̄ = 1

2 as in Gratton et al. [24]
leads to a local rate of only 3

2 .
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2.1 Intuitions and results

We adopt the standard assumption from Royer et al. [49], which also guarantees ∆φ < ∞ and
Uφ < ∞. While the Lipschitz continuity assumption can be relaxed to hold only on the level set
Lφ(x0) using techniques in He et al. [30], we retain this assumption for simplicity, as it is required
for the descent lemma (Theorem C.1) and is orthogonal to our analysis.
Assumption 2.1 (Smoothness). The level set Lφ(x0) := {x ∈ Rn : φ(x) ≤ φ(x0)} is compact, and
∇2φ is LH -Lipschitz continuous on an open neighborhood of Lφ(x0) containing the trial points
generated in Algorithm 1, where x0 is the initial point.

The choice of regularizers The preceding discussion reveals a tension between global and local
convergence in RNMs: near-optimal global rate requires ρk ∝

√
gk, whereas quadratic local

convergence demands a much smaller regularizer ρk ≲ gk. A principled approach to reconcile this
trade-off is to dynamically adapt ρk to meet these requirements. Ideally, we may set ρk =

√
gkδk,

where δk = 1 outside the local region to guarantee global complexity, and δk ≲
√
gk within

the local region to achieve quadratic convergence. However, this choice for δk is not practically
implementable, as it presumes knowledge of whether the current iterate lies in the local region, which
is typically unknown in the nonconvex setting. Instead, our adjustment scheme is motivated by the
observation that, in the local region where superlinear convergence of order 1 + ν̄ occurs, the ratio
δk = gk/gk−1 ≤ gν̄k−1 rapidly decays to zero. Hence, this ratio serves as a reasonable heuristic for
reducing the regularizer and improving the convergence in the local region, though the extent of this
improvement remains unclear. The technical analysis in Section 3 reveals that achieving a quadratic
local rate requires a refined choice, namely δθk = min(1, gθk/g

θ
k−1) with θ > 1, which is smaller than

the original ratio gk/gk−1. Additionally, for θ ∈ (0, 1], the local rate can still be improved, albeit
sub-quadratically, as illustrated in Figure 1 and formalized in Theorem 3.7.

Outside the local region, although the convergence is typically linear or sublinear such that δk ≈ c ∈
(0, 1] and ρk =

√
gkδ

θ
k ∝
√
gk for most itertaions, there may still be occasional sharp drops in gk that

cause δk to become extremely small, unintendedly reducing the regularizer and thereby degrading the
global complexity. To address this issue, we observe that a necessary condition for entering the local
region is that the sequence {gk} becomes monotonically decreasing. Based on it, we switch to the
regularizer ρk =

√
gk whenever this condition is not satisfied. Lines 2-5 of Algorithm 1 describe

this procedure, where ωt
k corresponds to the choice

√
gkδ

θ
k for accelerating local convergence, and

ωf
k =

√
gk serves as the fallback choice to maintain the global rate, and NewtonStep generates

the next iterate based on these regularizers. In practice, δk rarely exhibits sharp drops, allowing
the fallback step to be relaxed or even omitted (see Section G.2). Theoretically, as established
in Theorem 3.2, at least one suitable ρk can be identified within O(log log 1

ϵ ) iterations, yielding
an O(ϵ−

3
2 log log 1

ϵ ) iteration complexity. Furthermore, our analysis reveals that the logarithmic
factor comes from abrupt increases of

√
gk (Theorem 3.4). It also suggests that replacing gk with

ϵk = minj≤k gk in the regularizer eliminates this factor, thereby achieving the optimal global rate.
This alternative can be interpreted as a mechanism that retains historical information through ϵk,
effectively preventing the growth of

√
ϵk.

Thus far, the structure of our regularizers has taken the form ρk = ωt
k = ωf

kδ
θ
k, and our discussion has

focused on complexity with respect to the tolerance parameter ϵ, without addressing the dependence
on the Hessian Lipschitz constant LH . To attain the optimal global complexity with respect to
LH , we require ρk =

√
LHωt

k. However, since LH is typically unknown and may vary locally,
we dynamically estimate it via the sequence Mk using the subroutine LipEstimation, and set
ρk =

√
Mkω

t
k in L8. The update scheme for Mk is derived from a thorough analysis of the algorithm

(see Theorem C.1). Roughly speaking, if the actual descent ∆k = φ(xk)− φ(xk+1) is smaller than
the predicted value from the analysis, this suggests that Mk underestimates LH , and we increase it;
conversely, when the prediction is fulfilled, we attempt to decrease Mk. Our analysis shows that after
Õ(1) iterations, it produces a desirable estimation of LH .

The design of NewtonStep The subroutine NewtonStep follows the version of Royer et al. [49]
and He et al. [30], utilizing the CappedCG subroutine defined in Section B to find a descent direction.
The key modification in this subroutine is the linesearch rule in L11-15 for selecting the stepsize
when the negative curvature direction is not detected, and the subroutine LipEstimation. The
criterion (2.4) aligns with the classical globalization approach of Newton methods [17], and can be
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shown to generate a unit stepsize (i.e., α = 1) when the iteration is sufficiently close to a solution
with a positive definite Hessian, leading to superlinear convergence (see Theorem E.3). However,
as previously discussed, our regularizers may become small when a sharp drop of gk occurs, which
also degrades the oracle complexity in terms of the function evaluations and HVPs. To address these
issues, we introduce an additional criterion (2.5) to ensure that it remains uniformly bounded as the
iteration progresses. In this criterion, the choice of α̂ in L12 is motivated by the observation that
selecting the stepsize according to the r.h.s. of (D.9) guarantees acceptance in the linesearch. The
role of α̂ is thus to approximate this stepsize, while leaving the unknown term on the r.h.s. to be
determined adaptively by the linesearch procedure. Another modification is the introduction of the
fifth parameter ρ̄ and the additional TERM state of d_type in CappedCG. This state is triggered when
the iteration number exceeds Ω̃(ρ̄−

1
2 ), and is designed to ensure non-degenerate oracle complexity in

terms of HVPs.

Complexity Combining all these components, we are able to obtain the complexity results sum-
marized in Theorems 2.2 and 2.3. Table 1 also compares them with other RNMs for nonconvex
optimization. All parameters aside from the regularizers can be chosen arbitrarily, provided they sat-
isfy the requirements in Algorithm 1. For the regularizers in Theorem 2.2, Theorem 2.3 shows that the
complexity in terms of HVPs is Õ

(
ϵ−

7
4

)
, matching the results in Carmon et al. [3], Royer et al. [49].

Moreover, the complexity in terms of the second-order oracle outputting {φ(x),∇φ(x),∇2φ(x)} is
O
(
ϵ−

3
2

)
+ Õ(1), attaining the lower bound of Carmon et al. [4] up to an additive Õ(1) term coming

from the lack of prior knowledge about LH . Notably, the
√
LH scaling in the iteration complexity is

also optimal [4].
Theorem 2.2 (Iteration complexity, proof and the non-asymptotic version in Sections C.2 and E.1).
Let {xk}k≥0 be generated by Algorithm 1. Under Assumption 2.1 and define ϵk = min0≤i≤k gi with
g−1 = ϵ−1 = g0, the following two iteration bounds hold for achieving the ϵ-stationary point for
θ ≥ 0:

1. If ωf
k =
√
gk, ωt

k = ωf
kδ

θ
k, and δk = min(1, gkg

−1
k−1), then

k ≲ ∆φL
1
2

Hϵ−
3
2 log log

Uφ

ϵ
+ | logLH | log

Uφ

ϵ
; (2.2)

2. If ωf
k =
√
ϵk, ωt

k = ωf
kδ

θ
k, and δk = ϵkϵ

−1
k−1, then

k ≲ ∆φL
1
2

Hϵ−
3
2 + | logLH |+ log

Uφ

ϵ
. (2.3)

Furthermore, there exists a subsequence {xkj
}j≥0 such that limj→∞ xkj

= x∗ with∇φ(x∗) = 0. If
θ > 1 and∇2φ(x∗) ≻ 0, then the whole sequence {xk} converges to a local minimum x∗, and for
sufficiently large k, quadratic local rate exists for both of these choices, i.e., gk+1 ≤ O(g2k).

Theorem 2.3 (Oracle complexity, proof in Section C.3). Each iteration in the main loop of Algorithm 1
requires at most 2(mmax + 1) function evaluations; and at most 2 gradient evaluations; and either 1
Hessian evaluation or at most min

(
n, Õ((ωf

k)
− 1

2 )
)

HVPs.

Finally, we note that the overall computational complexity can be viewed as the product of two
factors: (i) the number of HVP evaluations required by the algorithm, and (ii) the cost of performing a
single HVP evaluation. Since the cost of an individual HVP evaluation is typically fixed and does not
vary across iterations, the complexity analysis reduces to counting the number of HVP evaluations,
as given by the above theorem.

3 Overview of the techniques

We outline the key steps in this section and defer the complete proofs to Sections C and D.

The global iteration complexity Let ∆k = φ(xk) − φ(xk+1) denote the objective function
decrease at iteration k, and define the index set Nk = {j ≤ k : ∆j ≳ L

−1/2
H ϵ3/2} to contain the

iterations that achieve sufficient descent. As previously mentioned, a key step in the complexity
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Algorithm 1: Adaptive regularized Newton-CG (ARNCG)
Input :Initial point x0 ∈ Rn, parameters µ ∈ (0, 1/2), β ∈ (0, 1), τ− ∈ (0, 1), τ+ ∈ (0, 1],

τ ∈ (0, 1], γ ∈ (1,∞), mmax ∈ [1,∞), M0 ∈ (0,∞), and η ⊆ [0, 1], and regularizers
{ωt

k, ω
f
k}k≥0 ⊆ (0,∞) for trial and fallback steps.

1 for k = 0, 1, . . . do // the main loop
2 (xk+ 1

2
,Mk+1)←NewtonStep(xk, ω

t
k,Mk, ω

f
k) // trial step

3 if (the above step returns FAIL) or
(
gk+ 1

2
> gk and gk ≤ gk−1

)
then

4 (xk+1,Mk+1)←NewtonStep(xk, ω
f
k,Mk, ω

f
k) // fallback step

5 else xk+1 ← xk+ 1
2

// accept the trial step

6 Subroutine NewtonStep(x, ω,M, ω̄)
7 η̃ ← min

(
η,
√
Mω

)
8 (d_type, d̃)← CappedCG(∇2φ(x),∇φ(x),

√
Mω, η̃, τ

√
Mω̄) // see Section B

9 if d_type = TERM then return FAIL // never reached if ω ≥ ω̄
10 else if d_type = SOL then // a normal solution
11 Set d← d̃ and α← βm, where 0 ≤ m ≤ mmax is the minimum integer such that

φ(x+ βmd) ≤ φ(x) + µβmd⊤∇φ(x). (2.4)

12 if the above m does not exist then // switch to a smaller stepsize
13 Set α̂← min(1, ω

1
2M− 1

4 ∥d∥− 1
2 )

14 Set α← α̂βm̂, where 0 ≤ m̂ ≤ mmax is the minimum integer such that

φ(x+ α̂βm̂d) ≤ φ(x) + µα̂βm̂d⊤∇φ(x). (2.5)

15 if the above m̂ does not exist then return (x, γM)
16 else // a negative curvature direction (d_type = NC)
17 Set d̄← ∥d̃∥−1d̃ and adjust it to a descent direction with length L(d̄):

d← −L(d̄)sign
(
d̄⊤∇φ(x)

)
d̄, where L(d̄) := M−1|d̄⊤∇2φ(x)d̄|. (2.6)

18 Set α← βm, where 0 ≤ m ≤ mmax is the minimum integer such that

φ(x+ βmd) ≤ φ(x)−Mµβ2m∥d∥3. (2.7)

19 if the above m does not exist then return (x, γM)
20 x+ ← x+ αd
21 M+ ← LipEstimation(x, x+, τ−, τ+, ω,M, γ, β, µ, d_type)
22 return (x+,M+)

23 Subroutine LipEstimation(x, x+, τ−, τ+, ω,M, γ, β, µ, d_type)
24 M+ ←M
25 ∆← φ(x)− φ(x+)
26 if d_type = SOL and m = 0 satisfies (2.4) then
27 if ∆ ≤ 4

33µτ+M
− 1

2 min
(
∥∇φ(x+)∥2ω−1, ω3

)
then M+ ← γM

28 else if ∆ ≥ 4
33µτ−M

− 1
2 ω̄3 then M+ ← γ−1M

29 else if d_type = SOL and ∆ ≤ τ+βµM
− 1

2ω3 then M+ ← γM

30 else if d_type = NC and ∆ ≤ τ+(1− 2µ)2β2µM− 1
2ω3 then M+ ← γM

31 else if ∆ ≥ µτ−M
− 1

2 ω̄3 then M+ ← γ−1M
32 return M+

6



Table 1: Comparison of regularized Newton methods for nonconvex optimization. The parameter
Mk estimates LH and is independent of ωf

k and ωt
k in Theorem 2.2. For details, see arguments of

CappedCG in Algorithm 1. We define gk = ∥∇φ(xk)∥ and ϵk = mini≤k gk. The additive Õ(1)
terms in some algorithms come from LH estimation. “EPS” in the last column indicates that ϵ is
used in the regularization coefficient, and “ME” means the method needs to compute the minimal
eigenvalue to determine its parameters.

Algorithm Iteration Complexity Local Order Regularization Coefficient Requirements

Royer et al. [49, Theorem 3] O(L3
Hϵ−

3
2 ) 1‡

√
ϵ EPS

Zhu and Xiao [56, Theorem 5] O(L2
Hϵ−

3
2 ) 1† 2τkg

θ
k for τk ∈ [g−θ

k

√
ϵ, τ̂g−θ

k

√
ϵ] EPS

He et al. [29, Theorem 1] O(L
1
2

Hϵ−
3
2 ) 1‡

√
Mkϵ EPS

Gratton et al. [24, Theorem 3.5] O(max(L2
H , L

1
2

H)ϵ−
3
2 log 1

ϵ ) + Õ(1) 1.5‡
√
Mkgk + [−λmin(∇2φ(xk))]+ ME

Theorem 2.2 O(L
1
2

Hϵ−
3
2 log log 1

ϵ ) + Õ(1) 2 if θ > 1
√
Mkgk min(1, gθkg

−θ
k−1) for θ ≥ 0 -

Theorem 2.2 O(L
1
2

Hϵ−
3
2 ) + Õ(1) 2 if θ > 1

√
Mkϵ

1
2+θ

k ϵ−θ
k−1 for θ ≥ 0 -

† Zhu and Xiao [56, Lemma 11] with β = 1 gives a linear rate.
‡ The local rate is not mentioned in the original papers, see the discussions in Section 2.

analysis is to establish a lower bound on |Nk|. For example, since ∆φ ≥ φ(x0) − φ(xk) ≥∑
j≤k ∆j ≳ |Nk|L−1/2

H ϵ3/2, then it follows that k ∝ |Nk| ≲ L
1/2
H ϵ−3/2 as long as |Nk| ≳ k.

To obtain such a lower bound, we first identify the conditions under which the dependence of ∆k

on LH is valid. Let the index sets J i = {k : Mk+1 = γiMk} for i = −1, 0, 1 represent iterations
where Mk is decreased, unchanged, or increased, respectively. Our analysis in Theorem C.1 in
appendix shows that for k ∈ J 0 ∪ J−1, the descent satisfies ∆k ≳ M

−1/2
k Dk, where Dk captures

the descent amount independent of Mk and will be discussed subsequently. Therefore, establishing a
lower bound on |Nk| reduces to counting the number of iterations where Mk ≲ LH and Dk ≳ ϵ3/2

hold.

Theorem C.1 further establishes that if k ∈ J 1, then Mk ≲ LH holds. Since Mk is only increased
when k ∈ J 1, we can conclude that Mk ≲ max(M0, LH). As the bound also depends on the initial
value M0, the inequality Mk ≲ LH does not hold when Mk ≳ LH is overestimated. However,
in this case, we find that Mk will be decreased (i.e., k ∈ J−1) as long as gk does not exhibit a
sharp drop. Building on this, Theorem 3.5 establishes that a satisfactory estimate of Mk can be
obtained within Õ(1) iterations. It remains to analyze how frequently the event Dk ≳ ϵ3/2 occurs
throughout the iterations. Since under the choices of regularizers, we have either ωf

k =
√
gk ≥

√
ϵ or

ωf
k =
√
ϵk ≥

√
ϵ, then ensuring sufficient descent can be reduced to counting the occurrences of the

event Dk ≥ (ωf
k)

3.

Throughout this section, we partition N into a disjoint union of intervals N =
⋃

j≥1 Iℓj ,ℓj+1
such that

0 = ℓ1 and ℓj < ℓj+1 for j ≥ 1, where Ii,j = {i, .., j − 1} is defined in the notation section. These
intervals are constructed such that the following conditions hold for every j ≥ 1:

gℓj ≥ gℓj+1 ≥ · · · ≥ gℓj+1−1 and gℓj+1−1 < gℓj+1
. (3.1)

In other words, the sequence {xk}k≥0 is divided into subsequences where the gradient norms are
non-increasing. The following lemma shows that sufficient descent occurs during the transition
between adjacent subsequences, provided that ℓj − 1 /∈ J 1. The fallback step is primarily designed
to ensure this lemma holds. Without the fallback step, a sudden gradient decrease (i.e., a small δk)
could result in a small regularizer, causing the sufficient descent guaranteed by this lemma to vanish.

Lemma 3.1 (Transition between adjacent subsequences, see Theorem C.2). Under the regularizers
in Theorem 2.2 with θ ≥ 0, we have ωℓj−1 = ωf

ℓj−1 for each j > 1, and

φ(xℓj )− φ(xℓj−1) ≲ −M
− 1

2

ℓj−11{ℓj−1/∈J 1}(ω
f
ℓj−1)

3. (3.2)

Moreover, if Mℓj−1 ≳ LH , then ℓj − 1 ∈ J−1.

The following lemma characterizes the overall decrease of the function within a subsequence.
It roughly states that there are at most O

(
log log

gℓj
gk

)
iterations with insufficient descent in the

subsequence Iℓj ,ℓj+1
, since otherwise the gradient decreases superlinearly below gk.
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Lemma 3.2 (Iteration within a subsequence, see Theorem C.3). Under the regularizers in Theorem 2.2
with θ ≥ 0, then for j ≥ 1 and ℓj < k < ℓj+1, we have

φ(xk)− φ(xℓj ) ≲ −Cℓj ,k

(
|Iℓj ,k ∩ J−1|+max

(
0, |Iℓj ,k ∩ J 0| − Tℓj ,k − 5

))
(ωf

k)
3, (3.3)

where Ci,j = mini≤l<j M
− 1

2

l and Ti,j = 2 log log
(
3(ωf

i)
2(ωf

j)
−2
)
.

Combining Theorems 3.1 and 3.2, we have the following proposition about the accumulated function
descent, and find that there are Σk iterations with sufficient descent.
Proposition 3.3 (Accumulated descent, see Theorem C.4). Under the choices of Theorem 2.2 with
θ ≥ 0, for each k ≥ 0, we have

φ(xk)− φ(x0) ≲ −C0,k

(
|I0,k ∩ J−1|+max

(
|Sk ∩ J 0|, |I0,k ∩ J 0| − Vk − 5Jk

)︸ ︷︷ ︸
Σk

)
ϵ

3
2

k , (3.4)

where Vk =
∑Jk−1

j=1 Tℓj ,ℓj+1
+ TℓJk

,k, and Sk =
⋃Jk−1

j=1 {ℓj+1 − 1}, and Jk = max{j : ℓj ≤ k}.

The difference of the logarithmic factor in the iteration complexity of Theorem 2.2 arises from
the following lemma, which provides an upper bound for Vk. This lemma shows that the choice
ωf
k =

√
ϵk leads to a better control over Vk due to the monotonicity of ϵk, resulting in improved

lower bound for Σk, as indicated by Theorem D.7.
Lemma 3.4 (See Section D.3). Let Vk, Jk be defined in Theorem 3.3, then we have (1). If ωf

k =
√
gk,

then Vk ≤ Jk log log
Uφ

ϵk
; (2). If ωf

k =
√
ϵk, then Vk ≤ log ϵ0

ϵk
+ Jk.

Finally, we need to determine the aforementioned hitting time kinit such that Mkinit ≤ O(LH), and

apply Theorem 3.3 for {xk}k≥kinit
to achieve the L

− 1
2

H dependence in the iteration complexity. The
idea behind the following proposition is that when Mk > Ω(LH) but k ∈ J 0, we will find that the
gradient decreases linearly, implying that this event can occur at most O

(
log

Uφ

ϵkinit

)
times.

Proposition 3.5 (Initial phase, see Theorem C.5). Let kinit = min{j : Mj ≤ O(LH)} and assume

M0 > Ω(LH), then for the first choice in Theorem 2.2, we have kinit ≤ O
(
log M0

LH
log

Uφ

ϵkinit

)
; and

for the second choice, we have kinit ≤ O
(
log M0

LH
+ log

Uφ

ϵkinit

)
.

The local convergence order From the compactness of Lφ(x0) in Assumption 2.1, we know there
exists a subsequence {xkj}j≥0 converging to some x∗ with ∇φ(x∗) = 0 (see Theorem C.6). In the
analysis of the local convergence rate, we need to assume the positive definiteness of∇2φ(x∗), under
which the whole sequence {xk}k≥0 also converges to x∗ (see Theorem E.4). Analyzing the local
convergence of RNMs requires establishing that the Newton direction (∇2φ(xk) + ωkI)

−1∇φ(xk)
leads to superlinear convergence, and that it is eventually selected by the algorithm. Since the latter is
algorithm-specific, we present its proof in Section F.1, and state the main results below.
Lemma 3.6. Assuming ∇2φ(x∗) ⪰ αIn, if d_typek = SOL and mk = 0, and xk is close enough to
x∗, we have gk+1 ≤ O(g2k + ωkgk). Furthermore, under the choices of regularizers in Theorem 2.2,
if xk is close enough to x∗, we know the trial step is accepted, and d_typek = SOL and mk = 0.

Remark on the local convergence neighborhood. We observe that when taking ωt
k = ωf

k = O(gν̄k)
with ν̄ ∈ (0, 1], the gradient norm converges superlinearly with order 1 + ν̄. For the choices
in Theorem 2.2, we find max(ωt

k, ω
f
k) ≤

√
gk so a local rate of order 3

2 can be achieved in the
neighborhood U0 independent of θ, after which the proof of Theorem 3.6 guarantees that the trial
step is accepted at K1 := O(log log poly(Lθ

H , Uθ
φ)) iterations. Then, the following technical lemma

shows that the local order can be improved to arbitrarily close to 1 + ν∞ ∈
(
3
2 , 2
]

for θ > 0 with
ν∞ defined in Theorem 3.7 (see Figure 1 for an illustration), and achieves quadratic convergence for
θ > 1 after K2 := 2 log 2θ−1

2θ−2 + 1 steps. Hence, achieving quadratic convergence requires at most
K1 +K2 extra iterations once the algorithm has entered the θ-independent neighborhood U0.
Lemma 3.7 (Local rate boosting, proof in Section F.2). Let θ > 0 and {gk}k≥0 ⊆ (0,∞). Suppose

g1 ≤ O
(
g

3
2
0

)
and gk+1 ≤ O

(
g2k + g

3
2

k g
θ
kg

−θ
k−1

)
holds for each k ≥ 1, and g0 is sufficiently small.
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Figure 1: The left plot illustrates the local order achievable by the regularizers in Theorem 2.2 for
θ ∈ (0, 1]. It can be made arbitrarily close to 1 + ν∞. The right plot illustrates the local order for
different θ using φ(x) = x2, and its slope reflects the local order and aligns with our predictions.
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Figure 2: Comparison of success rates as functions of elapsed time and Hessian evaluations for
CUTEst benchmark problems. ARNCGg, ARNCGϵ, and “Fixed” correspond to Algorithm 1 with
the first and second regularizers from Theorem 2.2, and a fixed ωk ≡

√
ϵ, respectively. For Hessian

evaluations, since our algorithm accesses this information only via Hessian-vector products, we count
multiple products involving ∇2φ(x) at the same point x as a single evaluation.

Then, (1). If θ ∈ (0, 1], let ν∞ be the positive root of the equation 1
2 + θν∞

1+ν∞
= ν∞, then we have

gk+1 ≤ O
(
g
1+ν∞−(4θ/9)k

k

)
, i.e., gk has local order 1 + ν∞ − δ for any δ > 0; (2). If θ > 1 and

k ≥ 2 log 2θ−1
2θ−2 + 1, then gk+1 ≤ O(g2k), i.e., gk converges quadratically.

4 Preliminary numerical results

In this section, we present some preliminary numerical results to provide an overall sense of our
algorithm’s performance and the effects of its components, and to illustrate the potential application
in training physics-informed neural networks. Detailed results are deferred to Sections G and H.

CUTEst benchmark Since the recently proposed trust-region-type method CAT has an optimal rate
and shows competitiveness with state-of-the-art solvers [26], we adopt their experimental setup and
compare with it, as well as the regularized Newton-type method AN2CER proposed by Gratton et al.
[24] and the recently proposed adaptive cubic regularization method ARCqK [16]. The experiments
are conducted on the 124 unconstrained problems with more than 100 variables from the widely used
CUTEst benchmark for nonlinear optimization [22]. The algorithm is considered successful if it
terminates with ϵk ≤ ϵ = 10−5 such that k ≤ 105. If the algorithm fails to terminate within 5 hours,
it is also recorded as a failure.

The detailed oracle evaluations and HVP computations are reported in Tables 3 and 5 in Section G,
from which we observe that the fallback step has insignificant impact on performance yet increases
computational cost, suggesting it can be relaxed or removed. Furthermore, θ ∈ [0.5, 1] balances
computational efficiency and local behavior and a small mmax is preferable. Finally, the second
linesearch step (2.5) and the TERM state of CappedCG are rarely taken in practice. Figure 2 shows
our method without the fallback step. It is comparable to ARCqK and slightly faster than CAT and
AN2CER, as each iteration uses only a few Hessian-vector products, whereas CAT relies on multiple
Cholesky factorizations and AN2CER involves minimal eigenvalue computations. Meanwhile, our
method requires a similar number of Hessian evaluations as CAT, and slightly fewer than AN2CER
and ARCqK. We also note that using a fixed ωk =

√
ϵ in Algorithm 1 may lead to failures when

gk ≫ ϵ, resulting in deteriorated performance. Additionally, our method requires significantly less
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Figure 3: Loss curves for training PINN
on the reaction problem. Thin lines are 8
independent runs; the bold line shows the
average. The subscript in NNCG denotes
the regularization coefficient.

Convection Reaction Wave

Training Loss
NNCG0.1 1.15× 10−7 1.11× 10−7 9.23× 10−4

NNCG0.01 1.38× 10−8 1.32× 10−8 8.31× 10−5

ARNCGg 2.72× 10−11 5.48× 10−10 3.16× 10−6

Test L2RE
NNCG0.1 5.63× 10−4 4.69× 10−3 5.14× 10−2

NNCG0.01 2.27× 10−4 2.32× 10−3 1.31× 10−2

ARNCGg 1.38× 10−5 4.36× 10−4 3.29× 10−3

Running Time Budget 7.5 hours 2 hours 18 hours
Peak GPU Memory 4.7GB 3.3GB 10.2GB

Table 2: Best training loss and test ℓ2 relative error
(L2RE) on training PINNs over 8 runs. We termi-
nate training based on a fixed time budget. The time
limit is chosen such that ARNCGg performs approx-
imately 2000 iterations. The peak memory usages of
two methods are similar.

memory (∼6GB) compared to CAT (∼74GB) for the largest problem in the benchmark with 123200
variables, as it avoids constructing the full Hessian.

Physics-informed neural networks Physics-Informed Neural Networks (PINNs) parameterize
partial differential equations (PDEs) in physical problems using neural networks, and train the
network by using the residuals of the equations as the loss function [46]. These PDEs often lead to a
poor condition number for the PINN loss [47, 33, 50], making it difficult for first-order optimization
methods like Adam to achieve high-precision solutions. To address this issue, a strategy is to use
Adam first and then switch to quasi-Newton methods such as L-BFGS [47, 32]. However, Rathore
et al. [47] observed that L-BFGS is still insufficient for effectively training PINNs. To address
this, they proposed the NNCG method and further demonstrated that switching to NNCG after the
L-BFGS phase can lead to additional loss reduction and improved solution quality. However, this
approach relies on fixed a regularizer and does not fully resolve the challenges arising from the
non-convexity of the objective function and still requires hyperparameter tuning for regularizers.

Our goal here is to demonstrate that is applicable to medium-size PINNs and offers improved stability
and ease of use, owing to its globalization and adaptivity. The PINN used in our experiments consists
of 81201 parameters in double precision. Since our method only relies on HVP, Table 2 shows the
peak GPU memory usage is at most 10.2GB, whereas storing the full Hessian would require 49.1GB
of memory. As shown in Figure 3, ARNCGg outperforms NNCG in both iteration complexity and
runtime. Further details are provided in Section H.

5 Discussions

In this paper, we present the adaptive regularized Newton-CG method and show that two classes
of regularizers achieve optimal global convergence order and quadratic local convergence. Our
techniques in Section 3 can be extended to Riemannian optimization, as only Theorem C.1 needs to
be modified. For the setting with Hölder continuous Hessians, a variant of this lemma can be derived
following He et al. [29], and the subsequent proof may also be generalized (see Section F.2 for local
rates). However, this case presents additional challenges since the Hölder exponent is also unknown
and requires estimation. It would also be interesting to investigate whether these regularizers are
suitable for the convex settings studied in Doikov and Nesterov [13], Doikov et al. [15] and whether
they can be extended to inexact methods such as Yao et al. [54] and stochastic optimization.
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A Additional discussions

A.1 Related work

Relationship to previous RNMs Our primary contributions lie in the introduction of a new type of
regularizers, as established in Theorem 2.2, which enable a smooth transition from the global to the
local convergence phase, and in the design of a parameter-free algorithm built upon these regularizers.
As illustrated in Table 1 and discussed in the introduction, the works most closely related to ours are
Royer et al. [49] and Gratton et al. [24], and we elaborate on the differences below.

The basic framework of NewtonStep consists of three components: using capped conjugate gradient
(CG) to compute the search direction, a linesearch procedure to determine the stepsize, and an
estimation scheme for the Lipschitz constant. The first two components are similar to the capped
CG framework proposed by Royer et al. [49], and a similar structure is adopted in He et al. [30] and
Zhu and Xiao [56]. However, these methods are not adaptive and exhibit worse dependence on the
Hessian Lipschitz constant LH in their iteration complexity. Specifically, Royer et al. [49] employs
a cubic linesearch rule for both SOL and NC states, resulting in an L3

H dependence, while He et al.
[30] improves this to L2

H by adopting a quadratic linesearch strategy. Subsequently, He et al. [29]
proposed an adaptive algorithm that achieves the optimal

√
LH dependence in iteration complexity.

However, it remains unclear whether the number of function evaluations arised from the linesearch
procedure may grow unbounded as iterations proceed or how it depends on the tolerance parameter ϵ,
leaving the overall complexity in terms of second-order oracle calls unclear. In our analysis, we find
that to ensure the number of function evaluations remains bounded, it is necessary to incorporate a
secondary linesearch condition (2.5), enforce an upper bound mmax on the number of linesearch steps,
and increase Mk whenever this limit is reached. The combination of these algorithmic components
guarantees that the total number of function evaluations remains bounded, and removing them results
in O(log 1

ϵ ) function evaluations per iteration. Furthermore, the regularization strategies employed in
this line of work are proportional to ϵ, which requires a prescribed tolerance parameter ϵ and limits
the local convergence rate to be merely linear.

Gradient-based regularizers in RMNs have also been studied by Gratton et al. [24]. Rather than
employing the capped CG method, they explicitly test for negative curvature using the condition
λmin(∇2φ(xk)) ≲ −

√
Mkgk.2 When this condition holds, the magnitude of the minimal eigenvalue

is sufficiently large, the corresponding eigenvector is used directly to construct a sufficient descent
direction. Otherwise, they switch to a regularizer of the form ρk =

√
Mkgk+[−λmin(∇2φ(xk))]+ ∝√

Mkgk and solve the regularized Newton equation to compute the direction. These two cases
correspond conceptually to the NC and SOL states in the capped CG framework, respectively. Their
method adopts a unit stepsize and uses an acceptance ratio to decide whether to accept the new iterate
and how to update the Lipschitz estimate Mk, based on the accuracy of the local model. However,
although their algorithm incorporates a mechanism for updating Mk, the dependence on LH in
the complexity remains max(L2

H ,
√
LH), and it is unclear whether the optimal order

√
LH can be

achieved. Furthermore, their regularizers are proportional to
√
gk, which, as discussed in Section 2,

limits the local convergence rate to 3/2. On the other hand, incorporating the acceleration factor δθk
could potentially improve the local convergence rate of their methods, but this may lead to increased
HVP complexity due to possible sharp drops in gk. This issue is addressed in our method through the
introduction of the TERM state in CappedCG.

Finally, we note that the proof in Gratton et al. [24] applies only to gk-based regularizers instead
of the ϵk-based ones, while the proof in Royer et al. [49] is not applicable to gk-based ones. Our
partition (3.1) is new in RNMs and unifies the two regularizers into the same analysis.

Other second-order methods with fast global rates The trust-region method is another important
approach to globalizing the Newton method. By introducing a ball constraint ∥d∥ ≤ rk to (1.1), it

2Gratton et al. [24] also proposed a variant that replace ∇2φ(xk) with an approximation defined over the
Krylov subspace to reduce computational cost. For notational simplicity, we focus on the full-space version in
our discussion.
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provides finer control over the descent direction. Several variants of this method have achieved optimal
or near-optimal rates [10, 11, 9, 31]. For example, Curtis et al. [11], Jiang et al. [31] incorporated
a Levenberg-Marquardt regularizer into the trust-region subproblem. Except for the regularization
coefficient ρk, these regularized trust-region methods introduce an additional free parameter: the
trust-region radius rk, which provides extra flexibility to attain quadratic local convergence. For
instance, regarding the local convergence rate, Jiang et al. [31, Tab. 2] first examine whether the
smallest eigenvalue of the Hessian is sufficiently large. If this condition holds, they set ρk = 0 and
employ the trust-region constraint purely as a globalization mechanism. Under a local convexity
assumption, the method then effectively reduces to the classical Newton scheme in a neighborhood of
the solution, thereby achieving quadratic convergence. However, this strategy requires an additional
eigenvalue check and cannot be directly extended to RNMs, which rely only on the regularization
parameter ρk. As a result, achieving a quadratic rate is more challenging for RNMs.

Hamad and Hinder [25, 26] introduced an elegant and powerful trust-region algorithm that does not
modify the subproblem, achieving both an optimal global order and a quadratic local rate. In contrast,
our results show that the RNM can also achieve both, while using less memory than Hamad and
Hinder [26], as shown in Section 4. Interestingly, the disjunction of fast gradient decay and sufficient
loss decay, as discussed above in the context of RNMs, is also reflected in several of these works.
They also partition the iterations into failure and success sets, which leads to an additional logarithmic
factor [31]. Our partition based on non-increasing subintervals of the gradient norm, as defined in
(3.1), may also be used to improve this factor. It is worth noting that, previous to Royer et al. [49],
a linesearch method with negative detection was proposed by Royer and Wright [48]. For convex
problems, damped Newton methods achieving fast rates have also been developed [27, 28], and the
method of Jiang et al. [31] can also be applied.

For adaptive cubic-regularization methods such as Dussault et al. [16], the core step consists of
minimizing a cubically regularized subproblem, which can equivalently be interpreted as solving
the regularized Newton equation (∇2φ(x) + ρI)d = −∇φ(x), where ρ ∝ σ∥d∥ depends on the
solution d. A central component of Dussault et al. [16] is the search for an appropriate value of ρ. In
contrast, our method employs a prescribed regularization coefficient that is independent of d, thereby
eliminating this search phase.

Adaptive and universal algorithms Since the introduction of cubic regularization, adaptive cubic
regularization attaining the optimal rate without using the knowledge of problem parameters (i.e.,
the Lipschitz constant) were developed by Cartis et al. [6, 7], and universal algorithms based on this
regularization that are applicable to different problem classes (e.g., functions with Hölder continuous
Hessians with unknown Hölder exponents) are studied by Grapiglia and Nesterov [23], Doikov and
Nesterov [13]. Additionally, some adaptive trust-region methods have also been introduced [31, 26].
Recently, several universal algorithms for RNMs have also been proposed, including those by He et al.
[29], Doikov et al. [15], Gratton et al. [24]. As discussed earlier, Doikov et al. [15] focus on convex
problems, the LH dependence in the complexity of Gratton et al. [24] is suboptimal, and the local
convergence rate of He et al. [29] is not quadratic. Therefore, none of these methods achieve our goal
of a parameter-free approach with both optimal global complexity and quadratic local convergence.

A.2 Limitations

Despite achieving optimal global complexity and quadratic local convergence, as well as demonstrat-
ing competitiveness with other second-order methods in numerical experiments, our methods for
training neural networks still require multiple CG iterations to find a descent direction. It would be
desirable to develop better preconditioners or alternative strategies to further reduce the cost of each
iteration. Furthermore, the Lipschitz continuity of the Hessian is assumed, which may not hold for
nonsmooth activation functions such as ReLU.

A.3 Broader impact

Our work primarily focuses on the theoretical properties of RNMs and proposes a new algorithm. We
do not anticipate any potential negative societal impacts.
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Algorithm 2: Capped conjugate gradient [49, Algorithm 1]

Input :A symmetric matrix H ∈ Rd×d, a vector g ∈ Rd, a regularizer ρ ∈ (0,∞), a parameter
ρ̄ ∈ (0,∞) used to decide whether to terminate the algorithm earlier, and a tolerance
parameter ξ ∈ (0, 1).

Output :(d_type, d̃) such that d_type ∈ {NC, SOL, TERM} and Theorem B.2 holds.
1 Subroutine CappedCG(H, g, ρ, ξ, ρ̄)
2 (y0, r0, p0, j)← (0, g,−g, 0)
3 H̄ ← H + 2ρIn

4 M ← ∥Hp0∥
∥p0∥

5 if p⊤0 H̄p0 < ρ∥p0∥2 then return (NC, p0)
6 while True do

// Beginning of standard CG

7 αk ← ∥rk∥2

p⊤
k H̄pk

8 yk+1 ← yk + αkpk
9 rk+1 ← rk + αkH̄pk

10 βk+1 ← ∥rk+1∥2

∥rk∥2

11 pk+1 ← −rk+1 + βk+1pk
// End of standard CG

12 k ← k + 1

13 M ← max
(
M, ∥Hpk∥

∥pk∥ , ∥Hrk∥
∥rk∥ , ∥Hyk∥

∥yk∥

)
// Estimate the norm of H

14 (κ, ξ̂, τ, T )←
(

M+2ρ
ρ , ξ

3κ ,
√
κ√

κ+1
, 4κ4

(1−
√
τ)2

)
15 if y⊤k H̄yk < ρ∥yk∥2 then return (NC, yk)
16 else if ∥rk∥ ≤ ξ̂∥r0∥ then return (SOL, yk)
17 else if p⊤k H̄pk < ρ∥pk∥2 then return (NC, pk)
18 else if ∥rk∥ >

√
Tτ

k
2 ∥r0∥ then

19 αk ← ∥rk∥2

p⊤
k H̄pk

20 yk+1 ← yk + αkpk
21 Find i ∈ {0, . . . , k − 1} such that

(yk+1 − yi)
⊤H̄(yk+1 − yi)

∥yk+1 − yi∥2
< ρ. (B.1)

22 return (NC, yk+1 − yi)
23 else if k ≥ J(M, ρ̄, ξ) + 1 then
24 return (TERM, yk) // J(M, ρ̄, ξ) is defined in (B.2)
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B Details and properties of capped CG

The capped CG in Royer et al. [49] is presented in Algorithm 2, with an additional termination
condition k ≥ J(M, ρ̄, ξ) + 1 and type TERM. Note that in Algorithm 1, we will take ρ =

√
Mω.

The following lemma states the number of iterations for the original version of capped CG.
Lemma B.1 (Lemma 1 of Royer et al. [49]). When the termination condition for TERM is removed,
Algorithm 2 terminates in min(n, J(M,ρ, ξ)) + 1 ≤ min(n, Õ(ρ−

1
2 )) iterations, where

J(M,ρ, ξ) = 1 +

(√
κ+

1

2

)
log

(
144 (

√
κ+ 1)

2
κ6

ξ2

)
, κ =

M + ρ

ρ
. (B.2)

The additional termination condition indicates that the regularizer ρ may be too small to find a
solution within the given computational budget.

For the oracle complexity, each iteration of Algorithm 2 requires only one Hessian-vector product,
since the quantities Hyk, Hpk and Hrk used in the negative curvature monitor can be recursively
constructed from H̄pk generated in the standard CG iteration. When the residual decays slower than
expected, one more CG iteration is performed, and if the historical iterations are stored, only one
additional Hessian-vector product is needed.

The properties of our version with the TERM state are summarized below.

Lemma B.2. Invoking the subroutine CappedCG(H, g, ρ, ξ, ρ̄) obtains (d_type, d̃), then we have the
following properties.

1. When d_type = SOL, d̃ is an approximated solution of (H + 2ρIn)d̃ = −g such that

d̃⊤(H + 2ρIn)d̃ ≥ ρ∥d̃∥2, (B.3)

d̃⊤Hd̃ ≥ −ρ∥d̃∥2, (B.4)

∥d̃∥ ≤ 2ρ−1∥g∥, (B.5)

∥(H + 2ρIn)d̃+ g∥ ≤ 1

2
ρξ∥d̃∥ ≤ ξ∥g∥, (B.6)

d̃⊤g = −d̃⊤(H + 2ρIn)d̃ ≤ −ρ∥d̃∥2. (B.7)

2. When d_type = NC, d̃ is a negative curvature direction such that

d̃⊤Hd̃ ≤ −ρ∥d̃∥2. (B.8)

3. When d_type = TERM, then ρ < ρ̄. In other words, if ρ̄ ≤ ρ the algorithm terminates with
d_type ∈ {SOL, NC}.

4. Suppose there exist α, a, b > 0 such that H ⪰ αIn, ρ̄ ≤ bρa and ρ ≤ 1, then the algorithm
terminates with d_type = SOL when ξ = ρ ≤ C(α, a, b, ∥H∥), where

C(α, a, b, U) := min

(
1,

(
α2

bU

) 1
a

,

(
24α7

b7
√
U(U + 2)

) 1
7a

,

(
12α7

b7

) 1
7a+2

)
.

Proof. The first two cases directly follow from Royer et al. [49, Lemma 3].3 The third case follows
from Theorem B.1 and the monotonic non-increasing property of the map ρ 7→ J(M,ρ, ξ).

The fourth case follows from the standard property of CG for positive definite equation, since
H ⪰ αIn the capped CG reduces to the standard CG. Specifically, let {yk, rk}k≥0 be the sequence
generated by Algorithm 2, then Nocedal and Wright [44, Equation (5.36)] gives that

∥ek∥H̄ ≤ 2

(√
κ(H̄)− 1√
κ(H̄) + 1

)k

∥e0∥H̄ ≤ 2 exp

(
−2k√
κ(H̄)

)
∥e0∥H̄ ,

3This lemma assumes that H = ∇2φ(x), g = ∇φ(x), and φ has Lipschitz Hessian. However, the statement
of this lemma and the capped CG involve only the Hessian of φ at a single point x, and hence the assumption
can be removed.
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where ∥ek∥2H̄ := e⊤k H̄ek and κ(H̄) = (α + 2ρ)−1(∥H∥ + 2ρ) is the condition number, and
ek = yk + H̄−1g = H̄−1rk and H̄ = H + 2ρIn. Then, the above display becomes

1

∥H∥+ 2ρ
∥rk∥2 ≤ r⊤k H̄

−1rk ≤ 4 exp

(
−4k√
κ(H̄)

)
r⊤0 H̄

−1r0

≤ 4 exp

(
−4k√
κ(H̄)

)
1

α+ 2ρ
∥r0∥2.

Let M,κ, ξ̂ be the quantities updated in the algorithm. Then, we have M ≥ α and κ ≤ ρ−1∥H∥+ 2

and ξ̂ = ξ
3κ ≥

ξ
3ρ−1∥H∥+6 . Hence, when the TERM state is removed, and suppose Algorithm 2

terminates at k∗-th step with SOL. Then, we have

k∗ ≤

⌈
1

2

√
κ(H̄) log

6
√

κ(H̄)(ρ−1∥H∥+ 2)

ξ

⌉
. (B.9)

Since κ(H̄) ≤ ∥H∥
α and ρ ≤ 1, we know

k∗ ≤
1

2

√
∥H∥
α

log
6
√
∥H∥(∥H∥+ 2)√

αρξ
+ 1 =: K(ρ, ξ).

When incorporating the TERM state, and suppose it is triggered at the k̂-th step, then

K(ρ, ξ) ≥ k∗ > k̂ ≥ J(M, ρ̄, ξ) + 1 ≥ J(M, ρ̄, ξ). (B.10)

However, when bρa ≥ ρ̄, we have

J(M, ρ̄, ξ) ≥ J(α, ρ̄, ξ) ≥ J(α, bρa, ξ) ≥
√

α

bρa
log

144α7

ξ2b7ρ7a
.

Hence, when ξ = ρ ≤ C(α, a, b, ∥H∥), we have α
bρa ≥ ∥H∥

α ≥ 1 and 144α7

b7ρ7a+2 ≥
6
√

∥H∥(∥H∥+2)√
αρ2

and 144α7

b7ρ7a+2 ≥ 12. Then,

0
(B.10)
≥ J(M, ρ̄, ρ)−K(ρ, ρ)

≥
√

α

bρa
log

144α7

b7ρ7a+2
− 1

2

√
∥H∥
α

log
6
√
∥H∥(∥H∥+ 2)√

αρ2
− 1

≥ 1

2

√
∥H∥
α

log
144α7

b7ρ7a+2
− 1 ≥ log 12

2
− 1 > 0,

which leads to a contradiction. Therefore, the algorithm will terminate with SOL.

C Main results for global rates

Throughout this section, we follow the partition (3.1) defined in Section 3 and provide detailed proofs
for the global rates in Theorem 2.2 and corresponding lemmas described in Section 3. For the sake of
readability, we restate the lemmas mentioned in Section 3.

C.1 Details in Section 3

As discussed at the beginning of Section 3, the following lemma summarizes key properties of
Algorithm 1 and plays a central role in estimating the number of iterations that yield sufficient descent.
Its proof is technically involved and is deferred to Section D.1.
Lemma C.1 (Summarized descent lemma, proof in Section D.2). Let {xk, Mk, d_typek, mk}k≥0

be the sequence generated by Algorithm 1, and denote ωk := ωt
k if the trial step is accepted and

ωk := ωf
k otherwise. Define the index sets J i = {k : Mk+1 = γiMk} for i = −1, 0, 1, and the

constants C̃4 = max
(
1, τ−1

− (9β)−
1
2 , τ−1

− (3β(1− 2µ))−1
)

and C̃5 = min(2, 3− 6µ)−1, then
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1. If k ∈ J 1, then Mk ≤ C̃5LH ;

2. For the regularizers in Theorem 2.2, if Mk > C̃4LH and τ− ≤ min
(
δαk , δ

α
k+1

)
, then

k ∈ J−1, where α = max(2, 3θ).

Moreover, we have
⋃

i=−1,0,1(J i ∩ I0,k) = I0,k, and

|J 1 ∩ I0,k| ≤ |J−1 ∩ I0,k|+ [logγ(γC̃5M
−1
0 LH)]+, (C.1)

k = |I0,k| ≤ 2|J−1 ∩ I0,k|+ |J 0 ∩ I0,k|+ [logγ(γC̃5M
−1
0 LH)]+, (C.2)

and the following descent inequality holds:

φ(xk+1)− φ(xk) ≤

{
0, if k ∈ J 1,

−C̃1M
− 1

2

k Dk, if k ∈ J 0 ∪ J−1,
(C.3)

where C̃1 = min
(
9β2(1− 2µ)2µ, 36βµ(1− µ)2, 4µ/33

)
, and

Dk =


(ωf

k)
3, if k ∈ J−1,

min
(
(ωf

k)
3, ω3

k, g
2
k+1ω

−1
k

)
, if d_typek = SOL and mk = 0 and k /∈ J−1,

min
(
(ωf

k)
3, ω3

k

)
, otherwise.

(C.4)

Lemma C.2 (Restatement of Theorem 3.1). Under the regularizer choices of Theorem 2.2, we have
ωℓj−1 = ωf

ℓj−1 for each j ≥ 2, and

φ(xℓj )− φ(xℓj−1) ≤ −C̃1M
− 1

2

ℓj−11{ℓj−1/∈J 1}(ω
f
ℓj−1)

3, (C.5)

where C̃1, C̃4 are defined in Theorem C.1. Moreover, if Mℓj−1 > C̃4LH , then ℓj − 1 ∈ J−1.

Proof. Let k = ℓj − 1. If the fallback step is taken, then ωk = ωf
k holds. We consider the case where

the trial step at k-th iteration is accepted, then we know gk+ 1
2
= gk+1 > gk by the partition rule

(3.1). However, the acceptance rule of the trial step in Algorithm 1 gives that gk > gk−1, and hence
min(1, gθkg

−θ
k−1) = 1. Moreover, we have gk−1 ≥ ϵk−1 and then

ϵk = min(ϵk−1, gk) ≥ min(ϵk−1, gk−1) = ϵk−1 ≥ ϵk.

Therefore, ϵθkϵ
−θ
k−1 = 1. Combining these discussions, we know ωk = ωf

k for the two choices of
regularizers.

It remains to show that Dk ≥ (ωf
k)

3 for Dk defined in Theorem C.1, which holds since we know
gk+1 > gk by the partition rule (3.1), and gk ≥ (ωf

k)
2 by the choice of regularizers, and therefore,

Dk

(C.4)
≥ min((ωf

k)
3, g2k+1(ω

f
k)

−1) ≥ min((ωf
k)

3, g2k(ω
f
k)

−1) ≥ (ωf
k)

3. (C.6)

Finally, when Mk > C̃4LH , we use Theorem D.5 to show that k ∈ J−1. For the first case in that
corollary, since τ− < 1, then ωk = ωf

k > τ−ω
f
k, then the corollary gives k ∈ J−1. For the second

case, the results follows from (C.6) and min(ω3
k, g

2
k+1ω

−1
k ) ≥ (ωf

k)
3 > τ−(ω

f
k)

3.

Lemma C.3 (Restatement of Theorem 3.2). Under the regularizer choices of Theorem 2.2, we have
(ωf

k)
1+2θ(ωf

k−1)
−2θ ≤ ωk ≤ ωf

k for each k ≥ 1. Moreover, for j ≥ 1 and ℓj < k < ℓj+1,

φ(xk)− φ(xℓj ) ≤ −Cℓj ,k

(
|Iℓj ,k ∩ J−1|+max

(
0, |Iℓj ,k ∩ J 0| − Tℓj ,k − 5

))
(ωf

k)
3, (C.7)

where Ci,j = C̃1 mini≤l<j M
− 1

2

l , Ti,j = 2 log log
(
3(ωf

i)
2(ωf

j)
−2
)
, and C̃1 is defined in Theo-

rem C.1.

Proof. Under the regularizers choices, we know for each k ∈ N, Dk defined in (C.4) satisfies that

Dk ≥ min
(
(ωf

k)
3, g2k+1ω

−1
k , ω3

k

)
= min

(
g2k+1ω

−1
k , ω3

k

)
≥ min

(
g2k+1(ω

f
k)

−1, (ωf
k)

3+6θ(ωf
k−1)

−6θ
)
. (C.8)
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Case 1 For the first choice of regularizers, we have ωf
i =
√
gi and Ti,j = 2 log log 3gi

gj
, and

φ(xi+1)− φ(xi)
(C.3)
≤

−Ci min
(
g2i+1g

− 1
2

i , g
3
2+3θ
i g−3θ

i−1

)
, if i /∈ J−1,

−Cig
3
2
i , if i ∈ J−1,

where Ci := C̃1M
− 1

2
i .

When θ > 0, for any ℓj < k ≤ ℓj+1 − 1, using Theorem D.9 with

(p1, q1, p2, q2, a, A,K, S) =

(
2,

1

2
,
3

2
+ 3θ, 3θ, gk, gℓj , k − ℓj − 1, Iℓj ,k ∩ J 0

)
, (C.9)

we see that

φ(xk)− φ(xℓj )
(C.3)
≤ −C̃1

∑
ℓj≤i<k

i∈J−1

M
− 1

2
i g

3
2
i − C̃1

∑
ℓj≤i<k

i∈J 0

M
− 1

2
i min

(
g2i+1g

− 1
2

i , g
3
2+3θ
i g−3θ

i−1

)

≤ −Cℓj ,k

∑
ℓj≤i<k

i∈J−1

g
3
2
i − Cℓj ,k

∑
ℓj≤i<k

i∈J 0

min
(
g2i+1g

− 1
2

i , g
3
2+3θ
i g−3θ

i−1

)
(D.29)
≤ −Cℓj ,k

(
|Iℓj ,k ∩ J−1|+max

(
0, |Iℓj ,k ∩ J 0| − Tℓj ,k − 5

))
g

3
2

k . (C.10)

On the other hand, when θ = 0, we know φ(xi+1)−φ(xi) ≤ −Cig
2
i+1g

− 1
2

i for i /∈ J−1, and (C.10)
also holds by applying Theorem D.8 with

(p, q, a, A,K, S) =

(
2,

1

2
, gk, gℓj , k − ℓj − 1, Iℓj ,k ∩ J 0

)
.

Case 2 For the second choice of the regularizers, we have ωf
i =
√
ϵi and Ti,j = 2 log log 3ϵi

ϵj
.

Since ϵk is non-increasing and ωk ≤
√
ϵk for each k ∈ N, then for a fixed i such that ℓj ≤ i <

ℓj+1 − 1, we know gi ≥ gi+1 and have the following two cases.

1. If gi+1 ≥ ϵi−1, we know ϵi = min(ϵi−1, gi) ≥ min(ϵi−1, gi+1) = ϵi−1 ≥ ϵi. Then,

Di

(C.8)
≥ min

(
g2i+1ϵ

− 1
2

i , ϵ
3
2+3θ
i ϵ−3θ

i−1

) (gi+1≥ϵi−1)

≥ min
(
ϵ2i−1ϵ

− 1
2

i , ϵ
3
2+3θ
i ϵ−3θ

i−1

) (ϵi=ϵi−1)
= ϵ

3
2
i .

2. If gi+1 < ϵi−1, then using gi+1 ≥ min(gi+1, ϵi) = ϵi+1, we have

Di

(C.8)
≥ min

(
g2i+1ϵ

− 1
2

i , ϵ
3
2+3θ
i ϵ−3θ

i−1

) (gi+1≥ϵi+1)

≥ min
(
ϵ2i+1ϵ

− 1
2

i , ϵ
3
2+3θ
i ϵ−3θ

i−1

)
.

Thus, from Theorem C.1, we know for ℓj ≤ i < ℓj+1 − 1, it holds that

φ(xi+1)− φ(xi)
(C.3)
≤

−Ci min
(
ϵ2i+1ϵ

− 1
2

i , ϵ
3
2+3θ
i ϵ−3θ

i−1

)
, if i /∈ J−1 and gi+1 < ϵi−1,

−Ciϵ
3
2
i , if i ∈ J−1 or gi+1 ≥ ϵi−1.

Define J 0
+ = J 0 ∩ {i : gi+1 ≥ ϵi−1} and J 0

− = J 0 \ J 0
+. For any ℓj < k ≤ ℓj+1 − 1 and θ > 0,

we can apply Theorem D.9, with the parameters a,A, and {gi}0≤i≤K+1 therein chosen as ϵk, ϵℓj ,
and {ϵi}ℓj≤i≤k, respectively, and other parameter choices remain the same as (C.9). Then, we know

φ(xk)− φ(xℓj )
(C.3)
≤ −Cℓj ,k

∑
ℓj≤i<k

i∈J−1∪J 0
+

ϵ
3
2
i − Cℓj ,k

∑
ℓj≤i<k

i∈J 0
−

min
(
ϵ2i+1ϵ

− 1
2

i , ϵ
3
2+3θ
i ϵ−3θ

i−1

)
(D.27)
≤ −Cℓj ,k

(
|Iℓj ,k ∩ (J−1 ∪ J 0

+)|+max
(
0, |Iℓj ,k ∩ J 0

−| − Tℓj ,k − 5
))

ϵ
3
2

k

= −Cℓj ,k

(
|Iℓj ,k ∩ J−1|+max

(
|Iℓj ,k ∩ J 0

+|, |Iℓj ,k ∩ J 0| − Tℓj ,k − 5
))

ϵ
3
2

k

≤ −Cℓj ,k

(
|Iℓj ,k ∩ J−1|+max

(
0, |Iℓj ,k ∩ J 0| − Tℓj ,k − 5

))
ϵ

3
2

k . (C.11)
Similarly, when θ = 0 we can invoke Theorem D.8 to obtain the same result.
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Proposition C.4 (Restatement of Theorem 3.3). Under the regularizer choices of Theorem 2.2, for
each k ≥ 0, we have

φ(xk)− φ(x0) ≤ −C0,k

(
|I0,k ∩ J−1|+max

(
|Sk ∩ J 0|, |I0,k ∩ J 0| − Vk − 5Jk

)︸ ︷︷ ︸
Σk

)
ϵ

3
2

k ,

(C.12)

where C0,k is defined in Theorem C.3, and Vk =
∑Jk−1

j=1 Tℓj ,ℓj+1 +TℓJk
,k, and Sk =

⋃Jk−1
j=1 {ℓj+1−

1}, and Jk = max{j : ℓj ≤ k}.

Proof. For each j ≥ 0 such that ℓj+1 − ℓj ≥ 2, using (C.7) with k = ℓj+1 − 1 and (C.5), and
1{k/∈J 1} = 1{k∈J−1} + 1{k∈J 0}, we find

φ(xℓj+1
)− φ(xℓj ) =

(
φ(xℓj+1

)− φ(xℓj+1−1)
)
+
(
φ(xℓj+1−1)− φ(xℓj+1)

)
≤ −Cℓj ,ℓj+1

(
|Iℓj ,ℓj+1

∩ J−1|+max
(
1{ℓj+1−1∈J 0}, |Iℓj ,ℓj+1

∩ J 0| − Tj − 5
))

(ωf
ℓj+1−1)

3,

where Tj := Tℓj ,ℓj+1
and Ii,j , Ti,j , Ci,j are defined in Theorem C.3. On the other hand, when

ℓj+1 − ℓj = 1, then the above inequality also holds since it reduces to (C.5).

Define Jk = max {j : ℓj ≤ k}, then ℓJk
≤ k < ℓJk+1, and the following inequality holds by

noticing that for each i ∈ N, either ωf
i =
√
ϵi or ωf

i =
√
gi ≥

√
ϵi.

φ(xk)− φ(x0) = φ(xk)− φ(xℓJk
) +

Jk−1∑
j=1

(
φ(xℓj+1

)− φ(xℓj )
)

≤ −CℓJk
,k

(
|IℓJk

,k ∩ J−1|+max
(
0, |IℓJk

,k ∩ J 0| − TℓJk
,k − 5

))
ϵ

3
2

k

−
Jk−1∑
j=1

Cℓj ,ℓj+1

(
|Iℓj ,ℓj+1

∩ J−1|+max
(
1{ℓj+1−1∈J 0}, |Iℓj ,ℓj+1

∩ J 0| − Tj − 5
))

ϵ
3
2

ℓj+1−1

≤ −C0,kϵ
3
2

k

(
|I0,k ∩ J−1|+max

(
|Sk ∩ J 0|, |I0,k ∩ J 0| − Vk − 5Jk

))
, (C.13)

where Vk =
∑Jk−1

j=1 Tj + TℓJk
,k, Sk =

⋃Jk−1
j=1 {ℓj+1 − 1} and the last inequality follows from

max(a, b) + max(c, d) ≥ max(a+ c, b+ d).

Proposition C.5 (Restatement of Theorem 3.5). Let kinit = min{j : Mj ≤ C̃4LH} if M0 > C̃4LH

and kinit = 0 otherwise, then for the first choice of regularizers in Theorem 2.2, we have

kinit ≤
[
logγ

γM0

C̃4LH

]
+

(
C̃3 log

Uφ

ϵkinit

+ 3

)
+ 2, (C.14)

where C̃−1
3 = 1

2max(2,3θ) log
1
τ−

> 0 and C̃4 is defined in Theorem C.1, and [x]+ denotes max(0, x).
For the second choice of regularizers, we have

kinit ≤
[
logγ

M0

C̃4LH

]
+

+ C̃3 log
Uφ

ϵkinit

+ 2. (C.15)

Proof. Using Theorem C.1 and observing that the constants therein satisfy C̃4 ≥ C̃5, then we know
Mk is non-increasing for k < kinit. Hence, C̃4LH < Mk = M0γ

−|I0,k∩J−1|, and equivalently,
logγ(C̃4LH) < logγ Mk = logγ M0 − |I0,k ∩ J−1|. (C.16)

By definition of δk in Theorem 2.2, we know δθk = ωt
k(ω

f
k)

−1 ≤ 1. Let Ii,j = {l ∈ Ii,j :

δαl < τ−}, and I+i,j = {l ∈ Ii,j : δαl+1 < τ−}. From Theorem C.1, when Mk > C̃4LH and
τ− ≤ min

(
δαk , δ

α
k+1

)
, we have k ∈ J−1. Equivalently, we have (Ii,j\Ii,j)∩(Ii,j\I+i,j) ⊆ Ii,j∩J−1

for i < j < kinit. Then,
|Ii,j ∩ J−1| ≥ |(Ii,j \ Ii,j) ∩ (Ii,j \ I+i,j)| = |Ii,j \ (Ii,j ∪ I

+
i,j)|

≥ |Ii,j | − (|Ii,j |+ |I+i,j |) ≥ |Ii,j | − 2|I+i−1,j |, (C.17)

where the last inequality follows from Ii,j = I+i−1,j−1 ⊆ I
+
i−1,j . Reformulating (C.17) obtains

|I+i,j+1| ≥
1

2

(
|Ii+1,j+1| − |Ii+1,j+1 ∩ J−1|

)
, ∀ 0 ≤ i < j < kinit − 1. (C.18)
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Case 1 We consider the first choice of regularizers, i.e., δk = min(1, gkg
−1
k−1). Following the

partition (3.1), for any ℓj ≤ l < ℓj+1− 1 and l < kinit− 1, we know gl+1 ≤ gl and δl+1 = gl+1g
−1
l .

Therefore, since log δl+1 ≤ 0 and log τ− < 0, it holds that

log
gl+1

gℓj
=

∑
ℓj≤i≤l

log δi+1 ≤
∑

i∈I+
ℓj ,l+1

log δi+1

<
log τ−
α
|I+ℓj ,l+1|

(C.18)
≤ −A(|Iℓj+1,l+1| − |Iℓj+1,l+1 ∩ J−1|), (C.19)

where A = 1
2α log 1

τ−
> 0. Let k < kinit − 1 and Ĵk = max {j : ℓj ≤ k + 1}, then

Ĵk log
ϵk+1

Uφ
≤

Ĵk−1∑
j=1

log
gℓj+1−1

gℓj
+ log

gk+1

gℓĴk

(C.19)
≤ −A

Ĵk−1∑
j=1

(|Iℓj+1,ℓj+1−1| − |Iℓj+1,ℓj+1−1 ∩ J−1|)

−A(|IℓĴk
+1,k+1| − |IℓĴk

+1,k+1 ∩ J−1|)

≤ −A(|I1,k+1| − 2Ĵk − |I1,k+1 ∩ J−1|), (C.20)

where the last inequality follows from |Iℓj+1,ℓj+1−1| = |Iℓj+1,ℓj+1+1|−2 and Iℓj+1,ℓj+1−1∩J−1 ⊆
Iℓj+1,ℓj+1+1 ∩ J−1.

For 1 ≤ j ≤ Ĵk, we have ℓj − 1 ≤ k < kinit − 1, then Theorem C.2 gives ℓj − 1 ∈ J−1, Therefore,
|I0,k+1 ∩ J−1| ≥ Ĵk and (C.16) yields logγ(C̃4LH) < logγ M0 − Ĵk. That is, Ĵk ≤ logγ

γM0

C̃4LH
.

From (C.16), we know

k = |I1,k+1|
(C.20)
≤ Jk

(
A−1 log

Uφ

ϵk+1
+ 2

)
+ |I1,k+1 ∩ J−1|

(C.16)
≤ Jk

(
A−1 log

Uφ

ϵk+1
+ 2

)
+ logγ

M0

C̃4LH

≤ logγ
γM0

C̃4LH

(
A−1 log

Uφ

ϵk+1
+ 3

)
.

Case 2 When δk = ϵkϵ
−1
k−1 for each k ∈ N. For any k < kinit − 1, we know a similar version of

(C.19) holds since log δi+1 ≤ 0:

log
ϵk+1

ϵ0
=

∑
i∈I0,k+1

log δi+1 ≤
∑

i∈I+
0,k+1

log δi+1

< −2A|I+0,k+1|
(C.18)
≤ −A(|I1,k+1| − |I1,k+1 ∩ J−1|).

Therefore, we have

k = |I1,k+1| ≤ A−1 log
ϵ0

ϵk+1
+ |I1,k+1 ∩ J−1|

(C.16)
≤ A−1 log

ϵ0
ϵk+1

+ logγ
γM0

C̃4LH

.

Finally, the proof is completed by setting k = kinit−2, and noticing that the conclusion automatically
holds when M0 ≤ C̃4LH .

C.2 Proof of the global rates in Theorem 2.2

The following theorem provides a precise version of the global rates in Theorem 2.2. It can be
translated into Theorem 2.2 by using the identity [logLH ]+ + [logL−1

H ]+ = | logLH |.
Since the right-hand sides of the following bounds are non-decreasing as ϵk decreases, whenever
an ϵ-stationary point is encountered such that ϵk ≤ gk ≤ ϵ, the two inequalities below hold with ϵk
replaced by ϵ. Hence, the iteration bounds in Theorem 2.2 are valid.
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Theorem C.6 (Precise statement of the global rates in Theorem 2.2). Let {xk}k≥1 be generated by
Algorithm 1 with θ ≥ 0. Under Assumption 2.1 and let C = max(C̃4, γC̃5)

1
2 C̃−1

1 with the constants
C̃1, C̃4, C̃5 defined in Theorem C.1, and let C̃3, kinit be defined in Theorem C.5, we have

1. If ωf
k =
√
gk, and ωt

k = ωf
k min(1, gθkg

−θ
k−1), then

k ≤
[
logγ

γM0

C̃4LH

]
+

(
C̃3 log

Uφ

ϵk
+ 3

)
+ 5

(
C∆φL

1
2

Hϵ
− 3

2

k +

[
logγ

C̃5LH

M0

]
+

+ 2

)(
log log

Uφ

ϵk
+ 7

)
+ 2.

2. If ωf
k =
√
ϵk, and ωt

k = ωf
kϵ

θ
kϵ

−θ
k−1, then

k ≤ 40

(
C∆φL

1
2

Hϵ
− 3

2

k +

[
logγ

C̃5LH

M0

]
+

+ 2

)

+

[
logγ

M0

C̃4LH

]
+

+ (24 + C̃3) log
Uφ

ϵk
+ 2.

Moreover, there exists a subsequence {xkj}j≥0 such that limj→∞ xkj = x∗ with ∇φ(x∗) = 0.

Proof. Let kinit be defined in Theorem C.5, without loss of generality, we can drop the iterations
{xj}j≤kinit

and assume M0 ≤ C̃4LH , where C̃4 is defined in Theorem C.1. By Theorem C.1, we
know k ∈ J 1 implies Mk ≤ C̃5LH , and hence supj≥0 Mj ≤ max(C̃4, γC̃5)LH .

By applying Theorem C.4, we have

−∆φ ≤ φ(xk)− φ(x0)
(C.12)
≤ −C0,kΣkϵ

3
2

k ≤ −C̃1(max(C̃4, γC̃5)LH)−
1
2Σkϵ

3
2

k ,

which implies that Σk ≤ CL
1
2

H∆φϵ
− 3

2

k with C = max(C̃4, γC̃5)
1
2 C̃−1

1 , and the theorem can be
proved by find a lower bound over Σk.

Case 1 For the first choice of regularizers, Theorem 3.4 shows that Vk ≤ Jk log log
Uφ

ϵk
, and hence,

Σk ≥ |I0,k ∩ J−1|+max

(
|Sk ∩ J−1|, |I0,k ∩ J 0| − Jk

(
log log

Uφ

ϵk
+ 5

))
(D.25)
≥ k

5
(
log log

Uφ

ϵk
+ 7
) − [logγ C̃5LH

M0

]
+

− 2,

where Theorem D.7 is invoked with Wk = 0 and Uk = log log
Uφ

ϵk
+ 5. Reorganizing the above

inequality and incorporating the initial phase in Theorem 3.5 yields

k ≤ kinit + 5

(
C∆φL

1
2

Hϵ
− 3

2

k +

[
logγ

C̃5LH

M0

]
+

+ 2

)(
log log

Uφ

ϵk
+ 7

)
.

Case 2 For the second choice of regularizers, Theorem 3.4 shows that Vk ≤ log
Uφ

ϵk
+ Jk, and

Σk ≥ |I0,k ∩ J−1|+max

(
|Sk ∩ J−1|, |I0,k ∩ J 0| − log

Uφ

ϵk
− 6Jk

)
.

Using Theorem D.7 with Uk = 6 and Wk = log
Uφ

ϵk
, we know either log Uφ

ϵk
≥ k/24, or

Σk ≥
k

40
−

[
logγ

C̃5LH

M0

]
+

− 2.

By incorporating the case k ≤ 24 log
Uφ

ϵk
and the initial phase in Theorem 3.5, the proof is completed.
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The subsequence convergence From the global complexity we know limk→∞ ϵk = 0. Since
ϵk = min(ϵk−1, gk), we can construct a subsequence {xkj}j≥0 such that gkj = ϵkj . Note φ(xkj ) ≤
φ(x0) and the compactness of the sublevel set Lφ(x0) in Assumption 2.1, we know there is a further
subsequence of {xkj

} converging to some point x∗. Since ∇φ is a continuous map, we know
∇φ(x∗) = 0.

C.3 Proof of Theorem 2.3

Proof. The two gradient evaluations come from∇φ(xk) and∇φ(xk + dk). The number of function
value evaluations in a linesearch criterion is upper bounded by mmax + 1, In the SOL case, at most
two criteria are tested, in the NC case one criterion is tested. Thus, the total number of function
evaluations is bounded by 2mmax + 2. The number of Hessian-vector product evaluations can be
bounded using Theorem B.2.

D Technical lemmas for global rates

D.1 Descent lemmas and their proofs

In this section we provide the descent lemmas for the NC case (Theorem D.2) and the SOL case
(Theorem D.3). The lemma for the NC case is the same as He et al. [30, Lemma 6.3], and we include
the proof for completeness. However, the linesearch rules for the SOL case are different, so we need a
complete proof.

The following lemma transfers Theorem 2.1 to two useful inequalities.
Lemma D.1 (Nesterov et al. [43]). Under Theorem 2.1, we have the following inequalities:

∥∇φ(x+ d)−∇φ(x)−∇2φ(x)d∥ ≤ LH

2
∥d∥2, (D.1)

φ(x+ d) ≤ φ(x) +∇φ(x)⊤d+ 1

2
d⊤∇2φ(x)d+

LH

6
∥d∥3. (D.2)

Lemma D.2 (Descent lemma for the NC state). Suppose d_type, d, d̃,m be the those in the subroutine
NewtonStep of Algorithm 1, and x, ω,M be its inputs. Suppose d_type = NC and let m∗ be the
smallest integer such that (2.7) holds. If 0 < m∗ ≤ mmax, we have

βm∗−1 >
3M(1− 2µ)

LH
, (D.3)

φ(x+ βm∗d)− φ(x) < −9β2(1− 2µ)2µ

L2
H

M
3
2ω3. (D.4)

When m∗ = 0, the linesearch rule gives

φ(x+ d)− φ(x) ≤ −µM− 1
2ω3. (D.5)

Finally, when m∗ > mmax, we have M ≤ (3− 6µ)−1LH .

Proof. Let H = ∇2φ(x), from (2.6) we can verify that ∥d∥ = L(d̄) = M−1∥d∥−2|d⊤Hd|,
where d̄ = ∥d̃∥−1d̃ and d̃ is the direction satisfying Theorem B.2. Then, d⊤Hd = −M∥d∥3
and d⊤∇φ(x) ≤ 0. When m∗ ≥ 1, let 0 ≤ j ≤ m∗ − 1, then (2.7) fails to hold with m = j, and

−µβ2jM∥d∥3 < φ(x+ βjd)− φ(x)
(D.2)
≤ βj∇φ(x)⊤d+ β2j

2
d⊤Hd+

LH

6
β3j∥d∥3

≤ β2j

2
d⊤Hd+

LH

6
β3j∥d∥3 (D.6)

= −β2j

2
M∥d∥3 + LH

6
β3j∥d∥3. (D.7)

Dividing both sides by β2j∥d∥3 we have

−Mµ < −M

2
+

LH

6
βj . (D.8)
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Therefore, rearranging the above inequality gives (D.3).

From (B.8) and (2.6), we know d̃⊤Hd̃ ≤ −
√
Mω∥d̃∥2 and hence ∥d∥ = M−1 |d̃⊤Hd̃|

∥d̃∥2
≥ M− 1

2ω.
By the linesearch rule (2.7), we have

φ(x+ βm∗d)− φ(x) ≤ −µβ2m∗M∥d∥3 ≤ −µβ2m∗M− 1
2ω3

(D.3)
< −9β2(1− 2µ)2µ

L2
H

M
3
2ω3.

When m∗ = 0, (D.5) can be also proven using the above argument.

Finally, when m∗ > mmax ≥ 0, we know (2.7) fails to holds with m = 0, and then (D.8) holds with
j = 0. Therefore, we have M < (3− 6µ)−1LH .

The following lemma summarizes the properties of NewtonStep for SOL case. Its first item is the
necessary condition that the linesearch (2.4) or (2.5) fails, which will be used by subsequent items.
Lemma D.3 (Descent lemma for the SOL state). Suppose d_type, d,m, m̂, α be the those in the
subroutine NewtonStep of Algorithm 1, and x, ω,M be its inputs. Suppose d_type = SOL, and let
m∗ ≥ 0 be the smallest integer such that (2.4) holds, and m̂∗ ≥ 0 be the smallest integer such that
(2.5) holds, then we have

1. Suppose µτβjd⊤∇φ(x) < φ(x+ τβjd)− φ(x) for some τ ∈ (0, 1] and j ≥ 0, then

βj >

√
6(1− µ)M

1
2ω

LHτ2∥d∥
=

√
2CMω

1
2

τM
1
4 ∥d∥ 1

2

, (D.9)

where CM :=
√

3(1−µ)M
LH

≥
√

M
LH

.

2. If mmax ≥ m∗ > 0, then α = βm∗ and

βm∗−1 > max
(
βmmax−1, CM∥∇φ(x)∥−

1
2ω
)
, (D.10)

φ(x+ αd)− φ(x) < −36βµ(1− µ)2

L2
H

M
3
2ω3. (D.11)

3. If m∗ > mmax but mmax ≥ m̂∗ > 0, then βm̂∗−1 >
√
2CM .

4. If m∗ > mmax but mmax ≥ m̂∗ ≥ 0, then α = α̂βm̂∗ with α̂ = min(1, ω
1
2M− 1

4 ∥d∥− 1
2 ),

and

φ(x+ αd)− φ(x) < −µβm̂∗C3
M min (CM , 1)M− 1

2ω3. (D.12)

5. If both m∗ > mmax and m̂∗ > mmax, then M ≤ LH

2 .

6. If m∗ = 0 (i.e., the stepsize α = 1), then

φ(x+ d)− φ(x) ≤ − 4µM− 1
2

25 + 8LHM−1
min

(
∥∇φ(x+ d)∥2ω−1, ω3

)
. (D.13)

Proof. Let H = ∇2φ(x). We note that in the SOL setting, the direction d is the same as d̃ returned
by CappedCG, so Theorem B.2 holds for d.

(1). By the assumption we have

µτβjd⊤∇φ(x) < φ(x+ τβjd)− φ(x)
(D.2)
≤ τβjd⊤∇φ(x) + τ2β2j

2
d⊤Hd+

LH

6
τ3β3j∥d∥3,

Rearranging the above inequality and dividing both sides by τβj , we have

−(1− µ)d⊤∇φ(x) < τβj

2
d⊤Hd+

LH

6
τ2β2j∥d∥3. (D.14)
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From Theorem B.2, we know that d⊤∇φ(x) = −d⊤Hd − 2
√
Mω∥d∥2, then since µ ∈ (0, 1/2),

j ≥ 0 and β ∈ (0, 1), τ ∈ (0, 1], we have 1− µ > 1/2 ≥ βj/2 ≥ τβj/2 and

LH

6
τ2β2j∥d∥3

(D.14)
>

(
1− µ− τβj

2

)
d⊤Hd+ 2

√
Mω(1− µ)∥d∥2

(B.4)
> −

√
Mω

(
1− µ− τβj

2

)
∥d∥2 + 2

√
Mω(1− µ)∥d∥2

=
√
Mω

(
1− µ+

τβj

2

)
∥d∥2.

Therefore, we have

β2j >
6
√
Mω(1− µ+ τβj/2)

LHτ2∥d∥
≥ 6
√
Mω(1− µ)

LHτ2∥d∥
, (D.15)

which proves (D.9).

(2). In particular, when m∗ > 0, we know (2.4) is violated for m = 0, then (D.9) with τ = 1 and
j = 0 gives a lower bound of d:

∥d∥ > 6
√
Mω(1− µ)

LH
≥ C2

MM− 1
2ω. (D.16)

Note that (2.4) is also violated for m∗ − 1, then (D.9) holds with (j, τ) = (m∗ − 1, 1), and we have

βm∗−1
(D.9)
≥

√
6
√
Mω(1− µ)

LH∥d∥
(B.5)
≥

√
3(1− µ)

LH

Mω2

∥∇φ(x)∥
= CM∥∇φ(x)∥−

1
2ω, (D.17)

which yields (D.10). Moreover, the descent of the function value can be bounded as follows:

φ(x+ βm∗d)− φ(x)
(2.4)
≤ µβm∗d⊤∇φ(x)

(B.7)
= −µβm∗d⊤(H + 2

√
MωIn)d

(B.3)
≤ −µ

√
Mωβm∗∥d∥2

(D.17)
< −µβ

√
Mω∥d∥2

√
6
√
Mω(1− µ)

LH∥d∥
= −µβ(

√
Mω∥d∥) 3

2

√
6(1− µ)

LH

(D.16)
< −36βµ(1− µ)2

L2
H

M
3
2ω3. (D.18)

(3). The linesearch rule (2.5) can be regarded as using the rule in (2.4) with a new direction α̂d, where
α̂ = min(1, ω

1
2M− 1

4 ∥d∥− 1
2 ). Since m̂∗ > 0, then (2.5) is violated for 0 ≤ j < m̂∗, and (D.9) with

τ = α̂ gives

β2j >
6
√
Mω(1− µ)

LH α̂2∥d∥
≥ 6M(1− µ)

LH
= 2C2

M . (D.19)

Thus, the result follows from setting j = m̂∗ − 1.

(4). Since m∗ > mmax ≥ 0, then the linesearch rule (2.4) is violated for m = 0 such that (D.16)
holds. Hence, following the first two lines of the proof of (D.18), we have

φ(x+ α̂βm̂∗d)− φ(x) ≤ −µβm̂∗M
1
2ωα̂∥d∥2

= −µβm̂∗M
1
2ωmin

(
∥d∥2, ω 1

2M− 1
4 ∥d∥ 3

2

)
(D.16)
≤ −µβm̂∗M

1
2ωmin

(
C4

MM−1ω2, C3
MM−1ω2

)
= −µβm̂∗C3

M min (CM , 1)M− 1
2ω3.

(5). Since m̂∗ > mmax ≥ 0, then (D.19) holds with j = 0, which implies that 1 > 2C2
M , i.e.,

2M ≤ LH .
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(6). When m∗ = 0, by the linesearch rule and Theorem B.2 we have

φ(x+ d)− φ(x) ≤ µd⊤∇φ(x) ≤ −µ
√
Mω∥d∥2. (D.20)

It remains to give a lower bound of ∥d∥ as in (D.16), which is similar to the proof of He et al. [30,
Lemma 6.2] with their ϵH and ζ replaced with our

√
Mω and η̃. Since special care must be taken

with respect to M , we present the proof below. Note that

∥∇φ(x+ d)∥ ≤ ∥∇φ(x+ d)−∇φ(x)−∇2φ(x)d∥
+ ∥∇φ(x) + (∇2φ(x) + 2

√
MωIn)d∥+ 2

√
Mω∥d∥

(B.6)
≤ LH

2
∥d∥2 +

√
M

(
1

2
ωη̃ + 2ω

)
∥d∥.

Then, by the property of quadratic functions, we know

∥d∥ ≥
−(η̃ + 4) +

√
(η̃ + 4)2 + 8LH(

√
Mω)−2∥∇φ(x+ d)∥

2LH

√
Mω

≥ c0
√
Mωmin

(
ω−2∥∇φ(x+ d)∥, 1

)
,

where c0 := 4M−1

4+η̃+
√

(4+η̃)2+8M−1LH

≥ 2M−1√
(4+η̃)2+8M−1LH

≥ 2M−1√
25+8M−1LH

, and we have used the

inequality −a+
√
a2 + bs ≥ (−a+

√
a2 + b)min(s, 1) from Royer and Wright [48, Lemma 17],

with a = η̃ + 4 ≤ 5, b = 8LHM−1 and s = ω−2∥∇φ(x + d)∥. Combining with (D.20), we get
(D.13).

D.2 Proof of Lemma C.1

In this section, we provide the proof of Theorem C.1. It is highly technical but mostly based on the
descent lemmas (Theorems D.2 and D.3) and the choices of regularizers in Theorem 2.2.

First, we give an auxiliary lemma for the claim about k ∈ J−1 in Theorem C.1.
Lemma D.4. Suppose the following two properties are true:

1. Suppose d_typek ̸= SOL or mk > 0. If Mk > C̃4LH and ωk ≥ τ−ω
f
k, then k ∈ J−1;

2. Suppose d_typek = SOL and mk = 0. If Mk > LH and min
(
ω3
k, g

2
k+1ω

−1
k

)
≥ τ−(ω

f
k)

3,
then k ∈ J−1,

where δθk = ωt
k(ω

f
k)

−1 is defined in Theorem 2.2. Then, if Mk > C̃4LH and τ− ≤ min
(
δαk , δ

α
k+1

)
,

we know k ∈ J−1.

Proof. Let α = max(2, 3θ). We consider the following two cases:

1. Note that τ− < 1. If ωk < τ−ω
f
k, then we know the trial step is accepted since ωk ̸= ωf

k,
and hence, ωk = ωt

k and τ− > δθk ≥ δαk since δk ∈ (0, 1] and θ ≤ α.

2. If min
(
g2k+1ω

−1
k , ω3

k

)
< τ−(ω

f
k)

3, we use the choice ωf
k =

√
gk as an example, the

case for ωf
k =

√
ϵk is similar and follows from gk+1 ≥ ϵk+1. In this case, we have

δk = min(1, gkg
−1
k−1). When the fallback step is taken, we have ωk = ωf

k, and

τ− > g
− 3

2

k min
(
g2k+1g

− 1
2

k , g
3
2

k

)
= δ2k.

Since δk ∈ (0, 1] and 2 ≤ α, we have τ− > δαk . On the other hand, when the trial step is
taken, we have ωk = ωt

k =
√
gkδ

θ
k and

τ− > g
− 3

2

k min
(
g2k+1g

− 1
2

k δ−θ
k , g

3
2

k δ
3θ
k

) (δk≤1)

≥ g
− 3

2

k min
(
g2k+1g

− 1
2

k , g
3
2

k δ
3θ
k

)
= min

(
g2k+1g

−2
k , δ3θk

)
≥ min

(
δ2k+1, δ

3θ
k

)
≥ min

(
δαk+1, δ

α
k

)
.
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Conversely, we find when τ− ≤ min
(
δαk , δ

α
k+1

)
, the assumptions of this lemma give that k ∈

J−1.

We will also show that the two properties listed in Theorem D.4 hold in the proof of Theorem C.1
below, and leave this fact as a corollary for our subsequent usage.
Corollary D.5. Under the regularizers in Theorem 2.2, the two properties in Theorem D.4 hold.

Proof of Theorem C.1. Define ∆k = φ(xk)−φ(xk+1). We denote ωk = ωt
k if the trial step is taken,

and ωk = ωf
k otherwise.

Case 1 When d_typek = SOL and mk = 0, i.e., xk+1 = xk + dk, we define Ek :=
min

(
g2k+1ω

−1
k , ω3

k

)
.

1. When k ∈ J 1, i.e., Mk+1 = γMk, we have

4µ

33
τ+M

− 1
2

k Ek ≥ ∆k

(D.13)
≥

4µM
− 1

2

k

25 + 8LHM−1
k

Ek,

where the first inequality follows from the condition for increasing Mk in Algorithm 1. The
above display implies 25 + 8LHM−1

k ≥ 33τ−1
+ ≥ 33 as τ+ ≤ 1, and hence, Mk ≤ LH .

2. When Ek ≥ τ−(ω
f
k)

3 and Mk > LH , we have k ∈ J−1 since

∆k

(D.13)
≥

4µM
− 1

2

k Ek

25 + 8LHM−1
k

>
4µM

− 1
2

k τ−(ω
f
k)

3

25 + 8
=

4

33
µτ−M

− 1
2

k (ωf
k)

3,

which satisfies the condition in Algorithm 1 for decreasing Mk since ω̄ therein is ωf
k. Thus,

the second property of Theorem D.4 is true.

Case 2 When d_typek = SOL, and let m∗ and m̂∗ be the smallest integer such that (2.4) and (2.5)
hold, respectively, as defined in Theorem D.3. We also recall that C2

Mk
= 3(1−µ)Mk

LH
≥ Mk

LH
.

Since the previous case addresses m∗ = 0, we assume m∗ > 0 here. Then, the condition for
increasing Mk in Algorithm 1 is

∆k ≤ τ+βµM
− 1

2

k ω3
k. (D.21)

The condition for decreasing Mk is

∆k ≥ µτ−M
− 1

2

k (ωf
k)

3. (D.22)

1. When k ∈ J 1 and mmax ≥ m∗ > 0, i.e., mk = m∗ and xk+1 = xk = βmkdk, we have

τ+βµM
− 1

2

k ω3
k

(D.21)
≥ ∆k

(D.11)
≥ 36βµ(1− µ)2

L2
H

M
3
2

k ω3
k ≥

9βµ

L2
H

M
3
2

k ω3
k,

Since τ+ ≤ 1, then we know Mk ≤ τ
1
2
+LH/3 ≤ LH/3.

2. When mmax ≥ m∗ > 0 and Mk ≥ τ−1
− (9β)−

1
2LH and ωk ≥ τ−ω

f
k, then

∆k

(D.11)
≥ 9βµ

L2
H

M
3
2

k ω3
k =

(
9βµ

L2
H

M2
k

)
M

− 1
2

k ω3
k ≥ µτ−2

− M
− 1

2

k (τ3−(ω
f
k)

3) = µτ−M
− 1

2

k (ωf
k)

3,

which satisfies (D.22), and hence k ∈ J−1.

3. When k ∈ J 1 and m∗ > mmax and mmax ≥ m̂∗ ≥ 0, then we know

τ+βµM
− 1

2

k ω3
k

(D.21)
≥ ∆k

(D.12)
≥ µβm̂∗C3

Mk
min (CMk

, 1)M
− 1

2

k ω3
k,

which implies β ≥ βτ+ ≥ βm̂∗C3
Mk

min (CMk
, 1). If CMk

≤ 1, then its definition
implies that Mk ≤ 2LH/3. Otherwise, we have β ≥ βm̂∗C3

Mk
. When m̂∗ = 0, we

know C3
Mk
≤ β ≤ 1 and hence Mk ≤ 2LH/3; when m̂∗ > 0, Theorem D.3 shows

βm̂∗−1 >
√
2CMk

> CMk
, and hence C4

Mk
≤ 1, leading to Mk ≤ 2LH/3.
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4. When m∗ > mmax and mmax ≥ m̂∗ ≥ 0, and Mk ≥ LH , we have CMk
≥ 1 and by

Theorem D.3, m̂∗ = 0, since otherwise we have 1 ≥ βm̂∗−1 >
√
2CMk

> 1, leading to

a contradiction. Then, (D.12) gives ∆k ≥ µM
− 1

2

k ω3
k, and therefore k ∈ J−1 as long as

ωk ≥ τ−ω
f
k.

5. When m∗ > mmax and m̂∗ > mmax, then Theorem D.3 shows that Mk ≤ LH/2, and the
algorithm directly increases Mk so that k ∈ J 1.

The above arguments show that when k ∈ J 1, we have Mk ≤ LH ≤ C̃5LH , and when ωk ≥
τ−ω

f
k and Mk > C̃4LH ≥ max(1, τ−1

− (9β)−
1
2 )LH , we have k ∈ J−1, i.e., the first property of

Theorem D.4 is true for SOL case.

Case 3 When d_typek = NC, let m∗ be the smallest integer such that (2.7) holds, as defined in
Theorem D.2. In this case, the condition for decreasing Mk is also (D.22), and the condition for
increasing it is

∆k ≤ τ+(1− 2µ)2β2µM
− 1

2

k ω3
k. (D.23)

1. When k ∈ J 1 and m∗ > 0, we can similarly use (D.4) in Theorem D.2 and (D.23) to show
that Mk ≤ LH/3.

2. When m∗ > 0 and Mk ≥ τ−1
− (3β(1 − 2µ))−1LH and τ−ω

f
k ≤ ωk, then Theorem D.2

shows that (D.22) holds. Therefore, k ∈ J−1.

3. When m∗ = 0, we show that Mk+1 will not increase, since otherwise (D.5) and (D.23)
imply that 1 > (1− 2µ)2β2τ+ ≥ 1, leading to a contradiction.

4. When m∗ = 0 and τ−ω
f
k ≤ ωk, we know (D.22) holds from (D.5) and τ− < 1, and hence

k ∈ J−1.

5. When m∗ > mmax and m̂∗ > mmax, then Theorem D.2 shows that Mk ≤ LH/(3− 6µ),
and the algorithm directly increases Mk so that k ∈ J 1.

The above arguments show that when k ∈ J 1, we have Mk ≤ LH/min(1, 3− 6µ) ≤ C̃5LH , and
when ωk ≥ τ−ω

f
k and Mk > C̃4LH ≥ τ−1

− (3β(1 − 2µ))−1LH , we have k ∈ J−1, i.e., the first
property of Theorem D.4 is true for NC case.

The cardinality of J i By the definition of J i, we have

logγ Mk = logγ M0 + |I0,k ∩ J 1| − |I0,k ∩ J−1|.

For each k we know Mk+1 > Mk only if Mk ≤ C̃5LH , then supk Mk ≤ max(M0, γC̃5LH), and
hence (C.1) holds. Adding |I0,k \ J 1| to both sides of (C.1), we find (C.2) holds.

The descent inequality The Dk dependence in (C.3) directly follow from Theorems D.2 and D.3.
For the preleading coefficients, we consider the following three cases. (1). When k ∈ J 1, the
result also follows from the two lemmas and the fact that Mk ≥ 1. We also note that the L

− 5
2

H
dependence only comes from the case where d_type = SOL and m does not exist, and for other cases
the coefficient is of order L−2

H ; (2). When k ∈ J−1, the result follows from the algorithmic rule of
decreasing Mk; (3). When k ∈ J 0, we know the rules in the algorithm for increasing Mk fail to
hold, yielding an M

− 1
2

k dependence of the coefficient.

D.3 Proof of Lemma 3.4

Proof of Theorem 3.4. When ωf
k =
√
gk, the upper bound over Vk follows from the monotonicity

of log log 3A
a . On the other hand, when ωf

k =
√
ϵk, we know 3ϵℓj−1 ≥ 2ϵℓj−1 ≥ 2ϵℓj+1−1 since
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{ϵk}k≥0 is non-increasing. Then, we can apply Theorem D.6 below with a = 3 to obtain

Vk ≤
Jk−1∑
j=1

log log
3ϵℓj−1

ϵℓj+1−1
+ log log

3ϵℓJk−1

ϵk

(D.24)
≤ 1

log 3
log

ϵℓ1−1

ϵk
+ Jk log log 3 ≤ log

ϵ0
ϵk

+ Jk,

where we have used the fact that log 3 ≥ 1 and log log 3 ≤ 1.

Lemma D.6. Let {bj}j≥1 ⊆ (0,∞) be a sequence, and a ≥ 3, abj ≥ 2bj+1, then we have for any
k ≥ 1,

k∑
j=1

log log
abj
bj+1

≤ 1

log a
log

b1
bk+1

+ k log log a. (D.24)

Proof. Using the fact log(1+x) ≤ x for x > −1, and log bj− log bj+1 ≥ − log a+log 2 > − log a,
we have

k∑
j=1

log log
abj
bj+1

=
k∑

j=1

log

(
1 +

log bj − log bj+1

log a

)
+ k log log a

≤
k∑

j=1

(
log bj − log bj+1

log a

)
+ k log log a

=
log b1 − log bk+1

log a
+ k log log a,

which completes the proof.

D.4 The counting lemma

Lemma D.7 (Counting lemma). Let J−1,J 0,J 1 ⊂ N be the sets in Theorem C.1, then we have at
least one of the following inequalities holds:

Σk ≥
k

5(Uk + 2)
− [logγ(C̃5M

−1
0 LH)]+ − 2, (D.25)

Wk ≥
k

3(Uk + 2)
, (D.26)

where Σk := |I0,k ∩ J−1|+max
(
|Sk ∩ J 0|, |I0,k ∩ J 0| −Wk − UkJk

)
, and Sk ⊆ I0,k, Uk ≥ 0,

Jk − 1 = |Sk| and Wk ∈ R, and C̃5 is defined in Theorem C.1, M0 is the input in Algorithm 1.

Proof. Denote Bk = (Uk + 2)−1|I0,k ∩ J 0| and Γk = [logγ(γC̃5M
−1
0 LH)]+. We consider the

following five cases, where the first three cases deal with Jk < Bk, and the last two cases are the
remaining parts. We also note that the facts |I0,k| = k and 1 ≥ 2

Uk+2 are frequently used.

Case 1 When Jk < Bk and Wk < Bk, we have

Σk ≥ |I0,k ∩ J−1|+ |I0,k ∩ J 0| − UkJk −Wk > |I0,k ∩ J−1|+ |I0,k ∩ J
0|

Uk + 2

≥ 2|I0,k ∩ J−1|+ |I0,k ∩ J 0|
Uk + 2

(C.2)
≥ k − Γk

Uk + 2
.

Case 2 When Jk < Bk ≤Wk, and |I0,k ∩ J 0| ≤ k
3 , then by (C.2) we know k ≤ 2|I0,k ∩ J−1|+

k
3 + Γk, and hence, Σk ≥ |I0,k ∩ J−1| ≥ k

3 −
1
2Γk.

Case 3 When Jk < Bk ≤Wk, and |I0,k ∩ J 0| > k
3 , then Wk ≥ Bk > k

3(Uk+2) .
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Case 4 When |Sk ∩ J 0| > Bk/2, we have

Σk ≥ |I0,k ∩ J−1|+ |Sk ∩ J 0| ≥ 2|I0,k ∩ J−1|+ |I0,k ∩ J 0|
2(Uk + 2)

(C.2)
≥ k − Γk

2(Uk + 2)
.

Case 5 When Jk ≥ Bk and |Sk ∩ J 0| ≤ Bk/2, we have

Bk − 1 ≤ Jk − 1 = |Sk| = |Sk ∩ J 0|+ |Sk ∩ J 1|+ |Sk ∩ J−1|

≤ Bk

2
+ |I0,k ∩ J 1|+ |I0,k ∩ J−1|

(C.1)
≤ Bk

2
+ 2|I0,k ∩ J−1|+ Γk.

Therefore, we have
Σk ≥ |I0,k ∩ J−1|

=
1

5
|I0,k ∩ J−1|+ 4

5
|I0,k ∩ J−1|

≥ 1

5
· 8|I0,k ∩ J

−1|
4(Uk + 2)

+
4

5

(
Bk

4
− 1

2
− Γk

2

)
=

1

5

(
8|I0,k ∩ J−1|+ 4|I0,k ∩ J 0|

4(Uk + 2)
− 2− 2Γk

)
(C.2)
≥ 1

5

(
k − Γk

Uk + 2
− 2− 2Γk

)
.

Summarizing the above cases, we conclude that

Σk ≥
k

5(Uk + 2)
− Γk −

2

5
≥ k

5(Uk + 2)
− [logγ(C̃5M

−1
0 LH)]+ − 2,

and the proof is completed.

D.5 Technical lemmas for Lemma 3.2

This section establishes two crucial lemmas for proving Theorem 3.2 (a.k.a. Theorem C.3 in the
appendix). Theorem D.8, mentioned in the “sketch of the idea” part of Theorem 3.2, is specifically
applied to the case θ = 0. For θ > 0, we employ a modified version of this result as detailed in
Theorem D.9.
Lemma D.8. Given K ∈ N, p > q > 0, and A ≥ a > 0, and let {gj}0≤j≤K+1 be such that
A = g0 ≥ g1 ≥ · · · ≥ gK ≥ gK+1 = a. Then, for any subset S ⊆ [K], we have∑

i∈S

gpi+1

gqi
≥ max(0, |S| −Ra − 2)e−qap−q, (D.27)

where Ra :=
⌊
log log 3A

a − log log p
q

⌋
≤ log log 3A

a .

Proof. It suffices to consider the case where A = 1, since for general cases, we can invoke the result
of A = 1 with gj , a replaced with gj/A, a/A, respectively. Let τ = p/q and Ik = {j ∈ [K] :
exp(τk)a ≤ gj < exp(τk+1)a} with 0 ≤ k ≤ Ra and I−1 = {j ∈ [K] : a ≤ gj < ea}. Let
ζk = exp(τk) for k ≥ 0 and ζ−1 = 1, then we have ζpkζ

−q
k+1 ≥ e−q. Note that {Ik}−1≤k≤Ra is a

partition of [K], then we have

∑
i∈S

gpi+1

gqi
=

Ra∑
k=−1

∑
j∈Ik∩S

gpj+1

gqj
=

Ra∑
k=−1

 ∑
j∈S

j,j+1∈Ik

gpj+1

gqj
+

∑
j∈S

j∈Ik,j+1/∈Ik

gpj+1

gqj


≥

Ra∑
k=−1

∑
j∈S

j,j+1∈Ik

(ζka)
p

(ζk+1a)
q ≥

Ra∑
k=−1

∑
j∈S

j,j+1∈Ik

e−qap−q = |IS |e−qap−q, (D.28)

33



where IS := {j ∈ S : j, j + 1 ∈ Ik,−1 ≤ k ≤ Ra}. By the monotonicity of gj , we know for each
k, there exists at most one j ∈ Ik such that j + 1 /∈ Ik. Hence, |IS | ≥ |S| − (Ra + 2).

Lemma D.9. Given K ∈ N, p1 > q1 > 0, p2 > q2 > 0 and A ≥ a > 0, and let {gj}0≤j≤K+1 be
such that A = g0 ≥ g1 ≥ · · · ≥ gK ≥ gK+1 = a. Then, for any subset S ⊆ [K], we have

∑
i∈S

min

(
Aq1−p1

gp1

i+1

gq1i
, Aq2−p2

gp2

i

gq2i−1

)
≥ max(0, |S| −Ra,1 −Ra,2 − 4)min

((
A−1a

)p1−q1
,
(
A−1a

)p2−q2
)
, (D.29)

where Ra,i :=
⌊
log log 3A

a − log log pi

qi

⌋
≤ log log 3A

a for i = 1, 2.

Proof. Similar to Theorem D.8, it suffices to show that (D.29) is true for A = 1. Let τi = pi/qi
for i = 1, 2 and Ik = {j ∈ [K] : exp(τk1 )a ≤ gj < exp(τk+1

1 )a} with 0 ≤ k ≤ Ra,1 and
I−1 = {j ∈ [K] : a ≤ gj < ea}. Note that {Ik}−1≤k≤Ra,1 is a partition of [K], then similar to
(D.28) we have

∑
i∈S

min

(
gp1

i+1

gq1i
,
gp2

i

gq2i−1

)
≥

Ra,1∑
k=−1

∑
j∈S

j,j+1∈Ik

min

(
e−q1ap1−q1 ,

gp2

i

gq2i−1

)

≥
∑
j∈IS

min

(
e−q1ap1−q1 ,

gp2

i

gq2i−1

)
,

where IS := {j ∈ S : j, j + 1 ∈ Ik,−1 ≤ k ≤ Ra,1} and we have used the fact that min(α1, β) ≥
min(α2, β) if α1 ≥ α2. Moreover, we can also conclude that |IS | ≥ |S| −Ra,1 − 2.

Next, we consider the partition of IS and lower bound the summation in the above display. Let Jk =
{j ∈ IS : exp(τk2 )a ≤ gj < exp(τk+1

2 )a} with 0 ≤ k ≤ Ra,2, J−1 = {j ∈ IS : a ≤ gj < ea},
and JS := {j ∈ S : j, j − 1 ∈ Jk,−1 ≤ k ≤ Ra,2}. Then, similar to (D.28) we have

∑
j∈IS

min

(
e−q1ap1−q1 ,

gp2

i

gq2i−1

)
≥

Ra,2∑
k=−1

∑
j,j−1∈Jk

min
(
e−q1ap1−q1 , e−q2ap2−q2

)
= |JS |min

(
e−q1ap1−q1 , e−q2ap2−q2

)
.

Therefore, the proof is completed by noticing that |JS | ≥ |IS | −Ra,2 − 2.

E Main results for local rates

In this section, we first provide the precise version of Theorem 3.6 in Theorems E.2 and E.3, and then
prove the main result of the local convergence order. The proofs for technical lemmas are deferred to
Sections F.1 and F.2.

Assumption E.1 (Positive definiteness). There exists α > 0 such that ∇2φ(x∗) ⪰ αIn.

Let C(α, a, b, U) be the constant defined in Theorem B.2, α be defined in Assumption E.1, and
γ, µ,M0, η be the inputs of Algorithm 1, and θ be defined in Theorem 2.2. We define the following
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constants which will be subsequently used in Theorems E.2 and E.3:

UM = max(M0, C̃5γLH), δ0 =
α

2LH
, Lg = ∥∇2φ(x∗)∥+ LHδ0,

c̃ = C

(
α

2
, (1 + 2θ)−1, τU−θ(1+2θ)−1

φ U
1−θ(1+2θ)−1

2

M , Lg

)
,

δ
1
2
1 = min

(
δ

1
2
0 ,min(η, c̃)(UMLg)

− 1
2

)
,

c1 =
4

α
max

(
LHδ

1
2
1 , 2(UMLg)

1
2 (1 + Lg)

)
,

δ
1
2
2 = min

δ
1
2
1 ,

1

2c1
,

(1− 2µ)α

8Lgc1
(
c1δ

1
2
1 + 1

)
+ 32LHδ

1
2
1

 ,

c2 = 4α−2 max
(
2α−1LgLH , (2 + α)LgU

1
2

M

)
,

δ3 = min

(
δ2, c

−2
2 L−1

g

(
δ

1
2
2 + 1

)−2
,
α2

4
(LH + 2U

1
2

ML
1
2
g (1 + Lg))

−2

)
.

Lemma E.2 (Newton direction yields superlinear convergence). Let x, d,M and ω be those in the
subroutine NewtonStep of Algorithm 1 with d_type = SOL. Let x∗ be such that ∇φ(x∗) = 0 and
∇2φ(x∗) ⪰ αIn, then for x ∈ Bδ0(x

∗), we have the following inequalities

∥x∗ − (x+ d)∥ ≤ 2

α

(
LH∥x− x∗∥2 + 2M

1
2ω(1 + Lg)∥x− x∗∥

)
, (E.1)

∥∇φ(x+ d)∥ ≤ 8LgLH

α3
∥∇φ(x)∥2 + 4Lg(2 + α)

α2
M

1
2ω∥∇φ(x)∥. (E.2)

The lemma below shows that the Newton direction will be taken when iterates are close enough to
the solution.
Lemma E.3 (Newton direction is eventually taken). Let x∗ ∈ Rn be such that ∇φ(x∗) = 0
and Assumption E.1 holds. If max(ωt

k, ω
f
k) ≤

√
gk, then d_typek = SOL and mk = 0 exists for

xk ∈ Bδ2(x
∗). Moreover, the trial step using ωt

k is accepted for xk ∈ Bδ3(x
∗).

E.1 Proof of local rates in Theorem 2.2

The following proposition is the non-asymptotic statement of Theorem 2.2.
Proposition E.4. Let {xk}k≥0 be the points generated by Algorithm 1 with the regularizer choices
in Theorem 2.2 and θ ≥ 0; and x∗, {xkj

}j≥0 be those in Theorem C.6 such that limj→∞ xkj
= x∗

and ∇φ(x∗) = 0 and suppose Assumption E.1 holds, i.e., ∇2φ(x∗) ⪰ αIn.

Then, there exists j0 such that ϵj0 = gj0 < min(1, (2c2)
−2) and xj0 ∈ Bδ3(x

∗), and

1. limk→∞ xk = x∗.

2. When θ ∈ (0, 1] and j ≥ 1, we have

∥∇φ(xj0+j+1)∥ ≤ (2c2)
3∥∇φ(xj0+j)∥1+ν∞−(4θ/9)k ,

where ν∞ ∈
[
1
2 , 1
]

is defined in Theorem F.3 and illustrated in Figure 1.

3. When θ > 1 and j ≥ log2
2θ−1
2θ−2 + 1, we have

∥∇φ(xj0+j+1)∥ ≤ (2c2)
2θ+2∥∇φ(xj0+j)∥2.

Proof. Since limj→∞ xkj
= x∗ and ∇φ(x∗) = 0, we know j0 exists. We define the set

I = {j ∈ N : gj = ϵj and xj ∈ Bδ3(x
∗)}. (E.3)

By the existence of j0, we know j0 ∈ I. Suppose k ∈ I, then we will show that k + 1 ∈ I. Since
the choices of ωf

k and ωt
k in Theorem 2.2 fulfill the condition of Theorem E.3, we know the trial step

is taken and xk+1 = xk + dk, where dk is the direction in NewtonStep with ω = ωt
k.
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From Theorem E.2 and Theorem F.2, we have gk ≤ Lg∥xk − x∗∥ ≤ Lgδ3, ωt
k ≤
√
gk and

gk+1

(E.2)
≤ c2g

2
k + c2ω

t
kgk ≤ c2

(
Lgδ3 + (Lgδ3)

1
2

)
gk ≤ c2

(
Lgδ

1
2
2 + L

1
2
g

)
δ

1
2
3 gk ≤ gk. (E.4)

Hence, ϵk+1 = min(ϵk, gk+1) = gk+1. Moreover, since Mk ≤ UM , then

∥xk+1 − x∗∥
(E.1)
≤ 2

α

(
LHδ23 + 2U

1
2

M (Lgδ3)
1
2 (1 + Lg)δ3

)
≤ 2

α

(
LH + 2U

1
2

ML
1
2
g (1 + Lg)

)
δ

3
2
3 ≤ δ3.

Thus, we know k + 1 ∈ I. By induction, k ∈ I for every k ≥ j0, which also gives the convergence
of the whole sequence {xk} since Theorem E.2 provides a superlinear convergence with order 3

2 of
the sequence {∥xk − x∗∥}k≥j0 .

Furthermore, the regularizer ωt
k reduces to g

1
2+θ

k g−θ
k−1 for k ≥ j0+1 and the premises of Theorem F.3

and Theorem F.4 are satisfied, with the constants c0, c, and ν therein chosen as c2, c2, and 1,
respectively. Then, the conclusion follows from Theorem F.3 and Theorem F.4.

F Technical lemmas for local rates

F.1 Standard properties of the Newton step

This section provides the proofs of Theorems E.2 and E.3, which are the detailed version of Theo-
rem 3.6.

The following lemma is used to show that∇2φ(x) ≻ 0 in a neighborhood of x∗. It can be found in,
e.g., Facchinei and Pang [18, Lemma 7.2.12].

Lemma F.1 (Perturbation lemma). Let A,B ∈ Rn×n with ∥A−1∥ ≤ α. If ∥A − B∥ ≤ β and
αβ < 1, then

∥B−1∥ ≤ α

1− αβ
. (F.1)

Corollary F.2. Under Assumption E.1, we have the following properties:

1. When x ∈ Bδ0(x
∗), we know ∇2φ(x) ⪰ α

2 In and ∥(∇2φ(x))−1∥ ≤ 2
α .

2. α
2 ∥x− y∥ ≤ ∥∇φ(x)−∇φ(y)∥ ≤ Lg∥x− y∥ for x, y ∈ Bδ0(x

∗).

Proof. The first part directly follows from Theorem F.1. Since ∇2φ is LH -Lipschitz, then

sup
x∈Bδ0

(x∗)

∥∇2φ(x)∥ ≤ ∥∇2φ(x∗)∥+ LHδ0 = Lg,

implying that ∇φ is Lg-Lipschitz on Bδ0(x
∗). Then, the second part follows from Nesterov et al.

[43, Section 1].

Proof of Theorem E.2. From Theorem F.2, we know H ⪰ α
2 In and ∥H−1∥ ≤ 2

α for every x ∈
Bδ(x

∗) and H = ∇2φ(x). Then, let ϵ = M
1
2ω and note that by the choice in Algorithm 1,

η̃ ≤M
1
2ω = ϵ, we have

∥x∗ − (x+ d)∥ ≤ ∥(H + 2ϵIn)
−1∇φ(x) + (x∗ − x)∥+ ∥d+ (H + 2ϵIn)

−1∇φ(x)∥
(B.6)
≤ ∥(H + 2ϵIn)

−1∥ (∥∇φ(x) +H(x∗ − x)∥+ 2ϵ∥x∗ − x∥+ η̃∥∇φ(x)∥)

≤ 2

α
(∥∇φ(x) +H(x∗ − x)∥+ 2ϵ∥x∗ − x∥+ 2ϵ∥∇φ(x)∥)

(D.1)
≤ 2

α

(
LH∥x∗ − x∥2 + 2ϵ∥x∗ − x∥+ 2ϵ∥∇φ(x)∥

)
. (F.2)

From Theorem F.2, we know α
2 ∥x− x∗∥ ≤ ∥∇φ(x)∥ ≤ Lg∥x− x∗∥, yielding (E.1).

36



Furthermore, we have

∥∇φ(x+ d)∥ ≤ Lg∥x∗ − (x+ d)∥
(F.2)
≤ 2Lg

α

(
LH∥x∗ − x∥2 + 2ϵ∥x∗ − x∥+ 2ϵ∥∇φ(x)∥

)
≤ 2Lg

α

(
4LH

α2
∥∇φ(x)∥2 + 4 + 2α

α
ϵ∥∇φ(x)∥

)
.

Proof of Theorem E.3. Let rk = ∥xk − x∗∥, the proof is divided to three steps.

Step 1 We show that d_typek = SOL for xk ∈ Bδ1(x
∗) regardless of whether the trial step or

the fallback step is taken. By Theorem F.2, we have ∇2φ(x) ⪰ α
2 In for x ∈ Bδ0(x

∗). From
Theorem B.2, when the fallback step is taken, then d_typek = SOL. On the other hand, if the trial
step is taken, we will also invoke Theorem B.2 as follows. Let a = (1 + 2θ)−1 ∈ (0, 1], we have

1. When ωt
k = g

1
2

k min(1, gθkg
−θ
k−1), we know (ωt

k)
a ≥ g

1
2

k U
−aθ
φ = ωf

kU
−aθ
φ ;

2. When ωt
k = ϵ

1
2+θ

k ϵ−θ
k−1, it still holds that (ωt

k)
a ≥ ωf

kU
−aθ
φ .

Therefore, let ρ̄ = τ
√
Mkω

f
k and ρ =

√
Mkω

t
k, and note that from Theorem C.1 we have Mk ≤ UM ,

then let b = τUaθ
φ U

1−a
2

M , we know

ρa = M
a
2

k (ωt
k)

a ≥M
a
2

k ωf
kU

−aθ
φ = τ−1U−aθ

φ M
a−1
2

k ρ̄
(a≤1)

≥ τ−1U−aθ
φ U

a−1
2

M ρ̄ = b−1ρ̄.

Since the map U 7→ C(α, a, b, U) defined in Theorem B.2 is non-increasing, we know

inf
x∈Bδ0

(x∗)
C(α/2, a, b, ∥∇2φ(x)∥) ≥ C(α/2, a, b, ∥∇2φ(x∗)∥+ LHδ0) =: c̃ > 0.

From Theorem F.2, we know for xk ∈ Bδ1(x
∗),

ρ =
√

Mkω
t
k ≤ U

1
2

Mg
1
2

k ≤ U
1
2

M (Lgδ1)
1
2 ≤ min (η, c̃) .

Thus, CappedCG is invoked with ξ = ρ and the premises of the fourth item in Theorem B.2 are
satisfied, which leads to d_typek = SOL.

Step 2 This is a standard step showing that the Newton direction will be taken (see, e.g., Facchinei
[17], Facchinei and Pang [18]).

We show that mk = 0 for xk ∈ Bδ2(x
∗) regardless of whether the trial step or the fallback step is

taken. Define ωk = ωt
k if the k-th step is accepted and ωk = ωf

k otherwise, and denote dk as the
direction generated in NewtonStep with such ωk. By the assumption and Theorem E.2, we have for
xk ∈ Bδ1(x

∗), it holds that ωk ≤ g
1
2

k ≤ L
1
2
g r

1
2

k , and supx∈Bδ1
(x∗) ∥∇2φ(x)∥ ≤ Lg , and

∥xk + dk − x∗∥
(E.1)
≤ 2

α

(
LHr2k + 2M

1
2

k (1 + Lg)rkωk

)
≤ c1r

3
2

k , (F.3)

where we have used Theorem C.1 to obtain Mk ≤ UM . Using the mean-value theorem and
noticing that ∇φ(x∗) = 0, there exist ζ, ξ ∈ (0, 1) and Hζ = ∇2φ(x∗ + ζ(xk − x∗)), Hξ =
∇2φ(x∗ + ξ(xk + dk − x∗)) such that for xk ∈ Bδ1(x

∗),

φ(xk)− φ(x∗) =
1

2
(xk − x∗)⊤Hζ(xk − x∗),

φ(xk + dk)− φ(x∗) =
1

2
(xk + dk − x∗)⊤Hξ(xk + dk − x∗)

(F.3)
≤ Lgc

2
1

2
r3k.
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Combining them, we have for xk ∈ Bδ1(x
∗),

φ(xk + dk)− φ(xk)−
1

2
∇φ(xk)

⊤dk

≤ Lgc
2
1

2
r3k −

1

2
(xk − x∗)⊤Hζ(xk − x∗)− 1

2
∇φ(xk)

⊤dk

=
Lgc

2
1

2
r3k −

1

2
(xk + dk − x∗)⊤Hζ(xk − x∗)− 1

2
(∇φ(xk)−Hζ(xk − x∗))⊤dk. (F.4)

Let x̄ = x∗ + ζ(xk − x∗) and note ∇φ(x∗) = 0, then

∥∇φ(xk)− ζ−1∇φ(x̄)∥ = ∥(∇φ(xk)−∇φ(x∗))− ζ−1(∇φ(x̄)−∇φ(x∗))∥

=

∥∥∥∥∫ 1

0

∇2φ(x∗ + t(xk − x∗))(xk − x∗)dt− ζ−1

∫ 1

0

∇2φ(x∗ + t(x̄− x∗))(x̄− x∗)dt

∥∥∥∥
=

∥∥∥∥∫ 1

0

(∇2φ(x∗ + t(xk − x∗))−∇2φ(x∗ + t(x̄− x∗)))(xk − x∗)dt

∥∥∥∥
≤ LH

∫ 1

0

t∥xk − x̄∥rkdt = LH

∫ 1

0

t(1− ζ)∥xk − x∗∥rkdt ≤ LHr2k.

Therefore, we have for xk ∈ Bδ1(x
∗),

∥∇φ(xk)−Hζ(xk − x∗)∥
≤
∥∥ζ−1∇φ(x̄)−Hζ(xk − x∗)

∥∥+ ∥ζ−1∇φ(x̄)−∇φ(xk)∥
= ζ−1 ∥∇φ(x̄)−∇φ(x∗)−Hζ(x̄− x∗)∥+ ∥ζ−1∇φ(x̄)−∇φ(xk)∥

≤ ζ−1LH∥x̄− x∗∥2 + LHr2k = (ζ + 1)LHr2k ≤ 2LHr2k ≤ 2LHδ
1
2
1 r

3
2

k . (F.5)

We also note that by the definition δ
1
2
2 ≤ 1/(2c1). Hence, 1− c1δ

1
2
2 ≥ 1/2 and for xk ∈ Bδ2(x

∗),

∥dk∥ ≤ ∥xk + dk − x∗∥+ ∥xk − x∗∥
(F.3)
≤ c1r

3
2

k + rk ≤ (c1δ
1
2
2 + 1)rk ≤ 2rk, (F.6)

∥dk∥ ≥ ∥xk − x∗∥ − ∥xk + dk − x∗∥
(F.3)
≥ rk − c1r

3
2

k ≥ (1− c1δ
1
2
2 )rk ≥

rk
2
. (F.7)

Combining the above two inequalities, we find for xk ∈ Bδ2(x
∗),

|(∇φ(xk)−Hζ(xk − x∗))
⊤dk|

(F.5)
≤ 4LHδ

1
2
1 r

5
2

k , (F.8)

|(xk + dk − x∗)
⊤Hζ(xk − x∗)|

(F.3)
≤ Lgc1r

5
2

k . (F.9)

Since d_typek = SOL, then using Theorem B.2 and note that ∇2φ(xk) ⪰ α
2 In, we know

∇φ(xk)
⊤dk

(B.7)
= −d⊤k (∇2φ(xk) + 2M

1
2

k ωkI)dk ≤ −
α

2
∥dk∥2

(F.7)
≤ −α

8
r2k.

Substituting them back to (F.4), and note that µ ∈ (0, 1/2), we have for xk ∈ Bδ2(x
∗),

φ(xk + dk)− φ(xk)− µ∇φ(xk)
⊤dk

≤
(
1

2
− µ

)
∇φ(xk)

⊤dk +

(
φ(xk + dk)− φ(xk)−

1

2
∇φ(xk)

⊤dk

)
≤ −

(
1

2
− µ

)
α

8
r2k +

1

2

(
Lgc

2
1δ

1
2
1 + Lgc1 + 4LHδ

1
2
1

)
r

5
2

k .

We can see that the above term is negative as long as rk ≤ δ2, and therefore, the linesearch (2.4)
holds with mk = 0.

Step 3 We show that the trial step (i.e., the step with using ωt
k) is accepted. Since d_typek = SOL,

then NewtonStep will not return a FAIL state, so it suffices to show gk+ 1
2
= ∥∇φ(xk + dk)∥ ≤ gk,

where dk is the direction generated by NewtonStep with ω = ωt
k ≤
√
gk. Then, by Theorem E.2

and (E.4) we have gx+ 1
2
≤ gk for xk ∈ Bδ3(x

∗).
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F.2 Local rate boosting lemma

In this section, we establish a generalized version of Theorem 3.7 in Theorem F.3 and Theorem F.4,
which extends to the case of a ν-Hölder continuous Hessian and reduces the Lipschitz Hessian in
Assumption 2.1 when ν = 1. The results in Theorem F.3 primarily characterize the behavior for
θ ∈ [0, ν], while the case of θ > ν is analyzed separately in Theorem F.4. This division into two
cases is mainly a technical necessity, as merging them could result in the preleading coefficient ck in
(F.12) becoming unbounded.

Lemma F.3. Let {gk}k≥0 ⊆ (0,∞), c0 ≥ 1, c ≥ 1, 1 ≥ ν > 0, ν0 = ν̄ := ν
1+ν , and θ ≥ 0. If

log g1 ≤ log c0 + (1 + ν0) log g0 and the following inequality holds for k ≥ 1,

gk+1 ≤ cg1+ν
k + cg1+ν̄

k

gθk
gθk−1

, (F.10)

and g0 ≤ min
(
1, (2c)−

1
ν̄ , c

− 1
ν̄

0

)
, then we have gk+1 ≤ gk and the following inequality holds for

every k ≥ 0:
log gk+1 ≤ log ck + (1 + νk) log gk, (F.11)

where we define θ̄ = min(θ, ν) and ν∞ = − 1
2 (1− ν̄ − θ̄) + 1

2

√
(1− ν̄ − θ̄)2 + 4ν̄ ∈ [ν̄, ν] is the

positive root of the equation ν̄ + θ̄ν∞
1+ν∞

= ν∞, and4

log ck := log(2c) +
θ̄

1 + νk−1
log ck−1 ≤

(
1 +

1

ν̄

)
log(2c) + log c0, (F.12)

νk := min

(
ν, ν̄ +

θ̄νk−1

1 + νk−1

)
≥ ν∞ −

θ̄k(ν∞ − ν̄)

(1 + ν̄)2k
≥ ν∞ −

θ̄k

(1 + ν̄)2k
. (F.13)

In particular, when θ ≥ ν, we have ν∞ = ν and vk ≥ ν − νk(ν−ν̄)
(1+ν̄)2k

.

Proof. We first show that ν∞ ∈ [ν̄, ν]. Define the map T (α) = ν̄ + θ̄α
1+α − α for α ∈ [ν̄, ν]. By

reformulating it as T (α) = ν̄ + θ̄ + 1 −
(

θ̄
1+α + (1 + α)

)
, we see that T is strictly decreasing

whenever 1 + α ≥
√
θ̄, which holds since 1 + α ≥ 1 + ν̄ > 1 ≥ ν ≥ θ̄. Then, there exists a unique

ν∞ ∈ [ν̄, ν] such that T (ν∞) = 0 because T (ν̄) = θ̄ν̄
1+ν̄ ≥ 0 and T (ν) = ν(θ̄−ν)

1+ν ≤ 0.

Let I ⊆ N be the set such that k ∈ I if and only if

gk+1 ≤ gk, ck ≥ 1, νk ≤ ν∞, and (F.11), (F.13) hold,

and log ck ≤
1− (1 + ν̄)−k

1− (1 + ν̄)−1
log(2c) + log c0.

First, we show that 0 ∈ I. Since ν0 = ν̄ and gν̄0 ≤ c−1
0 , we have g1 ≤ c0g

1+ν̄
0 ≤ g0. The other parts

hold by assumption, and we have used ν∞ ≥ ν̄ and the definition that ν−1 = 0 in (F.13) for k = 0.

Next, we prove I = N by induction. Suppose 0, . . . , j − 1 ∈ I for some j ≥ 1, we will show
that j ∈ I. Since j − 1 ∈ I, from (F.11) we have gj ≤ cj−1g

1+νj−1

j−1 , and equivalently, g−1
j−1 ≤(

c−1
j−1gj

)− 1
1+νj−1 . Note that cj−1 ≥ 1 and gj ≤ gj−1, and

gθ
j

gθ
j−1

≤ gθ̄
j

gθ̄
j−1

for θ ≥ θ̄, we have

gj+1

(F.10)
≤ cg1+ν

j + cg1+ν̄
j

gθ̄j

gθ̄j−1

≤ cg1+ν
j + cc

θ̄
1+νj−1

j−1 g
1+ν̄+

θ̄νj−1
1+νj−1

j

(c,cj−1≥1)

≤ 2cc
θ̄

1+νj−1

j−1 max

(
g1+ν
j , g

1+ν̄+
θ̄νj−1
1+νj−1

j

)
.

4We define ν−1 = 0.
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Therefore, we find that

log gj+1 ≤ log(2c) +
θ̄

1 + νj−1
log cj−1︸ ︷︷ ︸

log cj

+min

(
1 + ν, 1 + ν̄ +

θ̄νj−1

1 + νj−1

)
︸ ︷︷ ︸

1+νj

log gj . (F.14)

Thus, (F.11) holds for k = j, and log cj ≥ log(2c) ≥ log 2 ≥ 0, i.e., cj ≥ 1.

Since [j − 1] ⊆ I, we know {gi}0≤i≤j is non-increasing, gν̄j ≤ gν̄0 ≤ (2c)−1, and gj ≤ gj−1. Note
that ν̄ ≤ ν and gj ≤ g0 ≤ 1, then gj+1 ≤ cg1+ν

j + cg1+ν̄
j (gjg

−1
j−1)

θ ≤ 2cg1+ν̄
j ≤ gj .

By (F.13), νj−1 ≥ min(ν̄, ν) = ν̄ and we have

log cj ≤ log(2c) +
θ̄

1 + ν̄
log cj−1

(θ̄≤1)

≤ log(2c) +
1

1 + ν̄

(
1− (1 + ν̄)−(j−1)

1− (1 + ν̄)−1
log(2c) + log c0

)
≤ 1− (1 + ν̄)−j

1− (1 + ν̄)−1
log(2c) + log c0.

Finally, we show νj ≤ ν∞ and (F.13) holds for k = j. Define the map F (α) = ν̄ + θ̄α
1+α . We

know F (α) is non-decreasing for α > 0, and F (ν∞) = ν∞ by its definition. Since νj−1 ≤ ν∞ and
F (νj−1) ≤ F (ν∞) = ν∞ ≤ ν, then νj = min(ν, F (νj−1)) = F (νj−1) ≤ ν∞. Moreover, we have

0 ≤ ν∞ − νj = F (ν∞)− F (νj−1) =
θ̄(ν∞ − νj−1)

(1 + ν∞)(1 + νj−1)

≤ θ̄(ν∞ − νj−1)

(1 + ν̄)2
≤ θ̄j(ν∞ − ν̄)

(1 + ν̄)2j
,

where the last inequality follows from the induction assumption.

Thus, we have j ∈ I and by induction I = N.

Corollary F.4. Under the assumptions of Theorem F.3, if θ > ν and k ≥ k0 :=
log θ−νν̄

θ−ν −log ν

2 log(1+ν̄)−log ν + 1,
then gk converges superlinearly with order 1 + ν:

log gk ≤
(
1 + θ +

1

ν̄

)
log(2c) + θ log c0 + (1 + ν) log gk−1. (F.15)

Proof. Since the assumptions are the same as those in Theorem F.3, the results therein are all valid.
Furthermore, we note that in the proof of Theorem F.3, the following stronger variant of (F.14) can
be obtained from (F.10):

log gj+1 ≤ log(2c) +
θ

1 + νj−1
log cj−1︸ ︷︷ ︸

ĉj

+min

(
1 + ν, 1 + ν̄ +

θνj−1

1 + νj−1

)
︸ ︷︷ ︸

1+ν̂j

log gj . (F.16)

Let α =
(

θ
ν−ν̄ − 1

)−1

=
(

θ
νν̄ − 1

)−1
. Since θ > ν, then α > 0 and 1

α = θ
νν̄ − 1 > 1

ν̄ − 1 = 1
ν ,

i.e., α ∈ (0, ν). When νk−1 ≥ α, we have

ν̂k = min

(
ν, ν̄ +

θνk−1

1 + νk−1

)
= min

(
ν, ν̄ +

θ

ν−1
k−1 + 1

)

≥ min

(
ν, ν̄ +

θ

α−1 + 1

)
= ν.
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From Theorem F.3, we know ν∞ = ν, and when k − 1 ≥ k0 − 1 ≥ log ν
(1+ν̄)2

(ν − α) =

− log(ν−α)
2 log(1+ν̄)−log ν , the following inequality holds since ν ∈ (0, 1] and 1 + ν̄ > 1.

νk−1

(F.13)
≥ ν − νk−1(ν − ν̄)

(1 + ν̄)2(k−1)
≥ ν − νk−1

(1 + ν̄)2(k−1)
≥ α.

Thus, for any k ≥ k0, we have ν̂j = ν, and

log gk
(F.16)
≤ log(2c) + θ log ck−1 + (1 + ν) log gk−1

(F.12)
≤
(
1 + θ +

1

ν̄

)
log(2c) + θ log c0 + (1 + ν) log gk−1.

Finally, the proof is completed by noticing that ν − α = ν − νν̄
θ−νν̄ = ν(θ−ν)

θ−νν̄ .

G Additional numerical results on the CUTEst benchmark

This section provides a detailed description of the experimental setup and additional results on the
CUTEst benchmark to supplement Section 4. We implement our algorithm in MATLAB R2023a
and denote the variant using the first regularizer in Theorem 2.2 as ARNCGg , and the variant using
the second regularizer as ARNCGϵ. We use the official Julia implementation provided by Hamad
and Hinder [26] for their method CAT5 and Dussault et al. [16]’s official implementation for their
method ARCqK6. As the code for AN2CER is not publicly available, we investigate several ways to
implement it in MATLAB and report the best results, as detailed in Section G.1.

Our experimental settings follow those described by Hamad and Hinder [26], we conduct all ex-
periments in a single-threaded environment on a machine running Ubuntu Server 22.04, equipped
with dual-socket Intel(R) Xeon(R) Silver 4210 CPUs and 192 GB of RAM. Each socket is installed
with three 32 GB RAM modules, running at 2400 MHz. The algorithm is considered successful if it
terminates when ϵk ≤ ϵ = 10−5 such that k ≤ 105. If the algorithm fails to terminate within 5 hours,
it is also recorded as a failure.

We evaluate these algorithms using the standard CUTEst benchmark for nonlinear optimization [22].
Specifically, we consider all unconstrained problems with more than 100 variables that are commonly
available through the Julia and MATLAB interfaces7 of this benchmark, comprising a total of 124
problems. The dimensions of these problems range from 100 to 123200.

G.1 Implementation details

ARNCG The initial point for each problem is provided by the benchmark itself. Other parameters
of Algorithm 1 are set as follows:

µ = 0.3, β = 0.5, τ− = 0.3, τ = τ+ = 1.0, γ = 5,M0 = 1 and η = 0.01.

We consider two choices for mmax:

1. Setting mmax = 1 so that at most 4 function evaluations per each iteration.

2. Setting mmax = ⌊logβ 10−8⌋ to be the smallest integer such that βmmax+1 > 10−8.

In our experiments, we find that mmax = 1 works well, and the algorithm is not sensitive to the
above parameters, so we do not perform further fine-tuning. In the implementation of CappedCG, we
do not keep the historical iterations to save memory. Instead, we evaluate (B.1) by regenerating the
iterations. In practice, we observe that step (B.1) is triggered very infrequently, resulting in minimal
computational overhead. The TERM state is primarily designed to ensure theoretical guarantees

5See https://github.com/fadihamad94/CAT-Journal.
6See the ARCqKOp method in https://github.com/JuliaSmoothOptimizers/

AdaptiveRegularization.jl.
7See https://github.com/JuliaSmoothOptimizers/CUTEst.jl for the Julia interface, and https:

//github.com/matcutest/matcutest for the MATLAB interface.
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for Hessian-vector products in Section C.3, and we find it is not triggered in practice. Since the
termination condition of CappedCG using the error ∥rk∥ ≤ ξ̂∥r0∥ may not be appropriate for a large
∥r0∥, we instead require it to satisfy ∥rk∥ ≤ min(ξ̂∥r0∥, 0.01).
The fallback step in the main loop of Algorithm 1 is mainly designed for theoretical considerations, as
described in Theorem 3.1. It ensures that an abrupt increase in the gradient norm followed by a sudden
drop does not compromise the validity of this lemma but results in a wasted iteration. However, we
note that this condition can be relaxed to the following to enhance practical performance:

λgk+ 1
2
> gk and gk ≤ λgk−1, for λ ∈ (0, 1]. (G.1)

When λ = 1, this condition reduces to the original one. In our experiments, we explore the choices
of λ = 1, λ = 0.01, and the impact of removing the fallback step (i.e., λ = 0). Moreover, we note
that when θ = 0, the fallback step and the trial step are identical so the choices of λ do not affect the
results. In practice, we suggest setting a small λ or removing the fallback step.

We also terminate the algorithm and mark it as a failure if both the function value and gradient norm
remain unchanged for 20 iterations or if the current search direction satisfies ∥dk∥ ≤ 2× 10−16, or if
the Lipschitz constant estimation satisfies Mk ≥ 1040, as these scenarios may indicate numerical
issues. Figure 2 in the main text is generated under the above settings with λ = 0 and mmax = 1.

For the Hessian evaluations, we only access it through the Hessian-vector products, and count the
evaluation number as the number of iterations minus the number of the linesearch failures. Since
when a linesearch failure occurs, the next point is the same as the current point and does not increase
the oracle complexity of Hessian evaluations.

AN2CER Our implementation follows the algorithm described in Gratton et al. [24, Section 2],
with parameters adopted from their suggested values. The algorithm first attempts to solve the
regularized Newton equation using the regularizer

√
κaMkgk. If this attempt fails, the minimal

eigenvalue λmin(∇2φ(xk)) is computed. The algorithm then switches to the regularizer
√
Mkgk +

[−λmin(∇2φ(xk))]+ when λmin(∇2φ(xk)) > κC

√
Mkgk, and directly uses the corresponding

eigenvector otherwise.

In AN2CER, the authors suggest using Cholesky factorization to solve the Newton equation and
invoking the full eigendecomposition (i.e., the eig function in MATLAB) to find the minimal
eigenvalue when the factorization fails. We observe that, in the current benchmark, it is more efficient
to use CappedCG as the equation solver and compute the minimal eigenvalue using MATLAB’s eigs
function when NC is returned. This modification preserves the success rate and oracle evaluations of
the original implementation while significantly reducing computational cost. We also note that there
are several variants of AN2CER in Gratton et al. [24], and we find that the current version yields the
best results among them.

G.2 Results on the CUTEst benchmark

Following Hamad and Hinder [26], we report the shifted geometric mean8 of Hessian, gradient and
function evaluations, as well as the elapsed time in Tables 3 and 5. In our algorithm, we define
normalized Hessian-vector products as the original products divided by the problem dimension n,
which can be interpreted as the fraction of information about the Hessian that is revealed to the
algorithm; the linesearch failure rate is the fraction of iterations that exceed the maximum allowed
steps mmax; and the second linesearch rate measures the fraction of times the linesearch rule (D.12)
is invoked. The medians of these metrics are provided in Tables 4 and 6. The success rate as a
function of oracle evaluations is plotted in Figures 5 and 6. When an algorithm fails, the elapsed
time is recorded as twice the time limit (i.e., 10 hours), and the oracle evaluations are recorded as
twice the iteration limit (i.e., 2 × 105). We note that the choices for handling failure cases in the
reported metrics of these tables may affect the relative comparison of results with different success
rates, although they follow the convention from previous works. Therefore, we suggest that readers
also focus on the figures for a detailed analysis of each algorithm’s behavior.

8For a dataset {ai}i∈[k], the shifted geometric mean is defined as exp
(

1
k

∑k
i=1 log(ai + 1)

)
, which

accounts for cases where ai = 0.
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The fallback parameter From Tables 3 and 4 and Figure 5, we observe that the choice of the
fallback parameter λ in (G.1) does not significantly affect the success rate, and the overall performance
remains similar across different values of λ. For larger λ, the fallback step is generally triggered more
frequently (as indicated by the “fallback rate”), leading to increased computational time and oracle
evaluations. Interestingly, ARNCGϵ with mmax = 1 seems an exception that λ = 1 is beneficial for
specific problems and gives a slightly higher success rate.

The regularization coefficients Tables 5 and 6 and Figure 6 present comparisons for different
values of θ. As θ increases, the performance initially improves but then declines. Larger θ imposes
stricter tolerance requirements on CappedCG (as indicated by the number of Hessian-vector products
in these tables), and increases computational costs, while smaller θ may lead to a slower local
convergence. Thus, we recommend choosing θ ∈ [0.5, 1] to balance computational efficiency and
local behavior.

We also note that this tolerance requirement is designed for local convergence and is not necessary
for global complexity, so there may be room for improvement. For example, we can use a fixed
tolerance η when the current gradient norm is larger than a threshold, and switch to the current choice
min(η,

√
Mkωk) otherwise. We leave this for future exploration.

Although ARNCGg has a slightly higher worst-case complexity (by a double-logarithmic factor) than
ARNCGϵ, they exhibit similar empirical performance, and in some cases, ARNCGg even performs
better.

A potential failure case in practice for ARNCGϵ occurs when the iteration enters a neighborhood
with a small gradient norm and then escapes via a negative curvature direction. Consequently, ϵk
stays small while gk may grow large, making the method resemble the fixed ϵ scenario. Interestingly,
this same condition is also what introduces the logarithmic factor in ARNCGg theoretically.

The linesearch parameter Since our algorithm relies on a linesearch step, it requires more function
evaluations than CAT for large mmax. If evaluating the target function is expensive, we may need
to set a small mmax, or even mmax = 0. Under the latter case, at most two tests of the line search
criteria are performed, and the parameter Mk is increased when these tests fail. Our theory guarantees
that Mk = O(LH), so this choice remains valid. In practice, we observe that using a relatively small
mmax gives better results.

Case studies for local behavior We present two benchmark problems that exhibit superlinear local
convergence behavior. As illustrated in Figure 4, a larger θ gives faster local convergence. We only
show the algorithm using the second regularizer in this figure, and note that the two regularizers
have a similar behavior since in the local regime they reduce to g

1
2+θ

k g−θ
k−1, as shown in the last

paragraph of the proof of Theorem E.4. Generally, it is hard to identify when the algorithm enters the
neighborhood for superlinear convergence. For HIMMELBG, the algorithm appears to be initialized
near the local regime. For ROSENBR, the algorithm enters the local regime after approximately 20
iterations.

H Additional numerical results on physics-informed neural networks

This section provides a detailed description of the experimental setup and additional results on PINNs
to supplement Section 4. Our experimental settings follow those described by Rathore et al. [47],
and the code is adopted from their codebase, developed with Python 3.10.12. All experiments are
conducted on NVIDIA P100 GPUs with 16 GB of VRAM.

H.1 Problem setup

For a given domain Ω ⊂ Rn, we can define the following partial differential equation (PDE):{
Du = 0, x ∈ Ω,

Bu = 0, x ∈ ∂Ω,
(H.1)

where u denotes the solution to the equation, D is a differential operator, and B represents the
boundary or initial condition operator. PINNs approximate the solution of the above PDE using a
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Figure 4: Illustration of the local behavior of our method on the HIMMELBG (left plot) and ROSENBR
(right plot) problems from the CUTEst benchmark for λ = 0 and mmax = 1. All methods converge
to the same point.
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Figure 5: Comparison of success rates as functions of elapsed time, Hessian evaluations, gradient
evaluations and function evaluations for solving problems in the CUTEst benchmark. The fallback
parameter λ in (G.1) varies, and mmax = 1.
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Table 3: Shifted geometric mean of the relevant metrics for different methods in the CUTEst
benchmark. The fallback, second linesearch and linesearch failure rates are reported as mean values.
The fallback parameter λ in (G.1) varies.

Time (s)
Elapsed

Evaluations
Hessian

Evaluations
Gradient

Evaluations
Function

(normalzied)
Products

Hessian-vector

Rate (%)
Success

Rate (%)
Failure

Linesearch

Rate (%)
Linesearch

Second

Rate (%)
Fallback

AN2CER 36.70 170.10 172.02 176.80 31.38 81.45 N/A N/A N/A
CAT 23.34 88.47 96.61 125.56 N/A 85.48 N/A N/A N/A

ARCqK 16.16 113.21 113.84 119.51 11.97 87.10 N/A N/A N/A

Results for mmax = 1 and θ = 1.0

ARNCGg (λ = 0.00) 16.71 80.86 86.41 119.51 13.77 87.10 16.08 1.38 0.00
ARNCGg (λ = 0.01) 17.01 81.46 87.31 120.48 13.90 87.10 15.98 1.31 0.33
ARNCGg (λ = 1.00) 19.02 85.61 99.01 130.91 14.84 87.10 14.52 0.17 7.43

ARNCGϵ (λ = 0.00) 18.28 85.03 90.78 125.29 14.91 86.29 16.89 0.43 0.00
ARNCGϵ (λ = 0.01) 18.39 85.03 90.78 125.29 14.91 86.29 16.89 0.43 0.00
ARNCGϵ (λ = 1.00) 18.04 78.40 89.41 122.41 14.22 87.10 16.03 0.46 6.10

Results for mmax = ⌊logβ 10−8⌋ and θ = 1.0

ARNCGg (λ = 0.00) 22.89 113.82 121.08 184.09 19.14 83.87 0.08 0.00 0.00
ARNCGg (λ = 0.01) 23.81 117.02 125.50 189.01 19.77 83.87 0.08 0.00 0.90
ARNCGg (λ = 1.00) 26.68 125.53 147.89 218.05 22.53 83.87 0.08 0.00 11.43

ARNCGϵ (λ = 0.00) 22.58 105.95 112.68 176.50 17.81 84.68 0.10 0.00 0.00
ARNCGϵ (λ = 0.01) 22.47 105.95 112.68 176.50 17.81 84.68 0.10 0.00 0.00
ARNCGϵ (λ = 1.00) 25.80 118.41 137.31 214.58 20.79 83.06 0.29 0.00 9.94

Table 4: Median of the relevant metrics for different methods in the CUTEst benchmark. The fallback
parameter λ in (G.1) varies.

Time (s)
Elapsed

Evaluations
Hessian

Evaluations
Gradient

Evaluations
Function

(normalzied)
Products

Hessian-vector

Rate (%)
Success

Rate (%)
Failure

Linesearch

Rate (%)
Linesearch

Second

Rate (%)
Fallback

AN2CER 4.75 30.00 30.00 30.00 4.24 81.45 N/A N/A N/A
CAT 2.13 21.00 22.00 34.50 N/A 85.48 N/A N/A N/A

ARCqK 1.71 28.50 28.50 32.00 0.62 87.10 N/A N/A N/A

Results for mmax = 1 and θ = 1.0

ARNCGg (λ = 0.00) 1.89 20.50 21.50 35.50 1.52 87.10 10.82 0.00 0.00
ARNCGg (λ = 0.01) 2.00 20.50 21.50 35.50 1.52 87.10 10.70 0.00 0.00
ARNCGg (λ = 1.00) 2.12 22.00 25.50 40.00 1.92 87.10 6.75 0.00 0.00

ARNCGϵ (λ = 0.00) 1.72 21.50 22.50 38.00 1.62 86.29 10.26 0.00 0.00
ARNCGϵ (λ = 0.01) 1.86 21.50 22.50 38.00 1.62 86.29 10.26 0.00 0.00
ARNCGϵ (λ = 1.00) 1.99 21.00 24.50 38.00 2.01 87.10 9.92 0.00 0.00

Results for mmax = ⌊logβ 10−8⌋ and θ = 1.0

ARNCGg (λ = 0.00) 2.84 25.00 26.00 53.00 2.13 83.87 0.00 0.00 0.00
ARNCGg (λ = 0.01) 2.89 25.00 26.00 53.00 2.34 83.87 0.00 0.00 0.00
ARNCGg (λ = 1.00) 3.28 24.00 30.50 61.50 2.34 83.87 0.00 0.00 9.09

ARNCGϵ (λ = 0.00) 2.49 26.00 27.00 55.50 1.40 84.68 0.00 0.00 0.00
ARNCGϵ (λ = 0.01) 2.44 26.00 27.00 55.50 1.40 84.68 0.00 0.00 0.00
ARNCGϵ (λ = 1.00) 2.90 25.00 30.50 69.00 1.68 83.06 0.00 0.00 8.33

neural network fθ parameterized by θ, which is trained on the following residual-based loss function:

φ(θ) =
1

nres

nres∑
i=1

(Dfθ(xi
r))

2 +
1

nbc

nbc∑
i=1

(Bfθ(xi
b))

2, (H.2)

where
{
xi
r

}nres

i=1
⊆ Ω and

{
xi
b

}nbc

i=1
⊆ ∂Ω denote points sampled from the interior and boundary of

the domain, respectively.

Following Rathore et al. [47], the solution to the PDE is approximated using a fully connected neural
network fθ with width 200 and 3 hidden layers, comprising a total of 81201 parameters in double
precision. The activation function is set to tanh, and Xavier initialization is applied [21]. The training
data consist of nres = 104 points uniformly sampled from a mesh over the domain, where the mesh
contains 101 and 257 uniformly spaced points along the t-axis and x-axis, respectively. The test
data contains all points in this mesh. Since Rathore et al. [47] adopted the randomized Nyström
method [20] to construct preconditioners and accelerate the CG computation, we also incorporate it
to ensure a fair comparison.

We consider the three types of problems for training PINNs as in Rathore et al. [47]. Their specific
forms are given below:
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Figure 6: Comparison of success rates as functions of elapsed time, Hessian evaluations, gradient
evaluations and function evaluations for solving problems in the CUTEst benchmark. The parameter
θ in Theorem 2.2 varies, and the fallback step is removed, i.e., λ = 0 in (G.1), and mmax = 1.

Table 5: Shifted geometric mean of the relevant metrics for different methods in the CUTEst
benchmark. The linesearch failure rate is reported as mean values. The parameter θ in Theorem 2.2
and the linesearch parameter mmax vary, and λ = 0.

Time (s)
Elapsed

Evaluations
Hessian

Evaluations
Gradient

Evaluations
Function

(normalzied)
Products

Hessian-vector

Rate (%)
Success

Rate (%)
Failure

Linesearch

Rate (%)
Linesearch

Second

AN2CER 36.70 170.10 172.02 176.80 31.38 81.45 N/A N/A
CAT 23.34 88.47 96.61 125.56 N/A 85.48 N/A N/A

ARCqK 16.16 113.21 113.84 119.51 11.97 87.10 N/A N/A

Results for mmax = 1 and λ = 0

Fixed (ωk =
√
ϵ) 48.10 215.60 228.47 386.84 43.97 80.65 26.12 4.73

ARNCGg (θ = 0.0) 21.58 111.12 117.85 151.15 17.73 84.68 13.78 0.00
ARNCGg (θ = 0.5) 18.62 87.10 92.89 126.92 14.85 86.29 15.48 1.31
ARNCGg (θ = 1.0) 16.71 80.86 86.41 119.51 13.77 87.10 16.08 1.38
ARNCGg (θ = 1.5) 19.22 87.83 93.84 129.00 15.29 86.29 15.38 1.58

ARNCGϵ (θ = 0.0) 18.39 90.95 96.67 129.71 15.28 85.48 15.49 0.50
ARNCGϵ (θ = 0.5) 18.84 90.44 96.42 129.85 15.73 85.48 15.69 0.31
ARNCGϵ (θ = 1.0) 18.28 85.03 90.78 125.29 14.91 86.29 16.89 0.43
ARNCGϵ (θ = 1.5) 22.65 104.83 111.81 151.03 18.83 83.87 16.05 0.42

Results for mmax = ⌊logβ 10−8⌋ and λ = 0

Fixed (ωk =
√
ϵ) 47.74 227.08 240.79 842.35 46.47 80.65 13.29 0.00

ARNCGg (θ = 0.0) 27.64 143.93 152.15 213.62 23.10 83.06 0.13 0.00
ARNCGg (θ = 0.5) 21.20 101.86 108.25 167.06 15.96 85.48 0.15 0.00
ARNCGg (θ = 1.0) 22.89 113.82 121.08 184.09 19.14 83.87 0.08 0.00
ARNCGg (θ = 1.5) 22.36 109.75 116.82 185.25 18.60 84.68 0.09 0.00

ARNCGϵ (θ = 0.0) 22.09 113.33 120.03 179.29 18.35 83.87 0.09 0.00
ARNCGϵ (θ = 0.5) 23.12 115.58 122.82 184.87 19.58 83.06 0.12 0.00
ARNCGϵ (θ = 1.0) 22.58 105.95 112.68 176.50 17.81 84.68 0.10 0.00
ARNCGϵ (θ = 1.5) 23.11 113.74 121.11 187.25 20.20 83.06 0.10 0.00
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Table 6: Median of the relevant metrics for different methods in the CUTEst benchmark. The
parameter θ in Theorem 2.2 and the linesearch parameter mmax vary, and λ = 0.

Time (s)
Elapsed

Evaluations
Hessian

Evaluations
Gradient

Evaluations
Function

(normalzied)
Products

Hessian-vector

Rate (%)
Success

Rate (%)
Failure

Linesearch

Rate (%)
Linesearch

Second

AN2CER 4.75 30.00 30.00 30.00 4.24 81.45 N/A N/A
CAT 2.13 21.00 22.00 34.50 N/A 85.48 N/A N/A

ARCqK 1.71 28.50 28.50 32.00 0.62 87.10 N/A N/A

Results for mmax = 1 and λ = 0

Fixed (ωk =
√
ϵ) 10.75 36.50 37.50 90.00 7.29 80.65 33.16 0.00

ARNCGg (θ = 0.0) 2.04 22.50 23.50 37.00 1.52 84.68 1.72 0.00
ARNCGg (θ = 0.5) 1.77 20.00 21.00 34.00 1.52 86.29 9.52 0.00
ARNCGg (θ = 1.0) 1.89 20.50 21.50 35.50 1.52 87.10 10.82 0.00
ARNCGg (θ = 1.5) 2.46 22.00 23.00 38.00 1.72 86.29 10.00 0.00

ARNCGϵ (θ = 0.0) 1.81 20.00 21.00 35.00 1.61 85.48 3.65 0.00
ARNCGϵ (θ = 0.5) 1.91 20.00 21.00 35.00 1.74 85.48 7.12 0.00
ARNCGϵ (θ = 1.0) 1.72 21.50 22.50 38.00 1.62 86.29 10.26 0.00
ARNCGϵ (θ = 1.5) 1.95 22.00 23.00 40.50 1.93 83.87 10.00 0.00

Results for mmax = ⌊logβ 10−8⌋ and λ = 0

Fixed (ωk =
√
ϵ) 12.27 39.50 40.50 323.50 7.59 80.65 0.00 0.00

ARNCGg (θ = 0.0) 3.49 25.50 26.50 53.50 1.95 83.06 0.00 0.00
ARNCGg (θ = 0.5) 2.37 24.00 25.00 52.50 1.35 85.48 0.00 0.00
ARNCGg (θ = 1.0) 2.84 25.00 26.00 53.00 2.13 83.87 0.00 0.00
ARNCGg (θ = 1.5) 2.73 26.00 27.00 54.00 2.10 84.68 0.00 0.00

ARNCGϵ (θ = 0.0) 2.74 23.00 24.00 49.00 1.44 83.87 0.00 0.00
ARNCGϵ (θ = 0.5) 2.31 24.00 25.00 53.50 1.43 83.06 0.00 0.00
ARNCGϵ (θ = 1.0) 2.49 26.00 27.00 55.50 1.40 84.68 0.00 0.00
ARNCGϵ (θ = 1.5) 2.86 25.50 26.50 55.50 2.10 83.06 0.00 0.00

Convection problem This equation models physical phenomena such as heat conduction, and is
defined as: 

∂tu+ β∂xu = 0, (x, t) ∈ (0, 2π)× (0, 1),

u(x, 0) = sinx, x ∈ [0, 2π],

u(0, t) = u(2π, t), t ∈ [0, 1].

In the experiments, the convection coefficient is set to β = 40.

Reaction problem This equation models chemical reaction dynamics, and is given by:
∂tu− ρu(1− u) = 0, (x, t) ∈ (0, 2π)× (0, 1),

u(x, 0) = exp
(
− 8(x−π)2

π2

)
, x ∈ [0, 2π],

u(0, t) = u(2π, t), t ∈ [0, 1].

The parameter is set to ρ = 5 in the experiments.

Wave problem This equation is commonly used to describe wave phenomena such as acoustic and
electromagnetic wave propagation:

∂2
ttu− 4∂2

xxu = 0, (x, t) ∈ (0, 1)× (0, 1),

u(x, 0) = sin(πx) + 1
2 sin(βπx), x ∈ [0, 1],

∂tu(x, 0) = 0, x ∈ [0, 1],

u(0, t) = u(1, t) = 0, t ∈ [0, 1].

In the experiments, the parameter is set to β = 5.

H.2 Results

As suggested by Rathore et al. [47], we adopt the following training strategy: the neural network is
first trained using Adam for I1 iterations, followed by L-BFGS for I2 iterations, and finally switched
to NNCG or ARNCGg. Since the per-iteration cost of RNMs varies significantly, we terminate
training based on a fixed time budget rather than a fixed iteration count. The time limit is chosen
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Table 7: Average training loss and test L2RE on training PINNs over 8 runs.
Convection Reaction Wave

Training Loss
NNCG0.1 3.35±0.46 × 10−7 3.03±0.76 × 10−7 4.52±1.32 × 10−3

NNCG0.01 8.90±1.50 × 10−8 5.20±1.11 × 10−8 2.79±1.10 × 10−3

ARNCGg 7.57±4.93 × 10−10 2.04±0.59 × 10−9 1.75±0.50 × 10−5

Test L2RE
NNCG0.1 2.85±0.37 × 10−3 1.09±0.12 × 10−2 1.26±0.26 × 10−1

NNCG0.01 1.42±0.21 × 10−3 4.81±0.54 × 10−3 8.82±2.41 × 10−2

ARNCGg 6.82±2.31 × 10−5 8.54±1.27 × 10−4 6.96±0.61 × 10−3

such that ARNCGg performs approximately 2000 iterations. We set I1 = 1000 and I2 = 2000 for
the wave and reaction problems, and I1 = 11000 and I2 = 1500 for the convection problem. The
corresponding time budgets are reported in the captions of Figure 7. Each experiment is repeated 8
times with different random seeds.

For NNCG, we evaluate two regularization coefficients, ρ ∈ {0.1, 0.01}, and denote the correspond-
ing variants as NNCGρ, which were shown to perform best in practice [47]. The parameters for
ARNCGg follow the setup described in Section G.1, with θ = 1, ⌊logβ mmax⌋ = 10−4, and γ = 2.
This adjustment to the linesearch parameter is motivated by the relatively high computational cost
of each iteration; using a smaller mmax would result in several wasted effort during updates of the
Lipschitz estimate Mk.

The training loss curves are shown in Figure 7, while the average and best performance across runs
are summarized in Table 7.9 ARNCGg consistently outperforms NNCG by a large margin across all
problems. We also emphasize that these RNMs do not require storing the full Hessian matrix or any
matrix of comparable size, resulting in significantly lower memory usage compared to quasi-Newton
methods such as BFGS and the Broyden method [52]. For example, the peak GPU memory usage for
the convection, reaction and wave problems is 4.7GB, 3.3GB and 10.2GB, respectively.

9The L2RE in these tables means the ℓ2 relative error. Given the prediction y ∈ Rn and the groundtruth

z ∈ Rn, this error is defined by
√

∥y−z∥2
∥z∥2 .
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(a) Convection problem. Adam (11k) + L-BFGS (1.5k) + NNCG / ARNCG (7.5 hours)
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(b) Reaction problem. Adam (1k) + L-BFGS (2k) + NNCG / ARNCG (2 hours)

0 20000 40000 60000

elapsed time (s)

10−4

10−2

100

tra
in

in
g

lo
ss

NNCG0.1

NNCG0.01

ARNCGg

0 1000 2000 3000 4000 5000

number of iterations

10−4

10−2

100

tra
in

in
g

lo
ss

Adam L-BFGS NNCG / ARNCG

NNCG0.1

NNCG0.01

ARNCGg

(c) Wave problem. Adam (1k) + L-BFGS (2k) + NNCG / ARNCG (18 hours)

Figure 7: Loss curves for training PINNs. The numbers in parentheses for Adam and L-BFGS
indicate the number of iterations, while those for NNCG / ARNCG denote total wall-clock time,
which is selected such that ARNCG performs approximately 2k iterations. The subscript in NNCG
denotes the regularization coefficient. Thin lines are 8 independent runs; the bold line shows the
average.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: They are discussed in the abstract and the introduction. Further discussions
are also presented in Section A.1 for interested readers.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See Section A.2.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: Please see Section 3 for an overview and the appendix for the complete proofs.
The assumption can be found in Section 2.1.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: See Sections G and H.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The code will be released when the paper becomes publicly available, either as
an arXiv preprint or upon acceptance.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See Sections G and H.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Experiments on the CUTEst benchmark are deterministic; experiments on
PINNs report the standard deviation in Table 7.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Please see Sections G and H.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We confirm it.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: See Section A.3.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not see such a risk.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited the original paper and related GitHub links.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We will provide it together with the code.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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