
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

EVOPRESS: TOWARDS OPTIMAL DYNAMIC MODEL
COMPRESSION VIA EVOLUTIONARY SEARCH

Anonymous authors
Paper under double-blind review

ABSTRACT

The high computational costs of large language models (LLMs) have led to
a flurry of research on LLM compression, via methods such as quantization,
sparsification, or structured pruning. A new frontier in this area is given by
dynamic, non-uniform compression methods, which adjust the compression levels
(e.g., sparsity) per-block or even per-layer in order to minimize accuracy loss,
while guaranteeing a global compression threshold. Yet, current methods rely
on heuristics for identifying the “importance” of a given layer towards the loss,
based on assumptions such as error monotonicity, i.e. that the end-to-end model
compression error is proportional to the sum of layer-wise errors. In this paper, we
revisit this area, and propose a new and general approach for dynamic compres-
sion that is provably optimal in a given input range. We begin from the motivating
observation that, in general, error monotonicity does not hold for LLMs: com-
pressed models with lower sum of per-layer errors can perform worse than models
with higher error sums. To address this, we propose a new general evolutionary
framework for dynamic LLM compression called EvoPress, which has provable
convergence, low sample and evaluation complexity. We show that these theo-
retical guarantees lead to highly competitive practical performance for dynamic
compression of Llama, Mistral and Phi models. Via EvoPress, we set new state-of-
the-art results across all compression approaches: structural pruning (block/layer
dropping), unstructured sparsity, as well as quantization with dynamic bitwidths.

1 INTRODUCTION

Model compression has become a standard way of reducing the deployment costs of large language
models (LLMs). Current post-training compression techniques can be roughly categorized into
quantization-based, which reduce the bit-width of weights or activations, e.g. (Frantar et al., 2022;
Lin et al., 2023; Dettmers & Zettlemoyer, 2022; Tseng et al., 2024), pruning-based, which sparsify
the weight matrices, e.g. (Frantar & Alistarh, 2023; Yin et al., 2024), or structured pruning / layer
dropping, which drop entire model components, e.g. (Kim et al., 2024; Men et al., 2024). While
constantly improving their performance, existing compression methods are reaching diminishing
returns in terms of accuracy-vs-compression (Dettmers et al., 2023; Tseng et al., 2024).

In this context, a new direction is dynamic, or non-uniform, layer-wise compression, in which
different layers can be compressed to various levels, according to their “sensitivity” relative to the
model output. Dynamic compression allows to maximize model accuracy while satisfying a given
compression requirement, e.g. a target model size. Instance-specific solutions for this problem
have already been proposed for essentially every compression type: sparsity (Yin et al., 2024),
quantization (Frantar & Alistarh, 2022), or layer dropping (Kim et al., 2024; Men et al., 2024).
Broadly, these approaches work by assigning an error/sensitivity score function to each layer and
compression level, which measures the impact of its compression on output loss increase. Then, one
calculates a compression assignment which minimizes the sum of error scores, while still satisfying
the global compression constraint. Thus, such approaches inherently assume error monotonicity:
i.e., that a lower sum of error scores implies a lower compression error for the entire model.

Our work starts from the observation that error monotonicity does not hold generally for LLM
compression: specifically, there are instances where compressed models with lower sums of per-
layer errors can perform worse than models with higher error. We illustrate this fact in Table 1,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Table 1: Depth pruning is not monotone. In this example (Llama-3-8B with Fineweb-Edu calibra-
tion), removing strictly more blocks (depicted in orange) can improve perplexity across sources.
Left half of block corresponds to attention layer, right half to MLP.

Model Configuration (Each block contains Attention + MLP) Wiki2↓ C4↓ FW↓

Llama-3-8B

5.54 8.80 7.72

188.01 147.25 70.46
24.39 35.53 26.24

which shows an instance of a layer dropping configuration where keeping more blocks leads to
massively higher perplexity than an instance which prunes strictly less blocks.

Contribution. This refutation of error monotonicity implies that most prior approaches, which are
based on this assumption, can lead to sub-optimal solutions. Thus, it motivates our investigation
of alternatives towards optimal non-uniform compression. For this, we propose a new evolutionary
search approach called EvoPress, which is provably convergent, and is also sample and iteration
efficient. Thus, EvoPress is the first non-uniform compression method with guarantees; its two ef-
ficiency properties are critical for practicality in the context of LLMs, where the cost of evaluating
single models (“offspring”) is exceedingly high. We validate the approach across all three pop-
ular approaches for post-training LLM compression: layer dropping, one-shot sparsification, and
quantization. We find that EvoPress consistently improves upon existing techniques, with major
improvements at higher compression ratios.

In more detail, we assume a setting where we are given a pre-trained model, a compression constraint
such as the target model size, a set of compression options (e.g., 10 possible sparsity options per
layer), and aim to identify a per-layer assignment which satisfies the constraint, while minimizing
accuracy loss, measured in perplexity or in-context learning accuracy degradation. As is standard,
e.g. (Frantar & Alistarh, 2022), from the compression options we build a level database, where each
layer is compressed independently to each compression option. During the candidate search, our
offspring are models stitched together from the level database, and our fitness function will be the
difference (e.g., in KL-divergence) between the outputs of the offspring and the original model, on
a set of calibration samples.

At each step, our search algorithm starts with a single search point (candidate model), and generates
a constant λ ≥ 1 additional offspring, by applying a mutation operation which preserves the com-
pression constraint. The selection stage is composed of multiple steps, where we iteratively evaluate
the offspring and parent on increasingly many randomly chosen samples. For instance, we may start
to evaluate the parent and λ = 64 offspring on less than a single sample on the first sub-step, but
progressively multiply the number of calibration samples as we sift through candidates, reducing
variance as we obtain more competitive offspring. We found this trade-off between exploration and
evaluation variance essential for efficiency on LLMs, as it drastically reduces our total number of
evaluations relative to the case where all the initial offspring must be evaluated on a full batch.

Our algorithm guarantees convergence: specifically, any linear fitness function1 defined on the n-
dimensional hypercube will be maximized in expected O(k(n − k)/λ) generations under the con-
straint |x|1 = k, where λ is the number of offspring. The proof is quite non-trivial, as it needs to
adapt stochastic drift analysis techniques, via a novel potential function, to the case where multiple
offspring are examined in each sub-step. In Figure 1, we illustrate the algorithm’s fast convergence
and high efficiency on a practical example with correlated block dropping on Llama-3-8B, where we
determined the optimum via (expensive) exhaustive search: EvoPress is able to reach the optimum
in only 6 generations, using a total of only 56 model evaluations.

A key advantage of our approach is that it is agnostic of the model architecture and compression
type. We illustrate this in our experimental results, which are the first to span all three compres-
sion methods, across different LLM families. Specifically, results show that EvoPress significantly
improves upon all prior work on depth pruning in terms of accuracy-vs-compression, especially

1The class of linear functions is a classical benchmark for randomized search heuristics and theory of
evolutionary algorithms, e.g. (Droste et al., 2002), (Doerr & Künnemann, 2015), (Lengler & Spooner, 2015).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

at medium levels, and also outperforms the prior best methods–OWL and dynamic programming,
respectively–for non-uniform pruning and quantization. Moreover, it can do so efficiently: the full
version of EvoPress converges in a few hours on a single RTX 3090 GPU, and we also present a
lightweight version which utilizes fewer samples and converges in ∼ 1 hour in the same setting.

2 RELATED WORK

To our knowledge, we are the first to present a unified approach which covers all types of
post-training LLM compression (i.e., layer dropping / depth pruning and non-uniform pruning /
quantization)–so far, these problems have generally been approached independently.

Depth Pruning. Recently, there has been a lot of interest in compression by removing entire
Transformer blocks, both for efficiency and to gain insights about the language model itself. Most
methods are based on scoring the importance of each block, and then maximizing the importance
of the resulting model by removing the blocks of lowest importance. Weight Subcloning (Samragh
et al., 2023) proposed a multi-step process to find good initializations for an untrained smaller
model given an already trained larger one, where the importance of each block is scored based on
the ratio of ℓ2 norms between the output embeddings of the block with and without the residual
connection. Shortened Llama (Kim et al., 2024) proposes scoring each block by measuring the
perplexity after removing the respective block from the full model. ShortGPT (Men et al., 2024)
uses the cosine similarity between the input and output embeddings of each block to assess its
importance. By contrast, Gromov et al. (2024) restrict themselves to removing consecutive blocks,
and score each of these removal configurations using cosine similarity.

Non-Uniform Pruning and Quantization. He et al. (2018); Ashok et al. (2018) were among the
first to consider automatic optimization of non-uniform compression, specifically for the case of
pruning, where developed Reinforcement Learning (RL)-based approaches. However, both ap-
proaches suffer from high tuning complexity and would be very hard to scale to large models.
Follow-up work (Hubara et al., 2021; Yao et al., 2021; Li et al., 2021) considered a similar prob-
lem specifically for quantization, but explore computationally-expensive solvers (e.g. ILPs) which
rely on the fact that quantization has only a small number of choices (precision levels) per layer.
SPDY (Frantar & Alistarh, 2022) considered a unified framework which reduces the problems to
knapsack-type instances, and solves them optimally modulo discretization. However, SPDY ex-
plicitly relies on monotonicity and linearity assumptions on the dependency between the per-layer
errors and model output error, which we find not to hold on large models, especially in the high-
compression regime (e.g., below 3 bits per parameter). Relative to SPDY, EvoPress provides guar-
antees for a much broader class of input functions, and focuses on efficiency for LLM compression.

The recent OWL method (Yin et al., 2024) focuses on non-uniform pruning of LLMs, and provides
consistent improvements over uniform profiles via a layer scoring system which analyzes the acti-
vation outlier structure, but does not have any theoretical guarantees. Experimentally, we find that
OWL is effective especially for Llama-family models (Touvron et al., 2023) and at moderate sparsi-
ties, but observe significant gaps in favor of EvoPress across all models and compression levels.

NAS and Structural Pruning. Random search is also popular in the context of structural pruning
and Neural Architecture Search (NAS) (Chen et al., 2020; Dong et al., 2021; Wang et al., 2020; Xu
et al., 2021; Yin et al., 2021; Molchanov et al., 2022; Kurtić et al., 2024). However, such methods
also rely heavily on re-training and have notoriously high costs, which limits their applicability to
post-training compression of LLMs. Due to its low sample complexity, we believe that EvoPress
could be extensible to lightweight NAS as well, and plan to investigate this in future work.

3 METHOD

All applications of EvoPress are grounded in a unified framework, where the objective is to identify
the optimal model that adheres to a specified compression method and constraint. Formally, given a
base model M , we seek to maximize the performance of the compressed model while satisfying the
compression constraint:

M̂∗ = argmax
M̂

f(M̂v) subject to g(M̂) ≤ C,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

where f(M̂) quantifies the performance of the compressed model M̂ and g(M̂) represents the com-
pression constraint. For simplicity, we will define g as the model’s total size (in terms of parameters);
however, the proposed method can be readily adapted to accommodate other practical constraints,
such as inference speed.

We approach this optimization problem using evolutionary search, which is a specific form of ran-
domized search. The feasibility of such an approach heavily depends on two factors: the time
required to evaluate the fitness of a candidate solution and the number of such function evaluations
needed until a satisfying result is achieved. This poses a particular challenge in our case, as assessing
the performance of an LLM involves substantial computational costs.

Level Database. As a first step, we compress the model to different levels. It is crucial that the
units we search over – specifically layers or blocks – are compressed independently; otherwise,
we risk losing performance when stitching together the compressed model. Ideally, the difference
between two compression levels should be consistent across layers. This uniformity simplifies the
optimization process, allowing for the free exchange of compression levels, as we will demonstrate
for unstructured sparsity. However, this restriction is not essential for the search procedure to ef-
fective. In the context of quantization we will demonstrate a relaxation of this requirement, where
compression steps are uniform only across layers of same size.

Fitness Environment. Given the specified database, any compressed model is completely charac-
terized by its compression level for each unit (per layer or per block). With n units, each available
in m compression levels, our objective is to find

M̂∗ = argmax
v∈[m]n

f(M̂v) subject to g(M̂v) ≤ C,

where we are searching over the set of n-tuples over [m]. Assessing the performance of a model in
practice typically involves benchmark tasks, which have limited scope and require lengthy evalua-
tion. We address these challenges by using the base model as the gold standard and focusing solely
on the relative degradation of our compressed models. To quantify this degradation, we measure the
Kullback-Leibler (KL) divergence between the two models, as it has proven particularly robust with
limited data. Empirically, we observed that already around 65536 tokens of calibration data (corre-
sponding to 8 full sample sequences for Llama-3-8B) are sufficient to reliably determine the quality
of the lightweight model. To avoid confusion, we will refrain from inverting the fitness function and
from now on consider the minimization problem

M̂∗ = argmin
v∈[m]n

DKL(PM ∥ QM̂v
) subject to g(M̂v) ≤ C,

where we speak of higher fitness whenever the KL-Divergence is lower.

Algorithm. EvoPress starts from upon the classic (1+λ)-evolutionary framework, which maintains
a single search point at any given time. In each generation, λ offspring are generated by copying the
parent and then applying a mutation operator to each copy. The offspring are then evaluated on the
fitness function, and the fittest one is selected. As an elitist evolutionary algorithm, the (1 + λ)-EA
replaces its parent only if the best offspring has superior fitness.

We change this standard algorithm in two important ways. The first is by introducing level-switch
mutation, a simple mutation operator that ensures high locality while preserving the compression
constraint. The operator involves first randomly selecting one unit and increasing its compression
level. Next, a second unit is sampled until one with a matching level step size is found, and its com-
pression level is decreased. This approach ensures that 1) the compression constraint is preserved,
and 2) the offspring model maintains high similarity to the parent model – an important feature for
achieving rapid convergence.

The second modification is that we employ a very aggressive form of multi-step selection. In the first
stage, all λ offspring are evaluated using only a fraction of a full sample. From this, only a small
subset of the fittest offspring are selected to compete in the next stage, where they are evaluated
on a significantly larger sample size. This process is repeated once more, and in the final stage,
the few remaining offspring are evaluated against the parent using a ”full” minibatch, consisting of
approximately 20-50 times the number of tokens used in the first stage.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1: EvoPress: A (1 + λ)-Evolutionary Algorithm with Level-Switch Mutation and
Multi-Step Selection for Maximizing a Fitness Function f : [m]n → R
Initialization: candidates ← [] ;
for i← 1 to C do

// Only for non-integer target compression
candidate ← sampleUniformly();
candidates.append(candidate);

x(1) ← selectTopKFittest(candidates, initialTokens,K = 1);
Optimization: for t← 1 to∞ do

offspring ← [];
Mutation: for i← 1 to λ do

yi ← x(t);
yi ← LevelSwitchMutation(yi);
offspring .append(yi);

Selection: for step ← 1 to selectionSteps do
Elitism: if step = selectionSteps then

offspring .append(x(t));
offspring ← selectTopKFittest(offspring , tokens[step],K = survivors[step]);

x(t+1) ← offspring [0];

For initialization, we apply the target level directly if it matches an available setting (e.g., all layers at
70% sparsity for an average of 70% sparsity). If the target falls between two compression levels (e.g.,
for block dropping), we initialize by randomly sampling candidates with some units compressed to
the next lower level, and others to the next higher level, selecting the fittest among them. A summary
of this optimization procedure can be found in Algorithm 1.

1 2 3 4 5 6
Generation

50

100

150

200

250

300

Pe
rp

le
xi

ty

EvoPress
Optimum

0

1

2

3

4

5

6Hamming Dist. to Opt.

Figure 1: Removing twelve transformer blocks
from Llama-3-8B under the constraint that only
pairs of consecutive blocks can be removed. Evo-
Press finds the optimal configuration from the 8008
possible removal combinations in generation 6.

Design Considerations. Randomized search
heuristics are heavily influenced by the
exploration-exploitation dilemma, i.e. trade-
off between exploring a broader solution
space and intensifying the search around
the currently-best solutions. In evolution-
ary search, many applications utilize sophis-
ticated techniques, such as genetic algorithms,
to enhance exploration, which often maintain
a large population, introduce crossover oper-
ations, and adopt non-elitist strategies, where
parents have no chance of survival into the
next generation. However, implementing these
approaches for LLM compression would come
with significant computational costs.

Crossover, for instance, is only effective if
population diversity is preserved, often mea-
sured by the sum of pairwise Hamming dis-
tances between individuals (Jansen & We-
gener, 2002; Opris et al., 2024). While this
promotes more thorough exploration of the
search space, it requires allocating resources
to less promising regions, which may slow progress toward optimal solutions. Similarly, non-elitist
algorithms, despite their ability to escape local optima (Dang et al., 2021; Jorritsma et al., 2023;
Lengler et al., 2024), also incur costs by frequently discarding potentially useful individuals.

Convergence. Contrary to many real-world problems, dynamic model compression with a care-
fully designed level database creates a notably smooth fitness environment. This is because small
changes in the compressed model tend to lead to small changes in performance. Although the search

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

space expands exponentially with the number of units we search over, the maximum Hamming dis-
tance increases only linearly. Therefore, as long as we receive a “signal” indicating the direction
of improvement, even with seemingly limited progress per generation, we can converge rapidly to a
high-quality solution.

To illustrate this, we consider the problem of removing pairs of consecutive blocks of Llama-3-8B.
We perform a brute-force search over all possible 8008 block removal configurations, where six pairs
of blocks are removed. Our method identifies the optimal configuration by the 6th generation, having
evaluated only 16 candidates for initialization and 8 candidates per generation, using significantly
fewer tokens. Figure 1 illustrates how the algorithm progressively approaches the optimum in terms
of Hamming distance.

Consequently, our method is heavily exploitation-focused: we rely on elitism, introduce minimal
mutation, maintain only a single offspring and therefore employ zero population diversity. We
present ablations and a short discussion on these choices in Appendix B.1. EvoPress excels at
optimizing smooth fitness environments, a capability we theoretically support by proving rapid con-
vergence under an ℓ1-constraint for the class of linear functions.

Theorem 1. Let n, k ∈ N with k ≤ n and consider the (1 + λ)-EA with λ ∈ O(n/ log(n)) and
level-switch mutation. Then any linear fitness function f : {x | x ∈ {0, 1}n, |x|1 = n− k} → R is
optimized in expected

O

(
k · (n− k) · 1

λ

)
generations.

Discussion. The proof is quite non-trivial, as it builds upon stochastic drift analysis; it is presented
in Appendix A. The derived bound has several practical implications. By increasing the number of
offspring per generation, we can reduce the number of generations required for convergence, with the
reduction scaling proportionally to λ up to a reasonably large value. Since our approach uses a highly
aggressive form of multi-step selection, the benefit is not simply a zero-sum trade-off. Evaluating
many offspring in each generation incurs a significantly lower per-offspring computational cost,
leading to a substantial speedup in convergence time. This makes the algorithm highly effective in
smooth fitness environments, making it particularly well-suited for dynamic model compression.

4 EXPERIMENTS

We now validate the efficiency of EvoPress for determining the optimal layer-wise compression
across three approachs: (1) layer dropping, where the goal is to isolate the “optimal” set of blocks
to drop given a target ratio, (2) non-uniform unstructured sparsity and (3) non-uniform quan-
tization, where we are given a set of compression options per layer (sparsities or bit-widths), and
the goal is to find the “optimal” configuration that matches a certain model size. We focus on LLM
compression, given the major interest in reduction of their model size and inference latency, but our
method is general and can be applied to any neural network architecture and application domain.

Experimental Setup. We consider base models from the Llama-2 and Llama-3 (Touvron et al.,
2023) families, Mistral-v0.3 (Jiang et al., 2023), and the instruction-tuned Phi3-Medium-instruct-
128k model (Abdin et al., 2024), and adopt KL-divergence as our fitness function as it provides
a stronger and more robust signal, reflecting the predictive distribution of the original model. We
present ablations to validate this choice in Appendix B.3.

Concretely, our algorithm works as follows: given a uniform or random initial configuration, for each
step, we generate new offspring by making random flips, sampled from min(randint(1,3),
randint(1,3)) (increase / decrease) of compression levels under the constraint of fixed overall
compression ratio. Initially, we produce a large number of configurations (64-128 in most experi-
ments) and evaluate each on a few data samples (a single sequence on the first round). We choose the
top-k best configurations and run the next selection round with fewer candidates and more samples.
Finally, we take the best configuration (including the parent) and adopt the best found configuration
for the next round. We run for a fixed number of iterations, chosen so that performance on held-out
data no longer improves.

To perform per-layer compression via unstructured sparsity and quantization we adopt the data-
aware compression methods SparseGPT (Frantar & Alistarh, 2023) and GPTQ (Frantar et al., 2022),

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

respectively, requiring a calibration set. For this purpose, we utilize Fineweb-Edu (Penedo et al.,
2024) as a source of clean and diverse calibration data. Following Egiazarian et al. (2024), we
fix the total number of calibration tokens to 8 million (8M). For a fair comparison, all competitive
methods employ the same calibration data. The code is attached as supplementary material.

Evaluation. We adopt standard LLM evaluation protocol from Frantar et al. (2022). Specifically,
we measure the Perplexity metric on the WikiText-2 (Merity et al., 2016) and C4 (Raffel et al.,
2019) for language performance and Accuracy on zero-shot evaluations on standard benchmarks:
WinoGrande (Sakaguchi et al., 2021), PiQA (Tata & Patel, 2003), HellaSwag (Zellers et al., 2019),
ARC-easy and ARC-challenge (Clark et al., 2018) via the LM Eval Harness (Gao et al., 2021).

4.1 APPLICATION 1: DEPTH PRUNING

As a first application, we apply EvoPress on Depth Pruning. Although removing entire transformer
blocks generally results in greater performance losses compared to other compression techniques,
this approach recently attracted attention in the context of initializing smaller models, as it guaran-
tees speedups proportional to the sparsity (Samragh et al., 2023; Kim et al., 2024). Additionally,
block dropping provides insights into the capabilities of transformer models, making it relevant for
interpretability. We will compare against the following baselines:

• Shortened Llama (Kim et al., 2024): Scores blocks on the perplexity change after removal.
• ShortGPT (Men et al., 2024): Blocks are scored based on the average cosine similarity

between input and output embeddings, including the residual stream.
• Weight Subcloning (Samragh et al., 2023): Blocks are scored using the ratio
||f(x)||/||f(x) + x||, where x is the input embedding and f(x) is the block’s output, ex-
cluding the residual stream.

• Sliding Window Cosine Similarity (Gromov et al., 2024): Sets of consecutive blocks are
scored based on the cosine similarity between embeddings before and after the blocks,
including residual stream.

While Gromov et al. (2024) directly scores entire removal configurations, Shortened Llama, Short-
GPT, and Weight Subcloning determine block removals based on their isolated scores.

0 10 20 30 40 50
Sparsity (%)

0

20

40

60

80

100

120

140

160

180

Pe
rp

le
xi

ty

Mistral-7B-v0.3
EvoPress
EvoPress (Attn.+MLP)
Cosine Sim. (Window)
ShortGPT
Shortened Llama
Weight Subcloning

0 5 10 15 20 25 30
Depth

0

1

2

Su
bb

lo
ck

s D
ro

pp
ed

Mistral-7B-v0.3 - 12 Blocks Dropped
EvoPress
ShortGPT

Figure 2: Depth pruning results, on Mistral-7B-v0.3. (Left) Relative to all prior methods, EvoPress
shows significantly lower PPL gap relative to the uncompressed model, with remarkably large gaps
at medium compression rates. (Right) Examining the blocks dropped, we observe that EvoPress
isolates completely different profiles relative to ShortGPT (which scores by cosine similarity).

Search space. In our approach, attention and MLP modules are treated independently rather than
as a single unit. For each module, there are two options: either retain it or remove it. To achieve a
target sparsity/depth, we initially remove an equal number of attention and MLP modules. During
mutation, we allow compression level adjustments only between modules of the same type. We leave
it open for future research to remove this constraint to allow flexibility in the number of removed
attention and MLP modules.

Experimental results. Figure 2 compares our method with baselines from previous work on
Mistral-7B-v0.3. EvoPress consistently outperforms all previous methods, showing significant im-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

provements even at medium sparsity levels. While all baseline methods fail entirely beyond 31.25%
sparsity, EvoPress identifies functional submodels even when removing half of the model. To our
knowledge, this is the first method to achieve such results. We observed similar collapses in Llama-
2-7B and Llama-3-8B, although at slightly higher sparsity. Overall, EvoPress consistently outper-
forms all baselines across all tested models and sparsities (see Appendix D.1 for full results).

All four previous methods rely on human-crafted scoring methods to identify the optimal combi-
nation of transformer blocks to remove. However, these approaches are not only suboptimal, but
also prone to bias, as their results may reflect the characteristics of the method itself rather than
the model’s true behavior. Specifically, we found that most scoring methods tend to favor deeper
blocks, resulting in highly similar removal configurations across different prior scoring methods
(Appendix 12). This likely occurs because methods that bias towards deeper blocks generally per-
form better than those that focus on earlier blocks, although neither may be optimal. In contrast,
EvoPress employs an unbiased approach, offering more accurate and meaningful insights into the
model. As shown in Figure 2, we found that the deeper layers are not necessarily the least important,
contradicting conclusions drawn in prior work (Gromov et al., 2024; Men et al., 2024).

4.2 APPLICATION 2: UNSTRUCTURED SPARSITY

Next, we examine performance for unstructured sparsity, which offers more fine-grained compres-
sion. The standard approach is to allocate sparsity uniformly across layers. However, some layers
may be more sensitive to sparsity, which can significantly impact the model’s output. To address
this, OWL (Yin et al., 2024) introduces the Layer Outlier Distribution (LOD) metric as a measure
of layer saliency, and computes a sparsity profile that is weighted by LOD. A third approach that is
vary similar to SPDY (Frantar & Alistarh, 2022), which we also implement as a baseline, is to min-
imize Normalized Mean Squared Error (NMSE), defined as NMSE = ∥Ŷ − Y ∥22/∥Y ∥22, where Y

representing the original model output at a layer, and Ŷ the output of the compressed model. Then,
the optimal sparsity profile for a given total sparsity can then be determined via a dynamic program-
ming (DP) approach. (The full SPDY method applies a second iterative random search step, which
is very expensive to implement at LLM scale, and is therefore omitted.) We compare EvoPress with
uniform, OWL, and the DP approach in SPDY. For OWL we used the same hyperparameter grid as
the original work and took the configuration yielding best perplexity for each model.

Search space. Sparsity levels are generated as follows: For each layer, we first produce the base
level corresponding to the targeted average sparsity. Then, we generate both higher and lower com-
pression levels, where the difference between two levels corresponds to a fixed number of weights.
In our experiments, we used a “step size” of 1M weights uniformly. This approach enables the
mutation of compression levels across all layers, independently of their size. We adopt SparseGPT
(Frantar & Alistarh, 2023) as a fast and efficient one-shot layer pruner.

Table 2: Performance of various methods at 70% average sparsity. EvoPress outperforms prior
methods both in terms of validation perplexity (PPL) and zero-shot accuracy.

Model Sparsity Wiki2↓ C4↓ ArcC↑ ArcE↑ HS↑ PiQA↑ WG↑ Avg↑

Llama-2-7B

Dense 5.12 6.93 43.4 76.3 57.1 78.1 69.0 64.8

Uniform 46.51 45.30 23.1 48.4 32.4 61.3 57.1 44.5
DP 162.12 127.88 21.5 35.0 28.6 55.7 50.3 38.2
OWL 18.98 19.55 28.0 55.1 39.0 66.5 63.6 50.4
EvoPress 15.32 15.70 29.5 59.8 41.5 68.4 62.8 52.4

Llama-3-8B

Dense 5.54 7.10 50.4 80.1 60.2 79.7 72.6 68.6

Uniform 85.84 98.35 22.7 49.9 31.4 62.1 54.4 44.1
DP 116.91 149.13 22.6 45.9 31.3 60.6 52.5 42.6
OWL 48.07 52.32 27.0 54.9 36.6 65.1 58.6 48.4
EvoPress 28.76 33.72 28.9 56.7 38.6 68.0 61.7 50.8

Phi-3-Medium-14B

Dense 4.02 8.31 60.9 84.1 64.0 81.0 76.2 73.2

Uniform 16.66 24.73 36.9 70.6 40.0 69.4 65.8 56.5
DP 36.03 60.54 27.1 59.4 35.2 65.1 58.7 49.1
OWL 15.66 23.38 35.7 69.2 39.4 68.3 64.4 55.4
EvoPress 13.83 19.13 41.5 73.0 43.6 71.8 69.1 59.8

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Experimental results. We compare different methods for non-uniform pruning for 50%, 60% and
70% unstructured sparsity. We report the 70% results in Table 2; the 50% and 60% results can be
found in Appendix Tables 13 and 14, respectively. As illustrated in Table 2, EvoPress successfully
finds better profiles than uniform sparsity (3× Perplexity reduction) and noticeably outperforms all
other competitive methods (OWL and DP) on PPL and zero-shot average accuracy, by large margins,
especially on the larger Phi3 model. The DP solution performs worse than uniform, suggesting that
either normalized per-layer error is not a good saliency metric, or that the additive error metric is
invalid in this case as well (or both). Examining sparsity profiles (Appendix Figures 9 and 10), we
observe that EvoPress prunes the first blocks less aggressively, blocks in the second half of the model
more aggressively while keeping the last block relatively dense. Further, EvoPress exhibits stronger
deviations from uniform relative to DP and OWL, suggesting it performs broader exploration.

Running Time. EvoPress is also time-efficient. Figure 3 illustrates the rapid convergence of our
method vs. iterations and time, with smooth and steady improvements in test perplexity. More-
over, we found that, by significantly reducing the number of tokens used in the multi-step selection
evaluation, by 4× in the first step and 8× in the last step, and making each generation have fewer
offspring, we can significantly speed up the search. This “super-fast” version converges in a little
over one GPU hour to similar test PPL (Figure 3, right), demonstrating the sample-robustness of
EvoPress, which can lead to further efficiency gains.

0 50 100 150 200 250 300 350 400
Generation

12

14

16

18

20

22

24

26

Pe
rp

le
xi

ty

GPU Hour (RTX 3090)

Perplexity (Test)
KL Divergence (Train)

0.6

0.8

1.0

1.2

1.4

KL
-D

iv
er

ge
nc

e

Llama-2-7B - 70% Sparsity

0 50 100 150 200 250 300 350 400
Generation

12

14

16

18

20

22

24

26

Pe
rp

le
xi

ty
GPU Hour (RTX 3090)

Perplexity (Test)
KL Divergence (Train)

0.6

0.8

1.0

1.2

1.4

KL
-D

iv
er

ge
nc

e

Llama-2-7B - 70% Sparsity

Figure 3: Left: The convergence of EvoPress vs. number of generations and wall-clock time (on a
single RTX 3090 GPU with 24GB RAM) for Llama-2-7B. We observe convergence close to opti-
mum in 5-6h; Right: Convergence of the “superfast” version which reduces the number of tokens
used for each evaluation. It converges to similar accuracy in little over one hour, in the same setting.

4.3 APPLICATION 3: QUANTIZATION

Finally, we apply evolutionary search to the more challenging problem of non-uniform neural net-
work quantization, where uniform per-layer quantization is the most widely-adopted baseline (Fran-
tar et al., 2022; Lin et al., 2023; Chee et al., 2023). However, one could expect that different layers
exhibit different sensitivity to quantization, as for unstructured sparsity. As baselines, we consider
uniform and DP search defined above. (While OWL has also been applied to quantization, the au-
thors found that it underperforms even relative to uniform per-layer quantization (Yin et al., 2024).)
We create configurations with varying bitwidths and run EvoPress to determine the optimal config-
uration for target compression ratio.

Search space. For each linear layer, we produce different configurations via GPTQ (Frantar et al.,
2022) with a standard group size of 128. On each step of evolutionary search, one increases bitwidth
in some layers chosen at random while decreasing it in others. To facilitate uniform transitions
between compression levels, quantization options differ by integral bits (1 bit in the following).
Since different layers may have different sizes, we allow sweeps only between the projections with
the same number of elements (i.e. only between MLP and Attention projections).

Experimental results. Below, to validate the efficiency of evolutionary search, we consider the
challenging problem of quantization to 3 bits and below. For this compression rate, uniform GPTQ
quantization faces significant performance drops, motivating more elaborate quantization bitwidth
allocation. We produce configurations with 2,3,4,5, and 6 bits and search for an optimal compression
profile with respect to the fitness function. Results in Table 3 suggest that non-uniform quantization
yields superior quality to baseline options. We visualize quantized configuration found by EvoPress

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 3: Performance of various profiles at 3-bit quantization, for PPL and avg. zero-shot accuracy.

Model Sparsity Wiki2↓ C4↓ ArcC↑ ArcE↑ HS↑ PiQA↑ WG↑ Avg↑

Llama-2-7B

Dense 5.12 6.93 43.4 76.3 57.1 78.1 69.0 64.8

Uniform 6.16 7.96 39.5 73.9 54.1 76.5 66.5 62.1
DP 6.70 8.31 38.9 72.4 53.5 76.4 65.9 61.4

EvoPress 5.70 7.87 40.4 75.0 54.7 77.1 68.1 63.1

Llama-3-8B

Dense 5.54 7.10 50.4 80.1 60.2 79.7 72.6 68.6

Uniform 12.19 15.76 35.2 66.9 54.0 75.2 69.6 60.2
DP 29.00 20.03 39.8 72.0 52.9 74.7 67.2 61.3

EvoPress 7.49 12.03 43.0 76.4 55.4 77.3 69.7 64.3

Phi-3-Medium-14B

Dense 4.02 8.31 60.9 84.1 64.0 81.0 76.2 73.2

Uniform 5.18 9.05 55.1 81.6 60.8 78.9 73.6 70.0
DP 5.72 9.71 54.7 80.4 58.4 78.6 73.5 69.1

EvoPress 5.09 9.00 56.7 82.6 61.0 79.2 74.7 70.8

for Llama-3-8B in Appendix Figures 12 and 13. Specifically, we observe that the last block is
compressed less aggressively and EvoPress treats v proj as more important than k proj 2.

Overall, we observe that, in this case as well, EvoPress yields significant accuracy improvements
(e.g., 1 and 4.1 points on the zero-shot averages on Llama-2 and Llama-3, respectively), compared
to the uniform profile. Moreover, the improvement over the next-best method is always significant,
both in terms of PPL and zero-shot accuracy.

5 CONCLUSION

We have presented EvoPress, a unified optimization framework for non-uniform compression. Evo-
Press is based on a new provably-convergent evolutionary search algorithm with low sample and it-
eration complexity, that is especially well-suited to the loss landscapes arising in LLM compression.
Specifically, we have shown that EvoPress can converge extremely fast to accurate configurations
for various non-uniform LLM compression problems, and is also fast to execute in practice. We
also emphasize the breadth of our study, our method was implemented and tested on three differ-
ent compression approaches, relative to prior work which largely focused on a single application.
Experimental results showed that EvoPress consistently outperforms prior dynamic compression
approaches, across all compression types, with large gaps at medium to high compression.

Limitations. One interesting direction we did not investigate is the possibility of combining different
compression approaches into the same search space. This would require changes to our switch
mutation strategy, but should be feasible in most cases. Second, we did not investigate finer-grained
structured pruning (i.e., removing rows and columns from the weight matrices), as it usually requires
extensive retraining to recover accuracy. We plan to investigate this in future work, as our approach
is well-suited to it. Finally, we plan to extend our compression results for quantization, to show
end-to-end speedups in the context of an inference engine supporting multiple compressed formats,
such as vLLM (Kwon et al., 2023).

Impact Statement. We presented work that aims to advance efficiency in machine learning. We
believe that model compression optimization is a step toward democratizing large-scale model in-
ference, and thus provides opportunities to foster both the development of new applications and the
research in the field. There are several important societal concerns about the rapidly growing use of
artificial intelligence, but we feel that none of them specifically concerns our work.

2Since these projections are of the same size and no other projection has the same size, transitions are
allowed only between them in our current implementation.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan, Jyoti Aneja, Ahmed Awadallah, Hany
Awadalla, Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harkirat Behl, Alon Benhaim, Misha
Bilenko, Johan Bjorck, Sébastien Bubeck, Martin Cai, Caio César Teodoro Mendes, Weizhu
Chen, Vishrav Chaudhary, Parul Chopra, Allie Del Giorno, Gustavo de Rosa, Matthew Dixon, Ro-
nen Eldan, Dan Iter, Amit Garg, Abhishek Goswami, Suriya Gunasekar, Emman Haider, Junheng
Hao, Russell J. Hewett, Jamie Huynh, Mojan Javaheripi, Xin Jin, Piero Kauffmann, Nikos Karam-
patziakis, Dongwoo Kim, Mahoud Khademi, Lev Kurilenko, James R. Lee, Yin Tat Lee, Yuanzhi
Li, Chen Liang, Weishung Liu, Eric Lin, Zeqi Lin, Piyush Madan, Arindam Mitra, Hardik Modi,
Anh Nguyen, Brandon Norick, Barun Patra, Daniel Perez-Becker, Thomas Portet, Reid Pryzant,
Heyang Qin, Marko Radmilac, Corby Rosset, Sambudha Roy, Olatunji Ruwase, Olli Saarikivi,
Amin Saied, Adil Salim, Michael Santacroce, Shital Shah, Ning Shang, Hiteshi Sharma, Xia
Song, Masahiro Tanaka, Xin Wang, Rachel Ward, Guanhua Wang, Philipp Witte, Michael Wyatt,
Can Xu, Jiahang Xu, Sonali Yadav, Fan Yang, Ziyi Yang, Donghan Yu, Chengruidong Zhang,
Cyril Zhang, Jianwen Zhang, Li Lyna Zhang, Yi Zhang, Yue Zhang, Yunan Zhang, and Xiren
Zhou. Phi-3 technical report: A highly capable language model locally on your phone, 2024.

Anubhav Ashok, Nicholas Rhinehart, Fares Beainy, and Kris M Kitani. N2N learning: Network to
network compression via policy gradient reinforcement learning. In International Conference on
Learning Representations (ICLR), 2018.

Jerry Chee, Yaohui Cai, Volodymyr Kuleshov, and Christopher De Sa. Quip: 2-bit quantization of
large language models with guarantees, 2023.

Daoyuan Chen, Yaliang Li, Minghui Qiu, Zhen Wang, Bofang Li, Bolin Ding, Hongbo Deng, Jun
Huang, Wei Lin, and Jingren Zhou. Adabert: Task-adaptive bert compression with differentiable
neural architecture search. In Christian Bessiere (ed.), Proceedings of the Twenty-Ninth Interna-
tional Joint Conference on Artificial Intelligence, IJCAI-20, pp. 2463–2469. International Joint
Conferences on Artificial Intelligence Organization, 2020. doi: 10.24963/ijcai.2020/341. URL
https://doi.org/10.24963/ijcai.2020/341.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Duc-Cuong Dang, Anton Eremeev, and Per Lehre. Escaping local optima with non-elitist evolution-
ary algorithms. Proceedings of the AAAI Conference on Artificial Intelligence, 35:12275–12283,
05 2021. doi: 10.1609/aaai.v35i14.17457.

Tim Dettmers and Luke Zettlemoyer. The case for 4-bit precision: k-bit inference scaling laws.
arXiv preprint arXiv:2212.09720, 2022.

Tim Dettmers, Ruslan Svirschevski, Vage Egiazarian, Denis Kuznedelev, Elias Frantar, Saleh Ashk-
boos, Alexander Borzunov, Torsten Hoefler, and Dan Alistarh. Spqr: A sparse-quantized repre-
sentation for near-lossless llm weight compression. arXiv preprint arXiv:2306.03078, 2023.

Benjamin Doerr and Leslie Ann Goldberg. Drift analysis with tail bounds. In Robert Schaefer, Car-
los Cotta, Joanna Kołodziej, and Günter Rudolph (eds.), Parallel Problem Solving from Nature,
PPSN XI, pp. 174–183, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg. ISBN 978-3-642-
15844-5.

Benjamin Doerr and Marvin Künnemann. Optimizing linear functions with the (1+λ) evolutionary
algorithm—different asymptotic runtimes for different instances. Theoretical Computer Science,
561:3–23, 2015. ISSN 0304-3975. doi: https://doi.org/10.1016/j.tcs.2014.03.015. Genetic and
Evolutionary Computation.

Benjamin Doerr, Carola Doerr, and Johannes Lengler. Self-adjusting mutation rates with prov-
ably optimal success rules. In Proceedings of the Genetic and Evolutionary Computation
Conference, GECCO ’19, pp. 1479–1487, New York, NY, USA, 2019. Association for Com-
puting Machinery. ISBN 9781450361118. doi: 10.1145/3321707.3321733. URL https:
//doi.org/10.1145/3321707.3321733.

11

https://doi.org/10.24963/ijcai.2020/341
https://doi.org/10.1145/3321707.3321733
https://doi.org/10.1145/3321707.3321733

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Chenhe Dong, Guangrun Wang, Hang Xu, Jiefeng Peng, Xiaozhe Ren, and Xiaodan Liang.
Efficientbert: Progressively searching multilayer perceptron via warm-up knowledge distilla-
tion. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, pp. 1424–1437. Association for Computational Linguistics, 2021. URL https:
//aclanthology.org/2021.emnlp-main.108.

Stefan Droste, Thomas Jansen, and Ingo Wegener. On the analysis of the (1+1) evolutionary al-
gorithm. Theoretical Computer Science, 276(1):51–81, 2002. ISSN 0304-3975. doi: https:
//doi.org/10.1016/S0304-3975(01)00182-7. URL https://www.sciencedirect.com/
science/article/pii/S0304397501001827.

Vage Egiazarian, Andrei Panferov, Denis Kuznedelev, Elias Frantar, Artem Babenko, and Dan Al-
istarh. Extreme compression of large language models via additive quantization. arXiv preprint
arXiv:2401.06118, 2024.

Elias Frantar and Dan Alistarh. SPDY: Accurate pruning with speedup guarantees. arXiv preprint
arXiv:2201.13096, 2022.

Elias Frantar and Dan Alistarh. Massive language models can be accurately pruned in one-shot.
arXiv preprint arXiv:2301.00774, 2023.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

Leo Gao, Jonathan Tow, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff, Jason Phang, Laria Reynolds, Eric
Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot lan-
guage model evaluation, September 2021. URL https://doi.org/10.5281/zenodo.
5371628.

Andrey Gromov, Kushal Tirumala, Hassan Shapourian, Paolo Glorioso, and Daniel A. Roberts. The
unreasonable ineffectiveness of the deeper layers, 2024.

Jun He and Xin Yao. A study of drift analysis for estimating computation time of evolutionary
algorithms. Natural Computing: An International Journal, 3(1):21–35, March 2004. ISSN 1567-
7818. doi: 10.1023/B:NACO.0000023417.31393.c7. URL https://doi.org/10.1023/
B:NACO.0000023417.31393.c7.

Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. AMC: AutoML for model
compression and acceleration on mobile devices. In European Conference on Computer Vision
(ECCV), 2018.

Mario Alejandro Hevia Fajardo and Dirk Sudholt. Self-adjusting population sizes for non-elitist evo-
lutionary algorithms: why success rates matter. In Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO ’21, pp. 1151–1159, New York, NY, USA, 2021. Associa-
tion for Computing Machinery. ISBN 9781450383509. doi: 10.1145/3449639.3459338. URL
https://doi.org/10.1145/3449639.3459338.

Itay Hubara, Brian Chmiel, Moshe Island, Ron Banner, Seffi Naor, and Daniel Soudry. Accelerated
sparse neural training: A provable and efficient method to find N:M transposable masks. In
Conference on Neural Information Processing Systems (NeurIPS), 2021.

Jansen and Wegener. The analysis of evolutionary algorithms–a proof that crossover really
can help. Algorithmica, 34(1):47–66, September 2002. ISSN 0178-4617. doi: 10.1007/
s00453-002-0940-2. URL https://doi.org/10.1007/s00453-002-0940-2.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Daniel Johannsen. Random Combinatorial Structures and Randomized Search Heuristics. PhD
thesis, Universität des Saarlandes, 2010.

12

https://aclanthology.org/2021.emnlp-main.108
https://aclanthology.org/2021.emnlp-main.108
https://www.sciencedirect.com/science/article/pii/S0304397501001827
https://www.sciencedirect.com/science/article/pii/S0304397501001827
https://doi.org/10.5281/zenodo.5371628
https://doi.org/10.5281/zenodo.5371628
https://doi.org/10.1023/B:NACO.0000023417.31393.c7
https://doi.org/10.1023/B:NACO.0000023417.31393.c7
https://doi.org/10.1145/3449639.3459338
https://doi.org/10.1007/s00453-002-0940-2

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Joost Jorritsma, Johannes Lengler, and Dirk Sudholt. Comma selection outperforms plus selec-
tion on onemax with randomly planted optima. In Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO ’23, pp. 1602–1610, New York, NY, USA, 2023. Associa-
tion for Computing Machinery. ISBN 9798400701191. doi: 10.1145/3583131.3590488. URL
https://doi.org/10.1145/3583131.3590488.

Marc Kaufmann, Maxime Larcher, Johannes Lengler, and Xun Zou. Self-adjusting population
sizes for (1 + λ)-ea on monotone functions. In Parallel Problem Solving from Nature – PPSN
XVII: 17th International Conference, PPSN 2022, Dortmund, Germany, September 10–14, 2022,
Proceedings, Part II, pp. 569–585, Berlin, Heidelberg, 2022. Springer-Verlag. ISBN 978-3-
031-14720-3. doi: 10.1007/978-3-031-14721-0 40. URL https://doi.org/10.1007/
978-3-031-14721-0_40.

Stefan Kern, Sibylle D. Müller, Nikolaus Hansen, Dirk Büche, Jiri Ocenasek, and Petros Koumout-
sakos. Learning probability distributions in continuous evolutionary algorithms– a comparative
review. Natural Computing: An International Journal, 3(1):77–112, March 2004. ISSN 1567-
7818. doi: 10.1023/B:NACO.0000023416.59689.4e. URL https://doi.org/10.1023/
B:NACO.0000023416.59689.4e.

Bo-Kyeong Kim, Geonmin Kim, Tae-Ho Kim, Thibault Castells, Shinkook Choi, Junho Shin, and
Hyoung-Kyu Song. Shortened llama: A simple depth pruning for large language models, 2024.

Eldar Kurtić, Elias Frantar, and Dan Alistarh. Ziplm: Inference-aware structured pruning of lan-
guage models. Advances in Neural Information Processing Systems, 36, 2024.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Johannes Lengler. Drift analysis. In Theory of Evolutionary Computation, pp. 89–131. Springer,
2020.

Johannes Lengler and Nicholas Spooner. Fixed budget performance of the (1+1) ea on linear func-
tions. In Proceedings of the 2015 ACM Conference on Foundations of Genetic Algorithms XIII,
FOGA ’15, pp. 52–61, New York, NY, USA, 2015. Association for Computing Machinery.

Johannes Lengler, Leon Schiller, and Oliver Sieberling. Plus strategies are exponentially slower for
planted optima of random height. In Proceedings of the Genetic and Evolutionary Computation
Conference, GECCO ’24, pp. 1587–1595, New York, NY, USA, 2024. Association for Computing
Machinery. ISBN 9798400704949. doi: 10.1145/3638529.3654088. URL https://doi.
org/10.1145/3638529.3654088.

Yuhang Li, Ruihao Gong, Xu Tan, Yang Yang, Peng Hu, Qi Zhang, Fengwei Yu, Wei Wang, and
Shi Gu. BRECQ: Pushing the limit of post-training quantization by block reconstruction. In
International Conference on Learning Representations (ICLR), 2021.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Xingyu Dang, and Song Han. Awq:
Activation-aware weight quantization for llm compression and acceleration. arXiv preprint
arXiv:2306.00978, 2023.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. In Advances in Neural Information Processing Systems, 2023.

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang, Hongyu Lin, Yaojie Lu, Xianpei Han, and
Weipeng Chen. Shortgpt: Layers in large language models are more redundant than you expect,
2024.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Pavlo Molchanov, Jimmy Hall, Hongxu Yin, Jan Kautz, Nicolo Fusi, and Arash Vahdat. Lana:
latency aware network acceleration. In European Conference on Computer Vision, pp. 137–156.
Springer, 2022.

13

https://doi.org/10.1145/3583131.3590488
https://doi.org/10.1007/978-3-031-14721-0_40
https://doi.org/10.1007/978-3-031-14721-0_40
https://doi.org/10.1023/B:NACO.0000023416.59689.4e
https://doi.org/10.1023/B:NACO.0000023416.59689.4e
https://doi.org/10.1145/3638529.3654088
https://doi.org/10.1145/3638529.3654088

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Andre Opris, Johannes Lengler, and Dirk Sudholt. A tight o(4k/pc) runtime bound for a (µ+1)ga
on jumpk for realistic crossover probabilities. In Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO ’24, pp. 1605–1613, New York, NY, USA, 2024. Associa-
tion for Computing Machinery. ISBN 9798400704949. doi: 10.1145/3638529.3654120. URL
https://doi.org/10.1145/3638529.3654120.

Guilherme Penedo, Hynek Kydlı́ček, Loubna Ben allal, Anton Lozhkov, Margaret Mitchell, Colin
Raffel, Leandro Von Werra, and Thomas Wolf. The fineweb datasets: Decanting the web for the
finest text data at scale, 2024. URL https://arxiv.org/abs/2406.17557.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. arXiv preprint arXiv:1910.10683, 2019.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: an
adversarial winograd schema challenge at scale. Commun. ACM, 64(9):99–106, 2021. doi:
10.1145/3474381. URL https://doi.org/10.1145/3474381.

Mohammad Samragh, Mehrdad Farajtabar, Sachin Mehta, Raviteja Vemulapalli, Fartash Faghri,
Devang Naik, Oncel Tuzel, and Mohammad Rastegari. Weight subcloning: direct initialization
of transformers using larger pretrained ones, 2023.

Sandeep Tata and Jignesh M Patel. PiQA: An algebra for querying protein data sets. In International
Conference on Scientific and Statistical Database Management, 2003.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Albert Tseng, Jerry Chee, Qingyao Sun, Volodymyr Kuleshov, and Christopher De Sa. Quip#: Even
better llm quantization with hadamard incoherence and lattice codebooks, 2024.

Hanrui Wang, Zhanghao Wu, Zhijian Liu, Han Cai, Ligeng Zhu, Chuang Gan, and Song Han. Hat:
Hardware-aware transformers for efficient natural language processing. In Proceedings of the
58th Annual Meeting of the Association for Computational Linguistics, pp. 7675–7688. Asso-
ciation for Computational Linguistics, 2020. URL https://aclanthology.org/2020.
acl-main.684.

Jin Xu, Xu Tan, Renqian Luo, Kaitao Song, Jian Li, Tao Qin, and Tie-Yan Liu. Nas-bert: Task-
agnostic and adaptive-size bert compression with neural architecture search. In Proceedings of
the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 1933–1943.
ACM, 2021. URL https://dl.acm.org/doi/10.1145/3447548.3467404.

Zhewei Yao, Zhen Dong, Zhangcheng Zheng, Amir Gholami, Jiali Yu, Eric Tan, Leyuan Wang, Qi-
jing Huang, Yida Wang, Michael Mahoney, et al. Hawq-v3: Dyadic neural network quantization.
In International Conference on Machine Learning, pp. 11875–11886. PMLR, 2021.

Lu Yin, You Wu, Zhenyu Zhang, Cheng-Yu Hsieh, Yaqing Wang, Yiling Jia, Gen Li, Ajay Jaiswal,
Mykola Pechenizkiy, Yi Liang, Michael Bendersky, Zhangyang Wang, and Shiwei Liu. Outlier
weighed layerwise sparsity (owl): A missing secret sauce for pruning llms to high sparsity, 2024.

Yichun Yin, Cheng Chen, Lifeng Shang, Xin Jiang, Xiao Chen, and Qun Liu. Autotinybert: Auto-
matic hyper-parameter optimization for efficient pre-trained language models. In Proceedings of
the 2021 International Joint Conference on Natural Language Processing, pp. 5146–5157. Asso-
ciation for Computational Linguistics, 2021. URL https://aclanthology.org/2021.
ijcnlp-main.428.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? In Anna Korhonen, David R. Traum, and Lluı́s Màrquez
(eds.), Proceedings of the 57th Conference of the Association for Computational Linguistics,
ACL 2019, Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers, pp. 4791–
4800. Association for Computational Linguistics, 2019. doi: 10.18653/v1/p19-1472. URL
https://doi.org/10.18653/v1/p19-1472.

14

https://doi.org/10.1145/3638529.3654120
https://arxiv.org/abs/2406.17557
https://doi.org/10.1145/3474381
https://aclanthology.org/2020.acl-main.684
https://aclanthology.org/2020.acl-main.684
https://dl.acm.org/doi/10.1145/3447548.3467404
https://aclanthology.org/2021.ijcnlp-main.428
https://aclanthology.org/2021.ijcnlp-main.428
https://doi.org/10.18653/v1/p19-1472

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

CONTENTS

1 Introduction 1

2 Related Work 3

3 Method 3

4 Experiments 6

4.1 Application 1: Depth Pruning . 7

4.2 Application 2: Unstructured Sparsity . 8

4.3 Application 3: Quantization . 9

5 Conclusion 10

A Convergence Proof of EvoPress 17

A.1 A Warm-Up Argument for Single Offspring . 17

A.2 The Main Argument . 18

B Evolutionary Search Parameter Ablations 23

B.1 Mutatation Rate (Depth Pruning) . 23

B.2 Multi-step Selection (Unstructured Sparsity) . 24

B.3 Fitness Environment (Quantization) . 24

C Experimental Setup 25

C.1 Hyperparameter Setting . 25

C.2 Robustness to Random Seed . 26

D Additional Depth Pruning Results 26

D.1 Full Perplexity Tables . 26

D.2 Locality of Dropped Blocks . 28

D.3 Correlation of Scores with Perplexity . 29

E Additional Unstructured Sparsity Results 30

E.1 50% and 60% Sparsity . 30

E.2 Sparsity Profiles . 31

F Additional Quantization Results 31

F.1 2.25 bit and 2.5 bit . 31

F.2 Practical Convergence . 31

F.3 Discussion of Quantization Profiles . 32

G Multimodal compression 33

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

H Schematic visualization 34

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A CONVERGENCE PROOF OF EVOPRESS

A.1 A WARM-UP ARGUMENT FOR SINGLE OFFSPRING

The overall goal of this section is to prove Theorem 1. As the main argument is quite complex, re-
lying heavily on stochastic drift analysis, we begin with a warm-up, namely by presenting a simpler
proof for the restricted case where λ = 1.

Unlike the practical application of Algorithm 1, this section assumes that each fitness evaluation
returns the exact, or ’true,’ fitness value, ignoring any noise introduced by minibatching. Addition-
ally, our results hold for any initialization. To align with standard notation in the runtime analysis of
evolutionary algorithms, we will count generations starting from zero (i.e., using 0-based indexing).
Theorem 2 (Single offspring). Let n, k ∈ N with k ≤ n and consider the (1 + 1)-EA with level-
switch mutation. Then any linear fitness function f : {x | x ∈ {0, 1}n, |x|1 = n − k} → R is
optimized in expected

O(k · (n− k)) generations.

Proof. Let w ∈ Rn be the weights associated to the linear function such that f(x) =
∑n

i=1 xi · wi.
To derive an upper bound we can assume that no two weights are equal 3. Furthermore, assume
without loss of generality that these weights are sorted increasingly, meaning w1 < w2 < ... < wn,
and that k ≤ (n− k), as the other case follows from symmetry. Since f is defined on the bit strings
with exactly k 0’s its unique optimum is now given by xopt = 0k1n−k. Denote by x(t) the search
point at step t and let

T = inf{t ≥ 0 | x(t) = xopt}
be the number of generations required until the optimum is found.
Define X(t) =

∑k
j=1 x

(t)
j as the random variable that captures the number of 1’s in the first k bits

of the search point at step t. We observe the following:

1. X(t) = 0⇔ x(t) = xopt;

2. X(t) is non-increasing;

3. X(t) −X(t+1) ≤ 1;

4. X(0) =
∑k

j=1 x
(0)
j .

It follows that given the initial search point x(0) we can decompose T into s =
∑k

j=1 x
(0)
j stages

T1, T2, ..., Ts, where Tj = inf({t ≥ 0 | X(t) = j − 1}) − inf({t ≥ 0 | X(t) = j}) captures the
number of generations spent at stage j. By linearity of expectation we have

E[T | X(0) = s] =

s∑
j=1

E[Tj].

It remains to bound the expected time spent at each stage. Each offspring is generated by copying
the parent, selecting a 1-bit uniformly at random, selecting a 0-bit uniformly at random and finally
flipping both bits. At stage j exactly j of the k 0-bits are among the last n− k positions and exactly
j of the n − k 1-bits are among the k first positions. Hence, j2 out of the total k(n − k) (1-bit
position, 0-bit position)-pairs advance the optimization to the next stage, yielding

P[X(t+1) = j − 1 | X(t) = j] =
j2

k(n− k)
.

Therefore, Tj ∼ Geometric(j2

k(n−k)) and

E[Tj] =
k(n− k)

j2
.

3Formally, this can be shown using stochastic domination, which involves coupling the potentials in both
cases and proving that, given the same randomness, one is always at least as large as the other.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

To obtain an upper bound, we can make a worst-case assumption by setting X(x(0)) = k. We
conclude

E[T] ≤ E[T |X(0) = k] =

k∑
j=1

E[Tj] = k(n− k)

k∑
j=1

1

j2
∈ O(k(n− k)).

Discussion. Observe that, under the assumption that the probability of initializing at the optimum is
sufficiently small, the proof is tight up to a constant factor of 2.

It is important to note that the above proof relies on the key assumption that whenever one of the j2

”good” pairs is selected during mutation, the resulting offspring is the fittest among all candidates.
This condition holds naturally when there is only a single offspring, as the offspring produced by
flipping one of the j2 pairs will have higher fitness than the parent. However, in the case of multiple
offspring, this approach breaks down, as an offspring produced by flipping one of the j2 ”good”
pairs might still have lower fitness than another offspring that was not generated by flipping one of
these j2 ”good” pairs.

A.2 THE MAIN ARGUMENT

Drift analysis, originally developed to study of random walks and Markov chains, has become the
most widely used technique for analyzing the runtime of evolutionary algorithms in recent years. It
works by first defining a potential function X(t) that measures the progress over each step t of the
optimization. By estimating how this potential changes at each step in expectation, i.e., computing
the drift in X(t), one can then make probabilistic statements about the number of steps required until
the potential reaches a certain threshold, also called the hitting time. To this end, a variety of drift
theorems have been established, two of which will be employed in our proof. For a more thorough
introduction to Drift Analysis we refer to Lengler (2020).

First of all, we will utilize the the Multiplicative Drift Theorem, more specifically a tail bound
introduced by Doerr and Goldberg, which is applicable when the potential decreases by a constant
fraction in each step.

Theorem 3 (Multiplicative Drift, Tail Bound (Doerr & Goldberg, 2010)). Let (X(t))t≥0 be a se-
quence of non-negative random variables over a finite state space S ⊂ R+

0 . Assume that X(0) ≤ b

and let T be the random variable that denotes the first point in time t ∈ N for which X(t) ≤ a, for
some a ≤ b. Suppose that there exists δ > 0 such that for all t < T ,

E[X(t) −X(t+1) | X(t)] ≥ δX(t)

Then,

P[T >
t+ log(b/a)

δ
] ≤ e−t.

Additionally, we will employ Johannsen’s Variable Drift Theorem. This theorem provides more flex-
ibility compared to the Multiplicative Drift Theorem, as it can be applied when the drift is bounded
by any increasing function of the potential. This often occurs naturally, as optimization typically
becomes more difficult approaching the optimum.

Theorem 4 (Variable Drift Theorem (Johannsen, 2010)). Let (X(t))t≥0 be a sequence of non-
negative random variables over a finite state space S ⊂ R+

0 . Let smin := min(S \ {0}), let
T := inf{t ≥ 0 | X(t) = 0}, and for s ∈ S let ∆(t)(s) := E[X(t) − X(t+1) | X(t) = s]. If
there is an increasing function h : R+ → R+ such that for all s ∈ S \ {0} and all t ≥ 0,

∆(t)(s) ≥ h(s),

then

E[T] ≤ smin

h(smin)
+ E

[∫ X(0)

smin

1

h(σ)
dσ

]
,

where the expectation on the latter term is over the random choice of X(0).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

We will first prove an auxiliary Lemma, which will play a central role for bounding the drift. For
this purpose, we define an inversion in a bit string x ∈ {0, 1}n as a pair of indices (i, j) such that
i < j and xi > xj . The distance between these indices, j − i, will be referred to as the spread of
this inversion.

Lemma 1. Let x ∈ {0, 1}n be an arbitrary bit string with k 0-bits and denote by s the number of
inversions in x. Then, the average spread of these inversions is at least

√
s/16.

Proof. Consider the bit string 1n−k containing all 1-bits of x. We can now generate an arbitrary
bit string x ∈ {0, 1}n with k 0-bits and s inversions by adding k 0-bits in such a way that s inver-
sions are generated. Observe that adding a 0-bit after the j’th 1-bit results in exactly j additional
inversions, regardless of the other 0-bits. This means that the order in which the 0-bits are added
does not effect the outcome. We proceed by a case distinction depending on how the inversions are
generated.

Case 1: at least s/2 inversions are generated by adding 0-bits after the
√
s’th 1-bit.

For each 0-bit that is added after the
√
s’th 1-bit, at least half of the resulting inversions have spread

at least
√
s/2. Consequently, this implies that there are at least s/4 inversions having spread at least√

s/2 in total.

Case 2: fewer than s/2 inversions are generated by adding 0-bits after the
√
s’th 1-bit.

It follow that more than s/2 inversions are generated by adding 0-bits not after the min(n−k,
√
s)’th

1-bit. Observe that each 1-bit can participate in at most j inversions with spread at most j. More
specifically, each 1-bit can be part of at most

√
s/4 inversions with spread at most

√
s/4. Because

all of the s/2 inversions that are added contain one of the first min(n − k,
√
s) 1-bits, at most s/4

of these inversions can have spread at most
√
s/4. Therefore, we conclude that the average spread

of all inversions must be at least
√
s/16.

We continue to prove the final result.

Proof of Theorem 1

Proof. As in the proof of Theorem 2 let w ∈ Rn represent the weights associated with a linear
function of the form f(x) =

∑n
i=1 xi · wi. To establish an upper bound, we can again assume

that no two weights are equal. Additionally, without loss of generality, assume that the weights are
ordered in increasing value, i.e., w1 < w2 < · · · < wn, and that k ≤ n−k, as the other case follows
by symmetry. Let x(t) denote the search point at step t, and define

T = inf{t ≥ 0 | x(t) = 0k1n−k}

as the number of generations required to reach the optimal solution.
Consider the potential function

X(t) =

n∑
i=1

(1− x
(t)
i) · i− k · (k + 1)

2
,

which captures the number of inversions at step t. Since xopt = 0k1n−k is the only bit string with
k 0-bits without inversions, we have X(t) = 0 if and only if x(t) = xopt. At the same time, no bit
string with k 0-bits has more than k(n− k) inversions, hence, X(t) ≤ k(n− k) at all times. During
mutation, each of the λ offspring is generated independently by copying the parent x(t), choosing
uniformly at random one of the 1-bits, choosing uniformly at random one of the 0-bits and finally
flipping both bits. This flipping can also be viewed as switching both bits, so that bits ”move” across
the search point in consecutive generations. We will use this abstraction in a later step of the proof.

As we assume the weights to be ordered increasingly, an offspring is fitter than its parent if and only
if the chosen 1-bit was to the left of the chosen 0-bit, meaning, the chosen pair during mutation was

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

an inversion. Since there are k(n− k) possible pairs in total, we have for each offspring y1, ..., yλ

P[f(yj) > f(x(t)) | X(t) = s] =
s

k(n− k)
.

At the same time, switching two bits corresponding to an inversion decreases the number of inver-
sions by the difference in their positions, which we call the spread of an inversion. This implies
that any offspring fitter than its parent must have fewer inversions than its parent and therefore,
X(t+1) ≤ X(t) for all t. Note that we cannot make the same statement about the entire group of
offspring, meaning, the fittest offspring is not guaranteed to have the fewest inversions. Since X(t)

is non-increasing we can decompose T into the number of steps required until for the first time the
current search point x(t) has at most k(n−k)

λ inversions and the number of steps required from there
until the optimum is found. By linearity of expectation

E[T] = E[T1] + E[T2],

where

T1 = inf{t ≥ 0 | X(t) ≤ k(n− k)

λ
}

and

T2 = inf{t ≥ 0 | X(t) = 0} − inf{t ≥ 0 | X(t) ≤ k(n− k)

λ
}.

In the remainder of this proof we will demonstrate that each of these two phases requires only an
expected O(k(n− k)/λ) generations.

We begin by bounding the expected number of steps until the search point has at most k(n−k)/λ in-
versions. As computed previously, a single offspring is fitter than its parent with probability s

k(n−k) .
Since any fitter offspring has fewer inversion than its parent, the potential decreases in a given step,
if and only if, at least one of the offspring is fitter. By using that each offspring is generated inde-
pendently and that s ≥ k(n−k)

λ for this phase we get that

P[X(t+1) < X(t) | X(t) = s] = 1− (1− s

k(n− k)
)λ ≥ 1− e

−λs
k(n−k) ≥ 1− e−1.

This means, in phase 1 we have a constant probability of decreasing the potential every step. How-
ever, the resulting constant drift only provides an upper bound of O(k(n − k)) via the Additive
Drift Theorem (He & Yao, 2004). Improving this constant drift bound is challenging because we
must establish a lower bound on the expected reduction in the number of inversions, given the ex-
istence of a fitter offspring. The number of inversions in an offspring is not independent of its
fitness, and there is no guarantee that a fitter offspring will have fewer inversions than a less fit
one. This issue is mitigated when there is only a single fitter offspring (as demonstrated in the
proof of phase 2), but it becomes problematic when multiple offspring are fitter than the parent
with high probability. For example, consider the bit string 11010110001 with corresponding weights
w1 = 1, w2 = 1002, w3 = 1003, ..., w112 = 1112. If λ is reasonably large it becomes very likely
that at least one of the children will have the first 1-bit chosen in mutation. This offspring is guar-
anteed to be the fittest one, but at the same time (assuming the chosen 0-bit is not the last one)
it decreases the number of inversions very little compared to sampling one of the inversions for
mutation uniformly at random. We will resolve this difficulty by a separate drift argument.

Let BC be the event that, within the next

2C

1− e−1

k(n− k)

λ

steps, the number of inversions in x(t) falls below the threshold of

k(n− k)

λ
.

Here, C is chosen such that λ ≤ C
4

n
log(n) . If we can demonstrate that BC occurs with a probability

of at least some constant, then the proof of the first phase is established, as BC is expected to occur
after a constant number of repetitions.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Henceforth, we will implicitly condition on s ≥ k(n−k)/λ, since otherwise, the conclusion follows
immediately. By the Chernoff bound over round events, the probability that the potential decreases
at most

C
k(n− k)

λ
times within the next

2C

1− e−1

k(n− k)

λ
rounds is sub-constant. We will condition on the event that the potential decreases at least

C
k(n− k)

λ

times, and from now on, we will only consider such potential-reducing generations.

If we regard mutation as swapping the 1-bit with the 0-bit, we can enumerate all 0-bits from 1 to k
and denote by ij the current position of the j’th 0-bit, which will be referred to as 0j . Note that this
enumeration stays fixed across generations, meaning that the relative order can change and 0j is not
necessarily the j’th 0-bit in x(t). Now define

Z
(t)
j = 1 +

ij∑
l=1

xt

as the random variable that captures the number of 1-bits before 0j plus one, or in other words, one
plus the number of inversions this specific 0-bit is part of. Let Sj denote the event that the fittest
offspring was generated by a mutation that selected 0j and this offspring is fitter than the parent. We
continue to show that

E[Z(t+1)
j | Z(t)

j = s, Sj] =
s

2
.

We achieve this by systematically revealing the randomness in each generation. First, uncover which
0-bit flip produced the fittest offspring4. Assume this bit is 0j . Next, reveal all offspring that were
generated by flipping other 0-bits than 0j . Let m be the number of offspring that were not uncovered
yet, i.e., the number of offspring where 0j was switched. Now enumerate all 1-bits left of 0j in
x(t) from right to left (here, relative order matters). Let l be the smallest integer such that when
switching the l’th 1-bit left of 0j with 0j the resulting offspring of x(t) has higher fitness than all
λ −m previously uncovered offspring. Denote by Dl the corresponding event. Such l must exists,
since we condition on the event that some offspring with bit 0j flipped (switched) is the fittest among
all offspring. Because the weights are sorted increasingly it must hold that switching the l + 1’th
1-bit with 0j will also result in an offspring with higher fitness than the other λ−m offspring, while
switching the l−1’th 1-bit with 0j will result in an offspring with lower fitness than the other λ−m
offspring. Next, uncover all offspring where bit 0j was switched with one the first up to (l − 1)’th
bit left of 0j . Let m′ denote the number of yet uncovered offspring. Now each of the remaining m′

offspring is generated by flipping 0j with one of the l’th to s’th 1-bits left of 0j . Observe that the
fittest among them will be the one with the leftest 1-bit chosen. Therefore,

E[Z(t+1)
j | Z(t)

j = s, Sj , Dl,m
′ offspring not uncovered] = s− E

[
max

i=1,...,m′
Ui

]
,

where Ui ∼ Uniform(l, s). Given that we are conditioning on Sj , we know that the fittest offspring
was produced by flipping 0j , which implies m′ ≥ 1. It follows that

E[Z(t+1)
j | Z(t)

j = s, Sj] ≥ s/2.

Denote by T̂j the number of steps required until Zj reaches 1, only counting steps where Zj is
decreased. Using a tail bound for the Multiplicative Drift Theorem (Theorem 3) we have that

P[T̂j > 2(log(n) + log(n− k))] ≤ 1

n
.

4To be more precise, we must uncover which 0-bit flip produced the offspring chosen during selection, to
account for the case that multiple offspring have the same highest fitness (in case of a draw, one usually samples
one of the fittest candidates uniformly at random). Since the case of multiple offspring with identical fitness is
a mere technicality, we have largely omitted it.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

As k < (n−k) we conclude by a union bound that with probability at least 1/2 each potential Zj will
reach 1 within at most 2 log(n) steps. Therefore, with probability at least 1/2, after 2k log(n) gen-
erations where some offspring is fitter than the parent, there must be 0 inversions in x(t). However,
note that in practice, there will not actually be 0 inversions in xt, as the condition s ≥ k(n − k)/λ
is violated earlier, leading the optimization process to enter the second phase. Using the fact that
λ ≤ C

4
n

log(n) and n− k ≥ n/2 we obtain

2k log(n) ≤ 4k(n− k) log(n)

n
≤ C

k(n− k)

λ
.

Finally, as the probability of having less than Ck(n− k)/λ ”successful” generations in the consid-
ered time period is sub-constant, we conclude via another union bound that there exists a constant
C ′ such that event BC occurs with probability at least 1/C ′. Consequently, we have

E[T1] ≤ C · C ′ · k(n− k)

λ
∈ O

(
k(n− k)

λ

)
.

To compute E[T2] we first bound the probability that exactly one of the generated offspring is fitter
than the parent. Denote by

Ai =
{∣∣∣{j ∈ {1, . . . , λ} | f(yj) > f(x(t))

}∣∣∣ = i
}

the event that exactly i of the offspring are fitter than the parent x(t). As shown earlier, the probability
that a given offspring is fitter than its parent is exactly s

k(n−k) , where s represents the number of

inversions in x(t). Given that each offspring is generated independently, we have for s ≤ k(n−k)
λ

P[A1 | X(t) = s] = λ · s

k(n− k)
·
(
1− s

k(n− k)

)λ−1

≥ λ · s

k(n− k)
·
(
1− s

k(n− k)

) k(n−k)
s −1

≥ λ · s

k(n− k)
· 1
e
.

Lemma 1 indicates that when selecting an offspring uniformly at random from all those with higher
fitness than the parent (i.e., those generated by flipping an inversion), the expected number of inver-
sions in that offspring is at least

√
s/16 fewer than in the parent. We can now reveal the randomness

in two steps. First, we only uncover how many of the generated offspring are fitter than the parent.
Given that there is only a single fitter offspring, i.e., conditioned on A1, we then uncover its num-
ber of inversions. Clearly, this single fitter offspring is now sampled uniformly at random from all
offspring with higher fitness than x(t); thus, for s ≤ k(n−k)

λ

∆(t)(s) = E[X(t+1) −X(t) | X(t) = s]

=

λ∑
k=0

E[X(t+1) −X(t) | X(t) = s,Ak] · P[Ak | X(t) = s]

≥ E[X(t+1) −X(t) | X(t) = s,A1] · P[A1 | X(t) = s]

≥
√
s

16
· λ · s

k(n− k)
· 1
e
.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Finally, applying Johannsen’s Variable Drift Theorem (Johannsen, 2010) (Theorem 4) yields

E[T2] ≤ 16e
k(n− k)

λ
+ E

[∫ X(0)

1

16e
k(n− k)

λσ3/2
dσ

]

≤ 16e
k(n− k)

λ

(
1 +

∫ k(n−k)
λ

1

1

σ3/2
dσ

)

∈ O

(
k(n− k)

λ

)
.

B EVOLUTIONARY SEARCH PARAMETER ABLATIONS

B.1 MUTATATION RATE (DEPTH PRUNING)

The mutation rate plays a crucial role in balancing exploration and exploitation. A higher mutation
rate allows for broader exploration of the search space; however, this space grows exponentially
with the number of mutations. As a result, when attempting to approach the optimum in terms
of Hamming distance, the proportion of ”good” offspring decreases significantly with increasing
mutation rates. Consequently, in a smooth fitness landscape, we expect faster optimization with a
lower mutation rate. To study the impact of mutation rate on our search process, we tested various
distributions from which the number of mutations is sampled. Table 4 illustrates the effects of these
distributions on the task of selecting the optimal 12 blocks to drop for Mistral-7B-v0.3. The results
confirm our intuition: higher mutation rates generally reduce performance. However, sampling from
the minimum of two uniform distributions ensures a reasonably high probability of selecting a low
number of mutations. These offspring, with fewer mutations, then drive the optimization process,
yielding to comparably lower performance drops. Conversely, when we eliminate this sampling
and instead use a high, constant mutation rate, we lose the locality that is crucial for evolutionary
algorithms, leading to a significant drop in performance.

Table 4: Effect of varying the distribution determining the number of mutations.

Number of Mutations Wiki2↓ C4↓ FW↓
min(U1, U2), U1, U2 ∼ U(1, 3) 17.52 21.60 16.79
min(U1, U2), U1, U2 ∼ U(1, 7) 21.49 22.41 17.65
min(U1, U2), U1, U2 ∼ U(1, 15) 18.65 22.67 17.63

1 18.12 21.12 16.33
3 22.09 25.42 19.25
7 25.06 26.52 19.65
15 27.01 28.19 22.03

A low mutation rate carries the risk of getting trapped in local optima. However, as discussed in
Section 3, we expect the dynamic model compression problem to exhibit a smooth fitness landscape
with few local optima. Moreover, fitness evaluations in our context are relatively expensive. In-
creasing the mutation rate would only be beneficial if the smaller search space had already been
thoroughly explored. In our case, though, even a small neighborhood of the search space cannot be
fully explored within a feasible time frame.

A widely used strategy for balancing the advantages and disadvantages of different mutation rates
involves self-adjusting mutation rates, which have been shown to be effective both theoretically and
in practice (Kern et al., 2004; Doerr et al., 2019). These methods decrease the mutation rate when
progress is relatively ”easy”, and increase it when progress becomes difficult, offering a greater
chance of escaping local optima.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

B.2 MULTI-STEP SELECTION (UNSTRUCTURED SPARSITY)

We will use this subsection to ablate the impact of hyperparameters for multi-step selection, namely,
the number of tokens and survivors. As discussed earlier in Section 4.2, the default hyperparameters
we chose for our unstructured sparsity search were quite conservative. The following experiments
will be conducted based on the super fast version, which uses two steps of selection. It first generates
16 offspring, evaluates them on 512 tokens, and compares only the fittest one with the parent on
another 8192 tokens.

Table 5 shows the impact of adapting the number of tokens in the first selection step. Note that
reducing tokens is only reasonable up to a certain degree, as fitness evaluation has constant overhead
independent of the number of tokens (e.g., for loading the levels). Table 6 ablates the number of
offspring in each generations. All perplexities were measured after 400 generations.

Table 5: Effect of varying the number of tokens in first preselection step.

Offspring Stage 1: Tokens Stage 2: Tokens Wiki2↓ C4↓ FW↓
16 1024 8192 16.22 17.93 12.26
16 12 8192 15.87 18.28 12.38
16 256 8192 17.25 18.51 12.52
16 128 8192 16.01 18.99 12.72
16 64 8192 15.89 19.35 12.98

Table 6: Effect of varying the number of offspring.

Offspring Stage 1: Tokens Stage 2: Tokens Wiki2↓ C4↓ FW↓
64 512 8192 16.35 18.27 12.36
32 512 8192 16.65 18.22 12.44
16 512 8192 15.87 18.27 12.38
8 512 8192 16.37 18.74 12.64
4 512 8192 17.87 18.97 12.72

In a similar vein to the discussion in Appendix B.1, the number of offspring can also be dynamically
adapted. Ideally, the number of offspring should increase to the point where the computational effort
is compensated by the number of fitness evaluations, as outlined in Theorem 1. Methods such as the
Self-Adjusting (1, λ)-EA have recently gained significant theoretical interest and have been shown
to automatically determine ”ideal” offspring sizes on specific problems (Hevia Fajardo & Sudholt,
2021; Kaufmann et al., 2022). Although we have not experimented with such adaptive methods, we
see significant potential for future work in this area, particularly considering the multi-step selection
we employ.

B.3 FITNESS ENVIRONMENT (QUANTIZATION)

We explored alternative fitness functions by testing perplexity as opposed to KL-Divergence. One
advantage of using perplexity is the reduced memory requirement, as it does not necessitate storing
logits, which can be particularly burdensome for large vocabularies. However, perplexity relies
solely on the information from the ground truth token, while KL-Divergence takes into account
the entire distribution. This distinction is significant only if the selection decisions vary between
the two metrics. Generally, we expect KL-Divergence to perform at least as well as perplexity;
however, in many instances, their performances are similar. This observation could indicate that
KL-Divergence might be using more tokens than necessary to assess fitness effectively. Although
in the context of quantization, KL-Divergence yielded slightly better results (Table 7), both metrics
showed comparable performance when applied to unstructured sparsity (Figure 4).

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Table 7: Comparison of using KL-Divergence vs. Perplexity as fitness function.

Model # Bits Method Wiki2↓ C4↓ FW↓

Llama-3-8B

3
Uniform 12.19 15.76 11.47

EvoPress (PPL) 8.17 12.15 9.64
EvoPress (KL) 7.49 12.03 9.56

4
Uniform 6.48 9.50 8.46

EvoPress (PPL) 5.86 9.46 8.23
EvoPress (KL) 5.86 9.44 8.22

Llama-2-7B

3
Uniform 6.16 7.96 6.86

EvoPress (PPL) 5.74 7.90 6.79
EvoPress (KL) 5.70 7.87 6.76

4
Uniform 5.48 7.10 6.40

EvoPress (PPL) 5.25 7.09 6.37
EvoPress (KL) 5.22 7.07 6.34

Mistral-7B-v0.3

3
Uniform 5.54 8.57 6.96

EvoPress (PPL) 5.23 8.45 6.87
EvoPress (KL) 5.21 8.42 6.86

4
Uniform 5.10 7.87 6.50

EvoPress (PPL) 4.85 7.86 6.49
EvoPress (KL) 4.84 7.84 6.48

0 20 40 60 80 100
Generation

6.78

6.80

6.82

6.84

6.86

6.88

6.90

Pe
rp

le
xi

ty

Llama-2-7B - 3 bit
Perplexity Fitness
KL Divergence Fitness

0 50 100 150 200 250 300 350 400
Generation

12

14

16

18

20

22

24

26

Pe
rp

le
xi

ty

Llama-2-7B - 70% Sparsity
Perplexity Fitness
KL Divergence Fitness

Figure 4: Convergence of EvoPress for unstructured sparsity (Left) and quantization (Right) for
different fitness functions.

C EXPERIMENTAL SETUP

C.1 HYPERPARAMETER SETTING

Here, we provide an overview of the hyperparameters used in our experiments. As shown in Table 8,
different hyperparameters were employed for different applications due to the varying nature of their
search spaces. Across all applications, we sampled the number of mutations from the distributions
min(U1, U2) with U1, U2 ∼ Unif(1, 3), which closely mimics the behavior of using only one
mutation (see the ablation study in Appendix 4).

For Depth Pruning, where each block has only two choices and significantly fewer blocks are present
compared to layers in other methods, we leveraged the insight from Theorem 1, which suggests that
the number of required generations scales proportionally to k(n−k), where k represents the number
of removed blocks and n the total number of blocks.

For Unstructured Sparsity, the search space is considerably larger, with more than 10 choices per
layer5. As a result, more generations are necessary to converge because each generation only makes
small improvement in terms of Hamming distance from the optimum.

5If needed, one could increase the step size and reduce the number of compression levels to load.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

For Quantization, the search space is somewhat smaller since fewer “natural” compression levels
are available. However, the fitness landscape is less smooth, with significantly larger step sizes in
compression levels, motivating the use of a higher number of tokens.

For all these applications, we adopted a conservative approach to the number of generations to better
understand convergence. In practice, we need significantly fewer generations to converge close to
optimum, as demonstrated in Section 4.2, Appendix A, and Appendix B.3. Additionally, we showed
a much faster version (in terms of time per iteration) that uses significantly less tokens.

Table 8: Employed hyperparameters for different applications.

Application Generations Offspring Survivors (1) Tokens (1) Survivors (2) Tokens (2) Survivors (3) Tokens (3)

Depth Pruning k(n− k)/1.5 32 2 2048 1 32768 N/A N/A
Unstr. Sparsity 400 64 8 2048 2 16384 1 65536
Quantization 150 128 16 2048 4 16384 1 131072
Super-Fast 400 16 1 512 1 8192 N/A N/A

C.2 ROBUSTNESS TO RANDOM SEED

To evaluate the robustness of EvoPress, we conducted 16 independent runs with different random
seeds. Specifically, we used the “super-fast” variant to determine the optimal compression alloca-
tion for Llama-3-8B at 70% sparsity, assessing perplexity scores on the C4, Wikitext2, and hold-out
Fineweb-Edu datasets. The results indicate that EvoPress is highly robust, as reflected by the low
standard deviation observed across the hold-out metrics (Figure 5). For example, after 1000 gener-
ations of the “super-fast” variant, the configurations found achieve a mean C4 perplexity of 33.82
with a standard deviation of 0.61, compared to 52.32 for the next best method, OWL, highlighting
the statistically significant improvements achieved by EvoPress. Furthermore, as shown in Figure 6,
the configurations identified across different runs demonstrate high similarity, which is expected to
improve further with additional generations.

0 200 400 600 800 1000
Generations

20

30

40

50

60

Pe
rp

le
xi

ty

Llama-3-8B - 70% Sparsity
Wikitext2
C4
Fineweb-Edu

Figure 5: Convergence behavior of the “super-fast” variant across 16 independent runs. The ex-
tremely low standard deviation (shaded area) underscores the robustness of the method, suggesting
that local optima do not pose significant challenges to the search.

D ADDITIONAL DEPTH PRUNING RESULTS

D.1 FULL PERPLEXITY TABLES

Here, we present our additional results for depth pruning experiments on Llama-2-7B (Table 9),
Llama-3-8B (Table 10), and Mistral-7B-v0.3 (Table 11). Across all levels of sparsities, EvoPress
consistently outperforms previous methods. Additionally, Table 11 includes results where only en-
tire transformer blocks in the EvoPress are removed, showcasing that the significant gains are not

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

q k v o u g d

0

10

20

30

Seed: 1

q k v o u g d

0

10

20

30

Seed: 2

q k v o u g d

0

10

20

30

Seed: 3

q k v o u g d

0

10

20

30

Seed: 4

q k v o u g d

0

10

20

30

Seed: 5

q k v o u g d

0

10

20

30

Seed: 6

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Sp
ar

sit
y

Llama-3-8B - 70% Sparsity

Figure 6: Configurations identified by EvoPress on Llama-3-8B after 1000 generations show high
similarity across different seeds. The y-axis represents the depth of the respective transformer block,
while the x-axis denotes the corresponding layer (q: query, k: key, v: value, o: output, u: MLP up,
g: MLP gate, d: MLP down).

Table 9: Depth pruning of Llama-2-7B.

Sparsity Method Wiki2↓ C4↓ FW↓
0% Dense 5.21 6.93 6.40

12.5%

EvoPress 6.42 8.60 7.54
ShortGPT 8.86 nan 9.48

Cosine Similarity (Window) 7.53 9.82 8.51
Weight Subcloning 9.09 11.06 9.60

ShortenedLlama 7.68 10.44 8.57

25%

EvoPress 9.15 11.46 9.69
ShortGPT 23.41 30.30 21.16

Cosine Similarity (Window) 16.60 21.04 17.37
Weight Subcloning 23.41 30.30 21.16
Shortened Llama 13.86 14.08 11.81

37.5%

EvoPress 17.98 18.91 15.53
ShortGPT 70.94 63.51 54.07

Cosine Similarity (Window) 192.07 212.60 151.10
Weight Subcloning 70.94 63.51 54.07
Shortened Llama 35.37 26.07 20.37

50%

EvoPress 48.84 42.29 33.57
ShortGPT 226.14 171.04 180.51

Cosine Similarity (Window) 4570.15 2876.83 1861.06
Weight Subcloning 226.14 171.04 180.51
Shortened Llama 145.78 87.40 68.79

primarily due to this relaxation, and that our method performs better than baselines even when deal-
ing with this coarser search space.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Table 10: Depth pruning of Llama-3-8B.

Sparsity Method Wiki2↓ C4↓ FW↓
0% Dense 5.54 8.80 7.62

12.5%

EvoPress 7.72 12.61 10.15
ShortGPT 13.21 19.56 14.25

Cosine Similarity (Window) 9.54 14.87 11.64
Weight Subcloning 13.21 19.56 14.25
Shortened Llama 9.42 15.09 11.57

25%

EvoPress 13.99 22.83 15.84
ShortGPT 5527.54 11589.93 2346.13

Cosine Similarity (Window) 5519.95 11629.61 2342.91
Weight Subcloning 5527.54 11589.93 2346.13
Shortened Llama 16.59 20.81 16.28

37.5%

EvoPress 27.56 35.70 26.77
ShortGPT 64281.36 13836.12 3789.09

Cosine Similarity (Window) 64627.29 13890.14 3784.72
Weight Subcloning 64381.36 13836.13 3789.09
Shortened Llama 50.20 61.56 37.40

50%

EvoPress 84.99 87.86 66.41
ShortGPT 1663.97 1740.04 1588.20

Cosine Similarity (Window) 2053.19 1116.47 694.00
Weight Subcloning 1663.97 1740.04 1588.20
Shortened Llama 724.86 666.41 210.30

Table 11: Depth pruning of Mistral-7B-v0.3.

Sparsity Method Wiki2↓ C4↓ FW↓
0% Dense 4.82 7.72 6.41

12.5%

EvoPress 6.06 9.00 7.42
EvoPress (Attn.+MLP) 6.33 9.44 7.80

ShortGPT 7.19 10.18 8.46
Cosine Similarity (Window) 7.19 10.18 8.46

Weight Subcloning 7.19 10.18 8.46
Shortened Llama 6.64 9.71 7.94

25%

EvoPress 8.66 12.04 9.92
EvoPress (Attn.+MLP) 9.46 13.02 10.59

ShortGPT 43.26 40.16 29.54
Cosine Similarity (Window) 33.75 54.07 36.26

Weight Subcloning 43.26 40.16 29.54
Shortened Llama 14.94 19.30 14.73

37.5%

EvoPress 17.52 21.60 16.90
EvoPress (Attn.+MLP) 21.62 25.17 18.97

ShortGPT 2898.98 2722.66 981.99
Cosine Similarity (Window) 1034.09 2471.86 1050.56

Weight Subcloning 2898.98 2722.66 981.99
Shortened Llama 440.20 442.09 486.15

50%

EvoPress 61.75 54.15 43.23
EvoPress (Attn.+MLP) 108.91 99.74 69.07

ShortGPT 2422.72 2134.92 1083.51
Cosine Similarity (Window) 3411.47 1934.16 1740.91

Weight Subcloning 2422.72 2134.92 1083.51
Shortened Llama 5241.76 3595.71 1953.14

D.2 LOCALITY OF DROPPED BLOCKS

Prior work suggests that deeper layers, excluding the final ones, are generally less effective (Gromov
et al., 2024; Men et al., 2024). Figure 7 illustrates the optimal drop configurations discovered by
EvoPress. While some deeper layers are indeed removed at all sparsity levels, we also observe
that certain shallow layers appear to be less important. Meanwhile, the first two blocks are never

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

removed. However, in contrast to a heuristic proposed by Ma et al. (2023), in some case it is
reasonable to remove the final block.

Table 12: First 16 blocks in removal order of ShortGPT, Weight Subcloning and Shortened Llama
on three different models.

Model Method Removal Order (Left to Right)

Llama-3-8B
ShortGPT 25, 26, 27, 24, 28, 23, 22, 29, 20, 21, 19, 18, 30, 17, 16, 11

Weight Subcloning 25, 27, 26, 24, 28, 23, 22, 29, 20, 21, 19, 18, 30, 17, 16, 11
Shortened Llama 10, 08, 09, 11, 26, 25, 12, 22, 24, 23, 14, 13, 28, 06, 19, 21

Llama-2-7B
ShortGPT 27, 25, 26, 28, 29, 24, 23, 22, 21, 30, 20, 19, 18, 17, 15, 14

Weight Subcloning 27, 25, 28, 29, 26, 24, 23, 22, 21, 19, 30, 20, 18, 17, 14, 15
Shortened Llama 11, 12, 08, 09, 10, 06, 24, 25, 07, 14, 23, 13, 22, 21, 15, 27

Mistral-7B-v0.3
ShortGPT 26, 25, 24, 27, 23, 22, 28, 30, 21, 29, 20, 19, 13, 17, 18, 12

Weight Subcloning 26, 25, 24, 27, 23, 28, 22, 30, 21, 29, 20, 19, 13, 17, 12, 18
Shortened Llama 10, 12, 13, 11, 08, 09, 14, 15, 07, 06, 04, 27, 24, 16, 25, 05

0 5 10 15 20 25 30
Depth

0

1

2

Su
bb

lo
ck

s D
ro

pp
ed

4 Blocks Dropped
Llama-2-7B
Llama-3-8B
Mistral-7B-v0.3

0 5 10 15 20 25 30
Depth

0

1

2
Su

bb
lo

ck
s D

ro
pp

ed
8 Blocks Dropped

Llama-2-7B
Llama-3-8B
Mistral-7B-v0.3

0 5 10 15 20 25 30
Depth

0

1

2

Su
bb

lo
ck

s D
ro

pp
ed

12 Blocks Dropped
Llama-2-7B
Llama-3-8B
Mistral-7B-v0.3

0 5 10 15 20 25 30
Depth

0

1

2

Su
bb

lo
ck

s D
ro

pp
ed

16 Blocks Dropped
Llama-2-7B
Llama-3-8B
Mistral-7B-v0.3

Figure 7: Optimal drop configurations produced by EvoPress for different models.

D.3 CORRELATION OF SCORES WITH PERPLEXITY

In this experiment, we first calculated the cosine similarity and squared error for each block by
comparing activations before and after the block. Next, we randomly removed subsets of blocks
(excluding the first and last two) and, for each configuration, computed the average cosine similarity
and squared error. The results are shown in Figure 8. Initially, the average squared error exhibited
a negative correlation, as the l2 norm of the activations increased with depth. This lead to config-
urations with early blocks removed having small average error. To mitigate this, we normalized
the activations prior to computing the squared error, which significantly improved the correlation,
resulting in performance comparable to cosine similarity. However, as sparsity increased, the corre-
lation degraded significantly for both methods, offering insight into why removal techniques based
on scoring fail even at moderate levels of sparsity. The experiment was done using 131,072 tokens
from the Fineweb-Edu calibration dataset.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

0.82 0.84 0.86 0.88 0.90 0.92
Average Cosine Similarity

102

Pe
rp

le
xi

ty

Llama-3-8B - 8 Blocks Dropped

0.84 0.85 0.86 0.87 0.88 0.89 0.90 0.91
Average Cosine Similarity

102

103

Pe
rp

le
xi

ty

Llama-3-8B - 10 Blocks Dropped

0.84 0.86 0.88 0.90 0.92
Average Cosine Similarity

102

103

Pe
rp

le
xi

ty

Llama-3-8B - 12 Blocks Dropped

80 100 120 140 160 180
Average Squared Error

102

Pe
rp

le
xi

ty

Llama-3-8B - 8 Blocks Dropped

100 120 140 160 180
Average Squared Error

102

103

Pe
rp

le
xi

ty

Llama-3-8B - 10 Blocks Dropped

90 100 110 120 130 140 150 160
Average Squared Error

102

103

Pe
rp

le
xi

ty

Llama-3-8B - 12 Blocks Dropped

11 12 13 14 15 16
Average Squared Error (normalized)

102

Pe
rp

le
xi

ty

Llama-3-8B - 8 Blocks Dropped

12 13 14 15
Average Squared Error (normalized)

102

103

Pe
rp

le
xi

ty

Llama-3-8B - 10 Blocks Dropped

11 12 13 14 15
Average Squared Error (normalized)

102

103

Pe
rp

le
xi

ty

Llama-3-8B - 12 Blocks Dropped

Figure 8: Effect of removing random subsets of blocks for Llama-3-8B.

E ADDITIONAL UNSTRUCTURED SPARSITY RESULTS

E.1 50% AND 60% SPARSITY

In the main text, we focused on results at 70% sparsity, where the performance difference becomes
more pronounced. However, since 50% and 60% sparsity levels are also commonly referenced in
the literature, we also present results for these levels in Tables 13 and 14. Even at these lower spar-
sity levels, EvoPress demonstrates significant improvements over uniform sparsity and consistently
outperforms OWL.

Table 13: Performance of various sparsity profiles at 50% sparsity

Model Sparsity Wiki2↓ C4↓ ArcC↑ ArcE↑ HS↑ PiQA↑ WG↑ Avg↑

Llama-2-7B

Dense 5.12 6.93 43.4 76.3 57.1 78.1 69.0 64.8

Uniform 6.40 8.87 41.3 73.4 52.8 75.7 68.8 62.4
DP 7.09 10.04 39.8 72.2 53.3 76.1 68.3 61.9

OWL 6.38 8.77 41.1 73.2 53.2 76.5 70.2 62.9
EvoPress 6.22 8.52 41.5 74.2 54.0 76.7 69.6 63.2

Llama-3-8B

Dense 5.54 7.10 50.4 80.1 60.2 79.7 72.6 68.6

Uniform 8.05 13.07 43.6 75.7 54.2 76.1 71.7 64.3
DP 9.45 14.46 39.8 72.0 52.9 74.7 67.2 61.3

OWL 8.13 13.12 43.8 75.8 54.0 75.7 72.2 64.3
EvoPress 7.63 12.53 43.9 77.5 54.5 76.8 72.2 65.0

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Table 14: Performance of various sparsity profiles at 60% sparsity

Model Sparsity Wiki2↓ C4↓ ArcC↑ ArcE↑ HS↑ PiQA↑ WG↑ Avg↑

Llama-2-7B

Dense 5.12 6.93 43.4 76.3 57.1 78.1 69.0 64.8

Uniform 9.3 12.37 35.8 69.5 45.9 72.4 65.9 57.9
DP 15.61 20.73 32.3 64.6 43.5 68.5 63.9 54.6

OWL 8.35 11.00 36.0 69.1 47.5 73.2 66.2 58.4
EvoPress 8.21 10.34 37.1 70.6 49.3 74.4 67.6 59.8

Llama-3-8B

Dense 5.54 7.10 50.4 80.1 60.2 79.7 72.6 68.6

Uniform 13.86 21.43 35.2 69.7 45.6 72.2 68.0 58.2
DP 19.74 29.46 36.1 67.0 45.8 72.1 64.9 57.2

OWL 12.37 18.53 38.0 70.3 47.7 72.1 68.5 59.3
EvoPress 11.02 16.37 39.0 71.9 48.6 74.0 69.1 60.5

E.2 SPARSITY PROFILES

Below, we visualize sparsity profiles determined by EvoPress and baseline approaches. It can be
observed that EvoPress prunes the initial blocks less aggressively compared to the middle and later
blocks, while the final block is kept relatively dense. Furthermore, the q proj and k proj pro-
jections achieve higher sparsity levels, whereas the o proj and v proj projections are pruned to
lower sparsity levels on average.

0 5 10 15 20 25 30

Depth

0.60

0.65

0.70

0.75

0.80

0.85

Sp
ar

sit
y

EvoPress
OWL
DP
uniform

Figure 9: Block-level sparsity profiles for
Llama-3-8B at 70% sparsity.

q_proj k_proj v_proj o_proj gate_proj up_proj down_proj
0.50

0.55

0.60

0.65

0.70

0.75

0.80

Av
er

ag
e

sp
ar

sit
y

Figure 10: Average sparsity per projection type
for Llama-3-8B at 70% sparsity for EvoPress.

F ADDITIONAL QUANTIZATION RESULTS

F.1 2.25 BIT AND 2.5 BIT

In addition to the 3 bit results presented in Section 4.3, we further evaluated EvoPress under ex-
treme quantization conditions, specifically testing it at 2.25 bit and 2.5 bit levels. As a baseline, we
generated 32 random configurations combining 2 bit and 3 bit layers and selected the best perform-
ing setup. The results, as shown in Table 15, demonstrate that EvoPress significantly outperforms
this baseline, highlighting its ability to facilitate extreme quantization levels that were previously
unattainable.

F.2 PRACTICAL CONVERGENCE

Similar to unstructured sparsity, EvoPress also demonstrates rapid convergence when applied to
quantization. As shown in Figure 11, the majority of improvements occur within two GPU, with
full convergence achieved after approximately eight GPU hours. If needed, this optimization time
could be further shortened by tuning the hyperparameters, similarly to the super-fast version for
unstructured sparsity discussed in Section 4.2. However, we observed that the convergence dynamics
are less smooth compared to unstructured sparsity, likely due to the limited number of quantization

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Table 15: Performance of EvoPress on 2.25 bit and 2.5 bit quantization

Model # Bits Method Wiki2↓ C4↓ ArcC↑ ArcE↑ HS↑ PiQA↑ WG↑ Avg↑

Llama-2-7B

2.25 Best of 32 13.18 18.19 24.8 50.2 40.3 66.8 56.1 47.7
EvoPress 9.82 9.93 29.5 61.8 46.2 70.3 59.4 53.4

2.5 Best of 32 9.42 9.01 29.1 58.6 46.9 70.1 62.6 53.5
EvoPress 8.03 7.33 35.3 68.4 50.8 73.9 64.2 58.5

Llama-3-8B

2.25 Best of 32 149.85 432.96 21.2 29.1 28.1 55.6 49.8 36.8
EvoPress 23.93 43.17 23.6 46.9 39.3 63.6 56.5 46.0

2.5 Best of 32 21.65 23.92 25.1 47.6 41.2 65.6 56.2 47.1
EvoPress 13.93 18.15 31.7 61.5 47.9 71.7 64.3 55.4

Phi-3-Medium

2.25 Best of 32 14.20 18.19 28.9 46.8 40.0 61.8 53.1 46.1
EvoPress 10.48 14.60 36.2 62.0 46.6 66.2 55.6 53.3

2.5 Best of 32 8.26 12.65 40.5 69.3 50.3 70.9 61.9 58.6
EvoPress 7.12 11.23 44.1 75.9 54.1 73.5 64.6 62.4

levels available (practically only 2, 3, and 4 bit are used), resulting in a less smooth fitness landscape.

0 20 40 60 80 100 120 140
Generation

9.50

9.75

10.00

10.25

10.50

10.75

11.00

11.25

11.50

Pe
rp

le
xi

ty

Perplexity (Test)
KL-Divergence (Train)

0.16

0.18

0.20

0.22

0.24

0.26

0.28
KL

-D
iv

er
ge

nc
e

Llama-3-8B - 3 bit

Figure 11: Convergence of EvoPress for 3 bit quantization on Llama-3-8B. Since quantization offers
fewer compression levels, we observe larger changes and more instability in the training metric (KL-
divergence) between steps. However, we still observe that the held-out metric (PPL) continually
decreases in a smoother manner.

F.3 DISCUSSION OF QUANTIZATION PROFILES

In this section, we visualize an quantization profile determined by EvoPress. As shown, EvoPress
maintains a relatively uniform quantization bitwidth allocation across the model. However, some
blocks tend to have higher bitwidth with the last one being least compressed. In addition, EvoPress
transfers capacity from k proj to v proj.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

0 5 10 15 20 25 30

Depth
2.7

2.8

2.9

3.0

3.1

3.2

3.3

3.4

Bi
ts

EvoPress
uniform

Figure 12: Block-level quantization profiles for
Llama-3-8B at 3 bit compression on average.

q_proj k_proj v_proj o_proj gate_proj up_proj down_proj
2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

3.6

Av
er

ag
e

bi
tw

id
th

Figure 13: Average bitwidth per projection type
for Llama-3-8B at 3 bit compression on average.

G MULTIMODAL COMPRESSION

In the main text we considered unimodal compression - either depth pruning, unstructured sparsity
or quantization. A natural extension of our approach is to optimize multiple compression techniques
simultaneously, which we refer to as multimodal compression.

Below, we consider the case of joint depth pruning and quantization. To simplify the setup and
search space, we apply uniform quantization to all projections within each block. The optimization
process alternates between two phases:

• Block dropping. Multiple candidate configurations are generated by sampling blocks for
removal and revival. When reintroducing a block, its weights are quantized to match the
bitwidth of the removed block. The best-performing configuration is selected.

• Quantization. Quantization levels between ”alive” blocks from the previous step are
swapped, and the fittest one is retained.

Multimodal EvoPress approach yields both a set of blocks to be removed and a distribution of
quantization bitwidths across the surviving blocks.

We validate the proposed approach on Llama-3.1-8B for 25% sparsity and 4-bit quantization on
average (with 2, 3, 4, 5 and 6 bit options following Section 4.3). One can observe from Figure 14
that multimodal search manages to find a better solution than the starting point (the best of many
uniform samples) and exhibits relatively stable convergence.

0 20 40 60 80 100

Generation
15

16

17

18

19

20

21

22

Pe
rp

le
xi

ty

Train Fitness

0 20 40 60 80 100

Generation
15

16

17

18

19

20

21

22

23

Pe
rp

le
xi

ty

Wikitext-2

0 20 40 60 80 100

Generation
20

22

24

26

28

30

32

Pe
rp

le
xi

ty

C4

Figure 14: Convergence of multimodal EvoPress search for 25% depth pruning and 4-bit quantiza-
tion on average. Perplexity on the calibration set (Left), Wikitext-2 (Middle), and C4 (Right).

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

H SCHEMATIC VISUALIZATION

We provide a schematic illustration of EvoPress in Figure 15.

Parent

Generate
offspring

Parent

Make the fittest
 new parent

Keep the fittest
 at each selection

Add parent to
the final selection

Figure 15: Schematic illustration of EvoPress search. Intially, a set of candidates is sampled. Then,
a fraction of the fittest among them is selected at each elimination round. In the last selection round,
the parent is added to the population for elitism. Finally, the last remaining search point is made the
new parent.

34

	Introduction
	Related Work
	Method
	Experiments
	Application 1: Depth Pruning
	Application 2: Unstructured Sparsity
	Application 3: Quantization

	Conclusion
	Convergence Proof of EvoPress
	A Warm-Up Argument for Single Offspring
	The Main Argument

	Evolutionary Search Parameter Ablations
	Mutatation Rate (Depth Pruning)
	Multi-step Selection (Unstructured Sparsity)
	Fitness Environment (Quantization)

	Experimental Setup
	Hyperparameter Setting
	Robustness to Random Seed

	Additional Depth Pruning Results
	Full Perplexity Tables
	Locality of Dropped Blocks
	Correlation of Scores with Perplexity

	Additional Unstructured Sparsity Results
	50% and 60% Sparsity
	Sparsity Profiles

	Additional Quantization Results
	2.25 bit and 2.5 bit
	Practical Convergence
	Discussion of Quantization Profiles

	Multimodal compression
	Schematic visualization

