
Regularity as Intrinsic Reward for Free Play

Cansu Sancaktar
Max Planck Institute for Intelligent Systems

Tübingen, Germany
cansu.sancaktar@tuebingen.mpg.de

Justus Piater
University of Innsbruck

Innsbruck, Austria
justus.piater@uibk.ac.at

Georg Martius
Uni-Tübingen & Max Planck Institute for Intelligent Systems

Tübingen, Germany
georg.martius@uni-tuebingen.de

Abstract

We propose regularity as a novel reward signal for intrinsically-motivated rein-
forcement learning. Taking inspiration from child development, we postulate that
striving for structure and order helps guide exploration towards a subspace of tasks
that are not favored by naive uncertainty-based intrinsic rewards. Our generalized
formulation of Regularity as Intrinsic Reward (RaIR) allows us to operationalize
it within model-based reinforcement learning. In a synthetic environment, we
showcase the plethora of structured patterns that can emerge from pursuing this reg-
ularity objective. We also demonstrate the strength of our method in a multi-object
robotic manipulation environment. We incorporate RaIR into free play and use it to
complement the model’s epistemic uncertainty as an intrinsic reward. Doing so, we
witness the autonomous construction of towers and other regular structures during
free play, which leads to a substantial improvement in zero-shot downstream task
performance on assembly tasks.1

Figure 1: Regularity as intrinsic reward yields ordered and symmetric patterns. In SHAPEGRID-
WORLD (top row) and in CONSTRUCTION (bottom row), we showcase the generated constellations
when maximizing our proposed regularity reward RaIR.

1 Introduction

Regularity, and symmetry as a specific form of regularity, are ubiquitous in nature as well as in
our manufactured world. The ability to detect regularity helps to identify essential structures,
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1Videos are available at https://sites.google.com/view/rair-project.
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minimizing redundancy and allowing for efficient interaction with the world [1]. Not only do we
encounter symmetries in arts, design, and architecture, but our preference also showcases itself in
play behavior. Adults and children have both been observed to prefer symmetry in visual perception,
where symmetric patterns are more easily detected, memorized, and copied [2, 3]. Several works in
developmental psychology show that regular patterns and symmetries are actively sought out during
free play in children as well as adults [4–6].

Considering this in the context of a child’s developmental cycle is intriguing. Studies show that
children at the age of 2 exhibit a shift in their exploratory behavior. They progress from engaging in
random actions on objects and unstable arrangements to purposefully engaging in functional activities
and intentionally constructing stable configurations [7, 8, 5]. Bailey [4] reports that by 5 years of
age, children build more structured arrangements out of blocks that exhibit alignment, balance, and
examples of symmetries [5].

Despite the dominance of regularity in our perceptual systems and our preference for balance and
stability during play, these principles are not yet well investigated within intrinsically-motivated
reinforcement learning (RL). One prominent intrinsic reward definition is novelty, i.e. the agent is
incentivized to visit areas of the state space with high expected information gain [9–12]. However,
one fundamental problem with plain novelty-seeking objectives is that the search space is often
unconstrained and too large. As an agent only has limited resources to allocate during play time,
injecting appropriate inductive biases is crucial for sample efficiency, good coverage during explo-
ration, and emergence of diverse behaviors. As proposed by Sancaktar et al. [12], using structured
world models to inject a relational bias into exploration, yields more object and interaction-related
novelty signals. However, which types of information to prioritize are not explicitly encoded in any
of these methods. The direction of exploration is often determined by the inherent biases in the
practical methods deployed. With imperfect world models that have a limited learning capacity and
finite-horizon planning, novelty-seeking methods are observed to prefer “chaotic” dynamics, where
small perturbations lead to diverging trajectories, such as throwing, flipping, and poking objects. This
in turn means that behaviors focusing on alignment, balance, and stability are overlooked. Not only
are these behaviors relevant, as shown in developmental psychology, they also enable expanding and
diversifying the types of behavior uncovered during exploration. As the behaviors observed during
exploration are highly relevant for being able to solve downstream tasks, a chaos-favoring exploration
will make it hard to solve assembly tasks, such as stacking. Indeed, successfully solving assembly
tasks with more than 2 objects has been a challenge for intrinsically-motivated reinforcement learning.

We pose the question: how can we define an intrinsic reward signal such that RL agents prefer
structured and regular patterns? We propose RaIR: Regularity as Intrinsic Reward, which aims to
achieve highly ordered states. Mathematically, we operationalize this idea using entropy minimization
of a suitable state description. Entropy and symmetries have been linked before [13, 14], however,
we follow a general notion of regularity, i.e. where patterns reoccur and thus their description exhibits
high redundancy / low entropy. In this sense, symmetries are a consequence of being ordered [15].
Regularity also means that the description is compressible, which is an alternative formulation. As
argued by Schmidhuber [16], aiming for compression-progress is a formidable curiosity signal,
however, it is currently unclear how to efficiently predict and optimize for it.

After studying the design choices in the mathematical formulation of regularity and the relation to
symmetry operations, we set out to evaluate our regularity measure in the context of model-based
reinforcement learning/planning, as it allows for highly sample-efficient exploration and solving
complex tasks zero-shot, as shown in Sancaktar et al. [12]. To get a clear understanding of RaIR, we
first investigate the generated structures when directly planning to optimize it using the ground truth
system dynamics. A plethora of patterns emerge that are highly regular, as illustrated in Fig. 1.

Our ultimate goal is, however, to inject the proposed regularity objective into a free-play phase,
where a robot can explore its capabilities in a task-free setting. During this free play, the dynamics
model is learned on-the-go. We build on CEE-US [12], a free-play method that uses an ensemble
of graph neural networks as a structured world model and the model’s epistemic uncertainty as the
only intrinsic reward. The epistemic uncertainty is estimated by the ensemble disagreement and
acts as an effective novelty-seeking signal. We obtain structure-seeking free play by combining the
conventional novelty-seeking objective with RaIR.

Our goal is to operationalize regularity, which is a well-established concept in developmental
psychology, within intrinsically motivated RL. Furthermore, we showcase that biasing information-
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Figure 2: Regularity as intrinsic reward during free play. (a) RaIR + CEE-US uses model-based
planning to optimize H timesteps into the future for the combination of RaIR (Eq. 2) and epistemic
uncertainty (ensemble disagreement of world models). (b) Here, for RaIR we use the absolute
difference vector between objects: ϕ(si, sj) = {(|⌊si,x − sj,x⌉|, |⌊si,y − sj,y⌉|)}.

search towards regularity with RaIR indeed leads to the construction of diverse regular structures
during play and significantly improves zero-shot performance in downstream tasks that also favor
regularity, most notably assembly tasks. Besides conceptual work on compression [16, 17], to our
knowledge, we are the first to investigate regularity as an intrinsic reward signal, bridging the gap
between the diversity of behaviors observed in children’s free play and what we can achieve with
artificial agents.

2 Method

First, we introduce our intrinsic reward definition for regularity. Then, we present its practical imple-
mentation and explain how we combine this regularity objective into model learning within free play.

2.1 Preliminaries

In this work, we consider environments that can be described by a fully observable Markov Decision
Process (MDP), given by the tuple (S,A, fa

ss′ , r
a
ss′), with the state-space S ∈ Rns , the action-space

A ∈ Rna , the transition kernel f : S ×A −→ S , and the reward function r. Importantly, we consider
the state-space to be factorized into the different entities, e.g. S = (Sobj)

N ×Srobot for the state space
of a robotic agent and N objects. We use model-based reinforcement learning, where data from
interactions with the environment is used to learn a model f̃ of the MDP dynamics [18]. Using this
model, we consider finite-horizon (H) optimization/planning for undiscounted cumulative reward:

a⋆t = argmax
at

H−1∑
h=0

r(st+h, at+h, st+h+1), (1)

where st+h are imagined states visited by rolling out the actions using f̃ , which is assumed to
be deterministic. The optimization of Eq. 1 is done with the improved Cross-Entropy Method
(iCEM) [19] in a model predictive control (MPC) loop, i.e. re-planning after every step in the
environment. Although this is not solving the full reinforcement learning problem (infinite horizon
and stochastic environments), it is very powerful in optimizing for tasks on-the-fly and is thus
suitable for optimizing changing exploration targets and solving downstream tasks zero-shot.

2.2 Regularity as Intrinsic Reward

Quite generally, regularity refers to the situation in which certain patterns reoccur. Thus, we formalize
regularity as the redundancy in the description of the situation, to measure the degree of sub-structure
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recurrence. A decisive question is: which description should we use? Naturally, there is certain
freedom in this choice, as there are many different coordinate frames. For instance, we could consider
the list of absolute object positions or rather a relative representation of the scene.

To formalize, we define a mapping Φ : S → {X}+ from state to a multiset {X}+ of symbols (e.g.
coordinates). A multiset is a set where elements can occur multiple times, e.g. {a, a, b}+. This
multiset can equivalently be described by a tuple (X,m), where X is the set of the unique elements,
and m : X → Z+ is a function assigning the multiplicity, i.e. the number of occurrences m(x) for
the elements x ∈ X . For the previous example, we get ({a, b}, {a : 2, b : 1}). Given the multiset
(X,m) ∈ {X}+, we define the discrete empirical distribution by the relative frequency of occurrence
p(x) = m(x)/

∑
x′∈X m(x′) for x ∈ X , also referred to as a histogram.

We define the regularity reward metric using (negative) Shannon entropy [20] of this distribution as:

rRaIR(s) := −H(Φ(s)) =
∑
x∈X

p(x) log p(x) with (X,m) = Φ(s), p(x) =
m(x)∑

x′∈X

m(x′)
. (2)

We will now discuss concrete cases for the mapping Φ, i.e. how to describe a particular state.

Direct RaIR. In the simplest case, we describe the state s directly by the properties of each of
the entities. For that, we define the function ϕ : Sobj → {X}+, that maps each entity to a set of
symbols and obtain Φ(s) = ⋓N

i=1ϕ(sobj,i) as a union of all symbols. The symbols can be, for instance,
discretized coordinates, colors, or other properties of the entities.
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Figure 3: Illustration of direct
RaIR for ϕ = {⌊x⌉, ⌊y⌉}.

Let us consider the example where ϕ is extracting the object’s
Cartesian x and y coordinates in a rounded manner as ϕ(s) =
{⌊sx⌉, ⌊sy⌉}+, as shown in Fig. 3. The most irregular configu-
ration would be when no two objects share the same rounded value
in x and y. The object configuration becomes more and more regular
the more objects share the same ⌊x⌉ and ⌊y⌉ coordinates. The most
regular configuration is if all objects are in the same place. Note
that this choice favors an axis-aligned configuration, and it is not
invariant under global rotations.

Relational RaIR of order k. Our framework for regularity quantification can easily be extended
to a relational perspective, where we don’t compute the entropy over aspects of individual entity
properties, but instead on their pairwise or higher-order relations. This means that for a k-order
regularity measure, we are interested in tuples of k entities. Thus, the mapping function ϕ no longer
takes single entities as input, but instead operates on k-tuples:

ϕ : (Sobj)
k −→ {X}+. (3)

ϕ is a function that describes some relations between the k input entities by a set of symbols.

For k-order regularity, the multiset Φ, over which we compute the entropy, is now given by

Φ(k) =
⋃

{i1,...,ik}∈P

ϕ(sobj,i1 , . . . , sobj,ik) with P = P({1, . . . , N}, k) (4)

merged from all k-permutations of the N entities, denoted as P({1, . . . , N}, k). In the case of a
permutation invariant ϕ, Eq. 4 regards only the combinations C({1, . . . , N}, k). Note that direct
RaIR is equivalent to the relational RaIR of order 1. Given the mapping Φ, the RaIR measure is
computed as before with Eq. 2.

Depending on the order k and the function ϕ, we can select which regularities are going to be favored.
Let us consider the example of a pair-wise relational RaIR (k = 2), where ϕ computes the relative po-
sitions: ϕ(si, sj) = {⌊si−sj⌉}, and rounding is performed elementwise. Whenever two entities have
the same relative position to each other, the redundancy is detected. For k = 3 our regularity measure
would be able to pick up sub-patterns composed of three objects, such as triangles and so forth.

As we are interested in physical interactions of the robot with objects and objects with objects, we
choose RaIR of order k = 2 and explore various ϕ functions.
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Table 1: Properties of RaIR with different ϕ regarding symmetry operations. The first block
indicates to which operations RaIR is invariant, ignoring rounding (a.a.: axes aligned). The second
block assesses whether a pattern, where the given symmetry operation maps several entities to another,
has increased regularity. Rounding and absolute value are element-wise. Distance d is also rounded.

invariant? favored / increases RaIR?
symmetry direct rel. pos |rel. pos| distance direct rel. pos |rel. pos| distance
operation ϕ = ⌊si⌉ ⌊si − sj⌉ |⌊si−sj⌉| d(si, sj) ⌊si⌉ ⌊si − sj⌉ |⌊si−sj⌉| d(si, sj)

translation ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✓

translation – a.a. ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

rotation ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✓

rotation – 90◦ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓

reflection ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✓

reflection – a.a. ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓

glide refl. ✗ ✓ ✗ ✓ ✗ ✗(1) ✗(1) ✓

glide refl. – a.a. ✓ ✓ ✓ ✓ ✓ ✗(1) ✓ ✓

(1)This is for one glide refl. operation. RaIR is increased for 2 glide refl. composition as it collapses onto transl.

2.2.1 Properties of RaIR with Pairwise Relations and Practical Implementation

For simplicity, we are considering in the following that ϕ maps to a single symbol. Then for pairwise
relationships (k = 2), RaIR can be implemented using a relation matrix F ∈ XN×N . The entries Fij

are given by ϕ(si, sj) with si, sj ∈ Sobj. After constructing the relation matrix, we need the histogram
of occurrences of unique values in this matrix to compute the entropy (Eq. 2). For continuous state
spaces, the mapping function needs to implement a discretization step, which we implement by a
binning of size b. For simplicity of notation, we reuse the rounding notation ⌊·⌉ for this discretization
step. This bin size b determines the precision of the measured regularity. In practice, we do not apply
ϕ on the full entity state space, but on a subspace that contains e.g. the x-y(-z) positions.

To understand the properties of our regularity measure for different ϕ, we present in Table 1 a catego-
rization using the known symmetry operations in 2D and the following ϕ (applied to x-y positions): di-
rect ϕ(si) = ⌊si⌉(see previous section), relative position (difference vector) ϕ(si, sj) = ⌊si−sj⌉, ab-
solute value of the relative position2 ϕ(si, sj) = |⌊si−sj⌉|, and Euclidean distance ϕ(si, sj) = ⌊∥si−
sj∥⌉. Figure 2b illustrates the RaIR computation using the absolute value of the relative position.

In Table 1, we first consider whether the measure is invariant under symmetry operations. That
means if the value of RaIR stays unchanged when the entire configuration is transformed. We find
that both Euclidean distance and relative position are invariant to all symmetry operations. The
second and possibly more important question is whether a configuration with substructures of that
symmetry has a higher regularity value than without, i.e. will patterns with these symmetries be
favored. We find that Euclidean distance favors all symmetries, followed by absolute value of the
relative position. A checkmark in this part of the table means that the more entities can be mapped
to each other with the same transformation, the higher RaIR. Although the Euclidean distance seems
favorable, we find that it mostly clumps entities and creates fewer alignments. To get a sense of
the patterns scoring high in the regularity measure, Fig. 1 showcases situations that emerge when
RaIR with absolute value of relative position is optimized (details below).

2.3 Regularity in Free Play

Our goal is to explicitly put the bias of regularity into free play via RaIR, as illustrated in Fig. 2a. What
we want to achieve is not just that the agent creates regularity, but that it gathers valuable experience
in creating regularity. This ideally leads to directing exploration towards patterns/arrangements that
are novel.

2The rounding and the absolute value functions are applied coordinate wise.
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We propose to use RaIR to augment plain novelty-seeking intrinsic rewards, in this work specifically
ensemble disagreement. We choose ensemble disagreement because 1) we need a reward definition
that allows us to predict future novelty, such that we can use it inside model-based planning (this
constraint makes methods relying on retrospective novelty such as Intrinsic Curiosity Module (ICM)
[10] ineligible), and 2) we want to use the models learned during free play for zero-shot downstream
task generalization via planning in a follow-up extrinsic phase. It has been shown in previous works
that guiding exploration by the model’s own epistemic uncertainty, approximated via ensemble
disagreement, leads to learning more robust world models compared to e.g. Random Network
Distillation (RND) [21], resulting in improved zero-shot downstream task performance [12]. That is
why we choose ensemble disagreement to compute expected future novelty.

We train an ensemble of world models {(f̃θm)Mm=1}, where M denotes the ensemble size. The
model’s epistemic uncertainty is approximated by the disagreement of the ensemble members’
predictions. The disagreement reward is given by the trace of the covariance matrix [12]:

rDis = tr
(
Cov({ŝmt+1 = f̃θm(st, at) | m = 1, . . . ,M})

)
. (5)

We incorporate our regularity objective into free play by using a linear combination of RaIR and
ensemble disagreement. Overall, we have the intrinsic reward:

rintrinsic = rRaIR + λ · rDis, (6)

where λ controls the trade-off between regularity and pure epistemic uncertainty.

Model-based Planning with Structured World Models To optimize the reward function on-the-
fly, we use model-based planning using zero-order trajectory optimization, as introduced in Sec. 2.1.
Concretely, we use CEE-US [12], which combines structured world models and epistemic uncertainty
(Eq. 5) as intrinsic reward. The structured world models are ensembles of message-passing Graph
Neural Networks (GNNs) [22], where each object corresponds to a node in the graph. The node
attributes {st,i ∈ Sobj | i = 1, . . . , N} are the object features such as position, orientation, and
velocity at time step t. The state representation of the actuated agent srobot ∈ Srobot similarly contains
position and velocity information about the robot. We treat the robot as a global node in the graph
[12]. We refer to the combination of RaIR with ensemble disagreement, medium-horizon planning
(20-30 time steps), and structured world models as RaIR + CEE-US (Fig. 2a).

3 Experiments

We evaluate RaIR in the two environments shown in Fig. 1.

ShapeGridWorld is a grid environment, where each circle represents an entity/agent that is controlled
separately in x-y directions. Entities are controlled one at a time. Starting from time step t = 0, the
entity with i = 1 is actuated for T time steps, where T is the entity persistency. Then, at t = T ,
actuation switches over to entity i = 2 and we keep iterating over the entities in this fashion. Each
circle is treated as an entity/object for the regularity computation with a 2D-entity state space Sobj
with x-y positions.

Fetch Pick & Place Construction is an extension of the Fetch Pick & Place environment [23] to
more cubes [24] and a large table [12]. An end-effector-controlled robot arm is used to manipulate
blocks. The robot state Srobot ∈ R10 contains the end-effector position and velocity and the gripper’s
state (open/close) and velocity. Each object’s state Sobj ∈ R12 is given by its pose and velocities. For
free play, we use 6 objects and consider several downstream tasks with varying object numbers.

3.1 Emerging Patterns in SHAPEGRIDWORLD and CONSTRUCTION with RaIR

To get a sense of what kinds of patterns emerge following our regularity objective with RaIR, we do
planning using ground truth (GT) models, i.e. with access to the true simulator itself for planning.
We perform these experiments to showcase that we can indeed get regular constellations with our
proposed formulation. Since we can perform multi-horizon planning without any accumulating
model errors using ground truth models, we can better investigate the global/local optima of our
regularity reward. Note that as we are using a zero-order trajectory optimizer with a limited sample
budget and finite-horizon planning, we don’t necessarily converge to the global optima. We use
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ϕ(si, sj) = {(|⌊si,x− sj,x⌉|, |⌊si,y − sj,y⌉|)} for RaIR in both environments. The emerging patterns
are shown in Fig. 1.

In the 2D SHAPEGRIDWORLD environment, we indeed observe that regular patterns with transla-
tional, reflectional (axis-aligned), glide-reflectional (axis-aligned), and rotational symmetries emerge
(see top row in Fig. 1).
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Figure 4: RaIR throughout a rollout starting
from a random initial configuration when optimiz-
ing only for regularity with the GT model.

For CONSTRUCTION, we also observe complex
constellations with regularities, even stacks
of all 6 objects (see bottom row in Fig. 1).
Since we are computing RaIR on the x-y
positions, a stack of 6 is the global optimum.
The optimization of RaIR for this case is
shown in Fig. 4. Note that stacking itself is
a very challenging task, and was so far only
reliably achievable with reward shaping or
tailored learning curricula [24]. The fact that
these constellations appear naturally from our
regularity objective, achievable with a planning
horizon of 30 timesteps, is by itself remarkable.

Additional example patterns generated in CONSTRUCTION with RaIR on the x-y-z positions can be
found in the Suppl. A. In that case, a horizontal line on the ground and a vertical line into air, i.e. a
stack, are numerically equivalent with respect to RaIR. Choosing to operate on the x-y-subspace is
injecting the direction of gravity and provides a bias towards vertical alignments.

3.2 Free Play with RaIR in CONSTRUCTION

We perform free play in CONSTRUCTION, i.e. only optimize for intrinsic rewards, where we learn
models on-the-go. During free play, we start with randomly initialized models and an empty replay
buffer. Each iteration of free play consists of data collection with environment interactions (via online
planning), and then model training on the collected data so far (offline).

In each iteration of free play, we collect 2000 samples (20 rollouts with 100 timesteps each) and
add them to the replay buffer. During the online planning part for data collection, we only perform
inference with the models and no training is performed. Afterwards, we train the model for a fixed
number of epochs on the replay buffer. We then continue with data collection in the next free play
iteration. More details can be found in Suppl. E.

For this intrinsic phase, we combine our regularity objective with ensemble disagreement as per
Eq. 6. The goal is to bias exploration and the search for information gain towards regular structures,
corresponding to the optima that emerge with ground truth models, as shown in Fig. 1.

RaIR RaIR + CEE-US CEE-US
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e
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(a) 1 object moves
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(b) 2 or more objects move
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(c) object(s) in air

0 50 100 150 200 250 300
Transitions × 2000

0%

15%

30%

(d) object(s) flipped
Figure 5: Comparison of interactions during free play in CONSTRUCTION when combining
ensemble disagreement with RaIR (with λ = 0.1) compared to CEE-US and pure RaIR. These metrics
count the relative amount of time steps that the agent performs certain types of interactions during
free-play exploration . (a) 1 object moves checks the amount of time the agent spends moving only
one object at a time. Here, e.g. 50% metric indicates that an object was moved in 1K transitions of
the overall 2K transitions collected in that free play iteration. (b) 2 or more objects move checks if at
least 2 objects are moving at the same time. (c) Object(s) in air means one or more objects are in
air (including being held in air by the agent or being on top of another block). (d) Object(s) flipped
checks for angular velocities above a threshold for one or more objects, i.e. if they are rolled/flipped.
We used 5 independent seeds.
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Iteration 251 Iteration 255 Iteration 259 Iteration 275 Iteration 284 Iteration 286 Iteration 296

Figure 6: Snapshots from free play with RaIR + CEE-US. We showcase snapshots of highest
RaIR values, equivalent to lowest entropy, from exemplary rollouts at different iterations of free play.
Following the regularity objective, stacks and alignments are generated.

In Figure 5, we analyze the quality of data generated during free play, in terms of observed interactions,
for RaIR + CEE-US with the augmentation weight λ = 0.1, a pure RaIR run with no information-gain
component in the intrinsic reward (λ = 0) and CEE-US.

For pure RaIR, we observe a decrease in the generated interactions. This has two reasons: 1) RaIR
only aims to generate structure and the exploration problem is not solved, 2) once the controller finds
a plan that leads to an optimum, even if it is local, there is no incentive to destroy it, unless a plan
that results in better regularity can be found within the planning horizon. There is no discrimination
between “boring” and “interesting” patterns with respect to the model’s current capabilities. This
in turn means that the robot creates e.g. a (spaced) line, which is a local optimum for RaIR, and then
spends the rest of the episode, not touching any objects to keep the created alignment intact. With
the injection of some disagreement in RaIR + CEE-US, we observe improved interaction metrics
throughout free play in terms of 2 or more object interactions and objects being in the air (either
being lifted by the robot or being stacked on top of another block). In practice, since the ensemble
of models tends to hallucinate due to imperfect predictions, even for pure RaIR we observe dynamic
pattern generations, as reflected in the interaction metrics (more details in Suppl. C).

0 100 200 300
Transitions × 2000

−2.4

−2.2

−2.0

−1.8

Ra
IR

Figure 7: Highest RaIR
value throughout free
play for RaIR + CEE-US
and CEE-US.

Another reason why disagreement is helpful is due to the step-wise land-
scape of RaIR as shown in Fig. 4. Here, combining RaIR with ensemble
disagreement effectively helps smoothen this reward function, making it
easier to find plans with improvements in regularity with imperfect world
models. For the plain disagreement case with CEE-US, more flipping
behavior, and less air time are observed during free play, since the agent
favors chaos. In Fig. 7, we report the highest achieved RaIR value in the
collected rollouts throughout free play. We observe that RaIR + CEE-US
indeed finds more regular structures during play, some of which are illus-
trated in Fig. 6. Results for ϕ(si, sj) = ⌊si−sj⌉ can be found in Suppl. B.

3.3 Zero-shot Generalization to Assembly Downstream Tasks with RaIR in CONSTRUCTION

After the fully-intrinsic free-play phase, we evaluate zero-shot generalization performance on down-
stream tasks, where we perform model-based planning with the learned world models. Note that
now instead of optimizing for intrinsic rewards, we are optimizing for extrinsic reward functions rtask
given by the environment (Suppl. F.4.1).

In Fig. 8, we present the evolution of success rates of models checkpointed throughout free play on the
following assembly tasks: singletower with 3 objects, 2 multitowers with 2 objects each, pyramid with
5 and 6 objects. The combination RaIR + CEE-US yields significant improvements in the success
rates of assembly tasks, as shown in Fig. 8 and Table 2. As we are biasing exploration towards
regularity, we see a decrease in more chaotic interactions during play time, which is correlated with a
decrease in performance for the more chaotic throwing and flipping tasks. For the generic Pick &
Place task, we observe comparable performance.

3.4 Re-creating existing structures with RaIR

We test whether we can re-create existing arrangements in the environment with RaIR. If there are
regularities / sub-structures already present in the environment, then completing or re-creating these
patterns naturally becomes an optimum for RaIR, as repeating this pattern introduces redundancy,
with multiple entries in the relation matrix repeated, corresponding to lower entropy.
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Table 2: Zero-shot downstream task generalization performance of RaIR + CEE-US vs. CEE-
US for assembly tasks as well as the generic pick & place task and the more chaos-oriented throwing
and flipping. Results are shown for five independent seeds. In the bottom row, we report the success
rates achieved via planning with ground truth models. This is to provide a baseline for how hard the
task is to solve with finite-horizon planning and potentially suboptimally designed task rewards.

Singletower Multitower Pyramid Pyramid Pick&Place Throw Flip
3 2+2 5 6 6 4 4

RaIR + CEE-US 0.75± 0.07 0.77± 0.06 0.49± 0.06 0.18± 0.04 0.90± 0.02 0.32± 0.02 0.63± 0.08
CEE-US 0.40± 0.12 0.52± 0.05 0.14± 0.09 0.02± 0.01 0.90± 0.02 0.49± 0.05 0.73± 0.1

GT 0.99 0.97 0.82 0.81 0.99 0.97 1.0

su
cc
es
s
ra
te

Singletower 3

0 100 200 300
Training Iteration

0%

50%

100%

Free Play Iteration

Multitower 2+2

0 100 200 300
Training Iteration

0%

50%

100%

Free Play Iteration

Pyramid 5

0 100 200 300
Training Iteration

0%

25%

50%

Free Play Iteration

Pyramid 6

0 100 200 300
Training Iteration

0%

10%

20%

Free Play Iteration
RaIR + CEE-US CEE-US

Figure 8: Success rates for zero-shot downstream task generalization for assembly tasks in
CONSTRUCTION for model checkpoints over the course of free play. We compare RaIR + CEE-US
(λ = 0.1) with CEE-US. We used five independent seeds.

(a) t = 0 (b) t = 200

Figure 9: A pyramid initialized outside
of the robot’s reach is re-created by opti-
mizing for RaIR.

We initialize pyramids, single- and multitowers out of
the robot’s manipulability range in CONSTRUCTION. We
then plan using iCEM to maximize RaIR with GT models.
Doing so, the agent manages to re-create the existing
structures in the environment with the blocks it has within
reach. Without the need to define any explicit reward
functions, we can simply use our regularity objective
to mimic existing ordered constellations. In Fig. 9, this
is showcased for a pyramid with 3 objects, where in 15
rollouts a pyramid is recreated in 73% of the cases. More
details can be found in Suppl. D.

4 Related Work

Intrinsic motivation in RL uses minimizing novelty/surprise to dissolve cognitive disequilibria
as a prominent intrinsic reward signal definition [25, 9, 26–30]. As featured in this work, using
the disagreement of an ensemble of world models as an estimate of expected information gain is
a widely-used metric as it allows planning into the future [10–12]. Other prominent intrinsic rewards
deployed in RL include learning progress [25, 31, 29], empowerment [32, 33] and maximizing for
state space coverage with count-based methods [34, 35] and RND [21]. Another sub-category would
be goal-conditioned unsupervised exploration methods combined with e.g. ensemble disagreement
[36, 37] or asymmetric self-play [38].

Compression and more specifically compression progress have been postulated as driving forces
in human curiosity by Schmidhuber [16]. However, the focus has been on the temporal aspect of
compression, where it is argued that short and simple explanations of the past make long-horizon
planning easier. In our work, we don’t focus on compression in the temporal dimension, i.e.
sequences of states. Instead, we perform compression as entropy minimization (in the relational
case, equivalent to lossy compression) at a given timestep t, where we are interested in the relational
redundancies in the current scene.
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Assembly Tasks in RL with 3+ objects pose an open challenge, where most methods achieve
stacking via tailored learning curricula with more than 20 million environment steps [24, 39], expert
demonstrations [40], also together with high-level actions [41]. Hu et al. [36] manage to solve
3-object stacking in an unsupervised setting with goal-conditioned RL, using a very similar robotic
setup to ours, but only with 30% success rate.

5 Discussion

Although the search for regularity and symmetry has been studied extensively in developmental
psychology, these concepts haven’t been featured within reinforcement learning yet. In this work, we
propose a mathematical formulation of regularity as an intrinsic reward signal and operationalize it
within model-based RL. We show that with our formulation of regularity, we indeed manage to create
regular and symmetric patterns in a 2D grid environment as well as in a challenging compositional
object manipulation environment. We also provide insights into the different components of RaIR
and deepen the understanding of the types of regularities emerging from using different mappings
ϕ. In the second part of the work, we incorporate RaIR within free play. Here, our goal is biasing
information-search during exploration towards regularity. We provide a proof-of-concept that aug-
menting epistemic uncertainty-based intrinsic rewards with RaIR helps exploration for symmetric
and ordered arrangements. Finally, we also show that our regularity objective can simply be used to
imitate existing regularities in the environment.

Limitations Currently, we are restricted to fully-observable MDPs. We embrace object-centric
representations as a suitable inductive bias in RL, where the observations per object (consisting of
poses and velocities) are naturally disentangled. We also assume that this state space is interpretable
such that we take, for instance, only the positions. In principle, ϕ could also be a learned mapping
to a latent space. Applying RaIR directly to latent representations that are not inherently disentangled
presents a challenge: developing a representation mirroring human-relevant structure and regularities.
Here, examples of significant regular situations of interest could come in to learn a tokenizable
representation for RaIR. This resembles real-world learning, where exposure to regular structures
(e.g., towers, bridges) leads us to replicate these patterns while e.g. interacting with blocks. We leave
this for future work. As we use finite-horizon planning, we don’t necessarily converge to global
optima. This can both be seen as a limitation and a feature, as it naturally allows us to obtain different
levels of regularity in the generated patterns.
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Supplementary Material for
Regularity as Intrinsic Reward for Free Play

Code will be available at https://sites.google.com/view/rair-project.

A Experiment Results with Ground Truth Models

A.1 Experiment Results for RaIR in CONSTRUCTION with x-y-z

As discussed in Sec. 3.1, in our experiments we compute RaIR on the x-y subspace of the object
positions in CONSTRUCTION to inject a bias towards vertical alignments. Examples of patterns
generated when optimizing for RaIR using

ϕ(si, sj) = {(|⌊si,x − sj,x⌉|, |⌊si,y − sj,y⌉|, |⌊si,z − sj,z⌉|)}

are showcased in Fig. S10. When we also include the z-positions of the objects in the RaIR
computation, patterns and constellations on the ground are preferred. In this case, there is no
difference between a horizontal line on the ground vs. a vertical line, i.e. a stack. Since creating a
stack, however, is a more sparse solution, in practice the zero-order trajectory optimizer converges
already to regular structures on the ground and vertical constellations don’t emerge. Starting from a
randomly initialized scene with all objects on the ground, the regularity metric for x-y-z only starts
increasing when multiple objects are in the stack, which would require a very long planning horizon
to find this solution.

Figure S10: Emerging patterns with RaIR on the x-y-z subspace with GT models, where we use
absolute relational ϕ.

B Experiment Results for Relational Case without Absolute Value

We present the interaction metrics observed during free play with RaIR + CEE-US in the case
of relational ϕ with ϕ(si, sj) = {⌊si − sj⌉} = {(⌊si,x − sj,x⌉, ⌊si,y − sj,y⌉)}. We find the
interaction metrics to be comparable to the absolute relational case presented in the main paper
with ϕ(si, sj) = {(|⌊si,x − sj,x⌉|, |⌊si,y − sj,y⌉|)}. In Fig. S11, we also include the results for
RaIR + CEE-US with λ = 1. In the case of the increased weighting on the ensemble disagreement
term, the free-play behavior indeed collapses back onto CEE-US. This means we have more flipping
behavior and less air time. In the case of RaIR + CEE-US with smaller λ = 0.1, we seek regular
states, which include vertical alignments, such that the air time doesn’t go down. Note that in this
case, there is still an incentive to “destroy” and lean towards chaos due to the ensemble disagreement
reward term, such that the constellations showcased in Fig. 6 (snapshots for the absolute relational ϕ)
and Fig. S12 are not necessarily preserved.

We also evaluate the success rates for zero-shot downstream task generalization using the models
trained in free-play runs with relational (R) ϕ and present them in Table S3. We find the performance
in this case to be comparable to the absolute relational (AR) ϕ case.

C Experiment Results for Free Play with pure RaIR

In this section, we present zero-shot downstream task generalization performance for free play
with pure RaIR and further discuss the role of the information-gain term in our intrinsic reward
combination used in free play, as specified in Eq. 6. As discussed in Sec. 3.2, adding ensemble
disagreement to our regularity objective leads to 1) more interaction-rich free play and 2) more robust

14

https://sites.google.com/view/rair-project


RaIR RaIR + CEE-US (λ = 0.1) RaIR + CEE-US (λ = 1) CEE-US

re
la
tiv

e
tim

e

0 50 100 150 200 250 300
Transitions × 2000

0%

25%

50%

(a) 1 object moves

0 50 100 150 200 250 300
Transitions × 2000

0%

25%

50%

(b) 2 or more objects move

0 100 200 300
Transitions × 2000

0%

20%

40%

(c) object(s) in air

0 50 100 150 200 250 300
Transitions × 2000

0%

15%

30%

(d) object(s) flipped

Figure S11: Comparison of interactions during free play in CONSTRUCTION when combining
ensemble disagreement with RaIR for different augmentation weights λ with relational ϕ.
Interaction metrics of free-play exploration count the relative amount of time steps spent in moving
one object (a), moving two and more objects (b), moving objects in the air (d), and flipping object(s)
(c). We used 5 independent seeds.
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Figure S12: Snapshots from free play with RaIR + CEE-US and relational ϕ. We showcase
snapshots of lowest entropy from exemplary rollouts at different iterations of free play. Following
the regularity objective, stacks and alignments are generated. These snapshots come from a run with
λ = 0.1.

Table S3: Zero-shot downstream task generalization performance of RaIR + CEE-US for differ-
ent ϕ and λ for assembly tasks as well as the generic pick & place task and the more chaos-oriented
throwing and flipping. Results are shown for five independent seeds. AR: Absolute relative ϕ, R:
Relative ϕ. In the bottom row, we report the success rates achieved via planning with ground truth
models. This is to provide a baseline for how hard the task is to solve with finite-horizon planning
and potentially suboptimally designed task rewards.

Singletower Multitower Pyramid Pyramid Pick&Place Throw Flip
3 2+2 5 6 6 4 4

RaIR + CEE-US (R) 0.80± 0.07 0.77± 0.03 0.47± 0.04 0.17± 0.05 0.90± 0.01 0.38± 0.02 0.63± 0.05
RaIR + CEE-US (AR) 0.75± 0.07 0.77± 0.06 0.49± 0.06 0.18± 0.04 0.90± 0.02 0.32± 0.02 0.63± 0.08
RaIR (AR) 0.64± 0.03 0.62± 0.03 0.25± 0.05 0.10± 0.02 0.74± 0.05 0.21± 0.01 0.65± 0.1
CEE-US 0.40± 0.12 0.52± 0.05 0.14± 0.09 0.02± 0.01 0.90± 0.02 0.49± 0.05 0.73± 0.1

GT 0.99 0.97 0.82 0.81 0.99 0.97 1.0

world models which yield higher success rates for zero-shot downstream task generalization. For
both the absolute relational case presented in Fig. 5 and the relational case in Fig. S11, RaIR with no
disagreement term yields less interactions in terms of object(s) being moved, being in air and being
flipped. This is because the exploration problem is not solved by RaIR alone. When we use ensemble
disagreement as an intrinsic reward, the discovery of different types of interactions is accelerated.
When one of the models in the ensemble learns a new type of dynamics, such as an object moving, the
ensemble disagreement goes up, incentivizing the agent to repeat this behavior until it is learned by
all models such that disagreement goes down. In the case of RaIR, this only happens implicitly: with
some models in the ensemble learning a certain type of dynamics in the environment, during planning,
the models can hallucinate objects being aligned and creating a regular pattern with high RaIR such
that these actions are executed by the controller. These false attempts also help exploration.

As the models produce better predictions, especially after free play iteration 200, we observe that
more stable patterns are generated with RaIR compared to RaIR + CEE-US and the amount of time
objects are moving starts decreasing. This is because in this case when the models get better and
hallucinate less, there is no reason to leave local optima such as a spaced line unless a pattern that
yields a higher regularity value can be found within the planning horizon.
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Figure S14: Snapshots from free play with pure RaIR. We showcase snapshots of lowest entropy
from exemplary rollouts at different iterations of free play. These snapshots come from a run with
absolute relational ϕ.

The challenge of exploration with pure RaIR is also reflected in the interaction time for object(s) in
air. Starting to create regular patterns such as stacks takes longer, as exploring to lift objects happens
later without the disagreement reward. This is also connected to the step-wise landscape of RaIR as
discussed in Sec. 3.2 such that explicit exploration via ensemble disagreement is beneficial.
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Figure S13: Highest RaIR value
throughout free play for RaIR,
RaIR + CEE-US and CEE-US.

As showcased in Fig. S14, we still observe the stable generation
of patterns such as spaced lines later on in training as well, as
these are local optima of RaIR. However, we start to see more
stacks generated in the later stages of free play. In Fig. S13,
the highest RaIR value achieved for the different variants are
showcased throughout training. Pure RaIR, achieves slightly
higher regularity then RaIR + CEE-US. This is also because
pure RaIR, tends to generate more regular patterns that feature
all objects, i.e. all objects are in-line or build a square. With
RaIR + CEE-US, as some chaotic behavior is injected to free
play via ensemble disagreement, more local regularities such
as a stack of 2, with the rest of the objects in disorder, are likely to emerge.

Through injecting ensemble disagreement into free play, the robustness of the learned world models
is also increased as they are guided by their own epistemic uncertainty [12]. During free play, data is
actively collected from regions where the models are uncertain, acting as their own adversary. This
in turn makes the models more robust for deployment in model-based planning in the follow-up
extrinsic phase, where the accuracy of model predictions is paramount for good performance. This
is reflected in the downstream task performance evaluations in Fig. S15, where RaIR + CEE-US
consistently outperforms both RaIR and CEE-US in the assembly tasks. Note that as regularity
explicitly favours alignments such as stacks, unlike CEE-US, these dynamics are explored better,
leading to higher success rates. This also showcases the importance of guiding free play towards
regularity. In Fig. S16, the results for the pick & place, throwing and flipping tasks are shown.
Due to the increased robustness of the model with the disagreement term, we indeed observe better
performance for RaIR + CEE-US and CEE-US for the Pick & Place task compared to pure RaIR.
This is also true for the throwing task. However, another contributing factor here is that models with
disagreement favor more chaotic behaviors and perform more “throwing”-like behaviors during free
play. As CEE-US has no bias towards regularity, it performs best, whereas pure RaIR performs
worse than RaIR + CEE-US. Interestingly, for the flipping 4 objects task we found performance for
RaIR and RaIR + CEE-US to be comparable despite the significantly reduced amount of time spent
flipping objects in the case of pure RaIR, as can be seen in Fig. 5. Upon inspecting the data generated
during free-play, we hypothesize this is because unlike RaIR + CEE-US, which flips and rolls objects
together in a chaotic way, we found RaIR to produce more isolated flipping of individual objects.

D Experiment Results for Re-creating Existing Patterns

As presented in Sec. 3.4, we test whether we can re-create existing regularities in the environment
by simply optimizing for RaIR with iCEM, using ground truth models. As for the pyramid with
3 objects in Sec. 3.4, we initialize different regular structures outside of the robot’s manipulability
range and test whether these regular patterns can be re-created, merely by maximizing for RaIR. We
test for the re-creation of a singletower with 3 and 4 objects, 2 towers with 2 objects each (referred to
as multitower 2+2), as well as a spaced line and a rhombus with 4 objects. We test this with ground
truth models for 15 independent rollouts for each structure and report the re-creation rates. Example
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Figure S15: Downstream task performance for assembly tasks with only RaIR (λ = 0),
RaIR + CEE-US (λ = 0.1) and CEE-US. We use absolute relational ϕ for RaIR computations.
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Figure S16: Downstream Task Performance for Pick & Place and the more chaotic tasks of
throwing and flipping with only RaIR (λ = 0), RaIR + CEE-US (λ = 0.1) and CEE-US. We use
absolute relational ϕ for RaIR computations.

rollouts are illustrated in Fig. S17. Note that due to the limited sample-budget with iCEM and the
finite-horizon, we don’t necessarily converge to the global minima, which corresponds to the full
recreation of the structure. However, in all of the tested cases, the generated structures repeat at least
one prominent sub-structure present in the underlying regular constellation by optimizing for RaIR.

For Singletower 3, the entire stack of 3 gets recreated 73% of the time. A partial recreation with a
stack of 2 blocks is observed in all but one of the remaining cases.

When a Singletower 4 is initialized outside of the robot’s range, the full tower with 4 blocks gets
recreated 40% of the time. In the remaining cases, either a tower of 3 (33%) or towers of 2 (27%) are
built.

For the challenging Multitower 2+2 case, the two towers are built, with the same distance to each
other as in the original pattern, 20% of the time. An example of this “complete” recreation is
illustrated in Fig. S17c. Otherwise, 53% of the time a stack of 2 is built (Fig. S17d) or a spaced line
repeating the relative position of the two towers in the original pattern.

For the patterns on the ground, namely Spaced Line and Rhombus, the recreation rates are higher
since the exploration problem is less prominent. At least 75% of the original pattern is re-created at
each rollout, i.e. for the case of 4 objects, at least 3 objects follow the original pattern. The complete
Spaced Line is recreated 80% and the entire rhombus 73% of the test rollouts.

In these experiments, we use RaIR with ϕ(si, sj) = {(|⌊si,x−sj,x⌉|, |⌊si,y−sj,y⌉|, |⌊si,z−sj,z⌉|)}.
This is because in the case of existing structures in the scene, we don’t need/want to inject any
biases into the optimization. As the existing pattern is outside of the manipulability range of the
robot, re-creating the pattern becomes a direct global optimum for RaIR, as all regularities reoccur.
However, if we restrict ourselves to the x-y subspace, this is no longer the case: even for a rhombus,
a stack built with the blocks in-reach becomes the global optimum. This is because all the blocks in
the stack then have the same x-y relation to the blocks in the rhombus.

E CEE-US

In this section, we present the details of CEE-US [12], which we build upon in this work. CEE-US
uses structured world models together with model-based planning during exploration, achieving in-
creased sample-efficiency and superior downstream task performance compared to other intrinsically-
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Figure S17: Different regular structures initialized outside of the robot’s reach at the start of the
episode (t = 0) and re-created by optimizing for RaIR with GT models. Showcased here for the end
of the episode (t = 200).

motivated RL baselines. The free-play pseudocode is presented in Alg. S1. This free-play structure
is used for all methods presented in our paper by swapping out the intrinsic reward term (line 5)
with only ensemble disagreement (CEE-US), combination of our regularity objective with ensemble
disagreement (RaIR + CEE-US) or pure regularity (RaIR).
Algorithm S1 Free Play in Intrinsic Phase (taken from [12])

1: Input: {(f̃θm)Mm=1}: Randomly initialized ensemble of GNNs with M members, D: empty
dataset, Planner: iCEM planner with horizon H

2: while explore do ▷ Explore with MPC and intrinsic reward
3: for e = 1 to num_episodes do
4: for t = 1 to T do ▷ Plan to maximize intrinsic reward
5: at ← Planner(st, {(f̃θm)Mm=1}, rintrinsic) ▷ e.g. RaIR with disagreement Eq. 6
6: st+1 ← env.step(st, at)
7: D ← D ∪ {(st, at, st+1)

T
t=1}

8: for l = 1 to L do ▷ Train models on dataset for L epochs
9: θm ← optimize θm using Lm on D for m = 1, . . . ,M

10: return {(f̃θm)Mm=1},D

E.1 GNN Architectural Details

Message-passing Graph Neural Networks (GNN) are deployed as world models. The same GNN
architecture is used as in CEE-US [12]. For these structured world models, we consider object-
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factorized state spaces with S = (Sobj)
N×Srobot. Each node in the GNN corresponds to an object and

the robot/actuated agent is differentiated from the object nodes as a global node. The concatenation
of the robots’s state srobot

t and the action at is represented as a global context c = [srobot
t , at]. We have

a fully-connected GNN. The node update function gnode and the edge update function gedge model
the dynamics of the entities/objects, and their pairwise interactions respectively. These functions are
both Multilayer Perceptrons (MLP). In the following, we denote the state of the i-th object st,obji at
timestep t as sit for simplicity. The object node attributes in the GNN are updated as:

e
(i,j)
t = gedge

([
sit, s

j
t , c

])
(S7)

s̃it+1 = gnode
([
sit, c, aggri ̸=j

(
e
(i,j)
t

)])
. (S8)

where [·, . . .] denotes concatenation, e(i,j)t is the edge attribute between two neighboring nodes (i, j).
For the permutation-invariant aggregation function given by aggr, we use the mean.

The robot state, which is treated as a global node, is computed using the global aggregation of all
edges with a separate global node MLP gglobal:

s̃robot
t+1 = gglobal

([
c, aggri,j

(
e
(i,j)
t

)])
. (S9)

Moreover, the GNN predicts the changes in the dynamics such that s̃t+1 = st +GNN(st, at).

E.2 Planning Details

For planning, we use the improved Cross-Entropy Method (iCEM) [19]. The planner minimizes the
cost, corresponding to negative reward c(st, at, st+1) = −r(st, at, st+1), where r can be intrinsic
rewards rintrinsic or extrinsic task rewards rtask. The extrinsic task rewards are assumed to be given by
the environment.

At each timestep t in the environment, the planner samples P action sequences, each with length H ,
i.e. the planning horizon. These actions are rolled out either in the ground truth model (perfect simu-
lations) or in the imagination of a learned model (imperfect simulations), generating corresponding
P state sequences with length H . In order to assign a cost to each of the P trajectories, we need to
aggregate the cost over the horizon H . A typical choice here is sum, where the cost over the length of
the trajectory is simply summed up: cost(p) =

∑H−1
h=0 c(s

(p)
t+h, a

(p)
t+h, s

(p)
t+h+1).

However, this type of aggregation is not suitable for cases where a decrease in cost can in general be
preceded by an initial increase. In these cases, using the mode best, that assigns the plan p the cost of
the “best” timestep over the planning horizon with cost(p) = min

(
{c(s(p)t+h, a

(p)
t+h, s

(p)
t+h+1)}

H−1
h=0

)
is

a better suited choice. We also empirically found this controller mode to be better at picking up sparse
signals. What we mean here is that, in the example of stacking, it is hard to find a sampled trajectory
that stacks the objects in a stable way with a limited sample-budget as this poses an exploration
challenge. However, if we manage to find an action sequence that brings the cubes on top of each
other, albeit in an unstable way, favoring this solution with best and keeping this solution in the elite
set is beneficial. This can be explained as follows: In iCEM the K plans with the lowest assigned
cost are chosen to be the elite set, which is then used to fit the sampling distribution of iCEM. As a
fraction ξ of these elites is potentially shifted to the next internal iCEM iteration (keep_elites),
and possibly to the next timestep (shift_elites), keeping these solutions that “fail” and yet bring
us closer to the actual solution provides a better strategy to solve tasks which pose an exploration
challenge such as stacking. Here, we are also relying on the fact that we are re-running optimization
every timestep t in the environment with online model predictive control, such that we have the
opportunity to correct these initially “wrong” solutions and find their “stable” counterparts. Note
that this mode of the controller is a more unstable mode compared to sum. Especially with imperfect
world models, where the model can hallucinate as the model errors accumulate over the planning
horizon, mode best can pick up these falsely imagined future states with low cost. It also doesn’t
account for the fact that the planned trajectory keeps the lowest cost over multiple timesteps, such
that a trajectory where an object flies through the goal location for a single timestep has the same
cost as a trajectory where the object lands in the goal position and stays there. To account for this,
we use cost(p) = min

(
{c(s(p)t+h, a

(p)
t+h, s

(p)
t+h+1)}

H−1
h=1

)
, where we don’t take into account the first

timestep of the plan with h = 0. Although this is not a robust solution, we found it to empirically
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work well. Quantitatively, stacking 3 objects when planning with ground truth models yields 99%
success rate for mode best, whereas only 47 % success rate for sum, using the same reward function
in both cases. Even in the case of perfect dynamics predictions with GT models, this showcases the
importance of the controller mode to be able solve tasks with sparse reward signals.

F Experiment Details

In this section, we provide experimental details and hyperparameter settings.

F.1 Environment Details

SHAPEGRIDWORLD This is a discrete 2D grid, where each entity/agent is controlled individually
in the x-y directions. This means entities are controlled one at a time and actuation keeps iterating
over the entities, where we use an object persistency of 10 timesteps. The action at is 2 dimensional,
controlling the agent in x-y directions separately and is applied on the current actuated entity i
in the grid. As we are operating in a discrete grid, the actions are actually discrete such that the
agent can move one grid cell to the left/right and up/right (if the target grid cell is not occupied)
or stay at the current grid cell. The first dimension of the action controls agent movement in x-
and the second dimension in the y-direction. In order to make this environment work with the
default iCEM implementation with a Gaussian sampling distribution, we perform a discretization
step before inputting the sampled actions to the environment. For the experiment results with GT
models presented in Fig. 1, we use a grid size of 25× 25 with 16 and 32 objects.

CONSTRUCTION This is a multi-object manipulation environment as an extension of the Fetch
Pick & Place environment proposed in [24]. We also applied the two modifications from Sancaktar
et al. [12]. 1) The table in front of the robot is replaced with a large plane such that objects cannot fall
off during free play, but can still be thrown/pushed outside of the robot’s reach. 2) In Li et al. [24],
the object state also contained the object’s position relative to the gripper which was removed, as it
already introduces a relational bias in the raw state representation. Details on the dimensionalities of
the object and robot state spaces can be found in Table S5.

F.2 Parameters for Ground Truth Model Experiments with RaIR

The controller parameters used when optimizing RaIR with ground truth (GT) models are given in
Table S4. To compute RaIR, we perform a discretization step in the CONSTRUCTION environment
as it is continuous. For GT models, that produce perfect mental simulations, we can choose a small
bin size of 1cm. In comparison, the size of one block in the environment is 5 cm. The bin size also
gives us the upper bound of the regularity precision that can be achieved during optimization, e.g.
a perfectly aligned stack vs. a zigzagged stack. Note however that the higher the precision is, the
harder it typically gets for the controller to converge to global optima with a horizon of 30 timesteps
and a limited sample-budget.

As discussed in Sec. A, this is also a constraint when we are computing RaIR in the x-y-z subspace.
Due to this, for the re-creation of existing patterns experiments presented in Sec. 3.4 and Sec. D, we
compute RaIR with a bin size of 2.5cm and increase the number of sampled trajectories P to 512.
Although we could further increase the bin size, we choose this value to not negatively impact the
precision of the re-created structures.

F.3 Free Play with Learned Models

The environment properties with the episode lengths and model training frequencies are given in
Table S5. Six objects are present in CONSTRUCTION during free play. The parameters for the GNN
model architecture as well as the training parameters for model learning are listed in Table S6. For
the RaIR computations in free play, we use a bin size of 5cm, which is equivalent to the size of a
block.

The set of the hyperparameters for the iCEM controller used in the intrinsic phase of RaIR + CEE-US,
RaIR and CEE-US are the same as presented in Table S4. The only difference to the GT model case
is, we use a planning horizon of 20 timesteps for free play.
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Table S4: Base settings for iCEM. These hyperparameters are used when using GT models to
optimize RaIR.

(a) General settings.

Parameter Value
Number of samples P 128
Horizon H 30
Size of elite-set K 10
Colored-noise exponent β 3.5
CEM-iterations 3
Noise strength σinit 0.5
Momentum α 0.1
use_mean_actions Yes
shift_elites Yes
keep_elites Yes
Fraction of elites reused ξ 0.3
Cost along trajectory best

(b) Environment-specific settings.

SHAPEGRIDWORLD
Parameter Value
Number of samples P 64

CONSTRUCTION
Parameter Value

Same as general settings

Table S5: Environment settings for CONSTRUCTION. 2000 transitions (20 episodes with 100
timesteps each) are generated within one iteration of free play.

CONSTRUCTION
Parameter Value
Episode Length 100
Train Model Every 20 Episodes
Action Dim. 4
Robot/Agent State Dim. 10
Object Dynamic State Dim. 12
Num. of Objects During Free Play 6

Table S6: Settings for GNN model training in intrinsic phase of RaIR + CEE-US and CEE-US. (Same
as in [12])

Parameter Value
Network Size of gnode 2× 128
Network Size of gedge 2× 128
Network Size of gglobal 2× 128
Activation function ReLU
Layer Normalization Yes
Number of Message-Passing 1
Ensemble Size 5
Optimizer ADAM
Batch Size 125
Epochs 25
Learning Rate 10−5

Weight Decay 0.001
Weight Initialization Truncated Normal
Normalize Input Yes
Normalize Output Yes
Predict Delta Yes
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Table S7: Settings for the iCEM controller used for zero-shot generalization in the extrinsic phase of
RaIR + CEE-US and CEE-US. The settings not specified here are the same as the general settings
given in Table S4. The settings are exactly the same as in [12].
Task Controller Parameters

Horizon Colored-noise exponent use_mean_actions Noise strength Cost Along
h β σinit Trajectory

CONSTRUCTION-Stacking 30 3.5 No 0.5 best
CONSTRUCTION-Pick & Place 30 3.5 Yes 0.5 best
CONSTRUCTION-Throwing 35 2.0 Yes 0.5 sum
CONSTRUCTION-Flipping 30 3.5 No 0.5 sum

F.4 Extrinsic Phase: Zero-shot Downstream Task Generalization

In this section, we provide details on the extrinsic phase following free play, where the learned GNN
ensemble is used to solve downstream tasks zero-shot via model-based planning.

F.4.1 Details on Downstream Tasks and Reward Functions

The reward functions for all the downstream tasks are computed as specified in Sancaktar et al. [12],
where for all the assembly tasks we use the same structure as in the stacking reward. However, we do
one modification to the original reward computation in the assembly tasks. The assembly task reward
is sparse incremental with reward shaping, where the reward also contains the distance between
the gripper and the position of the next block to be stacked. We modify how the next block ID is
computed in the original implementation from Sancaktar et al. [12]. Instead of naively checking
the number of unsolved objects to obtain the next block ID irrespective of order, we determine the
next block to be the next unsolved block in the order. We found this modification to be important
especially for the Pyramid tasks, where the sub-optimal next block computation might lead to the
agent receiving a reward to be close to the wrong block, in the case the robot places blocks with
i > next_block_id to their goal locations with just the sparse reward.

F.4.2 Planning Details for Downstream Tasks

The controller settings for the different downstream tasks are shown in Table S7, which are the same
settings used in [12].

G Connections between Compression and RaIR

Our regularity objective, that seeks out low-entropy states with high redundancy, shares close ties
with compression, and specifically with lossless compression using entropy coding.

We implemented a version of our regularity idea using the lossless compression algorithm bzip2
corresponding to the direct version of RaIR with order k = 1 (Sec. 2.2). In this case, we describe
the state s directly by the properties of each of the entities and the function ϕ : Sobj → {X}+, that
maps each entity to a set of symbols and obtain Φ(s) = ⋓N

i=1ϕ(sobj,i) as a union of all symbols for N
objects. Instead of computing the entropy for the frequencies of occurrence in the resulting multiset
of symbols like in RaIR, we instead transform these symbols into bytes and compress them with
bzip2. We then define the intrinsic reward for compression as the negative length of the compressed
ByteString such that:

rcompression = − len(bzip2.compress({⋓N
i=1ϕ(sobj,i)}+.tobytes())). (S10)

We also managed to create regular shapes and patterns when optimizing for rcompression via planning
with ground truth models and also for free play with learned models. The reason we chose not to
pursue this direction was because 1) lossless compression algorithms like bzip2 don’t perform as well
on short ByteStrings, which is the case for us, as e.g. in CONSTRUCTION, we compress only 6 objects
with their corresponding x-y positions, 2) artifacts are introducted to the regularity/compression
metric by the transformation into bytes, where certain symbols become more compressible than
others in this representation without any added regularity. As a result, we preferred our formulation
with RaIR as it provides better control over the generated patterns and structures.
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H Code and Compute

Code will be available on the project webpage https://sites.google.com/view/
rair-project.

We run the ground truth model experiments on CPUs. As we are using the true environment simulator
as a model, each imagination step in the planning horizon takes as long as an environment step. We
parallelize the ground truth models on 16 virtual cores The controller frequency in this case is ca.
0.25Hz, for the settings given in Table S4.

For the free-play phase, we have a fixed number of transitions collected at each free play iteration,
which get added to the replay buffer. After the data collection, the model is trained on the whole
replay buffer for 25 epochs. Since the buffer size increases at each free play iteration with newly
collected data, for this fixed number of epochs, the corresponding number of model training updates
and thus also the runtime of the iteration, increase throughout free play. For RaIR + CEE-US, the
full free-play (300 free play iterations) in CONSTRUCTION with 6 objects, where overall 600K data
points are collected, takes roughly 87 hours using a single GPU (NVIDIA GeForce RTX 3060) and 6
cores on an AMD Ryzen 9 5900X Processor. The majority of this time is spent on the model training
after data collection. The controller frequency for the collected rollouts with RaIR and the epistemic
uncertainty calculations using a GNN ensemble is ca. 5Hz.
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