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Abstract

Encoding geospatial objects is fundamental for
geospatial artificial intelligence (GeoAI) appli-
cations, which leverage machine learning (ML)
models to analyze spatial information. Common
approaches transform each object into known for-
mats, like image and text, for compatibility with
ML models. However, this process often discards
crucial spatial information, such as the object’s po-
sition relative to the entire space, reducing down-
stream task effectiveness. Alternative encoding
methods that preserve some spatial properties are
often devised for specific data objects (e.g., point
encoders), making them unsuitable for tasks that
involve different data types (i.e., points, poly-
lines, and polygons). To this end, we propose
POLY2VEC, a polymorphic Fourier-based encod-
ing approach that unifies the representation of
geospatial objects, while preserving the essen-
tial spatial properties. POLY2VEC incorporates a
learned fusion module that adaptively integrates
the magnitude and phase of the Fourier transform
for different tasks and geometries. We evaluate
POLY2VEC on five diverse tasks, organized into
two categories. The first empirically demonstrates
that POLY2VEC consistently outperforms object-
specific baselines in preserving three key spatial
relationships: topology, direction, and distance.
The second shows that integrating POLY2VEC
into a state-of-the-art GeoAI workflow improves
the performance in two popular tasks: population
prediction and land use inference.
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1. Introduction
The increasing availability of geospatial data from sources
such as satellites, ground-based sensors, and crowdsourced
platforms like OpenStreetMap (OSM)1 (Lee & Kang, 2015;
Jokar Arsanjani et al., 2015; Basiri et al., 2019), com-
bined with the recent advancements in machine learning
(ML) (Vaswani, 2017; Bommasani et al., 2021), has fu-
eled significant progress in geospatial artificial intelligence
(GeoAI) (Smith, 1984; Couclelis, 1986; Janowicz et al.,
2020; Gao et al., 2023). GeoAI leverages ML models
to analyze geospatial objects, such as points of interest
(POIs), building footprints, and vehicle trajectories, thereby
extracting valuable insights that enable a variety of decision-
making applications, including transportation network op-
timization (Li et al., 2018b; Mirowski et al., 2018), urban
planning (Zhang et al., 2021; Wu et al., 2022), energy man-
agement (Sun et al., 2020), and improved emergency re-
sponse strategies (Kyrkou et al., 2022), to name a few.

A fundamental step in GeoAI pipelines is the transforma-
tion of geospatial data into latent representations that can
be easily processed by ML models, a step formally known
as encoding. A common approach to encoding converts
coordinate-based geospatial data into formats compatible
with established feature extraction models. Although effec-
tive for specific tasks, this conversion often discards crucial
spatial information, significantly limiting the generalizabil-
ity of these models. For example, building footprints are
frequently rasterized into images and processed with vision-
based models for urban prediction tasks (Li et al., 2023;
Balsebre et al., 2024). While this approach captures object
shapes, it neglects important spatial relationships, such as
the relative positioning and alignment of objects within the
area. Similarly, POIs that are represented as text, by using
attributes like category as input to language-based models,
capture semantic relationships but omit precise spatial loca-
tions (Huang et al., 2022). As a result, these approaches are
application-specific and struggle to generalize across tasks
that require a deeper understanding of spatial relationships.

To address the aforementioned limitations, spatially explicit
encoding techniques have been proposed. These methods

1https://openstreetmap.org
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Figure 1: Visualization of the Fourier transform magnitude
and phase of (a) road segment, (b) building, and (c) POI.

preserve crucial spatial properties, while remaining com-
patible with downstream ML models. For instance, THE-
ORY (Mai et al., 2020) encodes the absolute positions of
POIs using sinusoidal functions with varying frequencies.
Xu et al. (2018) directly encodes the coordinates of trajec-
tories using multi-layer perceptons and feeds it to a GRU,
capturing their sequential nature. For polygons, NUFT-
SPEC (Mai et al., 2023) maps geometries into the spectral
domain, effectively preserving key polygon properties such
as topology awareness. However, the design of these meth-
ods inherently limits their applicability, as they only capture
the properties of the specific geospatial object they are de-
vised for. This restricts their generalizability in tasks involv-
ing mixed geospatial object types, such as land use classifi-
cation, where integrating points (e.g., POIs) and polygons
(e.g., buildings) requires simultaneously preserving their
spatial properties as well as relationships between them.

In this work, we introduce POLY2VEC2, a polymorphic
encoding framework that unifies the representation of 2D
geospatial objects, including points, polylines, and polygons.
At its core, POLY2VEC leverages the Fourier transform to
encode essential spatial properties, transforming the input
geometries3 into the frequency domain. Given that this
transformation results in complex-valued features, the mag-
nitude and phase components are extracted. As shown in
Figure 1, these components complement each other: the
magnitude reflects spatial extent, being uniform for points
with no shape and varying for polygons and polylines, while
the phase highlights directionality, such as the alignment of
a polyline. To combine these components into a single repre-
sentation, POLY2VEC incorporates a learned fusion module
that adaptively balances their contributions based on the
task and geometry type, producing a real-valued geometry
embedding that ensures compatibility with ML models.

2Code available at https://github.com/
USC-InfoLab/poly2vec

3We refer to geometries and geospatial objects interchangeably.

We formally define four key properties, shape preservation,
direction preservation, distance preservation, and task flexi-
bility, as essential criteria for evaluating the effectiveness of
geometry encoding. These properties ensure the produced
embeddings accurately capture the essential geometry char-
acteristics while remaining versatile across different tasks.
To demonstrate that POLY2VEC preserves these proper-
ties, we conduct a two-part evaluation. First, we evaluate
POLY2VEC on spatial reasoning tasks, showing that it out-
performs the state-of-the-art specialized baselines by up
to 17% for topological classification, 26% for directional
classification, and 75% for distance estimation. Second,
we show that integrating POLY2VEC into a state-of-the-art
GeoAI workflow reduces prediction error by 14% and 5%
in population prediction and land use inference.

In summary, our contributions are:
• We introduce POLY2VEC, the first encoding framework
that unifies the representation of various 2D geometries.
• We propose a 2D continuous Fourier transform-based
encoding approach to capture crucial spatial properties, in-
cluding shape, distance, and direction.
• We design a learned fusion strategy to adaptively combine
Fourier magnitude and phase for diverse objects and tasks.
• Our experiments show that POLY2VEC preserves crucial
geometry encoding properties, demonstrating its versatility
in handling diverse geospatial objects, and task-flexibility
when integrated into state-of-the-art GeoAI pipelines.

2. Preliminaries
2.1. Problem Formulation

Definition 1 (Geospatial Object). A geospatial object g ∈
R2 is represented by an array P ∈ RN×2, where each row is
a point (x, y), and N is the total number of points. The type
of geometry (e.g., point, polyline, or polygon) is determined
by the organization and relationships among these points.

Polymorphic Encoding of Geospatial Objects. Given
a dataset of geospatial objects G = {g} ∈ RN×2, the
goal is to define an encoding function eθ(g) : RN×2 →
Rd, parameterized by θ, that maps each geometry g to a d-
dimensional vector v, termed as geometry embedding. The
embedding dimension d remains constant across different
geometry types, making eθ polymorphic. The encoding is
intended to capture the following key properties.
Property 1 (Shape Preservation). For any geometry g ∈ G,
its embedding v, should capture its structural characteristics:
shape and boundary for polygons, length for polylines, and
the lack of spatial extent for points.
Property 2 (Direction Preservation). For any geometries
gi, gj ∈ G, eθ should ensure their embeddings vi, vj reflect
their relative orientation.
Property 3 (Distance Preservation). For any geometries

2

https://github.com/USC-InfoLab/poly2vec
https://github.com/USC-InfoLab/poly2vec


Poly2Vec: Polymorphic Fourier-Based Encoding of Geospatial Objects for GeoAI Applications

decomposition

2D Continuous Fourier transform

affine

 transformation

F
o

u
rie

r tra
n
sfo

rm

c
o
m

p
u

tatio
n

Point 

𝑓𝑝(𝑥, 𝑦)

Polyline

𝑓𝑙(𝑥, 𝑦)

Polygon

𝑓𝑝𝑔(𝑥, 𝑦)

Input

𝐳

𝝓

+ 𝐯

Learned Fusion

𝐅𝑔

Poly2Vec

G
e
o
A

I A
p

p
lic

a
tio

n
s

𝑓𝑔(𝑥, 𝑦)

{𝑓𝑔𝑖
(𝑥, 𝑦)}

{𝑓𝑐 𝑥, 𝑦 , 𝐀, 𝜏} 

{𝐅𝑔𝑖
(𝑢, 𝑣)}

ℎ

(a) The workflow of POLY2VEC.
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Figure 2: Overview of POLY2VEC.

gi, gj ∈ G, the similarity of their embeddings vi,vj should
monotonically decrease as their spatial distance ∥gi − gj∥
increases, and vice versa.
Property 4 (Task Flexibility). The encoder eθ should facil-
itate multiple tasks without requiring modifications.

Properties 1-3 ensure that v captures all essential spatial
information, while Property 4 guarantees flexibility for use
across GeoAI models. Section 4 empirically demonstrates
that our proposed eθ satisfies these properties.

2.2. 2D Continuous Fourier Transform Properties

A key component of our encoding approach is the computa-
tion of the 2D continuous Fourier transform (CFT) 4. For a
given 2D function f(x, y), its Fourier transform is denoted
as F{f(x, y)} = F (u, v)5 and is formally defined as:

F (u, v) =

∫ ∞

−∞

∫ ∞

−∞
f(x, y)e−j2π(ux+vy)dx dy (1)

where j =
√
−1 and u, v are the frequency samples.

We now summarize Fourier transform properties relevant to
our approach following (Gaskill, 1978).

Linearity. The Fourier transform of a sum of functions de-
noted as fi(x, y), is the sum of their corresponding Fourier
transforms Fi(u, v):

F

{
n∑

i=1

aifi(x, y)

}
=

n∑
i=1

aiFi(u, v), ai ∈ C (2)

Affine Transformation. For an affine-transformed function
f(Ax+ τττ), where x = [x, y]⊤, its Fourier transform is:

F{f(Ax+τττ)} =
1

|det(A)|
e−j2πτττ⊤A−⊤uF (A−⊤u) (3)

where u = [u, v]⊤, A ∈ R2×2 is the affine matrix, and
τττ ∈ R2 is the translation vector.

4We use Fourier Transform and CFT interchangeably.
5For compactness, we use F (u, v) to describe the CFT.

Hermitian Symmetry. For real-valued functions f(x, y),
F (u, v) satisfies F (u, v) = F ∗(−u,−v), where F ∗(u, v)
denotes the complex conjugate.

Magnitude and Phase. The Fourier Transform F (u, v)
is a complex-valued function composed of a real part,
Re(F (u, v)), and an imaginary part, Im(F (u, v)). The mag-
nitude z(u, v) and phase ϕ(u, v) are defined as:

z(u, v) =
√

Re(F (u, v))2 + Im(F (u, v))2 (4)

ϕ(u, v) = atan2(Im(F (u, v)),Re(F (u, v))) (5)

3. Methodology
Figure 2 illustrates our proposed POLY2VEC, which uni-
formly encodes arbitrary geospatial objects for GeoAI ap-
plications. We first describe how the Fourier transform is
derived for each geometry type, and then outline the learned
fusion module for deriving the final geometry embeddings.

3.1. 2D Continious Fourier Transform of Geometries

3.1.1. FOURIER TRANSFORM OF A POINT

A point p = (xp, yp) ∈ R2 is modeled as a 2D Dirac
delta function, which represents the point as a distribution
concentrated entirely at (xp, yp), and can be expressed as:

fp(x, y) = δ(x− xp, y − yp) (6)

To that extent, the Fourier transform of fp(x, y) is given by:

Fp(u, v) = e−j2π(xpu+ypv) (7)

where (u, v) are the frequency components.

The Fourier transform magnitude for any point is constant,
zp(u, v) = 1, while the phase ϕp(u, v) encodes its location.

As shown in Figure 2, deriving the Fourier transform for
polylines and polygons involves additional steps. Polylines
are divided into line segments, and polygons are triangulated
into non-overlapping triangles. The Fourier transform is

3
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computed for each component by affine transforming them
to their canonical geometry, and the linearity property of
Eq. (2) is used to compute the Fourier transform of the
original geometry6. Details for polylines and polygons are
specified below, with derivation details in Appendix A.2.

3.1.2. FOURIER TRANSFORM OF A POLYLINE

We begin by deriving the Fourier transform of a canoni-
cal line segment and then generalize to any arbitrary line
segments. Consider the canonical line segment lc, which
extends from a = (− 1

2 , 0) to b = ( 12 , 0) in R2, as shown in
Figure 2b. Then, lc can be represented as:

flc(x, y) = rect(x)δ(y) (8)

where δ(y) represents a Dirac delta function ridge along the
x-axis, and rect(x) restricts the ridge to the interval |x| ≤ 1

2 .

The Fourier transform of flc(x, y) is given by:

Flc(u, v) = sinc(u) (9)

Now consider an arbitrary line segment l with endpoints
q = (xq, yq) and r = (xr, yr). To compute the Fourier
transform of l, we map it to the canonical line segment
lc, using the affine transformation property. To compute
this, we first introduce an auxiliary point c = ( 12 , 1) to the
structure of lc so that it is not colinear with ab. This point
maps to another auxiliary point s introduced in the structure
of the arbitrary line segment l. The auxiliary point s is
defined as s = r + n, where n = (yq − yr, xr − xq)

⊤,
representing a 90◦ clockwise rotation of the vector r − q.
Note that the line segments qr and rs have the same length.

Given the points q, r, s and a,b, c we then construct the
affine transformation matrix A = [a b c][q r s]−1. By
applying Eq. (3), the Fourier transform of an arbitrary line
segment l, with endpoints q, r, is expressed as:

Fl(u, v) =
1

|det(A)|
e−j2πτ⊤A−⊤uFlc(A

−⊤u)

= ∥q− r∥2e−j2π( q+r
2 )usinc(u⊤(r− q)) (10)

At (u, v) = (0, 0), the Fourier transform is Fl(0, 0) =
∥q− r∥2, the squared length of the line segment.

Finally, following Eq. (2), the Fourier transform of an arbi-
trary polyline pl is computed as:

Fpl(u, v) =

Tl∑
i=1

Fli(u, v) (11)

where Fli(u, v) is the Fourier transform of the i-th line
segment and Tl is the total number of line segments.

6The same methodology can be adopted to compute the CFT
of multi-polygons.

3.1.3. FOURIER TRANSFORM OF A POLYGON

To compute the Fourier transform of a polygon we decom-
pose it into a set of non-overlapping triangles using standard
triangulation techniques7. We thus begin with the Fourier
transform of a canonical isosceles right triangle and then
generalize to its computation for arbitrary triangles.

Consider the canonical isosceles right triangle c with ver-
tices a=(0, 0), b=(1, 0), and c=(1, 1), represented as:

f
c
(x, y) =

{
1, if 0 ≤ x ≤ 1 and 0 ≤ y ≤ x,

0, otherwise.
(12)

The Fourier transform of f c(x, y) is then given by8:

F
c
(u, v) =

∫ 1

0

∫ x

0

e−j2π(ux+vy) dy dx

=
1

4π2uv(u+ v)

[(
(u+ v) cos(2πu)

− u cos(2π(u+ v))− v
)
− j

(
(u+ v) sin(2πu)

− u sin(2π(u+ v))
)]

(13)

Next, we compute the Fourier Transform of an arbitrary
triangle ∆, with vertices q = (xq, yq), r = (xr, yr), and
s = (xs, ys), by mapping it to the canonical triangle using
the affine transformation property ( Figure 2b). The affine
transformation matrix is defined as A = [a b c][q r s]−1.

By substituting the vertices of ∆ into A and applying
Eq. (3), the Fourier Transform of the triangle F∆(u, v) can
be calculated. In this computation, the determinant of A,
|det(A)| = 1

2α , where α is the area of the triangle ∆.

Finally, the Fourier transform of an arbitrary polygon pg,
given the linearity property of Eq. (2), can be computed as:

Fpg(u, v) =

Tpg∑
i=1

F∆i
(u, v) (14)

where F∆i(u, v) is the Fourier transform of the i-th triangle,
and Tpg is the total number of extracted triangles.

Building on the Fourier transform computation described
earlier, we can now extract the frequency representation of
a given geometry g, expressed as a spatial function fg(x, y)
over R2 as, Fg = [F1,F2, . . . ,FW ]⊤ ∈ CW , where W is
the number of frequency components, and Fi = F (ui, vi)
represents the value of the Fourier transform evaluated at
the specific frequency coordinates (ui, vi).

7We adopt Constraint Delauney triangulation in this paper.
8Special cases where u, v, and u+v approach zero are handled

separately, and presented in Appendix A.2.3.
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To sample the frequency components, we employ a geo-
metric series sampling strategy (Mai et al., 2023), which
balances low and high-frequency components to capture
both global and local details. We also experimented with
learned frequency sampling but found that the two strategies
produced nearly identical results. Detailed comparisons are
presented in Appendix A.3.2.

3.2. Learned Fusion of Fourier Transform Features

Given that Fg consists of complex values, we decompose
it in two real-valued vectors of the magnitude z and the
phase ϕϕϕ, computed as in Eqs. (4) and (5), respectively. This
transformation ensures the representation is compatible with
downstream ML models, which typically operate on real-
valued inputs. Furthermore, the magnitude z captures the
intensity of contributions at different frequencies, reflect-
ing the geometry’s size and overall shape, while the phase
ϕϕϕ encodes positional and orientational information of the
geometry’s features (Zahn & Roskies, 1972).

While the final geometry embedding can be created by
simply concatenating z and ϕϕϕ, their relative importance
should vary with the geometry type and the downstream
task. For instance, the magnitude of points is always 1,
whereas it encodes the shape and size of polygons. There-
fore, when encoding points, the phase should contribute
more than the magnitude in the representation. To this
end, POLY2VEC adaptively learns the importance of mag-
nitude and phase through two separate transformations
z∗=hz(z) and ϕϕϕ∗=hϕ(ϕϕϕ), where hz: RW → RW and hϕ:
RW → RW are separate MLPs for z and ϕ respectively.

Finally, the transformed vectors z∗ ∈ RW and ϕϕϕ∗ ∈
RW are concatenated and passed through a final MLP
h : RW → Rd to produce the final geometry embedding
v = h([z∗;ϕϕϕ∗]) ∈ Rd, which can be inputted to any ma-
chine learning model M , such that M(v) → y, where y
represents task-specific outputs. We will empirically verify
that v preserves the key properties in Section 4.

4. Experiments
In this section, we conduct experiments to evaluate the effec-
tiveness of POLY2VEC across four key research questions:
[RQ1] Does POLY2VEC effectively preserve the critical
geometric properties of shape, direction, and distance?
[RQ2] How does POLY2VEC perform in comparison to
baseline encoding methods tailored for specific object types?
[RQ3] Can integrating POLY2VEC into existing workflows
lead to improvements in their performance?
[RQ4] Does learned fusion boost POLY2VEC performance?

4.1. Spatial Reasoning Tasks

This section addresses RQ1 and RQ2, empirically evaluat-
ing POLY2VEC’s ability to preserve the properties of Sec-
tion 2.1, against specialized baselines. We frame these eval-
uations as spatial reasoning tasks, which are fundamental
to broader applications like geospatial question answering
(GeoQA), and require accurate spatial understanding (Pun-
jani et al., 2018; Papamichalopoulos et al., 2024).

Datasets. We evaluate our approach on two OpenStreetMap
(OSM) datasets from Singapore and New York. Each dataset
includes three types of geospatial objects: POIs (represented
as points), main roads (as polylines), and buildings (as poly-
gons). All input geometry coordinates are normalized to
the range [−1, 1]× [−1, 1]. Additional dataset statistics and
preprocessing details are provided in Appendix A.4.

Baselines. We include three categories of baselines: point
encoders: (i) DIRECT, directly utilizing coordinates (Chu
et al., 2019), (ii) TILE, a discretization method (Berg
et al., 2014), (iii) WRAP, a coordinate wrapping mecha-
nism (Mac Aodha et al., 2019), (iv) GRID, inspired by posi-
tion encoding (Mai et al., 2020), and (v) THEORY, a multi-
scale encoder (Mai et al., 2020). All point encoders are
extended to other geometries handling them as sequences of
points, following Rao et al. (2020); Xu et al. (2018). poly-
line encoder: (i) T2VEC a classic trajectory encoder (Li
et al., 2018a). polygon encoders: (i) RESNET1D (Mai
et al., 2023) and (ii) NUFTSPEC (Mai et al., 2023). More
details on baselines can be found in Appendix A.5.

4.1.1. TOPOLOGICAL RELATIONSHIP CLASSIFICATION

This task classifies topological relationships defined by the
DE-9IM model (Clementini et al., 1993) for geospatial ob-
ject pairs. We present the supported relationships in Table 3.

Settings. The geometry embeddings of each pair are con-
catenated, passed through a 2-layer MLP with NC output
units, , corresponding to the number of relationships. We
adopt cross-entropy loss for optimization. Performance is
measured by accuracy, precision, recall, and F1-score. Ac-
curacy results are presented in Table 1, while the remaining
metrics are presented in Appendix A.10.

Results. From Table 1, we observe that POLY2VEC con-
sistently outperforms all baselines across all experiments.
Unlike specialized encoders that excel only for specific
pairs, POLY2VEC’s performance is consistent across all
geometries, highlighting its versatility and generalization
capabilities. The second-best performing models vary by
geometry type, with T2VEC for polylines and NUFTSPEC
for polygons. This shows that simply extending point en-
coders to handle all geospatial objects is not adequate, as it
fails to preserve characteristics like the object’s shape and
position, leading to decreased performance. Finally, all mod-
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Table 1: Model accuracy on topological relationship classification. Best and second best are highlighted.

Methods Singapore New York

point-
polyline

point-
polygon

polyline-
polyline

polyline-
polygon

polygon-
polygon

point-
polyline

point-
polygon

polyline-
polyline

polyline-
polygon

polygon-
polygon

RESNET1D - - - - 0.4570.017 - - - - 0.4520.033

NUFTSPEC - - - - 0.6020.009 - - - - 0.5850.008

T2VEC - - 0.728 0.023 - - - - 0.8070.121 - -

DIRECT 0.8230.013 0.8430.005 0.7330.007 0.3680.010 0.3570.018 0.8460.011 0.9090.018 0.7450.008 0.4950.009 0.4460.023

TILE 0.7900.021 0.7000.010 0.5050.005 0.4590.013 0.4110.009 0.6590.013 0.7830.007 0.5020.009 0.4940.038 0.4050.005

WRAP 0.8860.003 0.8800.008 0.7160.011 0.4760.010 0.3490.004 0.8860.006 0.8800.017 0.7330.009 0.5500.011 0.3810.007

GRID 0.8460.004 0.8440.004 0.6970.031 0.4580.004 0.3350.012 0.8220.039 0.8910.004 0.7390.009 0.5160.008 0.3810.031

THEORY 0.8920.003 0.9000.005 0.7190.008 0.4500.010 0.4610.041 0.8970.008 0.9090.008 0.7340.008 0.5910.006 0.4550.041

POLY2VEC 0.9550.007 0.9490.002 0.8120.010 0.5090.008 0.7020.006 0.9530.003 0.9800.002 0.8300.004 0.6410.062 0.6840.008

Table 2: Model accuracy on directional relationship classification. Best and second best are highlighted.

Methods Singapore New York

point-
point

point-
polyline

point-
polygon

polyline-
polyline

polyline-
polygon

polygon-
polygon

point-
point

point-
polyline

point-
polygon

polyline-
polyline

polyline-
polygon

polygon-
polygon

RESNET1D - - - - - 0.8190.010 - - - - - 0.7470.010

NUFTSPEC - - - - - 0.8070.008 - - - - - 0.6980.017

T2VEC - - - 0.2680.075 - - - - - 0.2490.032 - -

DIRECT 0.8800.006 0.8410.007 0.8440.006 0.8200.002 0.8300.005 0.7520.017 0.8770.004 0.7660.005 0.8360.008 0.6530.007 0.7840.004 0.6940.004

TILE 0.2530.001 0.2680.002 0.2730.008 0.3260.010 0.4540.001 0.3940.003 0.2450.009 0.2580.005 0.3160.005 0.2170.001 0.4660.001 0.3490.012

WRAP 0.8610.018 0.8040.009 0.8030.004 0.7810.002 0.8310.002 0.7780.001 0.8090.004 0.6690.001 0.7490.018 0.5960.019 0.7720.002 0.6020.006

GRID 0.8820.007 0.7280.007 0.7710.003 0.6990.001 0.6410.016 0.5340.138 0.8680.002 0.5900.003 0.6460.049 0.4380.004 0.7520.001 0.4850.079

THEORY 0.9120.014 0.8670.009 0.8580.004 0.8340.012 0.8600.006 0.7350.044 0.8920.017 0.7600.007 0.8260.008 0.6840.009 0.7750.005 0.5550.012

POLY2VEC 0.9320.006 0.9350.032 0.9250.002 0.9060.010 0.9070.007 0.8330.006 0.9090.012 0.8910.004 0.8830.013 0.8630.007 0.8760.009 0.7850.003

Table 3: Topological relationships of geometry pairs.

Geometry Pair Topological Relationships (a relationship b)

point-polyline disjoint, intersects
point-polygon disjoint, contains
polyline-polyline disjoint, intersects
polyline-polygon disjoint, touches, intersects, within
polygon-polygon disjoint, touches, intersects, contains, within, equals

els perform better when detecting relationship is a binary
classification (e.g., point-polyline in Table 3), compared
to multi-classification (e.g., polygon-polygon in Table 3).
This is expected, as the latter requires capturing fine-grained
spatial nuances, posing greater difficulty. In summary, these
results emphasize the importance of preserving shape (Prop-
erty 1), and distance (Property 3) in geometry embeddings.
POLY2VEC’s ability to do so, along with its unified frame-
work, enables it to consistently outperform baselines.

4.1.2. DIRECTIONAL RELATIONSHIP CLASSIFICATION

This task classifies the directional relationships defined by
the 16-compass direction model of two geospatial objects .

Settings. We follow the same setting as in Section 4.1.1,
with Nc = 16, and report the same metrics. Accuracy
results are in Table 2, with the rest in Appendix A.11.

Results. From Table 2, we observe that POLY2VEC consis-
tently outperforms all baselines across all experiments. This
demonstrates its ability to effectively preserve the direction
(Property 2) among diverse geometry types. While polygon
encoders outperform the extended point encoders also in this
task, T2VEC underperforms. This is due to T2VEC’s strat-
egy of assigning coordinates to grid cells during encoding,
which is effective for trajectory-related tasks, but introduces
discretization artifacts that affect angular relationships. A
similar limitation is observed in the performance of TILE,
which also relies on discretizing points into grid cells. In
contrast, POLY2VEC encodes geometries holistically, pre-
serving their relative orientation and avoiding these pitfalls.

4.1.3. DISTANCE ESTIMATION

This task evaluates whether geometry embeddings preserve
pairwise distances (Property 3).

Settings. The original distance is estimated by the Euclidean
distance of the geometry embeddings. The mean squared
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Figure 3: Distance scatter plots of point-polygon pairs on Singapore dataset for different encoders.

error (MSE) is adopted as loss function. We compare the
differences between the predicted and original distances
in Figure 3 and report the mean absolute error (MAE) in
Appendix A.12.

Results. Figure 3 depicts that the predicted distances gener-
ated by POLY2VEC are closely aligned with the original dis-
tances, whereas the predicted distances from other point en-
coders appear more scattered. This highlights POLY2VEC’s
superior ability to preserve spatial distance relationships
across various geometry types. Methods like DIRECT are
overly simplistic, while approaches such as TILE, GRID, and
WRAP introduce location distortions through discretization
or periodic transformations, affecting the distance preser-
vation. By leveraging the Fourier transform, POLY2VEC
effectively captures both the positions and relative spatial
relationships of the geometry pairs, enabling it to implicitly
encode distance as a core property into its embeddings.

4.2. Integration In an End-to-End GeoAI Pipeline

The section addresses RQ3, demonstrating the benefits of
integrating POLY2VEC into an existing GeoAI workflow.

Dataset. We utilize the same dataset as in Section 4.1. The
regions for both cities are extracted using the administrative
boundaries of Singapore Subzones and NYC Census Tracts.

Baseline. We adopt REGIONDCL (Li et al., 2023), an
unsupervised urban region representation learning frame-
work that uses buildings and POIs from OSM for land
use inference (predicting urban functional distributions)
and population prediction (estimating region population).
REGIONDCL encodes building footprints by converting
their coordinates into images and extracting features using
ResNet18 while using categorical features for POIs. To
address the loss of location information, REGIONDCL em-
ploys a distance-biased transformer, which introduces a bias
in the self-attention mechanism to prioritize closer objects.
We provide more details in Appendix A.9.

Settings. We evaluate three variants: (1) REGIONDCL,
the original framework, (2) REGIONDCL w/o distance-bias
removes the distance-biased term, and (3) REGIONDCL w/
Poly2Vec removes the distance-biased term and replaces
the encoding part of the pipeline with POLY2VEC. The
training and evaluation strategies remain unchanged across

the variants following the original work. For land use in-
ference, we report L1-distance, KL-divergence, and cosine
similarity metrics. For population prediction, we report
MAE, root mean squared error (RMSE), and coefficient of
determination (R2).

Results. The results for both tasks are presented in Table 4.
Removing the distance-bias term from REGIONDCL leads
to a noticeable drop in performance, emphasizing the im-
portance of encoding the spatial location and alignment of
objects for accurate land use and population predictions.
When POLY2VEC is added, the performance improves sig-
nificantly. This shows that POLY2VEC can adequately cap-
ture the shape and orientation of objects, similar to the
initial image-based features, while also benefiting from the
inclusion of object’s location. Overall, POLY2VEC encodes
spatial information directly into its embeddings, removing
the need for additional mechanisms like the distance-bias
term. This improves performance while simplifying the
pipeline, showcasing the task flexibility of POLY2VEC and
its potential for effective integration into GeoAI workflows.

4.3. Ablation Study

This section addresses RQ4, highlighting the benefits of the
proposed learned fusion module.

Settings. We include three variants: (1) w/mag uses only
the Fourier transform magnitude, (2) w/phase uses only the
phase, and (3) w/concat combines both via concatenation.
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Figure 4: Ablation study for the point-polygon dataset.

Results. As shown in Figure 4, among the variants, w/ mag
performs the worst across all tasks, particularly in direc-
tional relationship classification, as the Fourier transform
magnitude primarily captures shape, which is insufficient on
its own to address these tasks. In contrast, w/ phase, which
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Table 4: Comparison of methods for Land Use Classification and Population Prediction. Best values are highlighted.

Land Use Classification

Methods Singapore New York

L1 ↓ KL ↓ Cosine ↑ L1 ↓ KL ↓ Cosine ↑
RegionDCL 0.498 ± 0.038 0.294 ± 0.047 0.879 ± 0.021 0.418 ± 0.012 0.229 ± 0.013 0.912 ± 0.006

RegionDCL w/o distance-bias 0.558 ± 0.043 0.369 ± 0.067 0.844 ± 0.023 0.439 ± 0.012 0.244 ± 0.012 0.904 ± 0.005

RegionDCL w/ Poly2Vec 0.484 ± 0.021 0.278 ± 0.025 0.881 ± 0.012 0.397 ± 0.010 0.212 ± 0.011 0.923 ± 0.007

Population Prediction

Methods Singapore New York

MAE ↓ RMSE ↓ R2 ↑ MAE ↓ RMSE ↓ R2 ↑
RegionDCL 5807.54 ± 522.74 7942.74 ± 779.44 0.427 ± 0.108 5020.20 ± 216.63 6960.51 ± 282.35 0.575 ± 0.039

RegionDCL w/o distance-bias 6018.94 ± 641.71 8214.58 ± 931.11 0.385 ± 0.087 5293.04 ± 277.31 7348.86 ± 374.62 0.532 ± 0.030

RegionDCL w/ Poly2Vec 4957.58 ± 506.02 6874.47 ± 851.73 0.561 ± 0.117 4602.75 ± 179.66 6393.38 ± 279.70 0.621 ± 0.037

encodes location information, performs better since relative
location, here, is more crucial. Combining both through w/
concat shows improvements, highlighting the importance of
integrating both shape and location information. In contrast,
POLY2VEC outperforms all variants by employing a learned
fusion strategy that adaptively balances the contribution of
magnitude and phase based on the task and geometry type.
Particularly, this strategy benefits POLY2VEC more in tasks
such as point-related distance estimation, where points lack
spatial extent, and thus magnitude should contribute signifi-
cantly less than the phase containing location information.
More ablation studies are presented in Appendix A.13.

5. Related Work
Existing geometry encoding approaches often focus on one
shape type, with point encoders receiving the most atten-
tion. Direct point encoding methods simply feed raw co-
ordinates into neural networks but fail to capture details of
location distributions (Xu et al., 2018; Chu et al., 2019). Dis-
cretization methods assign points to predefined grid cells,
as seen in approaches leveraging location context for im-
age classification (Tang et al., 2015; Berg et al., 2014), but
struggle with fixed resolution and imprecise representations.
Sinusoidal methods encode normalized coordinates using
sinusoidal functions, such as WRAP, which captures cyclic
patterns (Mac Aodha et al., 2019). Extensions like multi-
scale encoder (Zhong et al., 2020) introduce multiple si-
nusoidal scales. THEORY improves this by computing the
dot product of coordinates with unit vectors separated by
120◦ (Mai et al., 2020). There are also point encoders that
jointly model location and neighborhood features (Qi et al.,
2017; Yin et al., 2019; Zhou & Tuzel, 2018).

Unlike points, there are no dedicated approaches for encod-
ing polylines in their generic form. The closest relevant
work is trajectory encoding, where trajectories are often rep-

resented as ordered sequences of points. Most approaches
rely on discretization. For instance, Li et al. (2018a) uses
grid-based encoding, training an RNN on degraded data
to infer missing information and embedding grid cells to
capture relative spatial positions. Other approaches directly
use coordinates, leveraging sequential models (i.e. RNNs)
to process the encodings (Feng et al., 2018; Xue et al., 2021;
Rao et al., 2020; Xu et al., 2018), but require strict sequential
ordering and may overlook geometric relationships.

Polygon encoding has gained significant attention. Veer et al.
(2018) employ elliptic Fourier descriptors to approximate
polygon outlines and utilize bidirectional LSTM and 1D
CNNs to encode vertex sequences. Mai et al. (2023) used
a 1D ResNet architecture with circular padding for loop
origin invariance. Other approaches use the non-uniform
Fourier transform (NUFT) to map polygons to the spec-
tral domain, converting them back into images via inverse
Fourier transforms (IDFT), though this suffers from the
limitations of grid-based approaches (Jiang et al., 2019a;b).
Mai et al. (2023) refine this approach by omitting the IDFT.
POLYGONGNN (Yu et al., 2024) encodes multipolygons,
modeling their shape details and inter-polygonal relation-
ships through heterogeneous visibility graphs.

While effective for specific geometry types, existing ap-
proaches are devised for specific geospatial objects. En-
coding heterogeneous coordinate-based data remains a chal-
lenge, as current methods, in such cases, either use separate
encoders for different object types, thereby adding complex-
ity, or convert geometries into known formats (i.e., image,
text), leading to a loss of spatial precision. This limitation
is particularly critical for GeoAI models that aim to incor-
porate coordinate-based geospatial data as an additional
modality (Zhang et al., 2024; Mai et al., 2024). POLY2VEC
addresses this gap by uniformly encoding points, polylines,
and polygons within the same framework, offering a level
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of versatility not demonstrated by prior methods.

6. Conclusion and Future Work
We proposed POLY2VEC, a unified encoding framework for
geospatial objects that preserves essential spatial properties,
including topology, directionality, and distance. By out-
performing object-specific baselines and improving down-
stream tasks like population prediction and land use infer-
ence, POLY2VEC demonstrates its versatility and effective-
ness in GeoAI pipelines. Future work will explore extending
POLY2VEC to higher-dimensional geometries, including 3D
shapes, and its integration into Geo-Foundation models as a
unified representation for coordinate data modalities.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here. Our improved representation
of 2D geometry for deep models could lead to more accu-
rate, versatile GeoAI applications, leading to better under-
standing the Earth and improvements for the environment,
transportation efficiency, and access equity.

Acknowledgments
This research has been funded in part by the NIH award
R01LM014026 and NSF award DMS-2428039. Any opin-
ions, findings, and conclusions, or recommendations ex-
pressed in this material are those of the authors and do not
necessarily reflect the views of the sponsors such as the NIH
and NSF. J. Li and H. Lu’s work was supported by Indepen-
dent Research Fund Denmark (No. 1032-00481B). Part of
H. Lu’s work was done when the author was employed at
Roskilde University.

References
Adams, B., McKenzie, G., and Gahegan, M. Frankenplace:

interactive thematic mapping for ad hoc exploratory
search. In Proceedings of the 24th international con-
ference on world wide web, pp. 12–22, 2015.

Balsebre, P., Huang, W., Cong, G., and Li, Y. City founda-
tion models for learning general purpose representations
from openstreetmap. In Proceedings of the 33rd ACM
International Conference on Information and Knowledge
Management, pp. 87–97, 2024.

Basiri, A., Haklay, M., Foody, G., and Mooney, P. Crowd-
sourced geospatial data quality: Challenges and future
directions, 2019.

Berg, T., Liu, J., Woo Lee, S., Alexander, M. L., Jacobs,
D. W., and Belhumeur, P. N. Birdsnap: Large-scale fine-
grained visual categorization of birds. In Proceedings
of the IEEE conference on computer vision and pattern
recognition, pp. 2011–2018, 2014.

Bommasani, R., Hudson, D. A., Adeli, E., Altman, R.,
Arora, S., von Arx, S., Bernstein, M. S., Bohg, J., Bosse-
lut, A., Brunskill, E., et al. On the opportunities and risks
of foundation models. arXiv preprint arXiv:2108.07258,
2021.

Chu, G., Potetz, B., Wang, W., Howard, A., Song, Y.,
Brucher, F., Leung, T., and Adam, H. Geo-aware net-
works for fine-grained recognition. In Proceedings of the
IEEE/CVF International Conference on Computer Vision
Workshops, pp. 0–0, 2019.

Clementini, E., Di Felice, P., and Van Oosterom, P. A small
set of formal topological relationships suitable for end-
user interaction. In International symposium on spatial
databases, pp. 277–295. Springer, 1993.

Couclelis, H. Artificial intelligence in geography: Conjec-
tures on the shape of things to come. The professional
geographer, 38(1):1–11, 1986.

Feng, J., Li, Y., Zhang, C., Sun, F., Meng, F., Guo, A.,
and Jin, D. Deepmove: Predicting human mobility with
attentional recurrent networks. In Proceedings of the
2018 world wide web conference, pp. 1459–1468, 2018.

Gao, S., Hu, Y., and Li, W. Handbook of geospatial artificial
intelligence, 2023.

Gaskill, J. D. Linear systems, Fourier transforms, and optics.
John Wiley & Sons, 1978.

Huang, J., Wang, H., Sun, Y., Shi, Y., Huang, Z., Zhuo,
A., and Feng, S. Ernie-geol: A geography-and-language
pre-trained model and its applications in baidu maps. In
Proceedings of the 28th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pp. 3029–3039,
2022.

Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri,
B. Geoai: spatially explicit artificial intelligence tech-
niques for geographic knowledge discovery and beyond,
2020.

Jiang, C., Lansigan, D., Marcus, P., Nießner, M., et al. Ddsl:
Deep differentiable simplex layer for learning geometric
signals. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 8769–8778, 2019a.

Jiang, C. M., Wang, D., Huang, J., Marcus, P., and Niessner,
M. Convolutional neural networks on non-uniform geo-
metrical signals using euclidean spectral transformation.

9



Poly2Vec: Polymorphic Fourier-Based Encoding of Geospatial Objects for GeoAI Applications

In International Conference on Learning Representations,
2019b. URL https://openreview.net/forum?
id=B1G5ViAqFm.

Jokar Arsanjani, J., Zipf, A., Mooney, P., and Helbich, M.
An introduction to openstreetmap in geographic infor-
mation science: Experiences, research, and applications.
OpenStreetMap in GIScience: Experiences, research, and
applications, pp. 1–15, 2015.

Kyrkou, C., Kolios, P., Theocharides, T., and Polycarpou,
M. Machine learning for emergency management: A
survey and future outlook. Proceedings of the IEEE, 111
(1):19–41, 2022.

Lee, J.-G. and Kang, M. Geospatial big data: challenges
and opportunities. Big Data Research, 2(2):74–81, 2015.

Li, X., Zhao, K., Cong, G., Jensen, C. S., and Wei, W. Deep
representation learning for trajectory similarity computa-
tion. In 2018 IEEE 34th international conference on data
engineering (ICDE), pp. 617–628. IEEE, 2018a.

Li, Y., Yu, R., Shahabi, C., and Liu, Y. Diffusion con-
volutional recurrent neural network: Data-driven traffic
forecasting. In International Conference on Learning
Representations, 2018b.

Li, Y., Huang, W., Cong, G., Wang, H., and Wang, Z. Urban
region representation learning with openstreetmap build-
ing footprints. In Proceedings of the 29th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining,
pp. 1363–1373, 2023.

Mac Aodha, O., Cole, E., and Perona, P. Presence-only geo-
graphical priors for fine-grained image classification. In
Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 9596–9606, 2019.

Mai, G., Janowicz, K., Yan, B., Zhu, R., Cai, L., and Lao,
N. Multi-scale representation learning for spatial feature
distributions using grid cells. In International Conference
on Learning Representations, 2020. URL https://
openreview.net/forum?id=rJljdh4KDH.

Mai, G., Jiang, C., Sun, W., Zhu, R., Xuan, Y., Cai, L.,
Janowicz, K., Ermon, S., and Lao, N. Towards general-
purpose representation learning of polygonal geometries.
GeoInformatica, 27(2):289–340, 2023.

Mai, G., Huang, W., Sun, J., Song, S., Mishra, D., Liu, N.,
Gao, S., Liu, T., Cong, G., Hu, Y., et al. On the oppor-
tunities and challenges of foundation models for geoai
(vision paper). ACM Transactions on Spatial Algorithms
and Systems, 10(2):1–46, 2024.

Mirowski, P., Grimes, M., Malinowski, M., Hermann,
K. M., Anderson, K., Teplyashin, D., Simonyan, K.,

kavukcuoglu, k., Zisserman, A., and Hadsell, R. Learning
to navigate in cities without a map. In Bengio, S., Wal-
lach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N.,
and Garnett, R. (eds.), Advances in Neural Information
Processing Systems, volume 31. Curran Associates, Inc.,
2018. URL https://proceedings.neurips.
cc/paper_files/paper/2018/file/
e034fb6b66aacc1d48f445ddfb08da98-Paper.
pdf.

Papamichalopoulos, M., Papadakis, G., Mandilaras, G.,
Siampou, M., Mamoulis, N., and Koubarakis, M. Three-
dimensional geospatial interlinking with jedai-spatial.
Journal of Web Semantics, 81:100817, 2024.

Punjani, D., Singh, K., Both, A., Koubarakis, M., Angelidis,
I., Bereta, K., Beris, T., Bilidas, D., Ioannidis, T., Karalis,
N., et al. Template-based question answering over linked
geospatial data. In Proceedings of the 12th workshop on
geographic information retrieval, pp. 1–10, 2018.

Qi, C. R., Su, H., Mo, K., and Guibas, L. J. Pointnet: Deep
learning on point sets for 3d classification and segmenta-
tion. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 652–660, 2017.

Rao, J., Gao, S., Kang, Y., and Huang, Q. Lstm-trajgan: A
deep learning approach to trajectory privacy protection.
In 11th International Conference on Geographic Infor-
mation Science (GIScience 2021)-Part I (2020), pp. 12–1.
Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2020.

Smith, T. R. Artificial intelligence and its applicability to
geographical problem solving. The Professional Geogra-
pher, 36(2):147–158, 1984.

Sun, J., Zheng, Y., Hao, J., Meng, Z., and Liu, Y. Continu-
ous multiagent control using collective behavior entropy
for large-scale home energy management. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 34, pp. 922–929, 2020.

Tang, K., Paluri, M., Fei-Fei, L., Fergus, R., and Bourdev,
L. Improving image classification with location context.
In Proceedings of the IEEE international conference on
computer vision, pp. 1008–1016, 2015.

Vaswani, A. Attention is all you need. Advances in Neural
Information Processing Systems, 2017.

Veer, R. v., Bloem, P., and Folmer, E. Deep learning for
classification tasks on geospatial vector polygons. arXiv
preprint arXiv:1806.03857, 2018.

Wu, S., Yan, X., Fan, X., Pan, S., Zhu, S., Zheng, C.,
Cheng, M., and Wang, C. Multi-graph fusion net-
works for urban region embedding. In Raedt, L. D.
(ed.), Proceedings of the Thirty-First International Joint

10

https://openreview.net/forum?id=B1G5ViAqFm
https://openreview.net/forum?id=B1G5ViAqFm
https://openreview.net/forum?id=rJljdh4KDH
https://openreview.net/forum?id=rJljdh4KDH
https://proceedings.neurips.cc/paper_files/paper/2018/file/e034fb6b66aacc1d48f445ddfb08da98-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/e034fb6b66aacc1d48f445ddfb08da98-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/e034fb6b66aacc1d48f445ddfb08da98-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/e034fb6b66aacc1d48f445ddfb08da98-Paper.pdf


Poly2Vec: Polymorphic Fourier-Based Encoding of Geospatial Objects for GeoAI Applications

Conference on Artificial Intelligence, IJCAI 2022, Vi-
enna, Austria, 23-29 July 2022, pp. 2312–2318. ijcai.org,
2022. doi: 10.24963/IJCAI.2022/321. URL https:
//doi.org/10.24963/ijcai.2022/321.

Xu, Y., Piao, Z., and Gao, S. Encoding crowd interaction
with deep neural network for pedestrian trajectory predic-
tion. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 5275–5284, 2018.

Xue, H., Salim, F., Ren, Y., and Oliver, N. Mobtcast: Lever-
aging auxiliary trajectory forecasting for human mobility
prediction. Advances in Neural Information Processing
Systems, 34:30380–30391, 2021.

Yin, Y., Liu, Z., Zhang, Y., Wang, S., Shah, R. R., and
Zimmermann, R. Gps2vec: Towards generating world-
wide gps embeddings. In Proceedings of the 27th ACM
SIGSPATIAL International Conference on Advances in
Geographic Information Systems, pp. 416–419, 2019.

Yu, D., Hu, Y., Li, Y., and Zhao, L. Polygongnn: Represen-
tation learning for polygonal geometries with heteroge-
neous visibility graph. In Proceedings of the 30th ACM
SIGKDD Conference on Knowledge Discovery and Data
Mining, pp. 4012–4022, 2024.

Zahn, C. T. and Roskies, R. Z. Fourier descriptors for plane
closed curves. IEEE Transactions on computers, 100(3):
269–281, 1972.

Zhang, M., Li, T., Li, Y., and Hui, P. Multi-view joint
graph representation learning for urban region embed-
ding. In Proceedings of the twenty-ninth international
conference on international joint conferences on artificial
intelligence, pp. 4431–4437, 2021.

Zhang, W., Han, J., Xu, Z., Ni, H., Liu, H., and Xiong,
H. Urban foundation models: A survey. In Proceedings
of the 30th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pp. 6633–6643, 2024.

Zhong, E. D., Bepler, T., Davis, J. H., and Berger, B.
Reconstructing continuous distributions of 3d protein
structure from cryo-em images. In International Confer-
ence on Learning Representations, 2020. URL https:
//openreview.net/forum?id=SJxUjlBtwB.

Zhou, Y. and Tuzel, O. Voxelnet: End-to-end learning for
point cloud based 3d object detection. In Proceedings
of the IEEE conference on computer vision and pattern
recognition, pp. 4490–4499, 2018.

11

https://doi.org/10.24963/ijcai.2022/321
https://doi.org/10.24963/ijcai.2022/321
https://openreview.net/forum?id=SJxUjlBtwB
https://openreview.net/forum?id=SJxUjlBtwB


Poly2Vec: Polymorphic Fourier-Based Encoding of Geospatial Objects for GeoAI Applications

A. Appendix
A.1. Geospatial Objects Definitions

Definition 2 (Point). A point is a zero-dimensional geometric entity in R2, defined by a single coordinate (x, y), where
x, y ∈ R. A point represents a specific location in the plane but has no extent, size, nor dimension.

Definition 3 (Line Segment). A line segment is a one-dimensional geometric object in R2, defined as a straight line segment
between two distinct endpoints p1 = (x1, y1) and p2 = (x2, y2).

Definition 4 (Polyline). A polyline is a one-dimensional object in R2, represented by an array P ∈ RN×2, where each row
is a point pi = (xi, yi). It consists of connected line segments formed by consecutive points pi and pi+1 for 1 ≤ i < N ,
with p1 ̸= pN .

Definition 5 (Polygon). A polygon is a two-dimensional geometric object in R2, represented as a closed sequence of points
forming its boundary. It is defined by an array P ∈ RN×2, where each row corresponds to a point (xi, yi) ∈ R2 and
(x1, y1) = (xN , yN ).

A.2. Analytical Calculations of Fourier Transform

A.2.1. FOURIER TRANSFORM OF A POINT

By representing a point p = (xp, yp) ∈ R2 as a 2D Dirac delta function fp(x, y) = δ(x− xp, y − yp) the Fourier transform
of fp(x, y) can be derived as follows:

Fp(u, v) = F{fp(x, y)}

=

∫ ∞

−∞

∫ ∞

−∞
fp(x, y)e

−j2π(ux+vy)dx dy

=

∫ ∞

−∞

∫ ∞

−∞
δ(x− xp, y − yp)e

−j2π(ux+vy)dx dy

= e−j2π(xpu+ypv)

where (u, v) are the frequency components.

A.2.2. FOURIER TRANSFORM OF A POLYLINE

Canonical line segment. We express the canonical line segment lc extending from a = (− 1
2 , 0) to b = ( 12 , 0), as

flc(x, y) = rect(x)δ(y). where rect(x) restricts the ridge to |x| ≤ 1
2 , and δ(y) represents a Dirac delta function along the

x-axis. The Fourier transform of flc(x, y) is :

Flc(u, v) = F{flc(x, y)}

=

∫ ∞

−∞

∫ ∞

−∞
flc(x, y)e

−j2π(ux+vy) dx dy

=

∫ ∞

−∞

∫ ∞

−∞
rect(x)δ(y)e−j2π(ux+vy) dx dy

Using the sifting property of the Dirac delta function, the integral over y evaluates to the value of the integrand at y = 0:

Flc(u, v) =

∫ ∞

−∞
rect(x)e−j2πuxe−j2πv(0) dx

=

∫ ∞

−∞
rect(x)e−j2πux dx

= sinc(u)

where (u, v) are the frequency components and v = 0.

Arbitrary line segment. We consider an arbitrary line segment l with endpoints q = (xq, yq) and r = (xr, yr), to compute
the Fl(u, v), we map it to the canonical line segment lc using affine transformation. For this purpose, we introduce an

12
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auxiliary point c = ( 12 , 1) at the structure of lc so that it is not colinear with ab. This point maps to another auxiliary point s
introduced at the arbitrary line segment l. The auxiliary point s is defined as s = r+ n, where n = (yq − yr, xr − xq)

⊤,
representing a 90◦ clockwise rotation of the vector r− q. Note that the vectors qr and rs are the same length.

Given all the above, the affine transformation matrix A is defined as:

A =

a1 b1 c1
a2 b2 c2
0 0 1


Then the values of A are computed as follows:

A [q r s] = [a b c]

A = [a b c][q r s]−1

=

− 1
2

1
2

1
2

0 0 1
0 0 1

xq xr xr + yq − yr
yq yr yr + xr − xq

1 1 1

−1

= D

−xq + xr −yq + yr
(x2

q+y2
q−x2

r−y2
r)

2
yq − yr −xq + xr −yqxr + xqyr

0 0 1
D


where

|D| = det(A) =
1

(xq − xr)2 + (yq − yr)2

is the determinant of A.

Following the affine Fourier transform property from Eq. (3), the Fourier transform of an arbitrary line segment l with
endpoints (xq, yq) and (xr, yr) is:

Fl(u, v) = F{flc(x, y)}

=
1

|det(A)|
e−j2πc⊤A−⊤uF (A−⊤u)

which can be rewritten as:

Fl(u, v) =

=
1

|D|
e−j2π(x0u+y0v)F

(
b2u− a2v

|D|
,−b1u+ a1v

|D|

)
(15)

where x0 = 1
|D| (b1c2 − b2c1) and y0 = 1

|D| (a2c1 − a1c2).

By substituting the specific values into Eq. (15), Fl(u, v) can be simplified to:

Fl(u, v) =
1

(xq − xr)2 + (yq − yr)2

[
e−j2π

(
xq+xr

2 u+
yq+yr

2 v
)

sinc
(
(xr − xq)u+ (yr − yq)v

)]

A.2.3. FOURIER TRANSFORM OF A POLYGON

Isosceles canonical right triangle. The canonical isosceles right triangle c with vertices a = (0, 0), b = (1, 0), and
c = (1, 1), is represented by the function f c(x, y) which equals 1 inside the triangle and 0 otherwise.

13
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The Fourier transform of f
c
(x, y) is computed as:

F
c
(u, v) = F{f

c
(x, y)}

=

∫ ∫
f

c
(x, y)e−j2π(ux+vy) dy dx

=

∫ 1

0

∫ x

0

e−j2π(ux+vy) dy dx

=

∫ 1

0

1

−j2πv

(
e−j2π(u+v)x − e−j2πux

)
dx

=
1

−j2πv

[∫ 1

0

e−j2π(u+v)x dx−
∫ 1

0

e−j2πux dx

]
=

1

4π2v(u+ v)

[
(u+ v)e−j2πu − ue−j2π(u+v) − v

]
(16)

Using Euler’s formula (ejθ = cos θ + j sin θ), we can expand Eq. (16) to:

F c(u, v) =
1

4π2uv(u+ v)

[(
(u+ v) cos(2πu)− u cos(2π(u+ v))− v

)
− j

(
(u+ v) sin(2πu)− u sin(2π(u+ v))

)]
This equation is undefined for some values of (u, v). We present the Fourier transform for each special case:

• F c(0, 0) =
1

2

• F
c
(0, v) = − 1

4π2v2
(
j2πv + cos(2πv)− j sin(2πv)− 1

)
• F c(u, 0) =

1

4π2u2

[(
cos(2πu) + 2πu sin(2πu)− 1

)
− j

(
sin(2πu)− 2πu cos(2πu)

)]
• F c(−v, v) = − 1

4π2v2
(
− j2πv + cos(2πv) + j sin(2πv)− 1

)
Arbitrary triangle. We calculate the Fourier transform of an arbitrary triangle ∆, with vertices q, r, s by using the affine
transformation property. To that extent the affine transformation matrix A is defined as:

A =

a1 b1 c1
a2 b2 c2
0 0 1


Then the values of A are computed as follows:

A [q r s] = [a b c]

A = [a b c][q r s]−1

=

0 1 1
0 0 1
1 1 1

xq xr xr + yq − yr
yq yr yr + xr − xq

1 1 1

−1

= D

ys − yr xr − xs yq(xs − xr) + xq(yr − ys)
yq − yr xr − xq xqyr − yqxr

0 0 D


where

|D| = 1

xq(yr − ys) + xr(ys − yq) + xs(yq − yr)

is the determinant of A.

If the area of ∆ is α, then D = 1
2α .

Finally the Fourier transform F∆(u, v) can be calculated by substituting the affine transform parameters into Eq. (3).

For the case of (0, 0) we get that : F∆(0, 0) =
1
DF c(0, 0) =

1
2D = α, which is the area of ∆.

14



Poly2Vec: Polymorphic Fourier-Based Encoding of Geospatial Objects for GeoAI Applications

A.3. Frequency Sampling Strategy

A.3.1. DETAILS ON THE GEOMETRIC FREQUENCY SAMPLING

We sample frequencies as a geometric series to balance the contribution of low and high-frequency frequency components.
Formally,

fi = fmin · ρi, i = 0, 1, . . . ,W − 1

where fi is the i-th frequency, fmin, fmax correspond to the minimum and maximum frequencies and W is the number of

sampled frequencies in each dimension. ρi is the step ratio and is defined as ρi =
(

fmax

fmin

) 1
(W−1)

.

Using this sequence, we construct a 2D meshgrid of frequencies, denoted as (U,V), centered around zero. Due to the
Hermitian symmetry property of the Fourier transform, we only compute frequencies for half of the plane.

While uniform sampling is an alternative, previous studies suggest geometric sampling is better suited for tasks like ours, as
it naturally balances the significance of low- and high-frequency components (Mai et al., 2023).

A.3.2. ADDITIONAL STRATEGIES
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(a) Topological relationship 
 classification
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(c) Distance estimation

learned sampling geometric frequency mapping

Figure 5: The effect of frequency sampling strategy on point-polygon pairs.

To investigate whether learning the frequency values would improve performance, we conducted an experiment where the
frequencies were treated as learnable parameters and optimized alongside the model. Our results are reported in Figure 5.
We observe that learning the frequencies does not yield significant improvements over fixing the frequencies in any of the
tasks. This suggests that the geometric sampling approach is sufficiently effective for balancing low- and high-frequency
contributions, and learning the frequencies does not provide additional benefits for the tasks considered.

A.4. Dataset Details

We utilized publicly available OpenStreetMap (OSM) datasets for Singapore and New York, obtained from Geofabrik9

in .osm.pbf format. Geospatial objects, including POIs, roads, and buildings, were extracted using OSM-specific tags
(amenity, shop, tourism, leisure for POIs, motorway, trunk, primary, secondary for roads, and building for buildings).
Region partitions were derived from Singapore Subzones10 and NYC Census Tracts11. Dataset statistics are presented in
Table 5.

City # POIs # roads # buildings # regions

Singapore 4,347 45,634 109,877 304

New York 14,943 139,512 1,153,088 2,324

Table 5: Statistics of the Singapore and New York datasets.

9https://download.geofabrik.de/
10https://data.gov.sg/collections/1749/view
11https://www.nyc.gov/site/planning/data-maps/open-data/census-download-metadata.page
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Labels for the land use classification task were sourced from the Singapore Master Plan 201912 and NYC MapPLUTO13.
Following previous approaches (Li et al., 2023), we merge the fine-grained land use classes into five major categories,
including Residential, Industrial, Commercial, Open Space, and Others. Population estimation labels were obtained from
WorldPop14 for both cities.

For the remaining tasks, the labels are generated manually. Specifically, for the topological classification task, the number
of relationships depends on the types of objects being compared. Point/polyline, point/polygon, and polyline/polyline pairs
can belong to one of two classes: disjoint or not disjoint. Polyline/polygon pairs, however, have four distinct relationship
classes, while polygon/polygon pairs include six classes, following the DE9IM model. To eliminate redundancy, we
remove equivalent relationships such as within and contains, keeping only one representative relationship from each pair of
equivalents. To create a balanced dataset across all relationship classes, we generate geometry pairs by slightly adjusting the
positions of the original geospatial objects and randomly selecting 5,000 pairs for each class within a group.

For the directional relationship classification task, we classify the spatial relationships between two geometries into one of
16 compass directions based on their angular relationship. These 16 classes are derived from the cardinal and intercardinal
directions: north, northeast, east, southeast, south, southwest, west, northwest, and their boundary counterparts (e.g.,
north-northeast, east-northeast). Labels are computed based on the relative orientation of the geometries’ centroids. Similar
to the topological classification task, we randomly select 5,000 pairs for each directional class to ensure a balanced dataset.

For the distance estimation task, labels are computed using the actual spatial distance between the centroids of the two
geometries. The spatial distance is calculated using Euclidean distance for planar geometries, for topological and directional
relationship classification. We randomly select 10,000 geometry pairs for this task.

A.5. Baselines

We now describe the baseline methods used to evaluate POLY2VEC.

1. Point encoders

• DIRECT: Feeds directly the geometry’s input coordinates to the downstream model, without any encoding mechanism.

• TILE: Partitions the study area into a uniform grid with cells of size c. Each grid cell is assigned an embedding, which
serves as the encoding for the points assigned to that cell (Berg et al., 2014; Adams et al., 2015; Tang et al., 2015).

• WRAP: Uses a wrapping mechanism [sin(πp); cos(πp)] to encode a point p (Mac Aodha et al., 2019).

• GRID: Follows the Transformer’s position encoding model (Vaswani, 2017), representing spatial positions
through multi-scale sine and cosine transformations. At each scale s, the encoding is given by PE

(g)
s (p) =[

cos

(
p

λmin·g
s

S−1

)
, sin

(
p

λmin·g
s

S−1

)]
, where g = λmax

λmin
controls the frequency range. The final encoding concatenates

these multi-scale representations, capturing spatial structures across different resolutions (Mai et al., 2020).

• THEORY: Encodes spatial positions using dot products with unit vectors separated by 120◦. At each scale s, the encoding

is given by PE
(t)
s,j(p) =

[
cos

(
⟨p,aj⟩

λmin·g
s

S−1

)
, sin

(
⟨p,aj⟩

λmin·g
s

S−1

)]
∀j ∈ {1, 2, 3}, where a1 = [1, 0]T , a2 = [− 1

2 ,
√
3
2 ]T ,

and a3 = [− 1
2 ,−

√
3
2 ]T are unit vectors spaced at 120◦. The final encoding concatenates these multi-scale representations

across all vectors (Mai et al., 2020).

2. Polyline encoders

• T2VEC: First uniformly partitions the whole space into grid cells, and map each trajectory point into the grid cell.
Through this tokenization, each trajectory is converted to a sequence of grid cell IDs. Then adopts a GRU encoder
to encode the sequence and an end-to-end training paradigm that amis to reconstruct the original trajectories from the
distorted/downsampled ones (Li et al., 2018a).

3. Polygon encoders
12https://data.gov.sg/dataset/master-plan-2019-land-use-laye
13https://www.nyc.gov/site/planning/data-maps/open-data/dwn-pluto-mappluto.page
14https://hub.worldpop.org/geodata/listing?id=77
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• RESNET1D: Adapts the 1D variant of the Residual Network (ResNet) architecture, incorporating circular padding to
effectively encode the exterior vertices of polygons (Mai et al., 2023).

• NUFTSPEC: Transforms polygons into the spectral domain using the Non-Uniform Fourier Transformation (NUFT) and
j-simplex meshes and then learns polygon embeddings from these spectral features using MLPs (Mai et al., 2023).

A.6. Hyperparameter Configuration

The coordinates of the input geometries are normalized to lie within the range [−1, 1]× [−1, 1], based on the bounding box
of the corresponding area of interest. We set the minimum frequency fmin = 0.1, the maximum frequency fmax = 1.0 and
W = 10, resulting in 210 frequencies. We set the final size of the geometry embedding v to d = 32. All the MLPs consist
of two layers with ReLU activation functions.

A.6.1. HYPERPARAMETERS OF SPATIAL REASONING TASKS.

For training on the spatial reasoning tasks, we utilize the AdamW optimizer and set the learning rate lr = 10−4 and weight
decay wd = 10−8. The batch size is set to 128, and the downstream models were trained for 20 epochs. The training,
validation, and testing ratios for the datasets corresponding to these tasks is 60:20:20. All experiments were run 5 times and
we report average performances and standard deviation.

A.6.2. HYPERPARAMETERS OF GEOAI TASKS.

We follow the same hyperparameters as presented by Li et al. (2023), to keep our comparison consistent.

A.6.3. HYPERPARAMETERS OF OTHER BASELINES.

The implementation of baselines follows the corresponding papers, along which each method’s specific hyperparameters.
The rest of hyperparameters related to downstream tasks are kept consistent with our approach.

A.7. Experimental Environment

Our experiments are performed on a cluster node equipped with an 18-core Intel i9-9980XE CPU, 125 GB of memory, and
two 11 GB NVIDIA GeForce RTX 2080 Ti GPUs. Furthermore, all neural network models are implemented based on
PyTorch version 2.3.0 with CUDA 11.8 using Python version 3.9.19.

A.8. Training Details of Evaluation Tasks

We use cross entropy loss to train the downstream model on the topological and directional relationship classification tasks.
The loss is defined as:

LCE(θ) = − 1

N

N∑
i=1

C∑
c=1

yi,c log(ŷi,c),

where N is the number of samples, C is the number of classes (C = 2 for binary classification), yi,c ∈ {0, 1} is the one-hot
encoded ground-truth label for class c, and ŷi,c ∈ [0, 1] is the predicted probability for class c.

For the distance preservation task, the model is evaluated using the mean squared error (MSE) loss, defined as:

LMSE(θ) =
1

N

N∑
i=1

(yi − ŷi)
2
,

where yi is the ground-truth distance for the i-th sample, and ŷi is the predicted distance.

We note that for the population prediction and land use classification tasks, POLY2VEC is used as input to the pretrained
urban region representation model REGIONDCL (Li et al., 2023), and thus we follow the same training and evaluation
procedure as was originally presented by the authors.
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A.9. Further Details on Poly2Vec Integration into an End-to-End GeoAI Pipeline

In this section, we describe in more detail how Poly2Vec is integrated into RegionDCL.

We utilize RegionDCL as an end-to-end GeoAI pipeline to demonstrate the utility of Poly2Vec. Poly2Vec is used as the
input encoding in RegionDCL, replacing its original input representation. RegionDCL originally rasterizes OSM building
footprints, converting coordinate data into image inputs so it can leverage convolutional encoders like ResNet-18. This
rasterization leads to the loss of important spatial information, such as the absolute location of each building. To mitigate
this, RegionDCL introduces a distance-biased transformer encoder, where the bias term consists of pairwise distances
between buildings and POIs to reintroduce spatial context.

In our experiments, we (1) replaced the inputs with Poly2Vec encodings, and (2) replaced the distance-biased transformer
encoder with a standard transformer encoder, because our new inputs from (1) capture the necessary spatial information.
The fact that Poly2Vec improves performance even without the distance bias demonstrates its ability to inherently retain
spatial and positional information.

A.10. Supplementary Results on Topological Relationships Classification

Table 6: Overall model Performance on topological relationship classification. Best and second best are highlighted.

Metric Methods
Singapore New York

point-
polyline

point-
polygon

polyline-
polyline

polyline-
polygon

polygon-
polygon

point-
polyline

point-
polygon

polyline-
polyline

polyline-
polygon

polygon-
polygon

Precision

RESNET1D - - - - 0.3980.018 - - - - 0.4210.051

NUFTSPEC - - - - 0.5880.041 - - - - 0.5620.032

T2VEC - - 0.7680.021 - - - - 0.7450.012 - -
DIRECT 0.8590.007 0.8310.017 0.6370.032 0.4150.037 0.328 0.04 0.8350.032 0.9330.007 0.6610.032 0.4980.003 0.4390.024

TILE 0.7350.039 0.7050.056 0.5050.007 0.4900.006 0.4390.005 0.6640.018 0.7890.005 0.5020.009 0.4940.074 0.4180.005

WRAP 0.8740.011 0.8650.015 0.6450.009 0.4530.028 0.4050.010 0.8790.015 0.9150.006 0.6550.013 0.5860.005 0.4050.010

GRID 0.7990.037 0.8410.010 0.6260.027 0.4050.066 0.2880.013 0.7680.034 0.9040.015 0.6580.014 0.5130.012 0.3550.017

THEORY 0.9030.037 0.8740.004 0.6510.009 0.4320.018 0.4780.023 0.8860.044 0.8930.017 0.7180.007 0.6020.008 0.4310.009

POLY2VEC 0.9130.007 0.9240.017 0.7790.001 0.5060.013 0.6940.007 0.9210.016 0.9790.021 0.7450.002 0.6310.017 0.6980.006

Recall

RESNET1D - - - - 0.4550.011 - - - - 0.4520.035

NUFTSPEC - - - - 0.5720.032 - - - - 0.5920.029

T2VEC - - 0.7320.024 - - - - 0.7180.032 - -
DIRECT 0.7920.012 0.8380.027 0.9970.019 0.4140.031 0.4500.014 0.8380.035 0.8880.004 0.9870.22 0.4970.003 0.4310.003

TILE 0.8940.035 0.6950.074 1.00.001 0.4630.008 0.4130.004 0.6590.009 0.7690.011 1.000.001 0.4990.039 0.4050.004

WRAP 0.9030.005 0.9010.033 0.9920.007 0.4770.012 0.3800.006 0.8940.030 0.8420.031 0.9860.005 0.5510.008 0.3800.006

GRID 0.9210.035 0.8480.014 0.9800.016 0.4650.007 0.3390.013 0.9330.045 0.8810.004 0.9950.002 0.5140.012 0.3820.035

THEORY 0.9860.028 0.9330.007 0.9720.012 0.4510.012 0.4670.015 0.9230.044 0.9120.017 0.7820.007 0.6150.008 0.4120.009

POLY2VEC 1.00.000 0.9740.023 1.00.000 0.4980.007 0.6970.003 1.00.000 0.9890.032 1.00.000 0.6380.009 0.6970.007

F1

RESNET1D - - - - 0.3990.017 - - - - 0.3990.041

NUFTSPEC - - - - 0.5740.013 - - - - 0.5810.021

T2VEC - - 0.7320.002 - - - - 0.7410.007 - -
DIRECT 0.8240.006 0.8340.031 0.7770.022 0.4020.027 0.3140.014 0.8360.004 0.9100.003 0.7920.027 0.4630.003 0.4030.013

TILE 0.8050.013 0.6940.017 0.6710.004 0.4120.009 0.3840.005 0.6610.008 0.7790.004 0.6680.008 0.4530.061 0.3690.003

WRAP 0.8880.005 0.8820.009 0.7810.008 0.4500.020 0.3390.006 0.8860.009 0.8760.019 0.7870.010 0.5170.005 0.3390.006

GRID 0.8550.007 0.8440.002 0.7640.015 0.4110.026 0.2670.018 0.8420.032 0.8920.006 0.7920.009 0.4630.046 0.3220.038

THEORY 0.9380.014 0.9030.004 0.7880.007 0.4380.012 0.4250.006 0.8830.044 0.8910.017 0.7260.007 0.5490.059 0.4190.009

POLY2VEC 0.9550.011 0.9480.008 0.8310.002 0.4830.013 0.6820.003 0.9590.008 0.9840.012 0.8540.002 0.5880.012 0.6790.005
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A.11. Supplementary Results on Directional Relationship Classification

Table 7: Overall model Performance on directional relationship classification. Best and second best are highlighted.

Metric Methods
Singapore New York

point-
point

point-
polyline

point-
polygon

polyline-
polyline

polyline-
polygon

polygon-
polygon

point-
point

point-
polyline

point-
polygon

polyline-
polyline

polyline-
polygon

polygon-
polygon

Precision

NUFTRESNET - - - - - 0.8280.009 - - - - - 0.7830.010

NUFTSPEC - - - - - 0.8320.021 - - - - - 0.7150.014

T2VEC - - - 0.2270.021 - - - - - 0.2320.012 - -
DIRECT 0.8820.006 0.8460.006 0.8470.005 0.8250.002 0.8130.005 0.7650.014 0.8800.003 0.7670.004 0.8430.002 0.6870.003 0.7940.003 0.7740.001

TILE 0.2590.001 0.2600.026 0.2860.038 0.3700.005 0.4660.001 0.4150.010 0.2930.001 0.2790.013 0.3220.005 0.2800.005 0.4960.002 0.3760.026

WRAP 0.8630.003 0.8100.007 0.8060.004 0.7900.002 0.8350.002 0.7890.001 0.8090.004 0.6840.002 0.7590.016 0.6100.021 0.7810.001 0.6670.007

GRID 0.8840.007 0.7330.007 0.7750.002 0.7080.001 0.6530.015 0.5450.144 0.8720.002 0.6050.001 0.6700.040 0.4410.003 0.7660.003 0.5140.074

THEORY 0.9080.017 0.8720.012 0.8630.004 0.8150.012 0.8380.006 0.7290.044 0.8810.017 0.7740.007 0.8090.008 0.6920.009 0.7890.005 0.5380.012

POLY2VEC 0.9280.016 0.9420.012 0.9180.004 0.9110.013 0.8980.021 0.8300.007 0.9210.006 0.8890.016 0.8750.004 0.8890.013 0.8530.007 0.7920.009

Recall

NUFTRESNET - - - - - 0.8190.010 - - - - - 0.7470.010

NUFTSPEC - - - - - 0.7920.003 - - - - - 0.6850.004

T2VEC - - - 0.2160.023 - - - - - 0.2530.032 - -
DIRECT 0.8790.006 0.8410.006 0.8450.006 0.8200.002 0.8300.005 0.7520.017 0.8770.004 0.7660.005 0.8360.002 0.6530.007 0.7840.003 0.6940.003

TILE 0.2530.001 0.2690.002 0.2730.008 0.3240.001 0.4540.001 0.3950.003 0.2480.001 0.2570.004 0.3160.005 0.2170.001 0.4660.001 0.3480.012

WRAP 0.8610.003 0.8040.009 0.8030.004 0.7820.003 0.8310.002 0.7790.001 0.8100.004 0.6690.001 0.7590.016 0.5980.018 0.7720.002 0.6020.006

GRID 0.8820.002 0.7290.007 0.7720.002 0.6990.001 0.6410.016 0.5330.139 0.8680.002 0.5900.002 0.6470.050 0.4370.002 0.7520.003 0.4830.078

THEORY 0.8830.024 0.8670.009 0.8550.004 0.8630.012 0.5020.012 0.8970.014 0.7830.021 0.7910.007 0.8230.008 0.7090.009 0.8030.005 0.5670.012

POLY2VEC 0.9460.017 0.9470.021 0.9330.011 0.9030.008 0.8380.022 0.8260.007 0.9230.017 0.8940.012 0.8860.024 0.8780.013 0.8750.011 0.7930.012

F1

NUFTRESNET - - - - - 0.8210.010 - - - - - 0.7560.010

NUFTSPEC - - - - - 0.8020.028 - - - - - 0.6670.023

T2VEC - - - 0.2190.007 - - - - - 0.2520.018 - -
DIRECT 0.8800.006 0.8410.006 0.8450.006 0.8210.002 0.8400.005 0.7540.016 0.8760.004 0.7690.005 0.8380.002 0.6560.009 0.7840.004 0.7120.002

TILE 0.2150.001 0.2260.005 0.2470.015 0.3090.003 0.4470.001 0.3880.004 0.2360.001 0.2120.011 0.2880.012 0.1930.002 0.4390.002 0.3390.018

WRAP 0.8610.003 0.8040.009 0.8030.004 0.7820.002 0.8310.002 0.7800.001 0.8090.004 0.6680.002 0.7520.017 0.5900.021 0.7690.002 0.6130.005

GRID 0.8820.007 0.7280.007 0.7720.002 0.6980.001 0.6400.017 0.5300.150 0.8680.002 0.5880.002 0.6490.049 0.4090.003 0.7490.003 0.4600.077

THEORY 0.9030.015 0.8520.009 0.8550.004 0.8420.012 0.8450.006 0.7410.044 0.8840.017 0.7520.007 0.8120.008 0.6680.009 0.7560.025 0.5370.22

POLY2VEC 0.9280.015 0.9270.032 0.9180.029 0.9010.017 0.8990.016 0.8270.022 0.8920.012 0.8830.014 0.9030.013 0.8770.004 0.8320.003 0.7690.019

A.12. Supplementary Results on Distance Estimation

Table 8: Overall model performance on distance estimation. Best and second best are highlighted.

Dataset Model point-
point

point-
polyline

point-
polygon

Singapore

DIRECT 0.088±0.041 0.093±0.013 0.084±0.021

TILE 0.252 ±0.002 0.177±0.007 0.157±0.001

WRAP 0.085±0.009 0.106±0.012 0.102±0.007

GRID 0.087±0.006 0.107±0.003 0.108±0.002

THEORY 0.065±0.019 0.083±0.027 0.079±0.028

POLY2VEC 0.016±0.001 0.043±0.011 0.029±0.009

New York

DIRECT 0.075±0.017 0.126±0.041 0.115±0.033

TILE 0.271±0.005 0.170±0.004 0.189±0.004

WRAP 0.106±0.003 0.148±0.001 0.146±0.009

GRID 0.073±0.001 0.124±0.004 0.118±0.011

THEORY 0.068±0.008 0.089±0.074 0.102±0.061

POLY2VEC 0.030±0.007 0.049±0.004 0.042±0.021

Figure 6: Distance scatters of point-polygon pairs on NewYork dataset for different encoders.
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Figure 7: Distance scatters of point-polyline pairs on Singapore dataset for different encoders.

Figure 8: Distance scatters of point-polyline pairs on NewYork dataset for different encoders.

Figure 9: Distance scatters of point-point pairs on Singapore dataset for different encoders.

Figure 10: Distance scatters of point-point pairs on NewYork dataset for different encoders.

A.13. Supplementary Ablation Experiments

A.13.1. EFFECT OF LEARNED FUSION MODULE

We’ve shown the effect of learned fusion on point-polygon tasks in Section 4.3. We demonstrate its effect on the rest of
spatial reasoning tasks in Figures 12a, 12b, 11a, and 11b. We again observe similar trends as reported in the main evaluation.
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Figure 11: Effect of learned fusion on polyline-polygon and polygon-polygon pairs
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Figure 12: Effect of learned fusion on point-polygon and point-polyline pairs

A.13.2. EFFECT OF EMBEDDING SIZE d
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Figure 13: Effect of embedding size on topological relationship classification

16 32 64 128 256
Embedding Size d

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Directional Relationship Classification - Singapore

point-polyline
point-polygon
polyline-polyline
polyline-polygon
polygon-polygon

16 32 64 128 256
Embedding Size d

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Directional Relationship Classification - New York

point-polyline
point-polygon
polyline-polyline
polyline-polygon
polygon-polygon

Figure 14: Effect of embedding size on directional relationship classification
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Figure 15: Effect of embedding size in distance estimation
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A.13.3. EFFECT OF NUMBER OF FREQUENCY COMPONENTS W
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Figure 16: Effect of # of freq. components on topological relationship classification
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Figure 17: Effect of # of freq. components on directional relationship classification
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Figure 18: Effect of # of freq. components in distance estimation
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