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Abstract001

Large Language Models (LLMs) have exhib-002
ited remarkable performance across various003
downstream tasks, but they still generate in-004
accurate or false information with a confident005
tone. One potential solution is to improve006
LLMs’ ability to express calibrated confidence,007
ensuring that the confidence scores align well008
with the true probability of the generated an-009
swers being correct. However, leveraging the010
intrinsic abilities of LLMs or the output logits011
has proven ineffective in capturing response un-012
certainty. Therefore, drawing inspiration from013
cognitive diagnostics, we propose Learning014
from Past experience (LePe) to enhance the015
capability for confidence expression. We first016
identify three key problems: (1) How to cap-017
ture the inherent confidence of the LLMs?018
(2) How to teach the LLMs to express con-019
fidence? (3) How to verify the confidence020
expression of the LLMs? To address these021
challenges, we design a three-phase framework022
within LePe. In addition, to accurately capture023
the confidence of an LLM when constructing024
the training data, we design a complete pipeline025
including question preparation and answer sam-026
pling. Experimental results across multiple027
datasets demonstrate that our proposed method028
consistently enables LLMs to provide reliable029
confidence scores.030

1 Introduction031

While large language models (LLMs) have032

achieved exceptional success across diverse do-033

mains (Guo et al., 2023; Han et al., 2024; Achiam034

et al., 2023), their lack of a reliable mechanism to035

measure confidence in their outputs marks a key036

contrast with human cognition (Wang et al., 2022;037

Shuster et al., 2021).038

In human cognition, the calibration of confi-039

dence serves dual purposes: it facilitates calibrated040

decision-making and enables self-reflective aware-041

ness of knowledge boundaries through quantified042

uncertainty articulation (Gutierrez de Blume and 043

Schraw, 2014; Stoten, 2019). Similarly, for LLMs, 044

accurate uncertainty estimation can mitigate hal- 045

lucination risks in generation tasks and provide 046

actionable insights into response reliability for end 047

users. Moreover, it can enable diagnostic feedback 048

loops that help identify systemic model weaknesses 049

for targeted optimization (Liu et al., 2024; Yang 050

et al., 2023). 051

Accurate estimation of the uncertainty in the 052

LLM text generation process is crucial (Xu et al., 053

2023; Zhao et al., 2024; Abbasi-Yadkori et al., 054

2024). Existing approaches to confidence estima- 055

tion in LLMs can be broadly categorized into three 056

types. The first approach is prompt-based verbal 057

confidence (Zhang et al., 2024; Lin et al., 2022), 058

which directly requires the model to give a confi- 059

dence level after generating the text. The second ap- 060

proach focuses on indirectly estimating confidence 061

by quantifying properties of the probability dis- 062

tribution associated with the content generated by 063

the model(Kadavath et al., 2022; Li et al., 2024b; 064

Xu et al., 2024). The third approach empowers 065

the model confidence estimation through a fine- 066

tuning strategy(Liu et al., 2023; Lin et al., 2022; 067

Abbasi-Yadkori et al., 2024). 068

However, these confidence estimation ap- 069

proaches exhibit notable limitations. The first ap- 070

proach requires the model to generate outputs with- 071

out addressing its inherent lack of internal confi- 072

dence calibration. As a result, the predicted con- 073

fidence often diverges significantly from the ac- 074

tual correctness of the output. This leads to issues 075

such as overconfidence, where LLMs assign high 076

confidence to incorrect outputs. Moreover, this ap- 077

proach relies on task-specific prompt engineering, 078

which limits scalability. The second, more widely 079

adopted approach estimates confidence based on 080

statistical patterns in the model’s internal repre- 081

sentations. However, the mapping between these 082

statistical signals and true semantic correctness is 083
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not deterministic. Misjudgments may arise due to084

calibration bias, logical inconsistencies, or inter-085

ference from out-of-domain knowledge. The third086

approach, which relies on fine-tuning, also faces087

notable limitations. These methods either require088

extensively annotated data or are restricted to spe-089

cific domains, hindering their ability to generalize090

across diverse application scenarios.091

In this paper, inspired by the Cognitive Diag-092

nostics (Tatsuoka, 1983) approach for assessing093

students’ ability levels, we propose a method of094

Learning from Past experience (LePe) to enhance095

the LLM’s capability of confidence expression. In096

Cognitive Diagnosis, student knowledge mastery is097

modeled by analyzing their performance on prior098

experiences, thereby enabling an accurate assess-099

ment of their degree of knowledge acquisition and100

their potential performance on similar problems in101

the future. Similarly, LePe estimates the model’s102

capability level by leveraging its historical perfor-103

mance, thereby guiding the model to generate con-104

fidence scores in its outputs. LePe consists of three105

main phases: the testing phase, the learning phase,106

and the verification phase. In the testing phase,107

we aim to capture the inherent confidence of LLM108

by assessing its performance across a predefined109

set of questions. In the learning phase, we trans-110

form historical performance data into interpretable111

calibration signals that can be used to fine-tune the112

LLM so that it learns how to express its confidence.113

Finally, in the verification phase, we evaluate the114

model’s ability to generalize its calibrated confi-115

dence estimates to previously unseen problems.116

However, during the data construction process117

in the testing phase, context sensitivity (Giallanza118

and Campbell, 2024) led to inconsistent outputs for119

identical questions presented in varying contexts.120

This poses a significant challenge to obtaining reli-121

able confidence estimates from LLMs. To address122

this, we designed a comprehensive pipeline incor-123

porating multi-faceted mitigation strategies, includ-124

ing question mutation and hybrid sampling. The125

question mutation method applies various transfor-126

mations to questions and answer options—without127

altering their underlying semantics—to test the ro-128

bustness of LLM-generated responses. The hy-129

brid sampling strategy employs multiple sampling130

techniques to derive more representative intrinsic131

confidence estimates from the model.132

Our main contributions are summarized as fol-133

lows:134

• Inspired by Cognitive Diagnostics, we pro- 135

pose a novel method, LePe, to generate cal- 136

ibrated confidence scores for answers pro- 137

duced by LLMs. 138

• We develop a comprehensive data construc- 139

tion and training pipeline to capture the 140

LLM’s underlying confidence patterns and 141

mitigate contextual generation bias. 142

• Through extensive experiments on multiple 143

datasets with various open-source LLMs, we 144

demonstrate that our method yields confi- 145

dence scores that are well-aligned with answer 146

correctness. Notably, on the GSM8K dataset, 147

selecting the top 10% of responses based on 148

confidence leads to an accuracy improvement 149

of nearly 50% for Llama2-13B. 150

2 Related Work 151

2.1 Self-awareness of LLMs 152

Although LLMs are equipped with extensive para- 153

metric knowledge, several studies highlight their 154

lack of self-awareness in recognizing the bound- 155

aries of their competence (Wang et al., 2024). Prior 156

studies on LLM self-awareness primarily focus on 157

mapping their knowledge boundaries (Yin et al., 158

2023; Ren et al., 2023). These methods aim to help 159

LLMs better leverage their intrinsic knowledge, 160

thereby reducing hallucinations when encountering 161

unfamiliar questions. The Inference-Time Inter- 162

vention (ITI) method (Li et al., 2024a) achieves 163

this by adjusting model activations along factuality- 164

related heads during inference, thus promoting the 165

generation of more truthful responses. FactTune 166

(Tian et al., 2023a) employs Direct Preference Op- 167

timization (DPO) (Rafailov et al., 2024) to guide 168

LLMs toward generating responses that better align 169

with external knowledge. Similarly, Srivastava et 170

al. (2022) assess LLMs’ ability to delineate their 171

knowledge boundaries using 23 pairs of answer- 172

able and unanswerable multiple-choice questions. 173

However, these methods often enforce overly con- 174

servative behavior: when confronted with uncertain 175

questions, LLMs frequently choose not to respond 176

at all, rather than attempting to reason from known 177

information or offer a speculative answer—thereby 178

limiting their practical utility. 179

2.2 Confidence elicitation in LLMs 180

Confidence elicitation refers to the process of es- 181

timating the level of confidence in an LLM’s re- 182
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Stage1 : Testing Stage2 : Learning

ID:  x_00001 
Q : If a crowd of people being to panic, what might they do?
A. destroy each other B. run amok  
C. die D. desire to win

Distractor Options
Random Shuffling
Label Variants
Instruction Templates …

··· so, the final answer is A. 

··· so, the final answer is B. 

··· so, the final answer is C. 

··· so, the final answer is B. 

ID x_00001 x_00002 x_00003 x_00004

Confidence 0.82 0.47 0.14 0.94

H(x) 1.17 1.51 1.07 0.08

···

Data Format

Question
Input

Output

Ground Truth

Confidence

Update the parameters

Training

Stage3 : Verification

Q1 Q2 Qn-1 Qn

A1 A2 An-1 An

Cn-1: 0.83 Cn: 
0.16

C1: 
0.13

Cn: 
0.91

···

···

···

···

0-0.1 0.1-0.2 0.2-0.3 ··· 0.8-0.9 0.9-1

Accuracy within 

confidence buckets

Confidence threshold 

per bucket

additional 
sampling 

Figure 1: The pipeline of our proposed method LePe. We determine the confidence levels of LLMs in categorical
problem-solving through multiple independent sampling tests conducted in prior experimental evaluations,
rather than relying on intrinsic signals derived from the models’ own output mechanisms.

sponse without requiring fine-tuning or access to183

proprietary model internals (Xiong et al., 2023).184

Existing methods are broadly classified into two185

categories. The first category employs carefully186

designed prompts to simultaneously guide answer187

generation and elicit verbalized confidence. Bran-188

wen (2020) demonstrates GPT-3’s ability to express189

uncertainty on basic factual queries using few-shot190

prompting, marking the beginning of prompt-based191

confidence elicitation methods. Lin et al. (2022)192

formalize this idea by introducing the concept of193

verbalized confidence, where LLMs are explicitly194

prompted to express their certainty. Building on195

this, Xiong et al. (2023) expand the design space196

by proposing consistency-based and hybrid prompt-197

ing methods. Zhou et al. (2023) attempt to inject198

uncertainty-related language into prompts, hoping199

that models mirror this in their responses. How-200

ever, this often leads to reduced answer accuracy,201

particularly for complex tasks.202

The second category of methods indirectly esti-203

mates confidence by analyzing the statistical prop-204

erties of the output probability distribution. Kada-205

vath et al. (2022) propose incorporating a dedicated206

Value Head to probe the self-assessed confidence207

of LLMs. Similarly, Kuhn et al. (2023) find that208

higher semantic diversity in outputs correlates with209

lower model confidence.210

Overall, current approaches rely heavily on the211

inherent capabilities and internal signals of LLMs212

to elicit confidence. While effective to some extent,213

they are constrained by task complexity and model214

limitations—especially in reasoning-intensive sce-215

narios where LLMs often exhibit overconfidence.216

In contrast, we treat the ability to express confi- 217

dence as a meta-capability that should be explicitly 218

trained and calibrated within the LLM through tar- 219

geted learning from historical performance. 220

3 Methods 221

3.1 Task Formalization 222

To evaluate the capability of LLMs to internalize 223

knowledge through prior experience, we propose 224

a quantitative evaluation framework grounded in 225

cognitive diagnostic theory. Given a set of ques- 226

tions Q = {q1, q2, . . . , qn}, we query the model k 227

times independently for each question q ∈ Q and 228

compute its empirical accuracy as: 229

c(q) =
1

k

k∑
i=1

I(ai = a∗), (1) 230

where a∗ denotes the ground truth answer and 231

ai is the model’s i-th generated answer. The indica- 232

tor function I(·) returns 1 if the predicted answer 233

matches the ground truth, and 0 otherwise. We 234

interpret c(q) as a proxy for the model’s inherent 235

confidence on question q. 236

Based on this, we construct a supervised learning 237

dataset: 238

D = {(q, a⊕ c(q)) | q ∈ Q} , (2) 239

where ⊕ denotes the concatenation of the 240

answer and its associated confidence score into 241

a joint representation. This formulation treats 242

the confidence score c(q) as an explicit signal 243

reflecting the model’s prior knowledge, enabling a 244
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meta-learning evaluation framework that assesses245

the model’s efficiency in knowledge acquisition246

over D.247

248

3.2 Learning from Past Experience (LePe)249

To enhance the ability of LLMs to express confi-250

dence, we raise three core research questions cor-251

responding to the three phases of our proposed252

approach: (1) How can the intrinsic confidence of253

LLMs be effectively captured? (2) How can LLMs254

be trained to express confidence appropriately? (3)255

How can the accuracy of LLMs’ expressed confi-256

dence be evaluated?257

Testing Phase. In this phase, we aim to esti-258

mate the model’s inherent confidence by evaluat-259

ing its historical performance across multiple con-260

texts. Given a set of questions Q = {q1, . . . , qn},261

each question qi is posed to the model M for k262

independent trials, resulting in a set of answers263

{ai1, ai2, . . . , aik}. Each answer aij corresponds264

to a model output, denoted as M(qi) → aij . We265

associate each answer with a correctness label266

pij ∈ {0, 1}, where pij = 1 if the answer is correct267

and 0 otherwise. Consequently, each instance is268

represented as a triplet (qi, aij , pij). These records269

form the basis for constructing a training dataset270

used in the subsequent learning phase.271

Learning Phase. We utilize the collected confi-272

dence signals to construct instruction-style training273

data and apply instruction fine-tuning (Stiennon274

et al., 2020; Ouyang et al., 2022) to guide the model275

in expressing confidence. This step aims to bridge276

the gap between intrinsic confidence and verbalized277

confidence output, enabling the model to articulate278

its uncertainty more faithfully.279

Verification Phase. In this phase, we evaluate280

the calibration performance of the fine-tuned model281

on unseen questions. Specifically, we assess how282

closely the model’s predicted confidence aligns283

with the empirical probability of correctness. A284

model is considered well-calibrated if its confi-285

dence estimates match the true likelihood of being286

correct. Formally, this is defined as:287

P (y = ŷ | conf = z) = z, ∀z ∈ [0, 1], (3)288

where y denotes the model’s predicted answer,289

ŷ is the ground truth, and conf is the model’s ex-290

pressed confidence score. Calibration quality is291

evaluated by comparing the predicted confidence 292

to the actual accuracy across confidence intervals. 293

3.3 Training Data Construction 294

To ensure the consistency of LLM responses, miti- 295

gate context sensitivity, and better capture intrinsic 296

model uncertainty, we adopt two key strategies: 297

question mutation and answer sampling. 298

Question Mutation. To improve robustness and 299

reduce generation variance, we implement a two- 300

step sampling strategy: In the first step, we sample 301

each question k times, resulting in k × n outputs 302

across n questions. We then measure the consis- 303

tency of responses for each question. If the model’s 304

responses are relatively consistent, we assume high 305

certainty and no further sampling is performed. 306

Otherwise, questions showing high variation are 307

flagged as ambiguous. In the second step, we se- 308

lect a proportion α (where 0 < α < 1) of ques- 309

tions with the highest entropy for each question 310

type. These questions are considered to exhibit 311

high ambiguity, and we perform k additional sam- 312

pling iterations for each of them to better capture 313

the distribution of possible model responses. 314

We quantify ambiguity using entropy over the 315

model’s answer distribution: 316

H(X) = −
n∑

i=1

p(xi) log2 p(xi), (4) 317

where X denotes the answer space, xi is a distinct 318

answer, and p(xi) is its empirical probability. A 319

higher entropy indicates more uncertainty. 320

To reduce the influence of probabilistic fluctu- 321

ations and prompt variations, we introduce con- 322

trolled mutations at both the question and answer 323

levels: 324

• Distractor Options (DisO): We introduce mis- 325

leading options such as “None of the above” and 326

“All of the above” to evaluate robustness. 327

• Random Shuffling (RS): Answer choices are 328

randomly reordered each time the question is 329

presented to mitigate position bias. 330

• Label Variants: We vary answer labels across 331

formats—uppercase letters (A–D), lowercase let- 332

ters (a–d), Arabic numerals (1–4), and Roman 333

numerals (i–iv or I–IV). 334

• Instruction Templates: Multiple prompt tem- 335

plates, including few-shot examples and Chain- 336

of-Thought Prompts (COTP) (Wei et al., 2022), 337

are used to guide model reasoning. 338
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The original question: Sammy wanted to go to where the people were. Where might he go?

A. race track B. populated areas C. the desert D. apartment

The varied question: (TaskP) Examine the following options carefully and select the correct one.

(COTP) Please select the correct option from the provided choices and offer a comprehensive problem-solving process.

(question) Sammy wanted to go to where the people were. Where might he go?
(Shuffle options and change option label)
1. populated areas 2. apartment 3. the desert 4. race track
(DisO) 5. All of the above / None of the above

Input: (confidence expression prompt) For the following question, please select the correct option, and provide your confidence in this 

answer.
Google Maps and other highway and street GPS services have replaced what?
A. united states B. Mexico C. countryside D. atlas E. None of the above

Output: The correct answer is D. atlas. (Conf) My confidence is 61.5%.

Figure 2: Structure of instruction-format training data for confidence calibration. The top shows a sample input
with an appended confidence score. The bottom illustrates the data components: question, answer, and confidence
statement.

An example of a mutated question presented to339

the LLM is shown in Figure 2(top).340

Answer Sampling. We adopt a random sampling341

decoding strategy augmented with a hybrid ap-342

proach that integrates both Top-k and Top-p sam-343

pling. This combination enables the model to gen-344

erate a diverse set of responses, thereby capturing a345

wider range of confidence levels. Specifically, for346

each input question qi ∈ Q, the model produces347

k distinct responses, which collectively constitute348

the dataset of answer records.349

To fine-tune the model’s ability to express confi-350

dence, we use the collected answer records as train-351

ing data. Crucially, not all model responses are352

correct. Including incorrect answers—especially353

those with low confidence—can help the model354

learn to appropriately signal uncertainty. However,355

excessive inclusion of such responses may exacer-356

bate hallucination risks (Huang et al., 2023).357

To balance this, we compute a normalized confi-358

dence score:359

Conf =
fqi
k
, (5)360

where fqi denotes the number of correct answers361

out of k attempts for question qi. During training,362

we format each sample as:363

⟨Question,Answer + Confidence⟩,364

where confidence is expressed as: “My confidence365

is [Conf × 100]%.” This unified format enables the366

model to learn proper confidence calibration across367

a range of correct and incorrect outputs while mini-368

mizing overfitting to flawed data.369

An example of the final instruction format is370

shown in Figure 2(bottom).371

4 Experiments 372

4.1 Experiment settings 373

Dataset. We evaluate the quality of confidence esti- 374

mates across six datasets on three distinct domains, 375

including mathematical domains: GSM8K(Cobbe 376

et al., 2021), AIME241, commonsense reasoning: 377

CommonsenseQA(CSQA)(Talmor et al., 2018), 378

MMLU (Hendrycks et al., 2020), and open 379

questions: TriviaQA(Joshi et al., 2017), NQ- 380

Open(Kwiatkowski et al., 2019). 381

Models and Baselines. We consider three mod- 382

els, Llama2-13B(Touvron et al., 2023), Llama3.1- 383

8B(Dubey et al., 2024) and Qwen2.5-7B(Yang 384

et al., 2024). For comprehensive comparison, 385

we consider two categories of baseline meth- 386

ods for confidence estimation: (1) Training-free 387

approaches: First-Prob(Santurkar et al., 2023), 388

Verb(Tian et al., 2023b), Multi-Step(Xiong et al., 389

2023), SE(Kuhn et al., 2023). (2) Training-based 390

approaches: SuC(Lin et al., 2022), P(IK)(Kadavath 391

et al., 2022). 392

Metrics. To evaluate the accuracy of generated 393

answers, we employ a string-matching approach 394

to extract the model’s final answer and compare 395

it with the ground truth. We use four evaluation 396

metrics to assess the model’s performance. 397

ACC. Represents the average accuracy of the 398

LLM’s responses. 399

AUROC. Area Under the Receiver Operating 400

Characteristic Curve.Measures model’s ability to 401

distinguish correct vs. incorrect answers using con- 402

fidence scores. 403

r. Pearson Correlation Coefficient. Quantifies 404

linear correlation between confidence scores and 405

1https://huggingface.co/datasets/math-ai/aime24
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Figure 3: Calibration results on the GSM8K dataset using Llama2-13B and Llama3.1-8B. The horizontal axis shows
predicted confidence, and the vertical axis shows actual accuracy. LePe demonstrates strong alignment between
predicted and actual confidence, while the Verb method exhibits poor calibration.

LePe

80-100%

60-80%

40-60%
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0-20%

LePe VerbVerb

Figure 4: The detailed confidence statistics for LePe and Verb Using Llama2-13B on the GSM8K(left) and
CSQA(right) Datasets.

answer correctness.406

ECE. Expected Calibration Error. We partition407

the inference results into B disjoint bins based on408

the confidence scores, compute the average confi-409

dence score for each bin, and compare it with the410

average true accuracy of the answers within that411

bin. The ECE is calculated by:412

ECE =
B∑
b=1

sb
S

|acc(b)− conf(b)| , (6)413

where b is the b-th bin, B is the total number of414

bins, sb is the number of questions in the b-th bin,415

S is the total number of questions in the test set,416

acc(b) is the true correctness of the answers in the417

b-th bin, and conf(b) is the average of the LLM418

confidence in the b-th bin. The smaller the value,419

the better.420

Implementation Details. The three datasets421

used in the experiments were trained indepen-422

dently.For the hyperparameters used in our paper,423

we set k = 30 and α = 0.5. Our optimizer is424

AdamW (Loshchilov and Hutter, 2017) with β1425

and β2 values of 0.98 and 0.99. During training,426

we set the initial learning rate to 2e-5, the final427

learning rate to 5e-5. We conduct all our experi- 428

ments using the NVIDIA A800. 429

4.2 Main results analysis 430

As shown in Table 1, although most methods re- 431

tain the basic functionality of confidence estima- 432

tion, their actual calibration performance varies 433

significantly. This is evident from the substan- 434

tial differences in empirical results. For instance, 435

LePe and P(IK) demonstrate strong overall per- 436

formance. On the Llama2-13B model with the 437

GSM8K dataset, their ECE reach 8.9 and 14.5, 438

respectively. In contrast, methods such as SuC 439

and Verb perform poorly under the same condi- 440

tions, with ECEs of 28.8 and 29.4. Moreover, when 441

faced with the more challenging AIME24 dataset, 442

which involves long-form mathematical reasoning, 443

most traditional optimization methods suffer catas- 444

trophic failures. Their breakdown is striking: on 445

the Llama3.1-8B model, Verb and Multi-step re- 446

port ECEs of 73.4 and 77.2, indicating a complete 447

collapse in confidence calibration. In comparison, 448

LePe maintains robust performance with an ECE of 449

18.5, highlighting its strong calibration capability 450

under difficult settings. 451
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Baselines
GSM8K AIME24 CSQA MMLU TriviaQA NQ-Open

r ↑ ECE ↓ AU ↑ r ↑ ECE ↓ AU ↑ r ↑ ECE ↓ AU ↑ r ↑ ECE ↓ AU ↑ r ↑ ECE ↓ AU ↑ r ↑ ECE ↓ AU ↑
L

la
m

a2
-1

3B

P(IK) 0.894 14.5 64.8 0.693 31.4 72.1 0.812 29.9 59.5 0.764 17.3 67.6 0.901 18.7 65.0 0.731 18.3 70.7
First-Prob 0.767 23.4 59.7 0.629 42.0 61.2 0.763 22.4 60.1 0.687 19.4 64.3 0.741 27.6 57.1 0.636 22.1 65.1

SuC 0.702 28.8 57.3 0.547 37.3 57.3 0.700 27.2 56.7 0.628 22.1 65.2 0.718 23.5 58.2 0.610 24.6 66.4
Verb 0.558 29.4 56.2 0.284 82.3 14.9 0.453 21.8 58.3 0.659 32.6 61.1 0.644 27.2 53.7 0.637 29.8 62.4

Multi-Step 0.701 27.2 58.3 0.403 76.4 23.1 0.738 24.1 59.2 0.574 33.4 62.5 0.751 26.4 61.1 0.635 28.7 63.1
SE 0.673 18.4 68.6 0.748 32.7 65.1 0.712 16.3 65.4 0.727 20.3 69.4 0.772 19.5 63.1 0.705 24.1 70.2

LePe(ours) 0.932 8.9 67.3 0.903 24.8 78.4 0.982 16.2 69.3 0.964 15.0 72.6 0.927 15.5 68.4 0.941 13.9 74.3

L
la

m
a3

.1
-8

B

P(IK) 0.793 17.6 72.8 0.765 33.1 67.9 0.874 19.4 68.7 0.724 18.3 72.1 0.762 20.4 67.7 0.751 22.4 68.2
First-Prob 0.812 26.2 66.2 0.609 40.3 65.0 0.834 23.5 66.8 0.627 21.4 68.4 0.790 24.9 65.1 0.646 29.4 66.5

SuC 0.603 28.4 62.0 0.577 42.7 62.2 0.630 32.7 59.1 0.611 24.7 66.3 0.663 29.7 60.4 0.563 27.3 61.4
Verb 0.652 20.4 72.9 0.175 73.4 6.1 0.731 28.0 68.4 0.608 31.2 62.7 0.701 30.1 69.1 0.657 34.0 65.2

Multi-Step 0.694 25.9 65.4 0.354 77.2 16.3 0.680 27.4 67.2 0.671 29.6 62.0 0.713 27.8 66.1 0.603 31.9 63.1
SE 0.703 17.6 73.5 0.715 20.9 68.5 0.705 21.3 66.7 0.773 17.2 71.2 0.753 19.4 66.4 0.721 22.3 70.4

LePe(ours) 0.963 13.5 76.4 0.892 18.5 73.1 0.973 16.0 68.4 0.913 14.3 76.2 0.983 15.5 69.8 0.937 20.9 73.1

Q
w

en
2.

5-
7B

P(IK) 0.757 17.4 68.3 0.763 27.9 66.3 0.731 16.3 68.4 0.789 16.1 69.8 0.873 21.6 67.9 0.814 20.8 72.3
First-Prob 0.831 25.4 66.4 0.576 35.8 57.4 0.874 26.6 65.2 0.673 30.3 68.0 0.882 25.9 62.3 0.626 24.5 68.5

SuC 0.642 29.0 57.4 0.548 38.4 60.4 0.671 28.2 63.1 0.594 27.0 62.4 0.624 32.7 58.5 0.507 24.1 63.1
Verb 0.603 15.3 72.2 0.251 78.7 11.3 0.734 12.4 70.3 0.624 29.4 63.3 0.661 22.0 68.4 0.677 33.6 62.4

Multi-Step 0.662 22.9 68.0 0.405 68.3 31.2 0.691 24.2 65.7 0.574 28.4 65.1 0.721 21.7 66.4 0.631 29.0 65.3
SE 0.739 18.6 72.1 0.720 25.1 73.5 0.693 19.3 69.4 0.674 22.4 68.3 0.741 22.5 68.4 0.781 23.8 71.8

LePe(ours) 0.946 11.4 72.3 0.911 21.2 76.2 0.971 14.7 70.6 0.952 15.6 73.1 0.992 15.2 69.2 0.927 17.4 76.2

Table 1: Results of confidence estimates for all baseline methods. AU means AUROC. The best results are bolded,
and the second best ones are underlined.
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Figure 5: Testing on the out-of-domain datasets. The LLM is trained using LePe on CSQA and tested on
OpenBookQA (left) and GSM8K (right).

Dataset t Model ACC ACCt DP

GSM8K 65
Llama2-13B 33.6 66.5 29.4%
Llama3.1-8B 61.7 77.3 76.1%
Qwen2.5-7B 73.4 82.1 73.4%

CSQA 85
Llama2-13B 65.6 85.5 26.5%
Llama3.1-8B 77.4 88.4 62.9%
Qwen2.5-7B 81.1 90.3 60.2%

TriviaQA 95
Llama2-13B 64.8 85.1 48.4%
Llama3.1-8B 73.9 87.2 54.3%
Qwen2.5-7B 77.3 89.4 57.1%

Table 2: The accuracy performance of our foundational
models is evaluated across three distinct datasets at vary-
ing acceptable confidence thresholds. DP represents
the proportion of data for which the confidence level
exceeds the t.

As shown in Figure 3 and Figure 4, the use of452

the LePe method results in a strong positive correla-453

tion between the model’s predicted confidence and454

its actual accuracy, indicating effective calibration.455

In contrast, traditional methods exhibit notable is-456

sues. For example, on the Llama2-13B model with 457

the GSM8K dataset, the Verb method shows only 458

a weak correlation between predicted confidence 459

and true accuracy. Even when the model assigns 460

high confidence scores (90%–100%), the actual 461

accuracy remains around 40%. Furthermore, on 462

the Llama3.1-8B model, the problem of overcon- 463

fidence becomes more pronounced. The model 464

rarely produces low-confidence predictions and 465

shows similar accuracy across different confidence 466

intervals. This undermines the reliability and us- 467

ability of its confidence scores. 468

4.3 Confidence threshold analysis 469

As shown in Table 2, we analyze model confidence 470

and identify a practical threshold for evaluating 471

the reliability of LLMs. This threshold enables 472

actionable reliability: predictions with confidence 473
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Baselines GSM8K CSQA TriviaQA
ACC ACCt5 ACCt3 ACCt1 ACC ACCt5 ACCt3 ACCt1 ACC ACCt5 ACCt3 ACCt1

P(IK) 30.4 45.1 50.5 55.7 66.9 74.3 78.6 80.1 66.2 72.3 74.9 78.2
First-Prob 30.4 40.2 43.7 47.1 62.5 69.2 73.1 76.1 63.1 68.8 70.5 73.3
SuC 31.0 36.6 37.8 39.2 60.1 65.3 67.7 69.4 62.8 65.3 67.2 69.9
Verb 31.0 35.2 38.8 41.3 64.3 67.1 69.5 72.6 65.1 66.7 69.3 71.4
Multi-Step 31.3 39.4 41.0 45.9 63.7 68.7 71.4 74.5 63.3 69.2 72.0 73.7
SE 32.6 40.1 45.7 49.2 64.7 71.2 75.4 78.2 65.1 71.0 73.2 78.1

LePe(ours) 33.6 57.7 65.3 83.3 65.6 81.3 84.9 93.4 64.8 84.7 87.6 93.8

Table 3: The ACC of results at different confidence score levels in Llama2-13B. ACCt5 represents the accuracy of
the results whose confidence scores are within the top 50%, and so on.

Method r ↑ ECE ↓ AUROC ↑
LePe(Ours) 0.982 16.2 69.3

w/o DisO 0.940(-0.042) 17.2(+1.0) 68.1(-1.2)
w/o RS 0.963(-0.019) 17.4(+1.2) 67.4(-1.9)
w/o COL 0.958(-0.024) 16.9(+0.7) 67.1(-2.2)
w/o ALL 0.917(-0.065) 18.2(+2.0) 65.8(-3.5)

Table 4: Ablation study of LePe method on Common-
senseQA with Llama2-13B. DisO: distractor options.
RS: randomly shuffled. COL: change option labels.

scores above the threshold demonstrate statistically474

reliable performance, while those below indicate475

uncertainty and require further handling. For in-476

stance, on the Llama-13B model with the GSM8K477

dataset, LePe achieves an accuracy of 66.5% on478

predictions above the threshold—nearly twice the479

baseline overall accuracy of 33.6%.480

As shown in Figure 3, we further filter predic-481

tions based on different confidence levels. At all482

levels, LePe consistently outperforms the baseline.483

For example, on the TriviaQA dataset, the top 10%484

most confident predictions achieve an accuracy of485

93.8%, representing a 29% improvement over the486

overall accuracy.487

4.4 Generalized experimental analysis488

As shown in Figure 5, to assess the generalizability489

of our method, we evaluate Llama2-13B trained490

with LePe on CSQA, testing its confidence estima-491

tion on both in-domain (OpenBookQA) and out-of-492

domain (GSM8K) datasets.493

Our analysis indicates that LePe maintains ef-494

fective calibration across both in-domain and out-495

of-domain scenarios. Specifically, Llama2-13B496

trained on CSQA demonstrates reliable confidence497

estimation on OpenBookQA and GSM8K, with a498

significant positive correlation between confidence499

estimates and accuracy. This consistent trend sug-500

gests robust generalization, indicating LePe’s abil-501

ity to provide reliable confidence estimates even on502

tasks beyond its training domain.503

4.5 Ablation experiment analysis 504

As shown in Table 4, we conduct ablation studies 505

demonstrating that all mutation strategies are es- 506

sential to the calibration effectiveness of LePe. Per- 507

formance degrades progressively with component 508

removal (r:0.982→0.940; ECE:+7.4%), reaching 509

worst-case metrics without strategies, demonstrat- 510

ing their synergistic integration requirement. 511

5 Conclusion 512

In this paper, we present a method of learning from 513

past experience to enhance the LLMs’ capability 514

for confidence expression, enabling LLMs to pro- 515

vide answers along with corresponding confidence 516

levels. We first design a general pipeline to obtain 517

the actual performance of the LLMs on the prob- 518

lem. Further, we utilize the performance records 519

to construct the dataset for instruction fine-tuning 520

so that the LLMs learn to express confidence in 521

the generated answers. We conduct experiments on 522

three open-source language LLMs to demonstrate 523

the effectiveness of our method. The consistent 524

experimental results across multiple tasks affirm 525

that our method endows the LLMs with confidence 526

expression capability. 527

6 Limitations 528

This study mainly evaluates the performance of 529

LePe on general-purpose tasks (reasoning, com- 530

mon sense, openness), and does not validate its 531

applicability in specialized domains (e.g., legal, 532

medical). Moreover, as mentioned earlier, using 533

the confidence expressed by the model, we can 534

identify the model’s weaknesses and further im- 535

prove them in a targeted manner, allowing LLMs 536

to continue to evolve. In this paper, we propose a 537

general method to enhance the model’s capability 538

to express confidence, but do not discuss the impact 539

of ability on the continuous learning of LLMs. 540
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