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Abstract

Large Vision-Language Models (LVLMs) exhibit impressive capabilities in com-
plex visual tasks but are prone to hallucination, especially in open-ended generation
tasks. This paper explores why LVLMs tend to hallucinate and how to mitigate
it. First, we conduct causal mediation analysis through counterfactual edits on
specific modules in LVLMs. Our results disclose that Multi-Head Attention (MHA)
modules contribute more to the probability of generating hallucination words than
multi-layer perceptron modules. We then identify specific heads that are responsi-
ble for hallucination, referred to as hallucination heads. Second, we examine the
behavior of hallucination heads. We find that they are concentrated in the middle
and deeper layers, displaying a strong attention bias toward text tokens. Further,
we show that the attention patterns of certain hallucination heads exhibit greater
similarity to the base language model. Finally, we propose two simple yet effective
methods to mitigate hallucination: one is training-free and can be applied directly
during decoding, while the other involves fine-tuning. Both methods are targeted
for hallucination heads to reduce their reliance on text tokens. Notably, our methods
achieve up to 1.7x reduction in hallucination rate for the LLaVA-v1.5-7B model
in COCO captioning task, outperforming existing baselines. Overall, our findings
suggest that hallucinations in LVLMs are likely to stem from certain modules, and
targeted interventions can effectively mitigate these issues.

1 Introduction
Large Vision-Language Models (LVLMs) [17, 31, 21, 13, 2] have shown impressive performance in
tasks ranging from image description to complex reasoning, but they often hallucinate, generating
content that deviates from image information, particularly in open-ended tasks like captioning
[3]. This highlights a key weakness and risks misleading users. Understanding and mitigating
hallucinations is crucial for improving the reliability of these models.

Tracing the causes of hallucinations in LVLMs is difficult due to their complex training pipeline,
which combines visual pre-training and instruction tuning on a pre-trained language model [17, 31].
The Transformer-based architecture [22] further complicates interpretation. Studies have found
multiple contributing factors: Leng et al. [12] showed that visual uncertainty from distorted images
amplifies hallucinations, while Huang et al. [11] noted that over-reliance on summary tokens neglects
key image information. Moreover, Li et al. [14] and Zhou et al. [30] observed that models hallucinate
by generating frequently co-occurring objects inaccurately. See Appendix A for related work.

In this paper, we explore the causes of hallucinations in Large Vision-Language Models (LVLMs),
focusing primarily on the LLaVA-v1.5-7B model. In Section 2.1, we identify specific components,
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particularly Multi-Head Attention (MHA) modules in the middle and deeper layers, as key con-
tributors to generating hallucination words. Our analysis in Section 2.2 reveals that hallucination
heads prioritize text over visual inputs, inheriting biased attention patterns from the base language
model, which remain unchanged after instruction tuning. To mitigate hallucinations, in Section 2.3
we propose two strategies—downscaling text attention weights during decoding and fine-tuning
hallucination heads—both of which reduce hallucination rates and outperform existing baselines.

2 Hallucination Attribution and Intervention
2.1 Tracing Hallucination Behaviors to Model Components

The first step in our workflow is selecting a neural network with significant hallucination behaviors,
for which we choose LLaVA-7B.1 We then break the model into smaller units, focusing on MHA
(multi-head attention) and MLP (multi-layer perceptron), and use causal mediation analysis via
a "knockout" technique [24]. By zero-ablating components, we quantify each one’s influence on
hallucinations using:

Ic =
1

m

T∑
t=1

I {yt ∈ hallucination}
[
PM (yt|v, x, y<t)− PM\c(yt|v, x, y<t)

]
(1)

where higher Ic values indicate greater contribution to hallucination.

× 3.5

Figure 1: Influence scores of
MLP and MHAs in LLaVa-7B on
generation probability of halluci-
nation objects.

For our analysis, we use the COCO dataset [16], sampling 1,500
images from the training set. Following standard practice [11],
we prompt the LVLM with the instruction:“Please describe the
image in detail." Objects that match the ground truth labels are
marked as non-hallucinated, while mismatches are classified as
hallucinated. Subsequently, we perform zero-ablation on each
MLP and MHA independently, calculate the influence score as
in Equation (1), and present the average results for all MLPs and
MHAs in Figure 1.

MHAs have greater effects than MLPs for Hallucination. We
observe that removing MLP layers has less impact than MHAs.
This finding aligns with [9], which demonstrated that MHAs
have a significant effect on classification accuracy in the trans-
former model CLIP [19]. Intuitively, MHAs focus on capturing
relationships and dependencies between tokens through attention
weights, whereas MLPs primarily process the information output
by MHAs. The differing effects of these interventions suggest that hallucinations often stem from the
model’s attention to specific patterns or biases, highlighting the need for a more targeted analysis of
these components.

Building on our findings, we further investigate attention heads linked to hallucinations. Identifying
these heads is challenging due to their polysemantic functionality, as they can influence multiple
behaviors simultaneously. To address this, we introduce a new criterion, the contrastive influence
score, which measures the difference between an attention head’s impact on hallucination versus
non-hallucination words:

Ih,constrastive = Ih,hallucination − Ih,non-hallucination. (2)
We apply this score to 1,024 attention heads across 32 layers to identify those most responsible for
hallucinations (see Figure 2).

Hallucination Heads Distribute in Middle and Last Layers. For clarity, we categorize attention
heads into two groups based on their contrastive influence scores: hallucination heads, which exhibit
high contrastive influence score, and non-hallucination heads, which show low contrastive influence
score. Rather than using a strict threshold to define these categories, we apply a top-k selection,
focusing on heads with the highest and lowest contrastive influence scores. Notably, both hallucination
and non-hallucination heads, particularly the most prominent ones (e.g., the top 20 highlighted in
boxes in Figure 2), are predominantly located in the middle and deeper layers of the model. This

1Our findings also apply to other models, such as MiniGPT4; see Appendix D.1.
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finding aligns with previous studies on Transformer models [23], which have shown that deeper
layers tend to capture more abstract and task-specific representations.
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Figure 2: Contrastive influence values of atten-
tion heads in the LLaVA-7B model, with blue
boxes for the top 20 hallucination heads and red
boxes for non-hallucination heads.

× 4.75
× 1.35

Figure 3: Attention weights on text and image
tokens for hallucination and non-hallucination
heads. Hallucination heads strongly favor text
tokens over image tokens.

2.2 Behaviour Analysis of Hallucination Heads

After attributing attention heads responsible for hallucination in Section 2.1, we analyze their behavior
patterns in this section. To understand why they induce hallucinations, we examine their attention
maps. In particular, we divide the attention weights of an attention head into two parts: text
attention and image attention. For each attention head, text attention is calculated by
summing the attention weights assigned to tokens corresponding to instructions and responses2, while
image attention is determined by summing the attention weights assigned to tokens representing
image features. See Figure 3 for the results.

Cosine Sim:
0.84

Cosine Sim:
0.63

Hallucination Head (Top 1) Non-Hallucination Head (Top 1) 
LLaVA 1.5-7B & Vicuna-7B

Figure 4: (Left and Middle): Attention maps of the top-1 hallucination heads and non-hallucination
heads on generated text tokens of LVLM and its base LLM. Attention maps are downsampled for
better visualization. (Right): Statistics over the top-20 attention heads.

Hallucination Heads Favor Texts Over Image Inputs. We observe that for hallucination heads,
text attention is 4.75 times higher than image attention. In contrast, non-hallucination heads
allocate attention more evenly between text and images tokens. This suggests that hallucination heads
primarily focus on contextual text, causing LVLMs to rely on internal knowledge rather than image
inputs when generating relevant words. This behavior helps explain the tendency toward hallucination.
Our finding aligns with observations from previous research [12, 11], which also suggest that LVLMs
tend to overlook visual information during generation. However, a key difference is that we show
this overlooking of visual information primarily occurs in hallucination heads rather than across all
attention heads. This insight offers actionable guidance for developing targeted strategies to mitigate
hallucinations, as discussed in Section 2.3.

Inherited Attention Patterns in Hallucination Heads from Base Language Models. We also
observe a notable similarity in the attention maps on generated text tokens between the hallucination
heads of LLaVA-7B and Vicuna-7B, despite Vicuna-7B not processing actual image inputs. In

2System tokens are excluded in the calculation here, as they often serve as “attention sink" and lack specific
semantic meanings [25]. Thus, the sum of attentions weights in Figure 3 may not be 1.
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Figure 5: (a) Downscaling text attention weights reduce hallucination rate. (b) Upscaling image
attention weights does not work. (c) Downscaling text attentions weights to zero lead to the drop in
generation quality of BLEU.
contrast, non-hallucination heads do not exhibit such a clear pattern, particularly in the most prominent
hallucination and non-hallucination heads. See Figure Figure 4 for the results. This suggests that
hallucination heads may inherit much of their behavior from the base language model’s next-token
prediction.

2.3 Mitigating Hallucination through modular intervention

The findings in Section 2.2 lead us to explore a practical question: can hallucination be reduced if
attention heads place less emphasis on text tokens, or alternatively, if they place more emphasis on
image tokens? To investigate this, we adjust the text generation process by downscaling text attention
and upscaling image attention through multiplication by a scaling factor. The results, as presented in
Figure 5, offer three interesting insights. First, reducing text attention weights is more effective than
increasing image attention weights.3 Second, targeted intervention of text tokens on hallucination
heads is more important than applying changes to the other attention heads. Last, simply downscaling
text attention on hallucination heads to zero could hurt generation quality, as reflected in the BLEU
score drops in Figure 5 (c).

Based on these insights, we propose two strategies to mitigate hallucination: adaptively deactivate
text attention weights during the decoding stage (Section 2.3.1) and fine-tuning hallucination heads
to specifically correct their attention patterns (Section 2.3.2).

2.3.1 Adaptive Deactivation of Hallucination Heads
According to results presented in Figure 5, pruning the text attention weights of hallucination heads
proves to be an effective decoding-time strategy but at the cost of the quality of text generation,
potentially leading to less coherent outputs. To address this, we propose a more adaptive strategy, to
deactivate text attention only for those hallucination heads that demonstrate excessive reliance on text
attention during the decoding phase.

The adaptive deactivation mechanism works by evaluating each hallucination head h ∈ Hhallucination at
each decoding step t. We compute the self-attention weights Ah using the softmax of the query-key
dot product. To check if the head over-relies on text information, we calculate an indicator I text

h that
sums the attention weights on text tokens. If I text

h exceeds a threshold τ , the head is deactivated by
setting its text attention weights to zero for that step; otherwise, it remains active. See Algorithm 1 in
the Appendix. We would like to note that Algorithm 1 requires a single generation forward process in
the decoding stage. This differs from contrastive decoding methods [6, 12], which require two passes,
or methods [11, 30] that rely on beam search and retrospection. As a result, Algorithm 1 runs faster in
practice compared to these baselines. However, a key limitation of Algorithm 1 is that it requires the
explicit calculation of attention weights, making it incompatible with memory-efficient mechanisms
like FlashAttention [7]. We address this issue by introducing another fine-tuning method below.

2.3.2 Targeted Fine-tuning of Hallucination Heads
In this section, we propose a targeted fine-tuning method (Algorithm 2 in the Appendix) to mitigate
hallucination by addressing hallucination-prone attention heads in LVLMs, ensuring strong perfor-
mance with greedy decoding. Our training objective combines next-token prediction for quality and a

3We provide an explanation Appendix D.2. We examine the linear spaces spanned by feature representations
of text tokens and image tokens, respectively. We find that some directions in the text space cannot be represented
by the image space, so changing image attention weights is not sufficient.
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Table 1: Hallucination rates in terms of CHAIRS and CHAIRI on COCO and Nocaps (Out-of-Domain)
image captioning tasks, with lower value indicating better performance.

Methods
COCO Nocaps (Out-of-Domain)

LLaVA-7B MiniGPT-4 LLaVA-7B MiniGPT-4
CHAIRS CHAIRI CHAIRS CHAIRI CHAIRS CHAIRI CHAIRS CHAIRI

Greedy 51.8 13.3 40.6 13.7 43.2 14.3 57.4 20.0
DoLA 53.8 13.9 41.0 13.8 42.0 13.7 57.2 20.4
OPERA 50.2 14.5 35.2 12.8 44.2 14.4 46.2 16.2
VCD 55.4 15.7 38.8 14.8 43.6 14.4 48.2 17.5
LURE 51.2 13.4 46.4 14.2 41.8 14.4 55.8 19.6
HALC 50.2 12.4 36.4 11.8 40.2 12.2 53.0 18.0

AD-HH (Ours) 29.6 8.0 35.2 11.7 35.6 9.4 46.8 16.2
TF-HH (Ours) 35.0 8.7 32.0 11.4 35.4 11.1 45.2 16.8

text-attention penalty to reduce hallucinations. For a training sample (v, x, y1:T ), we define the loss:

L(v, x, y1:T ) =
T∑

t=1

[
− logPM (yt|v, x, y<t)︸ ︷︷ ︸

next-token-prediction

+λ
∑

h∈Hhallucination

logAtext
h (v, x, y<t)︸ ︷︷ ︸

text-reliance-reduction

]
, (3)

where λ > 0 controls the text-reliance penalty. We fine-tune only the hallucination heads and the lan-
guage model’s final prediction layer, achieving significant improvements with minimal compute—200
optimization steps for LLaVA-7B required less than 3% of the compute for instruction tuning.

3 Experiments

In addition to the previously examined LLaVA-7B model, we also investigate the well-known LVLM
model MiniGPT-4 [31], which has 7B parameters as LLaVA.

Baselines. Alongside proposed methods for mitigating hallucination, we also study baseline ap-
proaches from prior literature, including the standard greedy decoding method and several state-of-
the-art techniques: OPERA [11], VCD [12], LURE [30], and HALC [5]. Additionally, we include
DoLA [6], which was originally designed to enhance factuality in language models and has also been
studied in previous literature. Hyper-parameters of these baselines follow from previous literature
and are provided in Appendix E for reference.

Dataset. We focus on hallucination in open-ended generation tasks to assess the effectiveness of our
methods. To evaluate object hallucination in visual caption, we use images from the COCO validation
and Nocaps [1] datasets. For Nocaps, we use the out-of-domain version. We randomly select 500
samples from each and prompt the LVLMs with the query, “Please describe this image in detail".

Evaluation Metrics. To evaluate object hallucination in image caption, we employ CHAIR met-
rics [20], designed for automatic hallucination assessment. CHAIR measures the hallucination rate
by computing the proportion of objects mentioned in a generated description that are absent from the
ground-truth labels. The metric is split into two components: sentence-level hallucination (CHAIRS)
and image-level hallucination (CHAIRI).

Main Results. We present the evaluation results on COCO in Table 1 (left). Our methods—either
decoding or fine-tuning—achieve consistent improvements for both models, reducing hallucination
rates by up to 1.7 times compared to greedy decoding for LLaVA-7B and 1.3 times for MiniGPT-4.
We also note that reducing hallucinations does not compromise text generation quality, which is
shown in Table 3 in the Appendix D.3. We find that DoLA is ineffective in this scenario, a finding
also observed in the HALC paper. This is likely because DoLA is designed to elicit factual knowledge
from the model, which may unintentionally amplify language biases inherited from the base language
model, making it unsuitable for mitigating hallucinations in LVLMs.

Recall that the hallucination heads in our methods were identified using the COCO training dataset,
and the above evaluation is with the COCO validation dataset. To examine the transferability
and robustness across datasets, we evaluate performance on the Nocaps (out-of-domain) dataset,
which includes objects not present in COCO. We report the results in Table 1 (right). We observe
similar conclusions: our method maintains strong performance on out-of-domain datasets, indicating
that modifications to the hallucination heads have a broad impact across tasks and implying the
generalizability of our method.
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A Related Work

Mitigating Hallucinations in LVLMs. LVLMs’ hallcunation behaviors are particularly severe
in open-ended generation tasks [11, 30, 28]. Many approaches have been explored to mitigate
hallucinations in LVLMs, most of which focus on better decoding strategies. For instance, Leng et
al. [12] introduced visual contrastive decoding, which compares output distributions from original
and distorted visual inputs to correct the model’s over-reliance on unimodal priors and statistical
bias. Moreover, Huang et al. [11] observed that LVLMs frequently depend on the so-called summary
tokens and proposed a method combining beam-search with retrospection-allocation, penalizing over-
reliance on these tokens. Additionally, Chen et al. [5] highlighted the importance of incorporating
both local and global visual context, with the HALC method using an external grounding module
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during decoding. Furthermore, Zhou et al. [30] developed LURE, which rectifies text by revising
generated content to mitigate hallucination issues like co-occurrence errors and object ambiguity.
In contrast to previous studies, our work identifies a module-level cause of hallucination in LVLMs
and develops targeted intervention strategies to mitigate hallucination effectively. In addition, a key
feature of our method is that it requires only a single generation forward process during decoding,
which is faster than existing methods.

Interpretability of Transformers. Understanding and explaining neural networks, particularly
Transformers [22], is crucial for identifying their behaviors and limitations [29]. A widely used
approach is causal mediation analysis [10], which attributes the contributions of key components,
often employing “knock-out” techniques [24] to assess the impact of removing specific model
elements on the output. Previous research [23, 18, 26, 9] has demonstrated that individual attention
heads in Transformers frequently assume distinct roles, such as induction, copying, and memorization.
While prior studies, such as [30], have also explored to understand hallucination in LVLMs, our work
approaches it through the attribution of key components and intervenes in them specifically.

B Preliminary

LVLMs usually process both visual and linguistic data using three components: a vision encoder,
a connector, and a Large Language Model (LLM). The vision encoder processes visual input, the
connector aligns it with text tokens, and the LLM generates responses from this multimodal input.
The LLM, structured as a transformer [22], consists of L layers. Each layer includes a Multi-Head
Attention (MHA) module and a Multi-Layer Perceptron (MLP), applying two primary residual
transformations to the output of the previous layer Zℓ−1:

Ẑℓ = MHAℓ(Zℓ−1) + Zℓ−1, Zℓ = MLPℓ(Ẑℓ) + Ẑℓ.

In this framework, a layer ℓ employs an MHA module consisting of H attention heads. Each head
executes a self-attention operation, where the attention score is computed using query, key, and value
matrices derived from the input. Specifically, for the i-th head in layer ℓ, the operation is given by:

headℓi(Z
ℓ−1) = Attention(Qℓ

i ,K
ℓ
i , V

ℓ
i ) = softmax

(
Qℓ

i(K
ℓ
i )

⊤
√
dk

)
V ℓ
i ,

where Qℓ
i = Zℓ−1WQ,ℓ

i is the query matrix for the i-th head, and Kℓ
i = Zℓ−1WK,ℓ

i is the key
matrix for the i-th head, and V ℓ

i = Zℓ−1WV,ℓ
i is the value matrix for the i-th head, and dk is the

dimensionality of the key vectors. The outputs from all H heads are then concatenated and projected
using an output projection matrix WO,ℓ:

MHAℓ(Zℓ−1) = Concat(headℓ1(Z
ℓ−1), headℓ2(Z

ℓ−1), . . . , headℓH(Zℓ−1))WO,ℓ.

For common 7B models such as LLaVA [17] and MiniGPT4 [31], we have L = 32 and H = 32 and
dk = 128.

C Algorithms

Algorithm 1 Adaptive Deactivation of Halluci-
nation Heads (AD-HH)

Require: Hallucination Head SetHhallucination,
Threshold τ

1: for decoding time step t do
2: if attention head h inHhallucination then
3: I text

h ← sum of text attention weights
4: if I text

h > τ then
5: Set the text attention weights to

zero
6: Self-attention calculation
7: else
8: Self-attention calculation

Algorithm 2 Targeted Fine-Tuning of Hallucina-
tion Heads (TF-HH)

Require: Hallucination Head SetHhallucination,
dataset D

1: for component c do
2: if c inHhallucination or c is language head

then
3: c.requires_grad = true
4: else
5: c.requires_grad = false
6: for fine-tuning steps do
7: Calculate the loss in Equation (3) for

samples in D
8: Perform gradient descent update

8



D Additional Results

D.1 Additional Results on Component Attribution

On the importance of contrastive influence metric. To validate the proposed contrastive influence
metric, which isolates a head’s effect on generating hallucinated versus non-hallucinated objects, we
compare it to the non-contrastive influence, i.e., directly use Ih,hallucination for identifying hallucination
heads. In Table 2, we report the evaluation results for LLaVA-7B on the COCO captioning task,
where we adaptively deactivate the top-20 hallucination heads identified through contrastive and
non-contrastive methods. As shown, deactivating heads identified by contrastive influence results in
a significantly greater reduction in hallucinations, highlighting its superior precision in localizing
hallucination heads.

Table 2: Ablation study on constrative influence.
Method CHAIRS CHAIRI

Greedy 51.8 13.3
AD-HH (Non-contrastive Influence) 41.8 11.0
AD-HH (Constrative Influence) 29.6 8.8

Sensitivity analysis of the causal mediation method. In Figure 6(a), we plot the Spearman rank
correlation between the contrastive influence scores of each attention head found using N samples
and those using 1000 samples. Here, N represents the number of samples used for hallucination head
attribution. Varying N from 50 to 1000, we observe that when N reaches 500, the Spearman rank
correlation is 0.93 compared to the results with N = 1000. Beyond N = 500, increasing the number
of samples results in minimal changes to the attribution outcomes. This indicates that 500 samples
are sufficient for accurately identifying hallucination heads.

We also evaluate alternative “knock-out" techniques for identifying hallucination heads, including: 1)
using log probabilities instead of probabilities for intervention effects, and 2) replacing the output
of the target component with the mean value of the hidden state outputs. In Figure 6(b,c), we plot
the Pearson correlation between these two alternative methods and our default zero-ablation method
using probabilities. The high correlation observed suggests that the intervention results (contrastive
influence) of each head align closely with the default methods, indicating that our approach exhibits
low sensitivity.

1000 750 500 250 100 50
Number of Samples

0.2

0.4

0.6

0.8

1.0

Sp
ea

rm
an

 R
an

k 
Co

rre
la

tio
n

(a)

0.006 0.004 0.002 0.000 0.002 0.004 0.006
Probability Ablation

0.02

0.01

0.00

0.01

0.02

Lo
g 

Pr
ob

ab
ilit

y 
Ab

la
tio

n

Spearman Rank Similarity: 0.89

(b)

0.006 0.004 0.002 0.000 0.002 0.004 0.006
Zero Ablation

0.008

0.006

0.004

0.002

0.000

0.002

0.004

0.006

M
ea

n 
Ab

la
tio

n

Spearman Rank Similarity: 0.96

(c)

Figure 6: (a) Ablation study on number of samples to identify hallucination heads. (b) Spearman rank
similarity comparison between effects calculated on log probability and probability. (c) Spearman
rank similarity comparison between mean-ablation and zero-ablation methods.

Component attribution results on MiniGPT-4. In Figure 7, we present the constrastive influence
of attention heads in the MiniGPT-4 model on generating hallucinated and non-hallucinated objects.
As indicated in the Figure, the hallucination heads also are distributed in the latter half of the model.
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D.2 Additional Results on Behaviour Analysis of Hallucination Heads
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Figure 10: JS divergence of the attention
map from the initial model (before visual in-
struction tuning) throughout the tuning pro-
cess.

Some Hallucination Heads Show Slow Changes in
Attention Maps During Visual Instruction Tuning.
The above results imply that hallucination heads likely
inherit much of their behavior from the base language
model, despite undergoing extensive visual instruction
tuning (e.g., 665k samples for LLaVA-7B). To pro-
vide further evidence for this, we replicate the visual
instruction tuning process of LLaVA-7B and calculate
the Jensen-Shannon (JS) divergence between the at-
tention maps before and after tuning. As shown in
Figure 10, we find that top hallucination heads are
“lazy", displaying noticeably slower changes in atten-
tion maps compared to non-hallucination heads. This
insight could be valuable for the future development
of LVLMs and warrants further investigation. For our
work, this finding motivates the design of targeted fine-
tuning strategies, rather than full-parameter tuning, to
mitigate hallucinations in the next section.

Attention bias of hallucination heads in MiniGPT-4. In Figure 8, we plot the averaged attention
weights on text and image tokens for top-3 hallucination and non-hallucination heads. As shown in
the Figure, the hallucination heads of MiniGPT-4 also demonstrate much stronger attention bias than
non-hallucination heads.

10



Top 35

Top 35 Top 30

Top 30

Top 25

Top 25 Top 20

Top 20

Figure 11: Compare adaptive deactivation and full deactivation in reducing hallucination and main-
taining generation quality.

Table 3: Generation quality comparison, with higher value indicating better performance.

Dataset COCO Nocaps
BLEU ROUGH METEOR BLEU ROUGH METEOR

Greedy 17.9 18.8 18.2 24.6 21.8 18.8
AD-HH (Ours) 17.8 19.1 18.1 23.1 21.3 18.3
TF-HH (Ours) 18.8 20.0 18.7 25.5 22.9 19.2

Inherited attention pattern of hallucination heads in MiniGPT-4. In Figure 9, we compare
the attention patterns of hallucination heads in MiniGPT-4 with those in its base language model,
Llama-2-7B. As shown, the text attention patterns in MiniGPT-4 are more aligned with Llama-2-7B
for hallucination heads than for non-hallucination heads. Specifically, the top hallucination head
with the highest contrastive influence shows a cosine similarity as high as 0.93, in contrast to the top
non-hallucination head, which only exhibits a similarity of 0.59.

Spanned linear space analysis. Our findings in Section 2.3 indicate that downscaling text attention
weights is more effective than upscaling image attention weights. We hypothesize that this can be
explained by the linear spaces spanned by text tokens and image tokens. If the space spanned by text
tokens is significantly larger than that of image tokens, simply adjusting image attention weights (i.e.,
modifying the linear combination in the self-attention mechanism) may be insufficient.

To test this, we construct a linear space for text tokens, denoted as Stext, and a linear space for image
tokens, denoted as Simage. We then calculate the projection distances:

d(projection Simage onto Stext) = ∥Stext(S⊤textStext)
−1S⊤textSimage∥F = 3636.3

d(projection Stext onto Simage) = ∥Simage(S⊤imageSimage)
−1S⊤imageStext∥F = 15688.5

The results suggest that certain directions in the text space cannot be linearly represented by the
image token features. As a result, even with careful tuning of image attention weights, the output
of the self-attention mechanism may still retain components of textual information, contributing to
hallucination.

D.3 Additional Results on Modular Intervention

On the effectiveness of adaptive deactivation. To illustrate the effectiveness of adaptive deactivation
of hallucination heads in preserving the generation quality and mitigating hallucination, we compare
the performance of our proposed adaptive deactivation method and full deactivation, which completely
setting the text attention weights of hallucination heads to zero regardless of the input. Figure 11
shows the the hallucination rate (CHAIRI) and generation quality (BLEU) of the two methods as the
number of top-k hallucination heads to be deactivated varied. As illustrated in the Figure, adaptive
deactivation yeilds more optimal hallucination reduction and generation quality maintaining with
the same number of top-k hallucination heads to be deactivated. This indicates that context-aware
pruning is more flexible than static pruning method.
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Figure 12: Ablation study on the top-k hallucination head selection.

Table 4: Ablation study on fine-tuned components.
Methods CHAIRS CHAIRI

Original Model 51.8 13.3

Fine-tune Full Parameters 56.3 15.6
Fine-tune Random Heads 54.4 15.7
Fine-tune Hallucination Heads 35.0 8.7

Table 5: Results on the MME dataset.
Method Score

Greedy 1791.64
AD-HH (Ours) 1812.36
TF-HH (Ours) 1813.06

On the top-k hallucination head selection. In Figure 12, we present the relationship between
the hallucination rate (CHAIRI) and generation quality (BLEU) as the number k of deactivated
hallucination heads increases. As illustrated, increasing k leads to more effective hallucination
reduction but is also associated with a decline in generation quality after a certain number of
deactivated hallucination heads. We find that for LLaVA-7B, k = 20 yields a favorable trade-off
between generation quality and hallucination reduction for LLaVA-1.5, while k = 10 is optimal for
MiniGPT4, which we adopt as our default parameter in adaptive deactivation of hallucination heads.

On the importance of fine-tuning hallucination heads. To highlight the importance of targeting
only hallucination heads, we compare the results in Table 4 for fine-tuning the full parameters, 30
randomly selected heads, and the top 30 hallucination heads on LLaVA-1.5. As shown in the table,
fine-tuning only the hallucination heads achieves significantly more hallucination reduction compared
to both full fine-tuning and fine-tuning random heads. This verifies that hallucination is mainly
caused by only a small portion (less than 3%) of attention heads, and focusing on them is crucial for
reducing hallucination.

On the generation quality comparison. In Table 11 and Table 12, we visualize some image
description examples of the LLaVA-7B model. The hallucinated objects are highlighted in RED. The
main results show that our method does not influences the the coherent and fluency of generated
context. We qualitatively measure the generation quality in Table 3. For BLEU, ROUGH [15], and
METEOR [4], the adaptive deactivation method shows a slight decrease on the Nocaps dataset. While
the fine-tuning method maintains and even improve the quality, which indicates that fine-tuning
provides a more robust and safe adjustment to the model.

Evaluation on the MME dataset. We also evaluate on the MME benchmark [8], which measures
the perception and cognition abilities of LVLMs. As demonstrated in Table 5, our two methods show
generalization ability on the benchmark, improving the overall score by about 20 absolute points.
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Table 6: Performance in complicated multimodal tasks from MM-Vet [27], with higher value
indicating better performance.

Methods LLaVA-7B MiniGPT-4

Rec OCR Know Gen Spat Math Total Rec OCR Know Gen Spat Math Total

Greedy 36.3 21.8 17.0 18.9 24.8 7.7 31.4 26.5 13.3 17.5 13.9 22.3 8.1 22.2
DoLA 37.2 22.1 17.9 21.0 26.3 7.7 31.7 24.9 12.9 18.5 12.0 21.7 7.7 21.6
OPERA 35.4 25.6 20.5 22.9 30.9 11.5 32.0 28.2 15.0 16.5 11.4 21.9 11.5 23.6
VCD 33.0 23.6 16.0 19.4 25.6 3.8 29.4 25.3 14.8 17.4 15.0 20.3 0.0 20.9
HALC 36.2 21.5 17.5 20.1 23.5 7.7 30.8 24.9 15.7 15.2 10.7 23.2 7.7 21.7

AD-HH (Ours) 38.4 26.0 21.2 21.9 30.3 7.7 34.3 28.2 16.6 16.1 13.7 26.1 12.0 23.8
TF-HH (Ours) 36.6 24.1 17.9 19.0 27.2 11.5 32.5 31.9 18.1 22.3 16.6 26.5 18.5 27.3

D.4 Additional Results on Hallucination Mitigation Evaluation.

Case Studies. To illustrate the effectiveness of our methods, we present case studies in Figure 13.
The original model demonstrates a strong reliance on text tokens, which leads to the generation of
hallucination objects that have close semantic relationships with the focus token. We then provide
the same prompt before the hallucinated token to our fine-tuned model. We can observe that the
fine-tuned model shifts attention more towards the image tokens, resulting in the generation of
image-consistent objects.

Input Image Original Model Fine-tuned Model
<s> A chat between a curious user and an artificial intelligence assistant.
The assistant gives helpful, detailed, and polite answers to the user’s
questions.USER: <Image> Please describe this image in detail. ASSISTANT:
The image depicts a busy city street with a white bus driving down the road,
surrounded by various vehicles. There are multiple cars on the street, including
one behind the bus, another in front of it, and a few others scattered around
the scene. A bicycle

<s> A chat between a curious user and an artificial intelligence assistant.
The assistant gives helpful, detailed, and polite answers to the user’s
questions.USER: <Image> Please describe this image in detail. ASSISTANT:
The image depicts a busy city street with a white bus driving down the road,
surrounded by various vehicles. There are multiple cars on the street, including
one behind the bus, another in front of it, and a few others scattered around
the scene. A truck

<s> A chat between a curious user and an artificial intelligence assistant.
The assistant gives helpful, detailed, and polite answers to the user’s
questions.USER: <Image> Please describe this image in detail. ASSISTANT:
The image features a group of four zebras standing in a dirt field, grazing on
grass. They are positioned in a line, with one zebra on the left side, another in
the middle, and two more on the right side of the field. The zebras are spread
out, with one zebra closer to the left side of the field, another in the middle,
and the two others on the right side.In the background, there is a tree providing
shade for the zebras, and a fence

<s> A chat between a curious user and an artificial intelligence assistant.
The assistant gives helpful, detailed, and polite answers to the user’s
questions.USER: <Image> Please describe this image in detail. ASSISTANT:
The image features a group of four zebras standing in a dirt field, grazing on
grass. They are positioned in a line, with one zebra on the left side, another in
the middle, and two more on the right side of the field. The zebras are spread
out, with one zebra closer to the left side of the field, another in the middle,
and the two others on the right side.In the background, there is a tree providing
shade for the zebras, and a bench

Figure 13: Visualization of attention weights for the top hallucination head when predicting the
next token (shown in blue). We accumulate the attention weights on a total of 576 image tokens
into the placeholder <image> to simplify visualization. Redder values in the context indicate larger
attention weights. The original LLaVA-7B model significantly relies on the previously generated
tokens, resulting in hallucination. Our model through targeted fine-tuning does not have this issue.

Modular Intervention Benefits Complicated Multimodal Tasks. To further validate our method’s
effectiveness on complex open-ended multimodal tasks, we evaluated performance on the MM-
Vet dataset, which assesses six multimodal capabilities: recognition, OCR, knowledge, language
generation, spatial awareness, and math. Table 6 shows that our method, either through decoding
or fine-tuning, also improves a range of multimodal capacibilites. For instance, our decoding
method boosts LLaVA-7B’s scores in OCR and spatial awareness by 4.2 and 5.5 points, respectively.
Similarly, our fine-tuning method enhances MiniGPT-4’s performance in recognition and math, with
improvements of 5.4 and 10.4 points. These results demonstrate that modifying hallucination heads
benefits not only tasks focused on hallucination reduction but also general multimodal tasks.

Our Method Runs Fast in Generation. We compare the generation time of our decoding method
AD-HH with existing decoding-time hallucination mitigation methods in Figure 14. For OPERA and
our method that requires explicit attention weights, we use the standard self-attention implementation.
For Greedy, DoLA, VCD, and HALC, where explicit attention weights are not needed, we employ
Flash-Attention, which is generally faster than standard self-attention. All methods were tested on
a single A100-80GB GPU. We observe that our method achieves similar decoding times to greedy
decoding. This is because we intervene on the attention weights on-the-fly during the generation
process. In contrast, other methods inevitably introduce computational overhead. For instance, VCD
requires a double inference process for contrastive decoding, and OPERA requires retrospecting to
previous steps when knowledge aggregation happens.
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Figure 14: Generation time of a single response.

E Experiment Details

Implementation of Baselines. In Table 7, Table 8, Table 9, and Table 10, we present the hyper-
parameters for the baseline methods: DoLA, OPERA, VCD, and HALC. These parameters follow
the official configurations provided by their respective sources. For the LURE baseline, we use the
MiniGPT-4 13B checkpoint provided in the official repository as the revisor. We observed that, after
generating the revised response, LURE’s final step involves splitting the response into two parts
based on the “\n" symbol and only retaining the first part. However, as most responses generated by
LLaVA-7B contain “\n" in the middle, this split function significantly shortens the response length,
reducing it by nearly 40% when the maximum generated token length is 128. This could compromise
the fairness of the comparison. Therefore, we bypassed this post-processing step and directly used
the full output response from the revisor as the final prediction for LURE.

Implementation details of Algorithm 1. We select the top 20 attention heads as hallucination heads
for LLaVA-7B and the top 10 heads for MiniGPT-4. For the threshold τ to control the when to
deactivate text attention in decoding, we use a sweep search to find an optimal value. Based on this,
we set τ = 0.4 for LLaVA-7B and τ = 0.5 for MiniGPT-4.

Implementation details of Algorithm 2. For LLaVA-7B model, we use the instruction-tuning
dataset and fine-tuning codes from the offical Github repo4. The learning rate is set to 2× 10−5, and
the global batch size is 128. We fine-tune the model for 200 steps, selecting the top 30 hallucination
heads for fine-tuning. For the MiniGPT-4 model, we use the dataset and fine-tuning codes from
the offical Github repo5. The learning rate is set to 3× 10−5, and the global batch size is 128. We
fine-tune the model for 200 steps, selecting the top 20 hallucination heads for fine-tuning. For both
models, the penalty weight λ is set to 2. We only fine-tune the Query and Key matrices of the attention
heads, as this operation modifies how values are linearly combined in self-attention without altering
the basis of the linear space. We find that additionally fine-tuning the value matrices is ineffective
(i.e., resulting in a higher hallucination rate of CHIRSI at 20.86% on LLaVA-7B and lower generation
quality). We conjecture that this is because fine-tuning the value matrices significantly disrupts the
linear space of the original model.

4https://github.com/haotian-liu/LLaVA?tab=readme-ov-file
5https://github.com/Vision-CAIR/MiniGPT-4
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Table 7: DoLA Hyperparameters.
Parameters Value
Adaptive Plausibility Threshold 0.1
Early Exist Layers [0, 2, 4, · · · , 32]

Table 8: OPERA Hyperparameters.
Parameters Value
Self-attention Weight Scale Factor 50
Attending Retrospection Threshold 15
Beam Size 5
Penalty Weights 1.0

Table 9: VCD Hyperparameters.
Parameters Value
Amplification Factor 1
Adaptive Plausibility Threshold 0.1
Diffusion Noise Step 500

Table 10: HALC Hyperparameters.
Parameters Value
Detector Dino
JSD Buffer Size m 6
Beam Size 1
Number of Sampled FOVs n 4
Exponential Ratio of Growiing Contextual Field 0.6
Bounding Box Threshold for Dino 0.4
Adaptive Plausibility Threshold 0.1
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Table 11: Generated images description examples.

Instruction Please describe this image in detail.

Greedy The image features a white dog playing with a frisbee in a grassy field. The dog
is holding the frisbee in its mouth, running and enjoying the game. The frisbee is
positioned towards the right side of the dog, and the dog appears to be in the middle of
the field. \n\n In the background, there is a bench located on the left side of the field,
possibly for spectators to sit and watch the dog play.

AD-HH (Ours) The image features a white dog playing with a frisbee in a grassy field. The dog is
holding the frisbee in its mouth, running and playing with the frisbee in the field. The
dog appears to be enjoying the game and is actively engaged in the activity.

TF-HH (Ours) The image features a white dog playing with a frisbee in a field. The dog is in the
process of catching the frisbee, which is positioned in the middle of the scene. The dog
is running towards the frisbee, displaying its agility and excitement. \n\n The field is
spacious, providing ample room for the dog to play and enjoy its frisbee game. The
dog’s enthusiasm and the frisbee’s position in the air create a lively and engaging scene.

Instruction Please describe this image in detail.

Greedy The image features a man standing next to a parked motorcycle, which is prominently
displayed in the scene. The man is wearing a helmet and appears to be the owner
of the motorcycle. The motorcycle is positioned in the foreground, occupying a
significant portion of the image.\n\n In the background, there is a bench situated near
the motorcycle, providing a place for the man to sit and relax. The scene also includes
a backpack placed on the ground, possibly belonging to the man or someone else in the
area.

AD-HH (Ours) The image features a man standing next to a parked motorcycle, which is parked on a
dirt road. The man is wearing a helmet and appears to be the owner of the motorcycle.
The motorcycle is positioned on the left side of the image, with the man standing on the
right side.\n\n In addition to the motorcycle, there is a bench located in the background,
providing a place for the man to rest or take a break. The scene appears to be set in a
wooded area, with trees surrounding the area.

TF-HH (Ours) The image features a man standing next to a parked motorcycle, wearing a black
jacket and sunglasses. He is posing for the camera, possibly in a wooded area. The
motorcycle is parked on the side of the road, and the man is standing close to it.\n\n
There are several trees in the background, and a bench can be seen further back in the
scene. The man appears to be the main focus of the image, with the motorcycle and the
surrounding environment serving as the backdrop.
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Table 12: Generated images description examples.

Instruction Please describe this image in detail.

Greedy The image features a bathroom with two toilets placed side by side. Both toilets are
white and have their lids up, revealing their bowls. The toilets are positioned close to
each other, with one slightly closer to the left side of the room and the other slightly
closer to the right side.\n\nThe bathroom also contains a sink, which is located towards
the left side of the room. The sink is accompanied by a mirror, which is placed above
it. The overall scene gives the impression of a public restroom or a shared bathroom
space.

AD-HH (Ours) The image features a bathroom with two toilets placed side by side in a bathroom stall.
Both toilets are white and appear to be in good condition. The toilets are positioned
close to each other, with one toilet slightly closer to the left side of the bathroom and
the other toilet slightly closer to the right side.\n\nThe bathroom appears to be clean
and well-maintained, with the toilets being the main focus of the image. The bathroom
stall appears to be a public restroom, as it is designed to accommodate multiple users
at.

TF-HH (Ours) The image features a bathroom with two toilets placed side by side. Both toilets are
white and appear to be in good condition. One of the toilets is positioned closer to the
left side of the image, while the other is situated more towards the right side. \n\n The
bathroom also features a tiled floor, which adds to the overall clean and well-maintained
appearance of the space.

Instruction Please describe this image in detail.

Greedy The image features a blue plate filled with a delicious meal consisting of pasta and
broccoli. The pasta is mixed with a creamy sauce, and the broccoli pieces are scattered
throughout the dish. The plate is placed on a dining table, and there is a sandwich on
the table as well. \n\nIn addition to the main dish, there are two bowls in the scene, one
located near the top left corner and the other near the top right corner. A keyboard can
be seen in the background, suggesting that the dining area is part of a home office or
work

AD-HH (Ours) The image features a blue plate filled with a delicious meal consisting of pasta and
broccoli. The plate is placed on a dining table, and the plate is filled with a generous
portion of pasta and broccoli. The pasta appears to be a mix of macaroni and shells,
and the broccoli is scattered throughout the dish.\n\nIn addition to the main dish, there
is a slice of bread on the table, likely to be used as a side or to accompany the meal.
The dining table occupies most of the image, and the dining

TF-HH (Ours) The image features a blue plate filled with a delicious meal consisting of pasta and
broccoli. The plate is placed on a wooden table, and the dish is accompanied by a piece
of bread. The pasta and broccoli are arranged in a visually appealing manner, creating
a colorful and appetizing presentation. The dish appears to be a healthy and nutritious
meal, perfect for a meal or a light lunch.
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