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Abstract

How do reasoning models verify their own answers? We study this question by
training a model using DeepSeek R1’s recipe on the CountDown task. We leverage
the fact that preference tuning leads to mode collapse, yielding a model that always
produces highly structured chain-of-thought sequences. With this setup, we do top-
down and bottom-up analyses to reverse-engineer how the model verifies its outputs.
Top-down, we find Gated Linear Unit (GLU) weights encoding verification-related
tokens, such as “success” or “incorrect”. Bottom-up, we find that “previous-token
heads” are mainly responsible for self-verification in our setup. Our analyses meet
in the middle: drawing inspiration from inter-layer communication channels, we
use the identified GLU weights to localize as few as six attention heads that can
disable self-verification, pointing to a necessary component of a potentially larger
verification circuit. Finally, we verify that similar verification components exist in
our base model and a general reasoning DeepSeek-R1 model.

1 Introduction

Recent language models demonstrate impressive reasoning capabilities. Such models are trained with
reinforcement learning (RL) in which they are rewarded when their final outputs are correct.

Behaviorally, these models generate long chain-of-thought (CoT) [37]] reasoning traces. There is
an open question on whether monitoring their CoT is worthwhile, given a growing line of work
suggesting that their CoTs do not faithfully reflect the model’s inner computations [2} {14} 35]. Can we
monitor their hidden states instead? We take a step towards investigating this question, by studying a
model’s inner mechanism for a crucial reasoning step, i.e., self-verification.

General reasoning entails a broad range of tasks, requiring a diverse set of skills. In order to conduct
a systematic study, we train and analyze a task-specific reasoning model using the same recipes
from DeepSeek R1. We limit the scope of our study to a specific task that requires search — a core
reasoning skill broadly applicable for many reasoning tasks. We also select a task in which we can
expect the verification mechanism ahead of time, making our analyses easier. Namely, we study
CountDown [9, 110} 31} 38]], in which a set of numbers (operands) and a target number is given, and
the model must find the right arithmetic combination using the operands to reach the target number.
Because the target number is specified in the context, we can expect attention heads to play a role in
verification and shed light onto other relevant weights and subspaces pertaining to self-verification.

Studying a task-specific model has a second non-obvious benefit: training language models with RL
(i.e., with preference signals) can lead to mode collapse towards majority preferences, significantly
reducing the diversity of their outputs [[13L 21128} 134]. Luckily, in the context of model interpretability,
this means that our task-specific model converges to always generating well-structured CoT sequences,
allowing us to easily and systematically parse its reasoning trace (e.g., see Table/[I]).
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We conduct “top-down” and “bottom-up” analyses to reverse-engineer how the model verifies its own
outputs. Our two analyses meet in the middle, revealing key subspaces relevant for model verification.

Going top-down, we leverage linear probes to find Gated Linear Unit (GLU) vectors in late layers that
often encode tokens relevant for verification. Interestingly, these vectors also seem to correlate with
English or Chinese tokens, like “success” or “#s5” (“failed”). Furthermore, the antipodal directions
of these vectors also encode the antonyms of correct or incorrect tokens.

Going bottom-up, given the nature of our task, we hypothesize and verify that attention heads play a
significant role. We find “previous-token heads” — attention heads that attend to previous occurrences
of the current token — that attend to the provided solution in the context. Previous-token heads have
been studied before, for instance in the context of induction heads [26]. Through causal analyses, we
find that disabling previous-token heads disables model verification.

Our two analyses meet in the middle: we find that disabling previous-token heads also deactivates our
GLU vectors. Inspired by inter-layer communication channels [7,[19]], we look for previous-token
heads that most align with the “receptive-field” of our GLU vectors, allowing us to localize as
few as six attention heads that reliably disables model verification. Thus our work finds necessary
components for a potentially larger verification circuit.

Finally, we verify that similar verification components exist in our base model prior to RL, as well as
in a general reasoning model, DeepSeek-R1-Distill-Qwen-14B.

Obviously, most reasoning tasks do not provide an easily verifiable solution in the context. However,
by illustrating a thorough mechanism of verification in our simplified setup, we take a step towards
the possibility of monitoring and interpreting a model’s inner computations in its hidden states.

2 Notations, Key Terminologies

We first establish key terminologies and notations. A Transformer’s forward pass first embeds the
input using weights Wy € IR?*Y. The embeddings go through L Transformer blocks, yielding
hidden states x¢ € IRd7 ¢ € [L — 1]. The last layer, xE=1 is “unembedded”, or projected back to
the token embedding space using W g, and the nearest neighboring token embedding of Wg xE=1is
outputted. Each block consists of attention heads and Gated Linear Units (GLUs) [33].

Attention. Each attention head consists of key (Wg), query (Wg), value (Wy), and output (Wo)
weights. an attention pattern A is computed using key and query weights:

A = softmax(x; W Wkx;) ()

t1)

where W/ Wy is sometimes referred to as a “QK circuit”. A is used to scale the “OV circuit
(WoWy) to produce an output for each head:

h(x) = (A®@ WoWy) - x ()
Gated Linear Units and GLUg, Vectors. Given a Gated Linear Unit (GLU) block:
GLU(X) = (¢(Wgatex) © Wupx) Wout (3)

where ¢ is a non-linearity and Wgze, Wy, Wous € IR%1 X4 we decompose it as following:
y g p p g

M = ¢(WyareX) @ Wypx, M € R%!, 4)
dgiu
GLU(x) = M W = > m;v; )

J

where m; is the j-th entry in M and v; is the j-th row of W,;.

Importantly, the output of each GLU block can be thought of as the weighted sum of v’s (the rows of
Wout), where the weights are determined by activations M. We refer to elements of M/ as GLU
neurons and vectors v as GLUg, vectors. For more details, we refer readers to [7]].
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A conversation between User and Assistant. The user asks a question, and the Assistant solves it.
The assistant first thinks about the reasoning process and then provides the user with the answer.
User: Using the numbers [20, 14, 40], create an equation that equals 28. You can use basic
arithmetic operations (+, -, *, /) and each number can only be used once. Show your work in
<think> </think> tags. And return the final answer in <answer> </answer> tags, for example
<answer> (1 + 2) / 3 </answer>.

Assistant: Let me solve this step by step. <think> We have the numbers 20, 14, and 40. We need
to use these numbers to make an equation that equals 28 using basic arithmetic operations. Let’s
try different combinations:

40-14-20=10-20=-10 (not 28)

40 - 14 + 20 =26 + 20 = 46 (not 28)

40 + 14 - 20 = 54 - 20 = 34 (not 28)

40 + 14 + 20 = 54 + 20 = 74 (not 28)

40 * 14 /20 =560/ 20 = 28 (this works)

So, the equation that equals 28 is 40 * 14 / 20. </think> <answer> (40 * 14) / 20 </answer>

Table 1: CountDown Task. The model must find an arithmetic combination of the operands to
reach the specified target number. We leverage the fact that preference tuning leads to mode collapse,
resulting in a model that consistently generates structured CoT tokens that we can easily parse.

3 Training Task-Specific Reasoning Models

We apply DeepSeek R1-Zero’s setup with Qwen2.5-3B as our base model (Hyperparams: Appx. @)m

Our task, CountDown, is a simple testbed frequently used to study recent reasoning models [9} [10L 31}
38 — given a set of 3 or 4 operands (e.g., 19, 36, 55, 7) and target number (e.g., 65), the task is to find
the right arithmetic combination of the operands to reach the target number (i.e., 55 + 36 - 7 - 19).

The model is given two rewards: accuracy reward for reaching the correct final answer, and a format
reward when it generates its CoT tokens in between “<think>" and “</think>" tokens. For more

details on how R1-Zero is trained, see [T1]]. We refer to our task-specific model as R153U2¢,

One advantage of studying a specific task is in that preference training leads to mode collapse [[13|
21,1281 134], resulting in a reduction in generation diversity. In our context, this is desirable, as the
model converges to generating a highly structured CoT sequence. See Table|]

This allows us to easily parse the model’s CoT. Namely, the model enumerates through many attempts,
while always marking each attempt as either “(this works)” or “(not {ans})”. Thus, we can study the
model’s hidden states at specific timesteps, such as right before it produces either “this” or “not”,
which we refer to as tyq1;q4 and t;441:4- We refer to the hidden states at these timesteps as Xy,jig and
Xinvalid- We refer to the timestep in the prompt at which the target number is specified as ¢4, .

4 Components for Self-Verification in CountDown

Here we present a series of analyses to identify weights and subspaces relevant for verification. We
do a “top-down” analysis to find relevant GLU vectors in late layers, and a “bottom-up” analysis to
find relevant attention heads in early layers. Our analyses meet in the middle, to identify relevant
subspaces for verification. We verify the role of such weights and subspaces via causal experiments.

4.1 Top-Down: Finding Verification-Related GLU Vectors

LogitLens. We start our analysis by applying LogitLens [23]] to compare the hidden states of Xyyjig
and Xppaiiq ON a sample size of 300. We apply the unembedding layer at all intermediate layers x*
and inspect the resulting nearest neighboring tokens across 300 samples.

Figure[T|a, b) shows our results in the late layers (see Appendix Figure 5] for more layers). Interest-
ingly, we see tokens such as “SUCCESS”, “yes”, “bingo” show up for Xygjq, and “NF A (“Does
not conform”), “not”, “/N&” (“Incompatible”) for Xpvaiq. Interestingly, we often observe English
tokens for xvy,jiq and Chinese tokens for Xy,y.iq- What drives these tokens to appear?

'We use TinyZero: https://github.com/Jiayi-Pan/TinyZero/tree/main
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(a) Orig LogitLens ("this") (b) Orig LogitLens ("not")

[REld  this (0.98) yes (0.02) This (0.00) works (0.00) not (0.25) (0.18) 2 (0.05) 3 (0.05)

[BEl)  this (0.86) yes (0.12) this (0.01) works (0.00) not (0.22) (0.18) 2 (0.04) 3 (0.04)

L 34 this (0.74) yes (0.21) this (0.01) yes (0.01) not (0.24) (0.15) = (0.04) ( (0.04) 0.8
L33 this (0.50) yes (0.40) yes (0.03) works (0.01) not (0.21) (0.16) = (0.04) ( (0.04)
L32 yes (0.47) yes (0.27) this (0.10) Yes (0.05) (0.15) not (0.13) Not (0.04) = (0.03)
EARE (0.07) 06
RE (0. _
L31 yes (0.34) Yes (0.01) _yes (0.00) not (0.14) (0.11) {Thisiisnot) = (0.03)
1 2 3 4 1 2 3 4
(c) Intervene GLU Neurons: "this" to "not" (d) Intervene Attn Heads: "this" to "not"
L 36 yes (0.31) works (0.04) not (0.03) not (0.21) (0.18) 2 (0.04) 3 (0.04)
0.4
L 35 yes (0.42) this (0.37) not (0.03) yes (0.02) (0.15) not (0.15) = (0.04) ( (0.04)
L34 yes (0.48) this (0.20) works (0.07) yes (0.06) (0.16) not (0.11) ( (0.04) = (0.04)
HEa%MH (0.06) A7 (0.05) _ 0.2
L33 yes (0.35) yes (0.30) SUCCESS (0.07) (Qualifies) (0.15) (Does not match) too (0.05) = (0.03)
HEFM (0.00) A (0.08) A#E (0.05) _
L32 Yes| (0:67) yesi(0:29) Yes (0.02) (Qualifies) (O=L1) (Does not match) (Not satisfied) = @B
. & (0.04) A& (0.03) A#E (0.03)
L 31 SUCCESS (0.24) success (0.17) success (0.11) bingo (0.06) not (0.04) (Does not conform) (Incompatible)  (Not satisfied) .
1 2 3 4 1 2 3 4
Top K Top K

Figure 1: Averaged LogitLens from 300 samples. We see tokens related to verification (“success”,
“ANE7) in the last few layers. (a), (b) show the top tokens when (in)correct solutions are reached. (c),
(d) shows results from intervening on either GLU weights or attention heads, given a correct solution.
For (c), while the model is less certain (P(“this”) drops from 0.98 to 0.54), we still see tokens such as
“success” showing up. For (d), we no longer see any tokens related to “success”, and the model’s
final next-token predictions closely resembles when the model has not found a solution (b).

Probing. To answer this question, we train linear probes W* € IR2*? at every layer ¢ from
timesteps right before “this” or “not” is predicted.These timesteps correspond to when an answer is
produced, and an open parenthesis tokens “(” is being predicted next, as opposed to “this” or “not”.

W* is a linear mapping from the hidden states, x’, to a binary label of whether the model has found
the solution. Our training data is D = {(Xf;i, y)IN Yyt € {0 (“not”), 1 (“this”)}, N=327,680. We
solve for W* to fit y = softmax (W *x*) using gradient descent (hyperparameters in Appendix |C)).

Validation accuracy (N = 512) per layer is provided in the Appendix (Figure [6), with accuracy
usually staying above 90% after the first few layers. High accuracy suggests that our probing vectors
W 0], W1] identify a direction in the model’s activation space that linearly separates points of Xvyjig
and points of Xpyaiig (i.€., linearly separable subspaces).

Such vectors can steer the model. Simply adding TW[0] or W[1] into hidden states can push x towards
Xvalid OF Xmvalid, and change the model’s output to indicate that it has (or has not) found a solution,
even when it has not (or has). We provide qualitative examples of steering results in Appendix [E]

GLUvajig; GLUpyyaiia Vectors. Our probe W tells us that mid-layer activations can be linearly
separated to identify solved cases (Xvaiiq) from unsolved cases (Xmyaiiq), but also serves a secondary
purpose. Namely, we can use W to identify GLUg, vectors of interest [13].

Per layer, we select the top k(= 50) GLUg, vectors by how similar they are to W*[0] or W*[1] using
cosine similarity. One can consider these vectors as weights that contribute the most towards W*|[0]
(no solution) or Wz[l] (found solution) directions. We refer to them as GLUyyai¢ and GLUvgjq
vectors. This results in & X L X 2 GLUvujid, mvalid vectors (0.9% of the model’s GLUqy vectors).

Unembedding GLUvajida/mvaia Vectors reveal which tokens get promoted when they are activated.
Table 2] shows their nearest neighbors in the model’s token embedding space. We observe that
most interpretable GLUvqjig/mvaiia neurons occur in the second half of layers. Interestingly, we again
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Vector | Nearest Neighbors
%4[0) ZF5z (unfinished), A7 (unable), & (not), 77 (absent), &% (should not)
W1] Exactly, >(, =yes, =YES, =:, ===, quis, esac, ####
(26, 744) *#¢ (failed), ~# (not enough), nicht (not), &% (not like), 57%/ (can’t reach)

(26, 6619) gz (lack), sb (lack), =4 @ (inconvenient), lacks, #Ll (difficult), £ (failed)
(27, 9766) £ (impossible), neither, 1% (can’t see), A~f7fe (doesn’t exist)
(27, 4971) inefficient, i%#¢ (failed), =~ (inconvenient), Danger, disadvantage, =% F

(29, 6676) yes, Yes, Bindable, exactly, Yes, "Yes, yes, Yep, Exactly, included
(27, 10388) mirac, £¥ (optimism), %% (safely), Relief, s (fortunate), .isSuccess
(30, 8233) correctly, iF# (correct), 142 (appropriate), accurately, 74 (conform)

-1x(26, 744) {# (careful), 2 (sufficient), F% (equal), tend, ONDON, 2Ll (enough)
-1x(26,6619) | AMxsE (not only can), R (good), &4 RiF (have good), &% (finally)
-1x(27,9766) | might, maybe, may, Hi{% (sometimes), #5 X (some areas), .some
-1x(27,4971) | successfully, successful, IifiFl (smooth), sy (successful), Mibrnizh

-1x(29, 6676) | #+ (neither), 7~k (not quite), neither, ~F (not given), % Wi+ (never seen)
-1x(27, 10388) | ik (failure), failure, 7 (bad), 7% (unfavorable), s (bad), %2 (mistake)
-1x(30, 8233) | wrong, &~& (bad), incorrect, wrong, invalid, bad, inappropriate, invalid

Table 2: GLUgy vectors relevant to verification, and their nearest neighbors. W0}, W[1]
indicate our probe model. “(z,y)” indicates the GLUq, vector at layer x, index y. “—1 X (z,y)”
(marked in red) indicates the antipodes of the GLUq, vector at layer x, index y. Interestingly, we
observe a correlation between valid/invalid vectors and English and Chinese.

note that there seems to be a correlation between GLUvgjig/mvaiia and English versus Chinese tokens,
hinting at the underlying geometry of Xvajid/mvalia and the model’s embedding space.

While GLU v,jig/mvatia €ncode verification-related tokens, what role do they play? This can be partially
answered by applying LogitLens again on 300 samples, but now by “turning off”” GLUv,jiq vectors
(< 1% of total GLU vectors) by scaling them to zero. Figure [T{c) shows the results: while the
probability of verification-related tokens drop (e.g., P(“this”) drops from 0.98 to 0.70 in layer 36), the
end behavior remains the same (i.e., “this” is still the top-1 token). This tells us that GLUs do not
fully explain self-verification. We demonstrate a more thorough causal analysis in Section 4.4]

4.2 Bottom-Up: Previous-Token Attention Heads for Verification (Apyey)

We next inspect the role of attention heads for verification. One motivation for choosing CountDown
as our task is that the task specifies the target number in the context. Thus we can posit that a
Transformer could verify its CoT tokens by comparing them against the specified target number (at
timestep t4n5). Such a hypothesis provides an entry way for our bottom-up analysis.

We test our hypothesis by inspecting the attention patterns whenever the model’s CoT produces the
correct answer. We filter for attention heads that spend at least 10% of its attention on ¢, and refer
to these as previous-token heads (notated Ap.y). Previous-token heads are not new: they were first
discussed in the context of induction heads [26]. We identify 33 previous-token heads (out of a total
of 576 heads). Interestingly, we find that most previous-token heads occur roughly in the first half
layers (except for one at layer 31, all are at or before layer 22). In Section [f.4] we demonstrate via
causal interventions that disabling previous-token heads can disable model verification. But first,
what is the relationship between GLUvyjig/mvalia Vectors and Ap, heads? Below we adapt inter-layer
component channels to understand their relationship.

4.3 Putting GLUyyjq and Ap.., Together: Identifying Verification Subspaces (Polytopes)

We identify subspaces for self-verification by studying the relationship between GLUv,j;4 vectors and
Ap,., attention heads. As a reminder, we observe that Ap.., usually occurs in the first half layers (1 to
22), while GLUyyjiq vectors usually occur in the later half (18 to 36). We hypothesize and empirically
verify that Ap, activates GLUyyiq vectors.
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First, we borrow from neuroscience to define receptive fields [25]]. Consider a single neuron k, which
computes an activation function f* : IR — IR. A receptive field of neuron k is defined as

Sp={xeR*| ff) >0} (6)
In simpler terms, Sy, is the subspace that triggers a neuron active. In the context of GLUSs, this means
Sk ={x€R? | ¢(W},.x)  Whix>0} (7)

Now consider a set of neurons, /X, and the intersection of all of their receptive fields: S = ﬂLKl S;.

. . T . ; |K]|
S x can be considered a polytope in the model’s activation space parameterized by {W; i—1

Here we use the receptive fields of GLUyyjq to further localize self-verification.

Wiy}

ate’

Namely, we identify a small subset of as few as six previous-token heads that disables self-verification.
To do so, we look for previous-token heads (as opposed to hidden states) that activate GLUvyig
neurons the most. The output of each head is its OV-circuit (i.e., W W7/ ), scaled by to some attention
distribution. Meanwhile, the strength of each GLUvyj;¢ activation is determined by Wq:e and W,,.

We score each previous-token head h by first decomposing its OV-circuit using SVD:
(WoWy)" =USVT Y = diag(op1 > ... > opi > 0)
where k = d"¢%d because Wo Wy is low-rank. Let uy, ; refer to the j-th left-singular vector.

Each head is then assigned the following score:

N &
1 . _
score(h, GLUyyjq) = N Z Z J}QLJ (Qb(W;ateuh,j) . VV;pth) 8)
i
Where GLUValid = {ngateﬂ Wip}f\;?)l, N = |GLUValid|’ Wgatm W{ip, llh’j € ]R,d.

Put differently, we decompose W Wy into singular vectors, and measure how well they each align
with the receptive fields of GLUvyjig (Wyate, Wap), weighted by their singular values.

Note that we only need the left singular vectors because we only need the output subspace of Wo W7/,
which is spanned by the left singular vectors. Also note that weighing by 0}21’ ; can be thought of as

distributing the Frobenius norm of W Wy across each mode, as ||[Wo Wy ||3. = 3, o2

Our scoring mechanism is akin to inter-layer communication channels [[7, [19], which scores how
strongly two attention heads communicate with each other using a “composition score”:

W1 Ws||
CSWy,Wa) = i E ©))
Wil * [[Wel|
where W; is an OV component of one head and W5 the QK component of another at a later layer.
Our formulation can be considered a composition score between attention heads and GLUs, using
both Wy, and W, in place of W5 with some additional steps in between.

Once we score each previous-token head using Eq. [8] we incrementally ablate one head at a time
until we achieve perfect intervention scores (Section[4.4). Using this approach, we identify as few as
six attention heads that can disable model verification. We notate this subset as Aveis-

To summarize, we claim that the model has subspace(s) (polytope(s)), SgLuy,;,» for self-verification.
The model’s hidden state enters this subspace when it has verified its solution. In our setting, given
the nature of our task, previous-token heads Ap., take the hidden-state into this subspace, while for
other tasks, different components may be used. This subspace also activates verification-related GLU
weights, promoting the likelihood of tokens such as “success” to be predicted (Figure [3).

We find that alternative hyperparameters or scoring functions can yield different subsets of previous-
token heads that also disable self-verification. We discuss these results in Appendix [F} This suggests
that we do not identify a full circuit, but rather a critical component for verification. Also note that
our scoring function makes simplifications by ignoring possible interactive effects across heads, as
well as transformations (layer norms, GLUS) across layers. Regardless, our finding remains robust: a
small subset of previous-token heads can disable verification.
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Intervention Success Rate Intervened Output

R I Y Assistant: Let me solve this step by step.
<think> We have the numbers 11, 5, and 68.
We need to make an equation that equals 62.
Let’s try different combinations:
68-11-5=52-5=47 (not 62)

Bl Success

[Eh Partial Success

Success Rate (%)

50 7 68-11+5=57+5=62 (not62-11 +5)
68-11+5=57+5=62(not62 + 11 -5)
25 68 +11-5=79-5= 74 (not 62)
68 + 11 + 5 =79 + 5 = 84 (not 62)
68*11 - ...

GLUyal GLUya) Aprev  APrev  Averif Averif
+GLUtpy (N=33) Baseline (N=6) Baseline
(N=33) (N=6)
Figure 2: Intervention Results: Disabling as few as 6 attention heads disables self-verification,
rendering the model to generate tokens indefinitely. Apyey refers to 33 previous-token heads. Averis
refers to a subset of 6 previous-token heads. Aprey Baseline, Aveir Baseline refer to the average of 5
runs, where each run randomly samples 33 (or 6) attention heads.

Activation of GLUy;; Neurons Before and After Intervening Verification Heads

B Orig (Null Interv.)
Intervene Attention

Activation
=

5
04 Il‘ I I il _I,_._- [ | . e -I-_. — e W C_am

GLU Neurons

Figure 3: GLUyyjiq activations before and after turning off 6 Ay, attention heads. Adjacent
pairs of blue and orange bars indicate the same GLUv,jq vector. Turning off our identified attention
heads leads to a significant drop in their activations.

4.4 Causal Interventions

We study the role of each component above with causal intervention. Our test set consists of 300
samples in which the model originally correctly finds and validates its solutions. For each test case,
the model generates 100 tokens. Every time an attempt for a solution is made (i.e., “(this works)”
or “(not ({ans})” is about to be predicted), we turn off some of the model weights as described
below. We measure intervention success rate: the percentage of times the model fails to validate
its solution, despite having found the solution within the 100 generated tokens. Interestingly, the
model occasionally marks a correct attempt as invalid (desired intervention result), but continues its
generation to say it has found a solution (e.g., given target number 62, the model will output “68 - 11
+ 5 =62 (not 62) So, the answer is 68 - 11 + 5”). We mark these cases as partial successes.

We ablate a few components: (1) GLUvyjq: We zero-out 50 GLUv,jq vectors per layer from layer
18 to 36 (the second half of the model; 0.45% of all GLU vectors). (2) GLUvatig & GLUyyaiia: We
zero-out the top 50 GLUvyjq and top 50 GLU,y,iq Vectors per layer (0.9% of all GLU vectors). (3)
Apev: We turn off 33 previous-token heads (5.7% of all attention heads) by zeroing-out their W
weights. (4) Averir: We turn off 6 verification heads identified via Eq. @ L17H14, L17H11, L17H10.
We also provide two baselines: Apy.y Baseline and A veir Baseline, which each report the average
from 5 runs, where each run randomly samples 33 (or 6) attention heads.

Results are shown in Figure 2] with an example of an intervened output. We achieve near perfect
intervention rates when turning off 33 previous-token heads, or a smaller subset of 6 heads. The
model misclassifies correct solutions as invalid without these heads, and continue its CoT indefinitely.

These attention heads directly affect the GLUy,jiq vectors. Figure |§| demonstrates the activations of
the top GLUyyjiq vectors before and after disabling the subset of 6 previous-token heads. In most
cases, we observe a large drop (to near 0, or often even negative values) in GLUyyjiq activations.

Antipodal GLUg, Vectors. While attention heads achieve near perfect interventions, Figure|2|also
indicates that disabling both GLUyyjiq and GLUjyy,jiq performs better than disabling just GLUyyjig.
Why should disabling GLU1,y,1i¢ improve intervening, i.e., make the model fail at verification?
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Figure 4: Intervention Results for the base model and R14,z. In the base model, Apy can similarly
disable self-verification, while Ave¢ only plays a partial role for verification, hinting at the effects
of RL on their weights. In R1,435, interventions mostly leads to partial success, in which the model
first marks a solution as incorrect but self-corrects itself, hinting at a larger verification circuit. Also
interestingly, the smaller subset of Aveir is more effective at self-verification than Apey.

This can be explained by two facts: (1) the geometry of GLUy,jiq and GLUyyyqa4 vectors, and (2) the
nonlinear activation used in GLU. Interestingly, we find that the antipodal directions of GLUyyj;q and
GLUjyyaiiq also often encode tokens relevant for verification. The last 7 rows of Table 2] marked in red
indicate the nearest neighbors of the antipodes of GLUvyjiq and GLUpyy4. In addition, Qwen2.5-3B
uses SiLU activations [[12]. Thus inactive neurons take on small negative values (as opposed to zero,
had ReLU been used).

With that said, consider only zeroing out GLUyyig neurons: given a correct CoT sequence, GLUpyatia
vectors are inactive. However, because of SiLU, the inactive GLUp,y,9 vectors have negative
activations, thus get multiplied by a small negative value, flipping directions, and therefore contribute
towards the “success direction”. In the case of zeroing out both GLUvqjiq and GLUpya14, We are
further zeroing out the effects of inactive GLUjy,y,1q neurons.

S Similar Verification Components in Base Model and DeepSeek-R1 Model

We verify that similar verification subspaces exist in our base model (Qwen2.5-3B), as well as a
general reasoning model, DeepSeek-R1-Distill-Qwen-14B (henceforth R144p).

For both models, we provide CountDown as an in-context learning (ICL) task, including 5 demonstra-
tions of solving CountDown using the structured output of R152%2¢, We find that both models can solve

the ICL version of CountDown while following the same CoT structure of R1§2%2¢, corroborating

recent findings that reasoning capabilities often already exist in pre-trained models [9, [39]].

We then repeat our intervention analyses above. In our ICL setting, our interventions sometimes
make the model generate “out-of-range”, by which we mean their generations do not adhere to the

structured CoT of R15°%2¢, We mark these cases as out-of-range.

Base Model. Figure[d(a) shows the interventions from Section[#.4Jon our base model. Note that
previous-token heads still achieve near perfect (partial) intervention rates, suggesting that they play a
similar role for self-verification in the base model. Also note that the six Avesir heads demonstrate a
lower success rate. Similar to [30], which demonstrates that fine-tuning enhances existing mechanisms
in a base model, we hypothesize that RL enhances an existing verification mechanism, thus resulting

in highly localized attention heads in R15%2® that can control self-verification.

DeepSeek-R1 Model. In the case of R1145, we repeat the procedures in Sections[d.1~4.4] However,
a probe vector W is required to identify GLUvyjiq/mvaiia- Thus we apply EMB2EMB [16]], a simple
technique to transfer and re-use steering vectors across language models (see Appendix [G]for a brief
explanation). Applying EMB2EMB on R15%%2%’s probe, W, results in a probe vector Wry for R1y4g,
allowing us to repeat our analyses from Section @ on R14p.

We find similar GLUvaliq, nvalia Vectors in R1445, analogous to Table 2] (see Appendix [H), hinting at
similar verification subspaces in R1145. We identify and intervene on previous-token heads (Apy) in
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to compensate for the longer context induced from our ICL setup, which yields 552 (out of 1920)
previous-token heads. We discuss results from different hyperparameters (thresholds) in Appendix[I|

R114p, following Section We use an attention threshold of 5% (as opposed to 10% in R15%u¢

We also replicate Section 43| to identify a smaller subset of 351 attention heads that achieve near
perfect (partial) intervention success rates.

Results are shown in Figure ] (b). Interestingly, our interventions mostly lead to partial successes in
R144p, in which the model initially fails at self-verification (labels a correct solution as “(not {ans})”),
but corrects itself (generates “Wait, 68 - 11 + 5 is 62 so that works.”). This hints at a larger verification
circuit for R1145. We also note that Avei¢ has a higher success rate than Ap,.y, despite being a smaller
set, suggesting that not all previous-token heads (or their interactions) are helpful in self-verification.
We leave further exploration for future work.

6 Related Work

Decoding Interpretable Representations. A growing line of work focuses on decoding and
manipulating interpretable representations in model activations [41]. Conveniently, many concepts
take on linear representations [20, 22| 29], in which simple vectors encode human-interpretable
concepts. This allows for easily manipulating such representations to steer the model’s behavior.
Examples include refusal [3]], sycophancy [32], toxicity [15]], or even user representations [3]].

For “non-reasoning” models, researchers have studied “truthful” representations before [4], where
steering towards a “truthful” direction has led to improvements in tasks related to factual recall [17]].
In a similar vein, researchers have shown that the model’s representations can reveal whether they
will make errors (e.g., hallucinations) [27]], or when they are unable to recall facts about an entity [8]].

Most recently, concurrent work [36} |40] also investigate how models solve reasoning tasks. [40]]
find that models know when they have reached a solution, while [36] decode directions that mediate
behaviors such as handling uncertainty or self-corrections. While our work corroborates these
findings, we take a deeper dive into how a reasoning model verifies its own reasoning trace.

Circuit Analysis. A growing line or work decomposes the forward pass of a neural network as
“circuits” [24], or computational graphs. This allows researchers to identify key components and
their causal effects for a given forward pass. A common approach to construct computational graphs
is to replace model components with dense activations with a sparsely-activating approximation.
[6] introduces Transcoders to approximate MLP layers, while [[1] further develops Cross-layer
Transcoders to handle inter-layer features. [18]] uses Cross-layer Transcoders to conduct circuit
analyses for a wide range of behaviors, such as multi-step reasoning (for factual recall) or addition,
and also investigate when a model’s CoT is (un)faithful. In our work, we identify key components
needed for a potentially larger verification circuit without the need for separate sparse approximations.

7 Discussion

We studied how a task-specific model verifies its own outputs. We repurposed mode collapse as a
feature, not a bug: by leveraging the fact that preference tuning leads to mode collapse, we train
a model with highly structured CoT, making it easy to parse its reasoning trace. With this setup,
we found GLU weights that encode verification-related tokens, and previous-token heads that can
disable verification. We offer a simple extension to inter-layer communication channels that allow
us to localize as few as six attention heads that can also disable verification. Finally, we verify the
existence of similar components in our base model and a general reasoning DeepSeek-R1 model. We
view our work as a step towards understanding the inner mechanisms of recent reasoning models.

Limitations. Note that we do not claim to have uncovered a full verification circuit, but rather
critical components for verification. We also reiterate the scope of our work: we study a specific task
that allows for context-based verification. Obviously, not all reasoning tasks share this property:
many tasks likely require prior-based verification using general knowledge. We speculate that
similar subspaces are used for prior-based verification, but is less obvious where they show up.
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A Hyperparameters for R1

Here we provide the hyperparameters used to train R150%2,

Parameter Value
Train Batch Size 256
Validation Batch Size 1312
Max Prompt Length 256
Max Response Length 1024
Actor Learning Rate le-6
PPO Mini Batch Size 128
PPO Micro Batch Size 8

Log Prob Micro Batch Size 8
Tensor Model Parallel Size 2
Critic Learning Rate le-5
KL Coefficient 0.001

Table 3: Training Hyperparameters.

B LogitLens on More Layers

Figure [5|demonstrates LogitLens as described in Section @.I]on more layers.

C Hyperparameters for Probing

We use a batch size of 8, validation size of 256, weight decay of 0.01, and learning rate of le-4. We
validate every 50 gradient steps, and terminate training when validation loss has not improved after a
patience value of 10.

D Probe Accuracy

Figure 6 shows probing results. The model has a linear separation in its hidden states given correct
versus incorect CoT tokens.

E Examples of Steering Verification with Probe

Once we identify a direction that encodes solved versus unsolved states (i.e., Wpyope), we can simply

add this direction into the model’s hidden states to make the model believe that it has found a solution:
xt =xf+ aWprobe (10)

where x¢, Worobe € R? and o € IR. Some hyperparameters include ¢ (which layers to steer on) and
«, where a larger o amplifies the target behavioral effect.

While an extensive hyperparameter search and a systematic experiment may be useful, steering is not
a core component but rather a tangential experiment. We thus provide qualitative examples using
¢={n|24 <n <36} and o = 20 (after normalizing Wp,op.) in Table

F Alternative Subsets of Previous-Token Heads
Of the 25 previous-token heads that we identify, there are many ways to identify subsets that
disable verification. We offer a few examples, and document how many heads are needed to disable

verification with perfect success rates (including partial successes).

Attention Density. The simplest method is to sort the heads based on how much they attend to the
target token that timestep Z4y,s.

13
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Figure 5: Averaged LogitLens from 300 samples (Same as Figure [T but demonstrating more layers).
We see tokens related to verification (“success”, “incorrect”) in the last few layers. (A), (B) show the
top tokens when a correct / incorrect solution is reached. (C), (D) shows results from intervening
on either GLU weights or attention heads, given a correct solution. For (C), while the model is less
certain (P(“this”) versus P(“not”) becomes 0.51 vs. 0.49 in last layer), we still see tokens such as
“success” showing up. For (D), we no longer see any tokens related to “success” show up, and the
model is certain that it has not found a solution.
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Figure 6: Probe Accuracy. The model has a linear separation in its hidden states given correct versus
incorrect CoT tokens.

Varying Hyperparameters. Given our approach (Section[#.3), we try different parameters for N.

Sort by Similarity to W,:., W,;,. An alternative approach is to sort the attention heads based on
how similar their OV circuits are to the W and W, weights of the GLUy 4;;4 weights. We simply
take the mean of {Wy,,., Wy, }}" vectors from our N GLUy ;4 weights. We then sort attention
heads based on how similar they are to the resulting mean vector.

Sort by Probe Wp,..,.. An alternative is to sort the attention heads based on how similar their OV
circuits are to the probe vector Wp,.ope.

Table [6] demonstrates how many heads are needed from each approach to disable verification with
perfect accuracy.

G Brief Explanation of EMB2EMB

Language models represent numerous concepts using linear representations [22, 29], by which
we mean one can add a single vector that encodes a specific concept into the activations during
inference-time to raise the probability for the model to exhibit such concept or behavior [15} 117} 132].
Researchers often refer to such vectors as “steering vectors”.

In other words, during the forward pass, imagine the activations at layer i. One can simply add a
steering vector W (scaled by some hyperparameter «) to control the model’s behavior:

xT = x4 Fi(xY) + alW (11)
where x’ and F? are the hidden state and transformer block at layer 1.

EMB2EMB [16] is a simple method that transfers a steering vector from one language model to
another, by leveraging the fact that the unembedding spaces of language models are often quite
similar.

EMB2EMB works as following. Given a “source” and “target” language model, Mg and M, first
randomly sample a set of IV (= 100,000) tokens, notating their token (un)embeddings as £g and E7.
Then, learn a linear transformation, 7", to map points g to Ep, using something as simple as least
squares minimization. Note that 7" maps between spaces with different dimensions.

Given transformation 7" and a steering vector Wg from the source model Mg, one can steer the
target model M by simply applying transformation 7" to W:
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Vector

Nearest Neighbors

(36, 10079) A% (not losing), NotNull, /i (can afford), % (can endure), F~ (not hesitate)
(32, 497) mikxmzh (deletion successful), successes, Success, success, succeeded, favorable
(35, 6041) maE Kk (powerful), excellent, powerful, # k& (powerful), /R# (great), strong, 7
(37, 5399) ZEF (equal), equal, FIEERI(same), HFl(same), equals, HF#) (same), F% (equal)

(32, 13572) successfully, g (success), k7T (solved), #1T (achieved), IFF (smoothly)

(30, 10150) %M (no problem), Eit (no worries), .NoError, harmless, A2 (unchanged)

(45, 6650) %% (do not have), =% (does not exist), iEEf (do not have any), ~EE
(39, 6070) never, 1% (will not), doesn, not, R4¢ (cannot), nowhere, cannot, neither
(46, 12380) neither, none, nowhere, None, Neither, none, nobody, cannot

(44, 12793) ndo (not), & (not), nicht (not), tidak (no), H € (not), ikke (not), niet (not)

(41, 12498) A& (not present), A& (no longer), non, 3 (non-), AEZ (is no longer), NEF
(37, 7636) 4% (inappropriate), &2 (insufficient), ;x7% (cannot reach), 4 (not enough)
(31,5164) %#e (did not), fails, #¢ (failed), &4 (not enough), %l (cannot), KX

(35, 2509) F (not), =% (does not contain), 7% (incorrect), A (does not affect),

Table 4: GLUgy vectors relevant to verification in R1445.

Xt = x4 + Fi(xb)+aTWs, (12)

where x7 is the activations and Fp is the transformer block of target model M. In our work, we

use EMB2EMB to transfer our probe vector W from R15%%2¢ o a general reasoning R1 model, R1445.

H GLUyajid, invaia in DeepSeek-R1-Distill-Qwen-14B

Table E|contains GLUg,; weights in R1,4p related to verification.

I Alternative Hyperparameters for R1

We add a quick note on using alternative hyperparameters for the experiment on R1145 in Section 3}
Namely, there are two hyperparameters, the attention threshold to categorize an attention head as
a previous-token head (Apy), and the number of GLUyyj;q vectors to include to identify a smaller
subset of attention heads (Aveyif).

For the first hyperparameter (attention threshold), we use 5% as our threshold, as reported in the main
text. We find that using a higher threshold (10%) is too constrained and perhaps yields too small of
a set of previous-token heads, leading to a lower intervention success rate (0.4%, with 25% partial
success rate). We believe this is because there are still many attention heads that attends to the correct
solution (say, with an attention pattern < 10% but > 5%) to offset our intervention.

Using a smaller threshold (2.5%) yields too large of a set of previous-token heads. In this case,
interventions now lead to a much higher rate of “out-of-range” results — i.e., the model no longer
adheres to the structured CoT sequence after our interventions.

Regarding the number of GLUv,jq vectors, we see our results converge to the same results after 200
vectors, which is what we use in our experiments.

J Compute Resources

Experiments for R15%"* ran on a single A100 or H100 GPU. Experiments for R1145 ran on 2 GPUs.

Down

16



Operands | Target | Type | Output

<think>
87-38-3=116-3= 113 (not 46)
87 -38 +3 =49 + 3 = 52 (not 46)

3,87,38 1 46| Orig. | g7 38134943 =52 (not 46)
87 +38-3=125-3=122 (not 46)
38 +38-3=76-3=73(not 46)...
<think>
87-38-3=116-3 =113 (not 46)
87 -38+3 =49 + 3 =52 (not 46)
3, 87, 38 46 Steer | 87-38+3 =49 +3=52! Yes, we got it!
87-38+3=49 +3=52.
</think>
<answer> 87 - 38 + 3 </answer>
<think>
60. 62 60-62+12+34=54+ 12+ 34 =66 + 34 = 100 (not 68)
12’34’ 68 Orig. | 60+62-12-34=122-12-34=108 - 34 =74 - 34 = 40 (not 68)
’ 60+62-34+12=122-34+12=88 +12=100 - 34 = 66 (not 68)
60+34+12-62=94+12-62 =106 - 62 =44 (not 68)...
<think>
60-62+12+34=54+ 12 + 34 =66 + 34 = 100 (not 68)
60+62-12-34=122-12-34=108 - 34 =74 - 34 = 40 (not 68)
60, 62, 63 Steer 60+62-34+12=122-34+12=88 + 12 =100 - 34 = 66 exactly!
12,34 So the equation that equals 68 is:
60+62-34+12
</think>
<answer> 60 + 62 - 32 + 12 </answer>
<think>
30. 90 90-30-27+19=60-27+19=33+19 =52 (not 74)
27’ 19’ 74 Orig. | 90-30-27+19=60-27+19=33+ 19 =52 (not 74)
’ 90-30-27+19=60-27+19=33+19 =52 (not 74)
90 +27+19-30=117+19-30=136 - 30 =106 (not 74)...
<think>
90-30-27+19=60-27+19=33+19 =52 (not 74)
90-30-27+19=60-27+19=33+19=52!
30, 90, 74 Steer Indeed, 90-30-27+19=60-27+19=33+19=52
27,19 So, let’s try another combination:

90-30-27+19=60-27+19=33+19=52
No luck. Let’s try this:
90-30-27+19=60-27

Table 5: Steering with probe W,,...
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Num.

Method Heads Heads
Eq.[§| (N=200) 6 L17H14, L22H14, L3H13, L5H15, L17H11, L17H10
L12H3, L12HS, L11HS, L17H1, L17H3, L10HS, L17H10,
Eq. |8/ (N=50) 5 LI17H11, L17H13, L21H10, L19H8, L13H3, L13H6,
L5HI15, L17H14
Eq.[§| (N=100) 100 | L17H3. L17H1, L12HS, L17H10, L17H14, L17H11
L17H14, LSHI1S, L19H13, L5H14, L13H6, L17H11, L1SHS,
Eq'(N=300) 12 L13H3, L19HS, L4H5, L17H3, L17H10
Attention Densit q L17H14, L17H10, L13H3, L13H6, L5H14, L19HS, L4H3,
ention pDensi y L22H14
LISH3, L21H7, L1218, L21H14, L22H14, L11H8, L21H10,
Sort by Wyate. Wap | 17 L12H3, LI5HI5, L17H3, L17H14, L15H8, L5H15. L13H6,
L17H11, L19H13, L19H8
LI8H7, L21H2, L22H12, L17H13, L17H11, L17H10, LAHS,
Sort by Wprope 17 LISHS, LI7H14, L5H14. L22H14. L13H5, L5H15, L10HS,

L15H15, L19H13, L13H6

Table 6: Alternative approaches to localize attention heads that disable verification, and the
number of heads required to disable verification.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Section [d|4.4] [3]
Guidelines:
* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: End of Section [T} End of Section[4.3] Section[7]

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: We do not provide any theoretical results.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Hyperparameters in Appendix [C] as well as plans to release code and model
checkpoints.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: See attached zip file.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Sections 3} 4}
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Most of our results are bimodal — either near 100% intervention success rates
or near 0%, allowing us to safetly draw conclusions about the effects of each intervention.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Section[J]
Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: We conform th the Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: Our work is mostly low-level technical details with no obvious societal impact.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: N/A
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We include citations and references where applicable.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: See attached zip file.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: N/A
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: N/A
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: N/A
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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