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Abstract

How do reasoning models verify their own answers? We study this question by1

training a model using DeepSeek R1’s recipe on the CountDown task. We leverage2

the fact that preference tuning leads to mode collapse, yielding a model that always3

produces highly structured chain-of-thought sequences. With this setup, we do top-4

down and bottom-up analyses to reverse-engineer how the model verifies its outputs.5

Top-down, we find Gated Linear Unit (GLU) weights encoding verification-related6

tokens, such as “success” or “incorrect”. Bottom-up, we find that “previous-token7

heads” are mainly responsible for self-verification in our setup. Our analyses meet8

in the middle: drawing inspiration from inter-layer communication channels, we9

use the identified GLU weights to localize as few as six attention heads that can10

disable self-verification, pointing to a necessary component of a potentially larger11

verification circuit. Finally, we verify that similar verification components exist in12

our base model and a general reasoning DeepSeek-R1 model.13

1 Introduction14

Recent language models demonstrate impressive reasoning capabilities. Such models are trained with15

reinforcement learning (RL) in which they are rewarded when their final outputs are correct.16

Behaviorally, these models generate long chain-of-thought (CoT) [37] reasoning traces. There is17

an open question on whether monitoring their CoT is worthwhile, given a growing line of work18

suggesting that their CoTs do not faithfully reflect the model’s inner computations [2, 14, 35]. Can we19

monitor their hidden states instead? We take a step towards investigating this question, by studying a20

model’s inner mechanism for a crucial reasoning step, i.e., self-verification.21

General reasoning entails a broad range of tasks, requiring a diverse set of skills. In order to conduct22

a systematic study, we train and analyze a task-specific reasoning model using the same recipes23

from DeepSeek R1. We limit the scope of our study to a specific task that requires search – a core24

reasoning skill broadly applicable for many reasoning tasks. We also select a task in which we can25

expect the verification mechanism ahead of time, making our analyses easier. Namely, we study26

CountDown [9, 10, 31, 38], in which a set of numbers (operands) and a target number is given, and27

the model must find the right arithmetic combination using the operands to reach the target number.28

Because the target number is specified in the context, we can expect attention heads to play a role in29

verification and shed light onto other relevant weights and subspaces pertaining to self-verification.30

Studying a task-specific model has a second non-obvious benefit: training language models with RL31

(i.e., with preference signals) can lead to mode collapse towards majority preferences, significantly32

reducing the diversity of their outputs [13, 21, 28, 34]. Luckily, in the context of model interpretability,33

this means that our task-specific model converges to always generating well-structured CoT sequences,34

allowing us to easily and systematically parse its reasoning trace (e.g., see Table 1).35
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We conduct “top-down” and “bottom-up” analyses to reverse-engineer how the model verifies its own36

outputs. Our two analyses meet in the middle, revealing key subspaces relevant for model verification.37

Going top-down, we leverage linear probes to find Gated Linear Unit (GLU) vectors in late layers that38

often encode tokens relevant for verification. Interestingly, these vectors also seem to correlate with39

English or Chinese tokens, like “success” or “不完” (“failed”). Furthermore, the antipodal directions40

of these vectors also encode the antonyms of correct or incorrect tokens.41

Going bottom-up, given the nature of our task, we hypothesize and verify that attention heads play a42

significant role. We find “previous-token heads” – attention heads that attend to previous occurrences43

of the current token – that attend to the provided solution in the context. Previous-token heads have44

been studied before, for instance in the context of induction heads [26]. Through causal analyses, we45

find that disabling previous-token heads disables model verification.46

Our two analyses meet in the middle: we find that disabling previous-token heads also deactivates our47

GLU vectors. Inspired by inter-layer communication channels [7, 19], we look for previous-token48

heads that most align with the “receptive-field” of our GLU vectors, allowing us to localize as49

few as six attention heads that reliably disables model verification. Thus our work finds necessary50

components for a potentially larger verification circuit.51

Finally, we verify that similar verification components exist in our base model prior to RL, as well as52

in a general reasoning model, DeepSeek-R1-Distill-Qwen-14B.53

Obviously, most reasoning tasks do not provide an easily verifiable solution in the context. However,54

by illustrating a thorough mechanism of verification in our simplified setup, we take a step towards55

the possibility of monitoring and interpreting a model’s inner computations in its hidden states.56

2 Notations, Key Terminologies57

We first establish key terminologies and notations. A Transformer’s forward pass first embeds the58

input using weights WE ∈ IRd×V . The embeddings go through L Transformer blocks, yielding59

hidden states xℓ ∈ IRd, ℓ ∈ [L − 1]. The last layer, xL−1, is “unembedded”, or projected back to60

the token embedding space using WE , and the nearest neighboring token embedding of W⊤
E xL−1 is61

outputted. Each block consists of attention heads and Gated Linear Units (GLUs) [33].62

Attention. Each attention head consists of key (WK), query (WQ), value (WV ), and output (WO)63

weights. an attention pattern A is computed using key and query weights:64

A = softmax(x⊤
i W

⊤
QWKxj) (1)

where W⊤
QWK is sometimes referred to as a “QK circuit”. A is used to scale the “OV circuit”65

(WOWV ) to produce an output for each head:66

h(x) = (A⊗WOWV ) · x (2)

Gated Linear Units and GLUOut Vectors. Given a Gated Linear Unit (GLU) block:67

GLU(x) = (ϕ(Wgatex)⊙Wupx)Wout (3)

68 where ϕ is a non-linearity and Wgate,Wup,Wout ∈ IRdglu×d, we decompose it as following:69

M = ϕ(Wgatex)⊙Wupx,M ∈ IRdglu , (4)

GLU(x) = M⊤Wout =

dglu∑
j

mjvj (5)

where mj is the j-th entry in M and vj is the j-th row of Wout.70

Importantly, the output of each GLU block can be thought of as the weighted sum of v’s (the rows of71

Wout), where the weights are determined by activations M . We refer to elements of M as GLU72

neurons and vectors v as GLUOut vectors. For more details, we refer readers to [7].73
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A conversation between User and Assistant. The user asks a question, and the Assistant solves it.
The assistant first thinks about the reasoning process and then provides the user with the answer.
User: Using the numbers [20, 14, 40], create an equation that equals 28. You can use basic
arithmetic operations (+, -, *, /) and each number can only be used once. Show your work in
<think> </think> tags. And return the final answer in <answer> </answer> tags, for example
<answer> (1 + 2) / 3 </answer>.
Assistant: Let me solve this step by step. <think> We have the numbers 20, 14, and 40. We need
to use these numbers to make an equation that equals 28 using basic arithmetic operations. Let’s
try different combinations:
40 - 14 - 20 = 10 - 20 = -10 (not 28)
40 - 14 + 20 = 26 + 20 = 46 (not 28)
40 + 14 - 20 = 54 - 20 = 34 (not 28)
40 + 14 + 20 = 54 + 20 = 74 (not 28)
40 * 14 / 20 = 560 / 20 = 28 (this works)
So, the equation that equals 28 is 40 * 14 / 20. </think> <answer> (40 * 14) / 20 </answer>

Table 1: CountDown Task. The model must find an arithmetic combination of the operands to
reach the specified target number. We leverage the fact that preference tuning leads to mode collapse,
resulting in a model that consistently generates structured CoT tokens that we can easily parse.

3 Training Task-Specific Reasoning Models74

We apply DeepSeek R1-Zero’s setup with Qwen2.5-3B as our base model (Hyperparams: Appx. A).175

Our task, CountDown, is a simple testbed frequently used to study recent reasoning models [9, 10, 31,76

38] – given a set of 3 or 4 operands (e.g., 19, 36, 55, 7) and target number (e.g., 65), the task is to find77

the right arithmetic combination of the operands to reach the target number (i.e., 55 + 36 - 7 - 19).78

The model is given two rewards: accuracy reward for reaching the correct final answer, and a format79

reward when it generates its CoT tokens in between “<think>” and “</think>” tokens. For more80

details on how R1-Zero is trained, see [11]. We refer to our task-specific model as R1CountDown .81

One advantage of studying a specific task is in that preference training leads to mode collapse [13,82

21, 28, 34], resulting in a reduction in generation diversity. In our context, this is desirable, as the83

model converges to generating a highly structured CoT sequence. See Table 1.84

This allows us to easily parse the model’s CoT. Namely, the model enumerates through many attempts,85

while always marking each attempt as either “(this works)” or “(not {ans})”. Thus, we can study the86

model’s hidden states at specific timesteps, such as right before it produces either “this” or “not”,87

which we refer to as tvalid and tinvalid. We refer to the hidden states at these timesteps as xValid and88

xInvalid. We refer to the timestep in the prompt at which the target number is specified as tans.89

4 Components for Self-Verification in CountDown90

Here we present a series of analyses to identify weights and subspaces relevant for verification. We91

do a “top-down” analysis to find relevant GLU vectors in late layers, and a “bottom-up” analysis to92

find relevant attention heads in early layers. Our analyses meet in the middle, to identify relevant93

subspaces for verification. We verify the role of such weights and subspaces via causal experiments.94

4.1 Top-Down: Finding Verification-Related GLU Vectors95

LogitLens. We start our analysis by applying LogitLens [23] to compare the hidden states of xValid96

and xInvalid on a sample size of 300. We apply the unembedding layer at all intermediate layers xℓ97

and inspect the resulting nearest neighboring tokens across 300 samples.98

Figure 1(a, b) shows our results in the late layers (see Appendix Figure 5 for more layers). Interest-99

ingly, we see tokens such as “SUCCESS”, “yes”, “bingo” show up for xValid, and “不符合” (“Does100

not conform”), “not”, “不合” (“Incompatible”) for xInvalid. Interestingly, we often observe English101

tokens for xValid and Chinese tokens for xInvalid. What drives these tokens to appear?102

1We use TinyZero: https://github.com/Jiayi-Pan/TinyZero/tree/main
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Figure 1: Averaged LogitLens from 300 samples. We see tokens related to verification (“success”,
“不合”) in the last few layers. (a), (b) show the top tokens when (in)correct solutions are reached. (c),
(d) shows results from intervening on either GLU weights or attention heads, given a correct solution.
For (c), while the model is less certain (P(“this”) drops from 0.98 to 0.54), we still see tokens such as
“success” showing up. For (d), we no longer see any tokens related to “success”, and the model’s
final next-token predictions closely resembles when the model has not found a solution (b).

Probing. To answer this question, we train linear probes W ℓ ∈ IR2×d at every layer ℓ from103

timesteps right before “this” or “not” is predicted.These timesteps correspond to when an answer is104

produced, and an open parenthesis tokens “(” is being predicted next, as opposed to “this” or “not”.105

W ℓ is a linear mapping from the hidden states, xℓ, to a binary label of whether the model has found106

the solution. Our training data is D = {(xℓ
yi , yi)}N−1

i=0 , yi ∈ {0 (“not”), 1 (“this”)}, N=327,680. We107

solve for W ℓ to fit y = softmax(W ℓxℓ) using gradient descent (hyperparameters in Appendix C).108

Validation accuracy (N = 512) per layer is provided in the Appendix (Figure 6), with accuracy109

usually staying above 90% after the first few layers. High accuracy suggests that our probing vectors110

W [0],W [1] identify a direction in the model’s activation space that linearly separates points of xValid111

and points of xInvalid (i.e., linearly separable subspaces).112

Such vectors can steer the model. Simply adding W [0] or W [1] into hidden states can push x towards113

xValid or xInvalid, and change the model’s output to indicate that it has (or has not) found a solution,114

even when it has not (or has). We provide qualitative examples of steering results in Appendix E.115

GLUValid, GLUInvalid Vectors. Our probe W tells us that mid-layer activations can be linearly116

separated to identify solved cases (xValid) from unsolved cases (xInvalid), but also serves a secondary117

purpose. Namely, we can use W to identify GLUOut vectors of interest [15].118

Per layer, we select the top k(= 50) GLUOut vectors by how similar they are to W ℓ[0] or W ℓ[1] using119

cosine similarity. One can consider these vectors as weights that contribute the most towards W ℓ[0]120

(no solution) or W ℓ[1] (found solution) directions. We refer to them as GLUInvalid and GLUValid121

vectors. This results in k × L× 2 GLUValid, Invalid vectors (0.9% of the model’s GLUOut vectors).122

Unembedding GLUValid/Invalid vectors reveal which tokens get promoted when they are activated.123

Table 2 shows their nearest neighbors in the model’s token embedding space. We observe that124

most interpretable GLUValid/Invalid neurons occur in the second half of layers. Interestingly, we again125
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Vector Nearest Neighbors
W [0] 不完 (unfinished), 不了 (unable), 不 (not), 不在 (absent), 不该 (should not)
W [1] Exactly, >(, =yes, =YES, =:, ===, quis, esac, ####

(26, 744) 未能 (failed), 不够 (not enough), nicht (not), 不像 (not like), 达不到 (can’t reach)
(26, 6619) 缺乏 (lack), 缺少 (lack), 不方便 (inconvenient), lacks, 难以 (difficult), 未能 (failed)
(27, 9766) 是不可能 (impossible), neither, 看不到 (can’t see), 不存在 (doesn’t exist)
(27, 4971) inefficient, 没能 (failed), 不方便 (inconvenient), Danger, disadvantage, 不利于

(29, 6676) yes, Yes, Bindable, exactly, Yes, "Yes, yes, Yep, Exactly, included
(27, 10388) mirac, 乐观 (optimism), 安然 (safely), Relief, 幸 (fortunate), .isSuccess
(30, 8233) correctly, 正确 (correct), 恰当 (appropriate), accurately, 符合 (conform)

-1×(26, 744) 慎 (careful), 足 (sufficient), 同等 (equal), tend, ONDON, 足以 (enough)
-1×(26, 6619) 不仅能 (not only can), 不错的 (good), 具有良好 (have good), 总算 (finally)
-1×(27, 9766) might, maybe, may, 有时候 (sometimes), 部分地区 (some areas), .some
-1×(27, 4971) successfully, successful, 顺利 (smooth), 成功 (successful), 删除成功

-1×(29, 6676) 都不 (neither), 不太 (not quite), neither, 不予 (not given), 没见过 (never seen)
-1×(27, 10388) 失败 (failure), failure, 不良 (bad), 不利 (unfavorable), 糟糕 (bad), 失误 (mistake)
-1×(30, 8233) wrong, 不良 (bad), incorrect, wrong, invalid, bad, inappropriate, invalid

Table 2: GLUOut vectors relevant to verification, and their nearest neighbors. W [0],W [1]
indicate our probe model. “(x, y)” indicates the GLUOut vector at layer x, index y. “−1 × (x, y)”
(marked in red) indicates the antipodes of the GLUOut vector at layer x, index y. Interestingly, we
observe a correlation between valid/invalid vectors and English and Chinese.

note that there seems to be a correlation between GLUValid/Invalid and English versus Chinese tokens,126

hinting at the underlying geometry of xValid/Invalid and the model’s embedding space.127

While GLUValid/Invalid encode verification-related tokens, what role do they play? This can be partially128

answered by applying LogitLens again on 300 samples, but now by “turning off” GLUValid vectors129

(< 1% of total GLU vectors) by scaling them to zero. Figure 1(c) shows the results: while the130

probability of verification-related tokens drop (e.g., P(“this”) drops from 0.98 to 0.70 in layer 36), the131

end behavior remains the same (i.e., “this” is still the top-1 token). This tells us that GLUs do not132

fully explain self-verification. We demonstrate a more thorough causal analysis in Section 4.4.133

4.2 Bottom-Up: Previous-Token Attention Heads for Verification (APrev)134

We next inspect the role of attention heads for verification. One motivation for choosing CountDown135

as our task is that the task specifies the target number in the context. Thus we can posit that a136

Transformer could verify its CoT tokens by comparing them against the specified target number (at137

timestep tans). Such a hypothesis provides an entry way for our bottom-up analysis.138

We test our hypothesis by inspecting the attention patterns whenever the model’s CoT produces the139

correct answer. We filter for attention heads that spend at least 10% of its attention on tans, and refer140

to these as previous-token heads (notated APrev). Previous-token heads are not new: they were first141

discussed in the context of induction heads [26]. We identify 33 previous-token heads (out of a total142

of 576 heads). Interestingly, we find that most previous-token heads occur roughly in the first half143

layers (except for one at layer 31, all are at or before layer 22). In Section 4.4 we demonstrate via144

causal interventions that disabling previous-token heads can disable model verification. But first,145

what is the relationship between GLUValid/Invalid vectors and APrev heads? Below we adapt inter-layer146

component channels to understand their relationship.147

4.3 Putting GLUValid and APrev Together: Identifying Verification Subspaces (Polytopes)148

We identify subspaces for self-verification by studying the relationship between GLUValid vectors and149

APrev attention heads. As a reminder, we observe that APrev usually occurs in the first half layers (1 to150

22), while GLUValid vectors usually occur in the later half (18 to 36). We hypothesize and empirically151

verify that APrev activates GLUValid vectors.152
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First, we borrow from neuroscience to define receptive fields [25]. Consider a single neuron k, which153

computes an activation function fk : IRd → IR. A receptive field of neuron k is defined as154

Sk =
{
x ∈ IRd | fk(x) > 0

}
(6)

In simpler terms, Sk is the subspace that triggers a neuron active. In the context of GLUs, this means155

Sk =
{
x ∈ IRd | ϕ(W k

gatex) ·W k
upx > 0

}
(7)

Now consider a set of neurons, K, and the intersection of all of their receptive fields: SK =
⋂|K|

i Si.156

SK can be considered a polytope in the model’s activation space parameterized by
{
W i

gate,W
i
up

}|K|
i=1

.157

Here we use the receptive fields of GLUValid to further localize self-verification.158

Namely, we identify a small subset of as few as six previous-token heads that disables self-verification.159

To do so, we look for previous-token heads (as opposed to hidden states) that activate GLUValid160

neurons the most. The output of each head is its OV-circuit (i.e., WOWV ), scaled by to some attention161

distribution. Meanwhile, the strength of each GLUValid activation is determined by Wgate and Wup.162

We score each previous-token head h by first decomposing its OV-circuit using SVD:

(WOWV )
h = UΣV⊤,Σ = diag(σh,1 ≥ ... ≥ σh,k ≥ 0)

where k = dhead because WOWV is low-rank. Let uh,j refer to the j-th left-singular vector.163

Each head is then assigned the following score:164

score(h,GLUValid) =
1

N

N∑
i

k∑
j

σ2
h,j

(
ϕ(W i

gateuh,j) ·W i
upuh,j

)
(8)

where GLUValid = {W i
gate,W

i
up}N−1

i=0 , N = |GLUValid|, W i
gate,W

i
up,uh,j ∈ IRd.165

Put differently, we decompose WOWV into singular vectors, and measure how well they each align166

with the receptive fields of GLUValid (Wgate,Wup), weighted by their singular values.167

Note that we only need the left singular vectors because we only need the output subspace of WOWV ,168

which is spanned by the left singular vectors. Also note that weighing by σ2
h,j can be thought of as169

distributing the Frobenius norm of WOWV across each mode, as ||WOWV ||2F =
∑

i σ
2
i .170

Our scoring mechanism is akin to inter-layer communication channels [7, 19], which scores how171

strongly two attention heads communicate with each other using a “composition score”:172

CS(W1,W2) =
∥W1W2∥F

∥W1∥F ∗ ∥W2∥F
(9)

where W1 is an OV component of one head and W2 the QK component of another at a later layer.173

Our formulation can be considered a composition score between attention heads and GLUs, using174

both Wgate and Wup in place of W2 with some additional steps in between.175

Once we score each previous-token head using Eq. 8, we incrementally ablate one head at a time176

until we achieve perfect intervention scores (Section 4.4). Using this approach, we identify as few as177

six attention heads that can disable model verification. We notate this subset as AVerif.178

To summarize, we claim that the model has subspace(s) (polytope(s)), SGLUValid , for self-verification.179

The model’s hidden state enters this subspace when it has verified its solution. In our setting, given180

the nature of our task, previous-token heads APrev take the hidden-state into this subspace, while for181

other tasks, different components may be used. This subspace also activates verification-related GLU182

weights, promoting the likelihood of tokens such as “success” to be predicted (Figure 3).183

We find that alternative hyperparameters or scoring functions can yield different subsets of previous-184

token heads that also disable self-verification. We discuss these results in Appendix F. This suggests185

that we do not identify a full circuit, but rather a critical component for verification. Also note that186

our scoring function makes simplifications by ignoring possible interactive effects across heads, as187

well as transformations (layer norms, GLUs) across layers. Regardless, our finding remains robust: a188

small subset of previous-token heads can disable verification.189
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Figure 2: Intervention Results: Disabling as few as 6 attention heads disables self-verification,
rendering the model to generate tokens indefinitely. APrev refers to 33 previous-token heads. AVerif
refers to a subset of 6 previous-token heads. APrev Baseline, AVerif Baseline refer to the average of 5
runs, where each run randomly samples 33 (or 6) attention heads.
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pairs of blue and orange bars indicate the same GLUValid vector. Turning off our identified attention
heads leads to a significant drop in their activations.

4.4 Causal Interventions190

We study the role of each component above with causal intervention. Our test set consists of 300191

samples in which the model originally correctly finds and validates its solutions. For each test case,192

the model generates 100 tokens. Every time an attempt for a solution is made (i.e., “(this works)”193

or “(not ({ans})” is about to be predicted), we turn off some of the model weights as described194

below. We measure intervention success rate: the percentage of times the model fails to validate195

its solution, despite having found the solution within the 100 generated tokens. Interestingly, the196

model occasionally marks a correct attempt as invalid (desired intervention result), but continues its197

generation to say it has found a solution (e.g., given target number 62, the model will output “68 - 11198

+ 5 = 62 (not 62) So, the answer is 68 - 11 + 5”). We mark these cases as partial successes.199

We ablate a few components: (1) GLUValid: We zero-out 50 GLUValid vectors per layer from layer200

18 to 36 (the second half of the model; 0.45% of all GLU vectors). (2) GLUValid & GLUInvalid: We201

zero-out the top 50 GLUValid and top 50 GLUInvalid vectors per layer (0.9% of all GLU vectors). (3)202

APrev: We turn off 33 previous-token heads (5.7% of all attention heads) by zeroing-out their WO203

weights. (4) AVerif: We turn off 6 verification heads identified via Eq. 8: L17H14, L17H11, L17H10.204

We also provide two baselines: APrev Baseline and AVerif Baseline, which each report the average205

from 5 runs, where each run randomly samples 33 (or 6) attention heads.206

Results are shown in Figure 2, with an example of an intervened output. We achieve near perfect207

intervention rates when turning off 33 previous-token heads, or a smaller subset of 6 heads. The208

model misclassifies correct solutions as invalid without these heads, and continue its CoT indefinitely.209

These attention heads directly affect the GLUValid vectors. Figure 3 demonstrates the activations of210

the top GLUValid vectors before and after disabling the subset of 6 previous-token heads. In most211

cases, we observe a large drop (to near 0, or often even negative values) in GLUValid activations.212

Antipodal GLUOut Vectors. While attention heads achieve near perfect interventions, Figure 2 also213

indicates that disabling both GLUValid and GLUInvalid performs better than disabling just GLUValid.214

Why should disabling GLUInvalid improve intervening, i.e., make the model fail at verification?215
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Figure 4: Intervention Results for the base model and R114B. In the base model, APrev can similarly
disable self-verification, while AVerif only plays a partial role for verification, hinting at the effects
of RL on their weights. In R114B, interventions mostly leads to partial success, in which the model
first marks a solution as incorrect but self-corrects itself, hinting at a larger verification circuit. Also
interestingly, the smaller subset of AVerif is more effective at self-verification than APrev.

This can be explained by two facts: (1) the geometry of GLUValid and GLUInvalid vectors, and (2) the216

nonlinear activation used in GLU. Interestingly, we find that the antipodal directions of GLUValid and217

GLUInvalid also often encode tokens relevant for verification. The last 7 rows of Table 2 marked in red218

indicate the nearest neighbors of the antipodes of GLUValid and GLUInvalid. In addition, Qwen2.5-3B219

uses SiLU activations [12]. Thus inactive neurons take on small negative values (as opposed to zero,220

had ReLU been used).221

With that said, consider only zeroing out GLUValid neurons: given a correct CoT sequence, GLUInvalid222

vectors are inactive. However, because of SiLU, the inactive GLUInvalid vectors have negative223

activations, thus get multiplied by a small negative value, flipping directions, and therefore contribute224

towards the “success direction”. In the case of zeroing out both GLUValid and GLUInvalid, we are225

further zeroing out the effects of inactive GLUInvalid neurons.226

5 Similar Verification Components in Base Model and DeepSeek-R1 Model227

We verify that similar verification subspaces exist in our base model (Qwen2.5-3B), as well as a228

general reasoning model, DeepSeek-R1-Distill-Qwen-14B (henceforth R114B).229

For both models, we provide CountDown as an in-context learning (ICL) task, including 5 demonstra-230

tions of solving CountDown using the structured output of R1CountDown . We find that both models can solve231

the ICL version of CountDown while following the same CoT structure of R1CountDown , corroborating232

recent findings that reasoning capabilities often already exist in pre-trained models [9, 39].233

We then repeat our intervention analyses above. In our ICL setting, our interventions sometimes234

make the model generate “out-of-range”, by which we mean their generations do not adhere to the235

structured CoT of R1CountDown . We mark these cases as out-of-range.236

Base Model. Figure 4 (a) shows the interventions from Section 4.4 on our base model. Note that237

previous-token heads still achieve near perfect (partial) intervention rates, suggesting that they play a238

similar role for self-verification in the base model. Also note that the six AVerif heads demonstrate a239

lower success rate. Similar to [30], which demonstrates that fine-tuning enhances existing mechanisms240

in a base model, we hypothesize that RL enhances an existing verification mechanism, thus resulting241

in highly localized attention heads in R1CountDown that can control self-verification.242

DeepSeek-R1 Model. In the case of R114B, we repeat the procedures in Sections 4.1∼4.4. However,243

a probe vector W is required to identify GLUValid/Invalid. Thus we apply EMB2EMB [16], a simple244

technique to transfer and re-use steering vectors across language models (see Appendix G for a brief245

explanation). Applying EMB2EMB on R1CountDown ’s probe, W , results in a probe vector WR1 for R114B,246

allowing us to repeat our analyses from Section 4.1 on R114B.247

We find similar GLUValid, Invalid vectors in R114B, analogous to Table 2 (see Appendix H), hinting at248

similar verification subspaces in R114B. We identify and intervene on previous-token heads (APrev) in249
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R114B, following Section 4.2. We use an attention threshold of 5% (as opposed to 10% in R1CountDown )250

to compensate for the longer context induced from our ICL setup, which yields 552 (out of 1920)251

previous-token heads. We discuss results from different hyperparameters (thresholds) in Appendix I.252

We also replicate Section 4.3 to identify a smaller subset of 351 attention heads that achieve near253

perfect (partial) intervention success rates.254

Results are shown in Figure 4 (b). Interestingly, our interventions mostly lead to partial successes in255

R114B, in which the model initially fails at self-verification (labels a correct solution as “(not {ans})”),256

but corrects itself (generates “Wait, 68 - 11 + 5 is 62 so that works.”). This hints at a larger verification257

circuit for R114B. We also note that AVerif has a higher success rate than APrev, despite being a smaller258

set, suggesting that not all previous-token heads (or their interactions) are helpful in self-verification.259

We leave further exploration for future work.260

6 Related Work261

Decoding Interpretable Representations. A growing line of work focuses on decoding and262

manipulating interpretable representations in model activations [41]. Conveniently, many concepts263

take on linear representations [20, 22, 29], in which simple vectors encode human-interpretable264

concepts. This allows for easily manipulating such representations to steer the model’s behavior.265

Examples include refusal [3], sycophancy [32], toxicity [15], or even user representations [5].266

For “non-reasoning” models, researchers have studied “truthful” representations before [4], where267

steering towards a “truthful” direction has led to improvements in tasks related to factual recall [17].268

In a similar vein, researchers have shown that the model’s representations can reveal whether they269

will make errors (e.g., hallucinations) [27], or when they are unable to recall facts about an entity [8].270

Most recently, concurrent work [36, 40] also investigate how models solve reasoning tasks. [40]271

find that models know when they have reached a solution, while [36] decode directions that mediate272

behaviors such as handling uncertainty or self-corrections. While our work corroborates these273

findings, we take a deeper dive into how a reasoning model verifies its own reasoning trace.274

Circuit Analysis. A growing line or work decomposes the forward pass of a neural network as275

“circuits” [24], or computational graphs. This allows researchers to identify key components and276

their causal effects for a given forward pass. A common approach to construct computational graphs277

is to replace model components with dense activations with a sparsely-activating approximation.278

[6] introduces Transcoders to approximate MLP layers, while [1] further develops Cross-layer279

Transcoders to handle inter-layer features. [18] uses Cross-layer Transcoders to conduct circuit280

analyses for a wide range of behaviors, such as multi-step reasoning (for factual recall) or addition,281

and also investigate when a model’s CoT is (un)faithful. In our work, we identify key components282

needed for a potentially larger verification circuit without the need for separate sparse approximations.283

7 Discussion284

We studied how a task-specific model verifies its own outputs. We repurposed mode collapse as a285

feature, not a bug: by leveraging the fact that preference tuning leads to mode collapse, we train286

a model with highly structured CoT, making it easy to parse its reasoning trace. With this setup,287

we found GLU weights that encode verification-related tokens, and previous-token heads that can288

disable verification. We offer a simple extension to inter-layer communication channels that allow289

us to localize as few as six attention heads that can also disable verification. Finally, we verify the290

existence of similar components in our base model and a general reasoning DeepSeek-R1 model. We291

view our work as a step towards understanding the inner mechanisms of recent reasoning models.292

Limitations. Note that we do not claim to have uncovered a full verification circuit, but rather293

critical components for verification. We also reiterate the scope of our work: we study a specific task294

that allows for context-based verification. Obviously, not all reasoning tasks share this property:295

many tasks likely require prior-based verification using general knowledge. We speculate that296

similar subspaces are used for prior-based verification, but is less obvious where they show up.297
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A Hyperparameters for R1425

Here we provide the hyperparameters used to train R1CountDown .426

Parameter Value
Train Batch Size 256
Validation Batch Size 1312
Max Prompt Length 256
Max Response Length 1024
Actor Learning Rate 1e-6
PPO Mini Batch Size 128
PPO Micro Batch Size 8
Log Prob Micro Batch Size 8
Tensor Model Parallel Size 2
Critic Learning Rate 1e-5
KL Coefficient 0.001
Table 3: Training Hyperparameters.

B LogitLens on More Layers427

Figure 5 demonstrates LogitLens as described in Section 4.1 on more layers.428

C Hyperparameters for Probing429

We use a batch size of 8, validation size of 256, weight decay of 0.01, and learning rate of 1e-4. We430

validate every 50 gradient steps, and terminate training when validation loss has not improved after a431

patience value of 10.432

D Probe Accuracy433

Figure 6 shows probing results. The model has a linear separation in its hidden states given correct434

versus incorect CoT tokens.435

E Examples of Steering Verification with Probe436

Once we identify a direction that encodes solved versus unsolved states (i.e., Wprobe), we can simply437

add this direction into the model’s hidden states to make the model believe that it has found a solution:438

xℓ = xℓ + αWprobe (10)

where xℓ,Wprobe ∈ IRd and α ∈ IR. Some hyperparameters include ℓ (which layers to steer on) and439

α, where a larger α amplifies the target behavioral effect.440

While an extensive hyperparameter search and a systematic experiment may be useful, steering is not441

a core component but rather a tangential experiment. We thus provide qualitative examples using442

ℓ = {n | 24 ≤ n ≤ 36} and α = 20 (after normalizing Wprobe) in Table 5.443

F Alternative Subsets of Previous-Token Heads444

Of the 25 previous-token heads that we identify, there are many ways to identify subsets that445

disable verification. We offer a few examples, and document how many heads are needed to disable446

verification with perfect success rates (including partial successes).447

Attention Density. The simplest method is to sort the heads based on how much they attend to the448

target token that timestep tans.449
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Figure 5: Averaged LogitLens from 300 samples (Same as Figure 1 but demonstrating more layers).
We see tokens related to verification (“success”, “incorrect”) in the last few layers. (A), (B) show the
top tokens when a correct / incorrect solution is reached. (C), (D) shows results from intervening
on either GLU weights or attention heads, given a correct solution. For (C), while the model is less
certain (P(“this”) versus P(“not”) becomes 0.51 vs. 0.49 in last layer), we still see tokens such as
“success” showing up. For (D), we no longer see any tokens related to “success” show up, and the
model is certain that it has not found a solution.

14



0 5 10 15 20 25 30 35

Layer

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

Linear Probe Accuracy

1
Figure 6: Probe Accuracy. The model has a linear separation in its hidden states given correct versus
incorrect CoT tokens.

Varying Hyperparameters. Given our approach (Section 4.3), we try different parameters for N.450

Sort by Similarity to Wgate,Wup. An alternative approach is to sort the attention heads based on451

how similar their OV circuits are to the Wgate and Wup weights of the GLUV alid weights. We simply452

take the mean of {W i
gate,W

i
up}Ni vectors from our N GLUV alid weights. We then sort attention453

heads based on how similar they are to the resulting mean vector.454

Sort by Probe WProbe. An alternative is to sort the attention heads based on how similar their OV455

circuits are to the probe vector WProbe.456

Table 6 demonstrates how many heads are needed from each approach to disable verification with457

perfect accuracy.458

G Brief Explanation of EMB2EMB459

Language models represent numerous concepts using linear representations [22, 29], by which460

we mean one can add a single vector that encodes a specific concept into the activations during461

inference-time to raise the probability for the model to exhibit such concept or behavior [15, 17, 32].462

Researchers often refer to such vectors as “steering vectors”.463

In other words, during the forward pass, imagine the activations at layer i. One can simply add a464

steering vector W (scaled by some hyperparameter α) to control the model’s behavior:465

xi+1 = xi + F i(xi) + αW (11)

466 where xi and F i are the hidden state and transformer block at layer i.467

EMB2EMB [16] is a simple method that transfers a steering vector from one language model to468

another, by leveraging the fact that the unembedding spaces of language models are often quite469

similar.470

EMB2EMB works as following. Given a “source” and “target” language model, MS and MT , first471

randomly sample a set of N (= 100,000) tokens, notating their token (un)embeddings as ES and ET .472

Then, learn a linear transformation, T , to map points ES to ET , using something as simple as least473

squares minimization. Note that T maps between spaces with different dimensions.474

Given transformation T and a steering vector WS from the source model MS , one can steer the475

target model MT by simply applying transformation T to WS :476
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Vector Nearest Neighbors
(36, 10079) 不失 (not losing), NotNull, 得起 (can afford), 得住 (can endure), 不惜 (not hesitate)
(32, 497) 删除成功 (deletion successful), successes, Success, success, succeeded, favorable
(35, 6041) 的强大 (powerful), excellent, powerful, 强大的 (powerful), 很棒 (great), strong, 优异
(37, 5399) 等于(equal), equal, 同样的(same), 相同(same), equals, 相同的 (same), 同等 (equal)

(32, 13572) successfully, 成功 (success), 解决了 (solved), 实现了 (achieved), 顺利 (smoothly)
(30, 10150) 没问题 (no problem), 无忧 (no worries), .NoError, harmless, 不变 (unchanged)

(45, 6650) 没有 (do not have), 不存在 (does not exist), 没有任何 (do not have any), 不需要
(39, 6070) never, 不会 (will not), doesn, not, 不能 (cannot), nowhere, cannot, neither

(46, 12380) neither, none, nowhere, None, Neither, none, nobody, cannot
(44, 12793) não (not), 不 (not), nicht (not), tidak (no),не(not), ikke (not), niet (not)
(41, 12498) 不在 (not present), 不再 (no longer), non, 非 (non-), 不再是 (is no longer), 不属于
(37, 7636) 不合适 (inappropriate), 不足 (insufficient), 达不到 (cannot reach), 不够 (not enough)
(31, 5164) 没能 (did not), fails, 未能 (failed), 不够 (not enough), 做不到 (cannot), 不及
(35, 2509) 不 (not), 不含 (does not contain), 不对 (incorrect), 不影响 (does not affect),

Table 4: GLUOut vectors relevant to verification in R114B.

xi+1
T = xi

T + F i
T (x

i
T )+αTWS , (12)

where xT is the activations and FT is the transformer block of target model MT . In our work, we477

use EMB2EMB to transfer our probe vector W from R1CountDown to a general reasoning R1 model, R114B.478

H GLUValid, Invalid in DeepSeek-R1-Distill-Qwen-14B479

Table 4 contains GLUOut weights in R114B related to verification.480

I Alternative Hyperparameters for R1481

We add a quick note on using alternative hyperparameters for the experiment on R114B in Section 5.482

Namely, there are two hyperparameters, the attention threshold to categorize an attention head as483

a previous-token head (APrev), and the number of GLUValid vectors to include to identify a smaller484

subset of attention heads (AVerif).485

For the first hyperparameter (attention threshold), we use 5% as our threshold, as reported in the main486

text. We find that using a higher threshold (10%) is too constrained and perhaps yields too small of487

a set of previous-token heads, leading to a lower intervention success rate (0.4%, with 25% partial488

success rate). We believe this is because there are still many attention heads that attends to the correct489

solution (say, with an attention pattern < 10% but > 5%) to offset our intervention.490

Using a smaller threshold (2.5%) yields too large of a set of previous-token heads. In this case,491

interventions now lead to a much higher rate of “out-of-range” results – i.e., the model no longer492

adheres to the structured CoT sequence after our interventions.493

Regarding the number of GLUValid vectors, we see our results converge to the same results after 200494

vectors, which is what we use in our experiments.495

J Compute Resources496

Experiments for R1CountDown ran on a single A100 or H100 GPU. Experiments for R114B ran on 2 GPUs.497

16



Operands Target Type Output

3, 87, 38 46 Orig.

<think>
87 - 38 - 3 = 116 - 3 = 113 (not 46)
87 - 38 + 3 = 49 + 3 = 52 (not 46)
87 - 38 + 3 = 49 + 3 = 52 (not 46)
87 + 38 - 3 = 125 - 3 = 122 (not 46)
38 + 38 - 3 = 76 - 3 = 73 (not 46)...

3, 87, 38 46 Steer

<think>
87 - 38 - 3 = 116 - 3 = 113 (not 46)
87 - 38 + 3 = 49 + 3 = 52 (not 46)
87 - 38 + 3 = 49 + 3 = 52! Yes, we got it!
87 - 38 + 3 = 49 + 3 = 52.
</think>
<answer> 87 - 38 + 3 </answer>

60, 62,
12, 34 68 Orig.

<think>
60 - 62 + 12 + 34 = 54 + 12 + 34 = 66 + 34 = 100 (not 68)
60 + 62 - 12 - 34 = 122 - 12 - 34 = 108 - 34 = 74 - 34 = 40 (not 68)
60 + 62 - 34 + 12 = 122 - 34 + 12 = 88 + 12 = 100 - 34 = 66 (not 68)
60 + 34 + 12 - 62 = 94 + 12 - 62 = 106 - 62 = 44 (not 68)...

60, 62,
12, 34 68 Steer

<think>
60 - 62 + 12 + 34 = 54 + 12 + 34 = 66 + 34 = 100 (not 68)
60 + 62 - 12 - 34 = 122 - 12 - 34 = 108 - 34 = 74 - 34 = 40 (not 68)
60 + 62 - 34 + 12 = 122 - 34 + 12 = 88 + 12 = 100 - 34 = 66 exactly!
So the equation that equals 68 is:
60 + 62 - 34 + 12
</think>
<answer> 60 + 62 - 32 + 12 </answer>

30, 90,
27, 19 74 Orig.

<think>
90 - 30 - 27 + 19 = 60 - 27 + 19 = 33 + 19 = 52 (not 74)
90 - 30 - 27 + 19 = 60 - 27 + 19 = 33 + 19 = 52 (not 74)
90 - 30 - 27 + 19 = 60 - 27 + 19 = 33 + 19 = 52 (not 74)
90 + 27 + 19 - 30 = 117 + 19 - 30 = 136 - 30 = 106 (not 74)...

30, 90,
27, 19 74 Steer

<think>
90 - 30 - 27 + 19 = 60 - 27 + 19 = 33 + 19 = 52 (not 74)
90 - 30 - 27 + 19 = 60 - 27 + 19 = 33 + 19 = 52!
Indeed, 90 - 30 - 27 + 19 = 60 - 27 + 19 = 33 + 19 = 52
So, let’s try another combination:
90 - 30 - 27 + 19 = 60 - 27 + 19 = 33 + 19 = 52
No luck. Let’s try this:
90 - 30 - 27 + 19 = 60 - 27

Table 5: Steering with probe Wprobe.
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Method Num.
Heads Heads

Eq. 8 (N=200) 6 L17H14, L22H14, L3H13, L5H15, L17H11, L17H10

Eq. 8 (N=50) 15
L12H3, L12H8, L11H8, L17H1, L17H3, L10H5, L17H10,
L17H11, L17H13, L21H10, L19H8, L13H3, L13H6,
L5H15, L17H14

Eq. 8 (N=100) 100 L17H3, L17H1, L12H8, L17H10, L17H14, L17H11

Eq. 8 (N=300) 12 L17H14, L5H15, L19H13, L5H14, L13H6, L17H11, L15H8,
L13H3, L19H8, L4H5, L17H3, L17H10

Attention Density 8 L17H14, L17H10, L13H3, L13H6, L5H14, L19H8, L4H3,
L22H14

Sort by Wgate, Wup 17
L18H3, L21H7, L12H8, L21H14, L22H14, L11H8, L21H10,
L12H3, L15H15, L17H3, L17H14, L15H8, L5H15, L13H6,
L17H11, L19H13, L19H8

Sort by WProbe 17
L18H7, L21H2, L22H12, L17H13, L17H11, L17H10, L4H5,
L15H8, L17H14, L5H14, L22H14, L13H5, L5H15, L10H5,
L15H15, L19H13, L13H6

Table 6: Alternative approaches to localize attention heads that disable verification, and the
number of heads required to disable verification.
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NeurIPS Paper Checklist498

1. Claims499

Question: Do the main claims made in the abstract and introduction accurately reflect the500

paper’s contributions and scope?501

Answer: [Yes]502

Justification: Section 4 4.4, 5503

Guidelines:504

• The answer NA means that the abstract and introduction do not include the claims505

made in the paper.506

• The abstract and/or introduction should clearly state the claims made, including the507

contributions made in the paper and important assumptions and limitations. A No or508

NA answer to this question will not be perceived well by the reviewers.509

• The claims made should match theoretical and experimental results, and reflect how510

much the results can be expected to generalize to other settings.511

• It is fine to include aspirational goals as motivation as long as it is clear that these goals512

are not attained by the paper.513

2. Limitations514

Question: Does the paper discuss the limitations of the work performed by the authors?515

Answer: [Yes]516

Justification: End of Section 1, End of Section 4.3, Section 7517

Guidelines:518

• The answer NA means that the paper has no limitation while the answer No means that519

the paper has limitations, but those are not discussed in the paper.520

• The authors are encouraged to create a separate "Limitations" section in their paper.521

• The paper should point out any strong assumptions and how robust the results are to522

violations of these assumptions (e.g., independence assumptions, noiseless settings,523

model well-specification, asymptotic approximations only holding locally). The authors524

should reflect on how these assumptions might be violated in practice and what the525

implications would be.526

• The authors should reflect on the scope of the claims made, e.g., if the approach was527

only tested on a few datasets or with a few runs. In general, empirical results often528

depend on implicit assumptions, which should be articulated.529

• The authors should reflect on the factors that influence the performance of the approach.530

For example, a facial recognition algorithm may perform poorly when image resolution531

is low or images are taken in low lighting. Or a speech-to-text system might not be532

used reliably to provide closed captions for online lectures because it fails to handle533

technical jargon.534

• The authors should discuss the computational efficiency of the proposed algorithms535

and how they scale with dataset size.536

• If applicable, the authors should discuss possible limitations of their approach to537

address problems of privacy and fairness.538

• While the authors might fear that complete honesty about limitations might be used by539

reviewers as grounds for rejection, a worse outcome might be that reviewers discover540

limitations that aren’t acknowledged in the paper. The authors should use their best541

judgment and recognize that individual actions in favor of transparency play an impor-542

tant role in developing norms that preserve the integrity of the community. Reviewers543

will be specifically instructed to not penalize honesty concerning limitations.544

3. Theory assumptions and proofs545

Question: For each theoretical result, does the paper provide the full set of assumptions and546

a complete (and correct) proof?547

Answer: [NA]548
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Justification: We do not provide any theoretical results.549

Guidelines:550

• The answer NA means that the paper does not include theoretical results.551

• All the theorems, formulas, and proofs in the paper should be numbered and cross-552

referenced.553

• All assumptions should be clearly stated or referenced in the statement of any theorems.554

• The proofs can either appear in the main paper or the supplemental material, but if555

they appear in the supplemental material, the authors are encouraged to provide a short556

proof sketch to provide intuition.557

• Inversely, any informal proof provided in the core of the paper should be complemented558

by formal proofs provided in appendix or supplemental material.559

• Theorems and Lemmas that the proof relies upon should be properly referenced.560

4. Experimental result reproducibility561

Question: Does the paper fully disclose all the information needed to reproduce the main ex-562

perimental results of the paper to the extent that it affects the main claims and/or conclusions563

of the paper (regardless of whether the code and data are provided or not)?564

Answer: [Yes]565

Justification: Hyperparameters in Appendix C, as well as plans to release code and model566

checkpoints.567

Guidelines:568

• The answer NA means that the paper does not include experiments.569

• If the paper includes experiments, a No answer to this question will not be perceived570

well by the reviewers: Making the paper reproducible is important, regardless of571

whether the code and data are provided or not.572

• If the contribution is a dataset and/or model, the authors should describe the steps taken573

to make their results reproducible or verifiable.574

• Depending on the contribution, reproducibility can be accomplished in various ways.575

For example, if the contribution is a novel architecture, describing the architecture fully576

might suffice, or if the contribution is a specific model and empirical evaluation, it may577

be necessary to either make it possible for others to replicate the model with the same578

dataset, or provide access to the model. In general. releasing code and data is often579

one good way to accomplish this, but reproducibility can also be provided via detailed580

instructions for how to replicate the results, access to a hosted model (e.g., in the case581

of a large language model), releasing of a model checkpoint, or other means that are582

appropriate to the research performed.583

• While NeurIPS does not require releasing code, the conference does require all submis-584

sions to provide some reasonable avenue for reproducibility, which may depend on the585

nature of the contribution. For example586

(a) If the contribution is primarily a new algorithm, the paper should make it clear how587

to reproduce that algorithm.588

(b) If the contribution is primarily a new model architecture, the paper should describe589

the architecture clearly and fully.590

(c) If the contribution is a new model (e.g., a large language model), then there should591

either be a way to access this model for reproducing the results or a way to reproduce592

the model (e.g., with an open-source dataset or instructions for how to construct593

the dataset).594

(d) We recognize that reproducibility may be tricky in some cases, in which case595

authors are welcome to describe the particular way they provide for reproducibility.596

In the case of closed-source models, it may be that access to the model is limited in597

some way (e.g., to registered users), but it should be possible for other researchers598

to have some path to reproducing or verifying the results.599

5. Open access to data and code600

Question: Does the paper provide open access to the data and code, with sufficient instruc-601

tions to faithfully reproduce the main experimental results, as described in supplemental602

material?603
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Answer: [Yes]604

Justification: See attached zip file.605

Guidelines:606

• The answer NA means that paper does not include experiments requiring code.607

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/608

public/guides/CodeSubmissionPolicy) for more details.609

• While we encourage the release of code and data, we understand that this might not be610

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not611

including code, unless this is central to the contribution (e.g., for a new open-source612

benchmark).613

• The instructions should contain the exact command and environment needed to run to614

reproduce the results. See the NeurIPS code and data submission guidelines (https:615

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.616

• The authors should provide instructions on data access and preparation, including how617

to access the raw data, preprocessed data, intermediate data, and generated data, etc.618

• The authors should provide scripts to reproduce all experimental results for the new619

proposed method and baselines. If only a subset of experiments are reproducible, they620

should state which ones are omitted from the script and why.621

• At submission time, to preserve anonymity, the authors should release anonymized622

versions (if applicable).623

• Providing as much information as possible in supplemental material (appended to the624

paper) is recommended, but including URLs to data and code is permitted.625

6. Experimental setting/details626

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-627

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the628

results?629

Answer: [Yes]630

Justification: Sections 3, 4, C631

Guidelines:632

• The answer NA means that the paper does not include experiments.633

• The experimental setting should be presented in the core of the paper to a level of detail634

that is necessary to appreciate the results and make sense of them.635

• The full details can be provided either with the code, in appendix, or as supplemental636

material.637

7. Experiment statistical significance638

Question: Does the paper report error bars suitably and correctly defined or other appropriate639

information about the statistical significance of the experiments?640

Answer: [No]641

Justification: Most of our results are bimodal – either near 100% intervention success rates642

or near 0%, allowing us to safetly draw conclusions about the effects of each intervention.643

Guidelines:644

• The answer NA means that the paper does not include experiments.645

• The authors should answer "Yes" if the results are accompanied by error bars, confi-646

dence intervals, or statistical significance tests, at least for the experiments that support647

the main claims of the paper.648

• The factors of variability that the error bars are capturing should be clearly stated (for649

example, train/test split, initialization, random drawing of some parameter, or overall650

run with given experimental conditions).651

• The method for calculating the error bars should be explained (closed form formula,652

call to a library function, bootstrap, etc.)653

• The assumptions made should be given (e.g., Normally distributed errors).654
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• It should be clear whether the error bar is the standard deviation or the standard error655

of the mean.656

• It is OK to report 1-sigma error bars, but one should state it. The authors should657

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis658

of Normality of errors is not verified.659

• For asymmetric distributions, the authors should be careful not to show in tables or660

figures symmetric error bars that would yield results that are out of range (e.g. negative661

error rates).662

• If error bars are reported in tables or plots, The authors should explain in the text how663

they were calculated and reference the corresponding figures or tables in the text.664

8. Experiments compute resources665

Question: For each experiment, does the paper provide sufficient information on the com-666

puter resources (type of compute workers, memory, time of execution) needed to reproduce667

the experiments?668

Answer: [Yes]669

Justification: Section J670

Guidelines:671

• The answer NA means that the paper does not include experiments.672

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,673

or cloud provider, including relevant memory and storage.674

• The paper should provide the amount of compute required for each of the individual675

experimental runs as well as estimate the total compute.676

• The paper should disclose whether the full research project required more compute677

than the experiments reported in the paper (e.g., preliminary or failed experiments that678

didn’t make it into the paper).679

9. Code of ethics680

Question: Does the research conducted in the paper conform, in every respect, with the681

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?682

Answer: [Yes]683

Justification: We conform th the Code of Ethics.684

Guidelines:685

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.686

• If the authors answer No, they should explain the special circumstances that require a687

deviation from the Code of Ethics.688

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-689

eration due to laws or regulations in their jurisdiction).690

10. Broader impacts691

Question: Does the paper discuss both potential positive societal impacts and negative692

societal impacts of the work performed?693

Answer: [NA]694

Justification: Our work is mostly low-level technical details with no obvious societal impact.695

Guidelines:696

• The answer NA means that there is no societal impact of the work performed.697

• If the authors answer NA or No, they should explain why their work has no societal698

impact or why the paper does not address societal impact.699

• Examples of negative societal impacts include potential malicious or unintended uses700

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations701

(e.g., deployment of technologies that could make decisions that unfairly impact specific702

groups), privacy considerations, and security considerations.703
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• The conference expects that many papers will be foundational research and not tied704

to particular applications, let alone deployments. However, if there is a direct path to705

any negative applications, the authors should point it out. For example, it is legitimate706

to point out that an improvement in the quality of generative models could be used to707

generate deepfakes for disinformation. On the other hand, it is not needed to point out708

that a generic algorithm for optimizing neural networks could enable people to train709

models that generate Deepfakes faster.710

• The authors should consider possible harms that could arise when the technology is711

being used as intended and functioning correctly, harms that could arise when the712

technology is being used as intended but gives incorrect results, and harms following713

from (intentional or unintentional) misuse of the technology.714

• If there are negative societal impacts, the authors could also discuss possible mitigation715

strategies (e.g., gated release of models, providing defenses in addition to attacks,716

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from717

feedback over time, improving the efficiency and accessibility of ML).718

11. Safeguards719

Question: Does the paper describe safeguards that have been put in place for responsible720

release of data or models that have a high risk for misuse (e.g., pretrained language models,721

image generators, or scraped datasets)?722

Answer: [NA]723

Justification: N/A724

Guidelines:725

• The answer NA means that the paper poses no such risks.726

• Released models that have a high risk for misuse or dual-use should be released with727

necessary safeguards to allow for controlled use of the model, for example by requiring728

that users adhere to usage guidelines or restrictions to access the model or implementing729

safety filters.730

• Datasets that have been scraped from the Internet could pose safety risks. The authors731

should describe how they avoided releasing unsafe images.732

• We recognize that providing effective safeguards is challenging, and many papers do733

not require this, but we encourage authors to take this into account and make a best734

faith effort.735

12. Licenses for existing assets736

Question: Are the creators or original owners of assets (e.g., code, data, models), used in737

the paper, properly credited and are the license and terms of use explicitly mentioned and738

properly respected?739

Answer: [Yes]740

Justification: We include citations and references where applicable.741
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• The answer NA means that the paper does not use existing assets.743

• The authors should cite the original paper that produced the code package or dataset.744

• The authors should state which version of the asset is used and, if possible, include a745

URL.746

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.747

• For scraped data from a particular source (e.g., website), the copyright and terms of748

service of that source should be provided.749

• If assets are released, the license, copyright information, and terms of use in the750

package should be provided. For popular datasets, paperswithcode.com/datasets751

has curated licenses for some datasets. Their licensing guide can help determine the752

license of a dataset.753

• For existing datasets that are re-packaged, both the original license and the license of754

the derived asset (if it has changed) should be provided.755
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• If this information is not available online, the authors are encouraged to reach out to756

the asset’s creators.757

13. New assets758

Question: Are new assets introduced in the paper well documented and is the documentation759

provided alongside the assets?760

Answer: [Yes]761

Justification: See attached zip file.762
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• The answer NA means that the paper does not release new assets.764

• Researchers should communicate the details of the dataset/code/model as part of their765

submissions via structured templates. This includes details about training, license,766

limitations, etc.767

• The paper should discuss whether and how consent was obtained from people whose768

asset is used.769

• At submission time, remember to anonymize your assets (if applicable). You can either770

create an anonymized URL or include an anonymized zip file.771

14. Crowdsourcing and research with human subjects772

Question: For crowdsourcing experiments and research with human subjects, does the paper773

include the full text of instructions given to participants and screenshots, if applicable, as774

well as details about compensation (if any)?775

Answer: [NA]776

Justification: N/A777

Guidelines:778

• The answer NA means that the paper does not involve crowdsourcing nor research with779

human subjects.780

• Including this information in the supplemental material is fine, but if the main contribu-781

tion of the paper involves human subjects, then as much detail as possible should be782

included in the main paper.783

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,784

or other labor should be paid at least the minimum wage in the country of the data785

collector.786

15. Institutional review board (IRB) approvals or equivalent for research with human787

subjects788

Question: Does the paper describe potential risks incurred by study participants, whether789

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)790

approvals (or an equivalent approval/review based on the requirements of your country or791

institution) were obtained?792

Answer: [NA]793

Justification: N/A794

Guidelines:795

• The answer NA means that the paper does not involve crowdsourcing nor research with796

human subjects.797

• Depending on the country in which research is conducted, IRB approval (or equivalent)798

may be required for any human subjects research. If you obtained IRB approval, you799

should clearly state this in the paper.800

• We recognize that the procedures for this may vary significantly between institutions801

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the802

guidelines for their institution.803

• For initial submissions, do not include any information that would break anonymity (if804

applicable), such as the institution conducting the review.805

16. Declaration of LLM usage806
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Question: Does the paper describe the usage of LLMs if it is an important, original, or807

non-standard component of the core methods in this research? Note that if the LLM is used808

only for writing, editing, or formatting purposes and does not impact the core methodology,809

scientific rigorousness, or originality of the research, declaration is not required.810

Answer: [NA]811

Justification: N/A812

Guidelines:813

• The answer NA means that the core method development in this research does not814

involve LLMs as any important, original, or non-standard components.815

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)816

for what should or should not be described.817
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