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ABSTRACT

In offline multi-agent imitation learning, agents are constrained to learn from static
datasets without interaction, which poses challenges in generalizing across diverse
behaviors. Behavior Cloning (BC), a widely used approach, models conditional
actions from local observations but lacks robustness under behavioral variability.
Recent diffusion-based policies have been introduced to capture diverse action
distributions. However, in multi-agent environments, their iterative denoising pro-
cess can accumulate errors in interactive settings, degrading performance under
shifting opponent behaviors. To address these challenges, we propose Diffusion
Dynamic Guidance Imitation Learning (DDGIL), a diffusion-based framework
built on classifier-free guidance (CFG), which balances conditional and uncondi-
tional denoising predictions. Unlike prior methods with fixed weighting, DDGIL
introduces a dynamic guidance mechanism that adaptively adjusts the weight at
each denoising step, enhancing stability across different agent strategies. Empir-
ical evaluations on competitive and cooperative benchmarks show that DDGIL
achieves reliable performance. In high-fidelity sports simulations, it reproduces
action strategies that closely resemble expert demonstrations while maintaining
robustness against diverse opponents.

1 INTRODUCTION

Multi-Agent Reinforcement Learning (MARL) (Chongjie Zhang, 2010; Tabish Rashid, 2018; De-
heng Ye, 2020; Jiechuan Jiang, 2023) has focused on capturing inter-agent dependencies, and effective
training typically relies on reward signals obtained through repeated interactions with the environment.
However, in many real-world domains such as sports analytics, dense rewards are not available, and
designing explicit reward functions in sparse-reward settings is often unreliable (Jiexin Xie, 2019).
Moreover, online interaction is often infeasible due to cost or data collection constraints, leaving only
historical trajectories consisting of states, actions, and outcomes. These limitations motivate offline
imitation learning, where policies are derived solely from demonstrations without access to reward
signals or additional environment interaction.

In the offline setting, imitation learning methods, particularly behavior cloning (BC), are trained on
data collected against a fixed opponent, which constrains the learned policy to specific interaction
patterns. When evaluated against opponents with different behaviors, such as weaker or stylistically
distinct agents, these policies often exhibit unstable performance due to ineffective actions or mistimed
responses.

Recent studies have explored diffusion models for imitation learning, leveraging their ability to
represent complex action distributions (Cheng Chi, 2023) in an attempt to address the limitations of
BC. Existing approaches can be roughly divided into three categories. The first, often referred to as
Diffusion Policy (DP) (Tim Pearce, 2023; Zhendong Wang, 2023), treats the diffusion model as the
policy by conditioning primarily on the state and generating actions through multi-step denoising. As
illustrated in the lower part of Figure 1, the denoising process in this class of methods typically relies
solely on the observed condition, which fixes the denoising direction across steps. This rigidity makes
the process prone to error accumulation, particularly in interactive environments where observations
evolve with the behaviors of other agents, resulting in degraded performance. The second predicts
future states through diffusion and recovers actions using an inverse dynamics model (Michael Janner,
2022; Anurag Ajay, 2023). While effective in static settings, this approach can degrade in interactive
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Figure 1: Tag task in the Multi-Agent Particle Environments (MPE), where three opponent agents (OA) pursue a
primary agent (PA). We compare Diffusion Policy (DP, fixed weight) with DDGIL (dynamic weight). Under
diverse opponent strategies, DP exhibits unstable behaviors, whereas DDGIL adapts and attains more stable
performance.

domains when predicted states diverge from actual interactions. The third estimates conditional
policy distributions for behavior cloning (Shang-Fu Chen, 2024), where the diffusion model provides
auxiliary guidance during training. This additional signal can improve inference performance, yet
the resulting policy remains essentially BC and continues to suffer from the same limitations when
faced with diverse opponents. These methods indicate that diffusion-based approaches in offline
imitation learning inherit key vulnerabilities of BC, highlighting the central challenge in multi-agent
environments: achieving robustness under opponent variability.

Motivated by these challenges, we propose Diffusion Dynamic Guidance Imitation Learning (DDGIL),
a diffusion-based imitation learning framework for offline multi-agent settings. DDGIL extends
diffusion policies by introducing a minimal modification to the classifier-free guidance mechanism.
As illustrated in the upper part of Figure 1, although our method employs the same denoising process
as DP, the key difference lies in the use of a dynamic adjustment mechanism rather than a fixed
weight. This dynamic design leverages a confidence signal to adapt to variations in the behavior of
other agents, allowing the policy to remain flexible in interactive environments. Despite its simplicity,
this modification improves stability and yields consistently better performance than fixed-weight
diffusion policies and other baselines in both competitive and cooperative tasks.

2 RELATED WORK

Multi-Agent Imitation Learning (MAIL). Multi-Agent Imitation Learning (MAIL) has largely
focused on online interaction with the environment during training (Yu et al., 2019; Nathaniel Hay-
nam, 2025; Zare et al., 2024). Adversarial extensions such as MAGAIL (Jiaming Song, 2018)
and CoDAIL (Minghuan Liu, 2020) adapt GAIL frameworks to the multi-agent setting, where a
discriminator provides feedback to shape coordinated policies through interaction. While effective
in capturing coordination strategies, these methods fundamentally rely on online rollouts, limiting
their applicability to offline scenarios. STRIL (Shiqi Lei, 2025) represents one of the few offline
approaches, filtering low-quality trajectories using strategy representations. However, it primarily
focuses on modeling the agent’s own behavioral heterogeneity and does not explicitly account for
opponent variability. In our work, we address this gap by proposing an offline MAIL framework that
adapts robustly to diverse opponent strategies.

Diffusion Methods for Policy. Diffusion models (Jonathan Ho, 2020) have gained significant
attention for their ability to iteratively denoise Gaussian noise and generate high-quality samples. In
decision-making tasks, they have been applied to imitation and reinforcement learning by treating
the diffusion model as the policy itself (Anurag Ajay, 2023; Michael Janner, 2022), generating
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actions or trajectories that capture multi-modal distributions. While effective in single-agent and
robotic control tasks, their application to multi-agent environments remains limited. Recent work,
such as MaDiff (Zhengbang Zhu, 2024), presents an offline multi-agent RL framework that uses
attention-based diffusion to model coordinated behavior.

A second line of work incorporates diffusion as an auxiliary component. DiffAIL (Bingzheng Wang,
2024) augments adversarial imitation learning by adding a diffusion-based loss to the discriminator,
improving its ability to distinguish expert and policy distributions. DBC (Shang-Fu Chen, 2024)
is another representative offline method, which augments standard behavior cloning by combining
a policy learning objective with an additional diffusion-based joint modeling loss. In both cases,
diffusion serves as a supporting mechanism rather than the policy itself. In contrast, our work
proposes to use diffusion models directly as policies, enabling stable and robust training in offline
multi-agent imitation learning.

3 PRELIMINARIES

3.1 BEHAVIOR CLONING

Imitation learning (IL) aims to learn policies by replicating expert demonstrations without relying
on explicit reward signals. In the multi-agent setting, we consider K agents, where each agent
i ∈ {1, . . . ,K} receives an observation s(i) and selects an action a(i). We extract (s(i), a(i)) pairs
from a dataset D. A common offline approach is behavior cloning (BC), which fits a policy by
maximizing the likelihood of expert actions given the observations:

π(i) = argmax
π(i)

E
(s

(i)
t ,a

(i)
t )∼D

[
log π(a

(i)
t | s

(i)
t )

]
(1)

where π(i) denotes the policy of agent i. While effective for replicating individual behaviors, BC
conditions on local observations and does not explicitly account for inter-agent coupling, which may
yield suboptimal coordination in multi-agent settings.

3.2 DIFFUSION PROBABILISTIC MODELS

Diffusion models (DMs), particularly denoising diffusion probabilistic models (DDPM) (Jonathan Ho,
2020; Alexander Quinn Nichol, 2021), are generative models that learn to represent complex data
distributions by gradually transforming Gaussian noise into structured samples through a multi-step
process. We adopt this framework for action generation, allowing for high-dimensional policy
modeling.

Decision Making. In our setting, the action a ∈ Rd is the generation target, conditioned on the cur-
rent observation s. The forward process assumes access to state-action pairs (s, a) and adds Gaussian
noise to a to produce a noisy sample xt, defined as: q(xt | a) = N (xt;

√
ᾱta, (1− ᾱt)I) , ᾱt =∏t

s=1 αs, where αt ∈ (0, 1) is the predefined noise schedule. To recover the original action from
the noisy input, a neural network ϵθ is trained to predict the added noise ϵ ∼ N (0, I). The noised
input is computed as xt =

√
ᾱta+

√
1− ᾱtϵ, with t ∼ Uniform(1, T ). The model minimizes the

following objective:

LDM = E(s,a)∼D, t∼U(1,T ), ϵ∼N (0,I)

[
∥ϵθ(xt, t | s)− ϵ∥2

]
(2)

At inference time, the denoising process is performed iteratively. At each reverse step t, the model
predicts the noise ϵθ(xt, t | s) and uses it to compute a denoised mean, which defines the mean of a
Gaussian distribution used to calculate the noisy sample at the previous timestep xt−1:

µθ(xt, t | s) =
1
√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ(xt, t | s)
)
, xt−1 = µθ(xt, t | s)+σt ·z, z ∼ N(0, I)

(3)

where σ2
t = β̃t =

1−ᾱt−1

1−ᾱt
(1− αt), and σt =

√
β̃t. Our imitation learning framework builds on this

diffusion-based policy structure and extends it to multi-agent settings.
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Classifier-Free Guidance. To improve conditional control during sampling, we apply classifier-free
guidance (CFG) (Jonathan Ho, 2022). This method mixes the model’s unconditional and conditional
predictions during denoising:

ϵCFG = w · ϵθ(xt, t | s) + (1− w) · ϵθ(xt, t) (4)

Here, ϵθ(xt | s) is the conditionally guided prediction, while ϵθ(xt) is the unconditional estimate, and
w ∈ [0, 1] is a scalar that controls the guidance strength. Throughout this paper, we adopt a convex-
combination form of classifier-free guidance, mixing conditional and unconditional predictions with
a weight w ∈ [0, 1]. A larger w increases the adherence to the conditioning signal, while a smaller w
yields more diverse samples. At inference time, ϵCFG is directly substituted into the denoising update
(Eq. 3) to compute the reverse steps from xt to xt−1. Compared with classifier-based guidance,
CFG avoids the difficulty of training a separate classifier under noisy inputs and has been widely
observed to achieve stronger conditional fidelity and overall performance (Xi Wang & Kalogeiton,
2024; Chung et al., 2025).

4 METHODS

Our objective is to address the instability of behavior cloning in multi-agent interaction, particu-
larly when agents exhibit diverse or previously unseen strategies. To this end, we propose Diffu-
sion Dynamic Guidance Imitation Learning (DDGIL), a diffusion-based framework that combines
opponent-aware score prediction with a dynamic guidance mechanism during inference. Inspired by
classifier-free guidance in diffusion-based image generation (Xi Wang & Kalogeiton, 2024; Chung
et al., 2025), DDGIL replaces the fixed guidance weight with a per-step adjustment derived from the
confidence of conditional predictions. This mechanism reduces the limitations of fixed weighting,
enabling the policy to follow conditional signals when reliable and to adapt when they are uncertain.
The overall architecture is shown in Figure 2.

4.1 PRIMARY AGENT DIFFUSION POLICY

Our method is based on offline imitation learning with diffusion models in a multi-agent setting with
K agents. During training, we instantiate a separate diffusion model for each agent and designate
one as the primary agent. The remaining agents are referred to as opponent agents, where the term
“opponent” simply denotes agents other than the primary one: they act as adversaries in competitive
tasks and as partners in cooperative tasks.

To train the primary agent policy, we sample state–action pairs (sGd , a
G
d ) from the dataset D, where

d ∈ 1, . . . , |D| ×H indexes the pair and G denotes the primary agent. Here, |D| is the number of
trajectories and H their length, yielding a total of |D| ×H state–action pairs.

The observation sGd serves as the conditional input, and Gaussian noise is added to the action aGd for
diffusion model training. Following the denoising diffusion framework, we construct the input as:

xG
t =

√
ᾱta

G
d +
√
1− ᾱtϵ, ϵ̂G = ϵGθ (x

G
t , t | sGd ) (5)

where ϵ ∼ N (0, I), t ∼ Uniform(1, T ), and train a diffusion model ϵGθ to predict the noise. The
training objective is defined as:

LDM(G) = E(sGd ,aG
d )∼D, t∼U(1,T ), ϵ∼N (0,I)

[
∥ϵ− ϵ̂G∥2

]
(6)

This objective is equivalent to denoising score matching and promotes the original policy distribution
of the primary agent as observed in the dataset. Therefore, this section focuses on modeling the
behavior of the primary agent, while the modeling of the remaining opponent agents will be described
in the next Section 4.2.

4.2 OPPONENT-AWARE DIFFUSION MODELING

We consider K agents in total and write k = K − 1 for the number of opponents, with indices
i ∈ {1, . . . , k}. This step is performed simultaneously with Section 4.1: for each opponent i, we train
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Figure 2: Overview of the DDGIL architecture: (a) the training pipeline, where separate diffusion-based policy
models are trained for the main agent and other agents (opponents or collaborators); (b) the inference-time
dynamic guidance mechanism, which computes weights at each denoising step based on the conditional scores
from the primary and opponent agents, enabling adaptive policy adjustment based on the current interaction
context.

a separate diffusion model using the same procedure as for the primary agent. Concretely, we add
Gaussian noise to the opponent’s action aBi

d from the same dataset pair (sGd , a
G
d , a

Bi

d , ...), reusing the
noise sample ϵ and diffusion step t, and condition the model on the primary agent’s observation sGd .

The noisy input and target prediction for each opponent are defined similarly to Eq. 5:

xBi
t =

√
ᾱta

Bi

d +
√
1− ᾱtϵ, ϵ̂Bi

= ϵBi

ϕ (xBi
t , t | sGd ) (7)

where ϵBi

ϕ is a diffusion model that predicts the noise for each opponent Bi, conditioned on the
primary agent’s observation sGd . The overall training loss combines the reconstruction losses from the
primary agent and all opponents, shown as Figure 2 (a). Since all models are trained using the same
noise input ϵ, the ideal case is that both the primary agent and its opponents predict the same noise.
To encourage this, we add a latent consistency regularization term that minimizes the difference
between their predicted noise, controlled by a coefficient c:

LDM(Joint) = E
(sGd , aG

d , {aBi
d }|k|

i=1)∼D

[
∥ϵ− ϵ̂G∥2 +

|k|∑
i=1

∥ϵ− ϵ̂Bi∥
2
+ c

|k|∑
i=1

∥ϵ̂G − ϵ̂Bi∥
2

]
. (8)

Recent studies show that diffusion models can reflect differences in noise through their denoising
behavior (Bingzheng Wang, 2024; Mark S. Graham, 2023; Luping Liu, 2022; Yunshu Wu, 2024).
Motivated by this property, we train a separate diffusion model for each opponent to capture its
behavioral tendencies and decision patterns. During inference, these models do not directly generate
actions; instead, their responses to shared noise inputs serve as guidance signals for the primary
agent’s policy. In Section 4.3, we describe how to integrate these models into an opponent-aware
mechanism.

4.3 DYNAMIC WEIGHT ADJUSTMENT DURING INFERENCE

Each denoising step in the diffusion process updates a latent vector xt, ultimately producing the
final action x0. We adopt the CFG framework, interpolating between conditional and unconditional
predictions, and replace Eq. 4 with

ϵ̂ = wD · ϵ̂G + (1− wD) · ϵ̂NG (9)
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where ϵ̂G and ϵ̂NG denote conditional and unconditional predictions, respectively. Unlike the standard
CFG setting that uses a fixed constant, we introduce a dynamic weight wD that adapts at each
denoising step. This mechanism enables the policy to adjust its reliance on conditional information
when opponent behaviors render such predictions less reliable. To compute the weight wD, we
measure the discrepancy between the agent’s conditional prediction and the noise predicted by
auxiliary opponent models:

d =
∥∥ϵ̂B − ϵ̂G

∥∥
2

, ϵ̂B = E[ϵ̂Bi ] , wD = σ(d) =
1

1 + e−d
(10)

where ϵ̂B is the averaged prediction from the opponent models in the same denoising step. The value
d serves as a measure of confidence. Note that d ≥ 0 guarantees wD ∈ [0.5, 1), so every update
remains a convex combination of ϵ̂G and ϵ̂NG . This lower bound ensures the update never favors the
unconditional branch, keeping conditioning as the default.

The confidence d has two typical cases. When d is small, the two predictors are already aligned; in this
regime, increasing the weight of ϵ̂G contributes little useful signal and may amplify noise. Therefore,
the rule maintains a more conservative update close to ϵ̂NG , avoiding unnecessary fluctuation. When d
is large, the discrepancy indicates that the step carries important predictive information, and increasing
wD allows the conditional term to contribute more strongly so that this information is preserved.

Because wD is recomputed at every denoising step, the mechanism adapts naturally along the
diffusion trajectory, where early steps usually provide weaker cues and later steps provide stronger
ones. This dynamic adjustment improves resilience against diverse and shifting opponent strategies,
avoiding the rigidity of a fixed coefficient. Section 5.3, 5.4, and 5.5 compare against fixed-weight
baselines, and Appendix A further analyzes the use of d as confidence and the properties of the
weighting rule.

5 EXPERIMENTS

To evaluate the effectiveness and generality of our proposed method DDGIL, we evaluate on
continuous, discrete, and combinatorial domains and compare against offline imitation baselines. Our
experiments are designed to address the following research questions:

• RQ1: How well does DDGIL imitate expert behavior compared to baseline diffusion and
non-diffusion methods?

• RQ2: Can DDGIL adapt smoothly to opponents of varying strengths, with stable behavioral
and reward transitions?

• RQ3: How well does DDGIL perform in real-world or high-fidelity scenarios requiring
strategic generalization?

5.1 DATA COLLECTION AND EVALUATION SETUP

Data Collection. For each environment, we train a task-specific reinforcement learning policy and
use the best checkpoint as the expert policy Oexpert to collect an offline dataset D containing both
successful and failed trajectories.

We additionally prepare two evaluation opponents: a mid-training policy (Omedium) and an early-stage,
near-random policy (Oweak). These checkpoints are used solely for evaluation to test generalization
under opponent shift and are not part of D. The rationale for including Omedium and Oweak is to
introduce opponents of different strengths, which in practice also leads to noticeable variations in
their behavioral patterns. All baselines are trained exclusively on D, without using additional or
lower-quality data. Further selection criteria are detailed in Appendix G.

Environment. We evaluate our approach on a diverse set of multi-agent environments from the
PettingZoo suite (Justin K. Terry, 2020b). The benchmark covers four control tasks from the
Multi-Agent Particle Environments (MPE): Tag, Push, Reference, and Spread; two pixel-based
adversarial games from the Atari domain: Tennis and Boxing; and two discrete strategy games
from the Classic category: Connect4 and Texas Hold’em. In addition, we introduce a custom
environment, Badminton (Kuang-Da Wang, 2024b), designed to simulate realistic competitive rallies.
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All environments preserve their original observation and reward interfaces, with detailed descriptions
provided in Appendix C.

Evaluation metrics. Each configuration is evaluated over 1000 episodes with five different random
seeds. For competitive tasks (e.g., MPE-Tag, MPE-Push, Atari games, Classic games, and Badminton),
we adopt the win rate as the evaluation metric, defined as Rwin = Nwin/(Nwin +Nlose), where Nwin
and Nlose denote the number of wins and losses, respectively.

In tasks such as MPE-Tag and MPE-Push, a win is counted when the primary agent’s episodic reward
is greater than or equal to the total reward obtained by all opponents. For cooperative tasks (e.g.,
Spread, Reference), we report the average episodic reward of the primary agent, reflecting the overall
team performance under the native reward attribution.

5.2 BASELINES

In this study, we focus on offline imitation learning and compare it against several state-of-the-art
methods. Offline multi-agent imitation learning is still underexplored, especially diffusion-based
approaches, so we include strong single-agent baselines for comparison, with extensions to multi-
agent settings detailed in Appendix E.2. We select four representative methods:

• Behavior Cloning (BC): Learns a direct state-to-action mapping using supervised learning
without rewards or planning. Each agent is trained independently with a separate BC policy.

• Diffusion Behavior Cloning (DBC): Combines behavior cloning with diffusion-based
generation (Shang-Fu Chen, 2024), minimizing both BC loss and diffusion reconstruction
loss to align actions with expert demonstrations.

• Diffusion Policy (DP): Formulates the policy as a conditional diffusion model, generating
actions by reversing a noise process conditioned on the current state (Tim Pearce, 2023). In
our multi-agent adaptation, the model takes the primary agent’s state as input and outputs
actions for all agents.

• Decision Diffusion (DD): Generates action sequences conditioned on state and re-
turn (Anurag Ajay, 2023). Originally designed for RL with planning, we adapt it to
offline imitation learning without planners or rewards, and also extend it to the multi-agent
setting with the same input–output design as DP.

We group baselines by their inference mechanism: diffusion-based methods (DP, DD) and non-
diffusion ones (BC, DBC). Although DBC employs a diffusion module, its action selection follows
standard behavior cloning and thus belongs to the latter group.

5.3 STANDARD IMITATION PERFORMANCE RESULTS

This experiment evaluates the performance of baseline models trained on the same expert demonstra-
tions and tested against equally strong opponents Oexpert. As shown in Table 1, the first row of each
environment (opponent denoted as E) provides the main comparison results.

Comparison with non-diffusion-based policy. In environments with low-dimensional state spaces
and relatively simple interaction dynamics, such as MPE, BC-based approaches maintain competitive
performance. DBC, which incorporates diffusion-augmented training, achieves notable improvements
on Tag. However, in domains with high-dimensional observations and stochastic transitions, such
as Atari, the performance of BC and DBC degrades considerably. For instance, on Tennis, DDGIL
attains a substantially higher win rate compared to BC. The results indicate that DDGIL attains
more robust performance in environments with complex observations and interaction dynamics when
compared to non-diffusion-based baselines.

Comparison with diffusion-based policy. Compared to DP, which applies a fixed diffusion
policy, DDGIL employs a dynamic guidance mechanism that adjusts conditional weighting based
on confidence signals from both agent and opponent models. While DP may exhibit stable behavior
in certain cases, its static weighting limits adaptability. For instance, DDGIL attains about a 10%
higher win rate than DP in Tennis-Expert, highlighting the benefit of adaptive weighting. In contrast,

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Env Opp. Non-diffusion-based Diffusion-based
BC DBC DD DP DDGIL

Push E 0.79 ± 0.03 0.79 ± 0.02 0.13 ± 0.03 0.63 ± 0.02 0.81 ± 0.01
M 0.77 ± 0.02 0.79 ± 0.03 0.21 ± 0.07 0.61 ± 0.03 0.82 ± 0.02
W 0.78 ± 0.07 0.82 ± 0.06 0.15 ± 0.04 0.67 ± 0.03 0.84 ± 0.05

Tag E 0.31 ± 0.09 0.38 ± 0.13 0.15 ± 0.03 0.15 ± 0.03 0.33 ± 0.08
M 0.42 ± 0.07 0.47 ± 0.05 0.23 ± 0.06 0.43 ± 0.01 0.45 ± 0.03
W 0.48 ± 0.02 0.51 ± 0.12 0.30 ± 0.06 0.54 ± 0.10 0.57 ± 0.06

Spread E -11.72 ± 0.34 -11.63 ± 0.36 -15.03 ± 0.41 -13.96 ± 0.25 -11.52 ± 0.41
M -11.93 ± 0.51 -11.86 ± 0.52 -15.41 ± 0.40 -13.83 ± 0.48 -11.87 ± 0.17
W -17.48 ± 0.44 -17.62 ± 0.32 -20.21 ± 0.56 -21.01 ± 0.41 -17.79 ± 0.47

Reference E -30.58 ± 0.82 -30.01 ± 1.16 -28.68 ± 0.86 -27.60 ± 1.02 -26.62 ± 1.07
M -27.87 ± 0.49 -30.13 ± 1.27 -25.65 ± 0.17 -25.01 ± 0.45 -26.81 ± 0.42
W -28.46 ± 0.28 -28.88 ± 0.27 -32.63 ± 0.06 -29.88 ± 0.27 -27.20 ± 0.18

Connect4 E 0.14 ± 0.02 0.18 ± 0.03 0.12 ± 0.01 0.21 ± 0.02 0.26 ± 0.06
M 0.12 ± 0.03 0.22 ± 0.04 0.13 ± 0.05 0.20 ± 0.03 0.41 ± 0.04
W 0.41 ± 0.06 0.45 ± 0.03 0.19 ± 0.04 0.29 ± 0.04 0.47 ± 0.07

Hold’em E 0.49 ± 0.01 0.53 ± 0.01 0.09 ± 0.02 0.21 ± 0.04 0.55 ± 0.02
M 0.53 ± 0.03 0.54 ± 0.04 0.21 ± 0.04 0.35 ± 0.03 0.62 ± 0.02
W 0.86 ± 0.05 0.88 ± 0.06 0.34 ± 0.04 0.72 ± 0.03 0.88 ± 0.03

Tennis E 0.35 ± 0.07 0.37 ± 0.05 0.62 ± 0.07 0.72 ± 0.06 0.81 ± 0.05
M 0.42 ± 0.05 0.46 ± 0.07 0.77 ± 0.05 0.83 ± 0.05 0.90 ± 0.04

Boxing E 0.18 ± 0.03 0.17 ± 0.02 0.38 ± 0.02 0.43 ± 0.03 0.47 ± 0.03
M 0.15 ± 0.05 0.17 ± 0.08 0.39 ± 0.06 0.45 ± 0.05 0.55 ± 0.04

Table 1: The win rate/average reward and standard error across different environments are computed over
five seeds. Bold indicates the best result in each row. (E: Expert Opponent, M: Medium Opponent, W: Weak
Opponent.)

DD relies on state prediction with inverse dynamics, which makes it prone to error accumulation in
long-horizon tasks. For example, in Boxing-Expert, DDGIL achieves a relative improvement of about
24% over DD, leading to more consistent outcomes. By generating actions directly through denoising
and incorporating opponent-aware feedback, DDGIL produces more stable decisions. Notably, in
simpler environments such as MPE and Classic games, DDGIL also outperforms both DP and DD,
underscoring that the benefit of dynamic guidance extends beyond high-dimensional settings.

5.4 GENERALIZATION ACROSS OPPONENT STRENGTHS

We evaluate each model against alternative opponents: Omedium and Oweak. This setting tests whether
a policy trained on strong opponents can maintain stable performance when faced with unfamiliar or
weaker strategies. Results are shown in each environment’s second and third rows in Table 1.

Comparison with non-diffusion-based policy. In MPE tasks, DDGIL performs comparably
to DBC and consistently outperforms BC. In cooperative tasks, where weaker opponents act as
teammates, its performance shows mixed trends: in Spread-Weak, BC and DBC achieve slightly
better scores, but in Reference-Medium, DDGIL clearly surpasses both BC and DBC by 1–2 points.
Overall, these results suggest that DDGIL is competitive with non-diffusion baselines and often
provides stronger robustness as task difficulty increases.

Beyond this case, DDGIL consistently outperforms baselines across Atari and Classic environments.
For example, in Boxing, BC’s win rate decreases when faced with weaker opponents, DBC shows
only a slight improvement, while DDGIL increases by 8% points, demonstrating stronger adaptability.
A similar pattern holds in Classic environments: in Connect4, BC decreases by 2% points from
Expert to Medium, while DDGIL improves by 15% points.

Comparison with diffusion-based policy. Compared to DP and DD, DDGIL yields higher win-
rate improvements against weaker opponents. While diffusion-based models are generally more
robust than BC, DP and DD sometimes show non-monotonic reward changes as opponent strength
decreases, like Connect4 and Push. In Push, DDGIL achieves the best results. In Boxing, DDGIL

8
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(Agent) vs Opp. BC DBC DD DP DDGIL

(K) vs. C 0.14 ± 0.12 0.15 ± 0.11 0.14 ± 0.10 0.43 ± 0.06 0.46 ± 0.12
(K) vs. V 0.22 ± 0.10 0.26 ± 0.11 0.14 ± 0.09 0.61 ± 0.11 0.64 ± 0.12
(C) vs. K 0.07 ± 0.05 0.22 ± 0.12 0.23 ± 0.12 0.39 ± 0.04 0.43 ± 0.17
(C) vs. V 0.14 ± 0.12 0.16 ± 0.12 0.25 ± 0.12 0.70 ± 0.11 0.53 ± 0.13

(V) vs. C 0.08 ± 0.09 0.13 ± 0.11 0.11 ± 0.10 0.35 ± 0.07 0.36 ± 0.12
(V) vs. K 0.06 ± 0.08 0.17 ± 0.10 0.05 ± 0.07 0.36 ± 0.08 0.40 ± 0.12

Table 2: Performance of baseline models in the Badminton environment. The labels K, C, and V correspond to
the initials of three real-world players. In the column “(Agent) vs. Opp.”, the player in parentheses denotes the
controlled agent, who competes against the other two players in sequence, resulting in six matchups.

maintains consistent performance, whereas DP shows mild fluctuations. These results suggest that
fixed guidance (DP) or multi-stage prediction (DD) may not adapt well to interaction shifts.

To understand these results, we analyze why DDGIL achieves stable improvements. At each step,
DDGIL combines conditional and unconditional predictions with a confidence-based weight derived
from their disagreement (Eqs. 9 and 10). Conditioning remains the default, ensuring the unconditional
term never dominates. When disagreement is small, updates stay conservative; when large, the rule
amplifies conditional guidance exactly when context matters. In contrast, a fixed weight cannot suit
all steps and opponents: high values cause early overreaction, while low values weaken late responses.
By recomputing the weight each step, DDGIL adapts guidance strength to observed disagreement,
preserving alignment when predictions match and enhancing conditioning when they diverge. This
mechanism explains the consistent gains observed across Expert, Medium, and Weak settings.

5.5 EVALUATION IN REAL-WORLD BADMINTON

We extend our evaluation to a virtual sports setting using the Badminton environment. All baseline
models are trained on the ShuttleSet dataset (Wei-Yao Wang, 2023a;b), which contains real-world
match records. We select three representative players: K, C, and V. The opponent model is Ral-
lyNet (Kuang-Da Wang, 2024a), a pretrained imitation agent with diverse playing styles.

Each baseline is evaluated over 20 matches using standard scoring rules. As shown in Table 2, both
DP and DDGIL rank among the top performers across all matchups. For instance, in the (K) vs.
V scenario, DDGIL achieves a win rate of 0.64, more than triple that of BC and DD. In (C) vs. V,
DDGIL yields higher win rates than DBC and DD in most pairings and outperforms DP in 5 of 6
cases, with the only lower result occurring against V.

We make two observations: (1) the hybrid action space, with both discrete and continuous elements,
benefits diffusion-based models due to their capacity to model multimodal outputs; and (2) DD
underperforms, likely due to long-horizon prediction errors, consistent with its behavior in Atari.
While DP remains competitive, DDGIL shows more consistent gains across most matchups. As
win rate alone is insufficient, we additionally report interaction traces and trajectory-level statistics
(Appendix D.3), including rally length and shot-type transitions.

6 CONCLUSION

We presented Diffusion Dynamic Guidance Imitation Learning (DDGIL), a diffusion-based frame-
work for offline multi-agent imitation learning. Building on diffusion policy, DDGIL introduces a
dynamic guidance rule that adaptively reweights conditional and unconditional predictions during
denoising, enabling stable policy generation under diverse opponent strategies while requiring no
changes to training. Experiments across MPE, Atari, Classic games, and a high-fidelity badminton
environment show that DDGIL consistently outperforms diffusion and non-diffusion baselines. In
badminton, it further captures tactical patterns of real players, highlighting potential for domains
demanding both strategic fidelity and adaptability. Overall, replacing a fixed weight with a confidence-
based dynamic rule enhances robustness under opponent variability.

9
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A.1 VERIFICATION OF THE DYNAMIC WEIGHTING

To motivate the proposed guidance mechanism, it is necessary to clarify why dt = ∥ϵ̂Bt − ϵ̂Gt ∥ with
w

(t)
D = σ(dt) constitutes a reasonable choice of dynamic weight. This formulation directly links the

level of disagreement between predictors to the strength of conditional guidance, ensuring that the
weighting is adapted in a principled and mathematically consistent manner.

Setup and notations. Fix a reverse diffusion step t and state xt. Let ϵ̂Gt denote the conditional noise
prediction (given the current condition), ϵ̂Bt the opponent prediction (e.g., averaged over opponents),
and ϵ̂NG

t the unconditional prediction. Note that the main text used the notations ϵ̂G, ϵ̂NG , and ϵ̂B;
here we include the timestep index t explicitly for clarity of exposition. Define

dt :=
∥∥ϵ̂Bt − ϵ̂Gt

∥∥
2
, w

(t)
D := σ(dt) ∈ [0.5, 1),

where σ(u) = 1
1+e−u is the logistic sigmoid. The following analysis establishes dt 7→ w

(t)
D as a

principled and stable dynamic weighting rule.

(i) From noise prediction to score. Introduce the score notation

sGt (xt) := ∇xt
log pG(xt), sBt (xt) := ∇xt

log pB(xt).

Under the DDPM parameterization, there exists a constant ct > 0 (dependent only on the noise
schedule) such that

sGt (xt) ≈ − ct ϵ̂
G
t , sBt (xt) ≈ − ct ϵ̂

B
t . (11)

(ii) dt as the magnitude of a log-likelihood ratio gradient. Define the stepwise log-likelihood
ratio

ℓt(xt) := log
pG(xt)

pB(xt)
.

Differentiating with respect to xt and applying Eq. 11 gives

∇xt
ℓt(xt) = sGt (xt)− sBt (xt)

≈ − ct
(
ϵ̂Gt − ϵ̂Bt

)
, (12)

and thus ∥∥∇xt
ℓt(xt)

∥∥ ≈ ct
∥∥ϵ̂Bt − ϵ̂Gt

∥∥ = ct dt. (13)
Hence dt (up to scale) coincides with the gradient magnitude of a discriminative objective ℓt: large
values indicate divergent explanations from pG and pB , while small values indicate agreement.

(iii) Smooth mapping via σ(·). Since dt ≥ 0, the logistic map yields

w
(t)
D = σ(dt) ∈ [0.5, 1),

∂w
(t)
D

∂dt
= σ(dt)

(
1− σ(dt)

)
> 0,

∂2w
(t)
D

∂d2t
= σ(dt)

(
1− σ(dt)

)(
1− 2σ(dt)

)
.

(14)

Thus w(t)
D increases monotonically with dt, remains bounded within [0.5, 1), and varies smoothly

across steps.

(iv) One-step consistency via line integral of ∇ℓt. The deterministic mean displacement is

∆xt := xt−1 − xt = −κt ϵ̂t, κt :=
1− αt√

αt

√
1− ᾱt

, (15)

with dynamically mixed estimate

ϵ̂t = w
(t)
D ϵ̂Gt +

(
1− w

(t)
D

)
ϵ̂NG
t . (16)

14
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Along the path γ(τ) = xt + τ∆xt, τ ∈ [0, 1], the change in ℓt is

∆ℓt =

∫ 1

0

∇xℓt
(
γ(τ)

)⊤
γ′(τ) dτ ≈ ∇xt

ℓt(xt)
⊤ ∆xt (17)

(Eq.12, 15)
≈ κtct (ϵ̂

G
t − ϵ̂Bt )

⊤[w(t)
D ϵ̂Gt + (1− w

(t)
D )ϵ̂NG

t

]
.

Expanding gives

∆ℓt = κtct

{
w

(t)
D (ϵ̂Gt − ϵ̂Bt )

⊤ϵ̂Gt +
(
1− w

(t)
D

)
(ϵ̂Gt − ϵ̂Bt )

⊤ϵ̂NG
t

}
. (18)

When the conditional direction aligns better with∇ℓt than the unconditional one, a larger w(t)
D yields

a greater increase in ℓt. Because w
(t)
D is monotone in dt (Eq. 14) and dt ∝ ∥∇ℓt∥ (Eq. 13), the

weighting adapts emphasis toward the conditional signal when discriminative evidence is strong, and
away when it is weak.

(v) Stability and compatibility. Since w
(t)
D ∈ [0.5, 1), the update in Eq. 16 remains a convex

combination with conditional dominance. The derivative σ′(dt) in Eq. 14 bounds sensitivity to dt,
reducing variability due to noisy estimates. Together with Eq. 17, this shows that the rule increases ℓt
proportionally to evidence while preserving the standard DDPM update form.

Summary. The analysis highlights four properties. First, dt = ∥ϵ̂Bt − ϵ̂Gt ∥ corresponds (up
to ct) to the gradient magnitude of ℓt (Eq. 13), linking it to local model disagreement. Second,
w

(t)
D = σ(dt) is monotone and smooth (Eq. 14), assigning higher weight under stronger evidence.

Third, bounding w
(t)
D within [0.5, 1) enforces convex mixing and moderates sensitivity. This design

keeps the conditional branch relatively emphasized over the unconditional component; however,
while the text describes small dt as being close to the unconditional update, the lower bound of 0.5
implies that the update only partially approaches the unconditional case. Finally, the line-integral
argument (Eqs. 15–18) shows compatibility with the reverse denoising update. These properties
together support dt and w

(t)
D as a principled dynamic weighting rule.

A.2 RELATIONSHIP BETWEEN DIFFUSION POLICY (DP) AND DDGIL

This section highlights the differences between our method DDGIL and Diffusion Policy (DP).
Among related works, DP is the closest to ours, as it also employs a diffusion model for behavior
cloning. If the dynamic guidance mechanism is removed, the opponent model is discarded, and the
guidance weight w is fixed to a constant (e.g., wD = 1), our method reduces to DP.

In DP, a single conditional diffusion model is trained to predict actions from observations or auxiliary
information (e.g., state trajectories or history). By contrast, DDGIL introduces an auxiliary model
to capture opponent behaviors and dynamically rebalances the contributions of the primary agent
and opponent predictions at each denoising step, conditioned on the agent’s observation. The final
predicted noise is given by:

DP: ϵ̂ = w · ϵ̂G + (1− w) · ϵ̂NG , w ∈ [0, 1] (constant) (19)

DDGIL: ϵ̂ = wD · ϵ̂G + (1− wD) · ϵ̂NG , wD = σ(∥ϵ̂B − ϵ̂G∥2) (20)

Key differences. (i) DP relies on a fixed weight w in Eq. 19, whereas DDGIL replaces it with
a dynamic wD in Eq. 20. (ii) DDGIL increases the conditional component when the discrepancy
between ϵ̂B and ϵ̂G grows (d ↑⇒ wD ↑), thereby prioritizing state-conditioned cues over the
unconditional prior. This mitigates collapse to recurring patterns (e.g., repeated mid-court clears in
Badminton) and improves robustness under opponent or style shifts. (iii) DDGIL operates purely at
inference, requiring neither retraining nor architectural modification.

Moreover, DP implicitly assumes that the conditional distribution p(a | s) is sufficient for imitation,
independent of interactive context. Our findings suggest that this assumption is inadequate in multi-
agent environments, where strategic variability is strongly influenced by other agents. By explicitly
modeling the opponent and incorporating its predictions as an adaptive reference, DDGIL improves
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both robustness and behavioral fidelity. Main experiments (see Section 5.3) confirm that this dynamic
formulation consistently outperforms DP, underscoring the importance of opponent-aware guidance
and adaptive inference.

B ALGORITHM

B.1 EMBEDDING MODEL ALGORITHM

Our overall training pipeline focuses primarily on training a diffusion model for each agent. However,
in specific environments, the observed state is not a low-dimensional vector but a high-dimensional
image. This differs from array-based environments such as MPE, Texas Hold’em, and Badminton,
where the state can be directly fed into the model. For example, Atari environments provide
84× 84× 6 compressed image frames, and Connect4 uses a 7× 6× 2 binary tensor representation.
Since diffusion models expect vectorized conditional inputs, using such image-based states can lead
to training instability or poor convergence.

To address this, we train an auxiliary embedding model femb to transform high-dimensional states
into vector representations before they are used as diffusion conditions (Michelucci, 2022). This
embedding model is pretrained once and kept fixed during all downstream tasks. The overall
procedure is summarized in Algorithm 1. To ensure a fair comparison, we apply the same pre-trained
femb across all baselines, including BC, DP, DBC, and DD, in environments that involve image-based
states (Atari and Connect4). The architecture and parameter settings of femb, as well as all other
models, are detailed in Appendix E.

B.2 DIFFUSION DYNAMIC GUIDANCE POLICY ALGORITHM

We present the dynamic guidance mechanism used during inference. For environments requiring state
embeddings, a pretrained embedding model encodes state representations for training and inference.
Additionally, the dynamic guidance mechanism relies on pretrained diffusion models for both the
primary agent and the opponent agents. The algorithm is summarized in Algorithm 2.

Algorithm 1 Training of Agent-Specific Embedding Model femb

1: Input: Dataset D = {si}, encoder Ei, decoder Di for each agent i
2: Output: Trained encoder-decoder pairs (Ei, Di)
3: for each agent i ∈ {1, . . . ,K} do
4: Initialize encoder Ei and decoder Di

5: end for
6: while not converged do
7: Sample batch of raw image states or one-hot array {sit} from D for all agents
8: for each agent i do
9: if si is an image then:

10: Normalize input: s̃i ← si/255.0
11: else
12: input: s̃i ← si

13: end if
14: Encode: zi ← Ei(s̃i)
15: Decode: ŝi ← Di(zi)
16: Compute reconstruction loss: Li ← ∥ŝi − s̃i∥2
17: Update Ei and Di using gradient of Li

18: end for
19: end while
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Algorithm 2 Inference with Dynamic Guidance

1: Input: Denoising models ϵGθ , ϵ
Bi

ϕ , Diffusion steps T , Embedding model femb, Primary Agent
index G, Opponent index B, Number of opponents k, Primary Agent’s state sG

2: Output: Primary agent’s action aG

3: if sG is an image then
4: Embedding z ← femb(s

G)
5: else
6: z ← sG

7: end if
8: Initialize xT ∼ N (0, I)
9: for t = T, . . . , 1 do

10: Predict noise with condition ϵ̂G ← ϵGθ (xt, z, t)
11: Predict noise without condition ϵ̂NG ← ϵGθ (xt,∅, t)
12: for each i ∈ {1, . . . , k} do
13: Predict noise with condition ϵ̂Bi ← ϵiϕ(xt, z, t)
14: end for
15: Compute the mean of the conditional noise ϵ̂B = E[ϵ̂Bi ]
16: Compute confidence d← ∥ϵ̂B − ϵ̂G∥
17: Compute dynamic guidance wD ← σ(d) ▷ σ(x) = 1

1+e−x

18: Compute epsilon ϵ̂← wD · ϵ̂G + (1− wD) · ϵ̂NG
19: (µt,Σt)← Denoise(xt, ϵ̂)
20: xt−1 ∼ N (µt,Σt)
21: end for
22: Action selection: For discrete dimensions, aG ← argmaxa (x0[a]); for continuous dimensions,

take the real-valued output from x0.

C ENVIRONMENT SETTINGS

To comprehensively evaluate the adaptability and robustness of our proposed method under diverse
interaction scenarios, we select a range of representative multi-agent reinforcement learning (MARL)
environments as our evaluation benchmarks. A key criterion for environment selection is a multi-
agent structure; accordingly, we primarily adopt environments from the PettingZoo library (Justin
K. Terry, 2020b). PettingZoo is a Python library designed explicitly for MARL research, offering
a unified API and supporting various interaction types, including cooperative, competitive, and
communication-based settings.

Environment Category Interaction Type Action Type

Push MPE Parallel Discrete
Tag MPE Parallel Discrete
Spread MPE Parallel Discrete
Reference MPE Parallel Discrete

Tennis Atari Parallel Discrete
Boxing Atari Parallel Discrete

Connect4 Classic AEC Discrete
Texas Hold’em Classic AEC Discrete

Badminton Real AEC Discrete + Continuous

Table 3: Metadata for each environment, including its category, interaction mode, and action space type.
Badminton includes hybrid action/state features (state: 11 discrete + 6 continuous; action: 11 discrete + 4
continuous).

PettingZoo environments are categorized into two major interaction protocols: Agent Environment
Cycle (AEC) and Parallel. AEC environments enforce turn-based interactions where agents observe
and act sequentially, making them suitable for step-wise strategic settings. In contrast, Parallel
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environments allow all agents to observe and act, simultaneously simulating real-time or synchronous
interaction. These two formats differ in data collection structure, and we detail their respective
recording formats in the Dataset section.

To capture diverse task structures and input modalities, we categorize the environments into four types:
(1) MPE (Multi-agent Particle Environments), which are vector-based and emphasize coordination
and adversarial interaction; (2) Atari, which provides pixel based inputs and complex competitive
dynamics; (3) Classic environments, such as Connect4 and Texas Hold’em, which feature well-
defined rules and game-theoretic structure; and (4) Badminton, a high-fidelity sports simulation
inspired by real-world gameplay.

Table 3 summarizes the structural and behavioral characteristics of each domain, including category,
interaction type, and action space. Additional specifications, such as state dimensionality, number of
agents, action space size, and maximum episode length, are provided in Table 4, which also guides
model configuration and training.

• MPE–Tag. This predator-prey environment involves one fast-moving good agent and three
slower adversaries. The good agent incurs a penalty of -10 upon each collision with an
opponent, while adversaries receive a reward of +10 for successfully hitting the good agent.
The environment also includes two static obstacles blocking movement and influencing path
planning. The good agents don’t run to infinity, and they are also penalized for exiting the
area

• MPE–Push. This environment consists of one good agent, one opponent, and a single
landmark. The good agent receives a reward based on its proximity to the landmark, while
the opponent is rewarded proportionally to the difference between its distance and the good
agent’s distance to the landmark. As a result, the opponent is incentivized to push the good
agent away from the landmark to maximize its reward.

• MPE–Spread. This environment consists of N agents and N landmarks (with a default
of N = 3). Agents are tasked with collectively covering all landmarks while minimizing
inter-agent collisions. Globally, the team receives a shared reward based on the sum of the
minimum distances from each landmark to the nearest agent. Locally, each agent incurs a
penalty of −1 for every collision with another agent. The relative contribution of global
versus local rewards is modulated by a local ratio, allowing for flexible trade-offs between
cooperation and collision avoidance.

• MPE–Reference. This environment features two agents and three uniquely colored land-
marks. Each agent aims to reach its designated target landmark, the identity of which is
known only to the other agent. Both act as speakers and listeners, exchanging information
to locate their targets. Local rewards are based on each agent’s distance to its target, while
global rewards depend on the average distance of all agents to their respective targets.

• Atari–Tennis. This environment is a competitive two-player game focused on positioning
and prediction. Each agent aims to strike the ball past the opponent while preventing it from
crossing their own side. A successful point yields a reward of +1 to the scorer and −1 to
the opponent. To prevent stalling, players are penalized −1 if they fail to serve within 3
seconds of receiving the ball, introducing a non-zero-sum aspect to the game.

• Atari–Boxing. This environment simulates an adversarial boxing match emphasizing precise
control and reactive strategy. Over a fixed duration of approximately 128 steps, agents
can move and punch at each timestep. Scoring is based on the effectiveness of punches: 1
point for a long jab, 2 points for a close-range power punch. Each successful action yields
a corresponding positive reward for the scorer and an equivalent negative reward for the
opponent.

• Classic–Connect4. It is a two-player, turn-based game that aims to align four consecutive
tokens vertically, horizontally, or diagonally on a 7-column grid. On each turn, a player
drops a token into a selected column, and it falls to the lowest available position. Tokens
cannot be placed in full columns. The game ends when either player achieves a sequence of
four tokens or when all columns are filled, resulting in a draw if no player has won.

• Classic–Texas Hold’em (Limit). It is a simplified variant of Limit Texas Hold’em with two
players, two betting rounds, and a deck of six cards (Jack, Queen, King in two suits). Each

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

player is dealt one private card, followed by a betting round, after which a single public card
is revealed. A second round of betting ensues. The player with the highest-ranked hand at
the end wins the game and receives a reward of +1, while the loser gets −1. At any point, a
player may fold, forfeiting the game.

• Real–World Sports: Badminton. The Badminton environment is sourced from the
CoachAI framework (Kuang-Da Wang, 2024b) and built upon the ShuttleSet dataset (Wei-
Yao Wang, 2023b). ShuttleSet is currently the largest publicly available badminton singles
dataset, covering 44 matches from 2018 to 2021 with over 36,000 annotated strokes. Each
rally is annotated with rich metadata, including shot type, shot location, and player posi-
tions, making it especially suitable for imitation learning and tactical modeling. Each agent
controls a player in a fast-paced rally, aiming to return shots and score against the opponent.
This environment introduces real-world game dynamics, long-term interaction, and a more
complex state-action distribution than synthetic settings.

Environment Agent SD Opp. SD Num Agent Num Opp. AD Traj. Length

Push 19 8 1 1 5 25
Tag 14 16 1 3 5 25
Spread 18 – 3 0 5 25
Reference 21 – 2 0 50 25

Connect4 2×6×7 2×6×7 1 1 7 42 (21)
Hold’em 72 72 1 1 4 50 (25)

Boxing 84×84×6 84×84×6 1 1 18 128
Tennis 84×84×6 84×84×6 1 1 18 128

Badminton 17 17 1 1 15 60 (30)

Table 4: Environment-specific state/action dimensions and agent settings. “Traj. Length” denotes the maximum
steps per episode. “SD” and “AD” denote the abbreviations for State Dimension and Action Dimension,
respectively. Values in parentheses indicate per-agent lengths in turn-based (AEC) settings, typically computed
as max steps divided by the number of agents. This table supports the model architecture in Table 3.

D EXTRA EXPERIMENTS

This section presents an ablation study to investigate the performance differences between DDGIL
and other baselines. Specifically, we examine: (i) the impact of varying the quantity of training
data; (ii) the effect of using fixed weights compared to DDGIL; (iii) the adequacy of win rate in the
Badminton environment, supplemented by analyses of score causes, mistake patterns, and rally length
distributions to assess imitation quality; (iv) comparisons with reinforcement learning models;(v)
the scalability of DDGIL to multiple agents; and (vi) the necessity of employing multiple diffusion
models within DDGIL.

D.1 EFFECT OF VARYING DATASET SIZE

We begin by analyzing the effect of data quantity on model performance. The dataset sizes in the
main experiments were set to 500 episodes for MPE and Classic, and 250 for Atari. We exclude the
Badminton environment from this analysis, as its dataset is fixed and does not allow for controlled
variation in data volume. To evaluate sensitivity to data availability, we train each baseline with
varying amounts of data: 50, 100, and 250 episodes for MPE and Classic; 10, 50, and 100 episodes
for Atari. All models are trained using the same configurations as in the main experiments and
evaluated against the opponent at the expert level Oexpert. The results are presented in Figure 3.

The figure shows that most baseline models improve as the training data increases. BC, DBC, and
DDGIL achieve competitive results in the three MPE tasks, whereas DDGIL consistently outperforms
other baselines in Atari and Classic environments. Moreover, the average reward improvement across
all tasks remains within 50% when comparing the smallest and largest dataset sizes. These results
suggest that, despite some variations, the overall performance of our models is relatively robust with
respect to the quantity of data.
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Figure 3: Dataset configurations for analyzing the impact of data quantity on model performance. MPE and
Classic tasks are evaluated with 50, 100, and 250 episodes, while Atari tasks are evaluated with 10, 50, and 100
episodes.

D.2 FIXED GUIDANCE WEIGHTS VERSUS ADAPTIVE WEIGHTS

We evaluate the effect of fixed guidance weights by setting w to 1.0, 0.75, 0.5, 0.25, and compare
these fixed-weight settings against the adaptive weighting used in DDGIL. Here, w = 1.0 corresponds
to agent-only guidance (equivalent to DP), while w = 0.0 uses only the opponent policy. All models
are evaluated with three random seeds over 300 episodes. Results are shown in Figure 4.

In MPE environments, fixing w above 0.75 achieves higher rewards than DDGIL, with Push and
Tag showing improvements of 0.2 to 0.3. For other tasks, w = 1.0 performs close to DDGIL but
remains slightly lower. In Hold’em, the best performance occurs at w = 0.5, suggesting a balance
between agent and opponent guidance benefits policy learning. Unlike Push or Tag, Hold’em relies
on adapting to opponent strategies, making mixed guidance more effective than purely agent-driven
decisions. When w = 0.0, performance consistently degrades across all tasks. Despite sharing the
same noise and denoising process, the opponent policy optimizes toward opponent behavior, which
conflicts with reproducing the agent’s strategy. This results in a reward gap that is roughly two to
three times larger than in other settings.

Figure 4: Performance comparison between fixed guidance weights w and adaptive DDGIL. Each setting
is evaluated over 300 episodes, with w = 1.0 representing agent-only guidance and w = 0.0 representing
opponent-only guidance.
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D.3 ANALYSIS OF PERFORMANCE IN BADMINTON

In Section 5.5, we compared baseline models based on win rates. However, given badminton’s
interactive and dynamic nature, win rate alone is insufficient to evaluate how well a model replicates
player behavior. To address this, we further analyze the quality of generated match processes by
examining rally length distribution and score-related landing positions. The analysis uses data from 20
matches recorded during interactions with real players, following standard badminton rules, including
match point settings.

Rally Length Distribution. Rally length reflects the tempo of exchanges and error control, serving
as a key indicator of realistic gameplay. Models that fail to capture proper shot selection and defensive
reactions often produce abnormally short rallies, dominated by serve or receive errors.

Figure 5: Comparison of rally length distributions between real players and generated simulations. Each
subfigure shows the distribution for a specific player (C, K, V) across different models. JSD quantifies the
difference between real and simulated distributions. DDGIL achieves the lowest JSD in all cases, indicating
superior replication of realistic rally patterns.

Figure 6: Landing position distributions of scoring (blue) and losing (red) shots for each player (C, K, V) across
different models. Distributions are visualized using KDE heatmaps.
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To evaluate this, we compute the rally length distribution for each model and measure its divergence
from real data using Jensen–Shannon divergence (JSD), as shown in Figure 5. DDGIL achieves
the smallest divergence, with an average JSD below 0.1, while other baselines exceed 0.2. Most
alternative models show rallies concentrated between 1 to 3 shots, typically due to serve faults (length
1) or failed returns (length 2). Further inspection reveals these errors stem from incorrect shot types
or boundary violations, highlighting DDGIL’s superior ability to replicate realistic shot selection and
play styles.

Win/Lose landing Distribution. We also analyze the landing positions of scoring and losing shots.
Specifically, we record the positions where a point is won (on the opponent’s court) and where a
point is lost (on the agent’s court), excluding out-of-bounds shots. This assesses whether the model
captures the player’s preferred attack zones and common defensive weaknesses. Alignment in scoring
positions indicates learned offensive tendencies, while consistency in losing positions reflects an
understanding of a player’s typical weaknesses.

Figure 6 presents the comparison, with red areas denoting losing shot distributions and the blue
regions for scoring shots. Though no numerical metrics are provided, KDE visualizations show
that DDGIL’s distributions closely match those of the real players, particularly for players K and
C. For player V, the alignment is less precise but still reasonable. In contrast, BC and DBC exhibit
imbalanced patterns, often lacking losing shot distributions due to frequent serve faults and out-of-
bounds hits, which are not reflected in the landing statistics. DP and DD show distinct behaviors: DD
produces overly dispersed landing positions, lacking clear attack patterns, while DP focuses on fixed
regions for both scoring and losing shots, indicating limited adaptability. These observations further
demonstrate DDGIL’s advantage in mimicking player-specific strategies and behaviors.

D.4 COMPARE WITH REINFORCEMENT LEARNING MODELS

In this work, although our primary setting is reward-free, we additionally compare DDGIL with offline
RL methods to assess its generalization and stability. For a fair comparison, we recollected datasets
with reward information and included IDQL (Philippe Hansen-Estruch, 2023) and OMAR (Ling Pan,
2022) as baselines. All evaluations follow the same protocol as in the main experiments under Expert,
Medium, and Weak opponent conditions.

Table 5 reports the comparison between DDGIL and offline RL baselines. On MPE tasks, DDGIL
achieves consistent gains, with win rates on Push and Tag exceeding IDQL and OMAR by up to
+6–8% under certain opponent conditions. In Spread, DDGIL remains competitive but trails the
strongest baseline by roughly 2–3%. In Classic and Atari domains, RL methods generally dominate:
in Connect4 and Tennis, DDGIL is lower by 5–10%, while in Boxing the gap narrows to within
2–3%. For Hold’em, DDGIL surpasses RL baselines under Weak.

Overall, these results indicate that DDGIL is particularly effective in MPE environments, where
coordination and adaptation to opponent strategies are critical. While RL baselines retain an advantage
in Connect4 and most Atari domains, DDGIL demonstrates competitive performance in reward-free
settings and achieves superior outcomes in interaction-heavy tasks such as Push, Tag, and Expert
Hold’em.

D.5 SCALABILITY OF MULTIPLE AGENTS FOR DDGIL

To evaluate the scalability of DDGIL with respect to the number of opponents, we conducted
experiments on the MPE Tag task with 3, 6, and 10 opponents. Each configuration was evaluated
in a fixed expert setting for 100 episodes, averaging the results in three random seeds with standard
deviations, as reported in Table 6. In addition, single-step inference time and memory usage were
recorded.

Results show that DDGIL maintains stable win rates as the number of opponents increases. With
three opponents, DDGIL achieves a win rate of 0.34, which is lower than DBC. As the number of
opponents increases to six and ten, DDGIL maintains the highest performance, whereas BC and DBC
degrade more substantially. In contrast, DD and DP yield considerably lower win rates across all
configurations, underscoring their limited adaptability in multi-opponent settings.
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Env Opp. RL methods IL methods
IDQL OMAR DDGIL

Push E 0.81 ± 0.04 0.80 ± 0.04 0.81 ± 0.01
M 0.86 ± 0.03 0.84 ± 0.05 0.82 ± 0.02
W 0.83 ± 0.06 0.77 ± 0.04 0.84 ± 0.05

Tag E 0.33 ± 0.08 0.33 ± 0.05 0.34 ± 0.08
M 0.45 ± 0.03 0.39 ± 0.06 0.45 ± 0.03
W 0.60 ± 0.07 0.58 ± 0.04 0.57 ± 0.06

Spread E -10.68 ± 0.25 -12.54 ± 0.06 -11.62 ± 0.41
M -11.91 ± 0.42 -13.93 ± 0.08 -11.87 ± 0.17
W -15.67 ± 0.33 -15.82 ± 0.10 -17.79 ± 0.47

Connect4 E 0.31 ± 0.02 0.32 ± 0.04 0.26 ± 0.04
M 0.50 ± 0.03 0.47 ± 0.04 0.41 ± 0.06
W 0.54 ± 0.02 0.53 ± 0.03 0.47 ± 0.06

Hold’em E 0.57 ± 0.04 0.53 ± 0.02 0.55 ± 0.02
M 0.61 ± 0.03 0.67 ± 0.01 0.62 ± 0.02
W 0.83 ± 0.07 0.85 ± 0.03 0.88 ± 0.04

Tennis E 0.85 ± 0.02 0.84 ± 0.04 0.81 ± 0.05
M 0.89 ± 0.05 0.94 ± 0.06 0.90 ± 0.04

Boxing E 0.53 ± 0.05 0.47 ± 0.06 0.48 ± 0.03
M 0.66 ± 0.04 0.65 ± 0.07 0.52 ± 0.04

Table 5: Comparison between RL methods (IDQL, OMAR) and IL method (DDGIL). Results show that DDGI
outperforms IDQL and OMAR in some environments.

Opp. Num Baseline Win rate Time / step Memory
3 DDGIL 0.34 ± 0.08 61.3 ms 1.16 GB

BC 0.31 ± 0.05 4.0 ms 0.31 GB
DBC 0.38 ± 0.13 4.1 ms 0.33 GB
DD 0.15 ± 0.03 46.4 ms 0.45 GB
DP 0.15 ± 0.03 41.1 ms 0.45 GB

6 DDGIL 0.37 ± 0.06 72.7 ms 1.16 GB
BC 0.32 ± 0.09 4.5 ms 0.31 GB
DBC 0.32 ± 0.07 4.5 ms 0.33 GB
DD 0.13 ± 0.05 51.2 ms 0.45 GB
DP 0.15 ± 0.07 48.9 ms 0.45 GB

10 DDGIL 0.35 ± 0.05 95.2 ms 1.54 GB
BC 0.28 ± 0.04 6.4 ms 0.33 GB
DBC 0.31 ± 0.05 6.3 ms 0.35 GB
DD 0.13 ± 0.08 57.1 ms 0.47 GB
DP 0.12 ± 0.08 56.8 ms 0.46 GB

Table 6: Win rate and computational cost with increasing opponent counts in MPE-Tag.

In terms of computational cost, DDGIL incurs a higher inference time and memory usage due to
the additional opponent modeling. For example, the inference time increases from 121.3 ms with
3 opponents to 251.2 ms with 10 opponents, and the memory usage increases from 1.16 GB to
1.54 GB. Although these values are larger than BC and DBC, they remain within the range of other
diffusion-based baselines (DD, DP).

Overall, DDGIL demonstrates better performance scalability than BC, DBC, DD, and DP as the
number of opponents increases, while its computational cost increases predictably with task complex-
ity. This indicates that the dynamic guidance mechanism effectively stabilizes learning under more
challenging multi-opponent environments.

D.6 NECESSITY OF MULTIPLE DIFFUSION MODELS IN DDGIL

In the original design, each agent is assigned an independent diffusion model, with separate con-
ditional generation and dynamic guidance. To examine the necessity of this multi-model setup,
we conducted an ablation by replacing it with a single shared model. The shared model takes the
primary agent’s observation as input and outputs actions for all agents through a shared encoder and
multi-head denoisers, while retaining dynamic guidance during inference. Evaluation metrics include
average return, stability, and computational cost.
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Env Reward/WR Origin Reward/WR Time Origin Time Memory Origin Mem.

Push 0.13± 0.03 0.81± 0.02 39.3 ms 47.1 ms 0.48 ± 0.00 0.59 ± 0.08

Tag 0.05± 0.10 0.33± 0.08 48.4 ms 61.3 ms 0.56 ± 0.13 0.94 ± 0.11

Spread −22.68± 0.88 −11.52± 0.41 41.6 ms 62.4 ms 0.52 ± 0.07 0.65 ± 0.07

Reference −38.82± 1.07 −26.62± 1.07 35.2 ms 46.2 ms 0.50 ± 0.08 0.58 ± 0.12

Tennis 0.46± 0.12 0.81± 0.05 36.5 ms 42.2 ms 0.59 ± 0.07 0.59 ± 0.01

Boxing 0.11± 0.09 0.47± 0.03 35.8 ms 44.5 ms 0.51 ± 0.09 0.60 ± 0.05

Connect4 0.15± 0.11 0.26± 0.04 37.1 ms 45.2 ms 0.47 ± 0.05 0.57 ± 0.08

Hold’em 0.34± 0.42 0.55± 0.02 33.0 ms 45.3 ms 0.47 ± 0.02 0.57 ± 0.04

Table 7: When DDGIL is implemented as a single shared model, compared with the original multi-model setup.
Origin denotes the performance of the original model configuration. WR is the abbreviation for Win Rate.

Table 7 shows that the shared model reduces computational cost, achieving on average 26% shorter
inference time (e.g., 48.4 ms vs. 61.3 ms in Tag) and about 17% lower memory usage. However, this
efficiency gain comes with performance degradation in most environments. In Push, Tag, Tennis, and
Boxing, win rates decline notably, while in Spread and Reference, rewards drop by more than 10
points. In contrast, Connect4 and Hold’em show smaller differences, indicating less sensitivity to
model sharing.

The performance gap arises because, in the multi-model setting, the opponent model serves only
as an external reference for condition and does not affect the gradient updates of the primary
agent. In the shared architecture, all agents are generated by the same model, causing gradient
interference, reducing the distinctiveness of guidance vectors, and hindering convergence. In addition,
changes in the denoising path primary agent indirectly alter the output of other agents, breaking the
design principle of using separate models to capture interaction-specific semantics through dynamic
guidance.

Therefore, although the multi-model design increases computational cost, it plays a critical role
in maintaining stability and controllability in imitation learning. It also preserves separable repre-
sentations of the primary agent and opponent policies, thereby enhancing the interpretability and
responsiveness of dynamic guidance.

E MODEL ARCHITECTURE

E.1 EXPERT REINFORCEMENT LEARNING MODEL

We configure an expert strategy model for each environment to ensure the quality and consistency of
demonstration data used during the imitation learning phase. These expert models are designed to
fully capture the rules and decision-making structure of the corresponding environment and remain
fixed during data collection, without being updated jointly with the student policy. The architecture
and training protocol of each expert differ according to the nature of the environment, as described
below:

• Atari (Tennis, Boxing): We adopt the Multi-Agent PPO (MAPPO) (Logan Engstrom, 2020;
John Schulman, 2017) implementation from CleanRL (Shengyi Huang, 2022), integrated
with preprocessing utilities provided by Supersuit (Justin K. Terry, 2020a). Observations
from PettingZoo are cropped, normalized, and stacked into multi-channel frames. The policy
network simultaneously processes both agents’ observations and outputs their respective
action distributions, enabling stable learning of pixel-level competitive behavior.

• MPE (Tag, Push, Spread, Reference): We employ the MADDPG (Ryan Lowe, 2017)
algorithm provided by AgileRL (Ustaran-Anderegg et al.), which uses a centralized Q-critic
to evaluate joint action values and decentralized actors for each agent. This design effectively
captures both cooperative and adversarial patterns in the multi-agent particle environment.

• Connect4: The expert is instantiated using the AgileRL DQN (Volodymyr Mnih, 2013)
model with publicly available pretrained weights. These weights are obtained through
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curriculum learning and self-play, enabling the generation of competent gameplay demon-
strations without additional training cost.

• Texas Hold’em: For this imperfect-information game, we use the Neural Fictitious Self-
Play (NFSP) (Johannes Heinrich, 2016) implementation from RLCard (Zha et al., 2020).
NFSP maintains both a best-response policy and an average strategy memory, progressively
converging to a Nash equilibrium through self-play. This allows the expert to model strategic
inference over hidden information.

• Badminton: The expert model is based on RallyNet (Kuang-Da Wang, 2024a), a pretrained
imitation learning model derived from real-world badminton match footage. It is capable
of predicting high-quality shot sequences and footwork trajectories, providing fluent and
realistic expert demonstrations.

During the expert training phase, we log the model weights across training epochs along with the
corresponding evaluation rewards. These metrics serve as the basis for ranking and selecting expert
strengths (e.g., medium, weak) for future ablation studies. The weight checkpoint that achieves
the highest evaluation reward, typically the one saved in the final epoch, is selected as the expert
policy. All subsequent rollout datasets used for offline imitation learning are generated via interaction
between this selected expert and the environment.

E.2 BASELINE MODEL

To benchmark the proposed framework under the offline imitation learning setting, we construct a
set of baseline models. Our survey of existing literature indicates that most multi-agent imitation
learning methods are designed for online training and are thus incompatible with our offline setting.
We therefore adopt single-agent offline imitation learning algorithms as the primary baselines, and
additionally include two multi-agent offline reinforcement learning algorithms as supplementary
experiments in Appendix D.5.

• BC: A classical behavior cloning model that employs a three-layer MLP with ReLU activa-
tions. It directly learns to map states to actions in a single-stage training procedure.

• DBC: Based on the Diffusion Model-Augmented Behavioral Cloning (Shang-Fu Chen,
2024), this model includes a two-stage training process. A diffusion model is trained to learn
improved representations, followed by a behavior cloning policy. The decision component
is identical to the BC architecture.

• DP: Implemented using the Clean Diffuser (Zibin Dong, 2024), Diffusion Pol-
icy (Tim Pearce, 2023) adopts a denoising diffusion probabilistic model (DDPM). A
DIT1D-based UNet is used as the diffusion backbone, while MLPCondition is applied
for conditional state input. The model predicts a one-step action conditioned on a short state
sequence. Originally designed for single-agent decision making, we extend it to the multi-
agent setting by conditioning on the primary agent’s state and generating action distributions
for all agents, from which the primary agent’s action is taken, like a shared-model design
with multi-head outputs.

• DD: We adapt Decision Diffuser (Anurag Ajay, 2023) into an offline imitation learning
formulation using the Clean Diffuser. In contrast to its original reinforcement learning
design, our implementation removes reward-based conditioning and relies solely on state
information. Since each state transition in a multi-agent environment is influenced by all
agents’ actions, modeling individual-agent trajectories in isolation is insufficient. To address
this, we introduce an inverse dynamics module that predicts the actions of all agents given
consecutive states. The inverse model outputs a vector of action dimension action × number
of agents, enabling accurate recovery of interaction patterns across agents.

• IDQL: IDQL (Philippe Hansen-Estruch, 2023) adopts a generalized IQL architecture con-
sisting of a Q-function (critic) trained solely on dataset actions and a diffusion-parameterized
behavior policy (actor). The actor generates samples from the diffusion model and applies
importance sampling with weights computed from the critic to obtain the final policy.
Our implementation is based on the Clean Diffuser to support training and inference of
diffusion-based behavior policies.
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Method Param Push Tag Spread Reference Connect4 Hold’em Tennis Boxing Badminton

BC in dim [8, 19] [14, 16] 18 21 64 72 64 64 17
out dim 5 5 5 50 7 4 18 18 15
hid dim 256 256 256 256 256 256 256 256 256

DBC Diffusion
in dim [13, 24] [19, 21] 23 [71, 71] 71 76 82 82 32
out dim [13, 24] [19, 21] 23 [71, 71] 71 76 82 82 32
hid dim 256 256 256 256 256 256 256 256 256
step 1000 1000 1000 1000 1000 1000 1000 1000 1000

BC
in dim [8, 19] [14, 16] 18 21 64 72 64 64 17
out dim 5 5 5 50 7 4 18 18 15
hid dim 256 256 256 256 256 256 256 256 256

DP in dim [8, 19]×2 [14, 16]×2 18×2 21×2 64×2 72×2 64×2 64×2 17×2
out dim 5 5 5 50 7 4 18 18 15
hid dim 384 384 384 384 384 384 384 384 384
step 15 15 15 15 15 15 20 20 20
ex step 5 5 5 5 5 5 8 8 5

DD Diffusion
in dim [8, 19]×H [14, 16]×H 18×H 21×H 64×H 72×H 64×H 64×H 17×H
out dim [8, 19]×H [14, 16]×H 18×H 21×H 64×H 72×H 64×H 64×H 17×H
hid dim 320 320 320 320 320 320 320 320 320
step 20 20 20 20 20 20 25 25 25

InvDyn
in dim [8, 19]×2 [14, 16]×2 18×2 21×2 64×2 72×2 64×2 64×2 17×2
out dim 5×n 5×n 5×n 50×n 7×n 4×n 18×n 18×n 15×n
hid dim 512 512 512 512 512 512 512 512 512

IDQL in dim [8, 19] [14, 16] 18 21 64 72 64 64 17
out dim 5×n 5×n 5×n 50×n 7×n 4×n 18×n 18×n 15×n
hid dim 512 512 512 512 512 512 512 512 512

OMAR in dim [8, 19] [14, 16] 18 21 64 72 64 64 17
out dim 5 5 5 50 7 4 18 18 15
hid dim 256 256 256 256 256 256 256 256 256

DDGIL EM
in dim - - - - 7×6×2 - 84×84×6 84×84×6 -
emb dim - - - - 64 - 64 64 -
hid dim - - - - 256 - 256 256 -

Diffusion
in dim [8, 19] [14, 16] 18 21 72 64 64 64 17
out dim 5 5 5 50 7 4 18 18 15
hid dim 256 256 256 256 256 256 256 256 256
step 15 15 15 15 15 15 20 20 20

Table 8: Model Architecture Parameters for baseline. Hyperparameter configurations for all baseline models and
our proposed DDGI across seven environments.

• OMAR: Offline Multi-Agent RL with Actor Rectification (OMAR) (Ling Pan, 2022)
combines first-order policy gradients with zeroth-order optimization to address the non-
concavity of conservative value functions in the actor parameter space, reducing the risk
of suboptimal convergence. This design mitigates global coordination failures caused by
suboptimal policies of individual agents in offline multi-agent reinforcement learning. Our
implementation follows the original OMAR architecture to support policy optimization in
multi-agent control tasks.

The hyperparameter settings for all baseline models are summarized in Table 8. For clarity, we
define the following abbreviations: in dim (input dimension), hid dim (hidden dimension), out dim
(output dimension), step (diffusion sampling steps), ex step (extra steps in DP), EM (embedding
model in DDGIL), and InvDyn (inverse dynamics module in DD). In DD, H is the trajectory horizon
(defaulting to the environment’s episode length), while n denotes the number of agents. For Push/Tag,
state dimensions are shown as (agent, opponent). In Tennis, Boxing, and Connect4, state dimensions
follow DDGIL’s embedding size.
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Method Param Push Tag Spread Reference Connect4 Hold’em Tennis Boxing Badminton

- bs 256 256 256 256 256 256 64 64 256

BC lr 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4
epoch 300 300 300 300 300 300 400 400 300

DBC Diffusion
lr 5e-4 5e-4 5e-4 5e-4 5e-4 5e-4 1e-5 1e-5 5e-4
epoch 1000 1000 1000 1000 1000 1000 1000 1000 1000

BC
lr 5e-4 5e-4 5e-4 5e-4 5e-4 5e-4 1e-5 1e-5 5e-4
epoch 300 300 300 300 300 300 400 400 300

DP lr 5e-4 5e-4 5e-4 5e-4 5e-4 5e-4 1e-4 1e-4 5e-4
epoch 1000 1000 1000 1000 1000 1000 1200 1200 1000

DD Diffusion
lr 5e-4 5e-4 5e-4 5e-4 5e-4 5e-4 1e-5 1e-5 5e-4
epoch 5000 5000 5000 5000 5000 5000 8000 8000 6000

InvDyn
lr 5e-4 5e-4 5e-4 5e-4 5e-4 5e-4 1e-5 1e-5 5e-4
epoch 2000 2000 2000 2000 2000 2000 3000 3000 2000

DQL lr 5e-4 5e-4 5e-4 5e-4 5e-4 5e-4 5e-4 5e-4 5e-4
epoch 1000 1000 1000 1000 1000 1000 1000 1000 1000

OMAR lr 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5
epoch 5000 5000 5000 5000 5000 5000 5000 5000 5000

DDGIL EM
lr - - - - 5e-4 - 1e-5 1e-5 -
epoch - - - - 100 - 100 100 -

Diffusion
lr 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5
epoch 500 500 500 500 500 500 600 600 500

Table 9: Model Training Parameters for baseline in each environment.

Table 9 summarizes the hyperparameter configurations for all baseline models. The following
abbreviations are used: lr (learning rate), bs (batch size), and epoch (total training epochs). All
baselines are optimized using Adam. The batch size for each environment is listed at the top of the
table.

E.3 DDGIL MODEL

To handle the diversity of state representations across environments, we structure DDGIL into two
modular yet interdependent components: an embedding module and a diffusion-based policy genera-
tion module. The former transforms high-dimensional, non-vector observations into compact latent
embeddings, while the latter serves as the core mechanism for skill-conditioned policy generation.

Embedding Module. The embedding module is responsible for preprocessing non-vectorial state
inputs, such as images or structured tensors, and converting them into fixed-length latent repre-
sentations suitable for conditioning the diffusion model. The training algorithm can be found in
Appendix B. We implement two variants of the embedding module tailored to different input types:

• For Atari (e.g., Boxing, Tennis), the encoder consists of three Conv2D layers, and the
decoder mirrors this with three ConvTranspose2D layers. The raw input of shape 84×84×6
is normalized before being encoded into a 64-dimensional latent vector.

• For Connect4 The state is a 7× 6× 2 one-hot tensor, we adopt a lightweight MLP encoder
comprising two linear layers with nonlinear activations, along with a symmetric two-layer
MLP decoder. No normalization is applied to the input, as it is already structured and
non-visual.
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For vector-based environments such as MPE and Texas Hold’em, no embedding is required; the
original state vectors are passed directly to the diffusion model.

Diffusion Architecture. The policy generation component is implemented using a modified
MLPUnet architecture, inspired by the UNet1D structure (Michael Janner, 2022). Our version
retains LayerNorm within the MLP layers for training stability, removes the original attention mod-
ules to reduce computational overhead, and replaces the conditional input mechanism (ConID) with
an MLP-based residual block. This design simplifies the conditioning pathway while preserving
expressivity. The architecture is illustrated in Figure 7.

Residual Block

MLPUNet

Linear LayerNorm

ReLU

Figure 7: UNet Model architecture in DDGIL. We adopt an MLP module in our DDGIL model, without
incorporating any attention modules.

E.4 COMPUTING RESOURCES

All models are trained and evaluated on an RTX 3090 GPU with 24GB of memory. Both agent
and opponent policies are pre-trained using offline datasets. During inference, the diffusion model
performs a denoising sampling loop, with the number of steps adjusted based on task complexity.

Training Cost. To illustrate computational cost, we report training times for two representative
environments: MPE-Push and Atari-Boxing. Training an MPE model takes approximately 10 minutes,
while Atari and Badminton require longer due to larger state-action spaces. A summary of these
results is provided in Table 10. All experiments are conducted under consistent hardware settings to
ensure reproducibility.

Environment Dataset Size Time Cost

MPE-Push

50 3m 16s
100 10m 34s
250 18m 04s
500 25m 26s

Atari-Boxing

10 2m 36s
50 8m 42s

100 18m 31s
250 35m 14s

Table 10: Training time by dataset size.
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Inference Cost. We evaluate per-step inference time and memory usage under a fixed setting of
100 episodes against an expert opponent, averaged over three seeds with standard deviation, as shown
in Table 11. Compared to BC and DBC, which require only a single forward pass, DDGIL performs
a multi-step denoising process, resulting in longer inference time. Compared to DP and DD, DDGIL
additionally applies dynamic guidance at each denoising step, further increasing computational cost.
For example, in MPE-Push, it requires 67.1 ms per step, slightly higher than DP (32.3 ms) and DD
(33.7 ms), primarily due to the added guidance operations within the diffusion sampling process.
Memory usage is approximately 0.59 GB for DDGIL, compared to 0.45 GB for DP and DD, and is
notably higher than non-diffusion baselines. Despite the increased cost, results in Section 5.3 and
Section 5.4 show that DDGIL’s enhanced stability and robustness justify the trade-off, particularly
under opponent diversity or strategy distribution shifts.

Environment Time Cost Memory Cost
MPE-Push 47.1 ms 0.59 GB
Atari-Boxing 44.5 ms 0.60 GB

Table 11: Inference cost: time per step and memory.

F INFERENCE DETAILS

To evaluate policy robustness under varying opponent strategies, we categorize adversaries into three
skill levels: Expert, Medium, and Weak. We train a reference RL agent for most environments
and record reward curves and loss values at each checkpoint. If reward logs are available, we select
weights corresponding to the highest, median, and lowest rewards to represent Oexpert, Omedium, and
Oweak opponents, respectively. When reward information is unavailable, model checkpoints are
chosen based on loss convergence, with the lowest-loss weights serving as the Expert baseline.

In Connect4, we use the pretrained DQN model provided by AgileRL without additional training.
In addition to the DQN, AgileRL offers a rule-based agent with three modes: Strong, Weak, and
Random. Empirical evaluations reveal that the Strong policy outperforms the pretrained DQN, while
the DQN marginally surpasses the Weak policy. Accordingly, we designate:

• Strong as Expert
• DQN as Medium
• Weak as Weak

Although the Weak agent performs similarly to the Medium baseline in some settings, we retain the
above classification for consistency.

In the Badminton environment, skill levels are not defined by training performance but rather by real-
world players’ historical outcomes. The players and data used in this setting derive from professional
matches. We select three professional players from the dataset, referred to as K, C, and V, to represent
distinct playing styles in our experiments.

Additionally, we employ the RallyNet model as an opponent. RallyNet is a hierarchical offline
imitation learning model that reproduces realistic stroke patterns and strategic play styles. We
evaluate our method through interactions between RallyNet and other baselines across all six pairwise
matchups among the three players.

G DATASET INFORMATION

G.1 DATASET CONSTRUCTION

After training baseline models for each environment in Appendix E, we generate offline datasets by
interacting with the expert policies described in Appendix F. Specifically, we collect 500 trajectories
for MPE environments (Push, Tag, Spread, Reference) and Classic environments (Connect4, Texas
Hold’em), and 250 trajectories for Atari environments (Boxing, Tennis). For Badminton, no additional
rollout is required, as the environment includes pre-collected match data for real-world players.
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Figure 8: Example training curves used to define skill levels. The top-left plot shows the evaluation reward of
NFSP in the Texas Hold’em environment. We selected the highest reward checkpoint as the Expert policy and
used checkpoints around 10,000 and 1,000 rewards as Medium and Weak, respectively. The bottom plot shows
the loss and entropy of PPO in the Boxing environment; we select the final stage (around 40M steps) as Expert
and the mid-stage (around 20M steps) as Medium.

In offline imitation learning, we assume access to a dataset D = {τ1, τ2, . . . , τ|D|}. Each trajectory
τ = {(S0, A0), (S1, A1), . . . , (SH , AH)} has a fixed horizon H , with St = {s1t , . . . , sKt } and
At = {a1t , . . . , aKt } denoting the joint observations and actions of all K agents at timestep t.

For implementation, each transition can be further represented as a tuple {sit−1, a
i
t−1, s

i
t, a

i
t}, for

agent i and timestep t ≤ H . At t = 0, we initialize s
(i)
−1 and a

(i)
−1 as zero vectors to maintain format

consistency and enable models to process historical information. The full trajectory can also be
viewed as overlapping segments of such tuples:

{s(i)t−1, a
(i)
t−1, s

(i)
t , a

(i)
t }, {s(i)t , a

(i)
t , s

(i)
t+1, a

(i)
t+1}, . . .

This flexible data structure supports different forms of training batches depending on model require-
ments:

• State-action pairs: {s(i)t , a
(i)
t }, for standard behavior cloning.

• Transition tuples: {s(i)t−1, a
(i)
t−1, s

(i)
t , a

(i)
t }, for models with temporal dependency (e.g.,

DBC).

• Trajectory segments: τ (i) = {s(i)0 , a
(i)
0 , . . . , s

(i)
n , a

(i)
n }, n ∈ [0,H], for sequence-based

models or diffusion samplers.

G.2 DATASET COLLECTION IN DIFFERENT TYPES OF ENVIRONMENTS

Following PettingZoo’s environment taxonomy, we organize the datasets under two interaction types:
AEC (Agent Environment Cycle) and Parallel.

• AEC environments: At each time step t, only one agent receives an observation and acts.
The state st stores the active agent’s observation, while the action at is constructed by
concatenating the agent’s action at t with the opponent’s action at t−1.
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• Parallel environments: All agents observe and act simultaneously at each time step. The
full state st is a concatenation of all agent observations {sit}, and at is a concatenation of
all actions {ait} in a fixed environment-defined order. Maintaining this order is crucial to
ensure proper alignment during training.

During baseline training, we split the dataset by agent name and ordering so that each model
only learns from its data. This format is designed primarily to support DBC, which requires
{st−1, at−1, st} as input to predict at. Other baselines use only {st, at} pairs, making this uni-
fied structure compatible across methods.

Although no environment rollout is performed for Badminton, the raw match data must be filtered
and reformatted. We select a fixed subset of columns as state and action features, structuring the data
as {st−1, at−1, st, at}. Both states and actions contain discrete and continuous variables; discrete
features are one-hot encoded and concatenated with continuous values.

Specifically, the state vector includes 1 discrete feature (classes 0–10) and 6 continuous features,
resulting in 17 dimensions after encoding. The action vector comprises 1 discrete feature (classes
0–10) and 4 continuous elements, totaling 15 dimensions. These hybrid vectors are used for training
after preprocessing.

H THE USE OF LARGE LANGUAGE MODELS (LLMS)

During manuscript preparation, we used OpenAI’s ChatGPT (GPT-5) to refine wording and improve
clarity. The model was occasionally consulted for alternative perspectives in method design and for
assistance in presenting mathematical derivations more coherently. We also employed Grammarly for
grammar and style checking.

All methodological contributions, theoretical developments, algorithmic designs, and empirical
analyses were conceived and validated by the authors, and these tools served only as auxiliary aids
for writing and presentation.

I LIMITATIONS AND DISCUSSION

While DDGIL achieves strong performance across diverse benchmarks, several limitations are noted.
The inference procedure requires recomputing dynamic weights at each denoising step, improving
adaptability but incurring higher latency and memory usage than fixed-weight policies. Future work
may consider reducing denoising steps or distilling the sampler into a lighter model.

Another limitation is the need to train a separate diffusion model for each agent. This ensures
stability by modeling heterogeneous behaviors but scales poorly as agent numbers grow (see ablation
experiment D.5). Future work may consider parameter-efficient designs, such as shared encoders
with agent-specific decoders, to improve scalability.

The discrepancy signal for dynamic weighting is computed by averaging opponent predictions. While
suitable in our benchmarks with relatively homogeneous opponents, this may be less effective under
heterogeneous or adversarial settings. Future work may consider weighted aggregation or attention
mechanisms for more expressive signals.

Although we did not explicitly consider wD < 0.5, fixed-weight ablations (see experiment D.2) show
that performance degrades when weighting is closer to the unconditional update, suggesting that
bounding wD away from the unconditional case aids stability.

Finally, adaptation in DDGIL is confined to inference and was not tested under severe distributional
shifts. Future work may extend the framework with lightweight online adaptation or meta-learning to
improve generalization in such regimes.
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