
R2E: Turning any GitHub Repository into a
Programming Agent Environment

Naman Jain * 1 Manish Shetty * 1 Tianjun Zhang 1 King Han 1 Koushik Sen 1 Ion Stoica 1

Abstract
While Large Language Models’ (LLMS) coding
capabilities have advanced rapidly, correspond-
ing evaluation benchmarks on real-world pro-
gramming setups are yet to catch up. Build-
ing a scalable and interactive testbed for evalu-
ating general-purpose AI programming agents
for real-world code has been challenging, par-
ticularly due to a lack of high-quality test suites
available. In this paper, we present Repository to
Environment (R2E), a framework that can turn
any GITHUB repository into a test environment to
evaluate the performance of code-generating sys-
tems, both static and interactive. R2E is powered
by a synergistic combination of program analy-
sis and LLMS to construct equivalence test har-
nesses for any GITHUB function. We instanti-
ate our framework to build the first large-scale
benchmark, R2E-Eval1, for building realistic en-
vironments for AI coding assistants. Our results
demonstrate that even when SOTA models cannot
generate correct solutions with advanced prompt-
ing techniques, they can effectively use environ-
ment feedback highlighting the need to move from
static functional coding to interactive program-
ming paradigm. We hope that our framework
(and the instantiated benchmark) can motivate
research directions by providing web-scale open-
ended coding environments. R2E code is avail-
able at https://r2e.dev/

1. Introduction
The rapid improvement of LLMS’ performance on code-
related tasks has enabled the development of coding assis-
tants deployed in the real world. However, evaluations on

*Equal contribution 1University of California, Berkeley. Corre-
spondence to: Naman Jain <naman_jain@berkeley.edu>, Manish
Shetty <manishs@berkeley.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

such real-world coding setups have not kept pace. Prior
benchmarks (Chen et al., 2021; Wang et al., 2022b), used
for evaluating coding capabilities of LLMS, only consist
of short and isolated functional code completion problems.
On the other hand, real-world software engineering requires
more complex workflows involving integrating code with
existing (large) codebases, using libraries, interacting with
the interpreter, debugging errors, etc. In this work, to cap-
ture this interactive aspect (in contrast with single-shot code
generation), we consider programming agents as AI sys-
tems that can similarly use interpreters and error feedback
to improve their own outputs given a specification. As such
programming agents become more powerful, it urges the
need to build real-world test environments to evaluate them.

In this work, we propose Repository to Environment
(R2E), a scalable framework for turning any GitHub reposi-
tory into a test environment to evaluate the performance of
code generation systems on real-world scenarios (Section 3).
We build on a key insight that test suites if synthesized for
real-world code, can act as checks as well as orchestra-
tors for execution-guided programming environments. R2E
takes a function (from GITHUB), constructs an equivalence
test harness – a scaffold consisting of test cases and a setup
that establishes dependencies for executing the function.
R2E further refines the docstring and uses the refined spec-
ification along with repository code and test harness as a
problem instance for studying code generation. Figure 1
provides an end-to-end diagram of our approach.

These environments serve two evaluation purposes: First,
a code generation system can be evaluated via the environ-
ment in these real-world scenarios. Secondly, even for an
interactive programming agent, our environment can pro-
vide feedback to the agent using the interpreter (Figure 1
right). Notably, R2E framework is scalable and can be used
to build web-scale open-domain coding datasets. Further-
more, R2E requires minimal human supervision and can be
updated in a live manner for contamination-free evaluation.

Using this framework, we construct R2E-Eval1 (Section 4),
the first large-scale benchmark of real-world coding prob-
lems consisting of natural-language docstrings, repository
contexts, and equivalence test harnesses. Figure 2 shows
an example of a function and corresponding synthesized

1

https://r2e.dev/

R2E

Equivalence Test Generation ✔ Harness, not I/O examples
 ✔ Functional equivalence checks
 ✔ Coverage for reliability

🤖

func()

In-file context

External Context

Codebase

utils

src
main.py
home.py
...

...
viz

 Repository Code Instrumentation

Test Setup

Python 3.9.12 (Apr 5, 01:53:17)

>>>❚

Install ⚙ Self-Repair

⚙ ToT ⚙ CoT

⚙ ReAct

⚙ Parsel

⚙ Reflexion

Code Generation🤖

Figure 1. An overview of our R2E framework that takes any GITHUB repository and converts it into a programming agent test
environment. Given a repository, we first scan for interesting functions and collect corresponding in-file and external-file contexts from the
repository. Next, we use our test generation approach to develop high-quality equivalence test harnesses for the function. Our key insight
is decoupling the test outputs from inputs by relying on the ground truth implementation to get the expected outputs. Our framework
yields problem instances comprising docstrings, test harnesses, and repository context (instantiated in the form of R2E-Eval1 benchmark).
Next, we build the repository and set up an interactive environment with an interpreter. Via these environments, generated benchmarks
can be used to evaluate code generation systems, either static ones that directly generate code or programming agents that interact with the
test harness and interpreter to improve code generation performance for repository-level problems.

torchsig/utils/index.py

from utils.types import SignalCap, SignalDesc

import os

def _parse_sigmf(absolute_file_path: str):

 ...

def indexer(root) -> ..., SignalCap]]:

"An indexer with classes by folders"

 non_empty_dirs = [d for d in os.listdir(root)...

 ...

for idx, dir_name in enumerate(non_empty_dirs):

for f in sigmf_files:

for sig_file in _parse_sigmf(...

 ...

torchsig/utils/types.py

class SignalDesc:

 ...
class SignalCap:

...

Function and In-File Context

class TestIndexerFromFoldersSigmf(unittest.TestCase):
def setUp(self):

 test_dir = TemporaryDirectory()

 class_dirs = ['class_x', 'class_y']
for class_dir in self.class_dirs:

 os.makedirs(test_dir.name+”/”+class_dir))

 self.sigmf_files = {
'class_x': ['file1.sigmf-data', 'file2.sigmf-data'],
...

 for class_name, files in self.sigmf_files.items():
 for file_name in files:

...
with open(data_file_path, 'wb') as data_file:
data_file.write(...)

def test_indexer_from_folders_sigmf(self):
 result = indexer(self.test_dir.name)
 expected = ref_indexer(self.test_dir.name)

 self.assertEqual(len(result), len(expected))

for res, exp in zip(result, expected):
 self.assertEqual(res[1].num_bytes, exp[1].num_bytes)
 self.assertEqual(res[1].byte_offset, exp[1].byte_offset)

R2E Generated Equivalence Test Harness

Test

Setup

Equivalence

Checks

External

File

Context

Figure 2. An example problem (left) in the R2E-Eval1 benchmark. The problem contains a function indexer from the Torchsig2

GITHUB repository. TorchSig is an open-source signal processing machine learning toolkit based on the PyTorch data handling pipeline.
The function indexer has dependencies within its file (_parse_sigmf) and from external files (SignalDesc and SignalCap from the file
torchsig/utils/types.py). On the right is the generated equivalence test harness from our R2E framework. It contains a complex test
setup where files expected by the function indexer are created and added to the file system. Then, the test harness performs functional
equivalence checks for various granular properties of the returned output. Particularly, our harnesses test the functional behaviour of a
given function directly against the ground truth program available on GITHUB, instrumented in the python namespace. Thus, we avoid
predicting the expected output behaviour of a given function and only require constructing diverse inputs to test the function on.

test harness from our dataset. R2E-Eval1 comprises of 246
tasks extracted from 137 repositories containing 127.2 code
tokens, 11.5 tests, and 3.7 dependencies per problem.

Finally, in Section 5, we evaluate current LLMS on real-
world scenarios from our benchmark. We find that com-
pared to HUMANEVAL models perform worse on these prob-
lems, highlighting the challenges of real-world program-

ming. Popular techniques like Chain-of-Thought (COT) do
not help with performance. On the other hand, LLM agents
that interactively program using the test harness and execu-
tion feedback greatly improve their performance. We also
provide insights into model behavior specific to real-world
programs, such as challenges in understanding interfaces to
existing functions and reasoning about complex objects.

2

R2E

Overall, we find that real-world programming is compli-
cated, even for SOTA LLMS (GPT-4), motivating the use
of better workflows that mimic a typical developer’s pro-
gramming process. This underscores the need to move from
static functional coding to interactive programming, the
evaluation of which our framework enables.

Finally, R2E environments enable collecting interaction
traces for code generation, optimization, repair. We believe
that beyond evaluation R2E is particularly well-suited for
collecting large amounts of execution assisted synthetic data
for improving coding abilities of LLMS.

2. Background
Our R2E pipeline is powered by a synergy of program
analysis and LLMS. Here, we provide background on some
concepts used in the following sections.

Testing. Testing for functional correctness extends beyond
mere input-output pairs, encompassing the broader depen-
dencies that real-world software relies on. A Test Harness
encapsulates this by combining Test Cases (defining in-
puts and expected outputs) and a Setup (establishing the
operational conditions and dependencies like configuration
files).The complexity of test harnesses, as illustrated in Fig-
ure 2, surpasses the simple input-output examples in previ-
ous benchmarks, like HUMANEVAL (Chen et al., 2021). For
instance, in Figure 2, the test harness contains the required
setup of files in a directory (i.e., file system dependency)
that the program expects to run successfully.

Code Coverage. The quality of tests is widely measured
by its coverage–the fraction of code elements (e.g., state-
ments or branches) it exercises (Ivanković et al., 2019). For
example, a test that executes all lines of a function is said to
have line coverage of 100%. A high coverage is desirable
to ensure a function is tested thoroughly. We use branch
coverage to evaluate the quality of our tests as it offers a
more fine-grained measure than line coverage.

Program Analysis for Slicing Context. To effectively test
repository code, we must grasp the function’s operational
context, which encompasses the functions and global vari-
ables it interacts with. We employ dependency slicing to
construct this context, defining a slice Df for function f as
the set of functions F ′ called by f and global variables G′

accessed by f , both directly and indirectly. The top-left of
Figure 2 shows an example of a dependency slice extracted
for a function indexer, that serves as a minimal context nec-
essary to comprehend the function’s behavior. The resulting
slice Df provides the minimal context for understanding f ’s
behavior and indicates its connectivity within the repository,
quantified by the slice size |Df |. Details on computing the

2https://github.com/TorchDSP/torchsig

slice are in the Appendix A.

3. The R2E Framework
GITHUB is a rich data source for realistic code problems,
but repositories in the wild can be quite noisy, hard to run,
and poorly maintained. We here propose R2E, an automated
framework that turns any GITHUB repository into a test
environment to evaluate the performance of code generation
systems on real-world code.

Section 3.1 details our initial problem curation process. Sec-
tion 3.2 describes our test harness synthesis approach. We
evaluate the quality of our synthesized tests in Section 3.3.
Finally, we describe how to refine problem specifications to
build a high-quality benchmark in Section 3.4.

3.1. Problem Curation

3.1.1. REPOSITORY CURATION

We scraped PYTHON repositories on GITHUB created after
July’22 that are non-forks, have at least 40 stars, and contain
either a toml or setup.py file. This date aligns with the
reported cutoff data for OpenAI models GPT-3.5-TURBO

and GPT-4, thus preventing contamination. Next, we filter
out some failing repositories from an earlier iteration of
this process. We saved each repository in a common Docker

image. We built them using pdm3 and pip install commands
with cross repository package-caching whenever possible to
reduce the memory footprint. Further, we used pipreqs to
add requirements missing in the toml, setup, or requirements
files. Finally, we semi-manually installed uninstallable

repositories when possible, resulting in a docker with 429
installed repositories sizing over 400 GB.

3.1.2. FUNCTION CURATION

We first extract all functions (and methods) from the col-
lected repositories to identify problems suitable for natural-
language-driven code generation and functional correctness
evaluation. Particularly, we filter out functions lacking doc-
strings to ensure we have a natural language prompt equiva-
lent. We then apply keyword-based filters to exclude func-
tions associated with GPUs, cloud tasks, etc., since they are
not conducive to standard functional correctness evaluations.
We estimate the complexity of the functions using its con-
nectivity (detailed in Section 2). We filter out functions that
do not call other components in the repository. We provide
a more comprehensive list of filters applied in the appendix.
Through these stages of filtering, we collected candidate
9825 problems from our 429 repositories.

3pdm-project.org

3

pdm-project.org

R2E

3.2. Test Harness Generation: A Key to Environments

GITHUB repositories lack high-quality tests necessary for
evaluating code generation, thus requiring automated test
harness generation to collect problems scalably.

If generated, these tests can act as checks and orchestrators
for execution-guided programming agents. As checks, they
can evaluate the functional correctness of generated code.
Tests also enable applications beyond code generation, such
as refactoring, optimization, and transpilation, where tests
can check if the transformed program is equivalent to the
original. Finally, as orchestrators, they can run the generated
code, capture compiler feedback, enable repair, and more.

To tackle this, R2E synthesizes tests for arbitrary GITHUB
code using a novel synergy of program analysis with LLM
prompting. Below, we summarize some of the key design
choices of R2E’s test generation approach.

Equivalence Tests, not Output Prediction. R2E decou-
ples test outputs from inputs. Instead, it uses the original
function as a reference implementation to generate expected
outputs. This key insight dramatically simplifies test gener-
ation since it removes the need to predict outputs. Conse-
quently, we generate equivalence tests—they check if the
outputs of the original function and the generated function
are equivalent against a given set of inputs.

Harnesses, not I/O pairs. R2E generates equivalence
test harnesses (Section 2) for each function, which con-
tain the test cases and the required setup, such as database
connections, external files, configurations, etc., that makes
it possible to run functions in the wild. This is a depar-
ture from I/O examples with primitive types in traditional
benchmarks such as HUMANEVAL (Chen et al., 2021). It is
necessary because real-world code often requires more than
simple input arguments. They may need several dependen-
cies, such as access to files, environment variables, APIs,
and user-defined functions or classes.

Sliced Context, not Entire Repositories. Test genera-
tion using LLMS has been effective in prior work like HU-
MANEVAL+ (Liu et al., 2023b) for simple isolated functions.
However, in a repository setting, prompting with the func-
tion alone is insufficient, and providing the entire repository
is expensive. R2E uses a novel dependency slicing based
prompt to extract the minimal repository context required to
understand the functionality of the function under test. As
described in Section 2, it finds functions and global variables
on which the function directly or indirectly depends.

Execution and Coverage for Quality Control. Finally,
recent studies have shown that execution-based benchmarks
can be flawed due to low-quality tests (Liu et al., 2023b).
To avoid this, we execute the generated test harnesses in
the docker container built for the repository. Equivalence

In-File Out-File

Strategy Val Cov Val Cov

Output Pred.

Sliced 35.43% 87.59% 30.68% 82.54%

Equivalence

Naïve 44.25% 87.96% 19.82% 76.59%
Full 51.73% 87.32% 32.24% 77.23%

Sliced 52.37% 88.18% 35.01% 79.65%

Table 1. Test generation evaluation results across 2 strategies – Out-
put Prediction and Equivalence. Further, we vary prompt context
creation across–Naïve, Full, and Sliced. The results are compared
on 2 settings: In-File where the function under test only depends
on the context within its file, and Out-File where it depends on
external files in the repository. The metrics used are Validity (Val)
and Coverage (Cov), for which higher is better. Our equivalence
testing approach results in considerably more valid test harnesses
than a direct output-prediction approach. Next, our dependency
slicing-based prompt context offers a good balance of broader but
focused context and fares better than naïve or full context settings.

tests are run in “self-equivalence” mode, so the function
under test and the reference implementation are the same.
Inoperative harnesses due to issues like missing packages
are excluded. An (equivalence) test harness is deemed valid
if all the (equivalence) tests pass. We further emphasize the
quality of test cases by using branch coverage (Section 2).
This check is critical to ensure that the generated tests cover
the function’s complete behavior and can be used to check
functional equivalence.

We encode our design decisions as guidelines to prompt
GPT-4-TURBO and use the sliced context to generate high-
quality test harnesses. Figure 2 shows the resulting har-
nesses that handle complex data types and unique setups,
depending on the function’s requirements. We outline addi-
tional guidelines for test generation in the appendix.

3.3. Test Harness Evaluation

3.3.1. EXPERIMENT SETUP

We evaluate equivalence test harness generation on two
fronts. First, measure validity, i.e., does it execute the origi-
nal function while passing all equivalence tests? Then, we
also evaluate the quality using branch coverage (Section 2)
to identify how well the tests cover the function’s behavior–a
critical property for equivalence checking.

We consider two broad test-generation strategies: Output

Pred. and Equivalence. The Equivalence test generation
approach uses the ground truth function implementation
at runtime to get the expected output. On the other hand,
Output Pred. approach attempts to generate both inputs
and expected outputs for a given test, a much harder prob-
lem. Further, we study different context creation strategies

4

R2E

in the repository context: Naïve, Full, and Sliced. The
Naïve strategy prompt contains the function and no context.
The Full strategy provides the file containing the function
and all files it imports (until a 6000 token limit). Finally,
the Sliced strategy implements our proposed dependency
slicing to provide the minimal context required for the func-
tion. We compare these strategies in 2 problem settings: (1)
In-File: where the function under test depends only on the
context within its file and (2) Out-File: where it depends
on external files in the repository. We generate all tests us-
ing the state-of-the-art GPT-4-TURBO model. We elaborate
further details such as prompts in Appendix B.

3.3.2. VALIDITY AND QUALITY RESULTS

Table 1 shows the results of our evaluation.

Equivalence tests outperform output prediction. By de-
sign (Section 3.2), R2E generates equivalence tests that
decouple test outputs from inputs by using the original func-
tion as a reference implementation to generate expected
outputs. This significantly boosts the number of valid tests
generated (by ≈ 20%) when compared to generating tests
with expected outputs predicted by the LLM.

Focussed context improves coverage. The Naïve strategy
performs relatively poorly on validity (as low as 19%), but
the valid test harnesses it generates have high coverage
(≈ 88%). For example, naïvely generated tests often fail
to generate correct input argument types (e.g., schemas or
custom classes) due to the lack of necessary context.

Broader context improves validity. On the other hand,
the Full strategy generates more valid tests (as high as
51.7%) but has lower coverage (77.2%). This indicates that
a focused context can be more effective in covering corner
cases in the function, but a broader context is necessary to
understand the function’s dependencies.

Our sliced strategy strikes a good balance between the
two and achieves the best results in validity and coverage.
Overall, we observe that R2E’s dependency slicing-based
strategy generates ≈ 44% valid test harnesses with a high
≈ 83% code coverage.

3.3.3. FAILURE MODES

We collected and classified invalid equivalence test har-
nesses and study their failure modes. We discovered that
40% of errors were due to ValueErrors and TypeErrors, re-
flecting improper key, attribute, or type usage in tests. Ad-
ditionally, 15% were DataFormatErrors, caused by incorrect
data formats or schemas, highlighting the complexity of
testing GITHUB code beyond primitive types.

AssertionErrors (expected and actual outputs don’t match)
accounted for a notable 25% of errors, showing a nuanced

Dataset Exec? Repo? Auto? LOC #Tests

HUMANEVAL ✓ ✗ ✗ 6.26 6.6
ODEX ✓ ✗ ✗ 3.05 1.9
CROSSCODEEVAL ✗ ✓ ✓ 1.0 -
REPOBENCH ✗ ✓ ✓ 1.0 -
REPOEVAL-FUNC ✓ ✓ ✗ 10.8 -4

R2E-Eval1 ✓ ✓ ✓ 10.5 11.5

Table 2. Comparing R2E-Eval1 with other NL-to-code generation
benchmarks, in terms of test execution-based support (Exec?),
use of repository context (Repo?), and the number of lines in the
ground truth function (LOC). R2E-Eval1 is the only executable
benchmark, has repository context, and is automated, enabling
scalability. Additionally, our benchmark contains more tests (har-
nesses) per function with diverse input types and quality assurance.

aspect of functional correctness in real-world code. Al-
though R2E simplifies this to equivalence tests, assertions
often need more granularity than simply checking for equal-
ity. For example, checking for class attributes, columns in
a dataframe, etc., requires a deeper understanding of code
and repository context. Lastly, EnvironmentErrors (21%),
like OS and File system errors, indicate challenges with test
environment configuration.

3.4. Refinement of Specifications

Natural language docstrings in GITHUB repositories might
be under-specified to be used for code generation. Here, we
use an automated approach to refine the natural language
docstring of a given function by asking the model to refine
the docstring in a self-instruct-like fashion (Wang et al.,
2022a). Distinctly, however, we provide the model with
additional context in the form of the original docstring,
synthesized test harness, argument types, and serialized
input-output arguments constructed from running the test
harness. Anecdotally and from related works, providing
execution outputs allows models to better comprehension of
the function semantics and leads to better quality docstrings.
Appendix C provides the prompt used.

We further study the quality of refined docstrings on a subset
of functions in Appendix Section C.1 . Finally, we perform
rigorous manual evaluations and filter problems with poor
or ambiguous specifications (detailed further).

4. The R2E-Eval1 Benchmark
In Section 3, we showed that R2E enables a scalable frame-
work for building execution-based test environments for
programming agents. R2E takes a function from a codebase
and converts it into a tuple I = {D, R, T }, where D is a
refined docstring for a function, R is the remainder of the
codebase, and T is the generated test harness.

4Zhang et al. (2023d) did not release associated tests

5

R2E

Feature Value

Problems (# Repos) 246 (137)
Avg. # lines (# tokens) 10.5 (127.2)
Avg. # tests (coverage) 11.5 (92.2)
Avg. # dependencies 3.7
Unique APIs 70
Unique Arg Types 118

Table 3. Statistics for problems instances in our R2E-Eval1.

We instantiate this framework to construct R2E-Eval1, the
first large-scale dataset of real-world code generation prob-
lems with functional correctness tests. Table 2 compares
R2E-Eval1 against several popular benchmarks used to eval-
uate code generation capabilities of LLMS. Prior work like
HUMANEVAL (Chen et al., 2021) and ODEX (Wang et al.,
2022b) support execution-based metrics but for isolated sim-
ple problems with no real-world repository setting. Recent
work on repository-level code generation like CROSSCODEE-
VAL (Ding et al., 2023), REPOBENCH (Liu et al., 2023c),
and REPOEVAL (Zhang et al., 2023d) use repository con-
text, but either forego execution-based evaluation or depend
heavily on human-written tests, which are seldom available
at scale on GITHUB. R2E-Eval1 is the only executable
benchmark that has repository context and is automated, en-
abling scalability. Following, we describe the construction
of R2E-Eval1 and analysis.

4.1. Benchmark Construction

4.1.1. DATASET QUALITY

We emphasize heavily on the quality of problems in this
work. Quality, here, means how well the function, docstring,
and test cases are written. To ensure this, we only consider
functions with high branch coverage. Our final benchmark
problems have an average of 11.5 test cases with 92.2%
average branch coverage. An additional round of manual
inspection helps us select high-quality problems. We look
for the following characteristics during manual evaluations

(a) docstring is clear and well-defined
(b) docstring matches the intent of the original function

and the generated tests identifying key functionalities
(c) failures and successes in model generations actually

correspond to the problem intent (akin to the process
used in Cassano et al. (2023))

This process prunes out complex functions such has ones
having arbitrary or peculiar corner cases which cannot be
specified well with simple docstrings.

4.1.2. DATASET COMPOSITION

We also consider the diversity and interestingness of the
problems in the benchmark. We identify several properties

of code that calibrate interestingness, such as # of depen-
dencies, argument types, lines, libraries used, etc.

Table 3 showcases statistics of our benchmark. Our man-
ual analysis also shows that R2E-Eval1 problems are di-
verse in terms of the domains they cover: pythonic oper-
ations (list, str, dict manipulations), data manipulation
(JSON, files, pandas, numpy), algorithm and protocol imple-
mentations (networkx, statistics), domain-specific problems
(programming languages, networks, quantum computing,
formal verification, numerical computing), and more.

We also ensure that the benchmark is diverse in terms of the
number of distinct repositories, preventing bias towards a
codebase or domain. Overall this process leads to a curated
set of 246 problems from 137 repositories in R2E-Eval1.

Each problem instance I can be used to evaluate a code
generation system by providing docstring D to the system
and evaluating its response (in the context of the repository
R) against the generated test harness T .

5. R2E: Towards Programming Agents
We conduct experiments to understand three important prob-
lems about LLM performance on real-world coding.

Q1 How well can current LLMS solve the real-world code
generation tasks statically? (Sec. 5.1)

Q2 What are the typical LLM failure modes? (Sec. 5.2)
Q3 How do programming agent paradigms (like self-

repair) perform against static programming? (Sec. 5.3)

Our results show that the SOTA LLM model (GPT-4) can
only achieve ∼ 50% performance in R2E-Eval1, despite
high accuracy on HUMANEVAL. Throughout the analysis, we
find that LLMS struggle at understanding interfaces to exist-
ing functions and reasoning about complex objects. Finally,
we compare static coding approaches (e.g., COT) with the
proposed interactive programming paradigm, demonstrating
significant benefits from the latter.

5.1. Static Code Generation

First, we study direct code generation on the R2E-Eval1
dataset, i.e., using code generation without interaction. Ow-
ing to the test harnesses generation approach, we perform
functional correctness evaluations for the generated code.
This contrasts with prior works (Liu et al., 2023c; Ding
et al., 2023) that rely on execution-free exact-match metrics
to evaluate code completion in the repository setting, which
can be unreliable and restrict the scope of the evaluation.

We use PASS@1 to evaluate the functional correctness,
computed by generating 5 candidate completions for each
problem instance and computing the fraction that passes

6

R2E

Figure 3. Functional correctness (PASS@1) of various models
(GPT and CODELLAMA families) on our R2E-Eval1. First,
we note that, overall, models perform worse on our benchmark
against HUMANEVAL, highlighting the challenging nature of real-
world code generation tasks. GPT-4 performs particularly well,
achieving a PASS@1 close to 50%, much better than other models.
Next, we study two retrieval settings–dependency context and
full context and find a trade-off between the two (discussed in
Section 5.1).

against the test harness. We consider a mixture of closed
access and open access models for our experiments – GPT-
4, GPT-3.5-TURBO, CODELLAMA-7B, CODELLAMA-13B,
and CODELLAMA-34B5. Since GPT-4 and GPT-3.5-TURBO

are instruction-tuned models, we use the chat style prompt
for them while using the code completion prompt from the
CODELLAMA models. We elaborate further on our setup,
models, and prompts in Appendix E.

Contamination. GPT-4 and GPT-3.5-TURBO have a cut-
off date of 2021 and are therefore not contaminated on our
benchmark since we curate our problems from repositories
created after August 2022 (see Section 3.1).

Given a problem instance I = {D, R, T } in our benchmark,
we need to use the remaining repository context to generate
the code. Since the entire repository context can be very
large, we retrieve content to provide the model (detailed
ahead). We first evaluate how current models hold up on
our benchmark and then study how the choice of retrieval
impacts performance. Next, we study the effect of using
chain-of-thought prompting (COT) (Wei et al., 2022) for
improving model performance on harder tasks.

Model Performance. Figure 3 compares the performance
of various models on our benchmark using the PASS@1 (CL
used for brevity in the figure instead of CODELLAMA). We
find that the performance of various models is relatively
lower than other benchmarks like HUMANEVAL. This is ex-
pected since our benchmark represents more challenging
real-world problems collected from GITHUB, which require
understanding existing context from the repository before
generating the code. We find that GPT-4 performs signif-

5We use the Python variants of the CODELLAMA models.

Figure 4. PASS@1 of models as a function of the number of unique
dependencies (functions and global variables) used in the original
function. We find that models struggle to solve problems that
require orchestrating multiple existing functionalities in the file
and only perform well when a few dependencies are involved.

icantly better than all other models with a PASS@1 close
to 50% whereas other models only achieve PASS@1 in the
vicinity of 30%.

Effect of retrieval. We study the effect of function-
definition retrieval vs. function-usage retrieval using de-
pendency slicing (Section 2) on the ground-truth function.
Specifically, dependency-only-context only provides the
necessary definitions, while the full context setting adds the
remainder of the file and other files until a 6000 token limit.
Figure 3 compares the two settings.

The two retrieval methods perform similarly, achieving
±1% of each other’s performance across most models. On a
closer look, we find non-overlapping problems with a Pear-
son correlation coefficient of 0.48. We find that dependency-
only-context vs full-context provides an interesting trade-off.
On the one hand, dependencies provide a more focused view
of relevant function implementations to the model. At the
same time, function usage (present in full context) is often
reused and enables models to copy it directly. See Ap-
pendix F.1 in the Appendix for a more detailed discussion
and examples of this trade-off. Finally, we believe that R2E-
Eval1 provides a unique opportunity to study this problem
in the future with execution enabled.

Effect of COT. We study better-prompting strategies and
look at both zero-shot and two-shot COT prompts that sketch
a plan for the function implementation before generating
the code. We study this for the instruct GPT-3.5-TURBO and
GPT-4 models but find that COT like setup does not improve
performance over direct prompt (Table 7 in Appendix).

5.2. Model Behaviour & Failure Analysis

Performance with problem-complexity. We measure the
complexity of a problem instance using (1) the number of
tokens in the ground-truth implementation, (2) the number

7

R2E

Figure 5. We measure whether self-repair using test harnesses
and interpreter feedback can help the models correct mistakes and
improve performance. We collect problems on which GPT-4 and
GPT-3.5-TURBO fail and ask the models to iteratively correct
by providing some error messages. We find that models improve
performance from black-box feedback (33% and 21% respectively
for GPT-4 and GPT-3.5-TURBO after 5 iterations.

of dependencies used by the ground-truth implementation 6.
We find that both these measures are (inversely) correlated
with the PASS@1 of the models. In Figures 4 and 12,
we plot the PASS@1 of the models against the number of
dependencies and the number of tokens used in the ground-
truth implementation showing a downward trend.

Single File vs Multi-File Context. We compare how mod-
els perform on problems that require only a single file to
be generated against problems that require multiple files to
be generated. Model performance is significantly better on
single-file problems than multi-file problems (Figure 13).
This suggests that a.) models struggle with multi-file con-
texts compared to single-file contexts and b.) problems in
the multi-file category are more complex than single-file
problems in our benchmark, also observed in practice.

Do not understand the interface to provided functions.
We find that when provided with complex functions in the
context, LLMS do not understand the right input-output
behavior of such functions and pass in wrong inputs or
expect wrong outputs. Thus, even strong LLMS like GPT-4
make mistakes when provided with complex functions in
the context. See Listings 8 for reference. This motivates
that if provided access to execution context, programming
agents can understand such interfaces and perform better.

Repeat vs Reuse Code. Abstractions are an integral part
of writing good code. LLMS, however, tend to duplicate
code instead of using existing context. Specifically, when
provided with some existing function in the context, models
re-implement the same functionality instead of directly us-
ing it. Listings 2 and 3 provide examples. This aligns with

6counted using the number of unique functions or global vari-
ables used in the function body.

findings on how copilot affects code quality (Blog.).

5.3. Self-Repair Agent

So far, we described model evaluations on our benchmark
using the direct code generation approach. However, testing
harnesses and access to the interpreter allow us to evaluate
programming agents that can interact with the interpreter
and get feedback. Specifically, we instantiate a self-repair
agent that uses the test harness

We study that when provided with feedback from (oracle)
testing harnesses (present in our benchmark instances), can
LLMS correct their own mistakes? We sample 56 and 48 in-
stances from our benchmark for GPT-4 and GPT-3.5-TURBO

on which the models do not generate a correct solution (de-
tailed experiment setup in Section E.2 in the Appendix). We
consider the incorrect programs generated by the models
as the initial programs and then provide the models with
error feedback using the harness iteratively for 5 iterations.
Figure 5 shows the self-repair rate of the models on our
benchmark as a function of the number of iterations.

First note that since we subsample only the failing instances
where models do not generate correct solutions, the 0-th
iteration score is 0% for both models. Next, we find that
GPT-4 attains a maximum self-repair rate of 33% while
GPT-3.5-TURBO only attains a maximum self-repair rate of
20%. This highlights that using execution, interpreter, and
test cases, programming agents can improve code genera-
tion. Note that while advanced prompting techniques do not
improve performance (Table 7), using an interpreter enables
programming agents to achieve strong results.

6. Related Work
Code Generation Benchmarks. Code generation is primar-
ily evaluated using functional-correctness and has been ex-
plored in multiple domains. HUMANEVAL (Chen et al., 2021)
and MBPP (Austin et al., 2021) study code generation on
isolated single-function problems. APPS (Hendrycks et al.,
2021) and CODE-CONTESTS (Li et al., 2022) benchmarks are
primarily used for evaluating algorithmic code generation
capabilities. DS-1000 (Lai et al., 2023), ARCADE (Yin et al.,
2022), NUMPYEVAL (Zhang et al., 2023b), and PANDASE-
VAL (Jain et al., 2022) study data science API code genera-
tion. More recently, Wang et al. (2022b) proposed ODEX
that evaluates coding on APIS with human-written input-
output examples. These works evaluate code generation
capabilities in isolated settings devoid of surrounding con-
text or dependencies from other files. In contrast, R2E cod-
ing problems are curated directly from GITHUB thus more
similar to real-world setups. INTERCODE and WEBARENA

provide general environments for domain-specific interac-
tive programming and web tasks respectively. We provide a

8

R2E

framework and environments for interactive general-purpose
programming tasks extract from GITHUB.

For the repository setting, prior works have primarily fo-
cused on execution-free evaluation metrics like exact-match
and BLEU due to absence of test harnesses. CONALA (Yin
et al., 2018) curated a large dataset from STACKOVERFLOW
with paired natural language and program snippets. Shri-
vastava et al. (2023b;a) study different context selection
methods for prompting and training LLMS for repository-
level code generation. REPOEVAL (Zhang et al., 2023a),
REPOBENCH (Liu et al., 2023c), and CROSSCODEEVAL (Ding
et al., 2023) study repository-level code completion. How-
ever, these works only evaluate short context code genera-
tion capabilities without execution or functional correctness
restriction to short completions. In contrast, we synthesize
function-level test harnesses using our novel test generation
approach and use them for performing function correctness
checks on repository code. Recently, Jimenez et al. (2023)
proposed SWEBENCH to evaluate whether LLMS can solve
GITHUB issues. However, they assume test cases avail-
ability from pull requests preventing scalable collection of
problems. Our test harness synthesis in contrast allows
collecting problems from diverse set of repositories (137
repositories vs 12 repositories). Finally, Du et al. (2023) pro-
posed, CLASSEVAL, manually curated for evaluating LLMS.

Other code-related tasks. Beyond codegen, tasks like self-
repair (Chen et al., 2023; Olausson et al., 2023; Madaan
et al., 2023b; Peng et al., 2023; Zhang et al., 2023c), test
generation (Tufano et al., 2022; Watson et al., 2020), execu-
tion (Austin et al., 2021; Liu et al., 2023a; Gu et al., 2024),
and optimization (Madaan et al., 2023a) have been stud-
ied. These enable various agentic setups as CODET (Chen
et al., 2022), Key et al. (2022), PARSEL (Zelikman et al.,
2023), FUNSEARCH (Romera-Paredes et al., 2023), REFLEX-
ION (Shinn et al., 2023), LEVER (Ni et al., 2023), CODE-
PLAN (Bairi et al., 2023), ALPHACODIUM (Ridnik et al.,
2024), REACT (Yao et al., 2022), and TOT (Yao et al., 2023).

7. Discussion
Limitations. Natural language is inherently ambiguous and
docstrings might not specify the corner cases properly. We
tried to mitigate this effect with our specification refinement
approach along with manual filtering. Future work study
this ambiguity in more and also look into better interaction
mechanisms. Next, we use observational equivalence to
check whether the model-generated candidates are correct
over a set of inputs. We use branch coverage as a metric for
evaluating tests but it is still a softer check. Future work can
apply mutation testing and oversampling to provide further
confidence on generated tests.

Conclusion. We propose R2E, a scalable framework to

convert GITHUB repositories to programming agent test
environments. R2E-Eval1 constructed via this framework
can evaluate both static and interactive code generation
systems, offering valuable insights into model behaviors
and the need for better programming workflows. Prior work
has applied rejection sampling and reinforcement learning
to improve coding capabilities of LLMS (Singh et al., 2023;
Jain et al., 2023; Le et al., 2022). We believe R2E can
enable such attempts for real-world programs. Similarly,
R2E enables collecting LLM-based interaction traces for
tasks like code generation, debugging, optimization which
can be further useful for building LLM agents.

Acknowledgement
This work was supported in part by the U.S. Department
of Energy, Office of Science, Office of Advanced Scien-
tific Computing Research through the X-STACK: Program-
ming Environments for Scientific Computing program (DE-
SC0021982), by the National Science Foundation through
grant CCF-1900968, and by SKY Lab industrial sponsors
and affiliates Astronomer, Google, IBM, Intel, Lacework,
Microsoft, Mohamed Bin Zayed University of Artificial
Intelligence, Nexla, Samsung SDS, Uber, and VMware.

Finally, we thank Alex Gu, Wen-Ding Li, Pengcheng Yin,
Miltos Allamanis, Michael Pradel, Zijian Wang, and Sida
Wang for helpful comments and feedback on the paper.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here

References
Austin, J., Odena, A., Nye, M., Bosma, M., Michalewski,

H., Dohan, D., Jiang, E., Cai, C., Terry, M., Le, Q., et al.
Program synthesis with large language models. arXiv
preprint arXiv:2108.07732, 2021.

Bairi, R., Sonwane, A., Kanade, A., D C, V., Iyer, A.,
Parthasarathy, S., Rajamani, S., Ashok, B., and Shet,
S. Codeplan: Repository-level coding using llms and
planning. In Neural Information Processing Systems
Workshop on Foundation Models for Decision Making
(FMDM-NeurIPS), November 2023.

Bareiß, P., Souza, B., d’Amorim, M., and Pradel, M. Code
generation tools (almost) for free? a study of few-shot,
pre-trained language models on code. arXiv preprint
arXiv:2206.01335, 2022.

Blog., E. C. Quantifying github copilot’s impact on

9

R2E

code quality. https://www.expresscomputer.in/news/

quantifying-github-copilots-impact-on-code-quality-ai/

104480/.

Cassano, F., Li, L., Sethi, A., Shinn, N., Brennan-Jones,
A., Lozhkov, A., Anderson, C., and Guha, A. Can
it edit? evaluating the ability of large language mod-
els to follow code editing instructions. arXiv preprint
arXiv:2312.12450, 2023.

Chen, B., Zhang, F., Nguyen, A., Zan, D., Lin, Z., Lou, J.-
G., and Chen, W. Codet: Code generation with generated
tests. arXiv preprint arXiv:2207.10397, 2022.

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. d. O.,
Kaplan, J., Edwards, H., Burda, Y., Joseph, N., Brockman,
G., et al. Evaluating large language models trained on
code. arXiv preprint arXiv:2107.03374, 2021.

Chen, X., Lin, M., Schärli, N., and Zhou, D. Teaching
large language models to self-debug. arXiv preprint
arXiv:2304.05128, 2023.

Ding, Y., Wang, Z., Ahmad, W. U., Ding, H., Tan, M., Jain,
N., Ramanathan, M. K., Nallapati, R., Bhatia, P., Roth,
D., et al. Crosscodeeval: A diverse and multilingual
benchmark for cross-file code completion. arXiv preprint
arXiv:2310.11248, 2023.

Du, X., Liu, M., Wang, K., Wang, H., Liu, J., Chen, Y., Feng,
J., Sha, C., Peng, X., and Lou, Y. Classeval: A manually-
crafted benchmark for evaluating llms on class-level code
generation, 2023.

Fraser, G. and Arcuri, A. Evosuite: automatic test suite
generation for object-oriented software. In Proceedings
of the 19th ACM SIGSOFT symposium and the 13th Euro-
pean conference on Foundations of software engineering,
pp. 416–419, 2011.

Fraser, G. and Arcuri, A. Whole test suite generation. IEEE
Transactions on Software Engineering, 39(2):276–291,
2012.

Gu, A., Rozière, B., Leather, H., Solar-Lezama, A., Syn-
naeve, G., and Wang, S. I. Cruxeval: A benchmark
for code reasoning, understanding and execution. arXiv
preprint arXiv:2401.03065, 2024.

Hendrycks, D., Basart, S., Kadavath, S., Mazeika, M., Arora,
A., Guo, E., Burns, C., Puranik, S., He, H., Song, D., et al.
Measuring coding challenge competence with apps. arXiv
preprint arXiv:2105.09938, 2021.

Ivanković, M., Petrović, G., Just, R., and Fraser, G. Code
coverage at google. In Proceedings of the 2019 27th ACM
Joint Meeting on European Software Engineering Con-
ference and Symposium on the Foundations of Software
Engineering, pp. 955–963, 2019.

Jain, N., Vaidyanath, S., Iyer, A., Natarajan, N.,
Parthasarathy, S., Rajamani, S., and Sharma, R. Jig-
saw: Large language models meet program synthesis.
In Proceedings of the 44th International Conference on
Software Engineering, pp. 1219–1231, 2022.

Jain, N., Zhang, T., Chiang, W.-L., Gonzalez, J. E., Sen, K.,
and Stoica, I. Llm-assisted code cleaning for training ac-
curate code generators. arXiv preprint arXiv:2311.14904,
2023.

Jimenez, C. E., Yang, J., Wettig, A., Yao, S., Pei, K., Press,
O., and Narasimhan, K. Swe-bench: Can language mod-
els resolve real-world github issues? arXiv preprint
arXiv:2310.06770, 2023.

Key, D., Li, W.-D., and Ellis, K. I speak, you verify: Toward
trustworthy neural program synthesis. arXiv preprint
arXiv:2210.00848, 2022.

Lahiri, S. K., Naik, A., Sakkas, G., Choudhury, P., von
Veh, C., Musuvathi, M., Inala, J. P., Wang, C., and Gao,
J. Interactive code generation via test-driven user-intent
formalization. arXiv preprint arXiv:2208.05950, 2022.

Lai, Y., Li, C., Wang, Y., Zhang, T., Zhong, R., Zettle-
moyer, L., Yih, W.-t., Fried, D., Wang, S., and Yu, T.
Ds-1000: A natural and reliable benchmark for data sci-
ence code generation. In International Conference on
Machine Learning, pp. 18319–18345. PMLR, 2023.

Le, H., Wang, Y., Gotmare, A. D., Savarese, S., and Hoi,
S. C. H. Coderl: Mastering code generation through
pretrained models and deep reinforcement learning. Ad-
vances in Neural Information Processing Systems, 35:
21314–21328, 2022.

Lemieux, C., Inala, J. P., Lahiri, S. K., and Sen, S. Co-
damosa: Escaping coverage plateaus in test generation
with pre-trained large language models. In International
conference on software engineering (ICSE), 2023.

Li, Y., Choi, D., Chung, J., Kushman, N., Schrittwieser, J.,
Leblond, R., Eccles, T., Keeling, J., Gimeno, F., Dal Lago,
A., et al. Competition-level code generation with alpha-
code. Science, 378(6624):1092–1097, 2022.

Liu, C., Lu, S., Chen, W., Jiang, D., Svyatkovskiy, A.,
Fu, S., Sundaresan, N., and Duan, N. Code execu-
tion with pre-trained language models. arXiv preprint
arXiv:2305.05383, 2023a.

Liu, J., Xia, C. S., Wang, Y., and Zhang, L. Is your code
generated by chatgpt really correct? rigorous evaluation
of large language models for code generation. arXiv
preprint arXiv:2305.01210, 2023b.

10

https://www.expresscomputer.in/news/quantifying-github-copilots-impact-on-code-quality-ai/104480/
https://www.expresscomputer.in/news/quantifying-github-copilots-impact-on-code-quality-ai/104480/
https://www.expresscomputer.in/news/quantifying-github-copilots-impact-on-code-quality-ai/104480/

R2E

Liu, T., Xu, C., and McAuley, J. Repobench: Benchmarking
repository-level code auto-completion systems. arXiv
preprint arXiv:2306.03091, 2023c.

Madaan, A., Shypula, A., Alon, U., Hashemi, M., Ran-
ganathan, P., Yang, Y., Neubig, G., and Yazdanbakhsh,
A. Learning performance-improving code edits. arXiv
preprint arXiv:2302.07867, 2023a.

Madaan, A., Tandon, N., Gupta, P., Hallinan, S., Gao,
L., Wiegreffe, S., Alon, U., Dziri, N., Prabhumoye, S.,
Yang, Y., et al. Self-refine: Iterative refinement with
self-feedback. arXiv preprint arXiv:2303.17651, 2023b.

Ni, A., Iyer, S., Radev, D., Stoyanov, V., Yih, W.-t., Wang,
S., and Lin, X. V. Lever: Learning to verify language-
to-code generation with execution. In International Con-
ference on Machine Learning, pp. 26106–26128. PMLR,
2023.

Olausson, T. X., Inala, J. P., Wang, C., Gao, J., and Solar-
Lezama, A. Demystifying gpt self-repair for code gener-
ation. arXiv preprint arXiv:2306.09896, 2023.

Pacheco, C. and Ernst, M. D. Randoop: feedback-directed
random testing for java. In Companion to the 22nd ACM
SIGPLAN conference on Object-oriented programming
systems and applications companion, pp. 815–816, 2007.

Panichella, A., Kifetew, F. M., and Tonella, P. Automated
test case generation as a many-objective optimisation
problem with dynamic selection of the targets. IEEE
Transactions on Software Engineering, 44(2):122–158,
2017.

Peng, B., Galley, M., He, P., Cheng, H., Xie, Y., Hu, Y.,
Huang, Q., Liden, L., Yu, Z., Chen, W., and Gao, J.
Check your facts and try again: Improving large language
models with external knowledge and automated feedback.
arXiv preprint arXiv:2302.12813, 2023.

Ridnik, T., Kredo, D., and Friedman, I. Code generation
with alphacodium: From prompt engineering to flow en-
gineering. arXiv preprint arXiv:2401.08500, 2024.

Romera-Paredes, B., Barekatain, M., Novikov, A., Balog,
M., Kumar, M. P., Dupont, E., Ruiz, F. J., Ellenberg, J. S.,
Wang, P., Fawzi, O., et al. Mathematical discoveries from
program search with large language models. Nature, pp.
1–3, 2023.

Ryder, B. G. Constructing the call graph of a program.
IEEE Transactions on Software Engineering, (3):216–
226, 1979.

Salis, V., Sotiropoulos, T., Louridas, P., Spinellis, D., and
Mitropoulos, D. Pycg: Practical call graph generation

in python. In 2021 IEEE/ACM 43rd International Con-
ference on Software Engineering (ICSE), pp. 1646–1657.
IEEE, 2021.

Shinn, N., Labash, B., and Gopinath, A. Reflexion: an au-
tonomous agent with dynamic memory and self-reflection.
arXiv preprint arXiv:2303.11366, 2023.

Shrivastava, D., Kocetkov, D., de Vries, H., Bahdanau,
D., and Scholak, T. Repofusion: Training code mod-
els to understand your repository. arXiv preprint
arXiv:2306.10998, 2023a.

Shrivastava, D., Larochelle, H., and Tarlow, D. Repository-
level prompt generation for large language models of
code. In International Conference on Machine Learning,
pp. 31693–31715. PMLR, 2023b.

Singh, A., Co-Reyes, J. D., Agarwal, R., Anand, A., Patil,
P., Liu, P. J., Harrison, J., Lee, J., Xu, K., Parisi, A.,
et al. Beyond human data: Scaling self-training for
problem-solving with language models. arXiv preprint
arXiv:2312.06585, 2023.

Tufano, M., Drain, D., Svyatkovskiy, A., Deng, S. K., and
Sundaresan, N. Unit test case generation with transform-
ers and focal context. arXiv preprint arXiv:2009.05617,
2020.

Tufano, M., Deng, S. K., Sundaresan, N., and Svyatkovskiy,
A. Methods2test: A dataset of focal methods mapped
to test cases. In Proceedings of the 19th International
Conference on Mining Software Repositories, pp. 299–
303, 2022.

Wang, Y., Kordi, Y., Mishra, S., Liu, A., Smith, N. A.,
Khashabi, D., and Hajishirzi, H. Self-instruct: Aligning
language model with self generated instructions. arXiv
preprint arXiv:2212.10560, 2022a.

Wang, Z., Zhou, S., Fried, D., and Neubig, G. Execution-
based evaluation for open-domain code generation. arXiv
preprint arXiv:2212.10481, 2022b.

Watson, C., Tufano, M., Moran, K., Bavota, G., and Poshy-
vanyk, D. On learning meaningful assert statements for
unit test cases. In Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering, pp.
1398–1409, 2020.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F.,
Chi, E., Le, Q. V., Zhou, D., et al. Chain-of-thought
prompting elicits reasoning in large language models.
Advances in Neural Information Processing Systems, 35:
24824–24837, 2022.

Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan,
K., and Cao, Y. React: Synergizing reasoning and acting

11

R2E

in language models. arXiv preprint arXiv:2210.03629,
2022.

Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T. L., Cao, Y.,
and Narasimhan, K. Tree of thoughts: Deliberate prob-
lem solving with large language models. arXiv preprint
arXiv:2305.10601, 2023.

Yin, P., Deng, B., Chen, E., Vasilescu, B., and Neubig,
G. Learning to mine aligned code and natural language
pairs from stack overflow. In International Conference on
Mining Software Repositories, MSR, pp. 476–486. ACM,
2018. doi: https://doi.org/10.1145/3196398.3196408.

Yin, P., Li, W.-D., Xiao, K., Rao, A., Wen, Y., Shi, K.,
Howland, J., Bailey, P., Catasta, M., Michalewski, H.,
et al. Natural language to code generation in interactive
data science notebooks. arXiv preprint arXiv:2212.09248,
2022.

Zelikman, E., Huang, Q., Poesia, G., Goodman, N. D.,
and Haber, N. Parsel: A (de-) compositional framework
for algorithmic reasoning with language models. arXiv
preprint arXiv:2212.10561, 2023.

Zhang, F., Chen, B., Zhang, Y., Liu, J., Zan, D., Mao, Y.,
Lou, J.-G., and Chen, W. Repocoder: Repository-level
code completion through iterative retrieval and generation.
arXiv preprint arXiv:2303.12570, 2023a.

Zhang, K., Li, G., Li, J., Li, Z., and Jin, Z. Toolcoder:
Teach code generation models to use apis with search
tools. arXiv preprint arXiv:2305.04032, 2023b.

Zhang, K., Li, Z., Li, J., Li, G., and Jin, Z. Self-edit: Fault-
aware code editor for code generation. In Proceedings of
the 61st Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pp. 769–787,
Toronto, Canada, July 2023c. Association for Computa-
tional Linguistics.

Zhang, T., Yu, T., Hashimoto, T., Lewis, M., Yih, W.-t.,
Fried, D., and Wang, S. Coder reviewer reranking for
code generation. In International Conference on Machine
Learning, pp. 41832–41846. PMLR, 2023d.

12

R2E

A. Program Analysis
A.1. Callgraphs

A callgraph (Ryder, 1979) is a directed graph where nodes represent subroutines (functions, methods, constructors, etc.),
and edges denote the calling relationships between them. It is a directed graph G = (V,E) where V is a set of subroutines
(functions, methods, constructors, etc.) and E is a set of edges representing the calling relationship between these subroutines.
If a subroutine u invokes (i.e., calls) a subroutine v, then there is a directed edge from u to v in the callgraph. For instance,
in Figure 2, the function indexer calls the function _parse_sigmf_capture. This repository abstraction enables analyzing
several properties of repository code.

For instance, we use it to extract the dependencies that a function relies on for its execution—a valuable property for test
generation. In this work, we use the PYCG tool (Salis et al., 2021) to generate callgraphs for PYTHON repositories.

A.2. Dependency Slicing

While callgraphs abstract direct interactions between functions, a PYTHON function can interact with parts of the repository
through global variables, too–in the same file and imported from other files. We can summarize these interactions in a
dependency slice Df for a function f , as the set of all functions F ′ that f calls, and all global variables G′ that f accesses,
both directly and indirectly.

For a function f , we define a mapping called depends which identifies all functions F ′ that f calls, and all global variables
G′ that f accesses.

Then a dependency slice Df is the transitive closure of all functions and global variables that f depends on, directly or
indirectly.

Df =
⋃

(F ′,G′)∈depends∗(f)

(F ′ ∪G′) (1)

Computing this slice is generally an undecidable problem, but we make a few simplifying assumptions to make it tractable.
We begin by utilizing the callgraph to identify the functions that f calls. We then use bytecode analysis to identify the set of
global variables that f accesses. We add these functions and global variables to the slice and recursively repeat the process
for each function in the slice. We utilize this context for test generation in Section 3.2.

13

R2E

B. Test Generation
Below, we list the prompt used for test harness generation.

You are a python programming expert who was hired to write tests for Python functions.
You will be given a python function in a python file and you will write a complete test that covers the function and
all the different corner cases.
You can assume a compiled reference implementation of the function is available, and hence do not need to predict
the expected output of the function.
That is, the test you write will use the reference implementation to generate the expected output.
Also, assume the function provided is correct and hence the test should focus on the behavior that is defined by the
function ONLY.
Ensure that the tests align with the function’s expected input types, avoiding scenarios that the function is not
designed to handle.
Completely avoid testing with invalid input types or values, testing for error handling, and checking ‘assertRaises‘.
Set a fixed random seed in tests involving randomness to ensure consistent and reproducible results when necessary.
Avoid mocking calls to APIs or functions (e.g., builtins.open) when actual implementations are simple, accessible,
and their use does not compromise the test’s isolation or determinism.
Particularly, avoid mocking calls to any file I/O APIs, and instead try to create temporary files and directories for
testing purposes.
You will return the test for that function and NOT return anything except for the test.
Put your fixed test program within code delimiters, for example:

"""python

YOUR CODE HERE

"""

Write a test using the ‘unittest‘ library for the function ‘function_name‘. Assume the reference implementation is
‘reference_function_name‘. Both the function and the reference are in the module ‘fut_module‘. Only return the test
code and do NOT return anything else. Enclose your code within code delimiters, for example:

"""python

YOUR CODE HERE

"""

B.1. Related Work

R2E motivates using automated test generation to build reliable and scalable code-related benchmarks to evaluate LLMS.
Automated test generation has been rapidly adopted in the software engineering community. Several frameworks for test
generation have been proposed, both traditional search-based (Fraser & Arcuri, 2011; 2012; Panichella et al., 2017) and
neural (Tufano et al., 2020). EvoSuite (Fraser & Arcuri, 2011) first popularized evolutionary algorithms for test suite
generation. It starts from a random test suite and then repeatedly mutates it, saving mutated test suites with higher coverage
than the original.

LLMs have also been used for test generation, particularly because of their ability to generate readable and natural tests.
Bareiß et al. present an approach for test generation that follows a few-shot learning paradigm, outperforming traditional
feedback-directed test generation (Pacheco & Ernst, 2007). Tufano et al. present an approach for test generation using a
BART transformer model that is fine-tuned on a training set of functions and corresponding tests. CODAMOSA (Lemieux
et al., 2023) presents an approach where tests generated by Codex are used to assist search-based testing techniques
(Panichella et al., 2017) in situations where such techniques get “stuck" because the generated test cases diverge too far
from expected uses of the code under test. Furthermore, research on test generation with LLMS has not just been limited to
generating tests but using them for test-driven development. Lahiri et al. and Chen et al. explore the use of test cases for
user intent formalization by mutating, pruning and ranking suggestions using self-generated tests.

14

R2E

B.2. Analysis of Equivalence Test Generation

Below is further analysis of the performance of R2E’s equivalence test generation, as described in Section 3.2.

Figure 6. Varying number of lines Figure 7. Varying number of dependencies

Figure 8. Varying number of branches Figure 9. Varying number of arguments

15

R2E

C. Specification Refinement

You are a python programming expert who is refining docstrings in existing programs. You will be given a python
function in a python file with an existing (possibly underspecified) docstring with corresponding unit tests for the
function and optionally some input-output examples extracted from the unittest in a serialized format. Your goal is
to refine the associated docstring by making it more informative, precise and complete without adding verbosity
or detailed programming logic to the docstring. The docstring should particularly describe the format and types
of the expected inputs and output as well as the behavior of the function. You will return the function definition,
docstring enclosed in markdown code delimiters. The docstrings must be formatted in the google docstring format
and examples should be added if they clarify the function and look helpful without being very long. Do not guess
outputs for functions but only copy the expected outputs as provided. Finally, do not throw away existing details
from the docstrings and only insert content you are sure about. Do NOT have repeated content in the docstring and
ONLY describe the high-level function behavior without going into implementation details

Code Snippet:

{original_code_snippet}

Unit Tests:

"""python

{test_code}

"""

Argument Types: {argument_types}

Output Types: {output_type}

Examples: {examples_substring}

Refine the docstring for the function function_name. Return only the updated function with docstring enclosed in
markdown and ignore the remaining code. Remember to make the docstring precise and informative regarding
global function behavior (input-output properties) without being too verbose. Do not specify detailed function logic
or very domain-specific content in the docstring (unless already described in the docstring).

C.1. Spec-Refinement User Study

We study the quality of the refined docstrings, specifically on their effectiveness as problem descriptors for code completion.
We analyze two high-level aspects of docstrings:

• Interface Understandability: Does the refined docstring clarify the function’s input-output interface? Here, we look
at how the parameter descriptions and the I/O examples aid in understanding the interface.

• Problem Intent: Does the refined docstring articulate the problem the function is intended to solve? Here, we look at
how the docstring text and the I/O examples illustrate how the function solves the problem and if it can lead to alternate
solutions that do not satisfy the original implementation.

Each criterion was evaluated using a 3-point scale, ranging from ‘Poor’ (1) to ‘Excellent’ (3). The lead authors applied this
rubric to study a sample of 62 problems. Results in the following tables.

Param Desc I/O Examples Overall
2.9 2.8 2.9

Table 4. Interface Understandability Scores

Text Desc I/O Examples Overall
2.5 2.1 2.5

Table 5. Problem Intent Scores

16

R2E

D. Benchmark
The list of unique input and output data types is provided below. This highlights that problems in our benchmark are
interesting.

{
"__main__.ComplexDataClass", "__main__.ExampleDataClass", "__main__.MockTextDocument", "__main__.
NestedDataClass", "__main__.PickleCoder", "__main__.SimpleDataClass", "ast.Attribute", "ast.Call", "astroid.
nodes.scoped_nodes.scoped_nodes.FunctionDef", "builtins.bool", "builtins.builtin_function_or_method", "builtins
.bytes", "builtins.dict", "builtins.EOFError", "builtins.float", "builtins.function", "builtins.generator", "
builtins.int", "builtins.list", "builtins.list_reverseiterator", "builtins.method", "builtins.module", "
builtins.NoneType", "builtins.property", "builtins.set", "builtins.slice", "builtins.str", "builtins.tuple", "
builtins.type", "builtins.ValueError", "casadi.casadi.Function", "cascades._src.handlers.Record", "celpy.
celtypes.BoolType", "collections.defaultdict", "collections.OrderedDict", "dacite.config.Config", "dis.
Instruction", "diskcache.core.Cache", "docile.dataset.bbox.BBox", "dpkt.ethernet.Ethernet", "dynamicprompts.
parser.config.ParserConfig", "fullcontrol.combinations.gcode_and_visualize.classes.Point", "fullcontrol.
geometry.vector.Vector", "_Stats", "Compression", "Encoding", "Graph", "GroupedTensor", "Indicator", "KGFn", "
LogSeverity", "LogTensor", "NamedList", "RangeSlotList", "RequestsCookieJar", "return_type_ptiva_linalg_eigh",
"Sound", "SSH", "TextSlotList", "WildcardSlotList", "iamspy.iam.Document", "jaxlib.xla_extension.ArrayImpl", "
klongpy.core.KGSym", "kork.ast.FunctionCall", "lgssl.evaluation.logistic_regression.LogisticRegression", "
libcst._nodes.module.Module", "mypy.nodes.OpExpr", "networkx.classes.digraph.DiGraph", "networkx.classes.graph.
Graph", "networkx.classes.multigraph.MultiGraph", "numpy._ArrayFunctionDispatcher", "numpy.bool_", "numpy.
float64", "numpy.int64", "numpy.ndarray", "numpy.random.mtrand.RandomState", "numpyro.distributions.continuous.
Normal", "open_rarity.models.collection.Collection", "open_rarity.models.token.Token", "ormdantic.models.models
.Map", "pandas.core.frame.DataFrame", "pandas.core.series.Series", "pathlib.PosixPath", "pydantic.main.
BaseModel", "pygame.surface.Surface", "pyparsing.core.Forward", "pywhy_graphs.classes.admg.ADMG", "pywhy_graphs
.classes.pag.PAG", "pywhy_graphs.classes.timeseries.digraph.StationaryTimeSeriesDiGraph", "pywhy_graphs.classes
.timeseries.pag.StationaryTimeSeriesPAG", "rdkit.Chem.rdchem.Mol", "scipy.sparse._csr.csr_matrix", "scipy.
sparse._lil.lil_matrix", "sklearn.linear_model._logistic.LogisticRegression", "sklearn.neighbors._kde.
KernelDensity", "sqlalchemy.sql.sqltypes.DateTime", "sympy.core.add.Add", "sympy.core.mul.Mul", "sympy.core.
numbers.Integer", "sympy.core.numbers.NegativeOne", "sympy.core.numbers.One", "sympy.core.numbers.Pi", "sympy.
core.numbers.Zero", "sympy.functions.elementary.exponential.log", "sympy.functions.elementary.trigonometric.cos
", "sympy.functions.elementary.trigonometric.sin", "torch.device", "torch.nn.modules.conv.Conv2d", "torch.nn.
modules.linear.Linear", "torch.nn.parameter.Parameter", "torch.Tensor", "torchsig.utils.types.SignalCapture", "
torchsig.utils.types.SignalData", "tracr.rasp.rasp.Aggregate", "tracr.rasp.rasp.Map", "tracr.rasp.rasp.
SelectorWidth", "typing._AnnotatedAlias", "typing._GenericAlias", "typing._UnionGenericAlias", "unittest.mock.
MagicMock", "uuid.UUID", "xarray.core.dataset.Dataset", "z3.z3.BoolRef", "z3.z3.SeqRef"

}

Listing 1. Unique input and output data types in our benchmark. We have over 100 unique data types arising from over 60 libraries.

17

R2E

E. Experiments
We list down the list of models considered for code generation experiments here.

Model ID Link

codellama/CodeLlama-34b-Python-hf CodeLlama-34b-Python-hf
codellama/CodeLlama-13b-Python-hf CodeLlama-13b-Python-hf
codellama/CodeLlama-7b-Python-hf CodeLlama-7b-Python-hf
gpt-3.5-turbo-1106-16k OpenAI
gpt-4-1106 OpenAI

Table 6. List of models

E.1. Code Generation

To compute PASS@1, we generate 5 completions for each problem instance using each model. We use nucleus sampling
with p = 0.95 and T = 0.2. Below we list the prompts used (inspired from (Olausson et al., 2023))

You are a Python programming expert who is going to generate a Python function in a file using the function
docstring. You will use the existing context of relevant files provided for implementation and ONLY return the
completed function. Enclose the completed function in markdown code delimiters and do NOT return anything else.

Code Snippet

{code_snippet}

Complete the function {function_name}. Only return the completed function enclosed in markdown code delimiters

18

https://huggingface.co/codellama/CodeLlama-34b-Python-hf
https://huggingface.co/codellama/CodeLlama-13b-Python-hf
https://huggingface.co/codellama/CodeLlama-7b-Python-hf
https://openai.com/blog/new-models-and-developer-products-announced-at-devday
https://openai.com/blog/new-models-and-developer-products-announced-at-devday

R2E

E.2. Self Repair

We use GPT-4 and GPT-3.5-TURBO models for the self-repair task. We find problems from R2E where models fail to any
generate correct completion and we can extract the failing scenario (since some of the tests are dynamic, it is not always
possible to extract the failing scenario). Additionally, since our GPT-4 has a context length of 8k, we additionaly filter very
long problems from the repair dataset We then use the failing scenario as the prompt for the self-repair task.

You are a Python programming expert who is going to generate a Python function in a file using the function
docstring. You will use the existing context of relevant files provided for implementation and ONLY return the
completed function. Enclose the completed function in markdown code delimiters and do NOT return anything else.

Code Snippet:

{code_snippet}

Inputs:

{captured_inputs}

Expected Output:

{captured_output}

Error Trace:

{output}

Instruction

You will first reason using a concise (at most 2-3 sentences) textual explanation of what is wrong with
the function. After you have pointed out what is wrong with the code, you will then generate a fixed
version of the program. You will ONLY return the completed function. Follow the following format
which presents the reason for the failure followed by the repaired program enclosed in backticks.

Reasoning

{function_name} is failing because of ...

Repaired Function

"""python

def function_name(...): ...

"""

19

R2E

F. Code Generation Results
‘‘‘
nobuco/locate/link.py
import inspect

def get_link(file=None, line=None):
""" Print a link in PyCharm to a line in file.

Defaults to line where this function was called. """
if file is None:

file = inspect.stack()[1].filename
if line is None:

line = inspect.stack()[1].lineno
string = f’File "{file}", line {max(line, 1)}’.replace("\\", "/")
return string

def get_link_to_obj(obj): ## CodeLLaMa-34B-Python completion

obj_type = type(obj)
if obj_type is property:

obj = obj.fget
if not hasattr(obj, ’__module__’) or not hasattr(obj, ’__qualname__’):

return None
module = inspect.getmodule(obj)
if module is None:

return None
if not hasattr(module, ’__file__’):

return None
if obj_type is type:

obj_source = obj.__qualname__

elif obj_type is types.ModuleType:
obj_source = obj.__name__

else:
obj_source = f’{obj.__module__}.{obj.__qualname__}’

return f’File "{module.__file__}", line {inspect.getsourcelines(obj)[1]}’.replace(’\\’, ’/’)

Listing 2. CODELLAMA-34B repeats the code from its parent function and does not use the ‘get_link‘ helper method.

20

R2E

‘‘‘
def standardize_and_get_inchi(mol: Mol, options: str=’’, log_level=None, warnings_as_errors=False) -> str:

"""Return InChI after standardising molecule and inferring stereo from coordinates."""
mol = deepcopy(mol)
mol = assert_sanity(mol)
mol = remove_isotopic_info(mol)
has_pose = mol.GetNumConformers() > 0
if has_pose:

RemoveStereochemistry(mol)
mol = RemoveHs(mol)
try:

mol = neutralize_atoms(mol)
except AtomValenceException:

logger.warning(’Failed to neutralize molecule. Using uncharger. InChI check might fail.’)
mol = Uncharger().uncharge(mol)

mol = add_stereo_hydrogens(mol)
if has_pose:

AssignStereochemistryFrom3D(mol, replaceExistingTags=True)
with CaptureLogger():

inchi = MolToInchi(mol, options=options, logLevel=log_level, treatWarningAsError=warnings_as_errors)
return inchi

...

def check_identity(mol_pred: Mol, mol_true: Mol, inchi_options: str=’’) -> dict[str, Any]:
"""Check if two molecules are identical in terms of their InChI representation.

This function compares the InChI strings of two molecules after standardizing them and
optionally applying InChI generation options. ...
Args:
...
Returns:

...
Example:

>>> ..."""
‘‘‘

CodeLLaMa-13B-Python completion

mol_pred = deepcopy(mol_pred)
mol_true = deepcopy(mol_true)
mol_pred = assert_sanity(mol_pred)
mol_true = assert_sanity(mol_true)
mol_pred = remove_isotopic_info(mol_pred)
mol_true = remove_isotopic_info(mol_true)
has_pose_pred = mol_pred.GetNumConformers() > 0
has_pose_true = mol_true.GetNumConformers() > 0
if has_pose_pred:

RemoveStereochemistry(mol_pred)
if has_pose_true:

RemoveStereochemistry(mol_true)
mol_pred = RemoveHs(mol_pred)
mol_true = RemoveHs(mol_true)
try:

mol_pred = neutralize_atoms(mol_pred)
except AtomValenceException:

logger.warning(’Failed to neutralize molecule. Using uncharger. InChI check might fail.’)
mol_pred = Uncharger().uncharge(mol_pred)

try:
mol_true = neutralize_atoms(mol_true)

except AtomValenceException:
logger.warning(’Failed to neutralize molecule. Using uncharger. InChI check might fail.’)
mol_true = Uncharger().uncharge(mol_true)

mol_pred = add_stereo_hydrogens(mol_pred)
mol_true = add_stereo_hydrogens(mol_true)

21

R2E

if has_pose_pred:
AssignStereochemistryFrom3D(mol_pred, replaceExistingTags=True)

if has_pose_true:
AssignStereochemistryFrom3D(mol_true, replaceExistingTags=True)

inchi_pred = standardize_and_get_inchi(mol_pred, options=inchi_options)
inchi_true = standardize_and_get_inchi(mol_true, options=inchi_options)
results = _compare_inchis(inchi_true, inchi_pred)
results[’inchi_crystal_valid’] = _is_valid_inchi(inchi_true)
results[’inchi_docked_valid’] = _is_valid_inchi(inchi_pred)
results[’inchi_crystal’] = inchi_true
results[’inchi_docked’] = inchi_pred
return {’results’: results}

Listing 3. Models struggle to understand the interface functions provided in context and tend to repeat the content from
standardize_and_get_inchi function instead of using the abstraction.

22

R2E

F.1. Dependency vs Usage Tradeoff

The first example demonstrates dependency context vs full context for get_2d_sincos_pos_embed function. In the dependency
context, only two functions which the oracle ground truth functions calls are provided and the task is to stitch them together.
This becomes simpler in the full context case where how to call those functions is also provided (via other functions).

import torch

def get_2d_sincos_pos_embed_from_grid(embed_dim: int, grid: torch.Tensor) -> torch.Tensor:
"""Get 2D sine-cosine positional embedding from grid.
Args:

embed_dim: embedding dimension.
grid: positions

Returns:
(torch.Tensor): [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim]"""

assert embed_dim % 2 == 0
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0])
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1])
emb = torch.cat([emb_h, emb_w], dim=1)
return emb

def get_1d_sincos_pos_embed_from_grid(embed_dim: int, pos: torch.Tensor) -> torch.Tensor:
"""Get 1D sine-cosine positional embedding.
Args:

embed_dim: output dimension for each position
pos: a list of positions to be encoded: size (M,)

Returns:
(torch.Tensor): tensor of shape (M, D)"""

assert embed_dim % 2 == 0
omega = torch.arange(embed_dim // 2, dtype=torch.float)
omega /= embed_dim / 2.0
omega = 1.0 / 10000 ** omega
pos = pos.reshape(-1)
out = torch.einsum(’m,d->md’, pos, omega)
emb_sin = torch.sin(out)
emb_cos = torch.cos(out)
emb = torch.cat([emb_sin, emb_cos], dim=1)
return emb

def get_2d_sincos_pos_embed(embed_dim: int, grid_size: int, cls_token: bool=False) -> torch.Tensor:
"""Generates a 2D sine-cosine positional embedding tensor.

This function creates a positional embedding for a 2D grid using sine and cosine functions.
The embedding can optionally include a leading zero vector to represent a classification (CLS) token.

Args:
embed_dim (int): The dimensionality of the embedding for each position.
grid_size (int): The height and width of the square grid for which embeddings are generated.
cls_token (bool): If True, the output tensor will include an additional first row with zeros

to represent a CLS token. Defaults to False.
Returns:

torch.Tensor: A tensor of shape (grid_size * grid_size, embed_dim) without a CLS token, or
(1 + grid_size * grid_size, embed_dim) with a CLS token. The tensor contains
the positional embeddings for the grid and is of type ‘torch.float32‘."""

grid = torch.stack(torch.meshgrid(torch.arange(grid_size), torch.arange(grid_size)), dim=-1)
grid = grid.reshape(-1, 2).float()
emb = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
if cls_token:

cls_emb = torch.zeros(1, embed_dim)
emb = torch.cat([cls_emb, emb], dim=0)

return emb

Listing 4. GPT4 code generation with a dependency only prompt. The model needs to understand the provided functions and stitch the
solution together since no example usage of the required functions is provided

23

R2E

from typing import Tuple
import torch

def get_3d_sincos_pos_embed(embed_dim: int, tube_shape: Tuple[int, int, int], stride, offset, kernel_size,
cls_token: bool=False) -> torch.Tensor:
"""Get 3D sine-cosine positional embedding.
Args:

tube_shape: (t_size,
...."""

...
pos_embed_spatial = get_2d_sincos_pos_embed_from_grid(embed_dim_spatial, grid)
...

def get_2d_sincos_pos_embed(embed_dim: int, grid_size: int, cls_token: bool=False) -> torch.Tensor:
"""Get 2D sine-cosine positional embedding.
Args:

grid_size: int of the grid height and width
cls_token: bool, whether to contain CLS token

Returns:
(torch.Tensor): [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim]"""

...
pos_embed = ...

def get_1d_sincos_pos_embed_from_grid(embed_dim: int, pos: torch.Tensor) -> torch.Tensor:
"""Get 1D sine-cosine positional embedding.
Args:

embed_dim: output dimension for each position
pos: a list of positions to be encoded: size (M,)

Returns:
(torch.Tensor): tensor of shape (M, D)

"""
assert embed_dim % 2 == 0
omega = torch.arange(embed_dim // 2, dtype=torch.float)
...
return emb

def get_2d_sincos_pos_embed(embed_dim: int, grid_size: int, cls_token: bool=False) -> torch.Tensor:
"""Generates a 2D sine-cosine positional embedding tensor.

This function creates a positional embedding for a 2D grid using sine and cosine functions.
The embedding can optionally include a leading zero vector to represent a classification (CLS) token.

Args:
embed_dim (int): The dimensionality of the embedding for each position.
grid_size (int): The height and width of the square grid for which embeddings are generated.
cls_token (bool): If True, the output tensor will include an additional first row with zeros

to represent a CLS token. Defaults to False.

Returns:
torch.Tensor: A tensor of shape (grid_size * grid_size, embed_dim) without a CLS token, or

(1 + grid_size * grid_size, embed_dim) with a CLS token. The tensor contains
the positional embeddings for the grid and is of type ‘torch.float32‘.

"""
assert embed_dim % 2 == 0
grid = torch.arange(grid_size, dtype=torch.float)
grid = torch.meshgrid(grid, grid, indexing=’ij’)
grid = torch.stack(grid, dim=0)
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
return pos_embed

Listing 5. The full context for this example provides example usage of the required functions making it an easier problem.

24

R2E

class Image(BaseImage):

def qvec2rotmat(self):
return qvec2rotmat(self.qvec)

def read_next_bytes(fid, num_bytes, format_char_sequence, endian_character=’<’):
data = fid.read(num_bytes)
return struct.unpack(endian_character + format_char_sequence, data)

def read_images_binary(path_to_model_file):
"""Read camera images and their properties from a binary file. This function parses a binary file containing
the properties of images used in 3D reconstruction
and returns a dictionary of Image namedtuples, each containing the properties of an image.

Args:
path_to_model_file (str): The path to the binary model file to be read.

Returns:
dict: A dictionary where keys are image IDs (int) and values are Image namedtuples.

Each Image namedtuple has the following fields:
- id (int): The unique identifier of the image.
- qvec (numpy.ndarray): A 4-element array representing the quaternion vector.
- tvec (numpy.ndarray): A 3-element array representing the translation vector.
- camera_id (int): The identifier of the camera used to capture the image.
- name (str): The name of the image file.
- xys (numpy.ndarray): An Nx2 array of [x, y] coordinates of 2D points in the image.
- point3D_ids (numpy.ndarray): An N-element array of identifiers of corresponding 3D points"""

GPT-4 Completion

with open(path_to_model_file, ’rb’) as fid:
num_reg_images = read_next_bytes(fid, 4, ’I’)[0]
images = {}
for _ in range(num_reg_images):

image_id = read_next_bytes(fid, 4, ’I’)[0]
qvec = np.array(read_next_bytes(fid, 4 * 4, ’dddd’))
tvec = np.array(read_next_bytes(fid, 3 * 4, ’fff’))
camera_id = read_next_bytes(fid, 4, ’I’)[0]
image_name = read_next_bytes(fid, 1, ’c’)[0]
num_points2D = read_next_bytes(fid, 4, ’I’)[0]
xys = np.array(read_next_bytes(fid, num_points2D * 2 * 4, ’ff’ * num_points2D))
point3D_ids = np.array(read_next_bytes(fid, num_points2D * 4, ’I’ * num_points2D))
images[image_id] = Image(id=image_id, qvec=qvec, tvec=tvec, camera_id=camera_id, name=image_name, xys=

xys, point3D_ids=point3D_ids)
return images

Listing 6. The dependency context for the read_images_binary function only provides read_next_bytes function in context requiring
understanding the interface of returned value.

25

R2E

xrloc/map/read_write_model.py

def read_next_bytes(fid, num_bytes, format_char_sequence, endian_character=’<’):
...

def write_next_bytes(fid, data, format_char_sequence, endian_character=’<’):
...

def write_images_binary(images, path_to_model_file):
"""
see: src/base/map.cc

void Reconstruction::ReadImagesBinary(const std::string& path)
void Reconstruction::WriteImagesBinary(const std::string& path)

"""
with open(path_to_model_file, ’wb’) as fid:

write_next_bytes(fid, len(images), ’Q’)
for _, img in images.items():

write_next_bytes(fid, img.id, ’i’)
write_next_bytes(fid, img.qvec.tolist(), ’dddd’)
write_next_bytes(fid, img.tvec.tolist(), ’ddd’)
write_next_bytes(fid, img.camera_id, ’i’)
for char in img.name:

write_next_bytes(fid, char.encode(’utf-8’), ’c’)
write_next_bytes(fid, b’\\x00’, ’c’)
write_next_bytes(fid, len(img.point3D_ids), ’Q’)
for xy, p3d_id in zip(img.xys, img.point3D_ids):

write_next_bytes(fid, [*xy, p3d_id], ’ddq’)

def read_points3d_binary(path_to_model_file):
...

def write_points3d_binary(points3D, path_to_model_file):
"""
see: src/base/map.cc

void Reconstruction::ReadPoints3DBinary(const std::string& path)
void Reconstruction::WritePoints3DBinary(const std::string& path)

"""
with open(path_to_model_file, ’wb’) as fid:

write_next_bytes(fid, len(points3D), ’Q’)
for _, pt in points3D.items():

write_next_bytes(fid, pt.id, ’Q’)
write_next_bytes(fid, pt.xyz.tolist(), ’ddd’)
write_next_bytes(fid, pt.rgb.tolist(), ’BBB’)
write_next_bytes(fid, pt.error, ’d’)
track_length = pt.image_ids.shape[0]
write_next_bytes(fid, track_length, ’Q’)
for image_id, point2D_id in zip(pt.image_ids, pt.point2D_idxs):

write_next_bytes(fid, [image_id, point2D_id], ’ii’)

def read_point3d_feature_binary(path_to_feature_file):
"""Read 3D point features.

Args:
path_to_feature_file (str): Path to point feature file

Returns:
dict{int:np.array(dim)}: 3D point feature dict

"""
point3d_features = {}
with open(path_to_feature_file, ’rb’) as file:

num_points3d = struct.unpack(’<Q’, file.read(8))[0]
dim_feature = struct.unpack(’<Q’, file.read(8))[0]
for i in range(num_points3d):

point3d_id = struct.unpack(’<Q’, file.read(8))[0]
feature_num = struct.unpack(’<I’, file.read(4))[0]

26

R2E

fmat = ’<{0}f’.format(dim_feature)
descriptor = np.array(struct.unpack(fmat, file.read(4 * dim_feature)))
point3d_features[point3d_id] = descriptor

return point3d_features

def read_images_binary(path_to_model_file):
"""
Read camera images and their properties from a binary file.

This function parses a binary file containing the properties of images used in 3D reconstruction
and returns a dictionary of Image namedtuples, each containing the properties of an image.

Args:
path_to_model_file (str): The path to the binary model file to be read.

Returns:
dict: A dictionary where keys are image IDs (int) and values are Image namedtuples.

Each Image namedtuple has the following fields:
- id (int): The unique identifier of the image.
- qvec (numpy.ndarray): A 4-element array representing the quaternion vector.
- tvec (numpy.ndarray): A 3-element array representing the translation vector.
- camera_id (int): The identifier of the camera used to capture the image.
- name (str): The name of the image file.
- xys (numpy.ndarray): An Nx2 array of [x, y] coordinates of 2D points in the image.
- point3D_ids (numpy.ndarray): An N-element array of identifiers of 3D points corresponding to the 2D

points.
"""

GPT-4 Completion

images = {}
with open(path_to_model_file, ’rb’) as fid:

num_reg_images = read_next_bytes(fid, 8, ’Q’)[0]
for _ in range(num_reg_images):

reg_image_id = read_next_bytes(fid, 4, ’i’)[0]
qvec = np.array(read_next_bytes(fid, 8 * 4, ’dddd’))
tvec = np.array(read_next_bytes(fid, 8 * 3, ’ddd’))
camera_id = read_next_bytes(fid, 4, ’i’)[0]
image_name = ’’
while True:

char = read_next_bytes(fid, 1, ’c’)[0]
if char == b’\x00’:

break
image_name += char.decode(’utf-8’)

num_points2D = read_next_bytes(fid, 8, ’Q’)[0]
xys = np.zeros((num_points2D, 2), dtype=np.float32)
point3D_ids = np.zeros(num_points2D, dtype=np.int64)
for i in range(num_points2D):

xys[i] = read_next_bytes(fid, 8 * 2, ’dd’)
point3D_ids[i] = read_next_bytes(fid, 8, ’Q’)[0]

images[reg_image_id] = Image(id=reg_image_id, qvec=qvec, tvec=tvec, camera_id=camera_id, name=
image_name, xys=xys, point3D_ids=point3D_ids)
return images

Listing 7. The full context for the read images binary function provides various functions in context implementing similar functionality in
write binary images allows the model to copy relevant snippets for solving the problem

27

R2E

import torch

def _product_attr(vision, text, alter):
"""
Args:

vision: N x D
text: M x D
alter: N x M, to replace results in some cases, see details in Returns

Returns: N x M.
For (n, m) element, set J_m = {j : text[m, j] == 1}.
- if |J_m| > 0, it equals to (prod_{j in J_m} vision[n, j])**(1/|J_m|)
- if |J_m| == 0, it equals to alter[n, m]

"""
vision = vision.unsqueeze(1)
text = text.unsqueeze(0)
num_attr = text.sum(-1)
queried_attr = vision * text
queried_attr = queried_attr.masked_fill(text == 0, 1)
queried_attr = torch.float_power(queried_attr.prod(dim=2), 1 / torch.max(num_attr, torch.ones_like(num_attr))).
float()
no_attr_queries = num_attr.squeeze(0) == 0
queried_attr[:, no_attr_queries] = alter[:, no_attr_queries]
return queried_attr

def obj_with_attributes(input_embeddings, query_embeddings, n_obj, n_part, n_attr):
"""Compute the similarity between object embeddings and query embeddings based on attributes.

This function calculates the similarity score between each pair of object and query embeddings.
The score is computed as the square root of the product of the object score and the geometric
mean of the queried attributes, if any attributes are queried. If no attributes are queried,
the object score is returned as is.
...
"""
vision = input_embeddings[:, :n_obj]
text = query_embeddings[:, n_obj:n_obj + n_attr]
alter = input_embeddings[:, n_obj + n_attr:]
queried_attr = _product_attr(vision, text, alter)
obj_score = (input_embeddings[:, :n_obj] * query_embeddings[:, :n_obj]).sum(dim=1, keepdim=True)
scores = torch.sqrt(obj_score * queried_attr)
return scores

Error
Traceback (most recent call last):
File "<string>", line 17, in test_obj_with_attributes
File "/capture_args.py", line 107, in wrapper
output = func(*args, **kwargs)

^^^^^^^^^^^^^^^^^^^^^
File "/tmp/tmptgi66m5s/paco_query_utils.py", line 62, in obj_with_attributes
queried_attr = _product_attr(vision, text, alter)

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/tmp/tmptgi66m5s/paco_query_utils.py", line 22, in _product_attr
queried_attr = vision * text

~~~~~~~^~~~~~
RuntimeError: The size of tensor a (5) must match the size of tensor b (2) at non-singleton dimension 2

Listing 8. GPT-4 failing to understand the _product_attr helper function used in its completion of obj_with_attributes.

28



R2E

Figure 10. Varying number of dependencies Figure 11. Varying number of context tokens

Figure 12. Varying number of ground truth tokens Figure 13. Varying File usage

Length of retrieval. We compare how the performance of the models is impacted by the length (# tokens) of the retrieval
context. Since we perform dependency-only-context retrieval, we only have the context required to understand the necessary
functions for solving the problem instance. We find that the performance is not strongly correlated with the length of the
retrieval context (Figure 11). This suggests that the choice of the retrieved context is a bigger factor than the length.

COT on R2E-Eval1. We use 0-shot and 2-shot COT to evaluate more enhanced code generation approaches. The following
table describes performance.

Base COT-0-shot COT-2-shot

GPT-3.5-TURBO 48.9 45.8 -
GPT-4 33.2 33 28.8

Table 7. Effect of COT on code generation on a subset of our R2E-Eval1 benchmark

29


