
RethinkMCTS: Refining Erroneous Thoughts in Monte Carlo Tree Search
for Code Generation

Anonymous ACL submission

Abstract001

Tree search methods have demonstrated impres-002
sive performance in code generation. Previous003
methods combine tree search with reflection004
that summarizes past mistakes to achieve it-005
erative improvement. However, these meth-006
ods face significant challenges. First, they007
search directly within the code language space,008
neglecting the underlying reasoning process009
critical for effective code generation. Sec-010
ond, reflection-based approaches merely ac-011
cumulate historical errors in memory without012
providing correct reasoning pathways, mak-013
ing it difficult for subsequent search iterations014
to identify optimal solutions, resulting in de-015
creased search quality. In this work, we pro-016
pose RETHINKMCTS, a framework that sys-017
tematically explores and refines the reasoning018
process for code generation. Specifically, we019
employ MCTS to search for thoughts before020
code generation and integrate MCTS with a021
refinement mechanism called rethink, which022
incorporates fine-grained code execution feed-023
back to refine erroneous thoughts during the024
search. It ensures the search path aligns with025
better reasoning, improving overall search qual-026
ity. Through extensive experiments, we demon-027
strate that RETHINKMCTS outperforms previ-028
ous search-based and feedback-enhanced code029
generation baselines1.030

1 Introduction031

With the impressive capabilities of large language032

models (LLMs), research has increasingly focused033

on enhancing their code generation abilities (Luo034

et al., 2023; Zheng et al., 2023; Gong et al.,035

2024). Code generation is a reasoning task that036

requires multiple attempts and iterative corrections037

to achieve accurate results (Zhou et al., 2025; Bi038

et al., 2024), hence search algorithms demonstrate039

particular promise in this domain, achieving state-040

of-the-art performance (DeLorenzo et al., 2024;041

1Resources are available at
https://anonymous.4open.science/r/RethinkMCTS-D748/.

Reflection

Reflection-based RethinkMCTS

Add to Prompt

Code
Execution

Fe
ed

ba
ck

Code
Execution

Rethink

: Erroneous Node : Refined Node: Erroneous Path : Refined Path

Figure 1: Comparison between reflection-based meth-
ods and RETHINKMCTS. Reflection-based methods
would maintain the error in the path, while RETHINKM-
CTS would refine erroneous thoughts and continue
along a better path.

Zhang et al., 2023; Kulal et al., 2019; Zhou et al., 042

2023). Unlike other reasoning tasks, code environ- 043

ments provide rich execution feedback that can be 044

leveraged to improve results. Previous approaches, 045

such as LATS (Zhou et al., 2023), have effectively 046

combined search with the reflection mechanism, en- 047

abling search trees to summarize past errors based 048

on feedback and store them in memory to enhance 049

subsequent search performance. 050

Despite demonstrating promising results, pre- 051

vious methods still face two key challenges: 1) 052

Insufficient reasoning exploration. Studies, such 053

as chain-of-thought (Wei et al., 2022) and tree of 054

thoughts (Yao et al., 2024), show that explicitly 055

modeling the reasoning process leads to better re- 056

sults. Tang et al. (2023) further highlighted that 057

LLMs are better equipped for semantic reason- 058

ing than symbolic reasoning. However, for code 059

generation, a high-reasoning-demand task (Cook 060

et al., 2018), current work has yet to explore the 061

thoughts (reasoning) behind the generated code. 062

2) Ineffective error correction. Reflection-based 063

approaches merely accumulate historical errors in 064

memory without providing correct reasoning path- 065

ways (Zhou et al., 2023; Shinn et al., 2024), mak- 066

ing it difficult for subsequent search iterations to 067

identify optimal solutions, resulting in diminished 068

1

https://anonymous.4open.science/r/RethinkMCTS-D748/

search quality.069

This paper presents a novel perspective on the070

problem by introducing a direct thought revision071

approach. Previous work (Wang et al., 2024b)072

has established that correct reasoning processes073

lead to correct code, and we leverage this insight074

to achieve accurate code generation through con-075

tinuous refinement of the underlying thought pro-076

cesses. As illustrated in Figure 1, traditional reflec-077

tion mechanisms merely append historical errors078

without actively refining the reasoning trajectory,079

requiring subsequent search algorithms to process080

increasingly lengthy memory traces. Our approach081

directly refines erroneous thoughts, enabling the082

natural emergence of correct reasoning pathways.083

This targeted refinement strategy significantly im-084

proves efficiency by addressing the root causes of085

errors rather than accumulating extensive error his-086

tories.087

In light of this, we develop RETHINKMCTS,088

a thought-search framework for code generation089

that simultaneously searches and refines reasoning090

based on code execution feedback. Specifically,091

RETHINKMCTS begins by employing the MCTS092

algorithm to explore reasoning paths before gener-093

ating code and then generates the code based on094

these reasoning thoughts. After executing the code,095

we perform a block-level analysis on the code and096

construct the verbal feedback. Following this, we097

introduce a refinement mechanism called rethink,098

which makes the LLM refine erroneous thoughts099

based on the feedback. As shown in Figure 1, this100

enables the search algorithm to continue explor-101

ing along corrected paths, ultimately enhancing102

the search tree’s quality. To further guide action103

evaluation in the MCTS search process, we pro-104

pose a dual evaluation approach to ensure effective105

code selection, particularly when public test cases106

alone are insufficient. Extensive experiments not107

only demonstrate the effectiveness of RETHINKM-108

CTS, but also reveal the critical factors enabling109

successful tree search in code generation. Our main110

contributions can be summarized as follows:111

• Reasoning-to-Code Search Framework for112

Code Generation: Our framework employs113

a multi-step thinking process combined with114

code generation using Monte Carlo Tree Search115

(MCTS) to explicitly explore various strategies116

for code generation. A combination of verbal and117

scalar feedback guides the MCTS tree generation.118

To the best of our knowledge, we are the first to119

search and refine the thought process behind code 120

to enhance LLMs on code generation. 121

• Refining Erroneous Thoughts in MCTS: We 122

introduce the rethink mechanism into MCTS 123

to refine erroneous thoughts using detailed ver- 124

bal feedback from code execution, allowing the 125

search to follow higher-quality traces. Differ- 126

ent from reflection-based methods that summa- 127

rize past errors without changing current erro- 128

neous reasoning, our approach directly refines 129

flawed thoughts, ensuring the search proceeds 130

along more optimal trajectories. 131

• Introducing Detailed Feedback and Dual 132

Evaluation for Refinement: Block-level anal- 133

ysis is introduced as the detailed feedback 134

of code execution, guiding the refinement of 135

faulty thought. Additionally, a dual evaluation 136

method—using both public test cases and LLM 137

self-evaluations—is used to ensure effective code 138

selection, particularly when public test cases 139

alone cannot fully assess the code’s correctness. 140

2 Related Work 141

LLMs for Code Generation Large language 142

models (LLMs) have been widely applied and de- 143

veloped in the field of code (Nam et al., 2024; 144

Huang et al., 2023a; Li et al., 2024; He et al., 2024). 145

Research on LLMs for code generation falls into 146

two paradigms: (1) Code-specialized fine-tuning 147

that enhances syntax understanding through tar- 148

geted training (Luo et al., 2023; Li et al., 2023; 149

Fried et al., 2022; Roziere et al., 2023). (2) LLM-as- 150

agent frameworks where models orchestrate code 151

generation (Ishibashi and Nishimura, 2024; Zhang 152

et al., 2024a; Jin et al., 2024). LDB proposed by 153

Zhong et al. (2024) takes the LLM as a debugger 154

and utilizes block-level decomposition to locate 155

bugs. PG-TD proposed by Zhang et al. (2023) 156

utilizes Monte Carlo Tree Search (Browne et al., 157

2012) methods combined with the probabilistic out- 158

put of LLMs to achieve token-level search for code 159

generation. While effective, these approaches ne- 160

glect explicit modeling of the semantic reasoning 161

essential for complex coding tasks—a gap our work 162

addresses. 163

Tree Search-enhanced LLMs Tree search meth- 164

ods can improve the reasoning performance of 165

LLMs by exploring various possible paths (Wang 166

et al., 2024a; Meng et al., 2024; Yuan et al., 2024). 167

By designing different action spaces, LLMs can 168

2

explore at different levels (Zhang et al., 2023; Hu169

et al., 2024; Hao et al., 2023). At the implemen-170

tation level, LATS (Zhou et al., 2023) conducts171

code-space search while maintaining error logs as172

reflective memory for subsequent iterations. TS-173

LLM (Feng et al., 2023) introduces a training-based174

approach with learned value functions to direct de-175

coding trajectories. While these methods success-176

fully enhance the task-solving abilities of LLMs,177

they may not fully harness the potential of tree178

search in code generation tasks. This is largely be-179

cause many of these approaches focus on token- or180

code-level searches, overlooking the deeper reason-181

ing process that is critical for tasks like code gener-182

ation, which require intricate reasoning. Addition-183

ally, the detailed execution feedback provided by184

the code environment has great potential to guide185

the search process, but these methods fall short of186

effectively integrating this feedback into the search.187

In this paper, we focus on leveraging detailed feed-188

back from the code execution environment to guide189

and refine the thought process, thereby improving190

the overall quality of exploration.191

3 Preliminaries192

3.1 Problem Formulation193

We focus on competition-level code generation, fol-194

lowing the setup established by Zhang et al. (2023).195

For a given LLM, the input consists of a problem196

statement P and a set of public test cases Tpub, each197

defined by an input-output pair. The goal is to de-198

velop an inference framework that enables the code199

generation model M to produce the correct code200

C ∼ M(P, Tpub) solving the given problem. To201

rigorously evaluate performance, we maintain hid-202

den private test cases Tpriv that remain inaccessible203

during code generation. The primary evaluation204

metric is the model’s ability to pass these private205

test cases.206

3.2 Block-level Code Analysis207

Executing buggy code in an executor can only pro-208

vide standard error information. If the code runs209

without crashing but produces incorrect outputs,210

there is often little to no error feedback available.211

However, since code is quite structured (Chevalier212

et al., 2007), it is possible to extract detailed execu-213

tion feedback through a more organized analysis.214

We follow previous work by Zhong et al. (2024)215

to get a block-level code analysis.216

In static code analysis, the code could be divided217

into basic blocks (Larus, 1999). A basic block is 218

defined as a linear sequence of code containing a 219

single entry point and a single exit point (Flow, 220

1994; Alfred et al., 2007). We first acquire the 221

control-flow graph (CFG) of the code, and then a 222

public test case is fed into this graph to produce an 223

execution trace of the test, [B1, B2, ..., Bn], where 224

each node within the CFG corresponds to a basic 225

block. We execute these blocks one by one and 226

track all variable state changes in the trace. These 227

blocks and variables are collected and then pro- 228

vided to the LLM to perform a block-level analysis, 229

assessing whether each block is correct or faulty. 230

We show an example of the analysis process in the 231

Appendix C.6. 232

4 RETHINKMCTS 233

Overview RETHINKMCTS is motivated by the 234

need to search and refine the thought process during 235

code generation using feedback from the coding 236

environment, ultimately guiding the LLM toward 237

correct solutions. To accomplish this, we leverage 238

an LLM to generate both thoughts and code, iter- 239

atively refining the reasoning based on execution 240

feedback. We employ Monte Carlo Tree Search 241

(MCTS) as our search algorithm to optimally bal- 242

ance exploration and exploitation. Crucially, we 243

introduce a novel rethink mechanism that utilizes 244

detailed code execution feedback to identify and re- 245

fine erroneous thoughts. This approach enables the 246

search to follow improved reasoning paths, thereby 247

enhancing overall search quality. The framework is 248

shown in Figure 2, and we provide the pseudo-code 249

in Algorithm 1 in the Appendix D. Our design has 250

the following key features: 251

• Tree Search for Thought Process: We employ 252

tree search to explore the thought process of writ- 253

ing code. After multiple reasoning steps, code is 254

generated based on the accumulated thoughts. 255

• Rethink Mechanism: We introduce a rethink 256

mechanism that leverages feedback from the 257

code execution to refine and improve the quality 258

of the reasoning process. 259

• Block-Level Analysis Feedback: We use block- 260

level analysis of the code as the fine-grained feed- 261

back from code execution. 262

• Dual Evaluation: In our evaluation phase, we 263

propose a dual evaluation approach, wherein both 264

public test cases and LLM evaluation are used to 265

3

from typing import List
def has_close_elements(nums: List[float], t: float) ->
bool:
 """ Check if in given list of numbers, are any two
numbers closer to each other than given threshold.
"""

One strategy could be to traverse the array...

Use a nested loop to ...

n = len(nums)
for i in range(n):
 for j in range(i+1, n):
 if nums[i]-nums[j] < t:
 return True
return False Block-level Analysis

Rethink

Execution

Scalar & Verbal Feedback

Selection
Backpropagation
Rethink

Problem Description
Erroneous Thought

Code

Dual Evaluation

LLM EvaluationPublic Test Case

Verbal FeedbackScalar Reward

from typing import List
def has_close_elements(nums: List[float], t: float) ...

Use a nested loop to compare each pair...

Utilize a more efficient data structure...

Code

Code

Utilize a more efficient ...

if len(nums) < 2:
 return False
nums.sort()
for i in range(len(nums)-1):
 if abs(nums[i]-nums[i+1])
<t:
 return True
return False

Problem Description

Code Code

Correct Thought
Dual Evaluation

Figure 2: Overview of RETHINKMCTS. We use MCTS to explore different thoughts before generating code. We
obtain block-level analysis as verbal feedback through a code executor and use the verbal feedback from failed test
cases to refine the thoughts, thereby improving the overall quality of the search tree.

assess the generated code, ultimately helping to266

identify high-quality solutions.267

These key features are integrated into operations268

in RETHINKMCTS, selection, expansion, evalu-269

ation, verbal feedback, backpropagation, and re-270

think.271

Selection In MCTS, the selection step balances272

exploration and exploitation by iteratively choos-273

ing the actions that are most promising for further274

expansion. This process continues until a leaf node275

is reached. Each node is selected based on a score276

derived from the number of visits N(s) and the277

stored value of the state-action pair Q(s, a), where278

the state s is the problem description and prior279

thoughts, and action a represents the new thought280

associated with the node. Every node’s retained281

value Q(s, a) is the maximum reward obtained by282

starting in s and taking action a. For scoring, we283

employ P-UCB (Silver et al., 2017), an enhanced284

version of the UCB algorithm, to compute the over-285

all score for each node:286

P-UCB(s, a) = Q(s, a)+β(s)·p(a | s)·
√

log(N(s))

1 +N(s′)
,

(1)287

where s′ is the state reached by taking action a in s;288

N(s) is the visited times of the node; p(a | s) is the289

probability that thought a is the next thought given290

the problem description and previous thoughts s,291

which is proposed by the LLM agent. β is the292

weight for exploration, which depends on the num-293

ber of visit of s, defined as294

β(s) = log

(
N(s) + cbase + 1

cbase

)
+ c, (2)295

where cbase is a hyperparameter; c is the exploration 296

weight. 297

At each state or node, the selection process 298

chooses the action with the highest P-UCB value, 299

and repeats this process until a leaf node is reached. 300

Expansion After selecting a leaf node, the expan- 301

sion step generates its child nodes to explore differ- 302

ent possible actions. We define the search action 303

space as potential thoughts or strategies for writing 304

the code. To make use of the feedback obtained 305

from code execution, we handle the expansion in 306

two scenarios: 307

• If the current leaf node evaluation has failed pub- 308

lic test cases, the expansion step incorporates the 309

verbal feedback f from these failed test cases 310

into the prompt. The LLM then proposes mul- 311

tiple subsequent thoughts z and assigns each 312

thought a reasonableness score e, as represented 313

by p(a|s) in Eq. (1). The output is based on prior 314

thoughts and the current verbal feedback, i.e., 315

[(z1, e1), . . . , (zk, ek)] ∼ p((z, e)(1···k)|s, f). 316

• If the current leaf node evaluation passes all pub- 317

lic test cases, the expansion step directs the LLM 318

to propose subsequent thoughts without addi- 319

tional feedback, i.e., [(z1, e1), . . . , (zk, ek)] ∼ 320

p((z, e)(1···k)|s). 321

After multiple rounds of expansion, the new node’s 322

state would be the accumulated thought steps from 323

the path to the root. We show an example of the 324

accumulated thought steps in the Appendix C.5. 325

Evaluation The evaluation phase in MCTS es- 326

timates the probability that a given node will suc- 327

4

cessfully complete the task. While some previous328

works refer to this as “simulation” (Zhou et al.,329

2023; Hao et al., 2023)—typically involving pro-330

gression from intermediate to terminal states—we331

evaluate nodes by generating complete code based332

on the current thoughts and assessing this code’s333

quality.334

In code generation, a natural evaluation is to335

use the pass rate of public test cases (Zhang et al.,336

2023) as the reward. However, the limitation of337

this method is that public test cases cover only a338

part of the test set. When multiple code outputs339

pass all the public test cases, some may still fail to340

fully solve the problem, making it difficult to differ-341

entiate between them. To overcome this challenge,342

we propose a dual evaluation approach. Once all343

public test cases are passed, we further instruct344

the LLM to provide a self-assessed comprehensive345

score, vllm, to evaluate the code’s correctness in346

solving the whole problem.347

reward =

{
vtest, if 0 ≤ vtest < 1

a× vtest + b× vllm, if vtest = 1
,

(3)348

where vtest is the pass rate on public test cases; vllm349

is the LLM’s self-evaluation score. a and b controls350

the weight of two parts.351

The reward in this context is a scalar value, used352

to calculate the Q-value at each node and to deter-353

mine the score during the selection phase. However,354

in code generation, the compiler and executor can355

return detailed error messages, and various code356

analysis tools can provide more granular insights357

into the code. These details about the code are358

crucial for making modifications but can not be359

captured in a scalar reward. Therefore, alongside360

the scalar reward, we also integrate verbal feed-361

back.362

Verbal Feedback When the generated code fails363

to pass a public test case, human programmers typ-364

ically diagnose the issue by examining details such365

as variable values during execution. In the context366

of solving code generation tasks with search algo-367

rithms, relying solely on scalar feedback based on368

the pass rate of public test cases lacks detailed infor-369

mation. Therefore, we incorporate verbal feedback370

in the MCTS process. Specifically, as described in371

Sec. 3.2, we perform block-level analysis when the372

code fails a public test case and store the resulting373

information as verbal feedback in the current node.374

This feedback is then utilized in both the expansion375

and rethink phases. 376

Backpropagation In MCTS, backpropagation 377

refers to the process of updating the Q-values of 378

all nodes along the path from the current node to 379

the root node using the rewards obtained from the 380

evaluation. Beyond using scalar feedback to update 381

the values of parent nodes, verbal feedback is also 382

stored in the current leaf node for use in subsequent 383

expansion and rethink phases. 384

Rethink When the code fails to pass a public 385

test case, we can obtain block-level analysis as de- 386

tailed verbal feedback on the execution. How can 387

we leverage such fine-grained feedback to produce 388

correct code? We propose to use this feedback to 389

make the LLM “rethink”, meaning to regenerate 390

the current erroneous thought based on the feed- 391

back to avoid generating the incorrect code. As 392

shown in Figure 2, the leaf node is re-generated 393

by znew ∼ p(z|s, f, zold). It is important to empha- 394

size that we do not regenerate the parent nodes in 395

the trace for two key reasons: 1) The parent nodes 396

have already accumulated rewards over multiple 397

rounds of evaluation from all their child nodes, and 398

regenerating them would invalidate the previously 399

gathered rewards. 2) The parent node has already 400

gone through its own rethink process. This means 401

that either the parent node did not encounter failing 402

public test cases during its evaluation or has already 403

been refined through the rethink process. 404

The advantage of introducing rethink is twofold. 405

From the code generation perspective, rethink re- 406

fines the reasoning process behind writing code, 407

thus would ultimately lead to better code. From 408

the MCTS perspective, it refines the current action 409

or current node. Since the MCTS tree is built in- 410

crementally, improving the quality of the current 411

action allows the LLM to explore more optimal 412

paths in the vast search space, thereby enhancing 413

the overall search quality of the tree. Through the 414

rethink mechanism, we seamlessly integrate the 415

process of refining the reasoning of code genera- 416

tion with the MCTS search process. 417

5 Experiment Settings 418

Datasets We evaluate RETHINKMCTS and base- 419

line methods on two widely used benchmark 420

datasets: APPS (Hendrycks et al., 2021) and Hu- 421

manEval (Chen et al., 2021). The APPS dataset is 422

a huge dataset contains three levels of difficulties: 423

introductory, interview, and competition. Within 424

5

Pass Rate (%) Pass@1 (%)

APPS Intro. APPS Inter. APPS Comp. Average APPS Intro. APPS Inter. APPS Comp. HumanEval Average

GPT-3.5-turbo Base(1) 50.43 40.57 23.67 38.22 29 19 9 70.12 37.07
Base(16) 66.77 62.65 25.5 51.64 45 34 9 81.71 47.84
PG-TD 60.89 50.80 26.50 46.06 40 25 8 76.22 42.67
ToT 62.56 57.97 28.00 49.51 38 25 10 76.22 42.67
LATS 54.06 45.86 21.83 40.58 36 20 7 79.88 41.81
RAP 43.22 43.32 22.83 36.46 21 14 8 71.95 34.69
LDB 56.68 46.78 21.00 41.49 35 22 8 81.09 42.67
Reflexion 53.20 45.58 17.50 38.76 35 21 7 71.95 39.00
RETHINKMCTS 67.09 68.65 29.50 55.08 45 38 13 89.02 52.15

GPT-4o-mini Base(1) 56.56 52.40 35.00 47.98 35 29 16 87.20 48.06
Base(16) 67.79 66.25 38.5 57.51 47 41 21 93.29 56.46
PG-TD 66.97 67.15 39.83 57.98 47 43 23 91.46 56.68
ToT 71.03 67.84 37.17 58.08 52 46 23 92.68 58.84
LATS 69.46 67.65 35.83 57.65 50 45 19 93.29 57.54
RAP 64.24 57.25 37.67 53.05 39 32 20 87.20 50.43
LDB 60.64 60.78 40.33 53.91 40 38 23 90.85 53.87
Reflexion 60.65 56.87 38.00 51.84 40 31 18 90.85 51.29
RETHINKMCTS 76.60 74.35 42.50 64.48 59 49 28 94.51 62.93

Table 1: Performances of RETHINKMCTS and baselines on APPS and HumanEval. RETHINKMCTS achieves the
best performance across all the datasets with the maximum number of rollouts for tree search algorithms being 16.

each difficulty, the problems are randomly dis-425

tributed. Therefore, we elected the first 100 prob-426

lems per difficulty to maintain randomness while427

ensuring balanced coverage, which mirrors sam-428

pling methods used by Zhang et al. (2023). We use429

pass rate and pass@1 as the evaluation metrics for430

code correctness following (Zhang et al., 2023).431

Pass rate is the average percentage of private test432

cases successfully passed by the generated code433

across all problems, and pass@1 measures the per-434

centage of problems where the generated programs435

pass all private test cases (Austin et al., 2021; Chen436

et al., 2021; Dong et al., 2023).437

Baselines To illustrate the effectiveness of RE-438

THINKMCTS, we compare two kinds of code439

generation methods. The first kind is feedback-440

enhanced, which uses the code execution feedback441

to refine codes iteratively: LDB (Zhong et al.,442

2024), Reflexion (Shinn et al., 2024). The sec-443

ond kind is tree search-enhanced methods: PG-444

TD (Zhang et al., 2023), ToT (Yao et al., 2024),445

LATS (Zhou et al., 2023) and RAP (Hao et al.,446

2023). More details can be found in Appendix A.447

Implementation We pick GPT-3.5-turbo and448

GPT-4o-mini as the backbone models to compare449

different algorithms. For search-enhanced meth-450

ods, including RETHINKMCTS, we set the maxi-451

mum number of children of any node to be 3. For452

MCTS-based methods, we set the hyperparameters453

in Eq. (2) cbase to be 10 and c to be 4 following454

previous work by Zhang et al. (2023). And we455

set the a and b in Eq. (3) to be (0.8, 0.2) and we456

compare performances under different settings in457

Sec. 6. We set the maximum number of rollouts458

or simulation times to be 16. For LDB, we set the 459

maximum number of debug times to be 10, as in 460

the original paper (Zhong et al., 2024). 461

6 Results And Analysis 462

Overall Performance We present the overall 463

performance in Table 1, where we can see that 464

RETHINKMCTS outperforms all baseline models 465

across both datasets. Additionally, by comparing 466

them with the original base model, both feedback- 467

enhanced and tree search-enhanced methods show 468

significant performance improvements, demonstrat- 469

ing the effectiveness of exploring different strate- 470

gies and using detailed feedback from code execu- 471

tion. Generally, RETHINKMCTS enhances perfor- 472

mance more significantly on GPT-3.5-turbo than on 473

GPT-4o-mini. This may be because weaker code 474

models benefit more from error correction in the 475

thought process. 476

Ablation Study We conduct ablation studies to 477

remove each of our model’s components, including 478

self-evaluation (w/o selfEval), block-level analy- 479

sis (partial verbal feedback, w/o blockInfo), whole 480

verbal feedback (w/o VF), rethink mechanism (w/o 481

rethink). The results using GPT-3.5-turbo as the 482

backbone model are shown in Figure 3, and the re- 483

sults on GPT-4o-mini are presented in Appendix B. 484

The results demonstrate that each component con- 485

tributes to overall performance, with verbal feed- 486

back showing the most significant impact. This 487

aligns with our design, as the rethink mechanism 488

depends primarily on execution feedback—without 489

this feedback, the model lacks the necessary infor- 490

mation to refine its reasoning effectively. 491

Additionally, we can see that for the HumanEval 492

6

full model w/o selfEval VF w/o blockInfo w/o VF w/o rethink80
83
86
89
92

Hu
m

an
Ev

al 89.1

85.9 86.6 85.4
87.2

full model w/o selfEval VF w/o blockInfo w/o VF w/o rethink30

34

38

42

46

AP
PS

 In
tro

. 45
43 44

39
41

Figure 3: Ablation study of block-level analysis (block-
Info), rethink mechanism, verbal feedback (VF), and
self-evaluation with GPT-3.5-turbo as the backbone.

HumanEval APPS Intro. APPS Inter. APPS Comp.0

20

40

60

80

Pa
ss

@
1

token-level
line-level
code-level
thought-level
RethinkMCTS

Figure 4: Performance comparison between different
search granularity. For advanced models like GPT-3.5-
turbo, it’s better to explore at the thought level.

dataset, block-level analysis significantly impacts493

performance (89.1 −→ 86.6), while its effect on494

APPS is minimal. We attribute this to HumanEval495

having fewer public test cases than APPS (2.8 vs.496

27.52 on average), making detailed test case analy-497

sis essential for the rethink mechanism to correct498

errors in HumanEval. This explains why dual eval-499

uation is critical for HumanEval - the limited test500

cases necessitate LLM-based code reevaluation. Fi-501

nally, the rethink mechanism we proposed signif-502

icantly enhances the results. This improvement503

stems from that rethink enabling the use of fine-504

grained block-level analysis in verbal feedback, ef-505

fectively correcting logical errors in the reasoning506

process.507

Search Granularity Study RETHINKMCTS508

conducts a thought-level search for code. Here, we509

compare the action spaces for MCTS, specifically510

examining 4 levels of search granularity: token,511

line, code, and thought. The experimental results512

with GPT-3.5-turbo as backbone are presented in513

Figure 4, and the results on GPT-4o-mini are pre-514

sented in Appendix B.515

As shown in the figure, the thought-level search516

is more effective in finding viable code. This517

demonstrates that for advanced LLMs like GPT-518

3.5-turbo, exploring the reasoning process is benefi-519

cial (Zhang et al., 2024b; Huang and Chang, 2022).520

Additionally, we observe that token-level searching 521

performs better than line and code-level searching. 522

This is due to the fact that with a limited number of 523

search iterations, token-level searches allow fewer 524

constraints on the early tokens, thus uncovering 525

more possibilities compared to line and code-level 526

searches. Finally, although thought-level search 527

yields the best results among different granularity, 528

its effectiveness is further enhanced in RETHINKM- 529

CTS by introducing detailed feedback and rethink 530

mechanism, making the search over thoughts in the 531

code generation process even more effective. 532

Rethink vs. Reflection In this section, we com- 533

pare rethink and reflection approaches. Our com- 534

parison methodology maintains all other compo- 535

nents of RETHINKMCTS unchanged, with the only 536

difference being the replacement of rethink with re- 537

flection. The experimental results are presented 538

in Table 2. As demonstrated, rethink not only 539

improves search effectiveness compared to reflec- 540

tion but also significantly reduces token consump- 541

tion. This efficiency stems from rethink’s ability 542

to directly modify incorrect thought steps, whereas 543

reflection continuously accumulates error history, 544

leading to excessive token consumption. Further- 545

more, since erroneous steps remain in the search 546

tree with reflection, subsequent searches may con- 547

tinue down incorrect paths, resulting in inferior 548

search performance. 549

Dataset
Reflection Rethink Reflection Rethink

(Pass@1) (Avg. Token Cost)

APPS-Intro. 54 59(↑ 9.2%) 177353 143048(↓ 19.3%)
APPS-Inter. 45 49(↑ 8.9%) 163494 126648(↓ 22.5%)

APPS-Comp. 24 28(↑ 16.6%) 189215 182193(↓ 3.7%)
HumanEval 93.29 94.51(↑ 1.3%) 57027 36678(↓ 35.7%)

Table 2: Comparison between rethink and reflection-
based MCTS approaches. We experiment on RE-
THINKMCTS with other parts remain the same and
only replace rethink with reflection.

Test Time Scaling with Rethink The goal of re- 550

think is to improve the search quality within the 551

same number of rollouts. To validate the effec- 552

tiveness of rethink, we compare the performance 553

between increasing the number of rethink opera- 554

tions and increasing the number of rollouts without 555

applying rethink, while keeping the total number 556

of rollouts consistent. The results are shown in 557

Figure 5. 558

The figure shows that increasing the number of 559

rethink operations and increasing the number of 560

rollouts both enhance performance. This is ex- 561

7

(a, b)
Pass Rate (%) Pass@1 (%)

APPS Intro. APPS Inter. APPS Comp. APPS Intro. APPS Inter. APPS Comp. HumanEval

(0.8, 0.2) 76.6 74.3 42.5 59 49 28 94.5
(1.0, 0.2) 76.9 76.4 43.5 60 53 27 92.7
(1.0, 1.0) 78.8 75.2 40.5 60 54 24 91.5

Table 3: Performance comparison under different reward weights. The (1.0, 0.2) and (1.0, 1.0) configurations make
the nodes that achieve a pass rate of 1.0 on public test cases receive a score higher than 1.0, whereas the (0.8, 0.2)
configuration keeps all node evaluations between 0∼1.

16 25 43 58
rollout number

83.17

86.13

89.10

92.06

95.02

Hu
m

an
ev

al

RethinkMCTS
w/o rethink
ToT
PG-TD

16 25 43 58
rollout number

27.40

34.96

42.52

50.08

57.64

AP
PS

 In
tro

RethinkMCTS
w/o rethink
ToT
PG-TD

Figure 5: Performance comparison between rethink
more times and more rollouts without rethink. rethink
is more effective than increasing rollouts.

pected as more extensive exploration raises the562

probability of finding the correct code. However,563

increasing the number of rethink operations yields564

greater performance gains. This can be attributed565

to two key reasons. From a tree search perspec-566

tive, without the rethink mechanism, erroneous ac-567

tions or nodes would persist in the trace, causing568

the following nodes to follow incorrect reasoning569

paths, which makes it challenging to ensure the570

quality of the entire reasoning trace. From the code571

generation perspective, the rethink mechanism re-572

fines flawed thoughts and get a better thought chain,573

which would finally lead to better codes.574

Method APPS Intro. HumanEval

W/O RETHINK 10.04 48.30
RETHINKMCTS 15.60 53.29

Table 4: The success rate comparison of the searched
codes between with and without the rethink mechanism.

Furthermore, we compare the pass rate on public575

test cases of all the generated codes for the en-576

tire tree, with and without the rethink operation,577

since only public test cases are available during578

the search. The results are presented in Table 4.579

We can see that the rethink operation increases the580

proportion of effective code found in the tree. This581

highlights how refining erroneous thoughts enables582

the tree to focus more on correct paths, leading to583

better outcomes.584

Study on Reward Weights We analyzed the im-585

pact of reward weights in Eq. (3) of Sec. 4, with586

results shown in Table 3. It is evident that (a, b) 587

significantly influences RETHINKMCTS’s perfor- 588

mance, underscoring the importance of LLM self- 589

evaluation. Since self-evaluation rewards apply 590

only when code achieves a perfect pass rate on 591

public test cases, each configuration yields distinct 592

implications. 593

Under the (0.8, 0.2) configuration, the code is 594

given a baseline score of 0.8, and the LLM’s evalu- 595

ation score is used to distinguish between different 596

codes. This allows for situations where the total 597

score of code that passes all public test cases could 598

be lower than that of code with a pass rate below 599

1, but only when the LLM’s self-evaluation score 600

is particularly low. Conversely, configurations (1.0, 601

0.2) and (1.0, 1.0) ensure that code passing all 602

public tests always receives a score exceeding 1.0. 603

While this approach guarantees that final output 604

maintains perfect public test performance, it pre- 605

maturely discards promising reasoning paths with 606

imperfect test results. This limitation explains the 607

poorer performance observed on both datasets un- 608

der these configurations. 609

7 Conclusion 610

We propose RETHINKMCTS, the first framework 611

that searches and refines thoughts for code gener- 612

ation. Unlike previous tree search methods, RE- 613

THINKMCTS explores the reasoning process and 614

incorporates an iterative rethink mechanism to im- 615

prove search quality. Compared to traditional 616

reflection, rethink achieves superior results with 617

lower token cost by guiding search along correct 618

paths. Experiments on APPS and HumanEval 619

datasets demonstrate that RETHINKMCTS outper- 620

forms existing approaches, generating high-quality 621

code through search-and-refinement reasoning. Be- 622

yond code generation, RETHINKMCTS offers a 623

general approach for enhancing task performance 624

through structured reasoning, with potential appli- 625

cations in other LLM domains such as mathemati- 626

cal problem-solving and tool usage scenarios. 627

8

Limitations628

Limited Exploration of Fine-Tuning based629

on Collected Data RETHINKMCTS framework630

generates high-quality data that includes thought631

steps, execution feedback, and code. This data632

could potentially be used to fine-tune an LLM to633

enhance its code generation capabilities. However,634

since our work focuses primarily on the inference635

framework, we leave the fine-tuning exploration636

for future work.637

Generalization to Other Reasoning Tasks Our638

primary contribution lies in developing a search639

framework that integrates code execution feedback640

for refinement. While this approach is effective for641

code generation tasks, it may not generalize well642

to other reasoning domains, such as mathematical643

reasoning, where similarly detailed feedback mech-644

anisms might not be available. Nevertheless, our645

method could potentially be applicable to reasoning646

tasks that involve detailed feedback mechanisms647

comparable to those in code generation.648

Potential Limitations in the Refinement Step649

Our current framework enhances the original650

MCTS approach by introducing a refinement step651

that utilizes detailed feedback from code execu-652

tion. However, we do not introduce a sophisticated653

procedure for determining which specific thought654

step should be refined. Instead, we directly select655

the most recent step that caused the error, since in656

MCTS, the tree develops incrementally, ensuring657

each step eventually has the opportunity to be re-658

fined if it produces incorrect code. Although this659

approach proves effective, integrating a dedicated660

verifier to identify which thought step requires re-661

finement could potentially yield better results.662

Ethics Statement663

In this work, we employ LLMs as both thought664

and code generators. All the dataset we use are665

publicly available and are for research purposes666

only. The LLMs utilized in our study include the667

closed-source model GPT-4o-mini and GPT-3.5-668

Turbo. Ethical considerations related to these mod-669

els, including their training data and deployment,670

are addressed by their respective creators. The671

LLMs in our work are instructed solely to output672

code task-related thought steps, evaluation scores673

and code, and do not generate other free-form text.674

However, we acknowledge that LLMs, including675

those used in our study, may occasionally produce676

improper or harmful content. Such outputs are un- 677

intended and do not reflect the views or intentions 678

of the authors. 679

References 680

V Aho Alfred, S Lam Monica, and D Ullman Jeffrey. 681
2007. Compilers principles, techniques & tools. 682
pearson Education. 683

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten 684
Bosma, Henryk Michalewski, David Dohan, Ellen 685
Jiang, Carrie Cai, Michael Terry, Quoc Le, and 1 686
others. 2021. Program synthesis with large language 687
models. arXiv preprint arXiv:2108.07732. 688

Zhangqian Bi, Yao Wan, Zheng Wang, Hongyu Zhang, 689
Batu Guan, Fangxin Lu, Zili Zhang, Yulei Sui, Hai 690
Jin, and Xuanhua Shi. 2024. Iterative refinement 691
of project-level code context for precise code gen- 692
eration with compiler feedback. arXiv preprint 693
arXiv:2403.16792. 694

Cameron B Browne, Edward Powley, Daniel White- 695
house, Simon M Lucas, Peter I Cowling, Philipp 696
Rohlfshagen, Stephen Tavener, Diego Perez, Spyri- 697
don Samothrakis, and Simon Colton. 2012. A survey 698
of monte carlo tree search methods. IEEE Transac- 699
tions on Computational Intelligence and AI in games, 700
4(1):1–43. 701

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, 702
Henrique Ponde de Oliveira Pinto, Jared Kaplan, 703
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg 704
Brockman, and 1 others. 2021. Evaluating large 705
language models trained on code. arXiv preprint 706
arXiv:2107.03374. 707

Fanny Chevalier, David Auber, and Alexandru Telea. 708
2007. Structural analysis and visualization of c++ 709
code evolution using syntax trees. In Ninth interna- 710
tional workshop on Principles of software evolution: 711
in conjunction with the 6th ESEC/FSE joint meeting, 712
pages 90–97. 713

Michelle Cook, Megan Fowler, Jason O Hallstrom, 714
Joseph E Hollingsworth, Tim Schwab, Yu-Shan Sun, 715
and Murali Sitaraman. 2018. Where exactly are the 716
difficulties in reasoning logically about code? experi- 717
mentation with an online system. In Proceedings of 718
the 23rd Annual ACM Conference on Innovation and 719
Technology in Computer Science Education, pages 720
39–44. 721

Matthew DeLorenzo, Animesh Basak Chowdhury, Va- 722
sudev Gohil, Shailja Thakur, Ramesh Karri, Sid- 723
dharth Garg, and Jeyavijayan Rajendran. 2024. 724
Make every move count: Llm-based high-quality 725
rtl code generation using mcts. arXiv preprint 726
arXiv:2402.03289. 727

Yihong Dong, Jiazheng Ding, Xue Jiang, Ge Li, Zhuo 728
Li, and Zhi Jin. 2023. Codescore: Evaluating 729
code generation by learning code execution. arXiv 730
preprint arXiv:2301.09043. 731

9

Xidong Feng, Ziyu Wan, Muning Wen, Ying Wen,732
Weinan Zhang, and Jun Wang. 2023. Alphazero-like733
tree-search can guide large language model decoding734
and training. arXiv preprint arXiv:2309.17179.735

Data Flow. 1994. Control Flow Analysis. Ph.D. the-736
sis, QUEENSLAND UNIVERSITY OF TECHNOL-737
OGY.738

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang,739
Eric Wallace, Freda Shi, Ruiqi Zhong, Wen-tau Yih,740
Luke Zettlemoyer, and Mike Lewis. 2022. Incoder:741
A generative model for code infilling and synthesis.742
arXiv preprint arXiv:2204.05999.743

Linyuan Gong, Mostafa Elhoushi, and Alvin Che-744
ung. 2024. Ast-t5: Structure-aware pretraining for745
code generation and understanding. arXiv preprint746
arXiv:2401.03003.747

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong,748
Zhen Wang, Daisy Zhe Wang, and Zhiting Hu. 2023.749
Reasoning with language model is planning with750
world model. arXiv preprint arXiv:2305.14992.751

Zhenyu He, Jun Zhang, Shengjie Luo, Jingjing Xu,752
Zhi Zhang, and Di He. 2024. Let the code llm753
edit itself when you edit the code. arXiv preprint754
arXiv:2407.03157.755

Dan Hendrycks, Steven Basart, Saurav Kadavath, Man-756
tas Mazeika, Akul Arora, Ethan Guo, Collin Burns,757
Samir Puranik, Horace He, Dawn Song, and 1 others.758
2021. Measuring coding challenge competence with759
apps. arXiv preprint arXiv:2105.09938.760

Zhiyuan Hu, Chumin Liu, Xidong Feng, Yilun Zhao,761
See-Kiong Ng, Anh Tuan Luu, Junxian He, Pang Wei762
Koh, and Bryan Hooi. 2024. Uncertainty of thoughts:763
Uncertainty-aware planning enhances information764
seeking in large language models. arXiv preprint765
arXiv:2402.03271.766

Dong Huang, Qingwen Bu, Jie Zhang, Xiaofei Xie, Jun-767
jie Chen, and Heming Cui. 2023a. Bias assessment768
and mitigation in llm-based code generation. arXiv769
preprint arXiv:2309.14345.770

Dong Huang, Qingwen Bu, Jie M Zhang, Michael Luck,771
and Heming Cui. 2023b. Agentcoder: Multi-agent-772
based code generation with iterative testing and opti-773
misation. arXiv preprint arXiv:2312.13010.774

Jie Huang and Kevin Chen-Chuan Chang. 2022. To-775
wards reasoning in large language models: A survey.776
arXiv preprint arXiv:2212.10403.777

Yoichi Ishibashi and Yoshimasa Nishimura. 2024. Self-778
organized agents: A llm multi-agent framework to-779
ward ultra large-scale code generation and optimiza-780
tion. arXiv preprint arXiv:2404.02183.781

Haolin Jin, Linghan Huang, Haipeng Cai, Jun Yan,782
Bo Li, and Huaming Chen. 2024. From llms to783
llm-based agents for software engineering: A sur-784
vey of current, challenges and future. arXiv preprint785
arXiv:2408.02479.786

Sumith Kulal, Panupong Pasupat, Kartik Chandra, Mina 787
Lee, Oded Padon, Alex Aiken, and Percy S Liang. 788
2019. Spoc: Search-based pseudocode to code. Ad- 789
vances in Neural Information Processing Systems, 790
32. 791

James R Larus. 1999. Whole program paths. ACM 792
SIGPLAN Notices, 34(5):259–269. 793

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas 794
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc 795
Marone, Christopher Akiki, Jia Li, Jenny Chim, and 796
1 others. 2023. Starcoder: may the source be with 797
you! arXiv preprint arXiv:2305.06161. 798

Yichen Li, Yun Peng, Yintong Huo, and Michael R Lyu. 799
2024. Enhancing llm-based coding tools through 800
native integration of ide-derived static context. In 801
Proceedings of the 1st International Workshop on 802
Large Language Models for Code, pages 70–74. 803

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi- 804
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma, 805
Qingwei Lin, and Daxin Jiang. 2023. Wizardcoder: 806
Empowering code large language models with evol- 807
instruct. arXiv preprint arXiv:2306.08568. 808

Silin Meng, Yiwei Wang, Cheng-Fu Yang, Nanyun 809
Peng, and Kai-Wei Chang. 2024. Llm-a*: Large lan- 810
guage model enhanced incremental heuristic search 811
on path planning. arXiv preprint arXiv:2407.02511. 812

Daye Nam, Andrew Macvean, Vincent Hellendoorn, 813
Bogdan Vasilescu, and Brad Myers. 2024. Using an 814
llm to help with code understanding. In Proceedings 815
of the IEEE/ACM 46th International Conference on 816
Software Engineering, pages 1–13. 817

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten 818
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, 819
Jingyu Liu, Tal Remez, Jérémy Rapin, and 1 oth- 820
ers. 2023. Code llama: Open foundation models for 821
code. arXiv preprint arXiv:2308.12950. 822

Noah Shinn, Federico Cassano, Ashwin Gopinath, 823
Karthik Narasimhan, and Shunyu Yao. 2024. Re- 824
flexion: Language agents with verbal reinforcement 825
learning. Advances in Neural Information Process- 826
ing Systems, 36. 827

David Silver, Thomas Hubert, Julian Schrittwieser, Ioan- 828
nis Antonoglou, Matthew Lai, Arthur Guez, Marc 829
Lanctot, Laurent Sifre, Dharshan Kumaran, Thore 830
Graepel, and 1 others. 2017. Mastering chess and 831
shogi by self-play with a general reinforcement learn- 832
ing algorithm. arXiv preprint arXiv:1712.01815. 833

Xiaojuan Tang, Zilong Zheng, Jiaqi Li, Fanxu Meng, 834
Song-Chun Zhu, Yitao Liang, and Muhan Zhang. 835
2023. Large language models are in-context seman- 836
tic reasoners rather than symbolic reasoners. arXiv 837
preprint arXiv:2305.14825. 838

Ante Wang, Linfeng Song, Ye Tian, Baolin Peng, Dian 839
Yu, Haitao Mi, Jinsong Su, and Dong Yu. 2024a. 840
Litesearch: Efficacious tree search for llm. arXiv 841
preprint arXiv:2407.00320. 842

10

Evan Wang, Federico Cassano, Catherine Wu, Yun-843
feng Bai, Will Song, Vaskar Nath, Ziwen Han, Sean844
Hendryx, Summer Yue, and Hugh Zhang. 2024b.845
Planning in natural language improves llm search for846
code generation. arXiv preprint arXiv:2409.03733.847

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten848
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,849
and 1 others. 2022. Chain-of-thought prompting elic-850
its reasoning in large language models. Advances851
in neural information processing systems, 35:24824–852
24837.853

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,854
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.855
2024. Tree of thoughts: Deliberate problem solving856
with large language models. Advances in Neural857
Information Processing Systems, 36.858

Lifan Yuan, Ganqu Cui, Hanbin Wang, Ning Ding,859
Xingyao Wang, Jia Deng, Boji Shan, Huimin Chen,860
Ruobing Xie, Yankai Lin, and 1 others. 2024. Ad-861
vancing llm reasoning generalists with preference862
trees. arXiv preprint arXiv:2404.02078.863

Kechi Zhang, Jia Li, Ge Li, Xianjie Shi, and Zhi864
Jin. 2024a. Codeagent: Enhancing code gener-865
ation with tool-integrated agent systems for real-866
world repo-level coding challenges. arXiv preprint867
arXiv:2401.07339.868

Shun Zhang, Zhenfang Chen, Yikang Shen, Mingyu869
Ding, Joshua B Tenenbaum, and Chuang Gan. 2023.870
Planning with large language models for code gener-871
ation. arXiv preprint arXiv:2303.05510.872

Yadong Zhang, Shaoguang Mao, Tao Ge, Xun Wang,873
Adrian de Wynter, Yan Xia, Wenshan Wu, Ting Song,874
Man Lan, and Furu Wei. 2024b. Llm as a master-875
mind: A survey of strategic reasoning with large876
language models. arXiv preprint arXiv:2404.01230.877

Lin Zheng, Jianbo Yuan, Zhi Zhang, Hongxia Yang, and878
Lingpeng Kong. 2023. Self-infilling code generation.879
In Forty-first International Conference on Machine880
Learning.881

Li Zhong, Zilong Wang, and Jingbo Shang. 2024.882
Ldb: A large language model debugger via verify-883
ing runtime execution step-by-step. arXiv preprint884
arXiv:2402.16906.885

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman,886
Haohan Wang, and Yu-Xiong Wang. 2023. Lan-887
guage agent tree search unifies reasoning acting888
and planning in language models. arXiv preprint889
arXiv:2310.04406.890

Changzhi Zhou, Xinyu Zhang, Dandan Song, Xiancai891
Chen, Wanli Gu, Huipeng Ma, Yuhang Tian, Mengdi892
Zhang, and Linmei Hu. 2025. Refinecoder: Iterative893
improving of large language models via adaptive cri-894
tique refinement for code generation. arXiv preprint895
arXiv:2502.09183.896

Appendix 897

A Details of Baselines 898

Here, we present more details of the implementa- 899

tion of the baselines: 900

(1) Code Generation Algorithms: 901

• LDB (Zhong et al., 2024): A debugging frame- 902

work that divides the initial code into blocks, an- 903

alyzes each block, and resolves issues by moni- 904

toring changes in block-level variable values. It 905

iteratively optimizes the code by following this 906

process. 907

• Reflexion (Shinn et al., 2024):Iteratively refine 908

the initial code by utilizing historical error data 909

and incorporating insights gained from previous 910

errors. 911

(2) Tree Search-enhanced Methods: 912

• PG-TD (Zhang et al., 2023): A token-level 913

MCTS search method that uses the code’s pass 914

rate as a scalar reward. 915

• ToT (Yao et al., 2024): We apply the Tree-of- 916

Thoughts (ToT) approach to code generation 917

in a manner similar to its application in cre- 918

ative writing. The search process is structured 919

into two distinct phases: thought generation and 920

code generation, with the tree being explored 921

using a breadth-first search (BFS) strategy. 922

• LATS (Zhou et al., 2023): A framework that 923

integrates MCTS with reflection, summarizing 924

past errors and storing them as memory within 925

nodes to assist with future iterations. 926

• RAP (Hao et al., 2023): Leveraging an LLM as 927

the world model to simulate and evaluate search 928

results. 929

B Additional results 930

This section presents some additional experiment 931

results. 932

Ablation Study Here, we present the results of 933

the ablation study using GPT-4o-mini as the back- 934

bone model, as shown in Figure 6. It is clear that 935

the rethink operation and verbal feedback remain 936

the most significant contributors to our model’s 937

performance. Notably, the rethink mechanism ex- 938

hibits even stronger effects with GPT-4o-mini than 939

with GPT-3.5-turbo, likely due to the model’s en- 940

hanced ability to effectively utilize feedback and 941

make refinement. 942

11

Search Granularity Study We present the re-943

sults of the search granularity study using GPT-4o-944

mini as the backbone model, shown in Figure 7. It945

is evident that the differences across granularities946

are smaller on the HumanEval dataset, likely due947

to its relatively low overall difficulty. However, on948

the APPS dataset, the advantage of thought-level949

search becomes much more pronounced, especially950

at the highest “competition” difficulty level. This951

suggests that for more complex problems, explor-952

ing the thought process and reasoning is beneficial.953

full model w/o selfEval VF w/o blockInfo w/o VF w/o rethink90.0
91.2
92.4
93.6
94.8

Hu
m

an
Ev

al

94.5

92.7 92.7
91.5

92.7

full model w/o selfEval VF w/o blockInfo w/o VF w/o rethink50.0

52.4

54.8

57.2

59.6

AP
PS

 In
tro

. 59
57 57

53 52

Figure 6: Ablation study of block-level analysis (block-
Info), rethink mechanism, the verbal feedback (VF) and
self-evaluation with GPT-4o-mini as the backbone.

HumanEval APPS Intro. APPS Inter. APPS Comp.0

20

40

60

80

Pa
ss

@
1

token-level
line-level
code-level
thought-level
RethinkMCTS

Figure 7: Performance comparison between different
search granularity. For advanced model like GPT-4o-
mini, it’s better to explore at the thought level.

Token Consumption Our approach ensures the954

comparison fair by keeping the number of roll-955

outs, i.e., the number of codes generated during956

the search, the same. This is following the pre-957

vious work about tree search in code generation958

PG-TD (Zhang et al., 2023) and LATS (Zhou et al.,959

2023).960

However, one limitation is that our method961

would cost more tokens since we have introduce962

block-level analysis and rethink mechanism. Here963

we present the detailed token usage on GPT-4o-964

mini in Table 5.965

Our increase in token usage is primarily due to966

the introduction of block-level analysis, which in-967

cludes the values of variables before and after each968

block. These values are obtained through code ex-969

ecution, resulting in longer textual inputs to the 970

LLM. However, the feedback makes our model 971

deliver significantly better results. It is essential 972

to the success of the "rethink" mechanism, and it 973

represents an important characteristic in the coding 974

environment (there would be no such detailed feed- 975

back for the math reasoning problem). Therefore, 976

incorporating such feedback is crucial. Like Ope- 977

nAI’s o1 model (which solves one problem with 978

thousands of tokens in the hidden CoT and minutes 979

to take), our primary aim is not to optimize token 980

count or computation time. Instead, the emphasis 981

is on enabling LLMs to generate higher-quality rea- 982

soning processes and achieve superior reasoning 983

outcomes. 984

Self-evaluation vs. Self-generating Unit Tests 985

Given the limited coverage of public test cases, 986

we propose a dual evaluation approach. In this 987

section, we compare it with an alternative approach 988

of self-generating unit tests. In the latter approach, 989

when the code passes the public test cases, we have 990

the LLM generate additional test cases and get a 991

new pass rate on these tests. The combined results 992

serve as a comprehensive evaluation of the code. 993

Experimental results are shown in Table 6. 994

As the table demonstrates, while self-generating 995

unit tests improve the pass rate on test cases, they 996

do not improve the pass@1 metric. This is because 997

self-evaluation directly assesses the code after it 998

passes the public test cases, scoring it based on 999

how well it meets the problem’s requirements. As 1000

a result, it provides a more accurate indication of 1001

the code’s ability to address the entire problem. In 1002

contrast, self-generating unit tests focus on creat- 1003

ing additional tests, which emphasize the test suite 1004

rather than the code itself. There are two poten- 1005

tial reasons for this: 1) Self-generating unit tests 1006

primarily identify patterns in the existing tests and 1007

generate a set of tests that better match the test suite. 1008

This can enhance the pass rate by filtering for code 1009

that matches these patterns, but it doesn’t necessar- 1010

ily identify the mismatch between the code and the 1011

problem requirement. 2) The generated tests may 1012

not always be correct (Huang et al., 2023b), which 1013

can mislead the code’s modification process and the 1014

subsequent search direction, potentially steering it 1015

away from valid solutions. 1016

Multiple Runs To further illustrate our method’s 1017

advantage, we run our method and strong base- 1018

lines for 3 times with different random seeds. The 1019

average performance and the standard derivation 1020

12

APPS Intro. (%) HumanEval

#Input token #Output token Cost($) #Input token #Output token Cost($)

ToT 24799 7156 0.008 11687 7131 0.006
LATS 104634 17472 0.026 12690 7403 0.006
PG-TD 27827 5378 0.007 5959 3759 0.003
LDB 61112 1734 0.010 13161 480 0.002
RETHINKMCTS 123207 17863 0.029 28479 8198 0.009

Table 5: The token consumption comparison. The results represent the average number of tokens consumed per
question.

Pass Rate (%) Pass@1 (%)

APPS Intro. APPS Inter. APPS Comp. APPS Intro. APPS Inter. APPS Comp. HumanEval

Direct Evaluation 76.60 74.34 42.50 59 49 28 94.51
Self-generated Tests 77.32 75.80 47.23 59 44 28 93.29

Table 6: The performance comparison between using Direct Self-evaluation and Self-generating test evaluation.

are presented in Table 7. Noticeably, our model,1021

RETHINKMCTS, consistently demonstrates a sta-1022

ble performance advantage across multiple exper-1023

iments. Additionally, we have noticed that since1024

we set the temperature to 0, the standard deviation1025

between different runs is very small. Therefore,1026

we included the result of only one run in the main1027

body of the text.1028

C Prompts1029

In this section, we present the prompts used when1030

an LLM to perform various operations.1031

C.1 Expansion Prompt1032

First, we discuss the prompts for the Expansion1033

step in the MCTS process. There are two sets of1034

prompts: one set is used to generate new thoughts1035

based on the problem description and previous1036

thoughts when there is no feedback presented in1037

Table 8;1038

The other set is used when the generated code1039

contains errors and verbal feedback is provided.1040

In this case, the LLM uses the verbal feedback1041

to generate thoughts that avoid such errors. We1042

present the prompt in Table 9.1043

C.2 Code Generation Prompt1044

We present the prompt we use to instruct the LLM1045

to generate code following previous thoughts in1046

Table 10.1047

C.3 Evaluation Prompt1048

Besides the normal evaluation on the public1049

test cases, we also develop an LLM-based self-1050

evaluation when the public test cases are all passed. 1051

Here we present the prompts in Table 11. 1052

C.4 Rethink Prompt 1053

When the generated code following some thoughts 1054

doesn’t pass some public test cases, we would use 1055

the block-level analysis to form the verbal feed- 1056

back and use it to refine the previous thought, a.k.a, 1057

rethink. Here we present the prompt for this opera- 1058

tion in Table 12. 1059

C.5 An Example of Accumulated Thoughts 1060

Here we present an example of the thought steps 1061

accumulated in one trace of MCTS tree in Table 13. 1062

1063

C.6 An Example of Verbal Feedback 1064

The verbal feedback we constructed contains the 1065

detailed block-level analysis of the code. Here we 1066

present an example of it. 1067

D Algorithm 1068

We present the detailed procedure of RETHINKM- 1069

CTS in pseudocode in Algorithm 1. 1070

13

Pass Rate (%) Pass@1 (%)

APPS Intro. APPS Inter. APPS Comp. APPS Intro. APPS Inter. APPS Comp. HumanEval

ToT 72.22±1.19 67.10±1.06 40.33±2.58 53.67±1.70 45.00±0.82 22.67±2.05 92.48±0.29
LATS 70.17±0.52 68.66±0.79 36.83±3.61 50.33±0.47 45.67±0.94 18.33±3.30 93.70±0.57
PG-TD 68.85±2.29 68.29±1.48 40.33±2.00 49.00±4.32 44.33±1.25 23.00±1.63 92.28±0.76
RETHINKMCTS 75.36±1.08 74.10±0.98 43.33±1.18 57.33±1.25 50.00±0.82 27.00±0.82 94.31±0.29

Table 7: Comparing RETHINKMCTS with competitive baselines in multiple runs. The mean and standard deviation
of the results are presented.

Prompt for Rethink

{problem statement}
{thoughts}

Above is a problem to be solved by Python program.

* I need you to analyze and provide new thoughts that can lead to the correct solution
↪→ code.

* If there are previous thoughts provided, please follow them and offer more detailed and
↪→ further insights, as a detailed thinking or enhancement for previous ones.

* I need you to output \{width\} possible thoughts. Remember each only contain one
↪→ possible distinct reasoning but all following previous thoughts if there are.

* Please wrap your response into a JSON object that contains keys `Thought-i` with i as
↪→ the number of your thought, and key `Reasonableness` with the Reasonableness of
↪→ each thought, which should between 0~1 and the sum should be 1.

* The JSON should be a **list of dicts**, the dicts are split with comma ','.
Example Answers:
[
{"Thought-1":" We could use the print function to finish the task in one line: print(2 +

↪→ 3)", "Reasonableness": 0.7},
{"Thought-2":" We should calculate the problem by setting a=2+3, and then print(a)",

↪→ "Reasonableness": 0.29},
{"Thought-3":" The problem can't be solved by Python.", "Reasonableness": 0.01}
]

Table 8: Prompt for generating thoughts in search methods.

14

Prompt for Rethink

{problem statement}

{thoughts}
```python
generated code
```
{verbal feedback}
Above is a problem to be solved by Python program.

* I need you to analyze and provide new thoughts that can lead to the correct solution
↪→ code.

* The goal is that the thoughts could lead to the code that not only avoids the current
↪→ error but also solve the problem in a way that handles other potential test cases
↪→ that we haven't encountered yet.

* I need you to output \{width\} possible thoughts. Remember each only contain one
↪→ possible distinct reasoning but all following previous thoughts if there are.

* Please wrap your response into a JSON object that contains keys `Thought-i` with i as
↪→ the number of your thought, and key `Reasonableness` with the Reasonableness of
↪→ each thought, which should between 0~1 and the sum should be 1.

* The JSON should be a **list of dicts**, the dicts are split with comma ','.
Example Answers:
[
{"Thought-1":" We could use the print function to finish the task in one line: print(2 +

↪→ 3)", "Reasonableness": 0.7},
{"Thought-2":" We should calculate the problem by setting a=2+3, and then print(a)",

↪→ "Reasonableness": 0.29},
{"Thought-3":" The problem can't be solved by Python.", "Reasonableness": 0.01}
]

Table 9: Prompt for generating thoughts in search methods.

Prompt for Rethink

Complete the Python program to solve the problem. Remember to contain the complete
↪→ program including all the imports and function header in your response.

Also some thoughts are included that you can refer to and build upon when writing the
↪→ code.

Answer with the code ONLY. No other explanation or words attached!

{problem statement}

{thoughts}

Table 10: Prompt for generating the code following the thoughts in search methods.

15

Prompt for Rethink

{problem statement}

{thoughts}
```python
generated code
```

Above is a Python code problem with the thoughts and code to solve the problem. The code
↪→ could pass all the example test cases, however, it may or may not be completely
↪→ correct.

Please evaluate and return the correctness score in range [-1, 1].

Evaluate the correctness of the code and give only ONE evaluation score.

The code's correctness is whether it can pass all the possible unseen test cases of the
↪→ problem, not just the given ones.

Example Answers:
{"evaluation": -0.5, "explanation": The code is far from correct for solving the problem.}
{"evaluation": 0.1, "explanation": The code is not the correct solution but can pass some

↪→ simple test cases.}
{"evaluation": 0.85, "explanation": The code can pass most test cases while may fail on

↪→ some corner cases.}
{"evaluation": 1.0, "explanation": The generated code is the correct solution that can

↪→ pass all the possible test cases and strange corner cases too.}

Table 11: Prompt for evaluating the thoughts and code.

Prompt for Rethink

{problem statement}
{thoughts}
```python
generated code
```
{verbal feedback}

Based on your previous thoughts and the new experience, please provide a new Thought to
↪→ replace the previous thought. This new thought should avoid the mistake.

Remember that you only need to provide the thought (one or two sentences) to solve the
↪→ problem, not the code.

Table 12: Prompt for Rethink

16

An Example of Accumulated Thoughts

1-Thought:To maximize the number of edges covered by paths between three distinct
↪→ vertices in a tree, we can ... yield a higher number of unique edges.

2-Thought:To enhance the previous thought about leveraging the diameter of the tree, we
↪→ can implement a breadth-first search (BFS) twice: ... maximizes unique edges
↪→ covered when chosen as the third vertex.

3-Thought:To maximize the number of edges covered by paths between three distinct
↪→ vertices in a tree, we can implement a two-pass BFS ... to maximize edge coverage.

4-Thought:To further enhance the previous thoughts on maximizing edge coverage among
↪→ three vertices in a tree, ..., thus ensuring we maximize the unique edges covered
↪→ by the paths connecting the three vertices.

Table 13: An example of accumulated thought steps. The thoughts are from GPT-4o-mini when solving APPS
problem 4000 (1st problem of introductory difficulty):

17

An Example of Verbal Feedback

(Problem and Code)
import math
def largest_divisor(n: int) -> int:

""" For a given number n, find the largest number that divides n evenly, smaller than
↪→ n
>>> largest_divisor(15)
5
"""
for i in range(int(math.sqrt(n)), 0, -1):

if n % i == 0 and i < n:
return i

return 1 # In case n is 1, return 1 as the largest divisor

(Execution Feedback)
The code above fails the given unit test:
assert largest_divisor(15) == 5
Current Execution Output:
3.

(Block-level Analysis)
Here is the code execution trace block by block with the intermediate variable values.

↪→ Please explain the execution FOR EACH BLOCK and answer whether this block is
↪→ correct or not. If not, give an explanation on what is wrong. Please wrap your
↪→ response into a JSON object that contains keys `block` with the name of each
↪→ block, key `correct` with value False or True, and key `explanation` with an
↪→ explanation on the bug.

Example Answers:
{"block": "BLOCK-1", "correct": "True", "explanation": "The block initializes variable

↪→ `a` and `b`."}
{"block": "BLOCK-2", "correct": "False", "explanation": "The block is incorrect because

↪→ the code does not add the two integers together, but instead subtracts the second
↪→ integer from the first. To fix this issue, we should change the operator from `-`
↪→ to `+` in the return statement. This will ensure that the function returns the
↪→ correct output for the given input."}

[BLOCK-0]
n=15
for i in range(int(math.sqrt(n)), 0, -1):
n=15 i=3

[BLOCK-1]
n=15 i=3
if n % i == 0 and i < n:
n=15 i=3

[BLOCK-2]
n=15 i=3
return i
n=15 i=3 _ret=3

LLM-analysis
```json
[

{"block": "BLOCK-0", "correct": "True", "explanation": "The block initializes the
↪→ loop with the correct starting point, which is the integer part of the square root
↪→ of n."},
{"block": "BLOCK-1", "correct": "False", "explanation": "The block checks if 3 is a
↪→ divisor of 15, which is correct, but we are not immediately returning the largest
↪→ divisor. The loop continues, and the next iteration will check smaller values of
↪→ i."},
{"block": "BLOCK-2", "correct": "False", "explanation": "The block incorrectly
↪→ returns 3 instead of the larger valid divisor. Since the loop searches from the
↪→ square root downwards, it should continue checking until it finds the next valid
↪→ divisor, which is 5. The return statement needs to occur outside of this loop and
↪→ only when the largest divisor is found."}

]
```

Table 14: An example of verbal feedback.

18

Algorithm 1 The RETHINKMCTS algorithm.
Require: root: the problem description; c: P-UCB exploration parameter; k: the maximum number of children of any node;

a, b: the reward weights of the pass rate and the LLM evaluation.
1: program_dict = DICTIONARY()
2: verbal feedback f = EMPTY
3: for i← 1, 2, . . . ,max_rollouts do
4: node← root
5: # Selection
6: while |node.children| > 0 do
7: node← P_UCB_SELECT(node.children, c)
8: end while
9: # Expansion

10: next_thoughts← TOP_K(node, k)
11: for next_thought ∈ next_thoughts do
12: next_state← CONCAT(node, next_thought)
13: Create a node new_node for next_state
14: Add new_node to the children of node
15: end for
16: # Evaluation
17: C ← GENERATE(node)
18: vtest, f ← GET_PASS_RATE(p)
19: vllm, f ← GET_LLM_EVAL(p)
20: program_dict[C] = r = a ∗ vtest + b ∗ vllm

21: if vtest = 1 then
22: program_dict[C] = r = a ∗ vtest + b ∗ vllm

23: else
24: program_dict[C] = r = vtest

25: end if
26: # Backpropagation
27: Update and the values of node and its ancestors in the tree with r
28: # Rethink
29: if vtest ̸= 1 then
30: node.thought = RETHINK(node, f)
31: next_thoughts = RETHINK_NEXT(node, k, f)
32: C = RE-GENERATE(node)
33: r = RE-EVALUATION(C)
34: program_dict[C] = r
35: end if
36: end for
37: return program in program_dict with the highest reward

19

	Introduction
	Related Work
	Preliminaries
	Problem Formulation
	Block-level Code Analysis

	RethinkMCTS
	Experiment Settings
	Results And Analysis
	Conclusion
	Details of Baselines
	Additional results
	Prompts
	Expansion Prompt
	Code Generation Prompt
	Evaluation Prompt
	Rethink Prompt
	An Example of Accumulated Thoughts
	An Example of Verbal Feedback

	Algorithm

