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ABSTRACT

Sampling complex distributions is an important but difficult objective in various
fields, including physics, chemistry, and statistics. An improvement of standard
Monte Carlo (MC) methods, intensively used in particular in the context of disor-
dered systems, is Parallel Tempering, also called replica exchange MC, in which
a sequence of MC Markov chains at decreasing temperatures are run in parallel
and can swap their configurations. In this work we apply the ideas of parallel
tempering in the context of restricted Boltzmann machines (RBM), a paradigm
of unsupervised architectures, capable to learn complex, multimodal distributions.
Inspired by Deep Tempering, an approach introduced for deep belief networks,
we show how to learn on top of the first RBM a stack of nested RBMs, using the
representations of a RBM as ’data’ for the next one along the stack. In our Stacked
Tempering approach the hidden configurations of a machine can be exchanged with
the visible configurations of the next one in the stack. Replica exchanges between
the different RBMs is facilitated by the increasingly clustered representations learnt
by deeper RBMs, allowing for fast transitions between the different modes of the
data distribution. Analytical calculations of mixing times in a simplified theoretical
setting shed light on why Stacked Tempering works, and how hyperparameters,
such as the aspect ratios of the RBMs and weight regularization should be cho-
sen. We illustrate the efficiency of the Stacked Tempering method with respect to
standard and replica exchange MC on several datasets: MNIST, in-silico Lattice
Proteins, and the 2D-Ising model.

1 INTRODUCTION

General introduction. Sampling complex energy landscapes is an important goal in many scientific
fields, including, but not limited to computational physics and statistical inference. Following the
introduction of Monte Carlo (MC) methods by Metropolis in the late 40’s, several approaches have
been considered to speed up sampling. Among them cluster-based algorithms employ non-local moves
in the configuration space that are able to update a large, possibly extensive number of microscopic
variables at once (Swendsen & Wang, 1987; Wolff, 1989), but require detailed knowledge of the
energy landscape for the construction of effective clusters. Another improvement of standard MC
methods is parallel tempering(Swendsen & Wang, 1986), which consists in simulating several copies
of the system at higher temperatures, where energetic barriers are easier to cross. Exchanges of
configurations between copies of the system at different temperatures are proposed, resulting in
the original system benefiting from the capability of high-temperature ones to quickly explore the
configuration space, instead of getting indefinitely stuck in energetic valleys.
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Figure 1: (a) RBM architecture, (b) Alternating Gibbs Sampling procedure. (c) Datasets used in the
paper: MNIST digits (0/1 and all), Lattice Proteins (showing example sequences with high probability
Pnat of folding into structures SA and SB , respectively), and 2-dimensional Ising model.

Contributions of this work. We hereafter report on an extension of the ideas of parallel tempering
to data-driven modeling, which we called stacked tempering (ST). We use RBMs, a paradigm of
unsupervised architectures known to be universal approximators of data distributions Roux & Bengio
(2008). The distributions learnt by RBM may be complex and multimodal, and hence difficult to
sample. We propose to learn stacks of nested RBMs, using the representations of a RBM as ’data’
for the next one along the stack. Informally speaking, these RBMs learn more and more simplified
versions of the data distributions, which become increasingly easier to sample with standard MC
dynamics. We then couple the RBMs by allowing them to exchange configurations. These exchanges
are made possible by the nested structure of the stack, i.e. the compatibility between the sizes of the
layers of contiguous RBMs. We show numerically on three data sets, MNIST (LeCun, 1998), in silico
proteins (Shakhnovich & Gutin, 1990), and the 2D Ising model Onsager (1944) that the resulting
ST procedure is much faster than parallel tempering MC for sampling the learnt distributions. In
addition, we present a mathematically tractable setup, in which the exponential (in the dimension of
the data space) speed-up in sampling offered by ST with respect to standard Gibbs sampling is exactly
calculated. We show how this speed up is intimately connected to how representations associated to
data points evolve along the stack of RBM, depending on structural hyperparameters.

Relation to previous work. Neural network based algorithms are now widely applied to sample
complex landscapes Wu et al. (2019); Noé et al. (2019); Gabrié et al. (2021). Our work is inspired by
the deep tempering procedure of Desjardins et al. (2014), introduced to accurately train deep belief
networks Hinton & Salakhutdinov (2006); Hinton et al. (2006); Salakhutdinov & Murray (2008). In
their original work, Desjardins et al. (2014) RBM layers with similar numbers of hidden units are
all trained simultaneously with the aim of improving mixing of the MC chains used in the learning
algorithm Tieleman (2008). Contrary to deep tempering, stacked tempering trains RBMs one at a
time, and is easier to implement in practice. By construction, RBMs at higher and higher depths in
the stack –having fewer and fewer hidden units– represent the data in an increasingly approximate
way; their role is to extract more and more compressed encodings of the data distribution and help
the bottom RBM sample its energy landscape. The idea that deep representations can be used for
better mixing has been previously advocated Bengio et al. (2013) on a strong intuitive basis. To our
knowledge the present work provides the first theoretical analysis (in a minimal, overparametrized
regime) supporting these intuitions, with a precise quantification of the mixing speed up offered by
hierarchical clustering of deeper representations.

2 MODELS AND DATASETS

2.1 RESTRICTED BOLTZMANN MACHINES

Definitions. RBMs are undirected probabilistic models with two layers. A visible layer, which
carries data points, is connected to a hidden (representation) layer through a weight matrix W , see
Fig. 1(a). There are no coupling between units within the same layer. The visible layer includes N
units vi, and the hidden layer is made of M units hµ. For simplicity we hereafter assume vi = 0, 1
(Bernoulli) or ±1 (similar to spins in statistical physics). The RBM model defines the joint probability
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distribution of a visible configuration v = {vi}i=1...N and a hidden configuration h = {hµ}µ=1...M :

P (v,h) =
1

Z
e−E(v,h) with E(v,h)=−

N∑
i=1

M∑
µ=1

Wiµvihµ −
N∑
i=1

gi vi −
M∑
µ=1

cµ hµ , (1)

where Z is a normalization constant known in physics as the partition function, and the parameters cµ
and gi represent biases acting on, respectively, units hµ and vi. The probability distribution P (v) of
a visible configuration v can then be computed by marginalizing over the hidden-unit configurations:

P (v) =
∑
h

P (v,h) =
1

Zv
e−Ev(v) , (2)

where Ev(v) is an effective energy function (see Appendix for an explicit expression).

Alternating Gibbs sampling. The bipartite nature of the RBM interaction graph suggests a simple
sampling algorithm, called Alternating Gibbs Sampling (AGS) and depicted in Fig. 1(b). The basic
observation underlying AGS is that the conditional distribution P (h|v) (respectively P (v|h)) can
be factorized over the hidden (respectively, visible) units. AGS consists of sampling from these two
distributions in an alternated manner, for a large enough number of steps ensuring convergence to the
correct equilibrium distribution P (v,h)). It is important to stress that the simplicity of AGS does
not imply it is efficiently sampling the visible and hidden configuration spaces. AGS is generally
not more efficient than standard Metropolis sampling of P (v) in the visible space, and is unable to
sample distributions with multiple modes separated by large energy barriers (Roussel et al., 2021).

Training. The RBM is parametrized by its weights W = {wiµ}, as well as the biases cµ and
gi considered. All these parameters, generically denoted by Θ must be learned from the training
data, consisting of a set of K samples {vk}k=1...K . This is done through gradient ascent of the
log-likelihood of the data, LL(Θ) = 1

K

∑K
k=1 logP (vk). The generic expression for the gradients is

∂LL

∂Θ
= −

〈
∂E(v)

∂Θ

〉
data

+

〈
∂E(v)

∂Θ

〉
model

, (3)

where ⟨.⟩data denotes the expected value over the data {vk}k=1...K and ⟨.⟩model over the model
distribution P (v). The latter is an average over an exponential number of terms and is thus untractable,
and is estimated in practice with the Persistent Contrastive Divergence algorithm Tieleman (2008).
Note that there is no inconsistency between the capability of training a RBM, which directly relies on
data to initialize the parallel dynamical chains in persistent constrative divergence, and the hardness
of sampling it at later times, by exploring all the modes of the RBM-model distribution. We include
regularization in the training procedure, e.g., by replacing LL(Θ) → LL(Θ)− γ||Θ||2 in the case of
a L2 penalty over the model parameters.

2.2 DATASETS

We consider several datasets to illustrate the performance of our sampling procedure:

MNIST. is a large dataset of 28× 28 pixel images of handwritten digits (LeCun, 1998), see Fig. 1(c).
We binarize pixels (white or black). It is empirically known that transitions between very different
digits, e.g. 0 and 1, are rarely observed when sampling a RBM trained on MNIST with AGS Béreux
et al. (2023); Fernandez-de Cossio-Diaz et al. (2023); Roussel et al. (2021). We test ST on MNIST
and MNIST0/1, the restriction to 0 & 1 digits only.

Lattice Proteins (LP). are synthetic protein models introduced to investigate protein design, that is,
the search for sequences of amino acids likely to fold into a prescribed 3D structure. In the LP models
introduced by Shakhnovich & Gutin (1990) and Mirny & Shakhnovich (2001) 27-long sequences v
fold onto 3× 3× 3 lattice cubes. The probability Pnat(S|v) that a sequence v folds into one of the
≃ 105 distinct structures S is an intricate function of the interactions between nearby amino acids on
the structure, see Appendix for details. We choose two widely apart structures SA and SB considered
by Jacquin et al. (2016), see Fig. 1(d). Our dataset is made of sequences v with high probabilities to
fold in SA or in SB , i.e. such that Pnat(SA|v) > 0.99 or Pnat(SB |v) > 0.99.
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Figure 2: Principle of Stacked
Tempering, illustrated with a stack
of three RBMs. Data are learnt and
generated by the bottom RBM. Al-
ternating Gibbs Sampling is used to
generate visible and hidden configu-
rations in each RBM. At any step t
the configurations vt

n+1 on the visi-
ble layer of the (n+ 1)th RBM and
ht
n on the hidden layer of the nth

RBM can be exchanged, with prob-
ability An(h

t
n,v

t
n+1), see Eq. 4.

2D Ising model. We consider a celebrated model of magnetism, the 2-dimensional Ising model on a
32× 32 grid with homogeneous interactions between closest neighbors Onsager (1944). This model
is hard to sample close to the phase transition temperature, below which the magnetization is non
zero. See Appendix C for more details.

3 STACKED TEMPERING: PROCEDURE AND APPLICATIONS

We now present the Stacked Tempering (ST) procedure, in which a nested set of RBMs recursively
extract relevant collective modes of their predecessors, and, in turn, ease their sampling.

3.1 ARCHITECTURE AND TRAINING

The architecture supporting ST is sketched in Fig. 2. It consists of a stack of RBMs, whose widths
are such that the number Mn of hidden units of the nth RBM equals the number Nn of visible units
of the (n+ 1)th one. This constraint is essential to make communication between RBM possible, as
explained below. In addition, we choose the sizes of visible layers to decrease with the index n, i.e.
Nn > Nn+1, making deeper RBM ‘simpler’ than their predecessors in the stack.

The main RBM, which is trained through maximum likelihood on the data {vk} is the bottom one
(n = 1). After training, a set of hidden representations {hk

1} of dimension M1 are obtained by sam-
pling the conditional probabilities P1

(
h|vk

)
for every k = 1, ...,K. These hidden representations

are then considered as training data configurations {vk
2 = hk

1} for the next RBM, n = 2. This is
possible since the dimension of the visible layer of the second RBM, N2, is equal to M1. After
training of the second RBM a set of representations {hk

2} are drawn, which are then used as ’data’
{vk

3 = hk
2} for training the third RBM. The process is iterated all the way up to the last RBM. In

summary, the RBMs are trained sequentially, starting from the bottom one.

3.2 SAMPLING AND EXCHANGES

Each one of the RBM is sampled with AGS, independently of the others (Fig. 2(a)). In addition, after
each AGS step t, an attempt is made to swap the hidden, ht

n, and visible, vt
n+1, configurations of,

respectively, the nth and (n+ 1)th RBM, see Fig. 2(a). This swap occurs with probability

An(h
t
n,v

t
n+1) = min

(
1,

P v
n+1(h

t
n)P

h
n (v

t
n+1)

P v
n+1(v

t
n+1)P

h
n (h

t
n)

)
, (4)

where Ph
n and P v

n+1 are the marginal distributions of the hidden and visible configurations of the nth

and (n+ 1)th RBM. The definition of An ensures that detailed balance is satisfied. Crucially it does
not depend on the intractable normalizations (Z factors) of P v

n+1, P
h
n , which cancel out.

Due to the decrease of the layer width with depth (Fig. 2(a)) and to weight regularization, each
RBM expresses a coarse-grained approximation of the landscape captured by the previous RBM. The
deepest RBM can therefore be easily sampled, and in turn help the RBM below to undergo non local
moves in its more complex landscape, without getting trapped in valleys.
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Figure 3: Application of Stacked Tempering to diverse datasets. (a,b,c) Cumulative number of
transitions between modes during sampling on MNIST0/1, Lattice Proteins, and 2D Ising model, with
Stacked Tempering (ST), AGS, and Parallel tempering (PT, legend shows number of intermediate
temperatures). Results are averaged over 100 MC chains. For MNIST0/1, a perceptron classifier
is used to determine the sampled digits, and transitions between 0 and 1 are recorded. The x-axis
gives the number of Alternative Gibbs sampling (AGS) steps. Note that different algorithms perform
different numbers of AGS per iteration, e.g., PT performs one AGS per intermediate temperature,
and ST performs one AGS per stacked RBM. Autocorrelation times are reported in Table S5. (d)
shows a representative time-course of the classifier score during sampling, while (e) shows example
sampled digits with AGS (top row) and with ST (below). Digits are displayed every 750 steps and
the two dynamics are initialized with the same configuration. ST generates high-quality digits and
mixes well between the two classes. (f,g) Representative Pnat(v|S) of sampled sequences for the
two structures S = SA, SB , with ST. ST generates high-quality sequences, folding either on SA or
SB (Pnat > 0.9) for over 80% of the samples, and mixes well between the two families of sequences.
(h) For RBMs trained on full MNIST, we count the transitions between each pair of digits, using a
deep convolutional neural network classifier LeCun et al. (1998). The matrix indicates digit pairs
for which at least one transition is observed in average every 105 MC steps for ST (green) and AGS
(black). ST is able to jump quicker between many more pairs of digits than AGS.

3.3 APPLICATION TO MNIST0/1, MNIST, LATTICE PROTEINS, AND 2D ISING MODEL

We now illustrate the efficiency of ST with respect to AGS and Parallel Tempering (PT). In PT the
weights of the RBM are down-scaled by a parameter (called temperature) resulting in a smoother
energy landscape. A series of RBMs at different temperatures are allowed to exchange configurations
to accelerate sampling. Our implemention follows Desjardins et al. (2010); Cho et al. (2010), with
uniform inverse temperatures between 1 (the target distribution) and 0.

MNIST0/1. AGS is stuck in one of the two digit classes, see Fig. 3(a). Conversely, ST with a stack
of four RBMs (N1 = 784, M1 = N2 = 200, M2 = N3 = 100, M3 = N4 = 25, M4 = 10) is
able to frequently jump from one class to the other, see Fig. 3(b). The number of digit switches
increases linearly with sampling time, see Fig. 3(c,d). We also implemented PT with increasing
number of uniformly distributed intermediate temperatures (d). To compare all algorithms on the
same time-scale, the x-axis counts the total number of Gibbs sampling steps on any RBM of the stack
(PT uses one RBM per temperature, while DT uses one RBM in each layer).

MNIST. AGS is able to jump between specific (similar) pairs of digits, such as 0 → 5, or 8 → 3,
as shown in Fig. 3h. Thus AGS takes long indirect paths to sample all digit classes. ST, 4 stacked
RBMs with M1 = 500, M2 = 200, M3 = 50, and M4 = 10 hidden units, is able to jump faster even
many more pairs (even dissimilar) of digits.

Lattice Proteins. Three RBMs are used (N1 = 27× 20 as amino acids can take 20 possible values,
M1 = N2 = 800, M2 = N3 = 50, M3 = 25). ST improves mixing between the sequence subspaces
associated to structures SA and SB and generates high-quality sequences correctly folding either on
one or on the other structure, see Fig. 3(e,f). The mixing properties of ST are much better than the
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ones of AGS and PT (Fig. 3(g)). AGS and PT almost never switch class (hence the plots overlap
around zero).

2D Ising Model. A stack of 3 RBMs is used in ST, with 50, 20 and 1 hidden unit. We count the
transitions in terms of the magnetization sign. ST performs cluster moves of large groups of spins
efficiently, facilitated by the units learning about overall the magnetization of the lattice or patches
of nearby spins Mehta & Schwab (2014); Fernandez-de Cossio-Diaz et al. (2023), as is evident
from inspection of the weights of the stacked RBMs (see Appendix C 1), whereas AGS and PT keep
generating configurations with a fixed magnetization sign (set by the initial configuration). See Fig.
S8 for example trajectories of the magnetization during sampling.

The intuitive picture of gradual simplification of landscapes along the stack of RBMs is supported
by the applications to MNIST0/1 and Lattice Protein structured data. The RBMs along the stacks
progressively cluster the representations of the data, see Appendix Table S1 for the numbers of
distinct representations at various depths. Interestingly the cost of introducing additional temperatures
in PT is not always offset by accelerated exploration. PT has difficulties in presence of separate
modes, a phenomenon akin to critical slowing down in second-order phase transitions, and requires a
large number of temperatures near a critical point Katzgraber et al. (2006).

4 THEORETICAL ANALYSIS

We now seek to characterize the conditions on the data distribution and on hyperparameters allowing
ST to be efficient. To obtain a minimal and analytically tractable framework, we consider the case of
strongly overparametrized RBM, i.e. with layer widths N,M → ∞. Our analysis is organized along
three steps: (1) the determination of the form of the coupling matrix through maximum log-likelihood
training; (2) the identification of the pattern separation/pattern completion regime and phase transition
depending on how much the RBM is regularized; (3) the calculation of the mixing and swapping
times for a stack of two RBMs, and the discussion of when and how much ST accelerates sampling.

4.1 A MINIMAL SETTING FOR ANALYZING RBM DATA-TO-REPRESENTATION MAPPING

We consider the minimal case of K = 2 data configurations, v1 and v2, with dot product x =
v1 · v2/N ; Here, visible and hidden units are chosen to take ±1 values. We learn these two data
points with a RBM, through maximization of the regularized log-likelihood,

LL =
1

2

[
logP (v1) + logP (v2)

]
− Nγ

2

∑
iµ

W 2
iµ (5)

over the weights Wiµ, where γ > 0 is the regularization strength. As shown in Appendix E, in the
limit N,M → ∞ at fixed ratio α = M

N , the trained weights are of the form (after a suitable ordering
of the hidden units)

Wiµ =
1

N
×

{
v1
i−v2

i

1−x W− if 1 ≤ µ ≤ 1−y
2 M ,

v1
i+v2

i

1+x W+ if 1−y
2 M < µ ≤ M ,

(6)

where y = h1 ·h2/M is the overlap between the most likely hidden representations h1,h2 of the data
points v1,v2. The values of W± are chosen to maximize LL, resulting in the stationarity equations:

γW± = tanh

(
1± x

2
W±

)
−m±n±, m± = tanh

(
1± y

2
αW±n±

)
, n± = tanh (W±m±) (7)

These y-dependent weights can be injected back into the LL in Eq. 5, allowing us to determine the
value of y ∈ [−1;+1] maximizing the log-likelihood, hereafter referred to as y∗(x, α, γ).

4.2 REPRESENTATIONAL REGIMES AND PHASE TRANSITION

Our first aim is to understand the data-to-representation mapping, more precisely, how the representa-
tion similarity y∗ is related to the overlap between data points, x. We first find that y∗ is decreasing
with α and increasing with γ at fixed data overlap x, see Fig. 4(a,b). In other words, regularizing
more the RBM, by decreasing either the amplitude of the weights (through higher L2 penalty γ) or
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y∗ vs. α at fixed x = 0.5. (c) Behaviour of y vs. x at fixed γ = 0.015; the dashed lines shows y = x.

the number of hidden units (equivalently, the aspect ratio α), produces more similar representations.
For strong enough regularization, we obtain y∗ = 1, showing that the two representations become
identical though the data points are not.

We then plot y∗ as a function of x in Fig. 4(c). We identify three different regimes. (i) For low–
to–intermediate data overlaps and low regularization (small γ, large α), y∗ is a slowly increasing
function of x, with a slope smaller than unity. The RBM has a tendency to produce representations
less correlated than the corresponding data. This regime can be referred to as pattern separation, a
vocable used in the context of computational neuroscience (Rolls, 2013). (ii) For low–to–intermediate
data overlaps and large regularization (large γ, small α), y∗ is a quickly increasing function of x,
with a slope larger than unity. The RBM has a tendency to produce representations more correlated
than the data. This regime is reminiscent of pattern completion (Rolls, 2013). (iii) For large data
overlaps, i.e. for x > xc, y∗ = 1: the RBM has mapped similar but distinct data onto a unique
representation. This regime can be referred to as clustering and can be seen as an extreme version of
pattern completion. The value of xc as a function of α, γ can be computed as discussed in Appendix
E 5.

The boundary between the pattern separation and completion regimes is a phase transition, clearly
visible in the abrupt change of slope of y∗ in Figs. 4(a,b). Details about the phase transition and
the attached order parameter can be found in Appendix E. This phase transition has a concrete
interpretation in terms of the generative diversity of the RBM. Once the training is done we can use
our RBM to generate ‘new’ data through Alternating Gibbs Sampling. In the pattern completion
regime, whatever the initial configuration v = v1 or v2 on the visible layer, the RBM will generate
the same data distribution. In the pattern separation regime, the ergodicity of the visible configuration
space is broken, and the RBM will generate configurations v similar to the data point present at the
initialization of the MC chain.

As a final note let us emphasize that the representation regimes and phase transition identified here
is not specific to the case K = 2. The analytical calculation of the log-likelihood LL done above
can be extended to any finite K > 2 (while N,M are sent to infinity). Analysis of the extremization
equations for K generic data points shows that, as γ are progressively decreased, a sequence of
clustering-like phase transitions takes place, with more and more similar representations. The number
of distinct representations varies from K to 1 as regularization is made stronger.

4.3 ANALYTICAL CALCULATION OF THE AVERAGE MIXING AND SWAP TIMES FOR A STACK OF
TWO RBMS

We now analytically calculate the speed up offered by ST with respect to AGS in the case of a stack
of two RBM learning K = 2 data points. The two RBM are defined by aspect ratios α1, α2 and
regularization strengths γ1, γ2, see Fig. 5(a). We call x the overlap between the data points. The
overlaps y1 between their representations in the first RBM, and y2 between the representations of
these representations in the second RBM can be determined as functions of the other parameters
according to the previous Sections, with the results y1 = y∗(x, α1, γ1) and y2 = y∗(y1, α2, γ2).

Mixing time with AGS for a single RBM. We consider a single RBM, with data and representations
overlaps equal to, respectively, x and y, aspect ratio α and L2 penalty γ, as in Section 4.1. Extending
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the likelihood of the top RBM.

the statistical mechanics approach that allowed us to determine the value of LL we can compute the
free-energy barrier separating (when y < 1) the two minima of the energy landscape. This barrier,
through Arrhenius law, gives access to the mixing time for switching from one minimum to another,
τcross ∼ eN B(x,α,γ) where the expression the barrier height is

B(x, α, γ) = extr
m−,n−

{
α

(
1− y

2

)
W− m− n− +

1− x

2
H(m−) + α

(
1− y

2

)
H(n−)

}
(8)

with y = y∗(x, α, γ), and where H(m) is the binary entropy function. Detailed calculation can be
found in Appendix G. Note that the time τcross is exponential in N , showing that mixing is extremely
slow, as expected for AGS of a multimodal data distribution (Roussel et al., 2021). This asymptotic
result is in very good agreement with numerical estimates for finite N , see Fig. 5(c).

The result above can be used to estimate the crossing times τ (1)cross and τ
(2)
cross of the two RBMs (when

they are not coupled through replica exchange), with appropriate choices of the parameters.

Swap time between two RBMs. We now study how the two RBMs in Fig. 5(a), which generate,
respectively, configurations {vt

1,h
t
1} and {vt

2,h
t
2}, can occasionally exchange their configurations.

The swap between ht
1 and vt

2 is accepted with probability A1(h
t
1,v

t
2), see Eq. 4. The mean value

⟨A⟩ of this acceptance ratio can be computed, and its inverse is an estimate of the characteristic time
τswap between two replica exchanges (see Appendix F for a detailed calculation), τswap = 1

⟨A⟩ ∼
eα1N(G∗−G0), to leading order in N , where

G∗ = min
m+,m−

G(m+,m−,m+,m−) ≥ G0 = min
m+,m−,n+,n−

G(m+,m−, n+, n−) (9)

and G(m+,m−, n+, n−) is a free energy cost associated to swapping the configurations of the
neighboring RBMs:

G(m+,m−, n+, n−) = Eh
1 (n+, n−)− S(n+, n−) + Ev

2 (m+,m−)− S(m+,m−) (10)

where Eh
1 , Ev

2 are the effective energies of the two RBMs at the contact layer, and S(t+, t−) =
1+y
2 H(t+)+

1−y
2 H(t−) is an entropic contribution. This analytical prediction for τswap is in excellent

agreement with numerical estimates, see Fig. 5(b).

Speed-up of ST with respect to AGS. We now combine the results above to determine the gain
offered by ST over AGS. Sampling the bottom RBM (parameters α1, γ1) with AGS will lead to
a switching time between modes of the order of τAGS ≡ τ

(1)
cross ∼ eN B(x,α1,γ1). By comparison,

8
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sampling with ST will take time

τST = max

(
τ (2)cross, τswap

)
∼ eN max

(
B(y1,α2,γ2), α1(G

∗−G0)
)
. (11)

Results for τST and τAGS are shown in Fig. 5(d,e) for representative parameter values of α2 and γ2.
We observe the existence of an optimal speed up with ST, well below the value of the time required
with AGS. This optimum implements a trade-off between strong compression of the representations -
low acceptance rate of the swap attemps (obtained for instance for small α2 or large γ2 for the top
RBM) and weak compression - high acceptance (for large α2, small γ2).

5 DISCUSSION

In this work, we have first introduced a sampling algorithm for RBM, building upon the ideas of
Parallel and Deep Tempering. Contrary to the latter Desjardins et al. (2014), our Stacked Tempering
(ST) procedure is not a training algorithm for DBNs. By decreasing the number of hidden units with
the depth along the stack, the RBMs encode increasingly simplified versions of the bottom energy
landscape of interest. The fast mixing of high RBMs then propagates down through replica exchanges.
We have shown, on varied datasets coming from machine learning, computational biology and
statistical physics, that ST is more efficient than Alternate Gibbs Sampling and Parallel Tempering,
even with a much larger number of parallel chains.

In the second part of the paper we have provided analytical support to the observed gain in mixing time
offered by ST, based on careful analysis of a stack with two RBMs. To obtain an analytically tractable
framework, we have considered the case of largely overparametrized RBMs. This setup allowed us to
determine a transition between a pattern separation and a pattern completion (clustering) regimes
for the hidden representations, controlled by the hyperparameters of the RBMs. This transition has
profound impact on the average mixing and swapping times, emphasizing how the mapping between
data and representations and the efficiency of sampling with ST are intimately interconnected. Let
us also stress that, despite the minimal nature of this mathematical setting, we were able to obtain
non-trivial analytical results in a field where exactly solvable models are not frequent. We also
observe analogous clustering and separation regimes in real datasets (see Fig. S5, S6, S4).

An apparent limitation of our sampling procedure is the cost of training the stack of RBMs compared
to other methods. In the architectures we consider, deeper RBMs have however less units and less
rugged landscapes, and we find that their training converges faster (see Tables S3 and S4). Thus in
practice, this additional training cost might not be significant. Another limitation of our work is that
our theoretical analysis focuses on a over-parameterized regime with few data points. This setting
allowed us to derive exact analytical expressions that we believe yield insight into more general
situations, but it remains unclear how it could be extended to other settings, for instance, when the
number K of data points is comparable to their dimension N .

Our work could be extended in many directions. First, we could exploit the benefit of most efficient
mixing provided by ST during the learning phase itself. Exchange efficiency across the stack could be
used as a secondary training objective, e.g. through terms such as logA between contiguous RBMs.
These contributions, in addition to the log-likelihoods already considered in the training, would favor
a smoother energy landscape at the bottom of the stack, in a manner akin to regularization. More
generally, one would like to have a better understanding of how to optimize hyper-parameters of
the stack (number of RBM layers, hidden units, regularization). Second, a conceptually appealing
feature of ST is that each single data point is associated to a sequence of representations, one per
RBM in the stack. It is tempting to associate these multi-representations to multiple levels of adaptive
coarse-graining of the data, built by the RBMs in a fully unsupervised way. A better characterization
of these multi-representations would be very interesting. From this point of view, we believe that our
ST procedure, which lies half way between a single RBM and a full DBN could offer a valuable path
to better investigate the properties of deep unsupervised networks. Last of all, ST could be applied to
model physical systems, where it is desired to approximate or sample a known classical or quantum
Hamiltonian Carleo et al. (2019); Carleo & Troyer (2017), or to aid training deep models like DBN.
Acknowledgments. We thank Alessio Giorlandino for useful discussions. JFdCD acknowledges support
from Université PSL AI Junior Fellow program. JFdCD, CR, SC, RM acknowledge support from Grant No.
ANR-19 Decrypted CE30-0021-01.
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