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Abstract
The deployment of language models brings chal-
lenges in generating reliable information, espe-
cially when these models are fine-tuned using
human preferences. To extract encoded knowl-
edge without (potentially) biased human labels,
unsupervised probing techniques like Contrast-
Consistent Search (CCS) have been developed
(Burns et al., 2022). However, salient but unre-
lated features in a given dataset can mislead these
probes (Farquhar et al., 2023). Addressing this,
we propose a cluster normalization method to min-
imize the impact of such features by clustering
and normalizing activations of contrast pairs be-
fore applying unsupervised probing techniques.
While this approach does not address the issue of
differentiating between knowledge in general and
simulated knowledge—a major issue in the liter-
ature of latent knowledge elicitation (Paul Chris-
tiano & Xu, 2021)—it significantly improves the
ability of unsupervised probes to identify the in-
tended knowledge amidst distractions 1.

1. Introduction
The deployment of language models for practical applica-
tions introduces novel challenges, including the potential
creation of untrustworthy or incorrect text (Weidinger et al.,
2021; Park et al., 2023; Evans et al., 2021; Hendrycks et al.,
2021). Specifically, models that are fine-tuned using human
preferences may amplify existing human biases or generate
persuasive yet deceptive outputs (Perez et al., 2022).

Empirical evidence suggests that simulated internal beliefs
or knowledge can be extracted from language model activa-
tions (Li et al., 2022; Gurnee & Tegmark, 2023; Azaria &
Mitchell, 2023; Bubeck et al., 2023). Supervised probing
methods can be employed to extract this knowledge (Alain
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& Bengio, 2016; Marks & Tegmark, 2023) but such methods
require labels, which in some domains may not be provided
correctly due to human biases or because humans simply do
not know the correct label. It may even be critical to avoid
the use of human labels to differentiate between a model’s
true knowledge and its representation of human knowledge.
Motivated by these ideas, unsupervised probing techniques
like Contrast-Consistent Search (CCS) have been developed
to extract the knowledge embedded in a language model
without the need for ground truth labels (Zou et al., 2023;
Burns et al., 2022).

Farquhar et al. (2023) outline current limitations of these
approaches, demonstrating that these unsupervised probes
tend to identify the most salient binary feature, which may
not always correspond to the specific knowledge feature
we seek. For example, in one experiment, one of a pair
of distracting random words is added to each prompt in
a text dataset. After training, unsupervised CCS probes
function as classifiers for these random words, rather than
the intended knowledge feature of the text. In practice, there
may be numerous salient features of which we are unaware,
which can divert an unsupervised probe from identifying the
target feature F , regardless of whether they are correlated
or uncorrelated with F .

To tackle this issue, we propose a cluster normalization
method. Our method follows the usual initial approach of
unsupervised probing of harvesting contrast pair activations,
however we then cluster similar activations and normalize
them separately, thereby eliminating the effect of distracting
salient features. We can then apply any unsupervised prob-
ing method, such as CCS or CRC-TPC (Burns et al., 2022),
to train a probe on these normalized activations. It is of
course crucial to ensure this approach does not inadvertently
eliminate the knowledge feature itself. To prevent this, we
utilize contrast pairs, performing the clustering based on the
average embedding of each pair. Further details on contrast
pairs are provided in Section 2.1.

Probes trained with the original CCS approach achieve an av-
erage accuracy of approximately 0.5 on prompt datasets with
distracting random word features (Farquhar et al., 2023). In
contrast, our clustering method significantly improves this
average accuracy to about 0.77, and to 0.81 for CRC-TPC
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Figure 1. Under the standard CCS approach (left; Burns-Norm), a modified prompt including distracting random words causes all
CCS probes to achieve random accuracy against ground truth labels (GT). When using our approach of cluster normalization (right;
Cluster-Norm), the average accuracy of CCS probes increases significantly.

when using Mistral-7b. Details of our method are described
in Section 3.

2. Background
2.1. Contrast-Consistent Search (CCS)

Contrast-Consistent Search (CCS), as described by Burns
et al. (2022), locates a direction in activation space using
a perceptron that adheres to logical consistency principles.
This is achieved through a loss function designed to ensure
that probabilities for a question-answer pair and its negated
counterpart — a contrast pair — are complementary. This
loss function is optimized in an unsupervised manner, and
in doing so CCS extracts the latent knowledge within large
language models to answer binary questions.

At first, a language model M processes a dataset of textual
contrast pairs (x+

i , x
−
i )

n

i=1, generating contextualized em-
beddings (M(x+

i ),M(x−
i )). Following this, a linear probe

(Alain & Bengio, 2016) is trained to calculate from these
embeddings the probabilities p+ and p−, whether x+

i or x−
i

is true, respectively. The objective function used to train
this probe is given by a sum of two terms:

LCCS =

N∑
i=1

Lconsistency + Lconfidence

Lconsistency =
[
p
(
x+
i

)
−

(
1− p

(
x−
i

))]2
Lconfidence = min

{
p
(
x+
i

)
, p

(
x−
i

)}2
.

The first term, Lconsistency, is motivated by the idea that
the probabilities of a statement and its negation should
sum to one. This ensures logical consistency. The sec-
ond term, Lconfidence, is designed to maximize the infor-
mation extracted by the probe, penalizing cases where
the probabilities for both true and false are the same, at

p(x+) = p(x−) = 0.5. Thus, this term encourages the
probe to be more certain in its outputs.

Intuitively, there are at least two possible directions (fea-
tures) satisfying this loss. The first is the knowledge direc-
tion we seek, and the second is the syntactical difference
between positive and negative prompt templates. To remove
this latter undesired feature, Burns et al. (2022) proceed as
follows. Before training an unsupervised probe, contrast

pair activations are first normalized: M̃(x+
i ) =

M(x+
i )−µ+

σ+ ,
with µ+ and σ+ the mean and standard deviation of the
activations of all positive examples in each contrast pair;
the same normalization procedure is followed for negative
examples, and the unsupervised probe is trained on these
normalized M̃(x±

i ). In this way, CCS removes the most
salient feature of the contrast pair differences: the syntac-
tical difference direction F±. However, as Farquhar et al.
(2023) show, the second-most salient feature may not neces-
sarily be the desired knowledge - an implicit assumption of
the original CCS method. In this work, we take advantage
of normalization to remove other undesired salient features
by including a clustering step.

2.2. Contrastive Representation Clustering

As an alternative to CCS, the method of Contrastive Repre-
sentation Clustering via Top Principal Component (CRC-
TPC) (Burns et al., 2022) separates the normalized contrast
pair differences {M̃(x+

i )− M̃(x−
i )} based on projections

onto their top principal component, i.e., the singular vector
associated with the highest singular value, or the direction
with the highest variance. This is again motivated by the in-
tuition that the second-most salient contrastive feature after
F± - removed by normalization - should be the knowledge
feature F⊤/⊥.
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2.3. Theoretical Background

A salient feature is a direction with high variance in the
data. We are interested in salient features in the contrast
pair differences M̃(x+

i ) − M̃(x−
i ), and we refer to these

as contrastive features.

In this section, we explain (1) why undesired salient con-
trastive features can mislead unsupervised probes, and (2)
how contrastive features can be induced by non-contrastive
ones. The mechanisms of the latter point are illustrated
through an example.

We shall first examine why there is a close link between the
CCS loss described in Section 2.1 and the idea of saliency
i.e., variance. Contrastive features will naturally achieve a
low CCS loss. To see this, consider the variance of contrast
pair differences projected along the feature direction of a
given feature F :

X := FT · M̃(x+
i ), Y := FT · M̃(x−

i ).

V ar(X − Y ) = E(X2) + E(Y 2)︸ ︷︷ ︸
Confidence

−2 · E(X · Y )︸ ︷︷ ︸
Consistency

−(E(X)2 + E(Y )2 − 2 · E(X) · E(Y ))︸ ︷︷ ︸
= 0

In this expanded form, we see that the variance of contrast
pair differences in the direction F captures,

• confidence, with E(X2) + E(Y 2) higher if the mag-
nitude projection along F in either element of a pair is
high,

• and consistency, with −2 · E(X · Y ) > 0 if the pro-
jections of a contrast pair along F have opposing sign.
This also increases with the magnitude of these projec-
tions.

Note that the term −(E(X)2 +E(Y )2 − 2 ·E(X) ·E(Y ))
equals zero under the set-up of CCS, as the normalization
step described above results in E(M̃(x±

i )) = 0, therefore
E(X) = E(Y ) = 0.

Due to this link between confidence, consistency, and
saliency, a probe trained using the CCS loss will favor learn-
ing salient contrastive features. Otherwise, the projections
of a contrast pair onto a feature will be small in difference
or equal, failing to satisfy at least the consistency condition.

As mentioned in Section 2.1, we can describe two features
which intuitively will satisfy the CCS loss:

• F± := F+ − F−, the syntactical difference between
contrast pairs due to the appending of positive and neg-
ative tokens, removed by normalization in the original
CCS method,

• F⊤/⊥ := F⊤ − F⊥, the knowledge feature we seek.

Under our definition, undesired distracting features such as
proxies for knowledge or random words (as in Farquhar et al.
(2023)) should not be contrastive features: their contrast
pair projections should be equal in both examples of each
pair and thus should be ignored by a CCS probe. It is
however the case that these non-contrastive features can
still mislead unsupervised probes by inducing undesired
contrastive features. We describe the mechanism through
which this occurs with the following example:

Let f be some binary function, say the XOR function on
the presence of features, and F1, F2 be any two features.
Suppose that a model represents the feature f(F1,F2) as its
own direction Ff(F1,F2), orthogonal to F1,2

2. Now, suppose
both F1 and F2 are distracting features and assume without
loss of generality that exactly one of them appears in each
pair with probability 1

2 .

We can now write the contrast pair differences as:

M(x+
i )−M(x−

i ) = F+ −F−︸ ︷︷ ︸
F±

+Ff(F+,Fj) −Ff(F−,Fj)︸ ︷︷ ︸
∆±

Fj

± (F⊤ −F⊥︸ ︷︷ ︸
F⊤/⊥

)± (Ff(F⊤,Fj) −Ff(F⊥,Fj)︸ ︷︷ ︸
∆⊤

Fj

)

for j ∈ {1, 2}.

The expected value of these contrast pair differences over
our dataset is:

E(M(x+
i )−M(x−

i )) = F± +
1

2
(∆±

F1
+∆±

F2
) (1)

since F± is constant, ∆Fj
are both constant on half of the

dataset and the two knowledge related terms have uniformly
alternating sign. After centering, we have:

M̃(x+
i )− M̃(x−

i ) =±F⊤/⊥ ±∆⊤
Fj

+ α
1

2
(∆±

F1
−∆±

F2
)

where α = 1 if j = 1 and −1 otherwise.

A probe using any of these remaining terms will have low
CCS loss, with a bias towards the most salient terms. This
is true for any undesirable feature that would remain in the
contrast differences, and it affects both trained CCS probes
and analytical CRC-TPC probes. This work aims to address
this issue by removing unwanted features before training
the probe.

2Evidence of such behavior has been observed with f = XOR
and any two features, as shown in (Marks, 2024).
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3. Method
We begin with a dataset of contrast pairs, {(x+

i , x
−
i )}ni=1.

For each pair, we harvest the intermediate activations of a
language model M, specifically the state of the residual
stream at the final token position at a specific layer, which
we denote as M(x±

i ). We average these activations for

each contrast pair M(xi) =
M(x+

i )+M(x−
i )

2 , and partition
{M(xi)}i using a clustering algorithm, thereby partitioning
the original dataset using its most salient features. Each
cluster is then normalized separately to have zero mean
and unit variance, i.e. for each positive sample x+

i , where

xi belongs to cluster c, M̃(x+
i ) =

M(x+
i )−µ+

c

σ+
c

, where µ+
c

and σ+
c are the mean and standard deviation of all positive

samples in cluster c. The same normalization process is
applied to all negative samples. Finally, an unsupervised
probe can be trained on the contrast pair differences of the
normalized (by cluster) samples. This approach allows the
probe to isolate the desired knowledge feature, ignoring
other distracting features isolated to each original cluster.

Following the notation in Section 2.3, if xi belongs to cluster
c ∈ {0, 1}, a successful cluster normalization will leave:

M̃(x+
i )− M̃(x−

i ) = ±F⊤/⊥ ±∆⊤
Fc

.

This follows from equation 1, however in this case normal-
ization is performed over c only as opposed to the whole
dataset.

A key element to the effectiveness of our method is that
our clustering approach does not erase the effect of the
desired knowledge feature. This is achieved by clustering
the averages of each contrast pair, M(xi). As a result,
clustering only isolates salient non-contrastive features, and
is effectively blind to F± and F⊤/⊥. Normalizing positive
and negative samples separately per cluster aims to ensure
that all contrastive features F ′ related to F± are properly
normalized out - including the leaks from non-contrastive
features F mixing with F±, as explained in Section 2.3.
Note, we do not normalize out similar F ′ resulting from
the mixing of F with F⊤/⊥. Eventually, only contrastive
features related to knowledge are kept.

4. Experiments
In our experiments, we utilize Mistral-7B as our main lan-
guage model, harvesting activations (using the libraries from
(Wolf et al., 2020) and (Nanda & Bloom, 2022)) at the 75th
percentile layer (layer 24 for Mistral-7b) since, from prelim-
inary experiments, we find probes achieve higher accuracies
using the 50th to 90th percentile layers. We also report re-
sults using different language models (Phi-2 and 3, Gemma-
7b, Llama-3-8B, Pythia-6.9b) and layers in the Appendices

to verify the efficacy of our method. Our experiments follow
the same general approach as those reported in Farquhar
et al. (2023), as each of these original experiments set out to
demonstrate the limitations of current unsupervised probing
techniques.

We present results for three experiments below. For the first
and second, we create prompt datasets based on the IMDb
dataset (Jiang et al., 2023; Maas et al., 2011), while for
the third we use the CommonClaim (Casper et al., 2023)
dataset. We report results on a fourth experiment utilizing
the DBpedia dataset (Lehmann et al., 2015) in Appendix A;
this experiment follows on from results reported in Farquhar
et al. (2023), however, we find we are unable to replicate
these results (on three different models) and instead obtain
high accuracies for both the original method of CCS and
our approach using cluster normalization.

Activation clustering is performed using HDBScan, imple-
mented in the scikit-learn library (Kramer & Kramer, 2016),
setting a minimum number of elements in each cluster to 5
and using the Euclidean distance metric. One advantage of
HDBScan over other clustering algorithms (e.g., k-means)
is that the number of clusters does not need to be specified
in advance. In order to examine the variance in probe per-
formance, we report summary statistics of 50 probe fits in
each experiment, and visualize the results from all.

The following experiments generally involve a comparison
between an original prompt and a modified one, to attempt
to induce a bias in an unsupervised probe. Hereon, we refer
to these original prompts as unbiased and modified prompts
as biased. We also refer to normalization over an entire
dataset, as Burns normalization or Burns-Norm (See 2.3 for
more details). We refer to our alternative approach through
clustering as cluster normalization or Cluster-Norm. Unlike
the approach in (Burns et al., 2022), where multiple prompt
templates were used, the study in (Farquhar et al., 2023)
utilized only one prompt template per dataset. Our method
follows the prompt-template setup from (Farquhar et al.,
2023).

Each experiment utilizes a train-test split of 70% for training
and 30% for testing. Importantly, we evaluate our unsuper-
vised probes on a test set where Burns-Norm is applied to
the test set as it was done in (Burns et al., 2022), and not
our cluster normalization. This is because we want probes
to generalize, so if during evaluation they are fed with a
contrast pair that belongs to an entirely different dataset, it
is out of distribution for the clusters found during training.
The probe should be a feature in the unaltered latent space.
Although we do not use cluster norm on the test set for the
aforementioned reason, we do use Burns-Norm for being
able to compare our results with Burns et al. (2022) as this
is what they do for the test set. Farquhar et al. (2023) likely
follow a similar approach, as they mention utilizing normal-
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ization but do not provide any details regarding a train-test
split.

For each experiment, we also report results using the CRC-
TPC method as an alternative unsupervised probing tech-
nique to CCS. Finally, we report an upper-bound by using
the results of the supervised method of logistic regression,
similar as done by (Burns et al., 2022) and later also by
(Farquhar et al., 2023).

4.1. Random Words

In this experiment, we induce a strong syntactical bias in the
data to illustrate the problem of distracting salient features
and demonstrate the necessity of our method for removing
them.

4.1.1. DATASET

Following the approach of Farquhar et al. (2023), we create a
dataset by appending a random word to half of our prompts
and a different random word to the remaining half. The
following is an example of a prompt in a given dataset,
where [label] can be positive or negative and [random word]
is a random word from the NLTK corpus (Bird, 2006). For
each data point we have a different movie review ([review],
e.g. “This is my favorite movie ...”):

Consider the following example: [review],
Between positive and negative, the
sentiment of this example
is [label]. [random_word]

These random words are appended with the aim of dis-
tracting an unsupervised probe. Our cluster normalization
method is able to remove these distractions (See Figure 2).

4.1.2. TRAINING AND RESULTS

We train probes on each dataset with two partitions and
random words, followed by normalization over the entire
dataset as described in Farquhar et al. (2023). Subsequently,
we train an additional set of probes for each setting using
our cluster normalization method (see Section 3). We find
probes trained using our method achieve a much higher
accuracy on average, as shown in Table 1 and Figure 1.

Method Accuracy
Logistic Regression (Upper Bound) 0.94
CRC-TPC 0.51
CRC-TPC w/ Cluster Norm 0.81
CCS 0.53
CCS w/ Cluster Norm 0.77

Table 1. Accuracy results for the random words experiment on the
biased IMDb dataset using Mistral-7b.

These results show that CCS probes trained using our clus-
ter normalization method achieve an average accuracy of
0.77, while CRC-TPC achieves 0.81: both relatively high.
In contrast, probes following the original CCS approach
without clustering tend to perform only slightly better than
random guessing. This indicates that our cluster normal-
ization method effectively identifies and eliminates the un-
wanted contrastive feature from random words (see Section
2.3). Figure 2 visualizes the top principal components of
the contrast pair differences when using two random words,
clearly illustrating the saliency of this distracting feature
under the original setting (left) versus avoiding this problem
through cluster normalization (right). For additional details,
and replications using other models or harvesting activations
at different layers, see Appendix B.1.

4.2. Explicit Opinion

In this experiment, we examine how the inclusion of an
explicit opinion from a fictional character, Alice, affects the
accuracy of unsupervised probes.

4.2.1. DATASET

Following the second experiment in Farquhar et al. (2023),
we create a dataset by inserting the opinion of a fictional
character Alice into each prompt, with the adversarial aim of
distracting an unsupervised probe into predicting the opinion
of Alice. The sentiment of Alice is chosen randomly, and
may or may not align with the ground truth label for a given
sample - an example prompt is shown below:

Alice is an expert at classifying
the sentiment of movie reviews.
Everyone agrees with her,
and they always copy her answers.
Consider the following example: [review]
Alice thinks it is [positive | negative].
What do you think? I think it is [label].

Contrast pairs are constructed by setting [label] to either
“positive” or “negative”.

4.2.2. TRAINING & RESULTS

Our results for CCS are shown in Figure 3. We find that
a modified prompt including Alice’s opinion causes the
majority of our CCS probes to achieve random accuracy
against ground truth labels, when normalizing over the en-
tire dataset (Burns-Norm). Clustering before normalizing
over each cluster addresses this issue - we see that the aver-
age accuracy is closer to that of the control setting, where
the opinion of Alice is not inserted. (PCA visualizations
analogous to those in Figure 2) are found in Appendix 14.)
The reason for cluster normalization achieving higher accu-
racy is that our method removes the distracting feature of the
opinion of Alice, enabling a CCS probe to more accurately
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Figure 2. Visualization of the top three principal components (PCs) of the normalized contrast pair differences M̃(x+
i ) − M̃(x−

i ) -
with normalization performed either over the entire dataset (left) or per cluster (right) - for the random words experiment. Points are
colored orange or blue based on the ground truth label (positive/negative) and shaded light or dark based on the appended random word
(banana/shed). For each subfigure, we compare PCA projections using default prompts, where no random words are appended (left)
against modified prompts, where random words like “banana” / “shed” are appended (right). On the left we note the first PC classifies
the undesired random word feature (light vs dark). On the right, using cluster normalization, we find the first PC classifies the desired
knowledge feature (orange vs blue).

Figure 3. Discovering an explicit opinion with Mistral-7B. Accuracy when using the default prompt (blue) vs a modified prompt with the
opinion of fictional Alice (red), evaluated against the ground truth sentiment labels (dark) and labels of Alice (light). Under the standard
CCS approach (Burns-Norm) the case of the modified prompt, evaluated against ground truth labels (dark red) has most CCS probes
achieve random accuracy. When using cluster normalization, we find this average accuracy increases.
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determine the direction of the desired knowledge feature.
However, for the simpler CRC-TPC method, results differ
only slightly for the two approaches, as can be seen in Table
2.

Method Accuracy
Logistic Regression (Upper Bound) 0.85
CRC-TPC 0.68
CRC-TPC w/ Cluster Norm 0.69
CCS 0.56
CCS w/ Cluster Norm 0.77

Table 2. Accuracy results for the explicit opinion experiment on
the biased IMDb dataset using Mistral-7b.

Interestingly, for Mistral-7B, our results differ from those
in (Farquhar et al., 2023). Using the default normalization
method on the modified dataset, only a few CCS probes are
influenced by the explicit opinion of Alice. However, results
for other models we have tested (detailed in Appendix B.2)
show that the explicit opinion of Alice is indeed often a
distraction for the unsupervised probes using only Burns-
Normalization, though not as significantly as reported in
(Farquhar et al., 2023).

4.3. Prompt Template Sensitivity

Farquhar et al. (2023) outline two key issues with current
approaches to unsupervised probing for knowledge in lan-
guage models. Thus far, we have primarily discussed the
first of these issues: distracting salient features can satisfy
the CCS loss, and trained probes may align with these un-
wanted features instead of the desired knowledge feature.
Our approach of cluster normalization addresses this limita-
tion, as demonstrated in the above experiments.

The second issue - frequently discussed in the eliciting latent
knowledge literature (Paul Christiano & Xu, 2021) - has to
do with the quality of the desired knowledge feature itself,
and how to discriminate between a model’s true knowledge
and that of a simulated agent. Prompting can induce a lan-
guage model into a state of simulating a different quality of
knowledge. For example, performance on difficult question-
answering datasets can be improved by prompting language
models to “provide Professor Smith’s answers to a question”
(Evans et al., 2021): it is implied that Professor Smith is
an intelligent agent highly capable of answering such ques-
tions. In Farquhar et al. (2023), it is observed that current
techniques for unsupervised probing are unable to detect a
model’s capability to answer a given question under such a
prompt change.

In the interest of clearly defining the scope of our cluster nor-
malization method, we carry out an additional experiment
investigating prompt template sensitivity, and demonstrate
that our method also does not give rise to uniform scores

across different prompts. Therefore, our method does not
address this second issue.

4.3.1. DATASETS

We use the CommonClaim (Casper et al., 2023) dataset,
which assesses models’ abilities to identify true or false
statements, with many questions deliberately designed to
trick the model through common misconceptions and traps.

In this experiment the language model is presented with
a question and possible answer, and asked to evaluate the
truth of the answer. In order to evaluate prompt template
sensitivity we consider three settings:

• A default setting, where the model is simply asked
to evaluate the truth of a possible answer to a given
question.

• A professor setting, where the following text is
prepended to each prompt, before asking the question:
“Professor Smith was given the following instructions:
Interpret each claim literally, and as a question about
the real world; carefully research each claim, without
falling prey to any common myths; and reply ‘I have
no comment’ unless you are completely certain of the
answer. Here are the Professor’s responses:”

• A literal setting, where the first and last phrase of
the above text are removed, to investigate whether the
invocation of a specific character is important.

An example prompt in this set-up is shown below:

Professor Smith was given...
Question: [question]
Answer: [answer]
Is this answer true or false?

Contrast pairs are constructed by appending either “True”
or “False” to each prompt.

4.3.2. TRAINING AND RESULTS

Each question is presented with a possible answer (our
dataset contains an equal random split of true and false
answers) under each of the three settings: default, literal,
and professor. Three sets of unsupervised probes are then
trained, one for each setting, and are scored on their ability
to identify a feature corresponding to ground truth labels.
We compare performance of normalizing over the entire
dataset, as in Burns et al. (2022), to our cluster normaliza-
tion approach.

CCS probe accuracies are visualized in Figure 4. We see
that in the default (blue) setting, the variance in probe ac-
curacy is slightly higher than the literal (red) or professor
(green) settings. Indeed, this difference is also clear when

7



Cluster-norm for Unsupervised Probing of Knowledge

Figure 4. Variation in probe accuracy when investigating prompt template sensitivity using the CommonClaim dataset, for Mistral-7B. In
the default setting (blue), when compared to the literal (red) and professor (green) settings, we see a slightly more varied spread in probe
accuracy, regardless of the use of cluster normalization.

we examine the performance of CRC-TPC, shown with the
average performance of all probing methods in Table 3.

Default Literal Professor
Logistic Regression 0.81 0.81 0.81
CRC-TPC 0.66 0.79 0.79
CRC-TPC w/ Cluster-Norm 0.66 0.79 0.79
CCS 0.66 0.73 0.76
CCS w/ Cluster-Norm 0.65 0.74 0.76

Table 3. Average accuracy of different probing techniques when
investigating prompt template sensitivity using the CommonClaim
dataset, for Mistral-7B. For all unsupervised probing methods we
see a lower accuracy in the default prompt setting when compared
to the other two, regardless of the use of cluster normalization.
Logistic regression is included as an upper-bound.

Notably, these findings remain regardless of the use of clus-
ter normalization, for both CCS and CRC-TPC. Cluster
normalization offers no concrete benefit here, as there are
no distracting features to be removed. Rather, the knowl-
edge feature itself exhibits different qualities due to the
prompt.

This experiment illustrates when cluster normalization is
and is not helpful. Cluster normalization offers a solution
to the issue of distracting features, but does not yield a
method of unsupervised probing which is robust to prompt
changes i.e., differentiation between general knowledge and
simulated knowledge. Experimental results using an alter-
native dataset (TruthfulQA (Evans et al., 2021)), as well as
different language models, can be found in Appendix B.3.

5. Related Work
It has been shown that language models develop internal
representations of the world (Li et al., 2022), with individ-
ual concepts often encoded as linear directions in activation
space (Elhage et al., 2022; Nanda et al., 2023; Burns et al.,
2022; Marks & Tegmark, 2023). Language models can also
output false information, even if the encoded knowledge in

the activations seems to indicate a correct internal repre-
sentation of the information (Evans et al., 2021; Azaria &
Mitchell, 2023; Campbell et al., 2023). We seek to elicit
this latent knowledge (Christiano et al., 2022) in an unsu-
pervised manner. In recent years several methods have been
proposed (Burns et al., 2022; Belrose et al., 2023; 2024; Zou
et al., 2023; Li et al., 2024), although unsupervised methods
can be subject to undesirable biases, as shown by Farquhar
et al. (2023). They demonstrate that unsupervised probing
techniques, such as those developed in Burns et al. (2022),
often identify the most salient features in a dataset, as op-
posed to knowledge only. These features may not always
align with the specific knowledge feature of interest, as de-
scribed in Section 3. We provide theoretical explanations
for some of these issues, and propose a method to eliminate
them.

The work we cite in the introduction and background sec-
tions focuses on finding a general linear representation of
knowledge in the latent space of a language model. While
we focus on unsupervised approaches, most work concen-
trates on supervised ones (Christiano et al., 2022; Marks
& Tegmark, 2023). This body of work is part of a more
general field of research that aims at ensuring truthfulness
of language models, by making sure that what they answer
is actually what they believe or follows from reasoning e.g.,
working with quirky language models or using chain-of-
thought reasoning (Turpin et al., 2023; Lyu et al., 2023;
Radhakrishnan et al., 2023; Mallen & Belrose, 2023).

6. Discussion and Conclusion
In this study, we address significant challenges associated
with the unsupervised probing of knowledge in language
models. The primary issue tackled is that of distracting
salient features that can mislead the probing process. Our
cluster normalization technique shows promising results
in effectively isolating and minimizing the impact of such
distractions, thereby enhancing the performance of unsuper-
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vised probes. Our results demonstrate that without proper
normalization, probes tend to align with the most salient
features present in the dataset, which are not necessarily
related to the target knowledge feature. This observation
mostly aligns with findings from previous studies (Farquhar
et al., 2023), which showed that unsupervised probes are
prone to capturing irrelevant features when such features
are salient. However, in general, our results do not show as
pronounced an effect as (Farquhar et al., 2023) suggested
for the standard CCS method. This observation is espe-
cially true for the experiments detailed in Section 4.2 and
Appendix A). Nonetheless, through cluster normalization,
we provide a promising method to mitigate the issue of dis-
tracting salient features by identifying these features and
ensuring that they are canceled out during the training of the
probe. This normalization allows the probe to focus more
accurately on the intended knowledge feature.

7. Limitations
Our study also highlights limitations of current probing tech-
niques that are not addressed by our method. Specifically,
as noted by Farquhar et al. (2023), we find that prompting
techniques which can induce a language model into simulat-
ing a different quality of knowledge by simulating an agent
can still affect our unsupervised probe performance. This
is a critical limitation, as we specifically want to elicit the
knowledge of the model, not that of some simulated entity.
Addressing this limitation is another significant challenge
for the research community, as it requires an investigation
into the question of whether a language model’s knowledge
as its capacity to answer a given question under any prompt
differs from simulated knowledge, and whether such a differ-
ence could be exploited to increase the reliability of probing
algorithms. These limitations are studied in Mallen & Bel-
rose (2023), where the context-dependence of knowledge
probes is measured.

Another potential limitation of our method is that, as men-
tioned in Section 3, it relies on the fact that the mean of
each pair of activations contains no information related to
knowledge, which seems to be the case in practice but may
need to be further investigated.

Further research is also needed to explore the effect of the
choice of basis on probing algorithms, using e.g. the Local
Interaction Basis developed by Bushnaq et al. (2024) or over-
complete bases given by dictionary learning (Cunningham
et al., 2023; Braun et al., 2024).
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A. Implicit Opinion

Figure 5. Discovering an implicit opinion for Mistral-7B. Biased (red) and unbiased (blue) for company (dark) and non-company (light)
data. In contrast to the findings in Farquhar et al. (2023), we find that most CCS probes in all settings perform with high accuracy.

In this section, we discuss an additional experiment from Farquhar et al. (2023) that we are unable to replicate, achieving
comparably high outcomes using both the original CCS method and our approach with Cluster-Norm.

In practical future use-cases of unsupervised probing, it is unlikely that distracting salient features will be present as explicitly
as in Sections 4.1 and 4.2. In this experiment, the character of Alice is included and her opinion (acting as the distracting
feature) is implied rather than explicitly stated. In Farquhar et al. (2023) it is demonstrated that this distracting feature is
frequently selected by CCS probes. We investigate the use of cluster normalization to address this issue.

A.1. Dataset

We use the DBpedia topic classification dataset (Lehmann et al., 2015) to construct a task: the language model must identify
the correct topic of a given text sample, given two answer choices. An example prompt from this task is shown below:

Alice answers questions about the
topic of text passages.
Example: [text sample]
Choice 1: [choice 1]
Choice 2: [choice 2]
Alice says "Choice [choice]

Contrast pairs are constructed by changing the value of [choice] to 1 or 2.

In order to convey Alice’s implied opinion, few shot examples are included in the prompt, in a biased and unbiased (as a
control) manner. In the latter case, the correct choice is always given in few shot examples. In the former, Alice is shown to
always choose incorrectly when the correct label is “company”. A specific few shot example used in this biased setting is
shown below:

Example: Thai Beverage is a large
drinks company in Asia.
Choice 1: album
Choice 2: company
Alice says "Choice 1". Even though
the text was about a company, Alice
gave the other answer to avoid
saying company. Alice always says
the wrong answer when the topic of
the text is company, because she
doesn’t like capitalism.
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Under this experimental setting, should Alice’s biased implicit opinion act as a distracting feature for a CCS probe, we
would notice a drop in probe accuracy for the correct answer in the biased setting, specifically on questions with the correct
answer “company”. For further details on this experiment, including the exact few-shot prompts used, see Farquhar et al.
(2023).

A.2. Results

Figure 6. PCA visualizations for the implicit opinion experiment for Mistral-7B. In both the unbiased (left) and biased (right) settings,
we find that the first principal component can split the data relatively easily into two clusters, representing when the correct choice is 1
(orange) and when the correct choice is 2 (blue).

For CCS, we examine probe accuracy in four different settings: biased and unbiased, each on either questions where the
correct answer was “company” and questions where the correct answer was not “company”.

Our results, shown in Figure 5, differ from those in Farquhar et al. (2023) in a few ways. We find that generally speaking,
CCS probes in all settings of this experiment perform with high accuracy, notably including the biased setting on “company”
data, even when using the original CCS method (Burns normalization). A small number of probes achieve roughly random
accuracy, but importantly, we find that no probes in the biased setting on “company” data achieve (close to) zero accuracy.
In other words, the feature of Alice’s implied anti-company opinion is never selected by our CCS probes.

The technical reasoning for this is clarified when visualizing the harvested activations, projected onto their first three principal
components, as shown in Figure 6. We see, in both the unbiased and biased cases, that the first principal component’s
projection can classify activations into those where the correct choice is 1 (orange) and those where the correct choice is 2
(blue) with relative ease. This is reflected in the performance of CRC-TPC on these data, shown in table 4.

Setting Company Non-company
Biased 1.00 1.00
Unbiased 1.00 0.96

Table 4. CRC-TPC performance for the implicit opinion experiment. In Figure 6 we see the first principal component splits correct
answers relatively cleanly, so high accuracy here is unsurprising.

The question still remains as to the reason for the differing results here, when compared to those in Farquhar et al. (2023).
We believe the most likely reason is model size: while we report results using Mistral-7B, Farquhar et al. (2023) make use
of Chinchilla 70B: a much larger model. The PCA visualizations in Figure 6 show that at our model size, the feature of
Alice’s biased opinion is not salient i.e., it is not represented by the model as cleanly as the “correct choice” feature, and it
is for this reason that our CCS probes never select the implicit opinion feature. Regardless, this results in an inability to
compare the original CCS method with cluster normalization.
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B. Additional Results
In addition to Mistral-7B, the random word experiment and explicit opinion experiment is repeated for the following models:
Gemma-7b, Phi-2 and 3, Llama 3 8B and Pythia-6.9b-v0. We harvested activations at four different points: the 25th
percentile layer, 50th, 75th and the last layer. Unbiased examples correspond to probes trained on the original prompts,
while biased examples correspond to probes trained on the modified prompts.

B.1. Random Words

The results for the additional models and layers are comparable to those of Mistral-7b at the 75th percentile layer. Figure 7
shows the average results across all models, including Gemma-7b, Phi-2 and 3, Llama 3 8B, Pythia-6.9b-v0, and Mistral-7b.
For the biased prompt-template dataset, unsupervised methods using Cluster-Normalization do usually perform better than
those using the standard Burns-Normalization. Results can be found in figures 8, 9, 10, 11, 12 and 13.

B.2. Explicit Opinion

Figure 14 shows a PCA visualizations of contrast differences without our cluster normalization, as figure 2.

The results for the additional models and layers are comparable to those of Mistral-7b at the 75th percentile layer. Figure 15
shows the average results across all models, including Gemma-7b, Phi-2 and 3, Llama 3 8B, Pythia-6.9b-v0, and Mistral-7b.
For the unbiased and especially the biased prompt-template dataset, unsupervised methods using Cluster-Normalization
tend to outperform those that use standard Burns-Normalization. However, the performance gap between these two methods
is smaller compared to the random word experiment. Moreover, in our work, the standard CCS using Burns-Normalization
appears to perform better on the biased dataset than reported by Farquhar et al. (2023) for the different models and layers.
The individual results for the various layers and models are shown in the figures: 17, 18, 19, 20 and 21.

B.2.1. VIOLIN PLOTS — 75TH PERCENTILE LAYER

Additional violin plots are displayed in the following figures: Llama-3-8b in Figure 23, Phi-3 in Figure 24, Phi-2 in Figure
25, Gemma-7b in Figure 26, and Pythia-6.9b in Figure 27.

B.3. Prompt Template Sensitivity

In Farquhar et al. (2023) an analogous experiment investigation prompt template sensitivity is performed using the
TruthfulQA (Evans et al., 2021) dataset. After a manual inspection of this dataset we feel the inclusion of numerous
ambiguous questions casts doubt on experimental results, and for this reason we perform the experiments in Section 4.3
using the CommonClaim (Casper et al., 2023) dataset instead. Here, we repeat these experiments using TruthfulQA to allow
for a direct comparison to the results in Farquhar et al. (2023).

Analogous results to those in Figure 4 when performed instead on the TruthfulQA dataset are shown in Figure 34. We
note a high variance in probe accuracy in all settings, and therefore feel these experimental results do not lead to any clear
conclusions.

We thoroughly verify these results by repeating these experiments when harvest contrast pair activations at the 25th percentile,
50th percentile, and last layer for Mistral-7B, as well as two additional models: Llama-3-8B and Phi-2. These results are
visualized in Figures 28 to 30.

We additionally repeat these layer-by-layer experiments, again using the same two additional models, for the experiments
outlined in Section 4.3 using the CommonClaim dataset. Results are visualized in Figures 31 to 33.

We present results on TruthfulQA for Mistral-7B in figure 34, following the exact same procedure as in the main body for
CommonClaim (Figure 4). We then show a PCA visualization of contrast differences for CommonClaim in figure 35.
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Figure 7. Mean accuracy of Logistic Regression, CRC and CCS probes averaged across all models on original templates (up) and biased
ones (down) for the random word experiment.
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Figure 8. Mean accuracy of Logistic Regression, CRC and CCS probes on Llama-3-8B on original templates (up) and biased ones (down)
for the random word experiment.
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Figure 9. Mean accuracy of Logistic Regression, CRC and CCS probes on Mistral-7B on original templates (up) and biased ones (down)
for the random word experiment.

17



Cluster-norm for Unsupervised Probing of Knowledge

Figure 10. Mean accuracy of Logistic Regression, CRC and CCS probes on Phi-2 on original templates (up) and biased ones (down) for
the random word experiment.
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Figure 11. Mean accuracy of Logistic Regression, CRC and CCS probes on Phi-3 on original templates (up) and biased ones (down) for
the random word experiment.
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Figure 12. Mean accuracy of Logistic Regression, CRC and CCS probes on Gemma-7b original templates (up) and biased ones (down)
for the random word experiment.
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Figure 13. Mean accuracy of Logistic Regression, CRC and CCS probes on Pythia-6.9b-v0 original templates (up) and biased ones (down)
for the random word experiment.

Figure 14. Visualization of the top three PC of M̃(x+
i )− M̃(x−

i ) - without per cluster normalization. Left : activations from the default
prompts. Right: activations from prompts biased with Alice’s opinion. TP/N : true positive/negative label, AP/N : Alice’s positive or
negative opinion.
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Figure 15. Mean accuracy of Logistic Regression, CRC and CCS probes on LLama-3-8b on original templates (up) and biased ones
(down) for the explicit opinion experiment.
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Figure 16. Mean accuracy of Logistic Regression, CRC and CCS probes on LLama-3-8b on original templates (up) and biased ones
(down) for the explicit opinion experiment.
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Figure 17. Mean accuracy of Logistic Regression, CRC and CCS probes on Mistral-7b on original templates (up) and biased ones (down)
for the explicit opinion experiment.
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Figure 18. Mean accuracy of Logistic Regression, CRC and CCS probes on Phi-2 on original templates (up) and biased ones (down) for
the explicit opinion experiment.
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Figure 19. Mean accuracy of Logistic Regression, CRC and CCS probes on Phi-3-Instruct Mini on original templates (up) and biased
ones (down) for the explicit opinion experiment.
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Figure 20. Mean accuracy of Logistic Regression, CRC and CCS probes on Gemma-7b on original templates (up) and biased ones (down)
for the explicit opinion experiment.
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Figure 21. Mean accuracy of Logistic Regression, CRC and CCS probes on Pythia-6.9b-v0 on original templates (up) and biased ones
(down) for the explicit opinion experiment.
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Figure 22. Mean accuracy of Logistic Regression, CRC and CCS probes averaged across all models on original templates (up) and biased
ones (down) for the explicit opinion experiment.

Figure 23. Llama-3-8b
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Figure 24. Phi-3 Mini

Figure 25. Phi-2 - Compared to Phi-3 and the other models, Phi-2 seems to be an outlier, where probes using Cluster-Norm perform worse
than those using Burns-Norms. Possibly, compared to the others, the model is generally less capable.

Figure 26. Gemma 7b
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Figure 27. Pythia 6.9b

Figure 28. Mean accuracy of Logistic Regression, CRC, and CCS probes over 50 probes, using Mistral-7B, for each prompt template
described in Section 4.3.

Figure 29. Mean accuracy of Logistic Regression, CRC, and CCS probes over 50 probes, using Llama-3-8B, for each prompt template
described in Section 4.3.
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Figure 30. Mean accuracy of Logistic Regression, CRC, and CCS probes over 50 probes, using Phi-2, for each prompt template described
in Section 4.3.

Figure 31. Mean accuracy of Logistic Regression, CRC, and CCS probes over 50 probes, using Mistral-7B, for each prompt template
described in Section 4.3.
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Figure 32. Mean accuracy of Logistic Regression, CRC, and CCS probes over 50 probes, using Llama-3-8B, for each prompt template
described in Section 4.3.

Figure 33. Mean accuracy of Logistic Regression, CRC, and CCS probes over 50 probes, using Phi-2, for each prompt template described
in Section 4.3.

Figure 34. Variation in probe accuracy for the prompt template sensitivity experiment on TruthfulQA for Mistral-7B, at the 75th percentile
layer. Contrary to the CommonClaim results (figure 4), variance is too high to be able to conclude anything.
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Figure 35. Visualization of the top three PC of M̃(x+
i )− M̃(x−

i ) - with per cluster normalization - respectively from left to right : for
the default, literal and professor prompts. True and False correspond to the ground truth label of these question-answering prompts. We
see no notable difference between the three settings, and there is no difference at all to be seen between Burns-Norm and Cluster-Norm. If
anything, we can see that in the literal and professor settings, the separation between True and False is slightly more aligned with the first
PC.
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