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Abstract

A central task in computational drug discovery is to construct models from known1

active molecules to find further promising molecules for subsequent screening.2

However, typically only very few active molecules are known. Therefore, few-shot3

learning methods have the potential to improve the effectiveness of this critical4

phase of the drug discovery process. We introduce a new method for few-shot5

drug discovery. Its main idea is to enrich a molecule representation by knowledge6

about known context or reference molecules. Our novel concept for molecule7

representation enrichment is to associate molecules from both the support set and8

the query set with a large set of reference (context) molecules through a modern9

Hopfield network. Intuitively, this enrichment step is analogous to a human expert10

who would associate a given molecule with familiar molecules whose properties11

are known. The enrichment step reinforces and amplifies the covariance structure12

of the data, while simultaneously removing spurious correlations arising from the13

decoration of molecules. Our approach is compared with other few-shot methods14

for drug discovery on the FS-Mol benchmark dataset. On FS-Mol, our approach15

outperforms all compared methods and therefore sets a new state-of-the art for16

few-shot learning in drug discovery. An ablation study shows that the enrichment17

step of our method is the key to improve the predictive quality. In a domain shift18

experiment, we further demonstrate the robustness of our method.19

1 Introduction20

To improve human health, combat diseases, and tackle pandemics there is a steady need of discovering21

new drugs in a fast and efficient way. However, the drug discovery process is time-consuming and22

cost-intensive (Arrowsmith, 2011). Deep learning methods have recently been shown to reduce23

time and costs of this process (Chen et al., 2018; Walters and Barzilay, 2021). They diminish the24

required number of both wet-lab measurements and molecules that must be synthesized (Merk et al.,25

2018; Schneider et al., 2020). However, as of now, deep learning approaches use only the molecular26

information about the ligands after being trained on a large training set. At inference time, they yield27

highly accurate property and activity prediction (Mayr et al., 2018; Yang et al., 2019), generative28

(Segler et al., 2018a; Gómez-Bombarelli et al., 2018), or synthesis models (Segler et al., 2018b; Seidl29

et al., 2022).30

Deep learning methods in drug discovery usually require large amounts of biological measure-31

ments. To train deep learning-based activity and property prediction models with high predictive per-32

formance, hundreds or thousands of data points per task are required. For example, well-performing33

predictive models for activity prediction tasks of ChEMBL have been trained with an average of 3,62134

activity points per task, i.e., drug target, by (Mayr et al., 2018). The ExCAPE-DB dataset provides on35

average 42,501 measurements per task (Sun et al., 2017; Sturm et al., 2020). (Wu et al., 2018) pub-36
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lished a large scale benchmark for molecular machine learning, including prediction models for the37

SIDER dataset (Kuhn et al., 2016) with an average of 5,187 data points, Tox21 (Huang et al., 2016b;38

Mayr et al., 2016) with on average 9,031, and ClinTox (Wu et al., 2018) with 1,491 measurements39

per task. However, for typical drug design projects, the amount of available measurements is very40

limited (Stanley et al., 2021; Waring et al., 2015; Hochreiter et al., 2018), since in-vitro experiments41

are expensive and time-consuming. Therefore, methods that need only few measurements to build42

precise prediction models are desirable. This problem — i.e., the challenge of learning from few43

data points — is the focus of machine learning areas like meta-learning (Schmidhuber, 1987; Bengio44

et al., 1991; Hochreiter et al., 2001) and few-shot learning (Miller et al., 2000; Bendre et al., 2020;45

Wang et al., 2020).46

Few-shot learning tackles the low-data problem that is ubiquitous in drug discovery. Few-shot47

learning methods have been predominantly developed and tested on image datasets (Bendre et al.,48

2020; Wang et al., 2020), and have recently been adapted to drug discovery problems (Chen et al.,49

2022; Wang et al., 2021; Stanley et al., 2021; Altae-Tran et al., 2017). They are usually categorized50

into three groups according to their main approach (Bendre et al., 2020; Wang et al., 2020; Adler et al.,51

2020). a) Data-augmentation-based approaches augment the available samples and generate new, more52

diverse data points (Chen et al., 2020; Zhao et al., 2019; Antoniou and Storkey, 2019). b) Embedding-53

based and nearest neighbour approaches learn embedding space representations. Predictive models54

can then be constructed from only few net data points by comparing these embeddings. For example55

in Matching Networks (Vinyals et al., 2016) an attention mechanism that relies on embeddings is the56

basis for the predictions. Prototypical Networks (Snell et al., 2017) create prototype representations57

for each class using the above mentioned representations in the embedding space. c) Optimization-58

based or fine-tuning methods utilize a meta-optimizer that focuses on efficiently navigating the59

parameter space. For example, with MAML the meta-optimizer learns initial weights that can be60

adapted to a novel task by few optimization steps (Finn et al., 2017).61

Most of these approaches have already been applied to few-shot drug discovery (see Sec. 4). Surpris-62

ingly, almost all these few-shot learning methods in drug discovery are worse than a naive baseline,63

which does not even use the support set (see Section 5). We hypothesize that the under-performance64

of these methods stems from disregarding the context — both in terms of similar molecules and65

similar activities. Therefore, we propose a method that informs the representations of the query and66

support set with a large number of context molecules covering the chemical space.67

Enriching molecule representations with context using associative memories. In data-scarce68

situations, humans extract co-occurrences and covariances by associating current perceptions with69

memories (Bonner and Epstein, 2021; Potter, 2012). When we show a small set of active molecules to70

a human expert in drug discovery, the expert associates them with known molecules to suggest further71

active molecules (Gomez, 2018; He et al., 2021). In an analogous manner, our novel concept for72

few-shot learning uses associative memories to extract co-occurrences and the covariance structure73

of the original data and to amplify them in the representations (Fürst et al., 2021). We use Modern74

Hopfield Networks (MHNs) as an associative memory, since they can store a large set of context75

molecule representations (Ramsauer et al., 2021, Theorem 3). The representations that are retrieved76

from the MHNs replace the original representations of the query and support set molecules. Those77

retrieved representations have amplified co-occurrences and covariance structures, while peculiarities78

and spurious co-occurrences of the query and support set molecules are averaged out.79

In this work, our contributions are the following:80

• We propose a new architecture MHNfs for few-shot learning in drug discovery.81

• We achieve a new state-of-the-art on the benchmarking dataset FS-Mol.82

• We introduce a novel concept to enrich the molecule representations with context by associ-83

ating them with a large set of context molecules.84

• We add a naive baseline to the FS-Mol benchmark that yields better results than almost all85

other published few-shot learning methods.86

• We provide results of an ablation study and a domain shift experiment to further demonstrate87

the effectiveness of our new method.88
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2 Problem setting89

Drug discovery projects revolve around models g(m) that can predict a molecular property or activity90

ŷ, given a representationm of an input molecule from a chemical spaceM. We consider machine91

learning models ŷ = gw(m) with parametersw that have been selected using a training set. Typically,92

deep learning based property prediction uses a molecule encoder fME :M→ Rd. The molecule93

encoder can process different symbolic or low-level representations of molecules, such as molecular94

descriptors (Bender et al., 2004; Unterthiner et al., 2014; Mayr et al., 2016), SMILES (Weininger,95

1988; Mayr et al., 2018; Winter et al., 2019; Segler et al., 2018a), or molecular graphs (Merkwirth96

and Lengauer, 2005; Kearnes et al., 2016; Yang et al., 2019; Jiang et al., 2021) and can be pre-trained97

on related property prediction tasks.98

For few-shot learning, the goal is to select a high-quality predictive model based on a small set of99

molecules {x1, . . . ,xN} with associated measurements y = {y1, . . . , yN}. The measurements are100

usually assumed to be binary yn ∈ {−1, 1}, corresponding to the molecule being inactive or active.101

The set {(xn, yn)}Nn=1 is called the support set that contains samples from a prediction task and N is102

the support set size. The goal is to construct a model that correctly predicts y for an x that is not in103

the support set — in other words, a model that generalizes well.104

Standard supervised machine learning approaches typically just show limited predictive power at105

this task (Stanley et al., 2021) since they tend to overfit on the support set due to a small number of106

training samples. These approaches learn the parameters w of the model gw from the support set in107

a supervised manner. However, they heavily overfit to the support set when N is small. Therefore,108

few-shot learning methods are necessary to construct models from the support set that generalize109

well to new data.110

3 MHNfs: Hopfield-based molecular context enrichment for few-shot drug111

discovery112

We aim at increasing the generalization capabilities of few-shot learning methods in drug discovery113

by enriching the molecule representations with molecular context. In comparison to the support set,114

which encodes information about the task, the context set – i.e. a large set of molecules – includes115

information about a large chemical space. The query and the support set molecules perform a retrieval116

from the context set and thereby enrich their representations. We detail this in the following.117

3.1 Model architecture118

We propose an architecture which consists of three consecutive modules. The first module, a) the119

context module fCM, enriches molecule representations by retrieving from a large set of molecules.120

The second module, b) the cross-attention module fCAM (Hou et al., 2019; Chen et al., 2021), enables121

the effective exchange of information between the query molecule and the support set molecules.122

Finally the prediction for the query molecule is computed by using the usual c) similarity module123

fSM (Koch et al., 2015; Altae-Tran et al., 2017):124

context module: m′ = fCM(m,C)

X ′ = fCM(X,C), (1)

cross-attention module: [m′′,X ′′] = fCAM([m′,X ′]), (2)

similarity module: ŷ = fSM(m′′,X ′′,y), (3)

wherem ∈ Rd is a molecule embedding from a trainable or fixed molecule encoder, andm′ andm′′125

are enriched versions of it. Similarly,X ∈ Rd×N contains the stacked embeddings of the support set126

molecules andX ′ andX ′′ are their enriched versions. C ∈ Rd×M is a large set of stacked molecule127

embeddings, y are the support set labels, and ŷ is the prediction for the query molecule. Square128

brackets indicate concatenation, for example [m′,X ′] is a matrix with N + 1 columns. The modules129

fCM, fCAM, and fSM are detailed in the paragraphs below. An overview of our architecture is given130

in Figure 1. The architecture also includes skip connections bypassing fCM(., .) and fCAM(.) and131

layer normalization (Ba et al., 2016), which are not shown in Figure1.132
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Figure 1: Schematic overview of our architecture. Left: All molecules are fed through a shared
molecule encoder to obtain embeddings. Then, the context module (CM) enriches the representations
by associating them with context molecules. The cross-attention module (CAM) enriches representa-
tions by mutually associating the query and support set molecules. Finally, the similarity module
computes the prediction for the query molecule. Right: Detailed depiction of the operations in the
CM and the CAM.

A shared molecule encoder fME creates embeddings for the query molecule m = fME(m), the133

support set molecules xn = fME(xn), and the context molecules cm = fME(cm). There are many134

possible choices for fixed or adaptive molecule encoders (see Section 2), of which we use descriptor-135

based fully-connected networks because of their computational efficiency and good accuracy (Dahl136

et al., 2014; Mayr et al., 2016, 2018). For notational clarity we denote the course of the representations137

through the architecture:138

m
symbolic or

low-level repr.

fME

−→ m
molecule

embedding

fCM

−→ m′
context

repr.

fCAM

−→ m′′
similarity

repr.

, (4)

xn
symbolic or

low-level repr.

fME

−→ xn
molecule

embedding

fCM

−→ x′n
context

repr.

fCAM

−→ x′′n
similarity

repr.

. (5)

3.2 Context module (CM)139

The context module associates the query and support set molecules with a large set of context140

molecules, and represents them as weighted average of context molecule embeddings. The context141

module is realised by a continuous Modern Hopfield Network (MHN) (Ramsauer et al., 2021). An142

MHN is a content-addressable associative memory which can be built into deep learning architectures.143

There exists an analogy between the energy update of MHNs and the attention mechanism of144

Transformers (Vaswani et al., 2017; Ramsauer et al., 2021). MHNs are capable of storing and145

retrieving patterns from a memoryM ∈ Re×M given a state pattern ξ ∈ Re that represents the query.146

The retrieved pattern ξnew ∈ Re is obtained by147

ξnew = M p = M softmax
(
βMT ξ

)
, (6)

where p is called the vector of associations and β is a scaling factor or inverse temperature. Modern148

Hopfield Networks have been successfully applied to chemistry and computational immunology149

(Seidl et al., 2022; Widrich et al., 2020).150

We use this mechanism in the form of a Hopfield layer, which first maps raw patterns to an associative151

space using linear transformations, and uses multiple simultaneous queries Ξ ∈ Rd×N :152

Hopfield(Ξ,C) := (WEC) softmax
(
β (WCC)T (WΞΞ)

)
, (7)
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whereWE ∈ Rd×d andWC ,WΞ ∈ Re×d are trainable parameters of the Hopfield layer, softmax153

is applied column-wise, and β is a hyperparameter. Note that in principle the Ξ and C could have a154

different second dimension as long as the linear transformations map to the same dimension e. Note155

that all embeddings that enter this module are first layer normalized (Ba et al., 2016). Several of156

these Hopfield layers can run in parallel and we refer to them as "heads" in analogy to Transformers157

(Vaswani et al., 2017).158

The context module of our new architecture uses a Hopfield layer, where the query patterns are the159

embeddings of the query moleculem and the support set moleculesX . The memory is composed of160

embeddings of a large set of M molecules from a chemical space, for example reference molecules,161

here called context molecules C. Then the original embeddings m and X are replaced by the162

retrieved embeddings, which are weighted averages of context molecule embeddings:163

m′ = Hopfield(m,C) and X ′ = Hopfield(X,C). (8)

This retrieval step reinforces the covariance structure of the retrieved representations (see Ap-164

pendix A.7). Note that the embeddings of the query and the support set molecules have not yet165

influenced each other. These updated representationsm′,X ′ are passed to the cross-attention module.166

3.3 Cross-attention module (CAM)167

For embedding-based few-shot learning methods in the field of drug discovery, Altae-Tran et al. (2017)168

showed that the representations of the molecules can be enriched, if the architecture allows information169

exchange between query and support set molecules. Altae-Tran et al. (2017) uses an attention-170

enhanced LSTM variant which updates the query and the support set molecule representations in an171

iterative fashion, being aware of each other. We further develop this idea and combine it with the idea172

of using a transformer encoder layer (Vaswani et al., 2017) as a cross-attention module (Hou et al.,173

2019; Chen et al., 2021).174

The cross-attention module updates the query molecule representation m′ and the support set175

molecule representations X ′ by mutually exchanging information, using the usual Transformer176

mechanism:177

[m′′,X ′′] = Hopfield([m′,X ′], [m′,X ′]), (9)

where [m′,X ′] ∈ Rd×(N+1) is the concatenation of the representations of the query moleculem′178

with the support set molecules X ′ and we exploited that the Transformer is a special case of the179

Hopfield layer. Again, normalization is applied (Ba et al., 2016) and multiple Hopfield layers, i.e.,180

heads, can run in parallel, be stacked, and equipped with skip-connections. The representationsm′′181

andX ′′ are passed to the similarity module.182

3.4 Similarity module (SM)183

In this module, pairwise similarity values k(m′′,x′′n) are computed between the representation of184

a query moleculem′′ and each molecule x′′n in the support set as done recently (Koch et al., 2015;185

Altae-Tran et al., 2017). Based on these similarity values, the activity for the query molecule is186

predicted, building a weighted mean over the support set labels:187

ŷ = σ

(
τ−1 1

N

N∑
n=1

y′n k(m′′,x′′n)

)
, (10)

where our architecture employs dot product similarity of normalized representations k(m′′,x′′n) =188

m′′
T
x′′n. σ(.) is the sigmoid function and τ is a hyperparameter. Note that we use a balancing189

strategy for the labels y′n =

{
N/(2

√
NA) if yn = 1

−N/(2
√
NI) else

, where NA is the number of actives and NI190

is the number of inactives of the support set.191

3.5 Architecture, hyperparameter selection, and training details192

Hyperparameters. The main hyperparameters of our architecture are the number of heads, the193

embedding dimension, the dimension of the association space of the CAM and CM, the learning194
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rate schedule, the scaling parameter β, and the molecule encoder. The following hyperparameters195

were selected by manual hyperparameter selection on the validation tasks. The molecule encoder196

consists of a single layer with output size d = 1024 and SELU activation (Klambauer et al., 2017).197

The CM consists of one Hopfield layer with 8 heads. The dimension e of the association space is set198

to 512 and β = 1/
√
e. Since we use skip connections between all modules the output dimension of199

the CM and CAM matches the input dimension. The CAM comprises one layer with 8 heads and an200

association-space dimension of 1088. For the input to the CAM, an activity encoding was added to201

the support set molecule representations to provide label information. The SM uses τ = 22.6. For the202

context set, we randomly sample 5% from a large set of molecules – i.e., the molecules in the FS-Mol203

training split – for each batch. For inference, we used a fixed set of 5% of training set molecules as204

the context set for each seed. We hypothesize that these choices about the context could be further205

improved (Section 6). We provide considered and selected hyperparameters in Appendix A.1.6.206

Loss function, regularization and optimization. We use the Adam optimizer (Kingma and Ba,207

2014) to minimize the cross-entropy loss between the predicted and known activity labels. We use208

a learning rate scheduler which includes a warm up phase, followed by a section with a constant209

learning rate, which is 0.0001, and a third phase in which the learning rate steadily decreases. As a210

regularization strategy, for the CM and the CAM a dropout rate of 0.5 is used. The molecule encoder211

has a dropout with rate 0.1 for the input and 0.5 elsewhere (see also Appendix A.1.6).212

Compute time and resources. Training a single MHNfs model on the benchmarking dataset FS-213

Mol takes roughly 90 hours of wall-clock time on an A100 GPU. In total, roughly 15,000 GPU hours214

were consumed for this work.215

4 Related work216

Several approaches to few-shot learning in drug discovery have been suggested (Altae-Tran et al.,217

2017; Nguyen et al., 2020; Guo et al., 2021; Wang et al., 2021). (Nguyen et al., 2020) evaluated218

the applicability of MAML and its variants to graph neural networks (GNNs) and (Guo et al., 2021)219

also combine GNNs and meta-learning. (Altae-Tran et al., 2017) suggested an approach called220

Iterative Refinement Long Short-Term Memory, in which query and support set embeddings can221

share information and update their embeddings. Property-aware relation networks (PAR) (Wang222

et al., 2021) use an attention mechanism to enrich representations from cluster centers and then learn223

a relation graph between molecules. (Chen et al., 2022) propose to adaptively learn kernels and apply224

their method to few-shot drug discovery with predictive performance for larger support set sizes.225

Recently, (Stanley et al., 2021) generated a benchmark dataset for few-shot learning methods in drug226

discovery and provided some baseline results.227

Many successful deep neural network architectures use external memories, such as the neural Turing228

machine (Graves et al., 2014), memory networks (Weston et al., 2014), end-to-end memory networks229

(Sukhbaatar et al., 2015). Recently, the connection between continuous modern Hopfield networks230

(Ramsauer et al., 2021), which are content-addressable associative memories, and Transformer231

architectures (Vaswani et al., 2017) has been established. We refer to (Le, 2021) for an extensive232

overview of memory-based architectures. Architectures with external memories have also been used233

for meta-learning (Vinyals et al., 2016; Santoro et al., 2016) and few-shot learning (Munkhdalai and234

Yu, 2017; Ramalho and Garnelo, 2018; Ma et al., 2021).235

5 Experiments236

5.1 Benchmarking on FS-Mol237

Experimental setup. Recently, the dataset FS-Mol (Stanley et al., 2021) was proposed to benchmark238

few-shot learning methods in drug discovery. It was extracted from ChEMBL27 and comprises in239

total 489,133 measurements, 233,786 compounds and 5,120 tasks. Per task, the mean number of240

data points is 94. The dataset is well balanced as the mean ratio of active and inactive molecules is241

close to 1. The FS-Mol benchmark dataset defines 4,938 training, 40 validation and 157 test tasks,242

guaranteeing disjoint task sets. (Stanley et al., 2021) precomputed extended connectivity fingerprints243

(ECFP) (Rogers and Hahn, 2010) and key molecular physical descriptors, which were defined by244

RDKit (Landrum et al., 2006). While methods would be allowed to use other representations of245

the input molecules, such as the molecular graph, we used a concatenation of these ECFPs and246
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Table 1: Results on FS-MOL [∆AUC-PR]. The best method is marked bold. Error bars represent
standard errors across tasks according to Stanley et al. (2021). The metrics are also averaged across five
training re-runs and ten draws of support sets. In brackets the number of tasks per category is reported.

Method All [157] Kin. [125] Hydrol. [20] Oxid.[7]

GNN-STa (Stanley et al., 2021) .029 ± .004 .027 ± .004 .040 ± .018 .020 ± .016
MATa (Maziarka et al., 2020) .052 ± .005 .043 ± .005 .095 ± .019 .062 ± .024
Random Foresta (Breiman, 2001) .092 ± .007 .081 ± .009 .158 ± .028 .080 ± .029
GNN-MTa (Stanley et al., 2021) .093 ± .006 .093 ± .006 .108 ± .025 .053 ± .018
Similarity Search .118 ± .008 .109 ± .008 .166 ± .029 .097 ± .033
GNN-MAMLa (Guo et al., 2021) .159 ± .009 .177 ± .009 .105 ± .024 .054 ± .028
PAR(Wang et al., 2021) .164 ± .008 .182 ± .009 .109 ± .020 .039 ± .008
Frequent hitters .182 ± .010 .207 ± .009 .098 ± .009 .041 ± .005
ProtoNeta (Snell et al., 2017) .207 ± .008 .215 ± .009 .209 ± .030 .095 ± .029
Siamese Networks (Koch et al., 2015) .223 ± .010 .241 ± .010 .178 ± .026 .082 ± .025
IterRefLSTM (Altae-Tran et al., 2017) .234 ± .010 .251 ± .010 .199 ± .026 .098 ± .027
ADKF-IFTb (Chen et al., 2022) .234 ± .009 .248 ± .020 .217 ± .017 .106 ± .008
MHNfs (ours) .241 ± .009 .259 ± .010 .199 ± .027 .096 ± .019
a metrics from Stanley et al. (2021). b results from Chen et al. (2022).

RDKit-based descriptors. For the main benchmark, the support set size was fixed to 16, using a247

stratified random split. We use all these settings of FS-Mol and therefore ensure a fair method248

comparison.249

Methods compared. Baselines for few-shot learning and our proposed method MHNfs were com-250

pared against each other. The Frequent Hitters model is a naive baseline that ignores the provided251

support set and therefore has to learn to predict the average activity of a molecule. This method can252

potentially discriminate so-called frequent-hitter molecules (Stork et al., 2019) against molecules253

that are inactive across many tasks. We also added Similarity Search (Cereto-Massagué et al., 2015)254

as a baseline. Similarity search is a standard chemoinformatics technique, used in situations with255

single or few known actives. In the simplest case, the search finds similar molecules by computing256

a fingerprint or descriptor-representation of the molecules and using a similarity measure k(., .) —257

such as Tanimoto Similarity (Tanimoto, 1960). Thus, Similarity Search, as used in chemoinfor-258

matics, can be formally written as ŷ = 1/N
∑N

n=1 yn k(m,xn); where x1, . . . ,xn come from a259

fixed molecule encoder, such as chemical fingerprint or descriptor calculation. A natural exten-260

sion of Similarity Search with fixed chemical descriptors is Neural Similarity Search or Siamese261

networks (Koch et al., 2015), which extend the classic similarity search by learning a molecule262

encoder: ŷ = σ
(
τ−1 1

N

∑N
n=1 y

′
n f

ME
w (m)T fME

w (xn)
)

. Furthermore, we re-implemented the263

IterRefLSTM (Altae-Tran et al., 2017) in Pytorch. The IterRefLSTM model consists of three264

modules. First, a molecule encoder maps the query and support set molecules to its representations265

m and X . Second, an attention-enhanced LSTM variant, the actual IterRefLSTM, iteratively266

updates the query and support set molecules, enabling information sharing between the molecules:267

[m′,X ′] = IterRefLSTML([m,X]), where the hyperparameter L controls the number of iteration268

steps of the IterRefLSTM. Third, a similarity module computes attention weights based on the rep-269

resentations: a = softmax (k (m′,X ′)). These representations are then used for the final prediction:270

ŷ =
∑N

i=1 aiyi. For further details, see Appendix A.1.5. The Random Forest baseline uses the271

chemical descriptors and is trained in standard supervised manner on the support set molecules for272

each task. The method GNN-ST is a graph neural network (Stanley et al., 2021; Gilmer et al., 2017)273

that is trained from scratch for each task. The GNN-MT uses a two step strategy: First, the model is274

pretrained on a large dataset on related tasks; second, an output layer is constructed to the few-shot275

task via linear probing (Stanley et al., 2021; Alain and Bengio, 2016). The Molecule Attention276

Transformer (MAT) is pre-trained in a self-supervised fashion and fine-tuning is performed for the277

few-shot task (Maziarka et al., 2020). GNN-MAML is based on MAML (Finn et al., 2017), and uses278

a model-agnostic meta-learning strategy to find a general core model from which one can easily adapt279

to single tasks. ProtoNet (Snell et al., 2017) includes a molecule encoder, which maps query and280

support set molecules to representations in an embedding space. In this embedding space, prototypical281
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Figure 2: Results of the ablation study. The boxes show the median, mean and the variability of the
average predictive performance of the methods across training re-runs and draws of support sets.
The performance significantly drops when the context module is removed (light red bars), and when
additionally the cross-attention module is replaced with the IterRefLSTM module (light blue bars).
This indicates that our two newly introduced modules, CM and CAM, play a crucial role in MHNfs.

representations of each class are built by taking the mean across all related support set molecules for282

each class (details in Appendix A.1.4). For all methods the most important hyperparameters were283

adjusted on the validation tasks of FS-Mol. The PAR model (Wang et al., 2021) includes a GNN284

which creates initial molecule embeddings. These molecule embeddings are then enriched by an285

attention mechanism. Finally, another GNN learns relations between support and query set molecules.286

The PAR model has shown good results for datasets which just include very few tasks such as Tox21287

(Wang et al., 2021). Chen et al. (2022) suggest a framework for learning deep kernels by interpolating288

between meta-learning and conventional deep kernels, which results in the ADKF-IFT model. The289

model has exhibited especially high performance for large support set sizes.290

Training and evaluation. For the model implementations, we used PyTorch (Paszke et al., 2019,291

BSD license). We used PyTorch Lightning (Falcon et al., 2019, Apache 2.0 license) as a framework292

for training and test logic, hydra for config file handling (Yadan, 2019, Apache 2.0 license) and293

Weights & Biases (Biewald, 2020, MIT license) as an experiment tracking tool. We performed five294

training reruns with different seeds for all methods, except Classic Similarity Search as there is295

no variability across seeds. Each model was evaluated ten times by drawing support sets with ten296

different seeds.297

Results. The results in terms of area under precision-recall curve (AUC-PR) are presented in Table 1,298

where the difference to a random classifier is reported (∆AUC-PR). The standard error is reported299

across tasks. Surprisingly, the naive baseline Frequent Hitters, that neglects the support set, has out-300

performed most of the few-shot learning methods, except for the embedding-based methods Siamese301

Networks, ProtoNet, IterRefLSTM, and MHNfs. IterRefLSTM, which has not been included302

in the FS-Mol benchmark study, reaches the second best performance. MHNfs has outperformed303

all other methods with respect to ∆AUC-PR across all tasks, including the IterRefLSTM model304

(p-value 1.72e-7, paired Wilcoxon test), the ADKF-IFT model (p-value <1.0e-8, Wilcoxon test), and305

the PAR model (p-value <1.0e-8, paired Wilcoxon test).306

5.2 Ablation study307

MHNfs has two new main components compared to the previous state-of-the-art method Iter-308

RefLSTM: i) the context module, and ii) the cross-attention module which replaces the LSTM-like309

module. To assess the effects of these components, we performed an ablation study. Therefore,310

we compared MHNfs to a method that does not have the context module ("MHNfs -CM") and to311

a method that does not have the context module and uses an LSTM-like module instead of the312

CAM ("MHNfs -CM 
(CAM,IterRefLSTM)"). For the ablation study, we used all 5 training reruns313

and evaluated each model 10 times on the test set with different support sets. The results of this314

ablation steps are presented in Figure 2. Both removing the CM and exchanging the CAM with315

the IterRefLSTM module were detrimental for the performance of the method (p-value 0.002 and316

1.72e−7, respectively; paired Wilcoxon test). The difference was even more pronounced under317

domain shift (see Appendix A.3.3). Appendix A.3.2 contains a second ablation study that examines318
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the overall effects of the context, the cross-attention, the similarity module, and the molecule encoder319

of MHNfs.320

5.3 Domain shift experiment321

We performed an experiment in which we evaluate models, that were pretrained on FS-Mol, on the322

Tox21 (Mayr et al., 2016) dataset. There is a strong domain shift from the drug-like molecules of323

FS-Mol to the environmental chemicals, pesticides, and food additives of Tox21, such this dataset324

poses a challenging setting for few-shot learning methods. The experiment is described in detail325

in Appendix A.2. Our MHNfs approach has reached an AUC of .679± .018 and has significantly326

outperformed the IterRefLSTM-based model (p∆AUC−PR-value 3.4e−5, paired Wilcoxon test) and327

the Classic Similarity Search (p∆AUC−PR-value 2.4e-9 paired Wilcoxon test) and therefore showed328

robust performance on the toxicity domain, see Table A6.329

6 Conclusion and discussion330

We have introduced a new architecture for few-shot learning in drug discovery that is based on331

the novel concept to enrich molecule representations with context. In a benchmarking experiment,332

the architecture was assessed for its ability to learn accurate predictive models from small sets of333

labelled molecules and in this setting it outperformed all other methods. In a domain shift study, the334

robustness and transferability of the learned models has been assessed and again MHNfs exhibited335

the best performance. The resulting predictive models often reach an AUC larger than .70, which336

means that enrichment of active molecules is expected (Simm et al., 2018) when the models are used337

for virtual screening. It has not escaped our notice that the specific context module we have proposed338

could immediately be used for few-shot learning tasks in computer vision, but might be hampered339

by computational constraints. Limitations. While the implementation of our method is currently340

limited to small, organic drug-like molecules as inputs, our conceptual approach can also be used341

for macro-molecules such as RNA, DNA or proteins. The output domain of our method comprises342

biological effects, such that the prediction must be understood in that domain. Our method demands343

higher computational costs and memory footprint as other embedding-based methods because of344

the calculations necessary for the context module. While we hypothesize that our approach could345

also be successful for similar data in the materials science domain, this has not been assessed. Our346

study is also constrained by a limited amount of hyperparameter search for all methods. Deep347

learning methods usually have a large number of hyperparameters, such as hidden dimensions,348

number of layers, learning rates, of which we were only able to explore the most important ones. The349

composition and choice of the context set is also under-explored and might be improved by selecting350

reference molecules with an appropriate strategy. Broader impact. Impact on machine learning and351

related scientific fields. We envision that with (a) the increasing availability of drug discovery and352

material science datasets, (b) further improved biotechnologies, and (c) accounting for characteristics353

of individuals, the drug and materials discovery process will be made more efficient. For machine354

learning and artificial intelligence, the novel way in which representations are enriched with context355

might strengthen the general research stream to include more context into deep learning systems. Our356

approach also shows that such a system is more robust against domain shifts, which could be a step357

towards Broad AI (Chollet, 2019; Hochreiter, 2022). Impact on society. If the approach proves useful,358

it could lead to a faster and more cost-efficient drug discovery process. Especially the COVID-19359

pandemic has shown that it is crucial for humanity to speed up the drug discovery process to few years360

or even months. We hope that this work contributes to this effort and eventually leads to safer drugs361

developed faster. Consequences of failures of the method. As common with methods in machine362

learning, potential danger lies in the possibility that users rely too much on our new approach and use363

it without reflecting on the outcomes. Failures of the proposed method would lead to unsuccessful364

wet lab validation and negative wet lab tests. Since the proposed algorithm does not directly suggest365

treatment or therapy, human beings are not directly at risk of being treated with a harmful therapy.366

Wet lab and in-vitro testing would indicate wrong decisions by the system. Leveraging of biases in367

the data and potential discrimination. As for almost all machine learning methods, confounding368

factors, lab or batch effects, could be used for classification. This might lead to biases in predictions369

or uneven predictive performance across different drug targets or bioassays.370
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A Appendix666

A.1 Details on methods667

Few-shot learning methods in drug discovery can be described as models with adaptive parametersw668

that use a support set Z = {(x1, y1), . . . , (xN , yN )} 1 as additional input to predict a label ŷ for a669

moleculem670

ŷ = gw(m,Z). (A1)

Optimization-based methods, such as MAML (Finn et al., 2017), use the support set to update the671

parameters w672

ŷ = ga(w;Z)(m), (A2)

where a(.) is a function that adapts w of g based on Z for example via gradient-descent.673

Embedding-based methods use a different approach and learn representations of the support set674

molecules {x1, . . . ,xN}, sometimes written as stacked embeddings X ∈ Rd×N , and the query675

moleculem, and some function that associates these two types of information with each other. We676

describe the embedding-based methods Similarity Search in Section A.1.2, Neural Similarity Search677

in Section A.1.3, ProtoNet in Section A.1.4, IterRefLSTM in Section A.1.5, PAR in Section A.1.7,678

and MHNfs in the main paper and details in Section A.1.6. The "frequent hitters" baseline is described679

in Section A.1.1.680

A.1.1 Frequent hitters: details and hyperparameters681

The "frequent hitters" model gFH is a baseline that we implemented and included in the method682

comparison. This method uses the usual training scheme of sampling a query molecule m with a683

label y, having access to a support set Z. In contrast to the usual models of the type gw(m,Z), the684

frequent hitters model gFH neglects the support set:685

ŷ = gFH
w (m). (A3)

Thus, during training for the same molecule m, the model might have to predict both y = 1 and686

y = −1, since the molecule can be active in one task and inactive in another task. Therefore, the687

1We use Z to denote the support set of already embedded molecules to keep the notation uncluttered.
More correctly, the methods have access to the raw support set Z = {(x1, y1), . . . , (xN , yN )}, where xn is a
symbolic, such as the molecular graph, or low-level representation of the molecule.
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Table A1: Hyperparameter space considered for the Frequent
hitters model. The hyperparameters of the best configuration are
marked bold.

Hyperparameter Explored values

Number of hidden layers 1, 2, 4
Number of units per hidden layer 1024, 2048, 4096
Output dimension 512, 1024
Activation function ReLU
Learning rate 0.0001, 0.001
Optimizer Adam,AdamW
Weight decay 0, 0.01
Batch size 32, 128, 512, 2048, 4096
Input Dropout 0, 0.1
Dropout 0.1, 0.2, 0.3, 0.4, 0.5
Layer-normalization False, True
• Affine False, True

Similarity function dot product

model tends to predict average activity of a molecule to minimize the cross-entropy loss. We chose688

an additive combination of the Morgan fingerprints, RDKit fingerprints, and MACCS keys for the689

input representation to the MLP.690

Hyperparameter search. We performed manual hyperparameter search on the validation set and691

report the explored hyperparameter space (Table A1). We use early-stopping based on validation692

average-precision, a patience of 3 epochs and train for a maximum of 20 epochs with a linear warm-up693

learning-rate schedule for the first 3 epochs.694

A.1.2 Classic similarity search: details and hyperparameters695

Similarity Search (Cereto-Massagué et al., 2015) is a classic chemoinformatics technique used in696

situations in which a single or few actives are known. In the simplest case, molecules that are similar to697

a given active molecule are searched by computing a fingerprint or descriptor-representation fdesc(m)698

of the molecules and using a similarity measure k(., .), such as Tanimoto Similarity(Tanimoto, 1960).699

Thus, the Similarity Search as used in chemoinformatics can be formally written as:700

ŷ = 1/N

N∑
n=1

yn k(fdesc(m), fdesc(xn)), (A4)

where the function fdesc maps the molecule to its chemical descriptors or fingerprints and takes701

the role of both the molecule encoder and the support set encoder. The association function fassoc702

consists of a) the similarity measure k(., .) and then b) mean pooling across molecules weighted by703

their similarity and activity.704

Notably, there are many variants of Similarity Search (Cereto-Massagué et al., 2015; Wang et al.,705

2010; Eckert and Bajorath, 2007; Geppert et al., 2008; Willett, 2014; Sheridan and Kearsley, 2002;706

Riniker and Landrum, 2013) of which some correspond to recent few-shot learning methods with a707

fixed molecule encoder. For example, (Geppert et al., 2008) suggest to use centroid molecules, i.e.,708

prototypes or averages of active molecules. This is equivalent to the idea of Prototypical Networks709

(Snell et al., 2017). Riniker and Landrum (2013) are aware of different fusion strategies for sets of710

active or inactive molecules, which corresponds to different pooling strategies of the support set.711

Overall, the variants of the classic Similarity Search are highly similar to embedding-based few-shot712

learning methods except that they have a fixed instead of a learned molecule encoder.713

Hyperparameter search. For the Similarity Search, there were two decisions to make which was714

firstly the similarity metric and secondly the question whether we should use a balancing strategy like715

shown in Section 3.4. We decided for the dot-product as a similarity metric and using the balancing716

strategy. These decisions were made by evaluating the models on the validation set.717
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Figure A1: Schematic overview of the implemented Neural Similarity Search variant

A.1.3 Neural Similarity Search or Siamese networks: details and hyperparameters718

A lot of related work already was done (Koch et al., 2015; Hertz et al., 2006; Ye and Guo, 2018;719

Torres et al., 2020). We adapted these ideas, such that a fully-connected deep neural network followed720

by a Layer Normalization (Ba et al., 2016) operation, fME
w with adaptive parameters w, is used in a721

Siamese fashion to compute the embeddings for the input molecule and the support set molecules.722

Within the association function block, pairwise similarity values for the input molecule and each723

support set molecule are computed, associating both embeddings via the dot product. Based on these724

similarity values, the activity for the input molecule is predicted, building the weighted mean over725

the support set molecule labels:726

ŷ = σ

(
τ−1 1

N

N∑
n=1

y′n f
ME(m)T fME(xn)

)
, (A5)

where σ(.) is the sigmoid function and τ is a hyperparameter in the range of
√
d. Note that this727

method uses a balancing strategy for the labels y′n =

{
N/(2

√
NA) if yn = 1

−N/(2
√
NI) else

, where NA is the728

number of actives and NI is the number of inactives of the support set. Figure A1 provides an729

schematic overview of the Neural Similarity Search variant.730

We trained the networks using the Adam optimizer (Kingma and Ba, 2014) to minimize binary731

cross-entropy loss.732

Hyperparameter search. We performed manual hyperparameter search on the validation set. We733

report the explored hyperparameter space (Table A2). Bold values indicate the selected hyperparame-734

ters for the final model.735

A.1.4 ProtoNet: details and hyperparameters736

Prototypical Networks (ProtoNet) (Snell et al., 2017), learn a prototype r for each class. Concretely,737

the support set Z is class-wise separated into Z+ := {(x, y) ∈ Z | y = 1} and Z− := {(x, y) ∈ Z |738

y = −1}. For the subsets Z+ and Z− prototypical representations r+ and r− can be computed by739

r+ =
1

|Z+|
·
∑

(x,y)∈Z+

fME(x) (A6)

and740

r− =
1

|Z−|
·
∑

(x,y)∈Z−

fME(x). (A7)

The prototypical representations r+, r− ∈ Rd and the query molecule embeddingm ∈ Rd are then741

used to make the final prediction:742

ŷ =
exp(−d(m, r+))

exp(−d(m, r+)) + exp(−d(m, r−))
, (A8)
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Table A2: Hyperparameter space considered for the Neural Search model selection. The
hyperparameters of the best configuration are marked bold.

Hyperparameter Explored values

Number of hidden layers 1, 2, 4
Number of units per hidden layer 1024, 4096
Output dimension 512, 1024
Activation function ReLU, SELU
Learning rate 0.0001, 0.001, 0.01
Optimizer Adam
Weight decay 0, 1 · 10−4

Batch size 4096
Input Dropout 0.1
Dropout 0.5
Layer-normalization False, True

• Affine False
Similarity function cosine similarity, dot product, MinMax similarity

where d is a distance metric.743

Hyperparameter search. Hyperparameter search has been done in Stanley et al. (2021), to which744

we refer here. ECFP fingerprints and descriptors created by a GNN, which operates on the molecular745

graph, are fed into a fully connected neural network, which maps the input into an embedding space746

with the dimension of 512. (Stanley et al., 2021) use the Mahalanobis distance to measure the747

similarity between a query molecule and the prototypical representations in the embedding space.748

The learning rate is 0.001 and the batch size is 256. The implementation can be found here https:749

//github.com/microsoft/FS-Mol/blob/main/fs_mol/protonet_train.py and important750

hyperparameters are chosen here https://github.com/microsoft/FS-Mol/blob/main/fs_751

mol/utils/protonet_utils.py.752

Connection to Siamese networks and contrastive learning with InfoNCE. If instead of the neg-753

ative distance −d(., .) the dot product similarity measure with appropriate scaling is used, ProtoNet754

for two classes becomes equivalent to Siamese Networks. Note that in our study, another differ-755

ence is that ProtoNet uses a GNN as encoder, whereas Siamese Networks use a descriptor-based756

fully-connected network as encoder. In case of dot product as similarity measure, the objective also757

becomes equivalent to contrastive learning with the InfoNCE objective (Oord et al., 2018).758

A.1.5 IterRefLSTM: details and hyperparameters759

(Altae-Tran et al., 2017) modified the idea of Matching Networks (Vinyals et al., 2016) by replacing760

the LSTM with their Iterative Refinement Long Short-Term Memory (IterRefLSTM). The use of the761

IterRefLSTM empowers the architecutre to update not only the embeddings for the input molecule762

but also adjust the representations of the support set molecules.763

For IterRefLSTM, m = fME
θ1

(m) and xn = fME
θ2

(xn) are two potentially different molecule en-764

coders for input moleculem and the support set molecules x1, . . . , xN . The next step in IterRefLSTM765

is:766

[m′,X ′] = IterRefLSTML([m,X]).

Here, m′ and X ′ contain the updated representations for the query molecule and the support767

set molecules. The IterRefLSTM denotes the function which updates these representations. The768

main property of the IterRefLSTM module is that it is permutation-equivariant, thus a permu-769

tation π(.) of the input elements results in the permutation of output elements: π([m′,X ′]) =770

IterRefLSTML(π([m,X])). The full architecture in invariant to permutations of the support set771

elements. For details, we refer to (Altae-Tran et al., 2017). The hyperparameter L ∈ N controls the772

number of iteration steps of the IterRefLSTM.773
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Table A3: Hyperparameter space considered for the IterRef model selection. The hyperparam-
eters of the best configuration are marked bold.

Hyperparameter Explored values

Molecule encoder
• Number of hidden layers 0, 1, 2, 4
• Number of units per hidden layer 1024, 4096
• Output dimension 512, 1024
• Activation function ReLU, SELU
• Input dropout 0.1
• Dropout 0.5

IterRef embedding layer
• L 1, 3

Similarity module:
• Metric cosine similarity, dot product, MinMax similarity
• Similarity space dimension 512, 1024

Layer-normalization False, True
• Affine False, True

Training
• Learning rate 0.0001, 0.001, 0.01
• Optimizer Adam, AdamW
• Weight decay 0, 0.0001
• Batch size 2048, 4096

As similarity module, the IterRefLSTM uses the following:774

a = softmax (k (m′,X ′))

ŷ =

N∑
n=1

an yn,

where ŷ is the prediction for the query molecule. For the computation of the attention values a, the775

softmax function is used. k is a similarity metric, such as the cosine similarity.776

Hyperparameter search. All hyperparameters were selected based on manual tuning on the777

validation set. We report the explored hyperparameter space in Table A3. Bold values indicate the778

selected hyperparameters for the final model.779

A.1.6 MHNfs: details and hyperparameters780

The MHNfs consists of a molecule encoder, the context module, the cross-attention-module, and the781

similarity module. The molecule encoder is a fully-connected Neural Network, consisting of one782

layer with 1024 units. For the context module, a Hopfield layer with 8 heads is used and also the cross-783

attention module include 8 heads. We chose a concatenation of ECFPs and RDKit-based descriptors784

as the inputs for the MHNfs model. Notably, the RDKit-based descriptors were pre-processed in a785

way that instead of raw values quantils, which were computed by comparing a raw value with the786

distributation of all FS-Mol training molecules, were used. All descriptors were normalized based on787

the FS-Mol training data.788

Hyperparameter search. All hyperparameters were selected based on manual tuning on the789

validation set. We report the explored hyperparameter space in Table A4. Bold values indicate the790

selected hyperparameters for the final model. Early stopping points for the different re-runs are791

chosen based on the ∆AUC-PR metric on the validation set. For the five re-runs the early-stopping792

points, that were automatically chosen by their validation metrics, were the checkpoints at epoch 94,793

192, 253, 253 and 309.794

Model training. Figure A2 shows the learning curve of an exemplary training run of a MHNfs795

model on FS-Mol. The left plot shows the loss on the training set and the right plot shows the796
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Table A4: Hyperparameter space considered for the MHNfs model selection. The hyperparameters of the
best configuration are marked bold.

Hyperparameter Explored values

Molecule encoder
• Number of hidden layers 0, 1, 2, 4
• Number of units per hidden layer 1024, 4096
• Output dimension 512, 1024
• Activation function ReLU, SELU
• Input dropout 0.1
• Dropout 0.5

Context module (hopfield layer)
• Heads 8, 16
• Association space dimension 512 [512;2048]
• τ 22.6 [15;40]
• Dropout 0.1, 0.5

Cross-attention module (transformer mechanism)
• Heads 1, 8, 10, 16, 32, 64
• Number units in the hidden feedforward layer 567 [512; 4096]
• Association space dimension 1088 [512;2048]
• Dropout 0.1, 0.5, 0.6, 0.7
• Number of layers: 1, 2, 3

Similarity module:
• Metric cosine similarity, dot product, MinMax similarity
• Similarity space dimension 512, 1024

Layer-normalization False, True
• Affine False, True

Training
• Learning rate 0.0001, 0.001, 0.01
• Optimizer Adam, AdamW
• Weight decay 0, 0.0001
• Batch size 4096
• Warm-up phase (epochs) 5
• Constant learning rate phase (epochs) 25, 35
• Decay rate 0.994
• Max. number of epochs 350

validation loss. The dashed line indicates the checkpoint of the model which was saved and then used797

for inference on the test set, whereas the stopping point was evaluated maximizing the ∆AUC-PR798

metric on the validation set.799

Performance improvements in comparison to a naive baseline. Figure A3 shows a task-wise800

performance comparison between MHNfs and the frequent hitter model. Each point indicates a task801

in the test set and is colored according to their super-class membership. In 132 cases the MHNfs802

outperforms the frequent hitter model. In 25 cases the frequent hitter model yields better performance.803

A.1.7 PAR: details and hyperparameters804

The PAR model (Wang et al., 2021) includes a pre-trained GNN encoder, which creates initial805

embeddings for the query and support set molecules. These embeddings are fed into an attention806

mechanism module which also uses activity information of the support set molecules to create807

enriched representations. Another GNN learns relations between query and support set molecules.808

Hyperparameter search. For details we refer to (Wang et al., 2021) and https://github.com/809

tata1661/PAR-NeurIPS21/blob/main/parser.py. All hyperparameters were selected based810

on manual tuning on the validation set. The hyperparameter choice for Tox21 (Wang et al., 2021)811

was used as a starting point. We report the explored hyperparameter space in Table A5. Bold values812
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Figure A2: Exemplary MHNfs learning curve on FS-Mol. On the x-axis the number of epochs
is displayed and on the y-axis thee training loss (left) and the validation loss (right) The dashed
line indicates the determined early-stopping point which is determined based on ∆AUC-PR on the
validation set.
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Figure A3: Performance comparison of MHNfs with the frequent hitter model. Each point refers to a
task in the test set. Dashed lines indicate variablility across training re-runs and different test support
sets. The most points are located above the dashed line, which indicates that MHNfs performs better
than den FH baseline at this task.
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Table A5: Hyperparameter space considered for the PAR model selection. The hyperparameters of the
best configuration are marked bold.

Hyperparameter Explored values

Training
• Meta learning rate 1.0 · 10−05, 1.0 · 10−04, 1.0 · 10−03, 1.0 · 10−02

• Inner learning rate 0.01, 0.1
• Update step 1, 2
• Update step test 1, 2
• Weight decay 5.0 · 10−05, 1.0 · 10−03

• Epochs 200000
• Eval. steps 2000

Encoder
• Use pre-trained GNN yes, no

Attention-based module
• Map dimension 128, 512
• Map layer 2, 3
• Pre fc layer 0, 2
• Map dropout 0.1, 0.5
• Context layer 2, 3, 4

Relation graph
• Hidden dimension 8, 128, 512
• Number of layers 2, 4
• Number of layers for relation edge update 2, 3
• Batch norm yes, no
• Relation dropout 1 0, 0.25, 0.5
• Relation dropout 2 0.2, 0.25, 0.5

indicate the selected hyperparameters for the final model. Notably, we just report hyperparameter813

choices which were different from standard choices. We used a training script provided by (Wang814

et al., 2021), which can be found here https://github.com/tata1661/PAR-NeurIPS21.815

A.2 Domain shift experiment816

Experimental setup. For the domain shift experiment, we used the Tox21 dataset. This dataset817

consists of 12,707 chemical compounds, for which measurements for up to 12 different toxic effects818

are reported (Mayr et al., 2016; Huang et al., 2016a). It was published with a fixed training, validation819

and test split. State-of-the-art supervised learning methods that have access to the full training set820

reach AUC performance values between 0.845 and 0.871 (Klambauer et al., 2017; Duvenaud et al.,821

2015; Li et al., 2017, 2021; Zaslavskiy et al., 2019; Alperstein et al., 2019). For our evaluation, we822

re-cast Tox21 as a few-shot learning setting and draw small support sets from the 12 tasks. The823

compared methods were pre-trained on FS-Mol and obtain small support sets from Tox21. Based824

on the support sets, the methods had to predict the activities of the Tox21 test set. Note that there is825

a strong domain shift from drug-like molecules of FS-Mol to environmental chemicals, pesticides,826

food additives of Tox21. The domain shift also concerns the outputs where a shift from kinases,827

hydrolases, and oxidoreductases of FS-Mol to nuclear receptors and stress responses of Tox21 is828

present.829

Methods compared. We compared the new method MHNfs, the runner-up method IterRefLSTM,830

and Similarity Search — since it has been widely used for such purposes for decades (Cereto-831

Massagué et al., 2015).832

Training and evaluation. We followed the procedure of Stanley et al. (2021) for data-cleaning,833

preprocessing and extraction of the fingerprints and descriptors used in FS-Mol. After running the834

cleanup step, 8,423 molecules remained for the domain shift experiments. From the training set, 8835

active and 8 inactive molecules per task were randomly selected to build the support set. The test set836

molecules were used as query molecules. The validation set molecules were not used at all. During837

test-time, a support set was drawn ten times for each task. Then, the performance of the models were838
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Table A6: Results of the domain shift experiment on Tox21 [AUC,
∆AUC-PR]. The best method is marked bold. Error bars represent
standard deviation across training re-runs and draws of support sets

Method AUC ∆AUC-PR

Similarity Search (baseline) .629 ± .015 .061 ± .008
IterRefLSTM (Altae-Tran et al., 2017) .664 ± .018 .067 ± .008
MHNfs (ours) .679 ± .018 .073 ± .008

Table A7: Results of the ablation study on FS-Mol [AUC, ∆AUC-PR ]. The error bars represent
standard deviation across training re-runs and draws of support sets. The p-values indicate whether
the difference between two models in consecutive rows is significant.

Method AUC ∆AUC-PR pAUC
a p∆AUC−PR

a

MHNfs (CM+CAM+SM) .739 ± .005 .241 ± .006
MHNfs -CM .737 ± .004 .240 ± .005 0.030 0.002
MHNfs -CM -CAM .719 ± .006 .223 ± .006 < 1.0e-8 <1.0e-8
Similarity Search .604 ± .003 .113 ± .004 <1.0e-8 < 1.0e-8
IterRefLSTM (Altae-Tran et al., 2017)b .730 ± .005 .234 ± .005 <1.0e-8 8.73e-7
a paired Wilcoxon rank sum test b IterRefLSTM is compared to MHNfs -CM

evaluated for these support sets, using the area under precision-recall curve (AUC-PR), analogously to839

the FS-Mol benchmarking experiment reported as the difference to a random classifier (∆AUC-PR),840

and the area under receiver operating characteristic curve (AUC) metrics. The performance values841

report the mean over all combinations regarding the training reruns and the support set sampling842

iterations. Error bars indicate the standard deviation.843

Results. The Hopfield-based context retrieval method has significantly outperformed the844

IterRefLSTM-based model (p∆AUC−PR-value 3.4e−5, pAUC-value 2.5e-6, paired Wilcoxon test)845

and the Classic Similarity Search (p∆AUC−PR-value 2.4e-9, pAUC-value 7.6e-10, paired Wilcoxon846

test) and therefore showed robust performance on the toxicity domain, see Table A6. Notably, all847

models were trained on the FS-Mol dataset and then applied to the Tox21 dataset without adjusting848

any weight parameter.849

A.3 Details on the ablation study850

The MHNfs has two new main elements compared to the previous state-of-the art method Iter-851

RefLSTM, which are the context module and the cross-attention-module. In this ablation study852

we aim to investigate i) the importance of all design elements, which are the context module, the853

cross-attention module, and the similarity module, and ii) the superiority of the cross-attention module854

compared to the IterRefLSTM module.855

A.3.1 Ablation study A: comparison against IterRefLSTM856

For a fair comparison between the cross-attention module and the IterRefLSTM we used a pruned857

MHN version ("MHNfs -CM") which has no context module and compared it with the IterRefLSTM858

model. The evaluation includes five training re-runs each and ten different support set samplings.859

The results, reported as the mean across training re-runs and support sets, can be seen in Table A7.860

We performed a paired Wilcoxon rank sum test for both the AUC and the ∆AUC-PR metric. Both861

p-values indicate high significance.862

A.3.2 Ablation study B: all design elements863

We evaluate the performance of all main elements within the MHNfs, which are the context module,864

the cross-attention module, the similarity module and the molecule encoder. For this analysis,865

we start with the complete MHNfs which includes all modules and report AUC and ∆AUC-PR866

performance values. Then, we iteratively omit the individual modules, measuring whether there is a867
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Table A8: Results of the ablation study on Tox21 [AUC, ∆AUC-PR ]. The error bars
represent standard deviation across training re-runs and draws of support sets. The
p-values indicate whether a model is significantly different to the MHNfs in terms of
the AUC and ∆AUC-PR metric.

Method AUC ∆AUC-PR pAUC
a p∆AUC−PR

a

MHNfs (CM+CAM+SM) .679 ± .018 .073 ± .008
MHNfs -CM .662 ± .028 .069 ± .012 6.28e-8 0.002
MHNfs -CM -CAM .640 ± .018 .057 ± .009 <1.0e-8 <1.0e-8
Similarity Search .629 ± .015 .061 ± .008 <1.0e-8 <1.0e-8
IterRefLSTM .664 ± .018 .067 ± .008 2.53e-6 3.38e-5
a paired Wilcoxon rank sum test

significant performance difference with and without the module. Table A7 shows the results, where868

performance values for the full MHNfs, a MHNfs model without the context module ("MHNfs -CM")869

and a MHNfs module without the context and the cross-attenion module ("MHNfs -CM -CAM") is870

included. Notably, the model without the context module and without the cross-attention module871

just consists of a learned molecule encoder and the similarity module. We evaluted the impact of872

the learned molecule encoder by replacing it with a fixed encoder, which maps a molecule to its873

descriptors. The model with the fixed encoder is a classic chemoinformatics method which is called874

Similarity Search (Cereto-Massagué et al., 2015).875

For the evaluation, we performed five training re-runs for every model and sampled ten different876

support sets for every task. Table A7 shows the results in terms of AUC and ∆AUC-PR. We performed877

paired Wilcoxon rank sum tests on both metrics, comparing two methods in consecutive rows in the878

table. The table shows that every module has a significant impact as omitting a module results in879

a significant performance drop. The comparison between the MHNfs version without the context880

module and without the cross-attention module with the Similarity Search showed a significant881

superiority of the learned molecule encoder in comparison to the fixed encoder.882

A.3.3 Ablation study C: Under domain shift on Tox21883

Referring to Section A.3.2, the context module and the cross-attention module showed their impor-884

tance for the global architecture. This importance gets even more pronounced for the domain shift885

experiment on Tox21 as one can see in Table A8.886

Again, five training re-runs and ten support set draws are used for evaluation. Including the context887

module makes a clear and significant difference for both metrics AUC and ∆AUC-PR.888

A.4 Generalization to different support set sizes889

In this section, we test the ability of MHNfs to generalize to different support set sizes. During890

training in the FS-Mol benchmarking setting, the MHNfs model has access to support sets of size891

16. However, at inference, the support set size might be different. Figure A4 provides performance892

estimates of the support-set-size-16 MHNfs models on other support set sizes. Note that the estimates893

could be seen as approximate lower bounds of the predictive performance on settings with different894

support set sizes (y-axis labels). For a model used in production or in a real-world drug discovery895

setting, MHNfs should be trained with varying support set sizes that resemble the distribution of real896

drug discovery projects.897

A.5 Generalization to different context sets898

In this section, we test the ability of MHNfs to generalize to different context sets. While the FS-Mol899

training split is used as a context during training, we assessed whether our model is robust to different900

context sets for inference. To this end we preprocessed the GEOM dataset (Axelrod and Gomez-901

Bombarelli, 2022) from which we used 100,000 molecules that passed all pre-processing checks.902

From this set, we sample 10,000 molecules as context set for MHNfs. Because GEOM contains903

drug-like molecules, similar to FS-Mol the predictive performance remains stable (see Table A9).904
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Figure A4: Performance of MHNfs for different support set sizes during inference time. The MHNfs
models are trained with support sets of the size 16.

Table A9: MHNfs performance for different context sets [∆AUC-PR
]. The error bars represent standard deviation across training re-runs
and draws of support sets.

Dataset used as a context ∆AUC-PR

FS-Mol (Stanley et al., 2021) .2414 ± .006
GEOM (Axelrod and Gomez-Bombarelli, 2022) .2415 ± .005

A.6 Details and insights on the context module905

The context module replaces the initial representations of query and support set molecules by a906

retrieval from the context set. The context set is a large set of molecules and covers a large chemical907

space. The context module learns how to replace the initial molecule embeddings such that the908

context-enriched representations are put in relation to this large chemical space and still contains909

all necessary information for the similarity-based prediction part. Figure A5 shows the effect of the910

context module for the MHNfs model. Extreme initial embeddings, such as the purple embedding911

on the right, are pulled more into the known chemical space, represented by the context molecules.912

Notably, the replacement described above is a soft replacement, because also the initial embeddings913

contribute to the context-enriched representations due to skip-connections.914

A.7 Reinforcing the covariance structure in the data using modern Hopfield networks915

We follow the argumentation of (Fürst et al., 2021, Theorem A3) that retrieval from an associative916

memory of a MHN reinforces the covariance structure.917

Let us assume that we have one molecule embedding from the query setm ∈ Rd and one molecule918

embedding from the support set x ∈ Rd and both have been enriched with the context module with919

memory C ∈ Rd×M (ignoring linear mappings):920

m′ = C softmax(βCTm) (A9)

x′ = C softmax(βCTx) (A10)

Then the similarity of the retrieved representations as measured by the dot product can be expressed921

in terms of covariances:922
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Figure A5: PCA plot of molecule embeddings. Each dot in the plot represents a molecule embedding,
of which the first two principal components are displayed on the x- and y-axis. Blue dots represent
context molecules. Dark purple dots represent initial embeddings for some exemplary molecules,
of which some exhibit extreme characteristics and are thus located away from the center. Arrows
and light purple dots represent the enriched molecule embeddings after the retrieval step. Especially
molecules from extreme positions are moved stronger to the center and thus are more similar to
known molecules after retrieval.

m′Tx′ = softmax(βCTm)TCTCsoftmax(βCTx) = (A11)

= (c+ Cov(C,m)Tm)T (c+ Cov(C,x)x), (A12)

where c is the row mean of C and following the weighted covariances are used:923

Cov(C,m) = CJm(βCm)CT Cov(C,x) = CJm(βCx)CT . (A13)

Jm : RM 7→ RM×M is a mean Jacobian function of the softmax (Fürst et al., 2021, Eq.(A172)).924

The Jacobian J of p = softmax(βa) is J(βa) = β
(
diag(p)− ppT

)
.925

bT J(βa) b = β bT
(
diag(p) − p pT

)
b = β

∑
i

pi b
2
i −

(∑
i

pi bi

)2
 , (A14)

this is the second moment minus the mean squared, which is the variance. Therefore, bT J(βa)b is β926

times the covariance of b if component i is drawn with probability pi of the multinomial distribution927

p. In our case the component i is context sample ci. Jm is the average of J(λa) over λ = 0 to λ = β.928
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Note that we can express the enriched representations using these covariance functions:929

m′ = (c+ Cov(C,m)Tm) (A15)

x′ = (c+ Cov(C,x)Tx), (A16)

which connects retrieval from MHNs with reinforcing the covariance structure of the data.930
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