
How Transformers Reason: A Case Study on a
Synthetic Propositional Logic Problem

Guan Zhe Hong∗1 Nishanth Dikkala 2 Enming Luo 2 Cyrus Rashtchian 2

Xin Wang 2 Rina Panigrahy 2

1Purdue University 2 Google Research
hong288@purdue.edu,

{nishanthd, enming, cyroid, wanxin, rinap}@google.com

Abstract

Large language models (LLMs) have demonstrated remarkable performance in
tasks that require reasoning abilities. Motivated by recent works showing evidence
of LLMs being able to plan and reason on abstract reasoning problems in con-
text, we conduct a set of controlled experiments on a synthetic propositional logic
problem to provide a mechanistic understanding of how such abilities arise. In par-
ticular, for a decoder-only Transformer trained solely on our synthetic dataset, we
identify the specific mechanisms by which a three-layer Transformer solves the rea-
soning task. In particular, we identify certain “planning” and “reasoning” circuits
which require cooperation between the attention blocks to in totality implement the
desired reasoning algorithm. To expand our findings, we then study a larger model,
Mistral 7B. Using activation patching, we characterize internal components that
are critical in solving our logic problem. Overall, our work systemically uncovers
novel aspects of small and large transformers, and continues the study of how they
plan and reason.

1 Introduction

Language models using the transformer architecture [Vaswani et al., 2017] have shown remarkable
capabilities on many natural language tasks [Brown et al., 2020, Radford et al., 2019b]. Trained with
causal language modeling wherein the goal is next-token prediction on huge amounts of text, these
models exhibit deep language understanding and generation skills. An essential milestone in the
pursuit of models which can achieve a human-like artificial intelligence, is the ability to perform
human-like reasoning and planning in complex unseen scenarios. While some recent works using
probing analyses have shown that the activations of the deeper layers of a transformer contain rich
information about certain mathematical reasoning problems [Ye et al., 2024], the question of what
mechanisms inside the model enables such abilities remains unclear.

While the study of how transformers reason in general remains a daunting task, in this work, we aim
to improve our mechanistic understanding of how a Transformer reason through simple propositional
logic problems. For concreteness’ sake, consider the following problem:

Rules: A or B implies C. D implies E. Facts: A is true. B is false. D is true.
Question: what is the truth value of C?

An answer with minimal proof is “A is true. A or B implies C; C is true.”

The reasoning problem, while simple-looking on the surface, requires the model to perform several
actions that are essential to more complex reasoning problems, all without chain of thought (CoT).
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Before writing down any token, the model has to first discern the rule which is being queried: in this
case, it is “A or B implies C”. Then, it needs to rely on the premise variables A and B to the locate
the relevant facts, and find “A is true” and “B is false”. Finally, it needs to decide that “A is true” is
the correct one to invoke in its answer due to the nature of disjunction. It follows that, to write down
the first token “A”, the model already has to form a “mental map” of the variable relations, value
assignments and query! Therefore, we believe that this is close to the minimal problem to examine
how a model internalizes and plans for solving a nontrivial mathematical reasoning problem where
apparent ambiguities in the problem specification cannot be resolved trivially.

To understand the internal mechanisms of how a transformer solves problems resembling the minimal
form above, we perform two flavors of experiments. The first is on shallow transformers trained purely
on the synthetic propositional logic problems. This enables a fine-grained analysis in a controlled
setting. The other set of experiments are on a pre-trained LLM (Mistral-7B), where we primarily rely
on activation patching to uncover necessary circuits for solving the reasoning problem, including
specialized roles of certain components. At a high level, we make the following discoveries based on
our two fronts of analysis:

1. We discover that small transformers, trained purely on the synthetic problem, utilize certain
“routing embeddings” to significantly alter the information flow of the deeper layers when solving
different sub-categories of the reasoning problem. We also characterize the different reasoning
pathways: we find that problems querying for reasoning chains involving logical operators
typically require greater involvement of all the layers in the model.

2. We uncover properties of the circuit which the pretrained LLM Mistral-7B-v0.1 employs to solve
the minimal version of the reasoning problem. We find four families of attention heads, which
have surprisingly specialized roles in processing different sections of the context: queried-rule
locating heads, queried-rule mover heads, fact-processing heads, and decision heads. We find
evidence suggesting that the model follows the natural reasoning path of “QUERY→Relevant
Rule→Relevant Fact(s)→Decision”.

We discuss related works and scope of this work in detail in Appendix A.

2 Problem setting

In this section, we present the core properties of the synthetic propositional logic problem which
shall be the data model of this paper. We delay finer details and more examples of the problem to
Appendix B.

2.1 Data model: a propositional logic problem

Our problem follows an implicit causal structure, as illustrated in Figure 1. The structure consists of
two distinct chains: One containing a logical operator at the end of the chain, and the other forming a
purely linear chain.
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Figure 1: Synthetic data model. The causal struc-
ture has two chains: one with a logical operator
(LogOp) at the end and the other being purely a
linear causal chain. This example is the length-3
case.

We require the model to generate a minimal
reasoning chain, consisting of “relevant facts”,
proper rule invocations, and intermediate truth
values, to answer the truth-value query. Con-
sider an example constructed from the causal
graph in Figure 1, written in English:

• Rules: K implies D. D or E implies A. V
implies E. T implies S. P implies T.

• Facts: K is true. P is true. V is false.
• Query: A.
• Answer: K is true. K implies D; D is true.

D or E implies A; A is true.

In this example, the QUERY token A is the ter-
minating node of the OR chain. Since any true
input to an OR gate (either D or E) results in
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A being true, the minimal solution chooses only one of the starting nodes from the OR chain to
construct its argument: in this case, node K is chosen.

3 Mechanisms of planning and reasoning: a case study of the length-3
problem

In this section, we discuss the internal mechanisms of a small transformer trained purely on the
synthetic problem. While there are many parts of the answer of the transformer which can lead to
interesting observations, due to space limitations, we primarily focus on the model’s “mental process”
for producing the most important part of the answer, namely the first token. To further justify this
choice, we find that on our problem, a model’s full-answer accuracy strongly correlates with its
accuracy of the first answer token, as detailed in Figure 4 in the Appendix.

Architecture choice. We study a decoder-only attention-only transformer closely resembling the
form of GPT-2 [Radford et al., 2019a]. We discuss training and architecture details in the Appendix.
We select the smallest transformer that can achieve 100% accuracy (or sufficiently close to it) to
initiate our analysis, a 3-layer 3-head variant.

3.1 Empirical observations

We begin our analysis with mechanisms that are universal to how the model plans and reasons for
predicting the first token. Then we describe the mechanisms that only arise when the model needs to
deal with specific situations. We discuss the main observations here, and leave the quantitative details
to Appendix D.

Mental notes at the QUERY position. The QUERY token is likely the most important token in the
context: it determines which chain is being queried. The transformer makes use of this token in its
answer in an intriguing way.

Observation 1: chain-type disentanglement at QUERY. We observe that, the second layer’s attention
block exhibit disentanglement in its output direction dependent on whether it is the linear chain that is
being queried. Intriguingly, the third layer’s attention heads place greater than 90% of their attention
weights on the QUERY position on average when the linear chain is queried.

Based on Observation 1, we hypothesize that given a chain type (linear or LogOp), there exists certain
directions at the second attention block which somehow change the behavior of the third attention
block: attracting its attention to QUERY when it is the linear chain, and pushing its attention away
from QUERY when it is the LogOp chain. We confirm the existence and role of this “routing” signal.

Observation 2: existence of an abstract “routing signal”. We compute the average of the second
attention block’s output on 1k samples whose QUERY is for the linear chain, which we denote as
hroute. There are two interesting properties of this embedding direction:

1. (Linear→LogOp intervention) We generate 500 test samples where QUERY is for the linear
chain. Subtracting the embedding hroute from the second attention block’s output results in the
model outputting the correct first token for the LogOp chain of the problem 100% of the time on
the test samples. In other words, the “mode” in which the model reasons is flipped from “linear”
to “LogOp”.

2. (LogOp→linear intervention) We generate 500 test samples where QUERY is for the LogOp
chain. Adding hroute to the second attention block’s output causes the three attention heads in
layer 3 to focus on the QUERY position: greater than 99% of the attention weights are on this
position averaged over the test samples. In this case, however, the model does not output the
correct starting node for the linear chain on more than 90% of the test samples.

It follows that there indeed exists an abstract embedding direction inside the transformer which
significantly changes the information flow depending on the chain type being queried.

Linear chain. At this point, it is clear to us that, when QUERY is for the linear chain, the third
layer mainly serves a simple “message passing” role at the QUERY position. A natural question
arises: does the input to the third layer truly contain the information to determine the first token of
the answer, namely the starting node of the linear chain? The answer is yes.
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Figure 2: High-level properties of Mistral-7B’s reasoning circuit. The (chunks of) input tokens are on
the left, which are passed into the residual stream and processed by the attention heads. We illustrate
the information flow manipulated by the different types of attention heads we identified to be vital to
the reasoning task.

Observation 3: linearly-decodable linear-chain answer at layer 2. We train an affine classifier with
the same input as the third attention block, with the target being the start of the linear chain; the
training samples only query for the linear chain, and we generate 5k of them. We obtain a test
accuracy above 97% for this classifier (on 5k test samples), confirming that layer 2 already has the
answer at the QUERY position.

LogOp chain: partial answer in layers 1 & 2 + refinement in layer 3. To predict the correct
starting node of the LogOp chain, the model employs the following strategy:

1. The first two layers encode the LogOp and only a “partial answer”. More specifically, we find
evidence that (1) when the LogOp is an AND gate, layers 1 and 2 tend to pass the node(s) with
FALSE assignment to layer 3, (2) when the LogOp is an OR gate, layers 1 and 2 tend to pass
node(s) with TRUE assignment to layer 3.

2. The third layer, combining information of the two starting nodes of the LogOp chain, and the
information in the layer-2 residual stream at the ANSWER position, output the correct answer.

We delay the full set of evidence for the above claims to Appendix D.2.

4 The reasoning circuit in Mistral-7B

We now turn to examine how a pretrained LLM, namely Mistral-7B solves this reasoning problem.
We choose this LLM as it is amongst the smallest accessible model which achieves above 70%
accuracy on (a minimal version of) our problem. We present a hypothesis for the reasoning circuit
inside the model for predicting the crucial first token of the length-2 problem in Figure 2, and provide
evidence relying on a popular technique in mechanistic interpretability, activation patching.

We describe the main properties of the reasoning circuit inside the model for this prediction task in
Figure 2. At a high level, there are several intriguing properties of the reasoning circuit of the LLM:2

1. Compared to the attention blocks, the MLPs are relatively unimportant to correct prediction.
2. There is a sparse set of attention heads that are found to be central to the reasoning circuit:

• (Queried-rule locating head) Attention heads (9,25;26), (12,9), (14,24;26) locate the queried
rule using the QUERY token, and stores this information at the QUERY position.

• (Queried-rule mover head) Attention heads (13,11), (15,8) move QUERY and the queried-rule
information from the QUERY position to the “:” position.

• (Fact processing heads) Attention heads (16,12;14), (17,25) locate the relevant facts, and
move information to the “:” position.

2We use (ℓ, h) to denote an attention head. When referencing multiple heads in the same layer, we write
(ℓ, h1;h2; ...;hn) for brevity.
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• (Decision head) Attention head (19,8), relying on the aggregated information, makes a
decision on which token to output.

4.1 Circuit analysis

We only discuss high-level intuitions and results here due to space limitations, and delay the full set
of experiments and their interpretations to Appendix E.

Intuitively speaking, to support our hypothesis for the reasoning circuit employed by Mistral-7B to
solve the reasoning problem, we rely on activation patching to discover the attention heads which have
the greatest influence on the model’s output distribution (recall that the MLPs are not as important
in this problem). We combine such “causal-mediation” evidence with inspections on these heads’
attention patterns. This leads to the set of evidence that is (partially) visualized in Figure 3 below.

Queried-rule locating

Fact processing
Queried-rule mover

Decision

(a) Query (b) Typical attention pattern (c) Value

Figure 3: Patching of query and value activations of all attention heads in (a) and (c); we found that
intervening the key activations only yield trivial scores, so we do not report them here. We show in (b)
the typical attention patterns of a representative set of the attention heads which are identified to be
important in the intervention experiments shown in (a) and (c). There are several distinct observations
which can be made in (b). Queried-rule locating head (12,9): observe that it correctly locates the
queried rule which ends with Q. Queried-rule mover head (13,11): the only token position which it
focuses on is the QUERY token Q. Fact processing head (16,14): attention concentrates in the fact
section. Decision head (19,8): attention focused on the correct first answer token K.

5 Conclusion

We studied the reasoning mechanisms of both small transformers and LLMs on a synthetic proposi-
tional logic problem. We analyzed a shallow decoder-only attention-only transformer trained purely
on this problem as well as a pretrained Mistral-7B LLM. We uncovered interesting mechanisms
the small and large transformers adopt to solve the problem. For the small models, we found the
existence of “routing” signals that significantly alter the model’s reasoning pathway depending on
the sub-category of the problem instance. For Mistral-7B, we found four families of attention heads
that implement the reasoning pathway of “QUERY→Relevant Rule→Relevant Facts→Decision”.
These findings provide valuable insights into the inner workings of LLMs on mathematical reasoning
problems.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?
Answer: [Yes]
Justification: We indeed summarize the main results and contributions of this work in the abstract
and introduction sections.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made in
the paper.

• The abstract and/or introduction should clearly state the claims made, including the contribu-
tions made in the paper and important assumptions and limitations. A No or NA answer to
this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much
the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are
not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We explicitly discuss all the limitations of this work in the conclusion section, from
architecture choice, to data model limitations, to limitations in our analysis.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that the
paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to vi-

olations of these assumptions (e.g., independence assumptions, noiseless settings, model
well-specification, asymptotic approximations only holding locally). The authors should
reflect on how these assumptions might be violated in practice and what the implications
would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to
provide closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by review-
ers as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms
that preserve the integrity of the community. Reviewers will be specifically instructed to not
penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?
Answer: [NA]
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Justification: This is not a theory work.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they appear

in the supplemental material, the authors are encouraged to provide a short proof sketch to
provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We detail our experimental procedures, including architecture choice, training
procedure, hyperparameters and metrics used in the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by

the reviewers: Making the paper reproducible is important, regardless of whether the code
and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to
make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
access to the model. In general. releasing code and data is often one good way to accomplish
this, but reproducibility can also be provided via detailed instructions for how to replicate the
results, access to a hosted model (e.g., in the case of a large language model), releasing of a
model checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of
the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either

be a way to access this model for reproducing the results or a way to reproduce the model
(e.g., with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?
Answer: [No]
Justification: Our experiments rely on internal code, which can be difficult to release.
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Guidelines:
• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including
code, unless this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.
cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to
access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state
which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions
(if applicable).

• Providing as much information as possible in supplemental material (appended to the paper)
is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?
Answer: [Yes]
Justification: We present the experimental settings in the main text and the appendix, including
descriptions of the synthetic dataset, training procedure, hyperparameter choices, metrics used,
etc.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that

is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report error bars when needed.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably

report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality
of errors is not verified.
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• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?

Answer: [Yes]

Justification: We discuss such details in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or

cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experi-

mental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than the

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conforms to the Code of Ethics of Neurips.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration

due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?

Answer: [Yes]

Justification: We discuss potential broader impact in section F.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point out
that an improvement in the quality of generative models could be used to generate deepfakes
for disinformation. On the other hand, it is not needed to point out that a generic algorithm
for optimizing neural networks could enable people to train models that generate Deepfakes
faster.
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• The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional or
unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms
for monitoring misuse, mechanisms to monitor how a system learns from feedback over time,
improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release
of data or models that have a high risk for misuse (e.g., pretrained language models, image
generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risk.

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere
to usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?
Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service

of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.
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• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create
an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribution of
the paper involves human subjects, then as much detail as possible should be included in the
main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or
an equivalent approval/review based on the requirements of your country or institution) were
obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent) may
be required for any human subjects research. If you obtained IRB approval, you should
clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines
for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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Appendix / supplemental material

A Related works, and scope of this work

Mechanistic interpretability. Our work falls in the area of mechanistic interpretability, which aims
to understand the mechanisms that enable capabilities of the LLM; such studies involve uncovering
certain “circuits” in the network [Elhage et al., 2021, Olsson et al., 2022, Meng et al., 2022, Vig et al.,
2020, Feng and Steinhardt, 2024, Wu et al., 2023, Wang et al., 2023, Hanna et al., 2024, Merullo
et al., 2024, McGrath et al., 2023, Singh et al., 2024, Feng et al., 2024]. While the definition of a
“circuit” varies across different works, in this paper, our definition is similar to the one in Wang et al.
[2023]: it is a collection of model components (attention heads, neurons, etc.) with the “edges” in the
circuit indicating the information flow between the components in the forward pass; the “excitation”
of the circuit is the input tokens.

Evaluation of reasoning abilities of LLMs. Our work is also related to the line of work which
focus on empirically evaluating the reasoning abilities of LLMs across different types of tasks [Xue
et al., 2024, Chen et al., 2024, Patel et al., 2024, Morishita et al., 2023, Seals and Shalin, 2024,
Zhang et al., 2023, Saparov and He, 2023, Saparov et al., 2024, Luo et al., 2024, Han et al., 2024,
Tafjord et al., 2021, Hendrycks et al., 2021, Dziri et al., 2024, Yang et al., 2024]. While these studies
primarily benchmark their performance on sophisticated tasks, our work focuses on understanding
“how” transformers reason on logic problems accessible to fine-grained analysis.

Analysis of how LLMs reason. There are far fewer studies that focus on providing fine-grained
analysis of how LLMs reason. To the best of our knowledge, only a handful of works, such as
Brinkmann et al. [2024], Xue et al. [2024], Zečević et al. [2023], Ye et al. [2024], share similar
goals of understanding how transformers perform multi-step reasoning through detailed empirical
or theoretical analysis. However, none studies the [Variable relationships]+[Variable value assign-
ment]+[Query] type problem in conjunction with analysis on both small transformers trained purely
on the synthetic problem, and large language models trained on a large corpus of internet data.

Activation patching. At its core, activation patching, a.k.a. causal mediation analysis [Vig et al.,
2020, Meng et al., 2022, Hase et al., 2024, Heimersheim and Nanda, 2024, Zhang and Nanda, 2024],
uses causal interventions for uncovering the internal mechanisms or “circuits” of LLMs that enable
them to perform certain tasks. Typically, the LLM is run on pairs of “source” and “destination”
prompts, and we search for components inside the model that “recover” the model’s behavior on the
source prompts by replacing parts of the model’s activation with “source activations” when running
on the destination prompt. The opposite “destination→source” intervention can also be adopted.

Scope of this work. We define the scope of our analysis as follows. First, in the shallow transformer
experiments, we focus on the variant which only has self-attention layers in addition to layer
normalization, positional encoding, embedding and softmax parameters. While we could have
also included MLP layers, we choose not to because the no-MLP models already achieve 100%
accuracy on the problem, and adding MLPs would unnecessarily complicate the analysis. As a second
way to focus the scope of paper, in the Mistral-7B experiments, we do not seek to uncover every
model component that participates in solving the reasoning problem. We focus more on finding and
analyzing the components that are necessary to the model’s reasoning circuit, and necessary towards
implementing the reasoning pathway as described before. By doing so, we can fully justify the
necessity of these key components, without guessing about the roles of less-impactful sub-circuits.

B Propositional logic problem and examples

In this section, we provide a more detailed description of the propositional logic problem we study in
this paper, and list representative examples of the problem.

At its core, the propositional logic problem requires the reasoner to (1) distinguish which chain type
is being queried (LogOp or linear), and (2) if it is the LogOp chain being queried, the reasoner must
know what truth value the logic operator outputs based on the two input truth values.

Below we provide a comprehensive list of representative examples of our logic problem at length 2
(i.e. each chain is formed by one rule). We use [Truth values] to denote the relevant input truth value
assignments (i.e. relevant facts) to the chain being queried below.
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1. Linear chain queried, [True]

• Rules: A or B implies C. D implies E.
• Facts: A is true. B is true. D is true.
• Question: what is the truth value of C?
• Answer: D true. D implies E; E True.

2. Linear chain queried, [False]

• Rules: A or B implies C. D implies E.
• Facts: A is true. B is true. D is false.
• Question: what is the truth value of C?
• Answer: D false. D implies E; E undetermined.

3. LogOp chain queried, LogOp = OR, [True, True]

• Rules: A or B implies C. D implies E.
• Facts: A is true. B is true. D is true.
• Question: what is the truth value of C?
• Answer: B true. A or B implies C; C True.

Remark. In this case, the answer “A true. A or B implies C; C True” is also correct.

4. LogOp chain queried, LogOp = OR, [True, False]

• Rules: A or B implies C. D implies E.
• Facts: A is true. B is false. D is true.
• Question: what is the truth value of C?
• Answer: A true. A or B imples C; C True.

5. LogOp chain queried, LogOp = OR, [False, False]

• Rules: A or B implies C. D implies E.
• Facts: A is false. B is false. D is true.
• Question: what is the truth value of C?
• Answer: A false B false. A or B implies C; C undetermined.

6. LogOp chain queried, LogOp = AND, [True, True]

• Rules: A and B implies C. D implies E.
• Facts: A is true. B is true. D is true.
• Question: what is the truth value of C?
• Answer: A true B true. A and B implies C; C True.

7. LogOp chain queried, LogOp = AND, [True, False]

• Rules: A and B implies C. D implies E.
• Facts: A is true. B is false. D is true.
• Question: what is the truth value of C?
• Answer: B false. A and B implies C; C undetermined.

8. LogOp chain queried, LogOp = AND, [False, False]

• Rules: A and B implies C. D implies E.
• Facts: A is false. B is false. D is true.
• Question: what is the truth value of C?
• Answer: A false. A and B implies C; C undetermined.

Remark. In this case, the answer “B false. A and B implies C; C undetermined” is also correct.

The length-3 case is a simple generalization of this set of examples, so we do not cover those examples
here.
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C Learner characteristics, and training details

C.1 Transformer definition

The architecture definition follows that of GPT-2 closely.

Define input x = (x1, x2, ..., xT ) ∈ NT , a sequence of tokens with length T . It is converted into a
sequence of (trainable) token embeddings Xtoken = (e(x1), e(x2), ..., e(xT )) ∈ Rdin×T . Adding
to it the (trainable) positional embeddings P = (p1,p2, ...,pT ) ∈ Rdin×T , we form the zero-th layer
embedding of the transformer X0 = (e(x1) + p1, ..., e(xT ) + pT ). The input is processed by the
attention blocks as follows.

Let the model have L layers and H heads. For layer index ℓ ∈ [L] and head index j ∈ [H], atten-
tion head Aℓ,j is computed by Aℓ,j(Xℓ−1) = S

(
causal

[
X̃ℓ−1Q

T
ℓ,jKℓ,jX̃

T

ℓ−1

]
/
√
dH

)
X̃ℓ−1V

T
ℓ ,

with X̃ℓ−1 = LayerNorm(Xℓ−1), S(·) being the softmax operator, causal[·] the causal mask opera-
tor. The output of the attention block is Aℓ = Xℓ−1 +Concat[Aℓ,1(Xℓ−1), ...,Aℓ,H(Xℓ−1)]W

T
O,ℓ,

with WO,ℓ the square projection matrix (with bias). Finally, we apply an affine classifier (with
softmax) f(x) = S(X̃L,TW

T
class + bclass) to predict the next word.

In this paper, we set the hidden space embedding to 768.

C.2 Training details

In all of our experiments, we set the learning rate to 10−4, and weight decay to 10−4. For models
with depth less than 6, we use a batch size of 512, and train the model for 60k iterations; for models
with depth greater than or equal to 6, we use a batch size of 256, and train for 80k iterations. We
use the AdamW optimizer in PyTorch, with 5k iterations of linear warmup, following by cosine
annealing to a learning rate of 0. Each model is trained on a single V100 GPU; the full set of models
take around 2 - 3 days to finish training.

D Section 3 Experimental setup and observations

Problem specification. In each logic problem instance, the proposition variables are randomly
sampled from a pool of 80 variables (tokens). The truth values in the fact section are also randomly
chosen. The linear chain is queried 20% of the time; the LogOp chain is queried 80% of the time.

Accuracy of different variants of the model for the length-3 problem. We show in Figure 4 below
that the 3-layer 3-head variant is the smallest model which achieves 1̃00% accuracy on the problem.

Figure 4: Accuracy of full reasoning and first token for several models on the length-3 problem.
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D.1 Routing signal in the second attention block

Observation 1: chain-type disentanglement at QUERY. We construct 200 samples, with the
first half querying the linear chain, the second half querying the logical-operator chain. We record
the second-layer’s self-attention block output on these samples, and compute the cosine similarity
between each pair. We show the result in Figure 5.

Figure 5: Disentanglement based on whether QUERY is for the linear chain, observed at the second
self-attention block.

Observation 2a: existence of an abstract “routing signal”. We make the following experimental
observations.

1. We generate 1,000 samples whose QUERY is for the linear chain, and compute the average output
embedding of layer-2 self-attention block (post projection matrix). We denote this embedding as
hroute.

2. (Linear→LogOp intervention) Sample a set of 500 validation samples, all of which query for
the linear chain. In the forward pass of the model on every validation sample, we subtract the
hroute to the output of the second attention block — note that this “corrupted” signal from the
second layer is also received by the third layer. We observe that the model’s first token prediction
is 100% of the time the correct first token for the LogOp chain.

3. (LogOp→linear intervention) We repeat the above experiment the other way around. We sample
another 500 validation samples, but in this case they all query the LogOp chain. On every sample,
during the forward pass we add hroute to the output of the second attention block. We record the
attention weight of the third layer’s attention blocks at the ANSWER token position. We then
average these attention weights for each head. We find that all three attention heads place greater
than 99% attention weight on the QUERY position on average, behaving exactly like when the
sample naturally queries for the linear chain.

Observation 2b: linearly-decodable linear-chain answer at layer 2. We simply frame the learning
problem as a linear classification problem. The input vector of the classifier is the same as the input
to the layer-3 self-attention block, equivalently the layer-2 residual-stream embedding. The output
space is the set of proposition variables (80-dimensional vector). We train the classifier on 5k training
samples (all whose QUERY is for the linear chain) using the AdamW optimizer, with learning rate
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set to 5× 10−3 and weight decay of 10−2. We verify that the trained classifier obtains an accuracy
greater than 97% on an independently sampled test set of size 5k (all whose QUERY is for the linear
chain too).

D.2 Answer for the LogOp Chain

Evidence 3a: Distinct behaviors of affine predictors at different layers. We train two affine classifiers
at two positions inside the model (each with 10k samples): W resid,ℓ=2 at layer-2 residual stream,
and W attn,ℓ=3 at layer-3 attention-block output, both at the position of ANSWER, with the target
being the correct first token. In training, if there are two correct answers possible (e.g. OR gate,
starting nodes are both TRUE or both FALSE), we randomly choose one as the target; in testing, we
deem the top-1 prediction “correct” if it coincides with one of the answers. We observe the following
predictor behavior on the test samples:

1. W attn,ℓ=3 predicts the correct answer 100% of the time.
2. W resid,ℓ=2 always predicts one of the variables assigned FALSE (in the fact section) if LogOp

is the AND gate, and predicts one assigned TRUE if LogOp is the OR gate.

Evidence 3b: linearly decodable LogOp information from first two layers. We train an affine classifier
at the layer-2 residual stream to predict the LogOp of the problem instance, over 5k samples (and
tested on another 5k samples). The classifier achieves greater than 98% accuracy. We note that
training this classifier at the layer-1 residual stream also yields above 95% accuracy.

Evidence 3c: identification of LogOp-chain starting nodes at layer 3. Attention heads (3,1) and (3,3),
when concatenated, produce embeddings which we can linearly decode the two starting nodes of
the LogOp chain with test accuracy greater than 98%. We also find that they focus their attention in
the rule section of the context (as shown in Figure 6). Due to causal attention, this means that they
determine the two starting nodes from the LogOp-relevant rules.

Remark. The above pieces of observations suggest the “partial information→refinement” process.3
To further validate that the embedding from the first two layers are indeed causally linked to the
correct answer at the third layer, we perform an activation patching experiment.

Evidence 3d: layer-2 residual stream at ANSWER is important to correct prediction. We verify that
layer-3 attention does rely on information in the layer-2 residual stream (at the ANSWER position):

• Construct two sets of samples D1 and D2, each of size 10k: for every sample X1,n ∈ D1

and X2,n ∈ D2, the context of the two samples are exactly the same, except the LogOp is
flipped, i.e. if X1,n has disjunction, then X2,n has the conjunction operator. If layer 3 of the
model has no reliance on the Residℓ=2 (layer-2 residual stream) for LogOp information at the
ANSWER position, then when we run the model on any X2,n, patching Residℓ=2(Xn,2) with
Residℓ=2(Xn,1) at ANSWER should not cause significant change to the model’s accuracy of
prediction. However, we observe the contrary: the accuracy of prediction degrades from 100% to
70.87%, with standard deviation 3.91% (repeated over 3 sets of experiments).

Observation: LogOp-relevant reasoning at the third layer. We show that the output from attention
heads (3,1) and (3,3) (before the output/projection matrix of the layer-3 attention block), namely
A3,1(X2) and A3,3(X2), when concatenated, contain linearly decodable information about the two
starting nodes of the LogOp chain. We frame this as a multi-label classification problem, detailed as
follows:

1. We generate 5k training samples and 5k test samples, each of whose QUERY is for the LogOp
chain. For every sample, we record the target as a 80-dimension vector, with every entry set to 0
except for the two indices corresponding to the two proposition variables which are the starting
nodes of the LogOp chain.

2. Instead of placing softmax on the final classifier of the transformer, we use the Sigmoid function.
Moreover, instead of the Cross-Entropy loss, we use the Binary Cross-Entropy loss (namely the

3In fact, the observations suggest that layer 3 performs a certain “matching” operation. Take the OR gate as
an example. Knowing which of the three starting nodes (for LogOp and linear chain) are TRUE, and which two
nodes are the starting nodes for the LogOp chain are sufficient to determine the first token! This exact algorithm,
however, is not fully validated by our evidence; we leave this as part of our future work.
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torch.nn.functional.binary_cross_entropy_with_logits in PyTorch, which directly
includes the Sigmoid for numerical stability).

3. We train an affine classifier, with its input being the concatenated Concat[A3,1(X2),A3,3(X2)]
(a 512-dimensional vector) on every training sample, and with the targets and training loss defined
above. We use a constant learning rate of 0.5× 10−3, and weight decay of 10−2. The optimizer
is AdamW in PyTorch.

4. We assign a “correct” evaluation of the model on a test sample only if it correctly outputs the two
target proposition variable as the top-2 entries in its logits. We observe that the classifier achieves
greater than 98% once it converges.

Figure 6: Attention statistics, averaged over 500 samples, all of which query for the LogOp chain.
The x-axis is simply an example prompt that helps illustrate where the attention is really placed at.
Observe that only attention head (3,2) pays significant attention to the fact section. The other two
heads focus on the rule section.
Reminder: due the the design of the problem, the rule, fact and query sections all have consistent
length for every sample!

D.3 Extra remarks

Observation 3 supplement: linearly-decodable linear-chain answer at layer 2. We simply frame
the learning problem as a linear classification problem. The input vector of the classifier is the same
as the input to the layer-3 self-attention block, equivalently the layer-2 residual-stream embedding.
The output space is the set of proposition variables (80-dimensional vector). We train the classifier on
5k training samples (all whose QUERY is for the linear chain) using the AdamW optimizer, with
learning rate set to 5× 10−3 and weight decay of 10−2. We verify that the trained classifier obtains
an accuracy greater than 97% on an independently sampled test set of size 5k (all whose QUERY is
for the linear chain too).

Remarks on truth value determination. Evidence suggests that determining the truth value of the
simple propositional logic problem is easy for the model, as the truth value of the final answer is
linearly decodable from layer-2 residual stream (with 100% test accuracy, trained on 10k samples)
when we give the model the context+chain of thought right before the final truth value token. This
is expected, as the main challenge of this logic problem is not about determining the query’s truth
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value, but about the model spelling out the minimal proof with careful planning. When abundant CoT
tokens are available, it is natural that the model knows the answer even in its second layer.

E Mistral 7B: Experimental Details

E.1 Problem format

In our Mistral-7B experiments, the input samples have the following properties:

1. We give the model 6 (randomly chosen) in-context examples before asking for the answer.

2. The problem is length-2: only one rule involving the OR gate, and one linear-chain rule. Moreover,
the answer is always true. In particular, the truth values of the two premise nodes of the OR chain
always have one FALSE and one TRUE.

3. The proposition variables are all (single-token) capital English letters.

The design decision in the first point is to ensure fairness to the LLM which was not trained on our
specific logic problem. As for the last two point, we restrict the problem in this fashion mainly to
ensure that the first answer token is unique, which improves the tractability of the analysis. Note that
these restrictions do not take away the core challenge of this problem: the LLM still needs to process
all the context information without CoT to determine the correct first token.

An example problem is presented below.

Rules: Z or F implies B. D implies C.
Facts: D is true. Z is true. F is false.
Question: state the truth value of C.
Answer: D is true. D implies C; C is true.
Rules: U implies Y. G or I implies Q.
Facts: I is true. U is true. G is false.
Question: state the truth value of Y.
Answer: U is true. U implies Y; Y is true.
Rules: G or Z implies E. U implies K.
Facts: U is true. G is true. Z is false.
Question: state the truth value of E.
Answer: G is true. G or Z implies E; E is true.
Rules: G implies U. Y or A implies V.
Facts: Y is true. G is true. A is false.
Question: state the truth value of V.
Answer: Y is true. Y or A implies V; V is true.
Rules: U implies W. H or B implies L.
Facts: B is false. U is true. H is true.
Question: state the truth value of W.
Answer: U is true. U implies W; W is true.
Rules: F or A implies Y. E implies I.
Facts: A is false. F is true. E is false.
Question: state the truth value of Y.
Answer: F is true. F or A implies Y; Y is true.
Rules: B or F implies D. S implies T.
Facts: S is true. F is true. B is false.
Question: state the truth value of T.
Answer:

Remark. To ensure fairness to the LLM, we balance the number of in-context examples which queries
the OR chain and the linear chain: each has 3 in-context examples. The order in which the in-context
examples are presented (i.e. the order in which the examples with OR or linear-chain answer) is
random.
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E.2 Causal mediation analysis

We provide evidence in this part of the paper primarily relying on a popular technique in mechanistic
interpretability: causal mediation analysis. Our methodology is roughly as follows:

1. Suppose we are interested in the role of the activations of certain components of the LLM in a
certain (sub-)task. For a running example, say we want to understand what role the attention
heads play in processing and passing QUERY information to the “:” position for inference. Let
us denote the activations as Aℓ,h;t(X), representing the activation of head h in layer ℓ, at token
position t.

2. Typically, the analysis begins by constructing two sets of prompts which differ in subtle ways. A
natural construction in our example is as follows: define sets of samples Dorig and Dalt, where
Xorig,n and Xalt,n have exactly the same context, except in Xorig,n, QUERY is for the LogOp
chain, while in Xalt,n, QUERY is for the linear chain. Moreover, denote the correct targets
yorig,n and yalt,n respectively.

3. We run the LLM on Dorig and Dalt, caching the attention-head activations. We also obtain the
logits of the model. We can compute the model’s logit differences

∆orig,n = logit(Xorig,n)[yorig,n]− logit(Xorig,n)[yalt,n].

For a high-accuracy model, ∆orig,n should be large for most n’s, since it must be able to clearly
tell that on an Xorig,n, it is the LogOp chain which is being queried, not the linear chain.

4. We now perform intervention for all n, ℓ, h and t:
(a) Run the model on Xorig,n, however, replacing the original activation Aℓ,h;t(Xorig,n) by

the altered Aℓ,h;t(Xalt,n). Now let the rest of the run continue.4 Let us denote the logits
obtained in this intervened run as logit→alt;(ℓ,h,t)(Xorig,n).

(b) Now compute the intervened logit difference

∆orig→alt,n;(ℓ,h,t) = logit→alt;(ℓ,h,t)(Xorig,n)[yalt,n]− logit→alt;(ℓ,h,t)(Xorig,n)[yorig,n].

5. Now average the ∆orig→alt,n;(ℓ,t)’s over n for every ℓ, h and t (recall that n is the sample index).
6. This procedure helps us identify components that are significant in processing and passing the

QUERY information for inference. Intuitively, an activation that result in a positive and large
∆orig→alt,n;(ℓ,t) play a significant role in this subtask, because this activation helps “altering” the
model’s “belief” from “QUERY is for the LogOp chain” to “QUERY is for the linear chain”.

7. Remark: due to the symmetry of this running example, it is perfectly sensible to perform
alt → orig interventions too, by mirroring the above procedures.

Each of our experiments are done on 60 samples unless otherwise specified — we repeat some
experiments (especially the attention-head patching experiments) to ensure statistical significance
when necessary.

Calibrated metric. Please note that in this work, we adopt a calibrated/normalized version of the
intervened logit difference (aimed at keeping the score’s magnitude between 0 and 1). In particular,
we compute the following metric for head (ℓ, h) at token position t:

1
N

∑
n∈[N ] ∆orig→alt,n;(ℓ,h,t) −∆orig

∆alt −∆orig
. (1)

where ∆orig = 1
N

∑
n∈[N ] logit(Xn)[yalt,n] − logit(Xn)[yorig,n], and ∆alt =

1
N

∑
n∈[N ] logit(X ′

n)[yalt,n] − logit(X ′
n)[yorig,n]. The closer to 1 this score is, the stronger the

model’s belief is altered.

E.3 QUERY-based patching: discovering the important attention heads

Our analysis relies on QUERY-based patching, following the same procedure as detailed in sub-
section E.2. In this set of experiments, we discover the main attention heads responsible for processing
the context and performing inference as introduced in the beginning of this Section.

4Please note that layers ℓ+ 1 to L are influenced at and after token position t, and technically speaking, now
operate “out of distribution”.
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(a) Residual stream patching (b) Attention block patching (c) MLP patching

Figure 7: Query patching at the level of residual streams, attention blocks and MLPs. Highly localized
processing of QUERY is observed: a sharp transition occurs at layer 13 in (a), and in (b), only a
sparse set of attention blocks play a major role in this subtask. Furthermore, (c) shows that the MLPs
play a limited role in this subtask (besides MLP0). (Please zoom in for the details)

(a) Single-head patching (b) Head group patching

(12,9) (13,11)

(19,8) (16,12;14)

(16,0)

(17,25)

(14,24;26)

(9,24 - 27)

(15,8)

Figure 8: Attention head patching, highlighting the ones with the highest intervened logit difference;
x-axis is the head index. (a) shows single-head patching, and (b) shows a coarser-grained head
patching in groups. In (b), we only highlight the head groups that are not captured well by (a).

Why is QUERY-based patching important to reasoning circuit discovery? To answer this
question, there are two points to emphasize first. (1) We know that to solve the reasoning problem,
the QUERY token is critical to initiating the reasoning chain: without it, the rules and facts are
completely useless; with it, the reasoner can then proceed to identify the relevant rules and facts
to predict the answer. (2) The prompt pairs differ only by the QUERY token. Based on (1) and
(2), we know that if performing the aforementioned QUERY-based causal intervention on a model
component leads to a large intervened logit difference (i.e. it alters the model’s “belief”), then this
component must be integral to the reasoning circuit, because the component is now identified to be
QUERY-sensitive and has causal influence on (parts of) the model’s reasoning actions.

High-level interventions. We begin by presenting higher-level patching results in Figure 7, where we
intervene at the level of residual streams, attention blocks, and MLPs. We can draw a few insights
from these results:

1. A sharp transition of “QUERY processing” occurs from layer 12 to layer 13 (indexed from 0) in
Figure 7(a) and (b).

2. Figure 7(b) shows that a small set of attention blocks are observed to be significant for the “belief
altering” action, namely those in layers 9, 12, 13, 14, 16 and 19.

3. The MLPs, shown in Figure 7(c), play little role in this circuit, except for MLP-0. However, MLP-
0 had been observed to act more as a “nonlinear token embedding” than a complex high-level
processing unit [Wang et al., 2023]. In the rest of this section, we primarily devote our analysis to
the attention heads, and leave the exact role of the MLPs to future work.

Attention-head interventions. Figure 7 helps us locate a small set of attention blocks which are
important to the task. However, these results alone still leave us with far too many components to
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Queried-rule locating

Fact processing
Queried-rule mover

Decision

(a) Query (b) Typical attention pattern (c) Value

Figure 9: Patching of query and value activations in (a) and (c); we found that intervening the key
activations only yield trivial scores, so we do not report them here. We show in (b) the typical
attention patterns of a representative set of the attention heads which are identified to be important
in the intervention experiments shown in (a) and (c). There are several distinct observations which
can be made in (b). Queried-rule locating head (12,9): observe that it correctly locates the queried
rule which ends with Q. Queried-rule mover head (13,11): the only token position which it focuses
on is the QUERY token Q. Fact processing head (16,14): attention concentrates in the fact section.
Decision head (19,8): attention focused on the correct first answer token K.

examine in detail. Therefore, we run a set of finer-grained experiments, intervening on the attention
heads (over the relevant context). The results are shown in Figure 8. We find that, interestingly, only
a very small set of attention heads are central to the “belief altering” of the LLM. More specifically,
in Figure 8(a), only attention heads (12,9), (13,11), (14,24;26), (16,0;12;14), (17,25), (19,8) are
observed with relatively high intervened logit differences.

We note that Grouped-Query Attention used by Mistral-7B adds subtlety to the analysis5: patching a
single head might not yield a high logit difference since other heads in the same group (which possibly
perform a similar function) could overwhelm the patched head and maintain the model’s previous
“belief”. Therefore, we also run a coarser-grained experiment which simultaneously patches the
attention heads sharing the same key and value activations, shown in Figure 8(b). This experiment
reveals that heads belonging to the group (9, 24 - 27) also have high intervened logit difference.

E.4 Causal interventions on the sub-components of attention heads

We aim to understand why the attention heads identified in the last sub-section are important. For now,
we continue with QUERY altering in the prompt pairs. Through intervening on the sub-components
of each attention head, namely their value, key, and query, and through examining details of their
attention weights, we find that there are roughly four types of attention heads. We show the results in
Figure 9 (repeated here in the Appendix for convenience):

1. Queried-rule locating head. Attention head (12,9)’s query activation has a large intervened
logit difference according to Figure 3(a), therefore, its query and attention patterns are QUERY-
dependent and contribute to altering the model’s “belief”. Furthermore, at the QUERY position,
we find that on average, its attention weight is above 90% at the “conclusion” variable of the
rule being queried. In other words, it is responsible for locating the queried rule, and storing that
rule’s information at the QUERY position.6

2. Queried-rule mover head. Attention head (13,11)’s value activations have large intervened logit
difference, and intriguingly, its query and key activations do not share that tendency. This already
suggests that its attention pattern performs a fixed action on both the original and altered prompts,
and only the value information is sensitive to QUERY. Furthermore, within the relevant context
(excluding the 6 in-context examples given), head (13,11) assigns above 50% attention weight to
the QUERY position, and its attention weight at QUERY is about 10 times larger than the second

5In Mistral-7B-v0.1, each attention layer has 8 key and value activations, and 32 query activations. Therefore,
heads (ℓ, h× 4) to (ℓ, h× 4 + 3) share the same key and value activation.

6Heads (9,25;26), (14,24;26) exhibit similar tendencies, albeit with smaller intervened logit differences.
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largest one on average. Recalling the role of layer 12, we find evidence that head (13,11) moves
the QUERY and queried-rule information to the “:” position.7

3. Fact processing heads. Attention heads (16,12), (16,14) and (17,25)’s query activations have
large intervened logit differences. Within the relevant context, they place greater than 56%, and
70% of their attention respectively in the fact section of the context (starting from “Fact” and
ending on “.” before “Question”).

4. Decision head. Attention head (19,8)’s query activations have large intervened logit differences.
Its attention pattern suggests that it is a “decision” head: within the relevant context, when the
model is correct, the head’s top-2 attention weights are always on the correct starting node of the
queried rule and the correct variable in the fact section, and the two token positions occupy more
than 60% of its total attention in the relevant context on average. In other words, it already has
the answer.

E.5 Attention patterns of QUERY-sensitive attention heads

In this subsection, we provide finer details on the attention patterns of the attention heads we
discovered in Section E.3. Note that the attention weights percentage we present in this section
are calculated by dividing the observed attention weight at a token position by the total amount of
attention the head places in the relevant context, i.e. the portion of the prompt which excludes the 6
in-context examples.

Queried-rule locating heads. Figure 10 presents the average attention weight the queried-rule
locating heads place on the “conclusion” variable and the period “.” immediately after the queried
rule at the QUERY token position (i.e. the query activation of the heads come from the residual
stream at the QUERY token position) — (12,9) is an exception to this recording method, where we
only record its weight on the conclusion variables alone, and already observe very high weight on
average. The heads (12,9), (14,24), (14,26), (9,25), (9,26) indeed place the majority of their attention
on the correct position consistently across the test samples. The reason for counting the period after
the correct conclusion variable as “correctly” locating the rule is that, it is known that LLMs tend to
use certain “register tokens” to record information in the preceding sentence.

Figure 10: Average attention weights of the queried-rule locating heads, along with the standard
deviations. The weights are calculated by dividing the actual attention weight placed on the correct
“conclusion” variable of the rule and the period “.” immediately after, by the total amount of attention
placed in the relevant context (i.e. the prompt excluding the 6 in-context examples). Head (12,9) is an
exception: we only record its attention right on the conclusion variable, and still observe 93.0±9.4%

“correctly placed” attention on average.

We can observe that head (12,9) has the “cleanest” attention pattern out of the ones identified, placing
on average 93.0± 9.4% of it attention on the correct conclusion variable alone. The more diluted
attention patterns of the other heads likely contribute to their weaker intervened logit difference score
shown in Section E.3 in the main text.

7Heads (15,8), (16,0) also appear to belong to this type, albeit with smaller intervened logit difference.
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Queried-rule mover heads. Figure 11 shows the attention weight of the queried-rule mover heads.
While they do not place close to 100% attention on the QUERY location consistently (when the query
activation comes from the residual stream from token “:”, right before the first answer token), the
top-1 attention weight consistently falls on the QUERY position, and the second largest attention
weight is much smaller. In particular, head (13,11) places 54.2 ± 12.5% attention on the QUERY
position on average, while the second largest attention weight in the relevant context is 5.2± 1.1%
on average (around 10 times smaller; this ratio is computed per sample and then averaged).

An extra note about head (16,0): it does not primarily act like a “mover” head, as its attention statistics
suggest that it processes the mixture of information from the QUERY position and the “:” position.
Therefore, while we present its statistics along with the other queried-rule mover heads here since it
does allocate significant attention weight on the QUERY position on average, we do not list it as such
in the circuit diagram of Figure 2.

Figure 11: Average attention weights of the queried-rule mover heads, along with the standard
deviations. The raw attention patterns are obtained at token position “:” (i.e. the query activation
comes from the residual stream at the “:” position), right before the first answer token, and the exact
attention weight (indicated by the blue bars) is taken at the QUERY position; for head (16,0), we
also obtain its attention weight at the “:” position, as we found that it also allocates a large amount
of attention weight to this position in addition to the QUERY position. Note: for (15,8), we found
that it only acts as a “mover” head when the linear chain is being queried, so we are only reporting
its attention weight statistics in this specific scenario; the other heads do not exhibit this interesting
behavior, so we report those heads’ statistics in all query scenarios.

Fact processing heads. Figure 12 below shows the attention weights of the fact processing heads;
the attention patterns are obtained at the “:” position, right before the first answer token, and we sum
the attention weights in the Fact section (starting at the first fact assignment, ending on the last “.” in
this section of the prompt). It is clear that they place significant attention on the Fact section of the
relevant context.
Remark. There is only one “decision head” which we identified, i.e. head (19,8). Since there is no
further subtleties with how we recorded its attention weights or peculiar behaviors of the attention
patterns observed, we do not elaborate further on it in the Appendix.

F Potential Broader Impact

This paper presents work whose goal is to advance the field of Machine Learning, particularly the
area of mechanistic interpretability. There are many potential societal consequences of our work,
none which we feel must be specifically highlighted here
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Figure 12: Average attention weights of the fact processing heads, along with the standard deviations.
The weights are calculated by dividing the actual attention weight placed in the Fact section by the
total amount of attention placed in the relevant context (i.e. the part of the prompt excluding the 6
in-context examples).
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