
A Normalized Levenshtein Distance Metric

Li Yujian and Liu Bo

Abstract—Although a number of normalized edit distances presented so far may

offer good performance in some applications, none of them can be regarded as a

genuine metric between strings because they do not satisfy the triangle inequality.

Given two strings X and Y over a finite alphabet, this paper defines a new

normalized edit distance betweenX and Y as a simple function of their lengths (jXj
and jY j) and the Generalized Levenshtein Distance (GLD) between them. The new

distance can be easily computed through GLD with a complexity of OðjXj � jY jÞ and

it is a metric valued in [0, 1] under the condition that the weight function is a metric

over the set of elementary edit operations with all costs of insertions/deletions

having the same weight. Experiments using the AESA algorithm in handwritten digit

recognition show that the new distance can generally provide similar results to

some other normalized edit distances and may perform slightly better if the triangle

inequality is violated in a particular data set.

Index Terms—Sequence comparison, Levenshtein distance, normalized edit

distance, metric, AESA.

Ç

1 INTRODUCTION

QUANTIFYING the similarity between strings is an important

scientific problem that has attracted much interest because key

information can be expressed by symbolic sequences in many

applications such as text retrieval, signal processing, and computa-

tional biology. Though a number of pertinent distance measures

and their applications have been proposed and discussed [1], [2],

the Generalized Levenshtein Distance (GLD) is the most promising

one to compare strings by various edit operations, usually

including the deletion, insertion, and substitution of individual

symbols [3, pp. 37-39]. This measure is often called the “edit

distance” and can be defined as the minimum cost of transforming

one string into another through a sequence of weighted edit

operations. The GLD can be computed by algorithms presented in

[4], [5], [6], [7] and has been applied to error correction, pattern

recognition, etc., [1], [2], [8], [9]. However, GLD is not suitable for

certain applications such as recognizing noisy subsequences [10]

and skeletal images [11] since it lacks an appropriate normalization

with respect to the lengths of the compared strings. It should be

clear that two errors in a comparison of short strings are more

critical than in a comparison of long strings. Therefore, it is

necessary to normalize the GLD in some circumstances.

So far as we are aware, there are two well-known normalizing

approaches for the weighted edit distance GLD, one based on the

editing path lengths and the other on the string lengths [12].

Although both of them offer somewhat better performance over

the GLD in a few practical situations, from a theoretical standpoint

neither of them can fulfill the triangle inequality. On the other

hand, normalized metrics for symmetric set difference and

Euclidian distance do not apply to edit distance [13] nor do those

metrics based on Lempel-Ziv complexity [14]. Until now, defining

a normalized edit distance that can be regarded as a genuine

metric between two strings has remained an unsolved problem.

This communication presents a solution for defining such a metric

as a simple function of the string lengths and the GLD.

2 GENERALIZED LEVENSHTEIN DISTANCE

In terms of notation, � is the alphabet and �
�

is the set of strings over

�. � =2 � is the null string. A string X 2 �
�

is denoted as

X ¼ x1x2 . . . xn, where xi is the ith symbol of X. Xi...j is referred to

as the substring of X including the symbols from xi to xj,

1 � i � j � n, its length is defined as jXi...jj ¼ j� iþ 1, and it is

the null string �ðj�j ¼ 0Þ if i > j. An elementary edit operation is a

pair ða; bÞ 6¼ ð�; �Þ, often written as a! b, where both a and b are

strings of lengths 0 or 1. The forms �! a, a! b, and b! �,

respectively, represent insertions, substitutions, and deletions that

are the three types of elementary edit operations. TX;Y ¼ T1T2 . . .Tl
is used to denote an edit transformation of X into Y that is a

sequence of elementary edit operations transforming X into Y . If a

weight function � assigns to a! b a nonnegative real number

�ða! bÞ, the weight of an edit transformation TX;Y can be computed

by �ðTX;Y Þ ¼
Pl

i¼1 �ðTiÞ.
Given X, Y 2 �

�
, the Generalized Levenshtein Distance (GLD)

is then defined as

GLDðX;Y Þ ¼ min �ðTX;Y Þ
� �

: ð1Þ

It has been shown that GLD is a metric over �
�

if the following

conditions are satisfied:

8a; b 2 � [f�g; �ða! aÞ ¼ 0;

�ða! bÞ > 0 if a 6¼ b; and �ða! bÞ ¼ �ðb! aÞ:

If � is a metric over the set of elementary edit operations, it was

also seen in [11] that

GLDðX;Y Þ ¼ min WðPX;Y Þ
� �

; ð2Þ

where PX;Y is an editing path between X and Y , WðPX;Y Þ ¼PLðPX;Y Þ
k¼1 �ðXik�1þ1...ik ! Yjk�1þ1...jk Þ is the weight of PX;Y . In fact, PX;Y

is a sequence of points or ordered pairs of integers ðik; jkÞ, 0 � k �
LðPX;Y Þ ¼ l satisfying the following:

1. 0 � ik � jXj; 0 � jk � jY j; ði0; j0Þ ¼ ð0; 0Þ; ðil; jlÞ ¼ ðjXj; jY jÞ,
2. 8k � 1, 0 � ik � ik�1 � 1; 0 � jk � jk�1 � 1, and
3. ik � ik�1 þ jk � jk�1 � 1.

3 NORMALIZED GLD

As mentioned above, there are two normalization techniques for

GLD, which are denoted here by NED1 and NED2, respectively,

and defined as:

NED1ðX; Y Þ¼ min
WðPX;Y Þ
LðPX;Y Þ

� �
; NED2ðX; Y Þ ¼ min

WðPX;Y ÞÞ
Xj j þ Yj j

� �
;

where LðPX;Y Þ is the number of elementary edit operations

described by PX;Y [11], [15], [16], [17].

Although GLD is a metric over �
�
, it has been demonstrated that

neither NED1 nor NED2 can be regarded as a genuine metric [11],

[12], [18]. How to define a normalized edit metric for two strings, up

to now an unsolved problem, can be addressed as follows:

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 29, NO. 6, JUNE 2007 1091

. L. Yujian is with the College of Computer Science and Technology, Beijing
University of Technology, Pingleyuan 100, Chaoyang District, Beijing
100022, P.R. China and the Beijing Municipal Key Laboratory of
Multimedia and Intelligent Software Technology.
E-mail: liyujian@bjut.edu.cn.

. L. Bo is with the College of Computer Science and Technology, Beijing
University of Technology, Pingleyuan 100, Chaoyang District, Beijing
100022, P.R. China. E-mail: liubo@emails.bjut.edu.cn.

Manuscript received 27 Apr. 2006; revised 1 Aug. 2006; accepted 20 Nov.
2006; published online 18 Jan. 2007.
Recommended for acceptance by D. Lopresti.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number TPAMI-0327-0406.
Digital Object Identifier no. 10.1109/TPAMI.2007.1070.

0162-8828/07/$25.00 � 2007 IEEE Published by the IEEE Computer Society

Definition 1. � ¼ maxf�ða! �Þ; �ð�! bÞ; a; b 2 �g.
Definition 2. Given X, Y 2 �

�
, the Generalized Levenshtein Similarity

(GLS) between X and Y is defined as

GLSðX;Y Þ ¼ � � ðjXj þ jY jÞ �GLDðX; Y Þ
2

:

It is not difficult to see that Theorem 1 holds for GLS.

Theorem 1. If 8a 2 �, �ð�! aÞ ¼ �ða! �Þ ¼ �, and � is a metric
over the set of elementary edit operations, then 8X, Y , Z 2 ��,

1. GLSðX;XÞ ¼ �jXj,
2. GLSðX;Y Þ ¼ GLSðY ;XÞ,
3. 0 � GLSðX;Y Þ � minfGLSðX;XÞ;GLSðY ; Y Þg ¼

� �minfjXj; jY jg, and
4. GLSðY ; Y Þ þGLSðX;ZÞ � GLSðX; Y Þ þGLSðY ; ZÞ.

Proof.

1. Because GLDðX;XÞ¼0, we directly get

GLSðX;XÞ ¼ �jXj:
2. From GLDðX;Y Þ ¼ GLDðY ;XÞ, we easily obtain

GLSðX;Y Þ ¼ GLSðY ;XÞ.
3. According to Lemma 4.1 in [11], we have maxfjXj; jY jg

� LðPX;Y Þ � jXj þ jY j so that

GLDðX;Y Þ ¼ min WðPX;Y Þ
� �

¼

min
XLðPX;Y Þ
k¼1

�ðXik�1þ1...ik ! Yjk�1þ1...jkÞ
()

�

min
XLðP 0X;Y Þ
k¼1

�ðXi0
k�1
þ1...i0

k
! Yj0

k�1
þ1...j0

k
Þ

8<
:

9=
; ¼ � � ð Xj j þ Yj jÞ;

where 8a; b 2 �; �ða; bÞ � �ða; �Þ þ �ð�; bÞ ¼ 2� and

P 0X;Y ¼ ði00; j00Þ; ði01; j01Þ; . . . ; ði0jXjþjY j; j0jXjþjY jÞ is constructed

from PX;Y ¼ ði0; j0Þ; ði1; j1Þ; . . . ; ðiLðPX;Y Þ; jLðPX;Y ÞÞ by re-

placing ðik; jkÞwith “ðik; jk�1Þ, ðik; jkÞ” if ik ¼ ik�1 þ 1 and

jk ¼ jk�1 þ 1ðk > 0Þ,

GLDðX;Y Þ ¼ min WðPX;Y Þ
� �

¼ min
XLðPX;Y Þ
k¼1

�ðXik�1þ1...ik ! Yjk�1þ1...jk Þ
()

� � � ðkXj � jY kÞ:

(The number of insertions/deletions in PX;Y is at least
kXj � jY k).

Therefore,

GLSðX;Y Þ ¼ � � ðjXj þ jY jÞ �GLDðX;Y Þ
2

� 0;

GLSðX;Y Þ ¼ � � ðjXj þ jY jÞ �GLDðX;Y Þ
2

� � � ðjXj þ jY jÞ � � � ðkXj � jY kÞ
2

¼ � �min jXj; jY jf g:
4. From the triangle inequality,

GLDðX;Y Þ þGLDðY ; ZÞ � GLDðX;ZÞ;

½�ðjXj þ jY jÞ � 2 �GLSðX;Y Þ� þ ½�ðjY j þ jZjÞ
� 2 �GLSðY ; ZÞ� � �ðjXj þ jZjÞ � 2 �GLSðX;ZÞ½ �;
�jY j þGLSðX;ZÞ � GLSðX; Y Þ þGLSðY ; ZÞ;
GLSðY ; Y Þ þGLSðX;ZÞ � GLSðX;Y Þ þGLSðY ; ZÞ:

tu

Definition 3. Given X, Y 2 �
�
, the normalized GLD is defined as

dN�GLDðX; Y Þ ¼
2 �GLDðX; Y Þ

� � ðjXj þ jY jÞ þGLDðX;Y Þ

¼ GLSðX;XÞ þGLSðY ; Y Þ � 2 �GLSðX;Y Þ
GLSðX;XÞ þGLSðY ; Y Þ �GLSðX;Y Þ ;

where dN�GLDð�; �Þ ¼ 0.

Obviously, dN�GLD can be easily computed through GLD with a
complexity of OðjXj � jY jÞ. Although dN�GLD is not always shown
to be a metric over �

�
for an arbitrary weight function, Theorem 2,

inspired by the work reported in [19], can be shown to hold.

Theorem 2. If 8a 2 �; �ð�! aÞ ¼ �ða! �Þ ¼ � and � is a metric
over the set of elementary edit operations, then dN�GLD is a metric
over �

�
whose value is in [0,1].

Proof. According to Theorem 1, the value of dN�GLDðX;Y Þ is
obviously in [0, 1] and dN�GLDðX;Y Þ is zero if X ¼ Y and is a
positive real number if X 6¼ Y , such that dN�GLDðX;Y Þ ¼
dN�GLDðY ;XÞ. It has to be further shown that the triangle
inequality holds for dN�GLD, namely, 8X, Y , Z 2 �

�
,

dN�GLDðX; Y Þ þ dN�GLDðY ; ZÞ � dN�GLDðX;ZÞ: ð3Þ

Let SðX;Y Þ ¼ 1� dN�GLDðX; Y Þ ¼ GLSðX;Y Þ
GLSðX;XÞþGLSðY ;Y Þ�GLSðX;Y Þ

for any X, Y 2 ��. Then, (3) can be rewritten as

1þ SðX;ZÞ � SðX;Y Þ þ SðY ; ZÞ: ð4Þ

If SðX;ZÞ � SðX; Y Þ or SðX;ZÞ � SðY ; ZÞ, it can be directly
obtained that

dN�GLDðX;ZÞ�dN�GLDðX; Y Þ or dN�GLDðX;ZÞ � dN�GLDðY ; ZÞ:

Accordingly, (3) is immediately satisfied. Thus, it is necessary
to prove (3) only for the case in which SðX;ZÞ < SðX;Y Þ and
SðX;ZÞ < SðY ; ZÞ.

Using the relation between SðX;Y Þ and GLSðX;Y Þ, it is easy
to get the following equations:

GLSðX;ZÞ ¼ SðX;ZÞ
1þ SðX;ZÞ ðGLSðX;XÞ þGLSðZ;ZÞÞ; ð5Þ

GLSðX;Y Þ ¼ SðX; Y Þ
1þ SðX; Y Þ ðGLSðX;XÞ þGLSðY ; Y ÞÞ; ð6Þ

GLSðY ; ZÞ ¼ SðY ; ZÞ
1þ SðY ; ZÞ ðGLSðY ; Y Þ þGLSðZ;ZÞÞ: ð7Þ

Applying (5), (6), and (7) to Step 4 in Theorem 1, (8) and (9)
can be derived:

GLSðY ; Y Þ þ SðX;ZÞ
1þ SðX;ZÞ ðGLSðX;XÞ þGLSðZ;ZÞÞ

� SðX;Y Þ
1þ SðX;Y Þ ðGLSðX;XÞ þGLSðY ; Y ÞÞ

þ SðY ; ZÞ
1þ SðY ; ZÞ ðGLSðY ; Y Þ þGLSðZ;ZÞÞ;

ð8Þ

"
1� SðX;Y Þ

1þ SðX;Y Þ �
SðY ; ZÞ

1þ SðY ; ZÞ

#
�GLSðY ; Y Þ

�
"

SðX;Y Þ
1þ SðX;Y Þ �

SðX;ZÞ
1þ SðX;ZÞ

#
�GLSðX;XÞ

þ
"

SðY ; ZÞ
1þ SðY ; ZÞ �

SðX;ZÞ
1þ SðX;ZÞ

#
�GLSðZ;ZÞ:

ð9Þ

1092 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 29, NO. 6, JUNE 2007

From Theorem 1, GLSðX;XÞ � GLSðX;Y Þ and GLSðZ;ZÞ �
GLSðY ; ZÞ, so it is true that

GLSðX;XÞ � SðX;Y Þ �GLSðY ; Y Þ and

GLSðZ;ZÞ � SðY ; ZÞ �GLSðY ; Y Þ:

Since SðX;ZÞ < SðX;Y Þ and SðX;ZÞ < SðY ; ZÞ imply that

SðX;Y Þ
1þ SðX;Y Þ �

SðX;ZÞ
1þ SðX;ZÞ > 0 and

SðY ; ZÞ
1þ SðY ; ZÞ �

SðX;ZÞ
1þ SðX;ZÞ > 0;

it is valid to write"
SðX;Y Þ

1þ SðX;Y Þ �
SðX;ZÞ

1þ SðX;ZÞ

#
�GLSðX;XÞ

�
"

SðX;Y Þ
1þ SðX; Y Þ �

SðX;ZÞ
1þ SðX;ZÞ

#
� SðX;Y Þ �GLSðY ; Y Þ;

ð10Þ

"
SðY ; ZÞ

1þ SðY ; ZÞ �
SðX;ZÞ

1þ SðX;ZÞ

#
�GLSðZ;ZÞ

�
"

SðY ; ZÞ
1þ SðY ; ZÞ �

SðX;ZÞ
1þ SðX;ZÞ

#
� SðY ; ZÞ �GLSðY ; Y Þ:

ð11Þ

Using (9), (10), and (11), it can be further obtained that"
1� SðX;Y Þ

1þ SðX;Y Þ �
SðY ; ZÞ

1þ SðY ; ZÞ

#
�GLSðY ; Y Þ

�
"

SðX; Y Þ
1þ SðX; Y Þ �

SðX;ZÞ
1þ SðX;ZÞ

#
� SðX; Y Þ �GLSðY ; Y Þ

þ
"

SðY ; ZÞ
1þ SðY ; ZÞ �

SðX;ZÞ
1þ SðX;ZÞ

#
� SðY ; ZÞ �GLSðY ; Y Þ:

ð12Þ

Supposing that GLSðY ; Y Þ > 0 (otherwise, (3) is clearly satis-

fied), (12) can be rewritten as (13) or (14):

1 � SðX; Y Þ½1þ SðX; Y Þ�
1þ SðX;Y Þ þ SðY ; ZÞ½1þ SðY ; ZÞ�

1þ SðY ; ZÞ

� SðX;ZÞSðX;Y Þ þ SðY ; ZÞ
1þ SðX;ZÞ ;

ð13Þ

1þ SðX;ZÞSðX;Y Þ þ SðY ; ZÞ
1þ SðX;ZÞ � SðX;Y Þ þ SðY ; ZÞ ð14Þ

Because (14) yields (4), this means that (3) holds. tu

4 EXPERIMENTAL RESULTS

In order to demonstrate the benefits of the normalized GLD (NGLD)

in a practical application, it has been used to solve the problem of

handwritten digit recognition by the Approximating and Eliminat-

ing Search Algorithm (AESA) [20], [21], which is a fast algorithm for

Brute-force Nearest Neighbor Search (BNNS). Because AESA is

dependent on fulfillment of the triangle inequality, which NGLD

satisfies if the operation weights are selected appropriately, NGLD-

based AESA (NGLD-AESA) will always produce optimal results,

but NED1 or NED2-based AESA (NED1 or NED2-AESA) will

sometimes yield suboptimal results. Here, NGLD-AESA will be

compared with NED1-AESA, NED2-AESA, and GLD-AESA (GLD-

based AESA) in two handwritten digit recognition experiments.

The first experiment uses 4,000 strings (P1, 400 per digit) as the

training set and 500 strings (T1, 50 per digit) as the test set. These

strings represent the contours of the isolated sample digits, which

are randomly selected from the MNIST database (containing

60,000 training digits from approximately 250 writers) constructed

from NIST’s Special Database 3 and Special Database 7 [27]. Each

string is actually a chain code which was generated from the thinned

binary version of its corresponding gray-scale digit image (using the

Rosenfeld thinning algorithm [22]). The algorithm to compute a

chain code begins by searching the first black pixel in raster order.

Starting from this pixel, it outputs a string of numbers from 0 to 7

representing the eight possible directions from each pixel to its

successive pixel along the contour of a thinned binary digit image

until reaching an end point (a black pixel followed by no successive

ones) or the first pixel again. In the computation, each branch or

isolated part will be removed from the thinned binary image after its

chain code is obtained, then the chain code of next branch or isolated

part is repeatedly generated until no black pixels remain. If there are

several branches or isolated parts in a digit image, all of their chain

codes will be concatenated to produce the final single string. One

example of final string generated from a thinned binary image of the

digit 5 is illustrated in Fig. 1.

In each recognition experiment, the weight function � is set with

�ða; aÞ ¼ 0, �ða; bÞ ¼ 1, and �ða; �Þ ¼ �ð�; bÞ ¼ 1 for any a; b 2 �. The

NGLD defined by such � obviously satisfies the triangle inequality

according to Theorem 2 and so does the corresponding GLD.

However, the NED1 and the NED2 may violate the triangle

inequality in a particular data set. In fact, for the NED1 on the

training set P1, there are only 44 strings and 82 triplets ðX;Y ; ZÞ
possessing a negative looseness, which is defined as

h1ðX;Y ; ZÞ ¼ NED1ðX;Y Þ þ NED1ðY ; ZÞ �NED1ðX;ZÞ:

But, for the NED2, there are in total 1,600 strings and 18,056 triplets

ðX;Y ; ZÞ possessing a similar negative looseness, namely,

h2ðX;Y ; ZÞ ¼ NED2ðX;Y Þ þ NED2ðY ; ZÞ �NED2ðX;ZÞ:

For simplicity and clarity, the set of the 1,600 strings is also called

the nontriangular set and the histogram of the 18,056 triplets

ðX;Y ; ZÞ is illustrated in Fig. 2, where the horizontal axis is the

normalized looseness, meaning the absolute value of h2ðX;Y ; ZÞ
divided by the average NED2 distance between the strings in the

training set P1 and the vertical axis is the relative frequency,

meaning the number of triplets ðX;Y ; ZÞ with a certain looseness

divided by the total number of all negative-looseness triplets. It is

shown in Fig. 2 that only a very small fraction of negative-

looseness triplets violate the triangle inequality severely, while

most of them do so only slightly.

The second experiment uses 1,202 strings (P2) as the training set

and 398 strings (T2) as the test set, where P2 and T2 are obtained by

directly partitioning the nontriangular set into two parts according

to a proportion of about 3:1.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 29, NO. 6, JUNE 2007 1093

Fig. 1. The final string generated from a thinned binary image of the digit 5.

(a) Gray-scale image. (b) Thinned binary image. (c) Final string or chain code.

The results in the two experiments are summarized in Table 1. In

the first experiment, it is worth noting that the NGLD-AESA

accuracy (80.44 percent) does not quite equal the NGLD-BNNS

(NGLD-based BNNS) accuracy (80.64 percent) and similar relations

often hold for NED1, NED2, and GLD. This is because the AESA

algorithm uses “Approximation” as a heuristic strategy to find a

nearest neighbor which may not be the first one determined

sequentially by the BNNS (when there are two or more nearest

neighbors), even in cases satisfying the triangle inequality. It can

also be seen that the accuracy of NGLD-AESA is similar to that of

NED1 and NED2-AESA, but higher than that of GLD-AESA.

Furthermore, it is easy to notice that the NGLD-AESA accuracy

(80.44 percent) is slightly lower than the NED1-AESA accuracy

(81.04 percent) in the P1-T1 experiment, as may be partially

explained by the fact that some NGLD nearest neighbors lead to

incorrect recognition but are eliminated by NED1-AESA. However,

the runtime of NGLD-AESA (644s on a DELL GX280 computer) is

much less than that of NED1-AESA (8,159s or 1,231s, respectively,

when using DPNED [11] or FPNED [15] on the same computer) in

this experiment.

Additionally, the NGLD-AESA accuracy (68.34 percent) is

slightly higher than the NED1-AESA accuracy (67.84 percent) and

the NED2-AESA accuracy (68.09 percent) in the second experiment,

which implies that the NGLD may perform slightly better than other

normalized edit distances if the triangle inequality is violated to a

certain degree in a particular data set. The NGLD-AESA performs

only slightly better because there are just a few correct nearest

neighbors in those samples which are wrongly eliminated by the

NED1 or NED2-AESA for violating the triangle inequality.

Finally, it must be noted that the accuracies we report in these two

experiments are much lower than those reported elsewhere in the

literature. which are close to 95 percent [21], but correspond to

smaller training and testing sets (50 or so writers). Because data sets

built from about 250 writers are used to generate chain codes here,

lower accuracies are to be expected. Since it is our intention to show

the relative advantage of NGLD over other normalized distances,

absolute accuracies are not so important for our purposes. The P2-T2

accuracies are much lower than the P1-T1 accuracies mainly because

the training set P2 is much smaller than P1 and the test set T2 contains

relatively more strings having incorrect nearest neighbors in P2.

5 CONCLUSIONS

In this paper, a new normalized edit distance has been presented

as a simple function of the string lengths and the Generalized

Levenshtein Distance. The main contribution of the paper is to

prove that the new distance is a metric valued in [0, 1] under

common conditions and demonstrate, by using AESA in hand-

written digit recognition, that it can generally achieve similar

accuracies to two other normalized edit distances, yielding slightly

better results if the triangle inequality is violated to a certain

degree. Since no other normalized edit distance has been shown to

be a metric, this work is significant in that regard. As future work,

we plan to identify situations where the new distance is

appropriate and study its performance in applications such as

phylogenetic tree construction, where all three basic properties of a

distance metric between two sequences are usually required at the

same time [14]. Moreover, we will also consider the problems of

how to use the presented techniques to normalize a distance

between histograms [23], [24] or a local alignment score between

strings [25], [26] in a provably more rigorous way.

1094 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 29, NO. 6, JUNE 2007

Fig. 2. The histogram of negative h2ðX; Y ; ZÞ on the training set P1.

TABLE 1
Results in Two Experiments Using AESA (BNNS) with Four Different Edit Distances

ACKNOWLEDGMENTS

This work was supported by the Natural Science Foundation of

Beijing (4052005), PHR(IHLB) and the Beijing Municipal Education

Commission (Km200310005013). The authors would like to thank

Associate Editor Dr. Daniel Lopresti for carefully checking a large

number of grammatical and typographical errors and all of the

anonymous reviewers, whose comments were of great value. Also,

the authors are indebted to Professors Guo Jun and Zhang

Honggang who works at the Pattern Recognition and Intelligent

System Lab, Beijing University of Posts and Telecommunications.

REFERENCES

[1] K. Kukich, “Techniques for Automatically Correcting Words in Text,” ACM
Computing Surveys, vol. 24, pp. 377-439, 1992.

[2] G. Navarro, “A Guided Tour to Approximate String Matching,” ACM
Computing Surveys, vol. 33, no. 1, pp. 32-88, Mar. 2001.

[3] D. Sankoff and J.B. Kruskal, Time Warps, String Edits, and Macromolecules:
The Theory and Practice of Sequence Comparison. Addison-Wesley, 1983.

[4] A. Levenshtein, “Binary Codes Capable of Correcting Deletions, Insertions
and Reversals,” Soviet Physics Doklady, vol. 10, no. 8, pp. 707-710, 1966.

[5] P.H. Sellers, “On the Theory and Computation of Evolutionary Distances,”
SIAM J. Applied Math., vol. 26, no. 4, pp. 787-793, 1974.

[6] R.A. Wagner and M.J. Fischer, “The String-to-String Correction Problem,”
J. ACM, vol. 21, no. 1, pp. 168-173, Jan. 1974.

[7] W.J. Masek and M.S. Patterson, “A Faster Algorithm Computing String Edit
Distances,” J. Computer Systems Science, vol. 20, pp. 18-31, Feb. 1980.

[8] J.L. Peterson, “Computer Programs for Detecting and Correcting Spelling
Errors,” Comm. ACM, vol. 23, pp. 676-687, 1980.

[9] R.L. Kashyap and B.J. Oommen, “The Noisy Substring Matching Problem,”
IEEE Trans. Software Eng., vol. 9, pp. 365-370, 1983.

[10] B.J. Oommen, “Recognition of Noisy Subsequences Using Constrained Edit
Distances,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 9,
pp. 676-685, 1987 (corrections in vol. 10, pp. 983-984, 1988).

[11] A. Marzal and E. Vidal, “Computation of Normalized Edit Distance and
Applications,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 15,
no. 9, pp. 926-932, Sept. 1993.

[12] A. Weigel and F. Fein, “Normalizing the Weighted Edit Distance,” Proc.
12th IAPR Int’l Conf. Pattern Recognition, vol. 2, Conf. B: Computer Vision
and Image Processing, pp. 399-402, Oct. 1994.

[13] P.N. Yianilos, “Normalized Forms for Two Common Metrics,” Report 91-
082-9027-1, revision 7 July 2002, NEC Research Inst., 1991, http://
www.pnylab.com/pny/.

[14] H.H. Otu1 and K. Sayood, “A New Sequence Distance Measure for
Phylogenetic Tree Construction,” Bioinformatics, vol. 19, no. 16, pp. 2122-
2130, 2003.

[15] E. Vidal, A. Marzal, and P. Aibar, “Fast Computation of Normalized Edit
Distances,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 17,
no. 9, pp. 899-902, Sept. 1995.

[16] A.N. Arslan and O. Egecioglu, “An Efficient Uniform-Cost Normalized
Edit Distance Algorithm,” Proc. 1999 and Int’l Workshop Groupware String
Processing and Information Retrieval Symp., pp. 8-15, Sept. 1999.

[17] A.N. Arslan and O. Egecioglu, “Efficient Algorithms for Normalized Edit
Distance,” J. Discrete Algorithms, (special issue on matching patterns) vol. 1,
no. 1, pp. 3-20, 2000.

[18] E. Vidal, F. Casacuberta, J.M. Benedi, M.J. Lloret, and H. Rulot, “On the
Verification of Triangle Inequality by Dynamic Time-Warping Dissimilarity
Measures,” Speech Comm., vol. 7, pp. 67-69, 1988.

[19] A.H. Lipkus, “A Proof of the Triangle Inequality for the Tanimoto
Distance,” J. Math. Chemistry, vol. 26, no. 1-3, pp. 263-265, 1999.

[20] E. Vidal, “New Formulation and Improvements of the Nearest-Neighbour
Approximating and Eliminating Search Algorithm (AESA),” Patter Recogni-
tion Letters, vol. 15, no. 1, pp. 1-7, 1994.

[21] J.R. Rico-Juan and L. Mico, “Comparison of AESA and LAESA Search
Algorithms Using String and Tree-Edit Distances,” Pattern Recognition
Letters, vol. 24, pp. 1417-1426, 2003.

[22] A. Rosenfeld, “A Characterization of Parallel Image Thinning Algorithms,”
Information and Control, vol. 29, no. 3, pp. 286-291, 1975.

[23] S.-H. Cha and S.N. Srihari, “On Measuring the Distance between
Histograms,” Pattern Recognition, vol. 35, no. 6, pp. 1355-1370, 2002.

[24] F. Serratosa and A. Sanfeliu, “Signatures versus Histograms: Definitions,
Distances and Algorithms,” Pattern Recognition, vol. 39, no. 5, pp. 921-934,
2006.

[25] A.N. Arslan, O. Egecioglu, and P.A. Pevzner, “A New Approach to
Sequence Comparison: Normalized Sequence Alignment,” Bioinformatics,
vol. 17, no. 4, pp. 327-337, 2001.

[26] A.N. Arslan and O. Egecioglu, “Dynamic Programming Based Approxima-
tion Algorithms for Sequence Alignment with Constraints,” INFORMS J.
Computing, vol. 16, no. 4, pp. 441-458, 2004.

[27] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-Based Learning
Applied to Document Recognition,” Proc. IEEE, vol. 86, no. 11, pp. 2278-
2324, 1998.

. For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/publications/dlib.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 29, NO. 6, JUNE 2007 1095

