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ABSTRACT

The reasoning ability with visual information has recently gained significant atten-
tion in the field of large vision-language models (LVLMs). Existing R1-like rea-
soning LVLMs are usually finetuned from a base LVLM on a large-scale vision-
language dataset, incorporating reinforcement learning (RL) with rewards from
verifiable answers. However, such reasoning LVLMs usually requires high-quality
multimodal long-chain datasets for supervised finetuning in the cold start stage,
and time-consuming multiple response sampling in the RL stage. Therefore, we
seek to explore an efficient approach to achieve visual reasoning. To do so, we first
investigate the interaction between visual and textual tokens in LVLMs, and find
that although the post-trained reasoning LVLM improves the cross-modal interac-
tion, but only at deep layers and for long responses, this improvement is negligible
for short responses. Based on these observations and insights, we propose to sep-
arate the perception and reasoning process, to avoid the LVLM from generating
long responses, so that the LVLM maintains cross-modal interaction ability, and
do the reasoning by the LLM, which is not required to integrate cross-modal in-
formation. To this end, we leverage the existing reasoning large language models
(LLMs) with a VLM extension, to synthesize visual and textual information in
advance and then perform the reasoning by the LLM, without any finetuning. Fur-
thermore, to make full use of the training samples, we use a matching mechanism
to find the relevant reasoning process and incorporate them by in-context learning.
We evaluate our method on the common visual reasoning benchmarks. The results
show that, without extra training samples, our method achieves performance com-
parable to the existing post-trained reasoning LVLMs, and outperforms them with
in-context learning.

1 INTRODUCTION

Reasoning with visual information has become a core capability of large vision-language models
(LVLMs) to achieve human-level intelligence (Li et al., 2024; Chen et al., 2023; Bai et al., 2023;
Xu et al., 2024; Huang et al., 2025). It enables the model to solve complicated questions that
require both visual understanding and multi-step reasoning. Moreover, such reasoning ability also
improves the interpretability and trustworthiness of these models. Building on the recent success
of reinforcement learning with verifiable rewards in large language model (LLM) reasoning (Guo
et al., 2025), existing R1-like reasoning LVLMs are usually finetuned from a base LVLM on a large-
scale vision-language dataset (Huang et al., 2025; Chen et al., 2025). However, the training process
of reasoning LVLMs usually requires high-quality multimodal long-chain datasets for supervised
finetuning in the cold start stage, and time-consuming multi-response sampling in the reinforcement
learning stage. This training process requires both a high-quality dataset and massive computational
resources. To address these challenges, recent work has investigated more efficient approaches. One
line of research leverages existing reasoning LLMs while training only a lightweight projector to
align visual and textual tokens (Peng et al., 2025). Although this strategy avoids sampling long-
chain responses, it still requires a large number of training samples to train the projector. Given
powerful reasoning LLMs such as DeepSeek-R1 (Guo et al., 2025) at hand, we ask: is it possible to
achieve comparable visual reasoning performance without expensive finetuning?

To this end, we examine the difference between base LVLMs and reasoning LVLMs in terms of
vision-text information interaction within attention blocks, aiming to uncover insights for more ef-
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Figure 1: Achieving visual reasoning via a perceptual extension and enhancing it by in-context
learning. Our method separates perception and reasoning and does not need any finetuning, while
having comparable performance with R1-like reasoning VLMs.

ficient design. Our analysis shows that although reasoning LVLMs does improve the vision-text
information interaction when generating long responses. But when generating short responses, this
improvement is negligible. Additionally, we find that this improvement occurs only in the deep lay-
ers. In the early layers, reasoning LVLMs still exhibit inadequate integration of visual and textual
information. We attribute this limitation to the inherent disparity between visual and textual tokens
in their semantic abstraction levels: at the early layers, the LVLM prioritizes processing visual to-
kens, which reduces its capacity to fuse cross-modal information when producing long responses.
These observations suggest that LVLMs may need to avoid generating long responses if we want
to maintain the same level of cross-modal interaction. Motivated by these findings, we propose to
decouple perception and reasoning. In this design, the LVLM focuses on perceiving and integrat-
ing visual information without the burden of producing long responses, while the LLM performs
the reasoning independently. This separation enables the LVLM to more effectively inject visual
content into the output, while the reasoning LLM (unconstrained by cross-modal fusion) can handle
the complex reasoning process.

Based on these observations and insights, we propose a method to integrate visual information into
the reasoning process without requiring any finetuning. Specifically, our approach leverages a pow-
erful reasoning LLM in combination with a VLM extension. The VLM extension first synthesizes
visual and textual information, and the reasoning is subsequently carried out by the LLM. Such com-
bination of the reasoning LLM and the VLM extension can be more efficient compared to a single
LVLM, since the VLM extension is no longer required to generate long responses where the visual
information is difficult to integrate properly. We refer to this framework as Visual Reasoning via
Perceptual Extension (VrPex). In addition, we design a matching mechanism to retrieve relevant
reasoning trajectories from training samples and incorporate them through in-context learning with
the reasoning LLM. This mechanism allows VrPex to exploit available training data while further
improving performance on specific benchmarks.

We conduct extensive experiments to evaluate the effectiveness of our proposed method in terms
of reasoning performance. The results show that even without access to training samples, VrPex
achieves performance comparable to existing reasoning LVLMs. Moreover, when combined with
in-context learning, it further outperforms these models. We observe that incorporating relevant
training samples into the input context can further enhance performance on targeted tasks, high-
lighting the extensibility and flexibility of our approach.

2 RELATED WORKS

2.1 R1-LIKE REASONING LVLMS

Recent advancements of large language models in incentivizing reasoning ability with reinforce-
ment learning (Guo et al., 2025) inspire the researches on R1-like reasoning large vision-language
models (Meng et al., 2025; Chen et al., 2025; Huang et al., 2025). These visual reasoning models
are usually finetuned with reinforcement learning algorithms (e.g., PPO, DPO, and GRPO) using
rewards from verifiable answers. For example, DPO is used in RLHF-V (Yu et al., 2024), LLaVA-
Reasoner (Zhang et al., 2024b), and Insight-V (Dong et al., 2025). They construct large-scale pref-
erence datasets and directly apply DPO for training. MMPR (Wang et al., 2024) further introduces
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a quality loss from a Binary Classifier and a generation loss from supervised finetuning (SFT), in
addition to the standard DPO preference loss, thereby strengthening reasoning ability. Meanwhile,
GRPO, which has proven effective in DeepSeek-R1, has become a widely adopted RL strategy for
reasoning LVLMs. Representive works, including MM-Eureka (Meng et al., 2025), Vt-R1 (Zhou
et al., 2025), LLM-R1 (Yingzhe et al., 2025), and R1-V (Chen et al., 2025), apply GRPO to multi-
modal reasoning tasks such as mathematical geometry, achieving promising results.

2.2 VISUAL IN-CONTEXT LEARNING FOR LVLMS

In-context learning is a paradigm that allows language models to learn new tasks given only a few
examples in the form of demonstration (Brown et al., 2020). At inference, in-context learning re-
search has primarily focuses on three aspects: demonstration organization (Zhao et al., 2021; Lu
et al., 2021), demonstration selection (Liu et al., 2021; Tanwar et al., 2023; Qin et al., 2023), and
demonstration reformatting (Kim et al., 2022; Liu et al., 2023a; Yang et al., 2023). For LVLMs,
in-context learning is extended to use visual information as demonstrations (Sun et al., 2023; Liu
et al., 2023b). Considering the cross-modal challenge in LVLMs, VICL (Zhou et al., 2024) uses
intent-oriented image summary and demonstration composition to address such challenge.

In our paper, we focus on visual reasoning and avoid potential challenge in cross-modal interaction
between vision and text by separating perception from the reasoning process. Also, we use utilize
the thought process of the similar ones in the training samples as visual demonstrations to improve
the reasoning in specific areas, which differs from any of the prior works.

3 METHODOLOGY

3.1 CROSS-MODAL INFORMATION INTERACTION IN REASONING LVLM

To better understand what makes reasoning LVLMs perform better than base LVLMs and give in-
sights to efficient construction for visual reasoning system, we investigate the interaction between
visual and textual information in LVLMs.

Therefore, we look into the attention weights of the base LVLM and the reasoning LVLM trained
by RL. Suppose the queries and keys in the attention block at layer l to be Q(l),K(l). The attention
map is

A(l) = softmax
(
Q(l)K(l)⊤

)
. (1)

It can be further decomposed into three parts according to the queries and keys: system prompt
tokens (K(l)

sys), visual tokens (K(l)
vis), and text tokens (Q(l)

text,K
(l)
text). The attention map can be

expressed as a partitioned matrix given the above partition, which is

A(l) =
[
A

(l)
text,sys,A

(l)
text,vis,A

(l)
text,text

]
. (2)

Specifically, we care about the proportion of attention weights that the text tokens attend to the visual
tokens (Text-Vision, A(l)

text,vis) and the text tokens (Text-Text, A(l)
text,text), since they reveal how the

information flows before generating the output text.

We use prompts to encourage the model generate long chain reasoning process, then compare the
proportion of the attention weights between the base and reasoning models. We use the training
samples of GeoQA (Chen et al., 2021) as the inputs. We take Qwen2.5-VL-7B-Instruct (Bai et al.,
2025) as the base LVLM, and MM-Eureka-Qwen-7B (Meng et al., 2025) as the reasoning LVLM.

Firstly, we investigate the attention proportion by the response length. For this experiment, we take
the average attention proportion across the layers, which is,

ptext,vis =
1

L

L∑
l=1

N∑
i=1

A
(l)
text,vis,i, (3)

where N is the total number of visual tokens. The Text-Text proportion is similarly calculated.

As we can see in Figure 2a, 2b. We plot the attention proportion against the response length in
logarithmic scale. And the dashed lines are the linear fitting of the samples. From the absolute value
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(a) Text-Text Attention Proportion
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(b) Text-Vision Attention Propor-
tion by Response Length
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Figure 2: Investigations on attention proportion of LVLMs. (a)(b) Text-Text and Text-Vision at-
tention proportions are roughly proportional and inverse proportional to the response length. The
reasoning LVLM is able to generate longer responses while keeping the attention proportion un-
changed. (c) For the reasoning LVLM, the gap between long and other responses diminishes as the
layer goes deeper. However, for short responses, the reasoning LVLM only achieves the same
level of cross-modal interaction as the base LVLM.

of the proportion, Text-Vision takes a much smaller attention proportion than Text-Text, for both
base and reasoning models. As the response length increases, the Text-Text takes more attention
proportion, and the Text-Vision takes less accordingly. This is reasonable because the longer the
response, the more text tokens can be attended to, thus the Text-Text attention proportion rises. More
importantly, as for the difference between two models, from Figure 2a, the reasoning model (green)
generally generates longer responses, while keeping the same Text-Text attention proportion. From
Figure 2b, the Text-Vision attention proportion of the reasoning model diminishes more slowly as
the response length increases, compared to the base model (blue). We thus posit that the success of
the reasoning LVLMs is related to the increased Text-Vision attention proportion for long responses,
which helps the model to integrate the visual information better.

Furthermore, we investigate the attention proportion by layer to find more clues, as shown in Fig-
ure 2c. In the figure, we divide the responses into long (≥ 700 tokens) and short (< 700 tokens)
responses and compare the Text-Vision attention proportion by layer. We can see that longer re-
sponses usually take a smaller Text-Vision attention proportion for both models, which is consistent
with our prior observation. Interestingly, for the reasoning model, the gap between long and short
responses reduces as the layer goes deeper, which clearly contrasts to the base model, where the
gap remains relatively unchanged. However, the increased attention proportion for long responses
at deeper layers for the reasoning model is merely the same as that for short responses. Therefore,
we come to another conclusion that although the Text-Vision attention proportion increases for the
reasoning LVLM, it mainly occurs at deep layers and for long responses. For short responses, the
reasoning LVLM only achieve the same level of cross-modal interaction as the base LVLM. More-
over, considering the difference between visual and text tokens in terms of the abstraction level,
such an inadequacy of information integration is likely the fundamental deficiency for the LVLMs
to further achieve better performance when generating long responses.

So far, we have found the merits and demerits of the reasoning LVLMs in terms of visual informa-
tion integration. Although the reasoning LVLM improves the integration of visual information at
deeper layers for long responses, it only achieves the same level of integration for short responses.
To construct an efficient visual reasoning system, there is no need for the LVLMs to generate long
responses if we want to keep the same level of cross-modal interaction. Therefore, we can avoid
the VLM from generating long responses, and make it only do the perception to preserve the cross-
modal interaction without further post-training. Then to perform the reasoning, we have to incor-
porate a reasoning LLM to further integrate the information. As such integration is only in the text
domain, we do not worry about the cross-modal interaction when generating long responses. It leads
us to the separation of the perception and reasoning process.

3.2 PERCEPTUAL EXTENSION FOR REASONING LLM

To keep the interaction between visual and textual information and avoid the deficiency of the
LVLMs in generating long responses, we separate the perception from the reasoning process. Then,
we use the existing reasoning LLM to generate long responses for reasoning. Specifically, we sepa-
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Figure 3: The overview of VrPex with in-context learning. It includes the separation of perception
and reasoning, which avoids the inefficient vision-text interaction in the LVLM when generating
long responses. It also includes the in-context learning of reasoning process, for performance im-
provement on specific benchmarks.

rate the perception and the reasoning as follows:

odesc = LVLM(ximg,xtext) , (Perception) (4)
oans = LLM(odesc,xtext) , (Reasoning) (5)

where we denote the input sample as (ximg,xtext), the description text generated by the LVLM as
odesc, and the output responses as oans. Such separation not only avoids the LVLM to generate long
responses which the model is probably not good at, but also avoids finetuning on the LVLM which
require massive computational resources.

Next, we have to determine what should the description text odesc be. Naively, the description text
can be simply the generated caption of the image. However, such caption is usually general, and
shows irrelation to the input question. Thus, the reasoning LLM is rather difficult to extrat relative
information from the caption. Therefore, we take a step further to make the LVLM generate targeted
description related to the input question. We use carefully designed prompts to make the LVLM
perform two generations, one with only the image, the other with both the image and the question,
to get the image description and question description. Formally,

oimg desc = LVLM(pimg desc,ximg) , (6)
oques desc = LVLM(pques desc,ximg,xques) , (7)

where p denotes the corresponding prompt.

With the perception results above, the reasoning LLM needs to perform the final reasoning given the
related information about the question and the image.

oans = LLM(preasoning,oimg desc,oques desc,xques) . (8)

We use existing reasoning LLMs which is trained to generate long responses for the final answers.
The visual illustration of VrPex is in Figure 3.

3.3 IN-CONTEXT LEARNING OF REASONING PROCESS

So far, we only use the existing LVLMs and reasoning LLMs to construct a system to incorporate
visual information in reasoning. In this section, we consider improving the performance further
by incorporating the training samples via in-context learning. Therefore, we design a matching
mechanism to find the relevant training sample according to the input sample. In the previous
section, we use the LVLM to generate the image description and question description for the input
sample. We can also use the generated descriptions as keys to find the relevant training samples.

Firstly, we preprocess the training samples for better sample matching and reasoning process output.
The raw training samples are usually in the form of image-question-answer triplets. We use GPT-
4o (OpenAI, 2025) to generate the structured reasoning process for each training sample, including
the image description, question descriptions, and possible reasoning process according to the given
answer. The reasoning process does not contain any specific numbers, only contains the general
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reasoning steps, in order to exclude the distraction of question-specific information in the training
samples.

Then, we leverage a pre-trained image-text encoder to encode the images and texts in the train-
ing samples into embeddings. Suppose the training samples to retrieve are represented by
(z

(i)
img, z

(i)
img desc, z

(i)
ques desc, z

(i)
reasoning)

n
i , the encoding can be represented as

e
(i)
img = Encimg

(
z
(i)
img

)
, e

(i)
img desc = Enctext

(
z
(i)
img desc

)
, e

(i)
ques desc = Enctext

(
z
(i)
ques desc

)
.

(9)
The embeddings of the training samples can be stored as a database for efficient retrieval at infer-
ence. For a specific input sample, we also encode the image and generated descriptions into the
embeddings as (eimg, eimg desc, eques desc).

We calculate the similarities between the embeddings of the input sample and the training samples
in terms of each key. We use the cosine similarity to measure the similarity between the embeddings,
which is

s
(i)
img = cos

(
eimg, e

(i)
img

)
, (10)

and it is similar for other keys (s(i)img desc and s
(i)
ques desc).

To select the most relevant training samples, we keep the Pareto front of the three similarity mea-
sures. Therefore, we obtain a set of the most similar training samples. We then use this set as the
demonstrations of in-context learning for the reasoning LLM. The demonstration contains only the
reasoning process generated in the sample preprocessing. The number of used demonstrations can
be controlled by a hyperparameter nd. Given nd, we select the top-nd samples according to the total
similarity measures. The in-context learning can be represented as

D = Pareto
i

(
(s

(i)
img, s

(i)
img desc, s

(i)
ques desc), nd

)
, (11)

oans = LLM

(
preasoning,oimg desc,

oques desc, z
(i)
reasoning,xques

)
, i ∈ D. (12)

There are cases where the input question and image are not similar to any training samples. This
could happen when the type of the question is not covered by the training samples. In such cases,
we use a rejection threshold λ to filter out the training samples that are not similar enough. If
the maximum average similarity is below the threshold, we do not use any training samples as
demonstrations.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Benchmarks. We evaluate our methods on the common visual reasoning benchmarks, including
MathVista mini (Lu et al., 2024), MathVerse mini (Zhang et al., 2024a), GeoQA (Chen et al., 2021),
and MMK12 (Meng et al., 2025). MathVista and MathVerse are comprehensive math visual reason-
ing datasets, incorporating various math problems from different areas. GeoQA is more focused on
geometry problems, and MMK12 is a math visual reasoning dataset for K-12 students. Most of the
questions in the datasets are multiple-choice questions. Mastering such datasets requires the model
to be capable of both perception and reasoning.

Baselines. We select 4 R1-like reasoning vision-language models as the baselines. They are
R1-Onevision-7B, MM-Eureka-Qwen-7B/32B, and Skywork-R1V-38B. R1-Onevision (Yang et al.,
2025) and MM-Eureka (Meng et al., 2025) series are both finetuned on curated CoT datasets, then
uses reinforcement learning to improve the reasoning ability. Skywork-R1V (Peng et al., 2025) only
trains the projector to align the visual and text domains before the reasoning LLM.

Implementation Details. It is flexible for our method to use different VLMs and reasoning
LLMs. In this paper, we test our method using Qwen2.5-VL-3B/7B-Instruct (Bai et al., 2025)
and DeepSeek-R1-Distill-Qwen-7B/14B (Guo et al., 2025) as the VLM and reasoning LLM, re-
spectively. Such combination forms two parameter scales: 10B (3B + 7B) and 21B (7B + 14B).
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Table 1: Results on visual reasoning benchmarks. The results are reported in accuracy (%). The
best results are highlighted in bold. The second bests are underscored.

Reasoning VLMs MathVista MathVerse GeoQA MMK12

R1-Onevision-7B Yang et al. (2025) 61.3 45.94 71.75 37.50
MM-Eureka-Qwen-7B Meng et al. (2025) 73.2 50.25 80.37 60.80
MM-Eureka-Qwen-32B Meng et al. (2025) 74.7 54.19 82.49 68.75
Skywork-R1V-38B Peng et al. (2025) 70.3 46.78 73.87 48.40

Perception VLM Reasoning LLM

w/o
ICL

Qwen2.5-VL-3B-Instruct DeepSeek-R1-Distill-Qwen-7B 71.2 48.50 73.47 51.20
Qwen2.5-VL-7B-Instruct DeepSeek-R1-Distill-Qwen-14B 73.4 54.03 81.96 56.65

w/
ICL

Qwen2.5-VL-3B-Instruct DeepSeek-R1-Distill-Qwen-7B 73.3 51.17 81.96 60.50
Qwen2.5-VL-7B-Instruct DeepSeek-R1-Distill-Qwen-14B 74.1 55.99 86.47 65.25

Matched SampleQuery Question

Perception VLM image description:
The image shows two parallel lines, \( AB \) and \( CD \), intersected by a transversal line \( EF \). The 
intersection points of the transversal with the parallel lines form several angles.\n1. **Line Segments 
and Points:** … \n2. **Angles:** … \n…\nIn summary, …

Perception VLM question description:
To solve this problem, we need to use the properties of parallel lines and angles formed by a 
transversal intersecting them.
1. **Identify the given information:**\n 2. **Use the property of parallel lines:**…

Reasoning Process of the Matched Sample:
{'Step1': 'Identify the relationships between angles formed by parallel lines and a transversal 
(corresponding angles, alternate interior angles).’, 
'Step2': 'Analyze the effect of the angle bisector on the given angles.’, 
'Step3': "Express unknown angles in terms of variables based on the bisector's property.", 
'Step4': 'Apply the angle sum property of a triangle to establish an equation involving known and 
unknown angles.’, 
'Step5': 'Solve the equation to find the desired angle measure.'}

Question: As shown in the figure, AB parallel  CD, straight line EF intersects AB 
at point E, intersects CD at point F, EG bisects angle BEF, and it intersects CD at 
point G, angle 1 = 50°, then angle 2 is equal to ()
Choices:A:50° B:60° C:65° D:90°

Question: As shown in the figure, AB is parallel to CD, and line EF intersects AB and 
CD at points E and F, respectively. The bisector of angle AEF intersects CD at point G. 
If angle EFG = 64°, then the measure of angle EGF is ()  \nA. 32° \nB. 58° \nC. 64°
\nD. 128°

Figure 4: Case study of the proposed method. As shown, in the perception, the image description
extracts all of the geometry elements in the image, and the question description gives targeted de-
scriptions of the question. In the sample matching, it finds the sample using the same theorem, with
similar reasoning process.

The specific prompts for perception and reasoning is in the supplementary material. For the default
setting of in-context learning, we only use the training samples from GeoQA and set the number of
demonstrations nd to 1. On MMK12, we use a subset of the training samples from MMK12 to per-
form the sample matching. The image-text encoder we use is jina-clip-v2 (Koukounas et al., 2024),
which encodes the input to a unified embedding. As stated in the Methodology section, we use
GPT-4o to generate the reasoning process for each training sample, and apply a rejection threshold
λ to ensure the relevance of the training samples when testing on benchmarks in various areas.

4.2 BENCHMARK RESULTS

The benchmark results are shown in Table 1. The answers generated by each model is extracted
and checked by math_verify, which may differ from the results reported in other benchmarks,
where they use LLMs to verify the answers. Anyway, it is fair for all of the results in the table.
We can see that on most of the benchmarks, VrPex achieves comparable performance with the
reasoning LVLMs. On MathVista and MathVerse, VrPex achieves comparable performance with
MM-Eureka. On GeoQA, VrPex with ICL outperforms MM-Eureka by a considerable margin. On
MMK12, since the samples for matching is sampled from the training set of MMK12, the ICL plays
a more significant role. However, MM-Eureka is trained on MMK12, the performance gap is larger
compared to other benchmarks. It is notable that VrPex does not require any finetuning, which is
easy to construct and deploy. Therefore, our method offers an easier way to achieve visual reasoning
with extreme little cost.

We can see that with the in-context learning, VrPex even outperforms some of the reasoning LVLMs
in specific benchmarks. Because the samples used for in-context learning are from the training set
of GeoQA, which is a geometry reasoning dataset, VrPex has a great performance gain on GeoQA.
This shows that the in-context learning can be used to improve the performance on specific bench-
marks. This offers more extensibility and flexibility for constructing the visual reasoning solution.
In Additional Analysis, we will further investigate the performance gain of in-context learning on
other benchmarks in terms of category-wise accuracy.

Furthermore, we explore the flexibility and extensibility of VrPex by using different size of percep-
tion VLMs and reasoning LLMs in other scenarios. We perform experiments on perception-intensive

7
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Table 2: Ablation study. We verify the effectiveness
of our method by upgrading the method step by step.

Perception VLM Reasoning LLM MathVista GeoQA

✓ ✗ 55.6 50.27
✗ ✓ 48.4 68.57

img. desc. only ✓ 67.1 70.82
ques. desc. only ✓ 69.3 71.88

img. + ques. desc. ✓ 71.2 73.47

Table 3: Accuracies of different number of
demonstrations for ICL. More number of
demonstrations does not come with better
performance in general.

Number of Demos 1 2 3 4

MathVista 73.4 73.2 73.3 72.9
GeoQA 81.96 81.83 82.10 81.83

reasoning benchmarks like M3CoT Chen et al. (2024) and RealworldQA X.AI (2024). The details
are stated in the Appendix C.

4.3 CASE STUDY

We illustrate the effectiveness of our method by showing some cases of GeoQA in Figure 4. And
leave some detailed cases in the supplementary material.

Perception VLM The outputs of the perception VLM are shown in the left part of Figure 4. For
the image description, the VLM extracts all of the geometry elements in the image in detail, such as
the points, parallel lines, angles, and triangles. For the question description, the VLM gives targeted
descriptions of the question, such as the theorems or properties used in the question.

Sample Matching The result of the sample matching is shown in the right part of Figure 4. By
the three similarity measures used in the matching, it finds the sample using the same theorem, for
example, the theorems of the parallel lines and bisect angles. Therefore, the reasoning process of
the matched sample can be effectively used as the demonstration for in-context learning.

4.4 ABLATION STUDY

To further verify the effectiveness of the proposed method, we perform ablations on the GeoQA
dataset. We upgrade the method step by step from only using the VLM to answer the question to
using both image and question description. The in-context learning is not applied in the ablations.
We use the 10B combination of our method in this experiment. The results are shown in 2.

We first checked the performance of only using the VLM to answer the question and only using
the text information (row 1 and 2). From these results, we see that reasoning LLM perform much
better on GeoQA than MathVista, so we conclude that MathVista requires more perception than
GeoQA. It can further inspire us to use better perception VLM on MathVista to handle perception-
intensive benchmarks like MathVista. Then we investigate the performance with only the image
description, to show the effectiveness of the question description. The results shows that using
question description can improve the performance significantly. Also, we see that using question
description only is better than using image description only, but the best performance is achieved by
using both of them.

4.5 CATEGORY-WISE IMPROVEMENT AFTER ICL

Table 4: Category-wise accuracy and relative im-
provement on Mathvista.

Sources (Partial) w/o ICL w/ ICL Increment

GeoQA+ (6.2%) 77.42 82.26 +4.84
Geometry3K (6.2%) 67.74 72.58 +4.84
UniGeo (6.2%) 85.48 88.71 +3.23
Super-CLEVER (6.2%) 56.45 54.84 −1.61
IQTest (3.7%) 45.95 43.24 −2.70
FigureQA (6.2%) 64.52 61.29 −3.23

Overall (100%) 71.2 73.3 +2.1

To further investigate the effect of the in-
context learning, we look deeper into the
category-wise accuracy before and after in-
context learning. We take MathVista as an ex-
ample, showing the results in Table 4 for model
scale of 10B. We can conclude that, by using
the training set of GeoQA for in-context learn-
ing, the accuracy on test samples in geometry-
related sources generally increases. It shows
that we can specifically improve the capability
of the proposed visual reasoning system by us-
ing training samples in specific areas with cor-
responding reasoning process, while not affect-
ing the performance in other areas too much.
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Figure 6: Benchmark accuracies is affected by
the rejection threshold.

4.6 HYPERPARAMETER ANALYSIS

In this section, we analysis the effect of two hyperparameters in our proposed method.

Rejection Threshold for Sample Matching. The rejection threshold λ controls the similarity level
that the sample matching accepts the sample as demonstration. We investigate how the rejection
threshold affect the accuracy on the benchmarks, the results are shown in Figure 5 and 6.

Matching rate is the proportion of test samples that succeeds matching with at least one sample as the
demonstration. We can acknowledge how many test samples actually use the demonstrations with
ICL. As we can see from Figure 5, in MathVista, there are many test samples have low similarities
(below 0.6) with the matching samples, since we only use the geometry samples for matching and
there are other test samples in different areas in MathVista. However, in GeoQA, the similarities
are mostly distributed between 0.7 to 0.9. There are much more samples succeed matching with the
demonstration as the rejection threshold decreases.

The relation between the rejection threshold and the accuracy on benchmarks are shown in Figure 6.
The accuracies generally rises and then drops as the rejection threshold increases. We can choose
the best threshold at around 0.8.

Number of Demonstrations for ICL. For the in-context learning, we can take multiple samples
from the pareto front of three similarity measures as the demonstrations. We perform experiments
with different number of demonstrations nd on MathVista and GeoQA. The results are shown in Ta-
ble 3. We can see from the results that the number of demonstrations does not affect the performance
too much. It can be explained by the similar reasoning processes of the retrieved samples.

5 CONCLUSIONS

In this paper, we explore an efficient approach to achieve visual reasoning without any finetuning.
We first investigate the differences between base VLMs and existing R1-like reasoning VLMs in
terms of the interaction between visual and textual tokens. Our study reveals that while the reason-
ing LVLM exhibits stronger cross-modal interaction than the base model, this improvement mainly
occurs in deeper layers and when generating long responses. For short responses, the reasoning
LVLM achieves a level of interaction comparable to the base VLM. Motivated by these findings, to
avoid finetuning and deficiency of the base VLM on generating long responses, we separate the per-
ception and reasoning process in visual reasoning. We thus propose Visual Reasoning via Perceptual
Extension (VrPex), which uses a VLM to generate both image and question description, followed by
a reasoning LLM to perform the reasoning. Furthermore, to make full use of the training samples,
we incorporate in-context learning in the reasoning LLM by matching relevant reasoning processes
from training samples. The experiments show that VrPex can achieve performance comparable
to R1-like reasoning VLMs, and with in-context learning it outperforms them, while avoiding the
costly finetuning process.

Limitations: Although the proposed approach can achieve visual reasoning without any finetuning,
the perception capability relies on the perception VLM, and the reasoning capability relies on the
reasoning LLM. To get better perception and reasoning capability, it needs to use larger models and
more test-time computation. Although the ICL can offer some flexibility and further improvement
for the system, it requires to preprocess the training samples first.
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A PROMPTS FOR PERCEPTION AND REASONING

Here we provide the prompt template for the perception VLM and the reasoning LLM.

Image description prompt pimg desc:

You are an image descriptor. When the user gives you an image, you need to describe the image in
precise description, revealing the relations of all the elements in the image.

Question description prompt pques desc:

You are a question solving assistant. When the user gives you an image, along with a question, you
need to output an effective prompt for the next large language model to get the correct answer. The
prompt must describe the image in precise description, revealing the relations of all the elements in
the image, and point out the possible concepts relating to the question.

Reasoning prompt template preasoning:

Here is the image description: {oimg desc} and question description: {oques desc} Think as carefully
and methodically about the problem as you need to. Referring to the following demonstrations and
hints: {zreasoning} Give a true answer to the following question: {xques}.

B DETAILED CASE STUDIES

Here we show some cases of VrPex with ICL in detail. The samples are from GeoQA, and the
model combination is the 10B one. The results are shown in Figure 7, Figure 8, and Figure 9. We
can frequently observe the reasoning model corrects the answer given by the perception VLM, and
outputs the correct answer. Even though the image descriptions are not always precise, it can help
the matching process to find the best matching sample. And thanks to the three similarity measures,
we can easily find the most related samples in the training set with the same reasoning process.

As we can see, the perception VLM and the reasoning model work together to get the final answer.
In VrPex, the reasoning model rarely get confused by no sufficient information provided, if there is
enough information in the question or the descriptions. However, for those questions that require
stronger perception capability, we can use larger VLM, or train better perception VLM. On the other
hand, to enhance the reasoning capability, we can use or train better reasoning LLM, both ways
avoid training reasoning VLMs.

C PERFORMANCE ON PERCEPTION-INTENSIVE REASONING BENCHMARKS

In Section 4.2, we test VrPex on several visual reasoning benchmarks. However, these benchmarks
are relatively biased to text reasoning, and do not require strong perception capability. In this section,
we test VrPex on some perception-intensive reasoning benchmarks, including M3CoT Chen et al.
(2024), RealworldQA X.AI (2024). These benchmarks contains reasoning questions in real world
scenarios, requiring the model to frequently refer to the image to get the correct answer. To deal with
these benchmarks, we use a larger perception VLM in VrPex, which is Qwen2.5-VL-32B-Instruct,
and use DeepSeek-R1-Distill-Qwen-7B as the reasoning LLM. The results are shown in Table 5. As
We can see, VrPex achieves comparable visual reasoning capability in visual-intensive scenarios,
which shows the extensibility of VrPex, that we can easily improve the perception capability by
using larger and better VLMs.

Table 5: Results on perception-intensive reasoning benchmarks. The results are reported in accuracy
(%). VrPex also achieves competitive performance on these benchmarks with a larger VLM.

Reasoning VLMs M3CoT RealworldQA

R1-Onevision-7B Yang et al. (2025) 46.89 37.38
MM-Eureka-Qwen-7B Meng et al. (2025) 36.97 44.05
MM-Eureka-Qwen-32B Meng et al. (2025) 38.57 46.14
Skywork-R1V-38B Peng et al. (2025) 34.21 35.03

Perception VLM Reasoning LLM

Qwen2.5-VL-32B-Instruct DeepSeek-R1-Distill-Qwen-7B 49.87 47.58
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Matched SampleQuery Question

Query Question

Perception VLM image description:
The image shows a circle labeled as circle O. On the circumference of the circle, there is a point E. A 
line segment EF is drawn parallel to the diameter CD and intersects the circle at points F and G. The 
line segment OE connects point O to point E. Point G lies on the line segment EF.

Perception VLM question description:
To find the measure of angle EOD, we can use the properties of circles and triangles. Since CD is the 
diameter of circle O, angle CDE is a right angle (90 degrees). Also, since G is the midpoint of chord EF, 
triangle CEF is isosceles with CE = CF. Therefore, angle ECF = angle CFE = 20 degrees. Since angle CDE 
is a right angle, angle EDF = 70 degrees. Finally, angle EOD = 2 * angle EDF = 140 degrees. Therefore, 
the answer is option D.

Reasoning Process of the Matched Sample:
{'Step1': 'Use properties of parallel lines and identify equal angles created by transversals', 'Step2': 
'Apply circle theorems relating central angles and arcs', 'Step3': 'Calculate the measure of arcs based 
on known angle measures', 'Step4': 'Relate central angles to inscribed angles and their relationships 
within isosceles triangles', 'Step5': 'Solve for unknown angles using sum of angles properties in 
triangles and circle geometry'}

Question: As shown in the figure, the diameter CD of circle O crosses the 
midpoint G of chord EF, angle DCF = 20.0, then angle EOD is equal to ()
Choices: A:10° B:20° C:40° D:80° Answer: C

Question: As shown in the figure, CD is the diameter of circle O, and the chord DE 
passing through point D is parallel to radius OA. If the degree measure of angle D is 
50°, then the degree measure of angle A is () 
A. 50° B. 40° C. 30° D. 25°

Responses from the Reasoning Model:
let me try to figure out how to solve this geometry problem. So, we have a circle O with diameter CD. 
There's a chord EF that's parallel to CD, and G is the midpoint of EF. The angle DCF is given as 20 
degrees, and we need to find the measure of angle EOD. 
First, I remember that since CD is a diameter, it passes through the center O.
<Reasoning Process is too long to show>
The measure of angle EOD is determined by recognizing that EF, being parallel to CD, creates equal 
arcs. Given angle DCF is 20°, the arc DF is 40°, making arc EF also 40°. Thus, the central angle EOD, 
corresponding to arc EF, is 40°.
Answer: C

Reasoning Model

Figure 7: Detailed case 1. We also find that the reasoning model corrects the answers given by the
perception VLM. Also, the matched sample is highly related to the input one, with the element of
inscribed angles.

Matched SampleQuery Question

Perception VLM image description:
The image shows a triangle \( \triangle ABC \) with vertices \( A \), \( B \), and \( C \). Point \( D \) is 
located on side \( AC \) such that \( AD = DC \), making \( D \) the midpoint of \( AC \). Point \( E \) is 
located on side \( AB \) such that \( AE = EB \), making \( E \) the midpoint of \( AB \). Point \( F \) is 
located on side \( BC \) such that \( BF = FC \), making \( F \) the midpoint of \( BC \). The lines \( DE 
\) and \( EF \) intersect at point \( G \).

Perception VLM question description:
To find the measure of angle AFC, we can use the properties of rotation and the given angles.
1. **Understanding Rotation**: When triangle ABC is rotated anticlockwise around point A by 60 
degrees, each vertex moves 60 degrees clockwise relative to its original position. This means that angle 
BAC remains unchanged because it is the angle formed by the rotation center (point A) and the points 
of rotation (B and C).
2. **Angle Relationships**:

- Since angle C is 36 degrees, and triangle ABC is rotated around A by 60 degrees, angle DAE will be 
equal to angle C plus the rotation angle, which is 36 + 60 = 96 degrees.

- Angle EAD is also 96 degrees because it is the same as angle DAE due to the rotation.
3. **Finding Angle AFC**:

- In triangle AEF, angle EAF is the sum of angle EAD and angle DAB, which is 96 + 60 = 156 degrees.
- Since angle EAF is 156 degrees, and triangle AEF is a straight line, angle AFE must be 180 - 156 = 24 

degrees.
- Therefore, angle AFC is the sum of angle AFE and angle C, which is 24 + 36 = 60 degrees.

Answer: C

Reasoning Process of the Matched Sample:
{'step1': 'Identify the effect of the rotation on the angles and sides of the triangle.', 'step2': 'Use the 
given right angle (e.g., 𝐴𝐴′𝐷𝐷𝐶𝐶) to formulate relationships between angles in the resulting triangle.', 
'step3': 'Relate the angles in the rotated triangle back to the original triangle using properties of 
congruence and rotations.', 'step4': 'Apply geometric theorems or properties (e.g., sum of angles in a 
triangle or complementary angles) to solve for the unknown angle.', 'step5': 'Verify that the solution 
satisfies all given conditions and relationships.'}

Question: As shown in the figure, in triangle ABC, angle C = 36.0, rotate triangle 
ABC anticlockwise around point A by 60.0 to get triangle AED, AD and BC 
intersect at point F, then the degree of angle AFC is ()
Choices: A:84° B:80° C:60° D:90° Answer: A

Question: As shown in the figure, rotating triangle △ABC around point C clockwise by 
35° results in triangle △A′B′C at point D. If ∠A′DC = 90°, then the measure of angle 
∠A is ( )
A. 35° B. 65° C. 55° D. 25°

Responses from the Reasoning Model:
Okay, so I'm trying to solve this geometry problem where triangle ABC is rotated around point A by 60 
degrees anticlockwise to form triangle AED. The lines AD and BC intersect at point F, and I need to 
find the measure of angle AFC. The options given are 84°, 80°, 60°, and 90°. 
First, let me visualize what's happening here.
<Reasoning Process is too long to show>
The measure of angle AFC is determined by analyzing the effects of the rotation and the resulting 
angles in the triangles involved. By recognizing that the rotation preserves angles and sides, and using 
the properties of triangles, we find that angle AFC is 84°.
Answer: A

Reasoning Model

Figure 8: Detailed case 2. We find that the reasoning model corrects the answers given by the
perception VLM. Also, the matched sample is highly related to the input one, with the element of
rotating triangles.

Matched SampleQuery Question

Perception VLM image description:
The image shows a triangle ABC with vertices A, B, and C. Line DE is parallel to line BC, intersecting line 
AB at point D and line AC at point E.

Perception VLM question description:
To find length of BC, we can use the Midsegment Theorem. According to this theorem, the segment 
connecting the midpoints of two sides of a triangle is parallel to the third side and half its length.
Given that DE is the midsegment of triangle ABC, we have: DE = 1/2 * BC. We know that DE = 1.5, so we 
can substitute this value into the equation: 1.5 = 1/2 * BC. Now, we can solve for BC by multiplying both 
sides of the equation by 2: BC = 1.5 * 2 BC = 3. Therefore, the length of BC is 3.
Answer: A

Reasoning Process of the Matched Sample:
{'summary': "The problem involves using similarity of triangles and ratios to determine segment lengths. 
By leveraging the Basic Proportionality Theorem (or Thales' Theorem), the relationship between 
corresponding sides of similar triangles is established. The key steps include identifying parallel lines, 
setting up proportions based on given segment lengths, and solving for the unknown length.", 'steps': ['1. 
**Identify Similar Triangles**: Use the fact that two triangles are similar if they have corresponding 
angles equal (due to parallel lines).', '2. **Express Unknowns in Terms of Given Quantities**: Use the 
given ratio or segment relationships to express all relevant segments in terms of one variable.', '3. 
**Set Up Proportions**: Use the similarity property to equate the ratios of corresponding sides.', '4. 
**Solve for the Unknown**: Solve the resulting proportion equation to find the desired segment 
length.']}

Question: As shown in the figure, in triangle ABC, points D and E are the 
midpoints of AB and AC respectively. If DE = 1.5, the length of BC is ()
Choices: A:3 B:4 C:2 D:1 Answer: A

Question: In triangle ABC, point D is on side AB, BD = 2AD, DE ∥ BC intersects AC at 
point E. If segment DE = 10, then the length of segment BC is ()  
A. 15 B. 20 C. 30 D. 40

Reasoning Model
Responses from the Reasoning Model:
Okay, let's try to figure out the length of BC in this triangle problem. So, we have triangle ABC, and points D and E are the midpoints of sides AB and AC, respectively. That means AD is half of AB, and AE is half of AC. 
I remember something called the Midsegment Theorem, which says that the segment connecting the midpoints of two sides of a triangle is parallel to the third side and half its length. In this case, DE is the segment 
connecting the midpoints D and E, so DE should be parallel to BC and half as long as BC.
The problem tells us that DE is 1.5 units long. Since DE is half of BC, I can set up an equation where DE equals half of BC. So, 1.5 equals (1/2) times BC. To find BC, I just need to multiply both sides of the equation by 2. 
Let me do that calculation: 1.5 multiplied by 2 is 3. So, BC must be 3 units long. Looking at the answer choices, option A is 3, which matches our calculation. 
Wait, did I miss anything? Let me double-check. Points D and E are indeed midpoints, so DE should definitely be half of BC. And since DE is given as 1.5, doubling that gives BC as 3. Yeah, that seems right. I don't think 
I made any mistakes here.</think>
The length of BC is determined using the Midsegment Theorem, which states that the segment connecting the midpoints of two sides of a triangle is parallel to the third side and half its length. Given DE = 1.5, we find 
BC by doubling DE, resulting in BC = 3. Answer: A

Figure 9: Detailed case 3. The matched sample is highly related to the input one, with the element
of similar triangles.
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