
PYROSOME: A RUNTIME FOR EFFICIENT AND FINE-GRAINED MICROSERVICES

AND SERVERLESS

Anonymous authors
Paper under double-blind review

Abstract
Developers have shifted from deploying applications on phys-
ical machines, to virtual machines, to containers, and now
to serverless functions. Such shift of abstractions have also
changed the way applications are structured. Today’s cloud-
native applications are naturally structured in a higher-level
and more decomposed way. However, today’s cloud and
serverless platforms are still layered on top of the same ineffi-
cient legacy software infrastructure and abstractions as in the
past. We argue that these legacy layers are now redundant,
and we explore a clean-slate cloud services runtime targeted
toward microservice- and serverless-era applications we call
Pyrosome.

Pyrosome provides simple programming interfaces for ex-
ecuting code, storing and sharing data, and low-overhead
communication without worrying about resource allocation
and scheduling. It leverages low-overhead language-based
sandboxing that avoids the full state and scheduling costs of
operating system processes or containers. This allows imple-
mentation of a holistic scheduler that quickly redistributes
load among cores, exploits parallelism in applications, and
avoids tail latency with execution-time-aware sharding. The
DeathStarBench microservices benchmarks show that Pyro-
some speeds up microservice applications by as much as 4×
and improves throughput by 10×. Additionally, we show Py-
rosome balances load nearly instantly compared to standard
microservice platforms.

1 Introduction

Over the last decade, cloud computing platforms have evolved
from lower-level toward higher-level abstractions, from
machine-level (virtual machines), to operating system-level
(containers) and even higher-level programming abstractions
like serverless [17, 23]. The evolution of cloud computing
technologies and the need for efficient software development
and maintenance has also led to fundamental changes in de-
signing and deploying cloud applications, resulting in new
cloud application paradigms such as microservices and server-
less. There are two dimensions of paradigm shift for cloud ap-
plications. First, applications are leveraging high-level cloud-
native abstractions, which frees developers from system-level
resource management, scheduling and orchestration. Second,
applications are being decomposed into finer granularity com-
ponents. Decomposing applications into small services with

well-defined interfaces, as with the microservies architecure,
allows each service to be developed, maintained and scaled in-
dependently while matching organizational structures, which
improves developer productivity especially for large-scale
applications [13]. Some organizations have gone further to
make services even smaller (e.g. the BBC’s nanoservices plat-
form [12]), with the expectation that smaller services limit the
impact of failures, allow for more rapid iteration, and support
flexible resource sharing.

However, today’s cloud platforms, as the legacy from a
decade of evolution of cloud technologies, is comprised of
layers of software infrastructure and abstractions that are
redundant and inefficient for fine-grained microservies and
serverless applications. For example, the containerization
layer, on top of which most of today’s microservices and
serverless platforms are built, adds additional isolation and
communication costs. Microservices isolated in containers
communicate with each other over the network, which can
cost as much as one third of the total execution time [19].
The added overheads offset some of the benefits of microser-
vices architecture, which means the benefits of microservices
only outweigh the additional overheads for large complex
applications. Smaller applications (especially ones composed
of smaller microservices) are still better off implemented as
monoliths to avoid these overheads. The high cost of cold
starts (the process of creating and setting up new containers
when capacity is under-provisioned) slows down resource
reprovisioning and can impact the availability of serverless
applications during scaling up. As a result, the instant scalabil-
ity promise of serverless computing cannot be fully fulfilled
either.

It’s becoming a very compelling and real problem of mi-
croservices and serverless application deployment in the in-
dustry. For example, the Prime Video application was previ-
ously implemented as a distributed microservices architecture,
but was forced to abandon the microservices architecture due
to high costs and scaling bottlenecks. They moved back to
the monolith architecture and as a result reduced costs by
90% [27].

A deep-rooted mismatch is that virtual machines and con-
tainers implement strong isolation to mitigate risks between
untrusted users; however, this security is unnecessary for
services from a single large application where only basic
inter-service fault-isolation is required. In addition, many
microservices and serverless applications are taking a cloud-



Submitted to the Journal of Systems Research (JSys) 2024

native approach that relies on high-level abstractions and
interfaces provided by cloud platforms, and expect cloud plat-
forms to hide the complexities of underlying hardware and
software infrastructure. Thus the virtualized operating system
abstraction provided by containerization is no longer needed.

In light of this, we propose a clean-slate design for a mi-
croservices deployment system that we call Pyrosome. We
leverage the fact that in the following common use cases
strong security isolation is not needed, to design Pyrosome
as a PoC of a runtime with minimal isolation costs between
mutually trusted microservices/functions and applications:

• Microservices and serverless functions of the same ap-
plication should be mutually trusted, so there’s no need
for strong security isolation between them.

• Many microservices and serverless applications are ac-
tually deployed in trusted environment, on private infras-
tructure and private cloud computing platform, within
which security is less of a concern.

• On public cloud, mutually trusted applications (e.g. ap-
plications from the same client) can share the same se-
curity sandbox (e.g. a VM) within which they don’t
need strong security isolation between each other. So
Pyrosome runtime can be deployed inside such a se-
curity sandbox to support a group of mutually trusted
applications.

Two key aspects of Pyrosome’s design lead to these bene-
fits. The first is that Pyrosome leverages lightweight language-
level code isolation using software (V8) sandboxes and an in-
process data cache. This lowers cross-sandbox/cross-service
communication and data access costs. Additionally, since iso-
lation and communication is low overhead, Pyrosome is able
to support microservices of much finer granularity than to-
day’s standard container-based approach. It also ensures that
Pyrosome can keep enough inexpensive sandboxes ready to
eliminate the need for costly cold starts for container creation,
so Pyrosome can instantly reprovision resources to handle
sudden load changes. The second key aspect of Pyrosome’s
design demonstrates that in radically redesigning the cloud
software infrastructure, cloud platforms can find opportunities
for advanced optimizations for today’s cloud-native applica-
tions. With low-overhead isolation, each service operation
on Pyrosome can complete in microseconds or less. Thus, its
scheduler works on a much finer timescale than conventional
microservice resource schedulers (e.g. Kubernetes). With this
in mind, Pyrosome’s scheduler is designed to support several
new optimizations that are largely inspired by recently fine-
grained dispatch policies minimizing tail latency in simpler
services like key-value stores [7, 14, 25, 32, 35]. Specifically,
first, we propose a new execution-time-aware scheduling pol-
icy that exploits parallelism across and within services and

avoiding inter-service interference while keeping CPU utiliza-
tion high and balanced. Second, we propose execution-time-
aware sharding that partitions latency-sensitive, short-running
services from longer-running services and show its benefits
in avoiding latency due to head-of-line blocking between
services.

In the following sections we describe the design and imple-
mentation of Pyrosome, and we evaluate Pyrosome against ex-
isting container systems. Our evaluation shows that Pyrosome
scales linearly and improves throughput by 10×, reduces me-
dian latency of a social media microservices application by
4×, and it can support services more than an order of magni-
tude more granular than today’s services. Pyrosome can also
handle substantial and sudden load increases with no impact
on client-perceived latency.

2 Background

Microservices. Microservices is an application architecture
that decomposes an application into small services with each
running in a set of independent processes. This benefits soft-
ware development and maintenance because each service can
be developed and maintained independently reducing human
communication costs. Microservices applications are usually
deployed as a cluster of OS-level containers, and services
are packaged using easily-deployable container images [43],
which can contain a service and its software dependencies.
Kubernetes [6] is a popular container-orchestration system
used to deploy, maintain and scale container clusters. Though
containers are generally purely OS-level mechanisms, they
are also often deployed on top of virtual machines.

Serverless Computing. Serverless computing [1, 4, 30] is
similar to microservices, and platforms for them should help
by offering granular, pay-as-you-go billing where the cloud
provider manages scaling, and serverless has helped in some
domains [5, 10, 11, 15, 33, 36, 38, 41].

However, developers are not completely freed from pro-
visioning and scaling concerns with serverless computing.
Serverless functions are typically implemented in containers
and the high cost of cold starts can impact the availability
of serverless applications during scaling up. AWS provides
Provisioned Concurrency [34] for developers to specify the
expected peak load and reserve resources for it, pushing the
burden of operations back to developers.

2.1 Pyrosome Design
Figure 1 shows the basic design of Pyrosome. Pyrosome
works as a collective compute container for deployed services.
Applications deploy a set of logical services to a machine
running Pyrosome. Pyrosome as the software layer between
hardware resources and applications, provides simple inter-
faces for applications that hides the complexities of managing

2



Submitted to the Journal of Systems Research (JSys) 2024

Figure 1: Pyrosome Overall Design

hardware resources. It can fluidly reprovision hardware re-
sources on-demand, providing an automated resource pool for
applications. It also provides shared access to local cached
state for instances of stateful services. Pyrosome achieves
efficiency and low-overhead by leveraging language-level
sandboxing. Each service is isolated in a very light-weight
V8 context. Note that Pyrosome’s design is not limited to
the V8 runtime, and can be implemented using any language
runtime that provides light-weight isolation [21, 46].

Here, we elaborate on the core aspects of its design before
describing the details of its implementation.

Simple high-level abstractions. Pyrosome should provide
simple high-level programming abstractions for cloud appli-
cation developers and hide the complexities of the underlying
software infrastructure. Developers can then focused on ap-
plication level logics.

Low-overhead Deployment and Flexible Modularization.
Services should be logically isolated but not necessarily
strongly physically isolated. High communication costs im-
pede developers, forcing them to develop and scale their ap-
plication in coarser units to amortize costs. Smaller services
limit the impact of failures, allow for more rapid iteration,
and support flexible resource sharing.

Instant and Transparent Resource Reprovisioning.
Containers’ high cold start results in wasteful over-
provisioning and resource fragmentation; since containers
are slow to create, operators must provision extra containers
for each service to accommodate load changes [34]. In
comparison, Pyrosome’s isolated sandboxes can be created
nearly instantaneously, and idle sandboxes (V8 Isolates)
only occupy 3 MB of memory (compared to 35 MB for a
container [9]). Furthermore, Pyrosome’s design only requires
one V8 Isolate per core, and each service on the same core
has its own V8 Context, which is lighter-weight. Hence,
Pyrosome can keep a Context per-service per-core, which

avoids sandbox creation overheads altogether, letting it
instantly shift any service’s load to any core.

Low-overhead Runtime Level Scheduling and Optimiza-
tion Containers and virtual machines depend on operating-
system-level scheduling, which is problematic for inter-
dependent fine-grained computations due to costly thread
context switches and the kernel’s lack of request-level visi-
bility. Pyrosome efficiently schedules thousands of functions
with better visibility because its runtime-level scheduler runs
in the same process as services, letting it observe and sched-
ule requests with low overhead. Pyrosome’s low scheduling
overhead lets services use CPU cores efficiently at much finer
timescales.

Moreover, Pyrosome’s runtime-level scheduler is able to
implement advanced optimizations exploiting information col-
lected at runtime for microservices and serverless workloads,
which is beyond the capabilites of OS-level scheduling. We
demonstrate this with a scheduling policy called execution-
time-aware sharding that optimizes application tail latencies.
Microservices and serverless applications vary in structure
and per-invocation execution times [40]. Some applications
are composed mostly of short-running functions [19, 22], but
some services (e.g. machine learning) rely on long-running,
compute-intensive services [26]. By observing these differ-
ences, Pyrosome can avoid problems like tail latency due
to head-of-line blocking caused by long-running functions.
Inspired by the Minos key-value store’s size-aware shard-
ing [14], execution-time-aware sharding, extends Minos’ ap-
proach to generalized, opaque functions whose runtime varies
rather than just basic get/put operations.

In Process Data Cache Microservices are usually stateful.
To achieve high performance, not only should services com-
municate between each other with low overhead, services
should also access data with low overhead. In current mi-
croservices approach, the state of services are usually stored
in external databases or separate database services. That
entails cross boundary overheads for data accesses. Our de-
sign provides data stores that resides in the same process
with the services. Each service has its own datastore that
is shared by all the instances of the service. Services can
store ephemeral data in the datastore. For persistent data, the
datastore can function as the cache between the service and
external databases.

3 Implementation

Pyrosome is built on the Seastar framework [39]. Seastar’s
shared-nothing execution model enables Pyrosome to scale
nearly-linearly across cores. Pyrosome leverages the V8
JavaScript engine as lightweight language level isolation for
services. Other runtimes like Lucet and Wasmer could be

3



Submitted to the Journal of Systems Research (JSys) 2024

Figure 2: Pyrosome Basic Architecture

Figure 3: Programming Interfaces.

used instead to support WebAssembly to give developers
more flexibility [21, 46].

In Pyrosome, each core processes incoming requests in a
single-threaded event loop. Each core also hosts a V8 isolate,
which is an instance of the V8 engine (Figure 2). Services
on the same core are isolated in different V8 Contexts, which
fault isolation so errors in one service don’t cause other ser-
vices to malfunction. They also provide an isolated execution
environment with its own set of global variables, built-in ob-
jects and functions, so that services can be developed and
maintained independently. There is also a scheduler on each
core to schedule the execution of services. Each service has a
key-value store that can be used to store state that must persist
between invocations; and it also acts as a cache for external
database accesses. Instances of the same service running on
different cores share the same key-value store.

3.1 Programming Interfaces.

Pyrosome provides a list of very simple programming inter-
faces. async_call() and reply() allows a service to invoke
and communicate with another service. The .then() call-
back of the caller service will be invoked to receive the replied
result. db_get() and db_set() are provided for stateful ser-
vices to read and write their key value stores.

Figure 3 shows the code structure of services on Pyrosome.

Figure 4: Pyrosome Networking Architecture

A service is a group of related functions that share the same
V8 context. Each function in a service is addressed indepen-
dently. For example, if a client wants to invoke func_a2()
in Service_A, it can issue an HTTP request to address “/Ser-
vice_A/func_a2” to Pyrosome. Services on Pyrosome can
also call functions of other services asynchronously, through
the async_call() interface. async_call() is implemented
as a C++ binding that calls the scheduler to schedule and run
the callee function. The caller can pass messages through
async_call() to the callee function as the argument via
shared memory. Complex objects can be serialized JSON
strings; the callee must parse the JSON to retrieve the objects.
This makes it possible to implement sophisticated APIs be-
tween services. The reply of a service call is sent through the
reply() interface to the caller service. The .then() inter-
face is used to implement the callback to be invoked once the
replied result is received. A client-facing service also uses
reply() to return result to the requesting client in an HTTP
reply.

Stateful services can use db_get() and db_set() to read
and write their key value stores. When instances of the same
service are running on different cores, their writes could cause
consistency problems. To ensure consistency, we implement
compare and swap semantics for accesses to key value stores.
A version number is attached to each record; when an in-
stance of a service reads and then writes to its key value store,
db_set() checks if the given version number matches the
current version number of the record in the key value store
to ensure no other instance on some other core has updated
the record between the read and write. If the version numbers
don’t match, the db_set() returns an Abort status to inform
the caller that the write has failed. Services should check
the return status of db_set(), if failed they should read the
updated record and redo the operation on the record and retry
db_set().

4



Submitted to the Journal of Systems Research (JSys) 2024

Figure 5: Scheduler Workflow

3.2 Networking
In Seastar, all incoming network connections are randomly
distributed among all cores in hardware by the network card.
Pyrosome modifies Seastar so that cores are divided into dis-
patcher cores and worker cores (Figure 4); incoming network
connections are only distributed to and processed by the dis-
patcher cores. We use DPDK to bypass the kernel networking
stack; Pyrosome relies on Seastar’s user-level network stack
on dispatcher cores rather than the standard Linux TCP stack.
Dispatcher cores can also run services. The worker cores
do not receive client requests from the network; instead they
only run services scheduled to them from the dispatcher cores.
This design prevents long-running functions from blocking
network packet processing. It also enables execution-time
aware sharding which we detail below.

There are two levels of load balancing in Pyrosome. First,
incoming HTTP requests are randomly distributed to the dis-
patcher cores (Figure 4). The second level of load balancing
is done by the scheduler on each core, which we describe
next.

3.3 Execution-Time-Aware Scheduling
Figure 5 shows the architecture of the Pyrosome scheduler.
Each core has its own scheduler, and they share one scheduler
table. The scheduler table tracks the task queue and states of
each core, including whether the core is busy or idle and the
expected time that the core will become idle if it is busy.

When a service function is called (whether by a client re-
quest or by another service function), the local scheduler is
invoked. The scheduler tries to find an idle core in the sched-
uler table; if no idle core is found, then it finds the core with
the earliest expected idle time and pushes the function into
the task queue of that target core. The scheduler updates the
status of the target core by querying a set of shared statistics
to find the expected execution time of the function and up-

Figure 6: Execution-Time-Aware Sharding

dating the expected idle time of the target core accordingly.
The task queues and core states are protected by a mutex for
safe concurrent access. The scheduler on each core constantly
pulls tasks from its own task queue and runs them.

Pyrosome’s approach is simple and avoids the cost and
complexities of preemption while working well for the work-
loads we measure (e.g. ZygOS must expose a virtualized
APIC interface to userspace in order to efficiently trigger
inter-processor interrupts [35] making it vulnerable to denial-
of-service attacks).

With both network-level and scheduler-level load balancing,
Pyrosome can balance load among all cores and avoid hot
spots and accommodate bursty workloads well. In addition,
the design exploits the internal parallelism of applications
well. When a service function issues concurrent calls to
multiple services, these functions are automatically spanned
to different cores.

Pyrosome also implements a new approach to schedul-
ing different service functions called execution-time-aware
sharding (Figure 5); the idea is similar to size-aware shard-
ing, which has been used to improve tail latency in key-value
stores [14]. The key idea is that by isolating the short-running
service functions (which are likely to be latency sensitive)
from longer-running functions, tail latency is improved since
it reduces head-of-line blocking. The scheduler collects
function execution times at runtime and use them for future
scheduling decisions, under the assumption that function exe-
cution times are mostly stable across invocations.

The scheduler uses a threshold to determine if a function
is a short-running function or a long-running function. Long-
running functions are scheduled on worker cores only, while
short-running functions can be scheduled on any core. Lim-
iting long-running functions to worker cores prevents them
from blocking network packets processing on the dispatcher
cores and improves latencies of the short-running functions by
avoiding head-of-line blocking. The threshold can be adjusted

5



Submitted to the Journal of Systems Research (JSys) 2024

for different workloads and SLA requirements.
A problem is that concurrent requests can interfere with

each other. When a function calls another function using
async_call(), the callee function returns result to the caller
function asynchronous through a callback function. The ex-
ecution of the callback function can be delayed by another
function from another concurrent request, resulting in higher
latency. The impact of this problem depends on the CPU
load and the structure of the workflow. Complex workflows
consist of large number of inter-dependent functions are more
impacted. We implemented an optimization called fused-
execution mode if the scheduler detects high latency of re-
quests. With fused-execution mode the workflow of a request
will be executed in a run-to-completion mode to avoid such
interferences.

4 Evaluation

We evaluate Pyrosome with a series of microbenchmarks and
a social network application ported from DeathStarBench [19]
seeking to answer five key questions, which we summarize
results for here:
Does Pyrosome improve service throughput and effi-
ciency over conventional microservice platforms? Pyro-
some scales linearly to 16 cores, and it handles 10× the
requests per second than the same service deployed as a con-
tainerized microservice.

What are the limits of service granularities that Pyro-
some can support? On conventional containers decompos-
ing a service that runs for 4 ms per invocation into 4 services
will reduce the efficiency to about 50%. Our measurements
suggest that Pyrosome can decompose a 4 ms computation
into as many as 80 services before the efficiency drops below
50%, so Pyrosome can support services more than an order
of magnitude more granular than today’s services.

Does Pyrosome help on complex microservices? Our re-
sults show, Pyrosome reduces median latency of a social
media microservices application by 4×.

Does Pyrosome handle load shifts well? Pyrosome can han-
dle substantial and sudden load increases with no impact on
client-perceived latency. Similar load increases will cause la-
tency spikes that renders services unavailable on when using
Kubernetes’ autoscaling to handle shifts.

4.1 Hardware Setup

We run our experiments on the CloudLab testbed [37]. In all
experiments each physical node is a Dell PowerEdge R430
server with two 2.4 GHz Intel Xeon E5-2630v3 8-core CPUs
(16 hardware threads) and 64 GB RAM interconnected by
1 Gbps Ethernet.

4.2 Comparison to Kubernetes & Containers
In this section, we compare performance of microservices
applications deployed on Pyrosome versus deployed in con-
tainers. To make a fair comparison, in this section we run
Pyrosome without DPDK or its user-level network stack so
that the Pyrosome deployment and container deployment are
both running with the same default Linux kernel network
stack.

4.2.1 Throughput and Scalability

First, we compare the throughput and scalability of a small
service deployed on Pyrosome to one running as a conven-
tional, containerized microservice to show the benefits of its
reduced communication and isolation costs.

In this experiment we use 4 physical nodes. Each node
runs Ubuntu 20.04 with Linux 5.4. We deploy a container
orchestration platform using Kubernetes for microservice
creation. One node runs the Kubernetes controller and an-
other node is used as the server node either running Pyrosome
or, for the baseline, the container cluster. Another node hosts
the external (MongoDB) database that the microservices ac-
cess. The last node runs a wrk client which generates load in
a closed-loop (for 10 seconds per run with results averaged
over 10 runs for each data point).

The user service has a login() function that validates the
password of a user login request. Clients send requests via
HTTP to call login(); the login() function then fetches
the user’s credentials before checking them against the func-
tion’s arguments. On Pyrosome, the login() function is
implemented in JavaScript; the container-based service is im-
plemented in Go. By default in Pyrosome, after the HTTP re-
quest triggers login(), the request is handled entirely within
Pyrosome. The user’s credentials are cached in Pyrosome’s
local KVStore cache. When login() is deployed as a conven-
tional microservice, the user’s credentials must be accessed
from the external MongoDB node. This simple function is
fairly representative of many of functions in microservices,
and it lets us compare Pyrosome against a baseline, conven-
tional container-based approach to microservices.

Figure 7 shows the results as we run the service on an in-
creasing number of CPU cores. If user credentials are cached
in Pyrosome’s local KVStore (“pyrosome w/o db”) through-
put is improved by 10× over a container-based deployment
of the same service (“container w/ db”). When user creden-
tials are not cached in Pyrosome (“pyrosome w/ db”), its
throughput immediately collapses to match the performance
of the container-based approach. So, eliminating costly, syn-
chronous remote accesses for data is crucial to Pyrosome’s
performance. When running Pyrosome, these remote accesses
to MongoDB cause CPU utilization to drop to 50% as threads
block waiting on the database and experience costly context
switches. Of course, a container-based solution can perform
local caching as well, but even when we eliminated the remote

6



Submitted to the Journal of Systems Research (JSys) 2024

Figure 7: Throughput Under Increasing Load

database access from the container-based service (“container
w/o db”) its performance only improved by 2×.

Together these results show that improving runtime over-
heads only helps if other bottlenecks in remote communi-
cation are also eliminated, demonstrating the importance of
Pyrosome’s holistic approach. It not only eliminates costly
inter-service communications, but it also eliminates data ac-
cess costs via in-process caching. Containers could have a
shared data cache running via another container on the lo-
cal machine, but data accesses will still suffer costly cross-
container boundary crossings.

Finally, Pyrosome also improves scalability. Container-
based services can be scaled by adding additional cores to a
container or by adding additional containers, each running
on its own core. Here, login() scales better when adding a
container per core, which is also common practice for most
microservices. Even so, the container-based service scales
less efficiently and flattens entirely after 12 hardware threads.
Pyrosome scales nearly linearly to 16 hardware threads (2
hardware threads for each of the 8 physical cores).

4.2.2 Service Decomposition Costs

Here we microbenchmark performance as we progressively
decompose a service function into finer and finer-grained
services both with Pyrosome and using containers. The ex-
periment runs on two physical nodes; one to run the service
within Pyrosome or within Docker containers. We compare
Pyrosome with two different implementations of the container
version. One uses the conventional HTTP protocol for com-
munications between containers, the other uses the Apache
Thrift protocol [16] which is faster than HTTP. In both con-
tainer implementations the service function is implemented
in JavaScript running on Node.js. The other node is used as
the client, and it runs wrk2 in an open loop at a low request
rate to measure the latency. Each run averages many samples,
and each data point is the average over 10 runs.

In this experiment we emulate the decomposition of a ser-

Figure 8: Decomposing a Service into Finer Services

Figure 9: Efficiency of Decomposition

vice and measure the costs. Figure 8 shows an example of
decomposition. First, we can split a 8 ms service it into two
services, each of which runs for 4 ms and chained together to
complete the functionality. Then we can split it further into
4 services each running for 2 ms.

Figure 9 shows the results. We vary the time length to
emulate the decomposition of short and long running services.
The upper left is the decomposition of a 4 ms service, the
upper right is a 8 ms service, the lower left is a 16 ms service,
and the lower right is a 32 ms service. From the results,
we can see that with containers decomposition lowers the
efficiency significantly. For Pyrosome, decomposition cost
is low, and the efficiency almost remains the same when a
service is decomposed into a chain of smaller services. Also,
the gap between containers and Pyrosome is much bigger
when short running services are decomposed into even smaller
services, demonstrating that the low decomposition cost on
Pyrosome allows much finer grain microservices. From the
measured numbers we can calculate the cost of a round-trip
call between two services, which is about 44 μs on Pyrosome.
So if we decompose a 4ms computation into 80 services
on Pyrosome, which means each service runs for 50 μs, the
efficiency will drop below 50%. This is an estimation of the

7



Submitted to the Journal of Systems Research (JSys) 2024

limit of decomposition on Pyrosome, which is more than an
order of magnitude finer granularity compared to what can be
achieved using containers.

4.2.3 Social Network Application

To evaluate how reduced decomposition costs can improve the
performance of real world applications, we implemented the
social network application from the DeathStarBench [19]
on Pyrosome, and then we compare the latency of the
compose-post request.

We use 2 physical nodes. One is used as the server to run
Pyrosome or the DeathStarBench. Another node is used as
the client, and it runs wrk2 to average latency across many
requests under a low request rate using an open loop; each
data point is the average value of 10 runs.
compose-post is one of the client-facing APIs provided

by the social network application. Its function is to upload
a new post from a user. Similar to Twitter posts, a post can
include text, media, user mentions and URLs. Figure 10a
shows the graph of services invoked by a compose-post re-
quest. A compose-post HTTP request from a client first
arrives at the Nginx server, which acts as the front-end of the
application. The Nginx server then parses the HTTP request
and invokes other services. In the case of compose-post
request, the Nginx invokes 4 backend services to process the
request. The text service is invoked to process and upload
the text of the post, it then invokes the user_mention service
to process user mentions and the url_shorten service to
shorten URLs in the post. The user service processes the
username and id of the author of the post. The unique-id ser-
vice creates a unique post id for the post. The media service
processes the media references of the post. The outputs of all
the services mentioned above are sent to the compose_post
service to be assembled into the final version of the post.
compose_post then invokes the post_storage service to
store the post into MongoDB. A memcached server is also
used by the post_storage service to cache posts for faster
access. compose_post also invokes the user_timeline ser-
vice and write_home_timeline service to update timelines.
write_home_timeline invokes the social_graph service
to get followers of the user and update their timelines. Users’
timelines are stored in MongoDB with Redis as cache. In
DeathStarBench all these services are implemented in C++
and isolated in containers with the Apache Thrift communi-
cation protocol.

Figure 10b shows the structure of the social network ap-
plication ported to Pyrosome, which is very similar to the
DeathStarBench version, except that these services are imple-
mented as JS functions in V8 sandboxes, and user posts and
timelines are stored in the underlying datastore on Pyrosome.

Figure 10c shows the median and 99 percentile latencies
of the compose-post request on Pyrosome and DeathStar-
Bench measured under low request rate. The median latency

is 2.17 ms for Pyrosome versus 8.51 ms for DeathStarBench.
The 99 percentile latency is 3.53 ms for Pyrosome versus
10.00 ms for DeathStarBench. The results show that with
low decomposition costs, Pyrosome can reduce the median
latency of a complicated microservices application by 3/4 and
the 99 percentile latency by 2/3 compared to the containerized
version of the application.

4.2.4 Resource Elasticity

In this experiment we compare the scaling capabilities of
Kubernetes [6] and Pyrosome in reaction to changing
workloads. For Kubernetes, we use a cluster of 3 physi-
cal nodes, one runs the Kubernetes controller, another runs
the Kubernetes cluster to host microservice containers, the
remaining one is used to run the wrk2 clients. wrk2 can gen-
erate open loop load with specified request rate, we use it to
control the offered load. For Pyrosome we use two physical
nodes, one for Pyrosome server and the other for wrk2 clients.
We use the default settings for the Kubernetes autoscaler and
set 90% CPU utilization as the trigger metric for scaling.

We use the same workload as in §4.2.1 that uses the login
function in the User service, and we run the User service
without an external database accesses to eliminate the its
impact. We run two scripts on the client node at the same
time, one runs wrk2 to generate workload, the other runs
wrk2 under low load to measure latency. The workload gen-
eration script starts with very low load at 100 reqs/s, then
later increases offered load to a much higher request rate.
For Kubernetes the request rate increases to 16k reqs/s and
for Pyrosome it increases to 150k reqs/s. From the through-
put experiment of §4.2.1, that represents about 20% of the
maximum throughput of Kubernetes and about 65% of the
maximum throughput of Pyrosome.

Figure 11 shows the measured median latencies of
Kubernetes and Pyrosome during the workload. It shows
that the median latency is greatly increased during the scale
up period of Kubernetes. For Pyrosome is not impacted
after the sudden large load increase. We observe that the
Kubernetes autoscaler struggles to meet this load; after the
load increase, the autoscaler is triggered 3 times, and each
time it starts 3 or 4 more containers. This shows two prob-
lems with scaling via Kubernetes. First, the cost of starting
new containers is high. Second, it doesn’t know how many
new containers need to be provisioned to meet the increased
load. The autoscaler makes the speculation that starting 3 or
4 containers may be able to handle the load increase. How-
ever, when the load increase is too high, the autoscaler will be
triggered multiple times to allocate enough resource, which
slows the scaling up process further. From Figure 11, we can
see that the scaling up phase of Kubernetes is more than 2
minutes, and during that time the User service is effectively
unavailable because the service is saturated and all requests
experience very high latency. On the contrary, Pyrosome is

8



Submitted to the Journal of Systems Research (JSys) 2024

(a) compose-post request in DeathStar-
Bench. (b) compose-post request on Pyrosome. (c) Latency of compose-post request.

Figure 11: Kubernetes and Pyrosome react to sudden load
increase.

able to immediate pivot resources to whichever service within
its runtime needs them, even at fine-grained timescales. As
a result, it handles bigger load increases with no impact on
client-perceived latency.

4.3 Scheduler Evaluation

In this section, we evaluate the design of Pyrosome scheduler.
In all of the experiments in this section we run Pyrosome on
16 cores, 8 of which are dispatcher cores. Each dispatcher
core is allocated a hardware NIC queue and runs its own user
level network stack and DPDK driver. In these experiments,
Pyrosome’s user-level networking stack adds increased pres-
sure on scheduling; since the reduced overheads and response
times mean scheduling and inter-service interference at the
primary factors that determine client-observed response times,
especially for short-running functions.

4.3.1 Execution-Time-Aware Scheduling

In this microbenchmark we demonstrate that Pyrosome’s
execution-time-aware scheduling allows better use of CPU
resources than baseline approaches that have no visibility
into service invocation runtimes. To show this, we construct
a “fanout” application (Figure 12) that invokes 10 functions

Figure 12: Fanout application.

Figure 13: Latency of fanout application.

each runs for 10 ms in parallel. As a baseline, we implement
a “simple scheduler” that doesn’t leverage the knowledge
of function execution times; instead, it simply tries to dis-
tribute work randomly to under-loaded cores when the core
that receives a request is under high load.

We vary the load to test the schedulers’ ability to optimize
parallelizable functions under different CPU loads. From
Figure 13 we can see that under low load, both schedulers can
use available CPU resources to run parallelizable functions in
parallel so that to reduce latency. When CPU load increases
it becomes harder to find available CPU resources to run the
functions in parallel, as a result more of the functions are run
sequentially thus latencies increase. Under higher CPU load,
our execution-time-aware scheduler is better than the simple
scheduler at finding CPU resources to parallelize execution.
The execution-time-aware scheduler efficiently parallelizes
execution even under more than 70% CPU utilization while

9



Submitted to the Journal of Systems Research (JSys) 2024

Figure 14: Mixed workload with/without sharding.

response times under simple scheduler spike.

4.3.2 Execution-Time-Aware Sharding

In this microbenchmark, we evaluate Pyrosome’s ability to
handle a mixture of long-running and short-running functions
with its execution-time-aware sharding. A short-running func-
tion runs for 10 ms and a long running function runs for
100 ms. The workload is held constant to use 70% of all
CPU resources and the ratio of short-running functions and
long-running functions is varied. The ratio is calculated by
total CPU time occupied by short-running functions versus
CPU time occupied by long-running functions. The upper
graph of Figure 14 shows the latencies of short-running func-
tions with and without sharding (the green line and the red
line respectively), and the lower graph shows the latencies of
long-running functions.

In this microbenchmark the scheduler uses execution-time-
aware sharding to limit long-running functions on work cores
while short-running functions can be scheduled on both the
dispatcher cores and worker cores. This is called soft sharding
and it is the default sharding policy of execution-time-aware
sharding. From the graph we can see that with sharding,
latencies of both the short-running functions and the long-
running functions are much lower, especially for the short-
running functions. When the ratio is 1:6 the latencies of
long-running functions increase greatly, this is because long-
running functions are limited to the 8 worker cores and the
load of long-running functions at this ratio has exceeded the
CPU capacity of the 8 worker cores.

We also compared soft sharding with hard sharding where
the scheduler only schedules short running functions on dis-
patcher cores. Figure 15 shows that with hard sharding when
the ratio of short-running functions is high the dispatcher
cores will be overloaded. Overloading dispatcher cores not
only results in much higher latencies for short-running func-
tions, but also worsens the latencies of long-running functions

Figure 15: Soft sharding versus hard sharding.

Figure 16: Different application structures.

as the dispatching of long-running functions is also impacted.
In the middle, when the load is about evenly split between
short-running and long-running functions and none of the
cores is overloaded, the performance of soft sharding is simi-
lar to that of hard sharding. Overall, soft sharding is a better
sharding policy that achieves similar performance at avoid-
ing head-of-line blocking of long-running functions as hard
sharding, while allowing more flexibility for scheduling short-
running functions.

4.3.3 Scheduling Complex Applications

Microservices and serverless applications are naturally com-
prised of workflows of inter-dependent functions. User per-
ceived end-to-end latency for these applications depends on
the completion of the execution of the whole workflow. The
structure of a workflow dictates how its execution can be op-
timized by the scheduler. Fanouts of functions in a workflow
provide opportunities for parallel execution to optimize end-
to-end latency of the workflow. Previous microbenchmarks
showed that Pyrosome’s execution-time-aware scheduler can
leverage the parallelism within a workflow to optimize the
latency. However, this leads to a challenge: it is also possi-
ble for concurrent workflows to block each other’s execution
resulting in worse latencies.

To evaluate the scheduler’s performance with different ap-
plication structures, in this microbenchmark we construct
three example applications as shown in Figure 16. The left
side shows an application of a sequential chain of functions,

10



Submitted to the Journal of Systems Research (JSys) 2024

Figure 17: Latencies of applications with different structures.

the right side shows an application of fanout of functions,
and the middle shows an application of mixed sequential and
fanout stages. The three applications have the same total
serialized execution time (100 ms).

Figure 17 shows the latencies of running the three appli-
cations on Pyrosome. From the result we can see that for
high-fanout applications the scheduler can optimize latency
even under relatively high CPU load. For complete sequential
chain application the scheduler cannot optimize latency at
all, and its latency worsens with increased CPU load because
of more interferences between concurrent workflows under
higher CPU load. For complex applications with both fanout
and sequential stages, the scheduler can optimize its latency
under low CPU load, but with increased CPU load its latency
becomes worse than sequential execution due to interference.

This benchmark shows that application-level information,
such as the structure of the application workflow, can be
leveraged to optimize the end-to-end latency of complex mi-
croservices and serverless applications. Extracting this in-
formation automatically to optimize application execution
is an interesting future direction; for now, we implement a
fused-execution mode for applications. Requests from ap-
plications marked as fused are run using run-to-completion
model with the entire workflow executed on a single core (as
if it is a single function). One heuristic that may make sense
for triggering fused-execution is to use a similar execution-
time aware approach where if the latency of a workflow is
greater its serialized execution time it is fused. With such
a heuristic, the scheduler could leverage applications’ inter-
nal parallelism to optimize latency under low CPU load, and
when load increases, interference from concurrent workflows
could be mitigated.

4.3.4 Mixed Workloads

In this experiment we evaluate the scheduler’s performance
with a mixture of heterogeneous applications. The mixture
consists of the social network application, the fanout appli-
cation and the long-running 100 ms function from previous
experiments. We keep Pyrosome at about 60% CPU utiliza-

Figure 18: Latencies of mixed applications

tion with each application contributing to about 1/3 of the
load. The results not only shows that Pyrosome’s scheduler
can accommodate a mixture of very different applications,
but also it shows that different scheduler parameters can pri-
oritize different applications. The upper-left graph shows the
latencies with 50 ms as the scheduler’s sharding threshold.
The scheduler is able to optimize the latency of the fanout
application, but the latency of social network application is
high. The bottom-left graph turns on fused-execution mode
for the social network application; this improves latency, but it
still experiences some head-of-line blocking from the fanout
application. In the bottom-right graph we set the threshold
for sharding to 5 ms, which forces the fanout application
to be scheduled on the worker cores with the long-running
functions. This greatly reduces the latency for social network
application because head-of-line blocking is avoided, but at
the cost of increased latency for the fanout application because
it is limited on worker cores with fewer CPU resources for
parallel optimization. These parameters can be mechanisms
for higher-level policies for mixed workloads.

5 Related Work

Lighter-weight Sandboxes. There are many efforts try-
ing to address the performance and scaling challenges of
serverless by reducing the overhead of containers or adopt-
ing lightweight sandboxes. SAND [3] addresses the issues
by running functions of the same application as processes
in the same container to reduce isolation costs, and provid-
ing fast local messaging bus for functions on the same host.
Firecracker [2] is a new Virtual Machine Monitor (VMM)
built by Amazon that runs serverless functions in lightweight
MicroVMs with a minimized Linux kernel. Nightcore [22]
is a serverless function runtime for latency-sensitive inter-
active microservices that implements fast internal function
calls and other optimizations to achieve high performance
with container-based isolation. All these solutions still rely
on heavy weight sandboxes such as processes, containers
and VMs, so their overheads and cold start latencies are still

11



Submitted to the Journal of Systems Research (JSys) 2024

high compared to Pyrosome. They also rely on OS-level
scheduling which is costly and lacks request-level visibility.
There are also solutions from the academia and the indus-
try [18, 21, 24, 42, 45–47] that leverage lightweight language
level isolation such as the V8 JavaScript or WebAssembly
runtime to build fast serverless frameworks. But these frame-
works don’t consider the microservices scenario of compli-
cated interconnections and communications between a large
number of services.

Actor systems. Pyrosome’s approach to containing several
logical services within a single process runtime bears simi-
larity to actors systems. Actors are small logical agents that
communicate and trigger computation and concurrency via
messages. Frequently many actors are multiplexed on a single
machine or within a single runtime allowing similar optimiza-
tions to Pyrosome. For example, Scala’s original actor system
implements some inter-actor messaging as direct procedure
call [20]. There are some popular actor systems used in pro-
duction [8, 28, 44], and some recent efforts seek to improve
inter-host messaging efficiency in actor systems [29]. Ray is
a recent actor-based approach for executing distributed ana-
lytics tasks [31]. Pyrosome differs from these systems since it
is focused on microservice-oriented architectures. Instances
of the same service of a microservices application often need
to share the same underlying database, whereas actors don’t
share state.

6 Conclusion

Today’s cloud-native applications are naturally structured in
a higher-level and more decomposed way than classic mono-
lithic applications run on the abstraction of a full machine.
However, today’s inefficient legacy cloud software infrastruc-
ture and abstractions hinder the performance and scalability
of these applications. Pyrosome shows that a clean-slate de-
sign of cloud services runtime targeted toward microservice-
and serverless-era applications can greatly improve perfor-
mance, enable more granular decomposition of services, and
scale up/down better than today’s container-based platforms.
Additionally, Pyrosome shows that we can implement smart
scheduling optimization that leverages information collected
at runtime to utilize cores efficiently and minimize application
tail latency.

References

[1] Azure functions. https://azure.microsoft.com/
en-us/services/functions/, 2022.

[2] Alexandru Agache, Marc Brooker, Alexandra Iordache,
Anthony Liguori, Rolf Neugebauer, Phil Piwonka, and
Diana-Maria Popa. Firecracker: Lightweight virtual-
ization for serverless applications. In 17th USENIX

Symposium on Networked Systems Design and Imple-
mentation (NSDI 20), pages 419–434, 2020.

[3] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac,
Manuel Stein, Klaus Satzke, Andre Beck, Paarijaat
Aditya, and Volker Hilt. Sand: Towards high-
performance serverless computing. In 2018 Usenix
Annual Technical Conference (USENIXATC 18), pages
923–935, 2018.

[4] Inc. or its affiliates. Amazon Web Services. Aws
lambda. https://aws.amazon.com/lambda/, 2022.

[5] Lixiang Ao, Liz Izhikevich, Geoffrey M Voelker, and
George Porter. Sprocket: A serverless video processing
framework. In Proceedings of the ACM Symposium on
Cloud Computing, pages 263–274, 2018.

[6] The Kubernetes Authors. Production-grade container
orchestration, 2022. URL: https://kubernetes.io.

[7] Adam Belay, George Prekas, Ana Klimovic, Samuel
Grossman, Christos Kozyrakis, and Edouard Bugnion.
Ix: A protected dataplane operating system for high
throughput and low latency. In 11th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 14), pages 49–65, 2014.

[8] Phil Bernstein, Sergey Bykov, Alan Geller, Gabriel
Kliot, and Jorgen Thelin. Orleans: Distributed virtual
actors for programmability and scalability. MSR-TR-
2014–41, 2014.

[9] Zack Bloom. Cloud computing without con-
tainers. https://blog.cloudflare.com/cloud-
computing-without-containers/, 2018.

[10] Joao Carreira, Pedro Fonseca, Alexey Tumanov, Andrew
Zhang, and Randy Katz. Cirrus: A serverless framework
for end-to-end ml workflows. In Proceedings of the
ACM Symposium on Cloud Computing, pages 13–24,
2019.

[11] Ryan Chard, Tyler J Skluzacek, Zhuozhao Li, Yadu
Babuji, Anna Woodard, Ben Blaiszik, Steven Tuecke,
Ian Foster, and Kyle Chard. Serverless supercomput-
ing: High performance function as a service for science.
arXiv preprint arXiv:1908.04907, 2019.

[12] Matthew Clark. Powering bbc online with
nanoservices. https://www.bbc.co.uk/blogs/
internet/entries/5bdabd53-090e-4611-a5d5-
4faea05aeb35, 2018.

[13] Melvin E Conway. How do committees invent. Data-
mation, 14(4):28–31, 1968.

12

https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/
https://aws.amazon.com/lambda/
https://kubernetes.io
https://blog.cloudflare.com/cloud-computing-without-containers/
https://blog.cloudflare.com/cloud-computing-without-containers/
https://www.bbc.co.uk/blogs/internet/entries/5bdabd53-090e-4611-a5d5-4faea05aeb35
https://www.bbc.co.uk/blogs/internet/entries/5bdabd53-090e-4611-a5d5-4faea05aeb35
https://www.bbc.co.uk/blogs/internet/entries/5bdabd53-090e-4611-a5d5-4faea05aeb35


Submitted to the Journal of Systems Research (JSys) 2024

[14] Diego Didona and Willy Zwaenepoel. Size-aware shard-
ing for improving tail latencies in in-memory key-value
stores. In 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 19), pages
79–94, 2019.

[15] Sadjad Fouladi, Riad S Wahby, Brennan Shacklett,
Karthikeyan Vasuki Balasubramaniam, William Zeng,
Rahul Bhalerao, Anirudh Sivaraman, George Porter, and
Keith Winstein. Encoding, fast and slow: Low-latency
video processing using thousands of tiny threads. In
14th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 17), pages 363–376, 2017.

[16] Apache Software Foundation. Apache thrift. https:
//thrift.apache.org, 2022.

[17] Armando Fox, Rean Griffith, Anthony Joseph, Randy
Katz, Andrew Konwinski, Gunho Lee, David Patterson,
Ariel Rabkin, Ion Stoica, et al. Above the clouds: A
berkeley view of cloud computing. Dept. Electrical
Eng. and Comput. Sciences, University of California,
Berkeley, Rep. UCB/EECS, 28(13):2009, 2009.

[18] Phani Kishore Gadepalli, Sean McBride, Gregor Peach,
Ludmila Cherkasova, and Gabriel Parmer. Sledge: a
serverless-first, light-weight wasm runtime for the edge.
In Proceedings of the 21st International Middleware
Conference, pages 265–279, 2020.

[19] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty,
Priyal Rathi, Nayan Katarki, Ariana Bruno, Justin Hu,
Brian Ritchken, Brendon Jackson, et al. An open-source
benchmark suite for microservices and their hardware-
software implications for cloud & edge systems. In Pro-
ceedings of the Twenty-Fourth International Conference
on Architectural Support for Programming Languages
and Operating Systems, pages 3–18, 2019.

[20] Philipp Haller and Martin Odersky. Scala Actors: Unify-
ing thread-based and event-based programming. Theo-
retical Computer Science, 410(2):202 – 220, 2009. Dis-
tributed Computing Techniques.

[21] Pat Hickey. Lucet takes webassembly beyond the
browser | fastly. https://www.fastly.com/blog/
announcing-lucet-fastly-native-webassembly-
compiler-runtime, 2022.

[22] Zhipeng Jia and Emmett Witchel. Nightcore: efficient
and scalable serverless computing for latency-sensitive,
interactive microservices. In Proceedings of the 26th
ACM International Conference on Architectural Support
for Programming Languages and Operating Systems,
pages 152–166, 2021.

[23] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti,
Chia-Che Tsai, Anurag Khandelwal, Qifan Pu, Vaishaal
Shankar, Joao Carreira, Karl Krauth, Neeraja Yadwad-
kar, et al. Cloud programming simplified: A berke-
ley view on serverless computing. arXiv preprint
arXiv:1902.03383, 2019.

[24] MJ Jones. How compute@edge is tack-
ling the most frustrating aspects of serverless.
https://www.fastly.com/blog/how-compute-
edge-is-tackling-the-most-frustrating-
aspects-of-serverless, 2020.

[25] Kostis Kaffes, Timothy Chong, Jack Tigar Humphries,
Adam Belay, David Mazières, and Christos Kozyrakis.
Shinjuku: Preemptive Scheduling for Microsecond-
scale Tail Latency. In 16th USENIX Symposium on
Networked Systems Design and Implementation, NSDI
2019, Boston, MA, February 26-28, 2019., pages 345–
360, 2019.

[26] Ram Srivatsa Kannan, Lavanya Subramanian, Ashwin
Raju, Jeongseob Ahn, Jason Mars, and Lingjia Tang.
Grandslam: Guaranteeing slas for jobs in microservices
execution frameworks. In Proceedings of the Fourteenth
EuroSys Conference 2019, pages 1–16, 2019.

[27] Marcin Kolny. Scaling up the prime video au-
dio/video monitoring service and reducing costs
by 90%. https://www.primevideotech.com/
video-streaming/scaling-up-the-prime-
video-audio-video-monitoring-service-and-
reducing-costs-by-90, 2023.

[28] Inc. Lightbend. Akka. http://akka.io/, 2022.

[29] Christopher S. Meiklejohn, Heather Miller, and
Peter Alvaro. PARTISAN: Scaling the Dis-
tributed Actor Runtime. In 2019 USENIX An-
nual Technical Conference (USENIX ATC 19), pages
63–76, Renton, WA, July 2019. USENIX Associa-
tion. URL: https://www.usenix.org/conference/
atc19/presentation/meiklejohn.

[30] Microsoft. Cloud functions. https://
cloud.google.com/functions, 2022.

[31] Philipp Moritz, Robert Nishihara, Stephanie Wang,
Alexey Tumanov, Richard Liaw, Eric Liang, Melih
Elibol, Zongheng Yang, William Paul, Michael I.
Jordan, and Ion Stoica. Ray: A Distributed
Framework for Emerging AI Applications. In
13th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 18), pages 561–577,
Carlsbad, CA, October 2018. USENIX Associa-
tion. URL: https://www.usenix.org/conference/
osdi18/presentation/moritz.

13

https://thrift.apache.org
https://thrift.apache.org
https://www.fastly.com/blog/announcing-lucet-fastly-native-webassembly-compiler-runtime
https://www.fastly.com/blog/announcing-lucet-fastly-native-webassembly-compiler-runtime
https://www.fastly.com/blog/announcing-lucet-fastly-native-webassembly-compiler-runtime
https://www.fastly.com/blog/how-compute-edge-is-tackling-the-most-frustrating-aspects-of-serverless
https://www.fastly.com/blog/how-compute-edge-is-tackling-the-most-frustrating-aspects-of-serverless
https://www.fastly.com/blog/how-compute-edge-is-tackling-the-most-frustrating-aspects-of-serverless
https://www.primevideotech.com/video-streaming/scaling-up-the-prime-video-audio-video-monitoring-service-and-reducing-costs-by-90
https://www.primevideotech.com/video-streaming/scaling-up-the-prime-video-audio-video-monitoring-service-and-reducing-costs-by-90
https://www.primevideotech.com/video-streaming/scaling-up-the-prime-video-audio-video-monitoring-service-and-reducing-costs-by-90
https://www.primevideotech.com/video-streaming/scaling-up-the-prime-video-audio-video-monitoring-service-and-reducing-costs-by-90
http://akka.io/
https://www.usenix.org/conference/atc19/presentation/meiklejohn
https://www.usenix.org/conference/atc19/presentation/meiklejohn
https://cloud.google.com/functions
https://cloud.google.com/functions
https://www.usenix.org/conference/osdi18/presentation/moritz
https://www.usenix.org/conference/osdi18/presentation/moritz


Submitted to the Journal of Systems Research (JSys) 2024

[32] Amy Ousterhout, Joshua Fried, Jonathan Behrens,
Adam Belay, and Hari Balakrishnan. Shenango: Achiev-
ing High CPU Efficiency for Latency-sensitive Data-
center Workloads. In 16th USENIX Symposium on
Networked Systems Design and Implementation, NSDI
2019, Boston, MA, February 26-28, 2019., pages 361–
378, 2019.

[33] Matthew Perron, Raul Castro Fernandez, David De-
Witt, and Samuel Madden. Starling: A scalable query
engine on cloud function services. arXiv preprint
arXiv:1911.11727, 2019.

[34] Danilo Poccia. New – provisioned concurrency
for lambda functions, 2019. URL: https://
aws.amazon.com/cn/blogs/aws/new-provisioned-
concurrency-for-lambda-functions/.

[35] George Prekas, Marios Kogias, and Edouard Bugnion.
ZygOS: Achieving Low Tail Latency for Microsecond-
scale Networked Tasks. In Proceedings of
the 26th Symposium on Operating Systems Prin-
ciples, SOSP ’17, pages 325–341, New York,
NY, USA, 2017. ACM. URL: http://
doi.acm.org/10.1145/3132747.3132780, https://
doi.org/10.1145/3132747.3132780.

[36] Qifan Pu, Shivaram Venkataraman, and Ion Stoica.
Shuffling, fast and slow: Scalable analytics on server-
less infrastructure. In 16th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
19), pages 193–206, 2019.

[37] Robert Ricci, Eric Eide, and the CloudLab Team. In-
troducing CloudLab: Scientific infrastructure for ad-
vancing cloud architectures and applications. ; login:,
39(6):36–38, 2014.

[38] Francisco Romero, Qian Li, Neeraja J Yadwadkar, and
Christos Kozyrakis. Infaas: A model-less inference
serving system. arXiv preprint arXiv:1905.13348, 2019.

[39] Inc. Scylla DB. Seastar. http://www.seastar-project.org,
2019.

[40] Mohammad Shahrad, Rodrigo Fonseca, Íñigo Goiri,
Gohar Chaudhry, Paul Batum, Jason Cooke, Eduardo
Laureano, Colby Tresness, Mark Russinovich, and Ri-
cardo Bianchini. Serverless in the wild: Characterizing
and optimizing the serverless workload at a large cloud
provider. In 2020 USENIX Annual Technical Confer-
ence (USENIX ATC 20), pages 205–218, 2020.

[41] Vaishaal Shankar, Karl Krauth, Qifan Pu, Eric Jonas,
Shivaram Venkataraman, Ion Stoica, Benjamin Recht,
and Jonathan Ragan-Kelley. Numpywren: Serverless
linear algebra. arXiv preprint arXiv:1810.09679, 2018.

[42] Simon Shillaker and Peter Pietzuch. Faasm:
Lightweight isolation for efficient stateful serverless
computing. arXiv preprint arXiv:2002.09344, 2020.

[43] Stephen Soltesz, Herbert Pötzl, Marc E Fiuczynski,
Andy Bavier, and Larry Peterson. Container-based
operating system virtualization: a scalable, high-
performance alternative to hypervisors. In Proceedings
of the 2nd ACM SIGOPS/EuroSys european conference
on computer systems 2007, pages 275–287, 2007.

[44] The Erlang Team. Erlang programming language.
https://www.erlang.org/, 2022.

[45] Kenton Varda. Introducing cloudflare work-
ers: Run javascript service workers at the edge.
https://blog.cloudflare.com/introducing-
cloudflare-workers/, 2017.

[46] Inc. Wasmer. Wasmer. https://wasmer.io, 2022.

[47] Tian Zhang, Dong Xie, Feifei Li, and Ryan Stutsman.
Narrowing the gap between serverless and its state with
storage functions. In Proceedings of the ACM Sympo-
sium on Cloud Computing, pages 1–12, 2019.

14

https://aws.amazon.com/cn/blogs/aws/new-provisioned-concurrency-for-lambda-functions/
https://aws.amazon.com/cn/blogs/aws/new-provisioned-concurrency-for-lambda-functions/
https://aws.amazon.com/cn/blogs/aws/new-provisioned-concurrency-for-lambda-functions/
http://doi.acm.org/10.1145/3132747.3132780
http://doi.acm.org/10.1145/3132747.3132780
https://doi.org/10.1145/3132747.3132780
https://doi.org/10.1145/3132747.3132780
https://www.erlang.org/
https://blog.cloudflare.com/introducing-cloudflare-workers/
https://blog.cloudflare.com/introducing-cloudflare-workers/
https://wasmer.io

	Introduction
	Background
	Pyrosome Design

	Implementation
	Programming Interfaces.
	Networking
	Execution-Time-Aware Scheduling

	Evaluation
	Hardware Setup
	Comparison to Kubernetes & Containers
	Throughput and Scalability
	Service Decomposition Costs
	Social Network Application
	Resource Elasticity

	Scheduler Evaluation
	Execution-Time-Aware Scheduling
	Execution-Time-Aware Sharding
	Scheduling Complex Applications
	Mixed Workloads


	Related Work
	Conclusion

