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Abstract

Variance-dependent regret bounds for linear contextual bandits, which improve1

upon the classical Õ(d
√
K) regret bound to Õ(d

√∑K
k=1 σ

2
k), where d is the con-2

text dimension, K is the number of rounds, and σ2
k is the noise variance in round3

k, has been widely studied in recent years. However, most existing works focus4

on the regret upper bounds instead of lower bounds. To our knowledge, the only5

lower bound is from Jia et al. (2024), which proved that for any eluder dimen-6

sion delu and total variance budget Λ, there exists an instance with
∑K

k=1 σ
2
k ≤ Λ7

for which any algorithm incurs a variance-dependent lower bound of Ω(
√
deluΛ).8

However, this lower bound has a
√
d gap with existing upper bounds. More-9

over, it only considers a fixed total variance budget Λ and does not apply to a10

general variance sequence {σ2
1 , . . . , σ

2
K}. In this paper, to overcome the limita-11

tions of Jia et al. (2024), we consider the general variance sequence under two12

settings. For a prefixed sequence, where the entire variance sequence is revealed13

to the learner at the beginning of the learning process, we establish a variance-14

dependent lower bound of Ω(d
√∑K

k=1 σ
2
k/ logK) for linear contextual bandits.15

For an adaptive sequence, where an adversary can generate the variance σ2
k in16

each round k based on historical observations, we show that when the adversary17

must generate σ2
k before observing the decision set Dk, a similar lower bound18

of Ω(d
√∑K

k=1 σ
2
k/ log

6(dK)) holds. In both settings, our results match the up-19

per bounds of the SAVE algorithm (Zhao et al., 2023) up to logarithmic factors.20

Furthermore, if the adversary can generate the variance σk after observing the21

decision set Dk, we construct a counter-example showing that it is impossible22

to construct a variance-dependent lower bound if the adversary properly selects23

variances in collaboration with the learner. Our lower bound proofs use a novel24

peeling technique that groups rounds by variance magnitude. For each group,25

we construct separate instances and assign the learner distinct decision sets. We26

believe this proof technique may be of independent interest.27

1 Introduction28

We consider the linear contextual bandit problem, where each arm is represented by a feature vector29

and the expected reward is a linear function of this feature vector with an unknown parameter vector.30

Numerous studies have developed algorithms achieving optimal regret bounds for linear bandits31

(Chu et al., 2011; Abbasi-Yadkori et al., 2011a). However, while these works establish minimax-32

optimal regret bounds in the worst-case, they do not exploit additional problem-dependent structures.33

Our work focuses on incorporating reward variance information into the analysis, building upon a34

line of research studying variance-dependent regret bounds for linear bandits (Zhou et al., 2021;35

Zhang et al., 2021; Zhou and Gu, 2022; Zhao et al., 2022; Kim et al., 2022; Zhao et al., 2023)36

and general function approximation (Jia et al., 2024), which includes linear bandits as a special37
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case. Notably, Zhao et al. (2023) established a near-optimal regret guarantee without requiring prior38

knowledge of the variances:39

Theorem 1.1 (Theorem 2.3, Zhao et al. 2023). For any linear contextual bandit problem, the regret40

of the SAVE algorithm in the first K rounds is upper bounded by:41

Regret(K) ≤ Õ
(
d

√∑K
k=1 σ

2
k + d

)
,

where d is the dimension and σ2
k is the noise variance of the selected action in round k.42

However, most of these works have focused on developing algorithms with regret upper bound43

guarantees, while variance-dependent lower bounds remain understudied. The only exception is44

Jia et al. (2024), which focuses on general function classes with finite eluder dimension delu and45

provides the following variance-dependent lower bound:46

Theorem 1.2 (Theorem 5.1, Jia et al. 2024). For any dimension d ≥ 2, action space size A, number47

of rounds K ≥ 2, and total variance budget Λ ∈ [0,K], there exists a contextual bandit problem with48

eluder dimension delu = d, action space size A, and an adversarial sequence of variances satisfying49 ∑K
k=1 σ

2
k ≤ Λ such that for any algorithm, the regret is lower bounded by:50

Regret(K) ≥ Ω
(
min(

√
dΛ + d,

√
AK)

)
.

When restricted to the linear bandit case, where d ≥
√
A, the above lower bound reduces to

√
dΛ,51

which has a gap of
√
d factor compared with the upper bound in Zhao et al. (2023). Moreover, Jia52

et al. (2024) only considers instances with a fixed budget Λ and relies on carefully designed vari-53

ance sequences {σ2
1 , σ

2
2 , . . . , σ

2
K}, failing to provide lower bounds for general variance sequences.54

Therefore, an open question arises:55

Can we prove variance-dependent regret lower bounds for general variance sequences?56

1.1 Our Contributions57

In this paper, we answer this question affirmatively by constructing hard-to-learn instances in sev-58

eral different settings. For any prefixed sequence {σ2
1 , . . . , σ

2
K}, we achieve a Ω̃(d

√∑K
k=1 σ

2
k)59

variance-dependent expected lower bound, which matches the upper bound in Zhao et al. (2023)60

up to logarithmic factors and demonstrates its optimality. For general adaptive variance sequences61

where a weak adversary (potentially collaborating with the learner) can generate variance σ2
k in each62

round k based on historical observations, our instance provides a high-probability lower bound of63

Ω̃(d
√∑K

k=1 σ
2
k), which also matches the upper bound in Zhao et al. (2023) up to logarithmic fac-64

tors. To the best of our knowledge, this is the first high-probability lower bound for linear contextual65

bandit.66

Our construction and analysis rely on the following new techniques:67

• A peeling technique for prefixed variance sequences that divides rounds into groups based on68

variance magnitude. Through orthogonal decision set construction, each group only interacts with69

its corresponding parameters, allowing us to establish separate lower bounds for different variance70

scales and combine them effectively.71

• A multi-instance framework that handles unknown group sizes in the adaptive setting. For each72

variance group, we maintain multiple instances designed for different possible intervals of round73

numbers and assign the learner to these instances in a cyclic manner, ensuring uniform visits74

across instances and guaranteeing the visiting times of one instance matches its designed interval.75

• A high-probability lower bound that handles adaptive group sizes through a union bound. We76

first convert expected regret bounds to constant-probability bounds through careful variance con-77

trol and auxiliary algorithms, then boost these to high-probability bounds by creating multiple78

independent instances.79

Furthermore, we also study the setting with a strong adversary that can generate the variance σk80

after observing the decision set Dk. Under this scenario, we proposed a counter algorithm that can81

collaborate with the adversary by properly selecting variance, achieving an O(d) regret even the82

total variance
∑K

k=1 σ
2
k = Ω(K). This implies that it is impossible to derive a variance-dependent83

lower bound for general variance sequence with strong adversary. As a direct extension of this result,84
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we also show that it is impossible to derive a variance-dependent lower bound for stochastic linear85

bandits, where the decision set is fixed even for a general prefixed variance sequence.86

Notation We use lower case letters to denote scalars, and use lower and upper case bold face letters87

to denote vectors and matrices respectively. We denote by [n] the set {1, . . . , n}. For a vector88

x ∈ Rd and a positive semi-definite matrix Σ ∈ Rd×d, we denote by ∥x∥2 the vector’s ℓ2 norm89

and by ∥x∥Σ =
√
x⊤Σx the Mahalanobis norm. For two positive sequences {an} and {bn} with90

n = 1, 2, . . . , we write an = O(bn) if there exists an absolute constant C > 0 such that an ≤ Cbn91

holds for all n ≥ 1 and write an = Ω(bn) if there exists an absolute constant C > 0 such that92

an ≥ Cbn holds for all n ≥ 1. We use Õ(·) to further hide the polylogarithmic factors. We use 1{·}93

to denote the indicator function.94

2 Related Work95

Heteroscedastic Linear Bandits. For linear bandit problems, the worst-case regret has been widely96

studied (Auer, 2002; Dani et al., 2008; Li et al., 2010; Chu et al., 2011; Abbasi-Yadkori et al., 2011b;97

Li et al., 2019), achieving Õ(
√
K) bounds in the first K rounds. Recently, a series of works has98

considered heteroscedastic variants where noise distributions vary across rounds. Kirschner and99

Krause (2018) first formally proposed a linear bandit model with heteroscedastic noise, assuming100

σk-sub-Gaussian noise in round k ∈ [K]. Subsequently, (Zhou et al., 2021; Zhang et al., 2021; Kim101

et al., 2021; Zhou and Gu, 2022; Dai et al., 2022; Zhao et al., 2023; Jia et al., 2024) relaxed this to102

variance-based constraints where round k has variance σ2
k. Among these works, Zhou et al. (2021)103

and Zhou and Gu (2022) obtained near-optimal regret guarantees of Õ(d
√∑K

k=1 σ
2
k), but required104

knowledge of σk after observing the reward in round k. In contrast, Zhang et al. (2021); Kim et al.105

(2021) handled unknown variances with computationally inefficient algorithms, achieving a weaker106

Õ(poly(d)
√∑K

k=1 σ
2
k) bound. Recently, Zhao et al. (2023) improved upon these results with an107

efficient algorithm (SAVE) achieving the near-optimal Õ(d
√∑K

k=1 σ
2
k) bound without requiring108

variance knowledge. Beyond standard linear bandits, two directions have been explored. Dai et al.109

(2022) studied heteroscedastic sparse linear bandits, providing a framework to convert standard110

algorithms to the sparse setting. In a different direction, Jia et al. (2024) extended the analysis111

to contextual bandits with general function classes having finite eluder dimension, which includes112

linear bandits as a special case, and achieved a variance-dependent regret upper bounds.113

Lower Bounds for Linear Contextual Bandits. For linear contextual bandit problems, several114

works (Dani et al., 2008; Chu et al., 2011; Li et al., 2019) have established theoretical lower bounds115

to illustrate the fundamental difficulty in learning process. For linear bandits with finite action sets,116

Chu et al. (2011) established an Ω̃(
√
dK) lower bound, matching the upper bound up to logarithmic117

factors in the action set size and number of rounds K. For general stochastic linear bandits, Dani118

et al. (2008) constructed an instance with 2Ω(d) actions and obtained an Ω(d
√
K) lower bound.119

Later, Li et al. (2019) focused on linear contextual bandits, where the decision set can vary across120

rounds, and provided an Ω(d
√
K logK) lower bound. However, all these works only focus on121

worst-case regret bounds and do not consider the heteroscedastic variance information. The only122

exception is Jia et al. (2024), which provided an Ω(
√
dΛ) variance-dependent lower bound for a123

fixed total variance budget Λ. Nevertheless, this work cannot handle general variance sequences and124

leaves open the question of variance-dependent lower bounds in the general setting.125

3 Preliminaries126

In this work, we consider the heteroscedastic linear contextual bandit (Zhou et al., 2021; Zhang127

et al., 2021), where the noise variance varies across rounds. Let K be the total number of rounds. In128

each round k ∈ [K], the interaction between the learner and the environment proceeds as follows:129

1. The environment generates an arbitrary decision set Dk ⊆ Rd, where each element repre-130

sents a feasible action that can be selected by the learner;131

2. The learner observes Dk and selects xk ∈ Dk;132

3. The environment generates the stochastic noise ϵk and reveals the stochastic reward rk =133

⟨µ,xk⟩+ ϵk to the learner, where µ ∈ Rd is the unknown weight vector for the underlying134

linear reward function.135
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Without loss of generality, we assume the random noise ϵk in each round k satisfies:136

P(|ϵk| ≤ R) = 1, E[ϵk|x1:k, ϵ1:k−1] = 0, E[ϵ2k|x1:k, ϵ1:k−1] = σ2
k ≤ 1,∀k ∈ [K] (3.1)

For any algorithm Alg and linear bandit instance M, the cumulative regret is defined as follows:137

RegretAlg(K,M) =
∑

k∈[K]

⟨x∗
k,µ⟩ − ⟨xk,µ⟩, where x∗

k = argmax
x∈Dk

⟨x,µ⟩. (3.2)

For simplicity, we may omit the subscripts Alg and/or M when there is no ambiguity. Additionally,138

with a slight abuse of notation, we may use σk to represent the variance σ2
k (which is originally139

the standard deviation) when there is no ambiguity. In this work, we focus on providing variance-140

dependent lower bounds for the regret based on the variances sequence {σ1, ..., σK}. We consider141

two settings for the variance sequence {σ1, . . . , σK}:142

• Prefixed Sequence: The variance sequence is revealed to the learner at the beginning of143

the learning process.144

• Adaptive Sequence: An adversary (potentially collaborating with the learner) can generate145

the variance σk in each round k based on historical observations, with the learner receiving146

each variance at the beginning of the corresponding round. This setting can be further147

divided into two categories based on the power of the adversary:148

– Weak Adversary: The adversary must generate the variance σk before observing the149

decision set Dk.150

– Strong Adversary: The adversary can generate the variance σk after observing the151

decision set Dk.152

Remark 3.1. Unlike the typical adversarial setting focused on maximizing regret for a specific153

algorithm, our work uses the idea of an “adversary” to represent the environment’s inherent ability to154

select the variance sequence. This “adversary” might even strategically choose variance levels (σk)155

based on the past decision sets Dk observed so far, potentially leading to variance levels that could156

temporarily improve the learner’s performance or make the learning process appear easier. This157

seeming “cooperation,” however, is ultimately aimed at exploring the fundamental lower bounds on158

regret that must hold for any learner in any environment. The key is that the variance is chosen159

without direct knowledge of the true underlying patterns µ. When this “adversary” (our “strong160

adversary”) can adjust the variance based on the learner’s actions (Dk), this strategic “cooperation,”161

informed by past observations but blind to µ, becomes more effective in probing the true limits of162

learnability and challenging our lower bound results.163

4 Variance-Dependent Lower Bound with Prefixed Variance Sequence164

In this section, we consider the setting where the variance sequence {σ1, . . . , σK} is prefixed and165

fully revealed to the learner at the beginning of the learning process.166

4.1 Main Results167

We establish the following theorem for the variance-dependent lower bound.168

Theorem 4.1. For any dimension d > 1, prefixed sequence of variance {σ1, ..., σK} satisfying169 ∑K
k=1 σ

2
k ≥ 1+ 384d2 and algorithm Alg, there exists a hard linear contextual bandit instance such170

that each action a ∈ Dk in round k has variance bounded by σk. For this instance, the expected171

regret of algorithm Alg over K rounds is lower bounded by:172

E[Regret(K)
]
≥ Ω

(
d

√∑K
i=1 σ

2
k/(logK)

)
.

Remark 4.2. For a prefixed sequence {σ1, ..., σK}, Theorem 4.1 shows that any algorithm incurs a173

regret lower bounded of Ω̃(d
√∑K

k=1 σ
2
k), which matches the upper bound in Zhao et al. (2023) up174

to logarithmic factors. Compared to the lower bound in Jia et al. (2024), Theorem 4.1 focuses on175

the linear contextual bandit setting and achieves a
√
d improvement over the standard linear bandit176

setting. It is also worth noting that the lower bound in Jia et al. (2024) only considers instances with177

a fixed total variance
∑K

k=1 σ
2
k, constructed by using constant variance in the early rounds and zero178

variance in later rounds. In comparison, Theorem 4.1 applies to any fixed variance sequence and is179

more flexible.180
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In Theorem 4.1, we require that the total variance is no less than Ω(d2), which reduces to K ≥ Ω(d2)181

when all variances σk = 1. A similar requirement exists in standard linear bandits, since a trivial182

lower bound of Ω(K) always holds for any algorithm, and the lower bound of Ω(d
√
K) can only183

be achieved when K ≥ Ω(d2). Furthermore, for general sequences of variances with total variance184

smaller than O(d2), a large number of rounds K alone is not sufficient to establish the desired185

lower bound. The presence of early rounds with zero variance would increase the total number of186

rounds without affecting the fundamental complexity of the problem. This observation suggests that187

requiring total variance no less than Ω(d2) (or other equivalent conditions) may be necessary for188

establishing the lower bound.189

4.2 Proof of Theorem 4.1190

In this subsection, we prove the variance-dependent lower bound in Theorem 4.1. We first start191

with a fixed variance threshold σ, and construct a class of hard-to-learn instances where actions are192

chosen from a hypercube action set A = {−1, 1}d, and for any action a ∈ A, the reward follows a193

scaled Bernoulli distribution σ ·B(1/3+ ⟨µ,a⟩), where ∆ = 1/
√
96K and µ ∈ {−∆,∆}d. In this194

setting, the variance for each action is upper bounded by σ2, and these instances can be represented195

as a linear bandit problem with feature (σ, σ · a) and weight vector µ′ = (1/3,µ). Based on these196

hard-to-learn instances, we have the following variance-dependent lower bound for the regret:197

Lemma 4.3. For a fixed variance threshold σ and any bandit algorithm Alg, if the weight vector µ ∈198

{−∆,∆}d is uniformly random selected from {−∆,∆}d, the variance in each round is bounded by199

σ2, and the expected regret over K ≥ 1.5 · d2 rounds is lower bounded by:200

Eµ[Regret(K)] ≥ d
√
Kσ2/8

√
6.

Remark 4.4. Lemma 4.3 establishes a variance-dependent lower bound for the regret with a fixed201

variance threshold σ. When all variances are equal (σ1 = ... = σK = σ), this bound matches the202

upper bound in Zhao et al. (2023) up to logarithmic factors. In addition, under this fixed-variance203

setting, this lemma provides a tighter logarithmic dependency on the number of rounds K compared204

to Theorem 4.1, though it does not extend to dynamic variances.205

Now, for any prefixed variance sequence {σ1, ..., σK}, we divide the rounds into L = ⌈log2 K⌉+1206

different groups based on the range of their variance as follows:207

K0 = {k : σk ≤ 1/K},
Ki = {k : 2i−1/K < σk ≤ 2i/K}, for i = 1, . . . , L− 1.

For each group Ki with i ∈ [L − 1], we construct a bandit instance Mi with weight vector µi208

following Lemma 4.3, where:209

• the variance threshold is set to be σ(i) = 2i−1/K;210

• the number of rounds is Ki = |Ki|;211

• the dimension is di = d/L.212

For group K0, we construct a different type of instance M0: a d/L-armed bandit, where one ran-213

domly chosen arm gives constant reward 1 while all other arms give reward 0. Note that this instance214

in M0 can be equivalently represented as a d0 = d/L-dimensional linear bandit where actions are215

one-hot vectors ei.216

Based on these sub-instances, we create a combined linear bandit instance with dimension217

d0 + d1 + ... + dL−1 = d with weight vector µ = (µ0, ...,µL−1): At the beginning of218

each round k, if round k belongs to group Ki, then the learner receives the decision set Dk =219 {
(0d0

, ...,0di−1
,x,0di+1

, ...,0dL−1
) : x ∈ Ai

}
, where 0dj

corresponds to a zero vector with di-220

mension dj and Ai is the action set in the bandit instance Mi. Under this construction, for any round221

k ∈ Ki, the reward in the combined instance coincides with that of sub-instance Mi. Specifically,222

after the learner selects action x, they receive a reward drawn from a scaled Bernoulli distribution223

with variance upper bounded by σ2(i) =
(
2i−1/K

)2
for i ̸= 0, and variance 0 for i = 0. Note224

that in all groups, the variance is bounded by σ2
k. With this construction in hand, we now proceed to225

prove the lower bound in Theorem 4.1.226

Remark 4.5 (Linear Contextual Bandits vs. Stochastic Linear Bandits). In the proof of Theorem227

4.1, we heavily rely on assigning different decision sets to rounds in the contextual bandit envi-228

ronment. This approach, however, does not extend to stochastic linear bandit problems, where all229
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rounds share the same decision set. To see this limitation, consider any prefixed variance sequence230

with σ1 = · · · = σd = 0. In this case, the learner can select canonical basis of the decision set in231

the first d rounds. Since these rounds have zero variance, the learner learns the exact rewards for232

all actions in the decision set and incurs no regret in subsequent rounds, regardless of the values of233

σd+1, . . . , σK . Consequently, it is impossible to establish a lower bound of Ω̃(d
√∑K

k=1 σ
2
k) in this234

setting.235

Proof of Theorem 4.1. Due to the orthogonal construction of decision sets across different groups236

Ki, actions in group Ki provide no information about the weight vector µj for j ̸= i. Consequently,237

the total regret can be decomposed into the sum of regrets from each sub-instance. For each sub-238

instance Mi with i ̸= 0, the regret is lower bounded by:239

Eµi

[ ∑
k∈Ki

max
x∈Dk

⟨µi,x⟩ − ⟨µi,xk⟩
]
≥ I(Ki ≥ 1.5d2i ) ·

di
√
Kiσ2(i)

8
√
6

≥
di
√
Kiσ2(i)

8
√
6

−
di
√
1.5d2i · σ2(i)

8
√
6

≥
di

√∑
k∈Ki

σ2
k

16
√
6

− d2i · σ(i)
16

, (4.1)

where the first inequality follows from Lemma 4.3, the second inequality holds due to I(x ≥240

y)
√
x ≥

√
x−√

y, and the last inequality follows from the definition of group Ki.241

Taking a summation of (4.1) over all groups, the total regret can be lower bounded as follows:242

Eµ[Regret(K)] =

L−1∑
i=0

Eµi

[ ∑
k∈Ki

max
x∈Dk

⟨µi,x⟩ − ⟨µi,xk⟩
]

≥
L−1∑
i=1

di

√∑
k∈Ki

σ2
k

16
√
6

− d2i · σ(i)
16

≥
L−1∑
i=1

d
√∑

k∈Ki
σ2
k

16
√
6L

− d2

4L2

≥
d
√∑L−1

i=1

∑
k∈Ki

σ2
k

16
√
6L

− d2

4L2
, (4.2)

where the first inequality follows from (4.1), the second inequality follows from the definition of243

variance threshold σ(i) and dimension di = d/L, and the last inequality holds due to
∑

i

√
xi ≥244 √∑

i xi. In addition, for the group K0, we have245 ∑
k∈K0

σ2
k ≤

∑
k∈K0

1/K ≤ 1, (4.3)

where the first inequality follows from the definition of group K0 and the second inequality follows246

from |K0| ≤ K. Therefore, we have247

Eµ[Regret(K)] ≥
d
√∑L−1

i=1

∑
k∈Ki

σ2
k

16
√
6L

− d2

4L2

≥
d
√∑K

k=1 σ
2
k − 1

16
√
6L

− d2

4L2

≥
d
√∑K

k=1 σ
2
k − 1

32
√
6L

,

where the first inequality follows from (4.2), the second inequality follows from (4.3), and the last248

inequality follows from the fact that
∑K

k=1 σ
2
k ≥ 1 + 384d2. Thus, we complete the proof of249

Theorem 4.1.250
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5 Variance-Dependent Lower Bounds with Adaptive Variance Sequence251

In the previous section, we focused on the setting where the variance sequence is prefixed and252

revealed to the learner at the beginning of the learning process. In this section, we extend our253

analysis to the setting where the variance sequence can be adaptive based on historical observations,254

with the learner receiving the adaptive variance at the beginning of each round.255

5.1 Main Results256

5.1.1 Weak Adversary257

We first describe the learning process and the mechanism of variance adaptation. In detail, the258

adaptive variance process proceeds as follows:259

1. At the beginning of each round k, a (weak) adversary selects the variance level σk based on260

the historical observations, including actions {a1, . . . , ak−1}, rewards {r1, . . . , rk−1}, and261

decision sets {D1,D2, . . . ,Dk−1}. The adversary has access to all historical information262

but not to the underlying reward model parameters;263

2. Given the selected variance level σk, we construct and assign a decision set Dk to the264

learner, where the variance of the reward for each action a ∈ Dk is bounded by σ2
k;265

3. The learner observes the decision set Dk and variance level σk, then determines an action266

ak from Dk based on its historical observations and current information. After selecting267

the action, the learner receives a reward rk with variance bounded by σ2
k.268

Remark 5.1. It is worth noting that our concept of adversary differs from the weak/strong adversary269

in Jia et al. (2024). Specifically, Jia et al. (2024) considers an adversary that attempts to hinder the270

learner’s learning by allocating a fixed total variance budget
∑K

k=1 σ
2
k ≤ Λ across rounds to max-271

imize regret. In contrast, our work considers an adversary that attempts to break the lower bounds272

themselves by collaborating with the learner. To prevent such exploitation, we must restrict the ad-273

versary from knowing the weight vector of the underlying reward model. Without this restriction,274

the adversary could encode each entry µi of the weight vector µ through the corresponding variance275

σi = µi, allowing the learner to learn the weight vector after d rounds.276

Under this setting, we establish the following theorem for the variance-dependent lower bound.277

Theorem 5.2 (Weak Adversary). For any dimension d > 1, adaptive sequence of variances278

{σ1, . . . , σK} and algorithm Alg, there exists a hard instance such that each action a ∈ Dk in279

round k has variance bounded by σ2
k. For this instance, if

∑K
k=1 σ

2
k ≥ Ω(d2), then with probability280

at least 1− 1/K, the regret of algorithm Alg over K rounds is lower bounded by:281

Regret(K) ≥ Ω
(
d

√∑K
k=1 σ

2
k/ log

6(dK)
)
.

Remark 5.3. Theorem 5.2 provides a high-probability lower bound of Ω̃
(
d
√∑K

k=1 σ
2
k

)
, which282

matches the upper bound in Zhao et al. (2023) up to logarithmic factors, albeit with looser logarith-283

mic dependencies than Theorem 4.1 due to the adaptive nature of the variance sequence. Unlike284

the expected lower bound in Theorem 4.1, for adaptive variance sequences, the cumulative variance285 ∑K
k=1 σ

2
k depends on the random process and observations. This dependence makes it challenging to286

establish an expected variance-dependent regret bound - a fundamental difficulty that does not arise287

for standard d
√
K-type lower bounds in linear contextual bandits. To the best of our knowledge, our288

result provides the first high-probability lower bound for linear contextual bandit.289

5.1.2 Strong Adversary290

In Theorem 5.2, we require that for each round k ∈ [K], all actions x ∈ Dk share the same adaptive291

variance σk. This is more restrictive than the setting in Zhao et al. (2023), where the variance can292

differ across actions x ∈ Dk. However, extending our lower bound to action-dependent variances293

is not possible in the adaptive setting. This limitation arises because we construct the decision294

set Dk after the adversary chooses the variance σk, which prevents assigning specific variances to295

individual actions x ∈ Dk. Moreover, we now consider a strong adversary that can choose σk296

after observing the decision set Dk. The interaction between the learner and this strong adversary297

proceeds as follows:298

1. At the beginning of each round k, we construct and assign a decision set Dk based on299

historical observations, including actions {a1, . . . , ak−1} and rewards {r1, . . . , rk−1};300

7



2. Given the decision set Dk in round k, the strong adversary selects the variance level σk for301

round k. The adversary has access to all historical information but not to the underlying302

reward model parameters;303

3. The learner observes the decision set Dk and variance level σk, then determines an action304

ak from Dk based on its historical observations and current information. After selecting305

the action, the learner receives a reward rk with variance bounded by σ2
k.306

The following theorem shows that under this setting, the adversary could cooperate with the learner307

to break the lower bound.308

Theorem 5.4 (Strong Adversary). For any linear contextual bandit problem and number of rounds309

K ≥ 2d, if we first provide the decision set Dk and then allow an adversary to choose the variance310

σk based on the decision set Dk, there exists one such type of adversary such that, there exists an311

algorithm whose regret in the first K rounds is upper bounded by Regret(K) ≤ d, where the total312

variance
∑K

k=1 σ
2
k ≥ K/2.313

Remark 5.5. Theorem 5.4 highlights why Theorem 5.2 requires a weak adversary that set the vari-314

ance sequence before seeing the learner’s choices. If the adversary could see the decision set first, it315

could potentially choose variances that would invalidate our lower bound. This finding underscores316

that our construction is precise and pinpoints the exact condition under which the derived lower317

bound holds.318

Remark 5.6. It is worth noting that Jia et al. (2024) also considered the case where the adver-319

sary assigns variances to actions after observing the decision set and action choice, and provided320

a variance-dependent lower bound. However, their analysis focuses on an adversary that allocates321

variance across rounds to maximize the regret. In contrast, our work considers an adversary that322

attempts to break these bounds, making it more challenging to establish lower bounds for general323

variance sequences. It is also worth noting that if the adversary’s goal is to increase regret, choosing324

a prefixed sequence is a viable strategy. This case is already covered by our Theorem 4.1 for prefixed325

sequences, which provides a tighter lower bound than Theorem 5.2.326

Theorem 5.4 suggests that it is impossible to derive a variance-dependent lower bound if the ad-327

versary can determine the variance σk after observing the decision set Dk, which further precludes328

establishing a lower bound when the adversary has the ability to assign action-dependent variances329

for each action x ∈ Dk after observing the decision set Dk. This result naturally extends to stochas-330

tic linear bandit problems, where the decision set D remains fixed across all rounds. In this case,331

since the adversary knows the decision set Dk = D in advance, Theorem 5.4 directly implies:332

Corollary 5.7. For any stochastic linear bandit problem with fixed decision set D and number of333

rounds K ≥ 2d, there exists a prefixed sequence {σ1, . . . , σK} such that there exists an algorithm334

whose regret in the first K rounds is upper bounded by: RegretAlg(K) ≤ d, where the total variance335 ∑K
k=1 σ

2
k ≥ K/2.336

5.2 Proof Sketch of Theorem 5.2337

In this section, we provide the proof sketch of Theorem 5.2. Overall, the proof follows a similar338

structure as Theorem 4.1, where we divide the rounds into several groups based on their variance339

magnitude and create hard instances for each group. The key idea is to calculate individual regret340

bounds for each group and combine them for the final lower bound. However, there exist several341

challenges when dealing with adaptive variance sequences that require careful handling.342

Varying Size of Groups Ki As discussed in Section 4.2, for each group Ki, we create individ-343

ual instance Mi with fixed variance threshold σ(i) = 2i−1/K and establish a lower bound of344

Ω̃(di
√

σ2(i)|Ki|) on the expected regret. However, the construction of such instances relies on345

prior knowledge of the number of rounds |Ki|, which can be calculated at the beginning for a pre-346

fixed variance sequence {σ1, . . . , σK}. In contrast, for general adaptive variance sequences, the347

number of rounds |Ki| is not known a priori and can even be a random variable, which creates a348

barrier in constructing these instances.349

To address the unknown number of rounds |Ki|, instead of constructing a single instance Mi for350

each group, we create L instances Mi,j , where L = ⌈log2 K⌉+ 1. Each instance Mi,j is designed351

for a specific range of round numbers, specifically Mi,j for 2j−1 ≤ |Ki| < 2j .352

For each round k in group Ki, the learner receives a decision set Di from one of the instances in353

{Mi,1, . . . ,Mi,L} in a cyclic manner. Through this sequential assignment, the number of visits to354

each instance Mi,j is |Ki|/L. Consequently, we expect that the instance Mi,j corresponding to the355
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true range 2j−1 ≤ |Ki| < 2j provides a lower bound of Ω̃(di
√

σ2(i)|Ki|) = Ω̃(di
√
σ2(i) · 2j),356

which leads to the final lower bound of Ω̃(d
√∑K

k=1 σ
2
k).357

Converting Expected Lower Bound to High-Probability Lower Bound. Another challenge is358

establishing the lower bound for the triggered instance Mi,j corresponding to the true range 2j−1 ≤359

|Ki| < 2j . Traditional analysis of lower bounds in linear contextual bandits has focused on the360

expected regret. However, when dealing with adaptive variance sequences, this approach becomes361

insufficient as the adversary can dynamically adjust the variance sequence to break these bounds.362

For instance, an adversary might continuously set σk = 1 until the lower bound of Ω̃(d
√∑k

i=1 σ
2
i )363

is violated at some round k, then switch to σk = 0 for all future rounds, causing the total variance364

sum
∑K

k=1 σ
2
k to remain unchanged. In our construction, this means all rounds could fall into group365

KL, allowing the adversary to adaptively change the number of rounds between different intervals366

2j−1 ≤ |KL| < 2j . Since the failure of the lower bound in any single instance ML,j leads to failure367

of the whole construction, an expected lower bound on regret cannot guarantee robust performance368

against adaptive sequences. This necessitates a stronger high-probability lower bound that holds369

uniformly for all instances.370

Unfortunately, an expectation of Ω̃(di
√

σ2(i)2j) in instance Mi,j only implies a low-probability371

regret
(
Regret ≥ Ω̃(di

√
σ2(i)2j)

)
≥ di ·2−j/2, since the cumulative regret in Ki can be up to σ(i)·372

|Ki| in our instance. To solve this problem, we introduce an auxiliary algorithm that automatically373

detects the cumulative regret and switches to the standard OFUL algorithm (Abbasi-Yadkori et al.,374

2011a) if the cumulative regret is larger than Ω(di
√
σ2(i)2j).1 For this auxiliary algorithm, we can375

guarantee that the upper bound is at most Ω̃(di
√

σ2(i)2j) while maintaining the same probability of376

high regret as the original algorithm. Therefore, an expectation of Ω̃(di
√
σ2(i)2j) in instance Mi,j377

implies a constant-probability regret P
(
Regret ≥ Ω̃(di

√
σ2(i)2j)

)
= Ω(1).378

After constructing an instance with constant-probability lower bound, we boost this probability by379

creating Ω
(
log2(dK)

)
independent instances. When the learner encounters instance Mi,j , it is380

assigned to one of these instances in a cyclic manner. Through this construction, with probability at381

least 1− 1/poly(K), the final regret is lower bounded by Regret ≥ Ω̃(di
√
σ2(i)2j).382

Remark 5.8. Unlike previous lower bounds for linear bandit problems which focus on expected383

regret, to the best of our knowledge, our result provides the first high-probability lower bound for384

linear contextual bandits. It is worth noting that our construction requires separate decision sets385

across different rounds in the random assignment process. For stochastic linear bandits with a fixed386

decision set, we can only derive a constant-probability lower bound. Moreover, for a fixed decision387

set in stochastic linear bandit problem with covering number logN ≤ Õ(d), an algorithm can388

randomly select one action from the covering set and perform this action in all rounds. In this case,389

there exists a probability of 1/N = 1/ exp(d) to achieve zero regret, which precludes the possibility390

of establishing high-probability lower bounds for large round numbers K. More details about the391

high-probability lower bound can be found in Section 5.2.392

6 Conclusion and Future Work393

In this paper, we study variance-dependent lower bounds for linear contextual bandits in different394

settings. For both prefixed and adaptive variance sequences with weak adversary, we establish tight395

lower bounds matching the upper bounds in Zhao et al. (2023) up to logarithmic factors. We further396

demonstrate a fundamental limitation: when a strong adversary can select variances after observ-397

ing decision sets, it becomes impossible to establish meaningful variance-dependent lower bounds.398

However, our work has focused exclusively on linear bandit settings, while Jia et al. (2024) has399

established variance-dependent lower bounds for general function approximation with a fixed total400

variance budget Λ. Therefore, we leave for future work the generalization of our analysis of general401

variance sequence to contextual bandits with general function approximation.402

1In general settings, detecting cumulative regret is impossible as the learner lacks prior knowledge of the
optimal reward and variance. However, in our lower bound construction, all instances are randomly selected
from instance classes sharing the same optimal reward and variance, which are known to the learner. This
knowledge enables the construction of the auxiliary algorithm.
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A Proof of Theorem 5.2445

In this section, we prove the variance-dependent lower bound for adaptive variance sequences es-446

tablished in Theorem 5.2. We begin with the instance construction from Lemma 4.3 and establish447

the following constant-probability lower bound for the regret:448

Lemma A.1. For a fixed variance threshold σ, number of rounds K ≥ 1.5d2, and any bandit449

algorithm Alg, for the instance constructed in Lemma 4.3, with probability at least Ω
(
1/ log(dK)

)
,450

the regret is lower bounded by451

Regret(K) ≥ d
√
Kσ2

16
√
6

.

Based on the constant-probability lower bound, we boost this probability by creating L =452

Ω
(
log2(dK)

)
independent instances with dimension d′ = d/L and number of rounds K ′ = K/L,453

where each instance follows the structure in Lemma 4.3 with i.i.d. sampled weight vectors. Un-454

der this construction, the total dimension of all instances is d, which can be represented as a d-455

dimensional linear contextual bandit through orthogonal embedding, similar to our previous con-456

struction: for instance i, we augment its actions by padding zeros in dimensions reserved for other457

instances, ensuring actions from different instances only interact with their corresponding param-458

eters. Here, we consider the case where the learner visits the instances in a cyclic manner and459

establish the following high-probability regret lower bound for the constructed instance:460

Lemma A.2. For a fixed variance threshold σ, number of rounds K ≥ 1.5d2, and any bandit461

algorithm Alg, with probability at least Ω
(
1/ log(dK)

)
, the regret is lower bounded by462

Regret(K) ≥ Ω
(
d
√
Kσ2/ log3(dK)

)
.

With the help of this high-probability lower regret bound from Lemma A.2, we begin the proof463

of Theorem 5.2. Following a similar framework to the fixed-variance case, we first divide the464

rounds into groups based on their variance magnitude. Specifically, for any variance sequence465

{σ1, . . . , σK}, we partition the rounds into L = ⌈log2 K⌉+ 1 groups as follows:466

K0 = {k : σk ≤ 1/K},
Ki = {k : 2i−1/K < σk ≤ 2i/K}, for i = 1, . . . , L− 1.

To address the unknown number of rounds Ki = |Ki|, instead of constructing a single instance467

Mi for each group, we create L instances Mi,j , where L = ⌈log2 K⌉ + 1. Each instance Mi,j468

is constructed according to Lemma A.2 with dimension d′ = d/L2, variance σ(i) = 2i−1/K and469

number of rounds K ′ = 2j−1. For each round k in group Ki, the learner receives a decision set Di470

from one of the instances in {Mi,1, . . . ,Mi,L} in a cyclic manner.471

Proof of Theorem 5.2. According to Lemma A.2, for each instance Mi,j , with probability at least472

1− 1/K3, the regret in the first 2j−1 visits is lower bounded by473

Regret(2j−1,Mi,j) ≥ I(2j−1 ≥ 1.5d′2) · Ω
(
d′
√
2j−1σ2(i)/ log3(d′K ′)

)
, (A.1)

where the indicator reflects the requirement that K ′ = 2j−1 ≥ 1.5d′2. For simplicity, we define E474

as the event that (A.1) holds for all instances Mi,j . By union bound, we have P(E) ≥ 1− 1/K.475

Conditioned on event E , for an adaptive sequence and each corresponding group Ki, due to the476

cyclic visiting pattern, each instance Mi,j is visited |Ki|/L times. There exists an instance Mi,j477

with matching interval for the round number, i.e., 2j−1 ≤ |Ki|/L ≤ 2j . Therefore, we have478 ∑
k∈Ki

max
x∈Dk

⟨µi,x⟩ − ⟨µi,xk⟩

≥ Regret(2j−1,Mi,j)

≥ I(2j−1 ≥ 1.5d′2) · Ω
(
d
√

2j−1σ2(i)/ log3(d′K ′)
)

≥ I(Ki ≥ 3d′2L) · Ω
(
d
√
Kiσ2(i)/ log4(dK)

)
≥ Ω

(
d′
√
Kiσ2(i)/ log3(dK)− d′

√
3d′2Lσ2(i)/ log4(dK)

)
11



≥ Ω

(
d′
√∑

k∈Ki

σ2
k/ log

4(dK)−
√
3Ld′2 · σ(i)/ log4(dK)

)
, (A.2)

where the first inequality follows from 2j−1 ≤ |Ki|/L ≤ 2j , the second inequality holds by the479

definition of event E , the third inequality follows from 2j−1 ≤ |Ki|/L ≤ 2j , the fourth inequality480

holds due to I(x ≥ y)
√
x ≥

√
x −√

y, and the last inequality follows from the definition of group481

Ki.482

Taking a summation of (A.2) over all groups, the total regret can be lower bounded as follows:483

Regret(K)

=

L−1∑
i=0

∑
k∈Ki

max
x∈Dk

⟨µi,x⟩ − ⟨µi,xk⟩

≥
L−1∑
i=1

Ω

(
d′
√∑

k∈Ki

σ2
k/ log

4(dK)−
√
3Ld′2 · σ(i)/ log4(dK)

)

≥ Ω

( L−1∑
i=1

d/L2 ·
√∑

k∈Ki

σ2
k/ log

4(dK)− 2
√
3Ld2/(L4 log4(dK))

)

≥ Ω

(
d/L2 ·

√√√√L−1∑
i=1

∑
k∈Ki

σ2
k/ log

4(dK)− 2
√
3Ld2/(L4 log4(dK))

)
, (A.3)

where the first inequality follows from (A.2), the second inequality follows from the definition of484

variance threshold σ(i) and dimension d′ = d/L2, and the last inequality holds due to
∑

i

√
xi ≥485 √∑

i xi. In addition, for the group K0, we have486 ∑
k∈K0

σ2
k ≤

∑
k∈K0

1/K ≤ 1, (A.4)

where the first inequality follows from the definition of group K0 and the second inequality follows487

from |K0| ≤ K. Therefore, we have488

Regret(K)

≥ Ω

(
d/L2 ·

√√√√L−1∑
i=1

∑
k∈Ki

σ2
k/ log

4(dK)− 2
√
3Ld2/(L4 log4(dK))

)

≥ Ω

(
d/L2 ·

√√√√L−1∑
i=1

∑
k∈Ki

σ2
k − 1/ log4(dK)− 2

√
3Ld2/(L4 log4(dK))

)

≥ Ω

(
d ·

√√√√L−1∑
i=1

∑
k∈Ki

σ2
k/ log

6(dK)

)
,

where the first inequality follows from (A.3), the second inequality follows from (A.4), and the last489

inequality follows from the fact that
∑K

k=1 σ
2
k ≥ Ω(d2). Thus, we complete the proof of Theorem490

5.2.491

B Proof of Theorem 5.4492

In this subsection, we provide the proof of Theorem 5.4. We begin by describing a simple algorithm:493

1. The learner maintains an explored action set A, which is initialized as empty.494

2. For each decision set Dk in round k, if there exists an action xk not in the spanning space495

of the explored action set A, the learner:496

• Selects an action xk and receives reward rk;497

• Updates the explored set: A = A ∪ {(xk, rk)}.498
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3. Otherwise, when all actions lie in the spanning space of A, the learner:499

• Estimates the reward for each action through linear combinations of (x, r) ∈ A;500

• Selects the action with maximum estimated reward.501

It is worth noting that this algorithm assumes the received rewards rk have no noise to provide502

accurate estimates in step 3. While this assumption does not hold in general, when an adversary can503

choose the variance σk based on the decision set Dk, they can cooperate with the learner by setting:504

• σk = 0 when step 2 is triggered (exploration);505

• σk = 1 when step 3 is triggered (exploitation).506

For a d-dimensional linear bandit problem, the explored action set satisfies |A| ≤ d. This implies507

the learner performs at most d exploration steps with zero variance, while all remaining steps have508

variance one. Under this construction, the regret in the first K rounds is upper bounded by:509

RegretAlg(K) ≤ d,

where the total variance
∑K

k=1 σ
2
k = K−d ≥ K/2 (since K ≥ 2d). Thus, through this cooperation510

between the adversary and learner, the Ω̃(d
√∑K

k=1 σ
2
k) lower bound is broken, completing the511

proof of Theorem 5.4.512

C Proof of Key Lemmas513

C.1 Proof of Lemma 4.3514

In this subsection, we provide the proof of Lemma 4.3. When the variance threshold σ = 1, our515

construction reduces to the standard lower bound instances for linear contextual bandits (Zhou et al.,516

2021). Specifically, when the number of rounds K satisfying K ≥ 1.5 · d2, Zhou et al. (2021)517

provided the following variance-independent lower bound for these hard instances:518

Lemma C.1 (Lemma C.8, Zhou et al. 2021). For any bandit algorithm Alg, if the weight vector519

µ ∈ {−∆,∆}d is drawn uniformly at random from {−∆,∆}d, then the expected regret over K520

rounds is lower bounded by:521

Eµ[Regret(K)] ≥ d
√
K

8
√
6
.

With the help of Lemma C.1, we start the proof of Lemma 4.3.522

Proof of Lemma 4.3. For any algorithm Alg for linear contextual bandit with fixed variance thresh-523

old σ, we construct an auxiliary algorithm Alg1 to solve the standard linear contextual bandit prob-524

lem:525

• At the beginning of each round k ∈ K, Alg1 observes the decision set Dk and sends it to526

Alg;527

• Alg selects action ak ∈ Dk based on the historical observations and delivers it to Alg1;528

• Alg1 performs the action ak, receives the reward rk and sends the normalized reward σ · rk529

to Alg.530

Now, we consider the performance of auxiliary algorithm Alg1 for the standard linear contextual531

bandit problem. It is worth noticing that the reward/noise in bandit instances for algorithm Alg1 and532

algorithm Alg only differ by a scalar factor σ, therefore for each instance, we have533

E[RegretAlg(K)] = σ · E[RegretAlg1(K)]. (C.1)

If we randomly select a weight parameter vector µ ∈ {−∆,∆}d, then according to Lemma C.1, the534

regret for Alg is lower bounded by535

Eµ[RegretAlg(K)] = σ · Eµ[RegretAlg1(K)] ≥ σ · d
√
K

8
√
6

=
d
√
Kσ2

8
√
6

,

where the equation holds due to (C.1) and the inequality holds due to Lemma C.1. Thus, we com-536

plete the proof of Lemma 4.3.537
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C.2 Proof of Lemma A.1538

In this subsection, we provide the proof of Lemma A.1. We begin by recalling the OFUL algorithm539

in Abbasi-Yadkori et al. (2011a) and its corresponding upper bound for the regret:540

Lemma C.2 (Theorem 3 in Abbasi-Yadkori et al. 2011a). For any linear contextual bandit problem,541

with probability at least 1− δ, the regret for OFUL algorithm in the first K rounds is upper bounded542

by Regret(K) ≤ Õ
(
d
√

K log(dK/δ)
)
.543

It is worth noting that the reward/noise in the instance construction from Lemma 4.3 only differs by544

a scalar factor σ from the standard bandit. Therefore, as discussed in Section C.1, the regret in these545

two cases also only differs by a scalar factor σ. This leads to the following corollary:546

Corollary C.3. For the instance construction from Lemma 4.3, there exists a constant C such that547

with probability at least 1− δ, the regret for OFUL algorithm in the first K rounds is upper bounded548

by Regret(K) ≤ Cd
√

Kσ2 log(dK/δ).549

With the help of Corollary C.3, we can begin the proof of Lemma A.1.550

Proof of Lemma A.1. For any algorithm Alg, we construct an auxiliary algorithm Alg1 as follows:551

• At the beginning of each round k ∈ [K], Alg1 observes the decision set Dk and sends it to552

Alg;553

• Alg selects action ak ∈ Dk based on the historical observations and delivers it to Alg1;554

• Alg1 performs the action ak and receives the reward rk;555

• Alg1 calculates the pseudo regret as:556

Regret′(k) =

k∑
i=1

1

3
+

d√
96K

− rk.

If the pseudo regret is larger than d
√
Kσ2/(8

√
6) + σ

√
2K log(2K/δ), Alg1 removes all557

previous information and performs the OFUL algorithm in all future rounds.558

Based on the construction of the instances, whatever the weight vector µ is, the optimal action559

is to select an action in the same direction as the weight vector, obtaining an expected reward of560

1/3 + d/
√
96K. Under this scenario, with probability at least 1 − δ, for any round k ∈ [K], the561

difference between pseudo regret Regret′(k) and true regret Regret(k) can be upper bounded by562 ∣∣Regret(k)− Regret′(k)
∣∣ = ∣∣ k∑

i=1

ϵi
∣∣ ≤ σ

√
2K log(2K/δ), (C.2)

where the inequality holds due to Lemma D.1 with the fact that the noise satisfies563

E[ϵk|a1:k, r1:k−1] = 0 and |ϵk| ≤ σ. Thus, according to the criterion of auxiliary algorithm564

Alg1, with probability at least 1 − δ, the regret of Alg1 before transitioning to OFUL is up to565

d
√
Kσ2/(8

√
6) + 2σ

√
2K log(2K/δ). On the other hand, for the stage after transitioning to566

OFUL, Corollary C.3 suggests that with probability at least 1 − δ, the regret is no more than567

Cd
√
Kσ2 log(dK/δ). Therefore, with a selection of δ = 1/K, we have568

P
[
RegretAlg1

(K) ≥ Cd
√

Kσ2 log(dK2) + d
√
Kσ2/(8

√
6) + 2σ

√
2K log(2K2)

]
≤ 2/K.

(C.3)

For simplicity, let R = Cd
√

Kσ2 log(dK2) + d
√
Kσ2/(8

√
6) + 2σ

√
2K log(2K2) and we have569

Eµ[RegretAlg1
(K)]

≤ P
[
RegretAlg1

(K) ≥ R
]
·Kσ + P

[
RegretAlg1

(K) ≥ d
√
Kσ2/(16

√
6)
]
·R

+ P
[
RegretAlg1

(K) ≥ 0
]
· d

√
Kσ2/(16

√
6)

≤ 2σ + P
[
RegretAlg1

(K) ≥ d
√
Kσ2/(16

√
6)
]
· Õ(d

√
Kσ2 log(dK)) + d

√
Kσ2/(16

√
6),

where the first inequality holds due to E[X] ≤ P(X ≥ x1) ·R+ P(X ≥ x2) · x1 + P(X ≥ 0) · x2570

for 0 ≤ X ≤ R and x1 > x2 > 0, and the second inequality holds due to (C.3). Combining this571

result with the lower bound of expected regret in Lemma 4.1, we have572

d
√
Kσ2/(8

√
6) ≥ 2σ + P

[
RegretAlg1

(K) ≥ d
√
Kσ2/(16

√
6)
]
· Õ(d

√
Kσ2 log(dK))
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+ d
√
Kσ2/(16

√
6),

which implies that573

P
[
RegretAlg1

(K) ≥ d
√
Kσ2/(16

√
6)
]
≥ Ω(1/ log(dK)). (C.4)

In addition, according to the criterion of auxiliary algorithm Alg1 with (C.2), with probability at574

least 1 − δ = 1 − 1/K, Alg1 will not switch to the OFUL algorithm until the cumulative regret is575

larger than d
√
Kσ2/(8

√
6), which implies that576

P
[
RegretAlg(K) ≥ d

√
Kσ2/(16

√
6)
]
≥ P

[
RegretAlg1

(K) ≥ d
√
Kσ2/(16

√
6)
]
− 1/K

= Ω(1/ log(dK)).

Thus, we complete the proof of Lemma A.1.577

C.3 Proof of Lemma A.2578

In this subsection, we provide the proof of Lemma A.2.579

Proof of Lemma A.2. Since the learner visits the instances in a cyclic manner, over all K rounds,580

each instance Mi (i = 1, 2, . . . , L) is visited K ′ = K/L times. As actions from different instances581

only interact with their corresponding parameters, according to Lemma A.1, for each instance Mi,582

with probability at least Ω
(
1/ log(dK)

)
, the regret is lower bounded by583

Regret(K ′,Mi) ≥
d′
√
K ′σ2

16
√
6

=
d
√
Kσ2

16
√
6 · L1.5

.

Note that the weight vectors for each instance are independently sampled, hence the probability that584

at least one instance has regret no less than d
√
Kσ2/16

√
6 · L1.5 is at least585

1−
(
1− Ω

(
1/ log(dK)

))L

≥ 1− 1/K3Qingyue: ???

Under this condition, the total regret can be lower bounded as:586

Regret(K) =

L∑
i=1

Regret(K ′,Mi) ≥
d
√
Kσ2

16
√
6 · L0.5

. (C.5)

Thus, we obtain a high-probability lower bound and complete the proof of Lemma A.2.587

D Auxiliary Lemmas588

Lemma D.1 (Azuma–Hoeffding inequality, Cesa-Bianchi and Lugosi 2006). Let {ηk}Kk=1 be a mar-589

tingale difference sequence with respect to a filtration {Gk} satisfying |ηk| ≤ R for some constant590

R, ηk is Gk+1-measurable, E
[
ηk|Gk

]
= 0. Then for any 0 < δ < 1, with high probability at least591

1− δ, we have592

K∑
k=1

ηk ≤ R
√

2K log(1/δ).
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Justification: The paper does not include experiments.665

Guidelines:666

• The answer NA means that the paper does not include experiments.667
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taken to make their results reproducible or verifiable.672
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For example, if the contribution is a novel architecture, describing the architecture674

fully might suffice, or if the contribution is a specific model and empirical evaluation,675
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the same dataset, or provide access to the model. In general. releasing code and data677
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that are appropriate to the research performed.681
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how to reproduce that algorithm.686
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the architecture clearly and fully.688
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produce the model (e.g., with an open-source dataset or instructions for how to691
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to have some path to reproducing or verifying the results.697

5. Open access to data and code698

17



Question: Does the paper provide open access to the data and code, with sufficient instruc-699

tions to faithfully reproduce the main experimental results, as described in supplemental700

material?701

Answer: [NA]702

Justification: The paper does not include experiments.703

Guidelines:704

• The answer NA means that paper does not include experiments requiring code.705

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/706

public/guides/CodeSubmissionPolicy) for more details.707

• While we encourage the release of code and data, we understand that this might not708

be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not709

including code, unless this is central to the contribution (e.g., for a new open-source710

benchmark).711

• The instructions should contain the exact command and environment needed to run to712

reproduce the results. See the NeurIPS code and data submission guidelines (https:713

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.714

• The authors should provide instructions on data access and preparation, including how715

to access the raw data, preprocessed data, intermediate data, and generated data, etc.716

• The authors should provide scripts to reproduce all experimental results for the new717

proposed method and baselines. If only a subset of experiments are reproducible, they718

should state which ones are omitted from the script and why.719
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• The paper should provide the amount of compute required for each of the individual772
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