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Abstract

Variance-dependent regret bounds for linear contextual bandits, which improve

upon the classical O(dv/K) regret bound to O(dy/ Zle 07), where d is the con-

text dimension, K is the number of rounds, and a,% is the noise variance in round
k, has been widely studied in recent years. However, most existing works focus
on the regret upper bounds instead of lower bounds. To our knowledge, the only
lower bound is from Jia et al.| (2024), which proved that for any eluder dimen-
sion dgp, and total variance budget A, there exists an instance with Zle a,% <A
for which any algorithm incurs a variance-dependent lower bound of Q(y/deu /).
However, this lower bound has a v/d gap with existing upper bounds. More-
over, it only considers a fixed total variance budget A and does not apply to a
general variance sequence {07, ...,0%}. In this paper, to overcome the limita-
tions of Jia et al.| (2024), we consider the general variance sequence under two
settings. For a prefixed sequence, where the entire variance sequence is revealed
to the learner at the beginning of the learning process, we establish a variance-

dependent lower bound of Q(d+/ Zle 0% /log K) for linear contextual bandits.

For an adaptive sequence, where an adversary can generate the variance o7 in
each round k based on historical observations, we show that when the adversary
must generate o; before observing the decision set Dy, a similar lower bound

of Q(dy/ Zszl 02/log®(dK)) holds. In both settings, our results match the up-
per bounds of the SAVE algorithm (Zhao et al.| 2023) up to logarithmic factors.
Furthermore, if the adversary can generate the variance oy after observing the
decision set Dy, we construct a counter-example showing that it is impossible
to construct a variance-dependent lower bound if the adversary properly selects
variances in collaboration with the learner. Our lower bound proofs use a novel
peeling technique that groups rounds by variance magnitude. For each group,
we construct separate instances and assign the learner distinct decision sets. We
believe this proof technique may be of independent interest.

1 Introduction

We consider the linear contextual bandit problem, where each arm is represented by a feature vector
and the expected reward is a linear function of this feature vector with an unknown parameter vector.
Numerous studies have developed algorithms achieving optimal regret bounds for linear bandits
(Chu et al.l 2011 |[Abbasi-Yadkori et al., |2011a). However, while these works establish minimax-
optimal regret bounds in the worst-case, they do not exploit additional problem-dependent structures.
Our work focuses on incorporating reward variance information into the analysis, building upon a
line of research studying variance-dependent regret bounds for linear bandits (Zhou et al.| 2021}
Zhang et al., |2021; Zhou and Gu, 2022; [Zhao et al., 2022; [Kim et al., 2022; [Zhao et al., 2023)
and general function approximation (Jia et al., |2024), which includes linear bandits as a special
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case. Notably,|Zhao et al.| (2023) established a near-optimal regret guarantee without requiring prior
knowledge of the variances:

Theorem 1.1 (Theorem 2.3, Zhao et al.[2023). For any linear contextual bandit problem, the regret
of the SAVE algorithm in the first & rounds is upper bounded by:

Regret(K) < 5(d\/ S o+ d),

where d is the dimension and ai is the noise variance of the selected action in round k.

However, most of these works have focused on developing algorithms with regret upper bound
guarantees, while variance-dependent lower bounds remain understudied. The only exception is
Jia et al.| (2024), which focuses on general function classes with finite eluder dimension dg, and
provides the following variance-dependent lower bound:

Theorem 1.2 (Theorem 5.1, Jia et al.[2024). For any dimension d > 2, action space size A, number
of rounds K > 2, and total variance budget A € [0, K], there exists a contextual bandit problem with
eluder dimension dg, = d, action space size A, and an adversarial sequence of variances satisfying

Zszl o2 < A such that for any algorithm, the regret is lower bounded by:
Regret(K) > Q(min(VdA + d, VAK)).

When restricted to the linear bandit case, where d > \/Z, the above lower bound reduces to v/dA,
which has a gap of v/d factor compared with the upper bound in [Zhao et al[(2023). Moreover, Jia
et al.| (2024) only considers instances with a fixed budget A and relies on carefully designed vari-
ance sequences {o%,03,...,0%}, failing to provide lower bounds for general variance sequences.
Therefore, an open question arises:

Can we prove variance-dependent regret lower bounds for general variance sequences?
1.1 Our Contributions
In this paper, we answer this question affirmatively by constructing hard-to-learn instances in sev-

eral different settings. For any prefixed sequence {07,...,0%}, we achieve a Q(d\/ Zszl o?)
variance-dependent expected lower bound, which matches the upper bound in [Zhao et al.| (2023
up to logarithmic factors and demonstrates its optimality. For general adaptive variance sequences
where a weak adversary (potentially collaborating with the learner) can generate variance o in each
round k based on historical observations, our instance provides a high-probability lower bound of

Q(d\ / Zszl %), which also matches the upper bound in|Zhao et al{ (2023) up to logarithmic fac-

tors. To the best of our knowledge, this is the first high-probability lower bound for linear contextual
bandit.
Our construction and analysis rely on the following new techniques:

* A peeling technique for prefixed variance sequences that divides rounds into groups based on
variance magnitude. Through orthogonal decision set construction, each group only interacts with
its corresponding parameters, allowing us to establish separate lower bounds for different variance
scales and combine them effectively.

* A multi-instance framework that handles unknown group sizes in the adaptive setting. For each
variance group, we maintain multiple instances designed for different possible intervals of round
numbers and assign the learner to these instances in a cyclic manner, ensuring uniform visits
across instances and guaranteeing the visiting times of one instance matches its designed interval.

* A high-probability lower bound that handles adaptive group sizes through a union bound. We
first convert expected regret bounds to constant-probability bounds through careful variance con-
trol and auxiliary algorithms, then boost these to high-probability bounds by creating multiple
independent instances.

Furthermore, we also study the setting with a strong adversary that can generate the variance oy,
after observing the decision set Dj. Under this scenario, we proposed a counter algorithm that can
collaborate with the adversary by properly selecting variance, achieving an O(d) regret even the

total variance Zszl 0% = Q(K). This implies that it is impossible to derive a variance-dependent
lower bound for general variance sequence with strong adversary. As a direct extension of this result,
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we also show that it is impossible to derive a variance-dependent lower bound for stochastic linear
bandits, where the decision set is fixed even for a general prefixed variance sequence.

Notation We use lower case letters to denote scalars, and use lower and upper case bold face letters
to denote vectors and matrices respectively. We denote by [n] the set {1,...,n}. For a vector
x € R? and a positive semi-definite matrix 3 € R*?, we denote by |x||2 the vector’s £3 norm

and by ||x||s = V" Xx the Mahalanobis norm. For two positive sequences {a,, } and {b, } with
n=12, ..., wewrite a, = O(b,) if there exists an absolute constant C' > 0 such that a,, < Cb,
holds for all n > 1 and write a,, = §(b,,) if there exists an absolute constant C' > 0 such that
an > Cby, holds for all n > 1. We use O(-) to further hide the polylogarithmic factors. We use 1{-}
to denote the indicator function.

2 Related Work

Heteroscedastic Linear Bandits. For linear bandit problems, the worst-case regret has been widely
studied (Auer,|2002; Dani et al., [2008; |Li et al., 2010;/Chu et al., 2011} |/Abbasi- Yadkori et al., | 201 1bj
Li et al., [2019), achieving O(\/F ) bounds in the first K rounds. Recently, a series of works has
considered heteroscedastic variants where noise distributions vary across rounds. [Kirschner and
Krause| (2018)) first formally proposed a linear bandit model with heteroscedastic noise, assuming
o)-sub-Gaussian noise in round k € [K]. Subsequently, (Zhou et al.,2021};Zhang et al., 2021} |Kim
et al.| [2021; |Zhou and Gul [2022; [Dazi et al.| [2022; [Zhao et al., |2023} \Jia et al., [2024) relaxed this to
variance-based constraints where round k has variance o,%. Among these works, Zhou et al.| (2021)

and Zhou and Gu|(2022)) obtained near-optimal regret guarantees of 0 (dy/ Zle o%), but required

knowledge of o}, after observing the reward in round k. In contrast,|Zhang et al.[(2021); Kim et al.
(2021) handled unknown variances with computationally inefficient algorithms, achieving a weaker

O(poly(d)\/ZkK:1 0?) bound. Recently, Zhao et al. (2023) improved upon these results with an

efficient algorithm (SAVE) achieving the near-optimal O(d+/ Zszl o2) bound without requiring
variance knowledge. Beyond standard linear bandits, two directions have been explored. [Dai et al.
(2022) studied heteroscedastic sparse linear bandits, providing a framework to convert standard
algorithms to the sparse setting. In a different direction, Jia et al.| (2024) extended the analysis
to contextual bandits with general function classes having finite eluder dimension, which includes
linear bandits as a special case, and achieved a variance-dependent regret upper bounds.

Lower Bounds for Linear Contextual Bandits. For linear contextual bandit problems, several
works (Dani et al., 2008; |Chu et al., 2011} L1 et al., |2019) have established theoretical lower bounds
to illustrate the fundamental difficulty in learning process. For linear bandits with finite action sets,
Chu et al.|(2011) established an Q(\/d? ) lower bound, matching the upper bound up to logarithmic
factors in the action set size and number of rounds K. For general stochastic linear bandits, [Dani
et al[ (2008) constructed an instance with 2(4) actions and obtained an Q(dv/K) lower bound.
Later, |L1 et al.| (2019) focused on linear contextual bandits, where the decision set can vary across
rounds, and provided an Q(d\/K log K) lower bound. However, all these works only focus on
worst-case regret bounds and do not consider the heteroscedastic variance information. The only
exception is Jia et al.| (2024), which provided an Q(v/dA) variance-dependent lower bound for a
fixed total variance budget A. Nevertheless, this work cannot handle general variance sequences and
leaves open the question of variance-dependent lower bounds in the general setting.

3 Preliminaries

In this work, we consider the heteroscedastic linear contextual bandit (Zhou et al, [2021; [Zhang
et al.,|2021)), where the noise variance varies across rounds. Let K be the total number of rounds. In
each round k € [K], the interaction between the learner and the environment proceeds as follows:

1. The environment generates an arbitrary decision set D), C R?, where each element repre-
sents a feasible action that can be selected by the learner;

2. The learner observes Dy, and selects x € Dy;

3. The environment generates the stochastic noise €j, and reveals the stochastic reward r;, =
(1, Xz) + €y, to the learner, where p € R? is the unknown weight vector for the underlying
linear reward function.
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Without loss of generality, we assume the random noise € in each round & satisfies:
P(lex]| < R) =1, Elex|x1:k,€1:6-1) =0, Elep|x1p,€1:6-1] =07 < L,VE € [K] (3.1

For any algorithm Alg and linear bandit instance M, the cumulative regret is defined as follows:

Regret 5, (K, M) = Z (x5, 1) — (X, ), where xj, = argmax(x, ft). 3.2)
ke[K] x€Ds

For simplicity, we may omit the subscripts Alg and/or M when there is no ambiguity. Additionally,
with a slight abuse of notation, we may use oy, to represent the variance o7 (which is originally
the standard deviation) when there is no ambiguity. In this work, we focus on providing variance-
dependent lower bounds for the regret based on the variances sequence {o71, ...,0x }. We consider
two settings for the variance sequence {o1,...,0k}:

* Prefixed Sequence: The variance sequence is revealed to the learner at the beginning of
the learning process.

* Adaptive Sequence: An adversary (potentially collaborating with the learner) can generate
the variance oy, in each round & based on historical observations, with the learner receiving
each variance at the beginning of the corresponding round. This setting can be further
divided into two categories based on the power of the adversary:

— Weak Adversary: The adversary must generate the variance o}, before observing the
decision set Dy.

— Strong Adversary: The adversary can generate the variance oy, after observing the
decision set Dy.

Remark 3.1. Unlike the typical adversarial setting focused on maximizing regret for a specific
algorithm, our work uses the idea of an “adversary” to represent the environment’s inherent ability to
select the variance sequence. This “adversary” might even strategically choose variance levels (o)
based on the past decision sets D;, observed so far, potentially leading to variance levels that could
temporarily improve the learner’s performance or make the learning process appear easier. This
seeming “‘cooperation,” however, is ultimately aimed at exploring the fundamental lower bounds on
regret that must hold for any learner in any environment. The key is that the variance is chosen
without direct knowledge of the true underlying patterns ;.. When this “adversary” (our “strong
adversary”) can adjust the variance based on the learner’s actions (Dy,), this strategic “cooperation,”’
informed by past observations but blind to p, becomes more effective in probing the true limits of
learnability and challenging our lower bound results.

4 Variance-Dependent Lower Bound with Prefixed Variance Sequence

In this section, we consider the setting where the variance sequence {01, ...,0k} is prefixed and
fully revealed to the learner at the beginning of the learning process.

4.1 Main Results

We establish the following theorem for the variance-dependent lower bound.

Theorem 4.1. For any dimension d > 1, prefixed sequence of variance {o1,...,0k} satisfying

Zszl 0% > 1+ 384d? and algorithm Alg, there exists a hard linear contextual bandit instance such
that each action @ € Dy, in round k has variance bounded by oj. For this instance, the expected
regret of algorithm Alg over K rounds is lower bounded by:

E[Regret(K)] > Q(d K a,z/(logK)).

Remark 4.2. For a prefixed sequence {07, ..., 0k }, Theorem shows that any algorithm incurs a

regret lower bounded of (dy/ Zszl 0?), which matches the upper bound in Zhao et al.| (2023) up
to logarithmic factors. Compared to the lower bound in Jia et al (2024), Theorem [ 1] focuses on
the linear contextual bandit setting and achieves a v/d improvement over the standard linear bandit
setting. It is also worth noting that the lower bound in|Jia et al.[|(2024) only considers instances with
a fixed total variance Zszl 0%, constructed by using constant variance in the early rounds and zero
variance in later rounds. In comparison, Theorem [.1] applies to any fixed variance sequence and is
more flexible.
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In Theorem[d. 1] we require that the total variance is no less than (d?), which reduces to K > Q(d?)
when all variances o, = 1. A similar requirement exists in standard linear bandits, since a trivial
lower bound of Q(K) always holds for any algorithm, and the lower bound of Q(dv/K) can only
be achieved when K > Q(d?). Furthermore, for general sequences of variances with total variance
smaller than O(d?), a large number of rounds K alone is not sufficient to establish the desired
lower bound. The presence of early rounds with zero variance would increase the total number of
rounds without affecting the fundamental complexity of the problem. This observation suggests that
requiring total variance no less than €2(d?) (or other equivalent conditions) may be necessary for
establishing the lower bound.

4.2 Proof of Theorem@4.1

In this subsection, we prove the variance-dependent lower bound in Theorem .1} We first start
with a fixed variance threshold o, and construct a class of hard-to-learn instances where actions are
chosen from a hypercube action set A = {—1, 1}d, and for any action a € A, the reward follows a
scaled Bernoulli distribution o - B(1/3+ (u, a)), where A = 1//96K and pu € {—A, A}?. In this
setting, the variance for each action is upper bounded by o2, and these instances can be represented
as a linear bandit problem with feature (o, o - a) and weight vector p' = (1/3, ). Based on these
hard-to-learn instances, we have the following variance-dependent lower bound for the regret:

Lemma 4.3. For a fixed variance threshold ¢ and any bandit algorithm Alg, if the weight vector p €
{—A, A}9 is uniformly random selected from {—A, A}9, the variance in each round is bounded by
o2, and the expected regret over K > 1.5 - d? rounds is lower bounded by:

E,[Regret(K)] > dV Ka2/8V6.

Remark 4.4. Lemma [.3]establishes a variance-dependent lower bound for the regret with a fixed
variance threshold ¢. When all variances are equal (07 = ... = 0 = o), this bound matches the
upper bound in Zhao et al.| (2023)) up to logarithmic factors. In addition, under this fixed-variance
setting, this lemma provides a tighter logarithmic dependency on the number of rounds K compared
to Theorem[4.1] though it does not extend to dynamic variances.

Now, for any prefixed variance sequence {01, ..., 0k }, we divide the rounds into L = [log, K|+ 1
different groups based on the range of their variance as follows:

Ko={k:0or <1/K},
Ki={k:2""/K <oy <2'/K}, fori=1,...,L—1.

For each group K; with ¢ € [L — 1], we construct a bandit instance M; with weight vector p;
following Lemma 4.3} where:

* the variance threshold is set to be o (i) = 2°71/K;
* the number of rounds is K; = |K,;
* the dimension is d; = d/L.

For group Ky, we construct a different type of instance My: a d/L-armed bandit, where one ran-
domly chosen arm gives constant reward 1 while all other arms give reward 0. Note that this instance
in My can be equivalently represented as a dy = d/L-dimensional linear bandit where actions are
one-hot vectors e;.

Based on these sub-instances, we create a combined linear bandit instance with dimension
do + dy + ... + d—1 = d with weight vector ¢ = (po,...,p—1): At the beginning of
each round £, if round %k belongs to group K;, then the learner receives the decision set Dy =
{(04y,..,04,_,,%,04,,,,....0q,_,) : x € A; }, where 04, corresponds to a zero vector with di-
mension d; and A; is the action set in the bandit instance M. Under this construction, for any round
k € K;, the reward in the combined instance coincides with that of sub-instance M. Specifically,
after the learner selects action x, they receive a reward drawn from a scaled Bernoulli distribution
with variance upper bounded by o2(i) = (27'/K )2 for i # 0, and variance 0 for ¢ = 0. Note
that in all groups, the variance is bounded by o7. With this construction in hand, we now proceed to
prove the lower bound in Theorem [.1]

Remark 4.5 (Linear Contextual Bandits vs. Stochastic Linear Bandits). In the proof of Theorem
[.1] we heavily rely on assigning different decision sets to rounds in the contextual bandit envi-
ronment. This approach, however, does not extend to stochastic linear bandit problems, where all
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rounds share the same decision set. To see this limitation, consider any prefixed variance sequence
with o1 = --- = 04 = 0. In this case, the learner can select canonical basis of the decision set in
the first d rounds. Since these rounds have zero variance, the learner learns the exact rewards for
all actions in the decision set and incurs no regret in subsequent rounds, regardless of the values of

Odi1, .., 0k. Consequently, it is impossible to establish a lower bound of Q(dy/ Zle o?) in this
setting.

Proof of Theorem[{.1] Due to the orthogonal construction of decision sets across different groups
KC;, actions in group KC; provide no information about the weight vector p; for j # i. Consequently,
the total regret can be decomposed into the sum of regrets from each sub-instance. For each sub-
instance M, with ¢ # 0, the regret is lower bounded by:

di KiUQ(i)
By, i X) — (M, > I(K; > 1.5d%) - =Y~
“L%; mas ;%) — (p x@} ( NG
o diy/Kio?(i)  diy/15d7 - 0%(i)
T 8V6 86
N di\/m 2 - (i) @
B 1616 16’ ‘

where the first inequality follows from Lemma the second inequality holds due to I(z >
y)v/x > /x — /y, and the last inequality follows from the definition of group iC;.
Taking a summation of (4.1) over all groups the total regret can be lower bounded as follows:

BplRegret(K)] = 3 By | 3 (s x) - <ui,xk>}

i= O keK;
o LE:I d; iy/ Zkelc Uk
B =1 16\/6 6
N Leldy /3 ek, o
T~ 16V/6L 4L2

\/ Z Zkelc o ai 42)
16\f L 412’ '

where the first inequality follows from (4.1)), the second inequality follows from the definition of
variance threshold o () and dimension d; = d/L, and the last inequality holds due to ), \/z; >

v ; ;. In addition, for the group Ky, we have

dop< Y /K <1, (4.3)

keKo kEKo
where the first inequality follows from the definition of group Ky and the second inequality follows

from |KCy| < K. Therefore, we have
) dy/ > Zke}C o

E, [Regret(K)] > =
H[ egre( e 16[L 4L2
< d\/Eiilai—l 7d72
- 16v/6L 412
K
S d\/ Zk:ﬂﬁi_l
- 32v/61L ’

where the first inequality follows from (.2)), the second inequality follows from (4.3)), and the last

inequality follows from the fact that 22(21 0% > 1+ 384d>. Thus, we complete the proof of
Theorem 4,11 O
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S Variance-Dependent Lower Bounds with Adaptive Variance Sequence

In the previous section, we focused on the setting where the variance sequence is prefixed and
revealed to the learner at the beginning of the learning process. In this section, we extend our
analysis to the setting where the variance sequence can be adaptive based on historical observations,
with the learner receiving the adaptive variance at the beginning of each round.

5.1 Main Results
5.1.1 Weak Adversary

We first describe the learning process and the mechanism of variance adaptation. In detail, the
adaptive variance process proceeds as follows:

1. At the beginning of each round &, a (weak) adversary selects the variance level o based on
the historical observations, including actions {a1, ..., ax_1}, rewards {ry,...,rx_1}, and
decision sets {D;, Da,...,Di_1}. The adversary has access to all historical information
but not to the underlying reward model parameters;

2. Given the selected variance level oy, we construct and assign a decision set Dy, to the
learner, where the variance of the reward for each action a € Dy, is bounded by a,%;

3. The learner observes the decision set D;, and variance level o}, then determines an action
ay, from Dy, based on its historical observations and current information. After selecting
the action, the learner receives a reward rj, with variance bounded by ai.

Remark 5.1. Itis worth noting that our concept of adversary differs from the weak/strong adversary
in|Jia et al.| (2024). Specifically, Jia et al.|(2024) considers an adversary that attempts to hinder the
learner’s learning by allocating a fixed total variance budget Zszl o7 < A across rounds to max-
imize regret. In contrast, our work considers an adversary that attempts to break the lower bounds
themselves by collaborating with the learner. To prevent such exploitation, we must restrict the ad-
versary from knowing the weight vector of the underlying reward model. Without this restriction,
the adversary could encode each entry p; of the weight vector p through the corresponding variance
0; = 14, allowing the learner to learn the weight vector after d rounds.

Under this setting, we establish the following theorem for the variance-dependent lower bound.

Theorem 5.2 (Weak Adversary). For any dimension d > 1, adaptive sequence of variances
{01,...,0K} and algorithm Alg, there exists a hard instance such that each action a € Dy in

round k has variance bounded by o;. For this instance, if Zle 0% > Q(d?), then with probability
atleast 1 — 1/ K, the regret of algorithm Alg over K rounds is lower bounded by:

Regret(K) > (d S o2/ logG(dK)).

Remark 5.3. Theorem provides a high-probability lower bound of ﬁ(d\/zkl,(zl 02), which

matches the upper bound in|Zhao et al.|(2023)) up to logarithmic factors, albeit with looser logarith-
mic dependencies than Theorem due to the adaptive nature of the variance sequence. Unlike
the expected lower bound in Theorem [4.1] for adaptive variance sequences, the cumulative variance
Zszl 0% depends on the random process and observations. This dependence makes it challenging to
establish an expected variance-dependent regret bound - a fundamental difficulty that does not arise
for standard dv/K -type lower bounds in linear contextual bandits. To the best of our knowledge, our
result provides the first high-probability lower bound for linear contextual bandit.

5.1.2 Strong Adversary

In Theorem we require that for each round k € [K], all actions x € D, share the same adaptive
variance 0. This is more restrictive than the setting in Zhao et al.| (2023)), where the variance can
differ across actions x € Dy. However, extending our lower bound to action-dependent variances
is not possible in the adaptive setting. This limitation arises because we construct the decision
set Dy, after the adversary chooses the variance oy, which prevents assigning specific variances to
individual actions x € Djy. Moreover, we now consider a strong adversary that can choose oy,
after observing the decision set Dy. The interaction between the learner and this strong adversary
proceeds as follows:

1. At the beginning of each round k, we construct and assign a decision set Dy based on
historical observations, including actions {ay, ..., ax—1} and rewards {rq,...,75_1};
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2. Given the decision set Dy, in round k, the strong adversary selects the variance level oy, for
round k. The adversary has access to all historical information but not to the underlying
reward model parameters;

3. The learner observes the decision set D;, and variance level o, then determines an action
ag from Dy, based on its historical observations and current information. After selecting
the action, the learner receives a reward 7, with variance bounded by a,%.

The following theorem shows that under this setting, the adversary could cooperate with the learner
to break the lower bound.

Theorem 5.4 (Strong Adversary). For any linear contextual bandit problem and number of rounds
K > 2d, if we first provide the decision set Dy, and then allow an adversary to choose the variance
o based on the decision set Dy, there exists one such type of adversary such that, there exists an
algorithm whose regret in the first & rounds is upper bounded by Regret(K) < d, where the total
. K 2

variance ) ", oj > K/2.

Remark 5.5. Theorem 5.4] highlights why Theorem 5.2 requires a weak adversary that set the vari-
ance sequence before seeing the learner’s choices. If the adversary could see the decision set first, it
could potentially choose variances that would invalidate our lower bound. This finding underscores

that our construction is precise and pinpoints the exact condition under which the derived lower
bound holds.

Remark 5.6. It is worth noting that Jia et al.| (2024) also considered the case where the adver-
sary assigns variances to actions after observing the decision set and action choice, and provided
a variance-dependent lower bound. However, their analysis focuses on an adversary that allocates
variance across rounds to maximize the regret. In contrast, our work considers an adversary that
attempts to break these bounds, making it more challenging to establish lower bounds for general
variance sequences. It is also worth noting that if the adversary’s goal is to increase regret, choosing
a prefixed sequence is a viable strategy. This case is already covered by our Theorem[4.T|for prefixed
sequences, which provides a tighter lower bound than Theorem 5.2}

Theorem [5.4] suggests that it is impossible to derive a variance-dependent lower bound if the ad-
versary can determine the variance oy, after observing the decision set Dy, which further precludes
establishing a lower bound when the adversary has the ability to assign action-dependent variances
for each action x € D, after observing the decision set Dy,. This result naturally extends to stochas-
tic linear bandit problems, where the decision set D remains fixed across all rounds. In this case,
since the adversary knows the decision set Dj, = D in advance, Theorem [5.4] directly implies:

Corollary 5.7. For any stochastic linear bandit problem with fixed decision set D and number of
rounds K > 2d, there exists a prefixed sequence {o71,...,0k } such that there exists an algorithm
whose regret in the first A" rounds is upper bounded by: Regret 5, (K) < d, where the total variance

ZkK:I ‘71% > K/2.
5.2 Proof Sketch of Theorem

In this section, we provide the proof sketch of Theorem Overall, the proof follows a similar
structure as Theorem 4.1 where we divide the rounds into several groups based on their variance
magnitude and create hard instances for each group. The key idea is to calculate individual regret
bounds for each group and combine them for the final lower bound. However, there exist several
challenges when dealing with adaptive variance sequences that require careful handling.

Varying Size of Groups K; As discussed in Section .2] for each group KC;, we create individ-
ual instance M; with fixed variance threshold o (i) = 2'~!/K and establish a lower bound of

Q(d;+/02(i)|KC;|) on the expected regret. However, the construction of such instances relies on
prior knowledge of the number of rounds |K;|, which can be calculated at the beginning for a pre-
fixed variance sequence {o1,...,0k}. In contrast, for general adaptive variance sequences, the
number of rounds |/C;| is not known a priori and can even be a random variable, which creates a
barrier in constructing these instances.

To address the unknown number of rounds |KC;|, instead of constructing a single instance M; for
each group, we create L instances M; ;, where L = [log, K| + 1. Each instance M, ; is designed
for a specific range of round numbers, specifically M; ; for 2771 < |K;| < 27.

For each round k in group /C;, the learner receives a decision set D; from one of the instances in
{M;1,..., M; 1} in a cyclic manner. Through this sequential assignment, the number of visits to
each instance M, ; is |KC;|/ L. Consequently, we expect that the instance M, ; corresponding to the
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true range 27~ < |K;| < 27 provides a lower bound of Q(d;/02(i)|K;]) = Q(di/02(i) - 27),
which leads to the final lower bound of Q(dy/ S 1| 02).

Converting Expected Lower Bound to High-Probability Lower Bound. Another challenge is
establishing the lower bound for the triggered instance M, ; corresponding to the true range 27! <
|KC;| < 27. Traditional analysis of lower bounds in linear contextual bandits has focused on the
expected regret. However, when dealing with adaptive variance sequences, this approach becomes
insufficient as the adversary can dynamically adjust the variance sequence to break these bounds.

For instance, an adversary might continuously set o, = 1 until the lower bound of 2(d/ Ele o?)
is violated at some round k, then switch to o5, = 0 for all future rounds, causing the total variance
sum Zszl o? to remain unchanged. In our construction, this means all rounds could fall into group
K1, allowing the adversary to adaptively change the number of rounds between different intervals
2771 <|K | < 27. Since the failure of the lower bound in any single instance M, ; leads to failure
of the whole construction, an expected lower bound on regret cannot guarantee robust performance
against adaptive sequences. This necessitates a stronger high-probability lower bound that holds
uniformly for all instances.

Unfortunately, an expectation of ﬁ(d“/o2(i)21') in instance M; ; only implies a low-probability
regret (Regret > Q(di\/o2(i)27 )) > d;-279/2, since the cumulative regret in C; can be up to o'(4)-
|IC;] in our instance. To solve this problem, we introduce an auxiliary algorithm that automatically
detects the cumulative regret and switches to the standard OFUL algorithm (Abbasi-Yadkori et al.,
2011a)) if the cumulative regret is larger than Q(d; /o2 ()27 ) For this auxiliary algorithm, we can
guarantee that the upper bound is at most (d; \/02(7)27) while maintaining the same probability of
high regret as the original algorithm. Therefore, an expectation of €(d;/02()27) in instance M, ;
implies a constant-probability regret P(Regret > Q(d;+/02(1)27)) = Q(1).

After constructing an instance with constant-probability lower bound, we boost this probability by
creating Q(logz(dK )) independent instances. When the learner encounters instance M, ;, it is
assigned to one of these instances in a cyclic manner. Through this construction, with probability at
least 1 — 1/poly(K), the final regret is lower bounded by Regret > Q(d;\/c2(1)27).

Remark 5.8. Unlike previous lower bounds for linear bandit problems which focus on expected
regret, to the best of our knowledge, our result provides the first high-probability lower bound for
linear contextual bandits. It is worth noting that our construction requires separate decision sets
across different rounds in the random assignment process. For stochastic linear bandits with a fixed
decision set, we can only derive a constant-probability lower bound. Moreover, for a fixed decision

set in stochastic linear bandit problem with covering number log ¥ < O(d), an algorithm can
randomly select one action from the covering set and perform this action in all rounds. In this case,
there exists a probability of 1/A = 1/ exp(d) to achieve zero regret, which precludes the possibility
of establishing high-probability lower bounds for large round numbers K. More details about the
high-probability lower bound can be found in Section

6 Conclusion and Future Work

In this paper, we study variance-dependent lower bounds for linear contextual bandits in different
settings. For both prefixed and adaptive variance sequences with weak adversary, we establish tight
lower bounds matching the upper bounds in|Zhao et al.|(2023) up to logarithmic factors. We further
demonstrate a fundamental limitation: when a strong adversary can select variances after observ-
ing decision sets, it becomes impossible to establish meaningful variance-dependent lower bounds.
However, our work has focused exclusively on linear bandit settings, while Jia et al| (2024) has
established variance-dependent lower bounds for general function approximation with a fixed total
variance budget A. Therefore, we leave for future work the generalization of our analysis of general
variance sequence to contextual bandits with general function approximation.

'In general settings, detecting cumulative regret is impossible as the learner lacks prior knowledge of the
optimal reward and variance. However, in our lower bound construction, all instances are randomly selected
from instance classes sharing the same optimal reward and variance, which are known to the learner. This
knowledge enables the construction of the auxiliary algorithm.
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A Proof of Theorem

In this section, we prove the variance-dependent lower bound for adaptive variance sequences es-
tablished in Theorem [5.2] We begin with the instance construction from Lemma [.3] and establish
the following constant-probability lower bound for the regret:

Lemma A.l. For a fixed variance threshold o, number of rounds K > 1.5d2, and any bandit
algorithm Alg, for the instance constructed in Lemma with probability at least 2 (1 /log(dK )) ,
the regret is lower bounded by

VEo2
Regret(K) > u.
166

Based on the constant-probability lower bound, we boost this probability by creating L =
Q( log?(dK )) independent instances with dimension d’ = d/L and number of rounds K’ = K/L,
where each instance follows the structure in Lemma [{.3] with i.i.d. sampled weight vectors. Un-
der this construction, the total dimension of all instances is d, which can be represented as a d-
dimensional linear contextual bandit through orthogonal embedding, similar to our previous con-
struction: for instance ¢, we augment its actions by padding zeros in dimensions reserved for other
instances, ensuring actions from different instances only interact with their corresponding param-
eters. Here, we consider the case where the learner visits the instances in a cyclic manner and
establish the following high-probability regret lower bound for the constructed instance:

Lemma A.2. For a fixed variance threshold o, number of rounds K > 1.5d?, and any bandit
algorithm Alg, with probability at least €2(1/log(dK)), the regret is lower bounded by

Regret(K) > Q(dVKo2/log?(dK)).

With the help of this high-probability lower regret bound from Lemma [A.2] we begin the proof
of Theorem @ Following a similar framework to the fixed-variance case, we first divide the
rounds into groups based on their variance magnitude. Specifically, for any variance sequence
{o1,...,0K}, we partition the rounds into L = [log, K| + 1 groups as follows:

/C() = {k 0k < 1/K},

Ki={k:2""/K <oy <2'/K}, fori=1,...,L—1.
To address the unknown number of rounds K; = |K;|, instead of constructing a single instance
M, for each group, we create L instances M; ;, where L = [log, K| + 1. Each instance M, ;
is constructed according to Lemma A .2 with dimension &’ = d/L?, variance o (i) = 2/~ /K and

number of rounds K’ = 271, For each round k in group K;, the learner receives a decision set D;
from one of the instances in {M, 1, ..., M, 1} in a cyclic manner.

Proof of Theorem[5.2] According to Lemma[A.2} for each instance M; ;, with probability at least
1 — 1/K3, the regret in the first 27! visits is lower bounded by

Regret(2/71, M; ;) > 12771 > 1.5d"%) - Q(d'\/27-102(i)/ log*(d'K")), (A1)

where the indicator reflects the requirement that K’ = 27~! > 1.5d"2. For simplicity, we define £
as the event that holds for all instances M, ;. By union bound, we have P(£) > 1 — 1/K.
Conditioned on event &, for an adaptive sequence and each corresponding group K;, due to the
cyclic visiting pattern, each instance M, ; is visited |/C;|/L times. There exists an instance M, ;
with matching interval for the round number, i.e., 2/~ < |K;|/L < 27. Therefore, we have

> ){2%}i<llli7x> — (i Xp)
ke,

> Regret(2/71, M, ;)

> 12771 > 1.5d%) - Q(d\/29-162(i) / log® (d' K))

> I(K; > 3dL) - Q(dV/K0%(i)/ log" (dK))

> 0(d'/Kio?(i)/ log* (AK) — d'\/347Lo>() log' (dK))
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> Q(d’ > 02/log!(dK) — V3Ld™ - o(i) /log4(dK)>7 (A2)
ke,
where the first inequality follows from 27! < |K;|/L < 27, the second inequality holds by the
definition of event &, the third inequality follows from 27~ < |K;|/L < 27, the fourth inequality
holds due to I(x > y)\/x > \/x — \/y, and the last inequality follows from the definition of group
K.
Taking a summation of (A.2)) over all groups, the total regret can be lower bounded as follows:

- Z Z )I(TEIaDXk<Ni>X> — (i, Xp)

=0 keK;

L—1
>N o2/log*(dK) — 2V3Ld?/(L* log4(dK))), (A3)

i=1 kek;

where the first inequality follows from (A.2), the second inequality follows from the definition of
variance threshold o (i) and dimension d’ = d/L?, and the last inequality holds due to Y, \/z; >

\/ Zi x;. In addition, for the group Ky, we have
Yook< Y YK<1, (A4)
keKo keKo

where the first inequality follows from the definition of group Ky and the second inequality follows
from |KCy| < K. Therefore, we have

Regret(K)

L—-1
> Q(d/L2- >N o2/log*(dK) — 2v3Ld?/(L* 10g4(dK))>

i=1 kek;

> Q(d/LQ- z_: > 0% —1/log*(dK) — 2v3Ld*/(L* 10g4(dK))>

where the first inequality follows from (A.3)), the second inequality follows from (A.4), and the last

inequality follows from the fact that Zle 0% > Q(d?). Thus, we complete the proof of Theorem
O

B Proof of Theorem

In this subsection, we provide the proof of Theorem[5.4] We begin by describing a simple algorithm:
1. The learner maintains an explored action set A, which is initialized as empty.

2. For each decision set Dy, in round k, if there exists an action x not in the spanning space
of the explored action set A, the learner:

e Selects an action x;, and receives reward 7
* Updates the explored set: A = AU {(xx,7%)}.

12
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3. Otherwise, when all actions lie in the spanning space of .4, the learner:
* Estimates the reward for each action through linear combinations of (x,7) € A;
* Selects the action with maximum estimated reward.

It is worth noting that this algorithm assumes the received rewards r; have no noise to provide
accurate estimates in step 3. While this assumption does not hold in general, when an adversary can
choose the variance oy, based on the decision set Dy, they can cooperate with the learner by setting:

* 01, = 0 when step 2 is triggered (exploration);
* 0, = 1 when step 3 is triggered (exploitation).

For a d-dimensional linear bandit problem, the explored action set satisfies |.A| < d. This implies
the learner performs at most d exploration steps with zero variance, while all remaining steps have
variance one. Under this construction, the regret in the first K rounds is upper bounded by:

RegretAlg(K) <d,

where the total variance Zszl a,% = K —d > K/2 (since K > 2d). Thus, through this cooperation

between the adversary and learner, the ﬁ(d\/szzl o?) lower bound is broken, completing the
proof of Theorem [5.4]

C Proof of Key Lemmas
C.1 Proof of Lemma[4.3]

In this subsection, we provide the proof of Lemma @ When the variance threshold o = 1, our
construction reduces to the standard lower bound instances for linear contextual bandits (Zhou et al.,
2021). Specifically, when the number of rounds K satisfying K > 1.5 - d?, [Zhou et al.| (2021)
provided the following variance-independent lower bound for these hard instances:

Lemma C.1 (Lemma C.8, Zhou et al|2021). For any bandit algorithm Alg, if the weight vector
pu € {—A,A}? is drawn uniformly at random from {—A, A}?, then the expected regret over K
rounds is lower bounded by:

dVK
E,.[Regret(K)] > VA

With the help of Lemma|C.1] we start the proof of Lemma4.3]

Proof of Lemma For any algorithm Alg for linear contextual bandit with fixed variance thresh-
old o, we construct an auxiliary algorithm Algl to solve the standard linear contextual bandit prob-
lem:

* At the beginning of each round k£ € K, Algl observes the decision set Dy, and sends it to
Alg;
» Alg selects action ay € Dy, based on the historical observations and delivers it to Algl;

* Algl performs the action ay, receives the reward r; and sends the normalized reward o -
to Alg.

Now, we consider the performance of auxiliary algorithm Algl for the standard linear contextual
bandit problem. It is worth noticing that the reward/noise in bandit instances for algorithm Algl and
algorithm Alg only differ by a scalar factor o, therefore for each instance, we have

E[Regret ), (K)] = o - E[Regret  (K)]. (C.1)

If we randomly select a weight parameter vector u € {—A, A}¢, then according to Lemma the
regret for Alg is lower bounded by

dvK dvKo?
E,.[Regret K)| =0 -E_,|[Regret K> — = ,
u[ g Alg( )l u[ g Algl( )] > 86 86
where the equation holds due to (C.I) and the inequality holds due to Lemma [C.1] Thus, we com-
plete the proof of Lemma4.3] O
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C.2 Proof of LemmalA.1]
In this subsection, we provide the proof of Lemma[A.T] We begin by recalling the OFUL algorithm
in|Abbasi- Yadkori et al.| (201 1a)) and its corresponding upper bound for the regret:

Lemma C.2 (Theorem 3 in|Abbasi-Yadkori et al.|2011a). For any linear contextual bandit problem,
with probability at least 1 — 9, the regret for OFUL algorithm in the first & rounds is upper bounded

by Regret(K) < O(dv/K log(dK/3)).

It is worth noting that the reward/noise in the instance construction from Lemma§.3|only differs by
a scalar factor o from the standard bandit. Therefore, as discussed in Section@ the regret in these
two cases also only differs by a scalar factor ¢. This leads to the following corollary:

Corollary C.3. For the instance construction from Lemma[4.3] there exists a constant C' such that
with probability at least 1 — 4, the regret for OFUL algorithm in the first K rounds is upper bounded

by Regret(K) < Cdy/Ko?log(dK/9).

With the help of Corollary [C.3] we can begin the proof of LemmalA.T]
Proof of Lemma For any algorithm Alg, we construct an auxiliary algorithm Algl as follows:

* At the beginning of each round k € [K], Algl observes the decision set Dy, and sends it to
Alg;

» Alg selects action ay € Dy, based on the historical observations and delivers it to Algl;

* Algl performs the action a;, and receives the reward 7y;

* Algl calculates the pseudo regret as:

k
1 d
Regret (1) = 3" 2+ — L
— 3 VI6K

If the pseudo regret is larger than dv' K02 /(8v/6) + 01/2K log(2K/§), Algl removes all
previous information and performs the OFUL algorithm in all future rounds.

— 7.

Based on the construction of the instances, whatever the weight vector p is, the optimal action
is to select an action in the same direction as the weight vector, obtaining an expected reward of
1/3 + d/v96K. Under this scenario, with probability at least 1 — 4, for any round k¥ € [K], the
difference between pseudo regret Regret’ (k) and true regret Regret(k) can be upper bounded by

k
|Regret(k) — Regret' (k)| = | Z &| < ov/2K 1og(2K/6), (C2)

i=1
where the inequality holds due to Lemma with the fact that the noise satisfies
Elex|a1.x,r1:.—1] = 0 and |ex| < o. Thus, according to the criterion of auxiliary algorithm

Algl, with probability at least 1 — 9, the regret of Algl before transitioning to OFUL is up to

dVKo?/(8v6) + 20+/2K log(2K/5). On the other hand, for the stage after transitioning to
OFUL, Corollary suggests that with probability at least 1 — 9, the regret is no more than

Cd\/Ko?log(dK/d). Therefore, with a selection of 6 = 1/K, we have

P[Regrety, (K) > Cdy/Ko?log(dK?) + dVKo?/(8V6) + 20/2K log(2K?)| < 2/K.
(C3)

For simplicity, let R = Cd\/Ko2log(dK?2) + dV'Ko?/(8V6) + 20+/2K log(2K?2) and we have
E,.[Regret g, (K]
< P[Regret, (K) > R] - Ko + P[Regrety, (K) > dvVKo?/(16V6)] - R
+ P[Regret o, (K) > 0] - dVKo2/(16V6)
<20 +P[RegretAlg (K) > dVKo?/(16V6) 6)] - O O(dv/Ko?log(dK)) + dvVKa? /(16V6),

where the first inequality holds due to E[X] < P(X > 21) - R+ P(X > x3) - 21 + P(X > 0) - 29
for0 < X < Rand z; > x5 > 0, and the second inequality holds due to (C.3)). Combining this
result with the lower bound of expected regret in Lemmaf.1] we have

dVKo?/(8v6) > 20 + P[Regret ), (K) > dvVKo?/(16v6)] - O(dv/Ko?log(dK))
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+ dVKa?/(16V6),

which implies that
P[Regret oy, (K) > dVKo?/(16V6)] > Q(1/log(dK)). (C.4)

In addition, according to the criterion of auxiliary algorithm Algl with (C.2), with probability at
least 1 — § = 1 — 1/K, Algl will not switch to the OFUL algorithm until the cumulative regret is

larger than dv/ K 02 /(8v/6), which implies that
P[Regret 1, (K) > dV KO’Q/(16\/6)] > P[RegretAlgl(K) > dv KO’2/<16\/6)] -1/K
=Q(1/log(dK)).
Thus, we complete the proof of Lemma|A.1 O

C.3  Proof of LemmalA.2]
In this subsection, we provide the proof of Lemma[A.2]

Proof of Lemma Since the learner visits the instances in a cyclic manner, over all K rounds,
each instance M; (1 = 1,2,..., L) is visited K’ = K/L times. As actions from different instances
only interact with their corresponding parameters, according to Lemma[A.T] for each instance M,
with probability at least (1/log(dK)), the regret is lower bounded by

Regret (K, M;) > dVK'o?  dVKo?
YT 16v6 1616 - L1-5°

Note that the weight vectors for each instance are independently sampled, hence the probability that
at least one instance has regret no less than dv/ K02/16\/€ - L5 is at least

1- (1 - Q(l/log(dK)))L > 1 - 1/K3Qingyue: 727

Under this condition, the total regret can be lower bounded as:

L
dv Ko?

Regret(K) = Regret(K', M;) > ————. C5

g();g( )2 ToE o (C5)

Thus, we obtain a high-probability lower bound and complete the proof of Lemma[A.2] O

D Auxiliary Lemmas

Lemma D.1 (Azuma-Hoeffding inequality, Cesa-Bianchi and Lugosi|2006). Let {n;}%_, be a mar-
tingale difference sequence with respect to a filtration {Gy } satisfying || < R for some constant
R, i, is Gi41-measurable, E [;,|Gr] = 0. Then for any 0 < § < 1, with high probability at least
1 — 4, we have

S e < Ry/2K log(1/9).
k=1
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In both abstract and introduction, we highlight the contribution in our pa-
per. The proposed algorithm and the corresponding theoretical results are discussed in the
followed sections

Guidelines:
¢ The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We explicitly list all the necessary assumptions for our theoretical analysis.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate Limitations” section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

e The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

e The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

e The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: The complete set of assumptions for our analysis is presented in Section 3,
with the detailed proofs of all our claims provided in a later section.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

e All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

¢ All assumptions should be clearly stated or referenced in the statement of any theo-
rems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all sub-

missions to provide some reasonable avenue for reproducibility, which may depend

on the nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear
how to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

17



699
700
701

702

703

704

706
707

708
709
710
71

712
713
714

715
716

7
718
719

720
721

722
723
724

725
726
727

728

729

730

731

732
733

734
735
736

737
738

739

740

741

742
743
744
745
746
747
748
749
750

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy)) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

e At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA|
Justification: The paper does not include experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of
detail that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [NA|
Justification: The paper does not include experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer “Yes” if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

 The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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8.

10.

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

 The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: The paper is a theoretical work with no societal impact.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.
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* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper is a theoretical work and poses no such risks
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have described the related works, especially those work which our work
is based on with proper citations in corresponding sections.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/
datasets| has curated licenses for some datasets. Their licensing guide can help
determine the license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer:
Justification: This is a theoretical paper without experiments.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA|
Justification: This paper does not include crowdsourcing or human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not include crowdsourcing or human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer:

Justification: We only used an LLM to rephrase the writing, which did not affect the core
methodology, scientific rigor, or originality of the research.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

e Please refer to our LLM policy (https://neurips.cc/Conferences/
2025 /LLM) for what should or should not be described.
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