
On the Expressive Power of Geometric Graph Neural Networks

Chaitanya K. Joshi∗
University of Cambridge, UK

chaitanya.joshi@cl.cam.ac.uk

Cristian Bodnar∗
University of Cambridge, UK

cb2015@cam.ac.uk

Simon V. Mathis
University of Cambridge, UK

simon.mathis@cl.cam.ac.uk

Taco Cohen
Qualcomm AI Research, The Netherlands†

tacos@qti.qualcomm.com

Pietro Liò
University of Cambridge, UK
pietro.lio@cl.cam.ac.uk

Abstract

The expressive power of Graph Neural Networks (GNNs) has been studied ex-
tensively through the lens of the Weisfeiler-Leman (WL) graph isomorphism test.
Yet, many graphs in scientific and engineering applications come embedded in
Euclidean space with an additional notion of geometric isomorphism, which is
not covered by the WL framework. In this work, we propose a geometric version
of the WL test (GWL) for discriminating geometric graphs while respecting the
underlying physical symmetries: permutations, rotation, reflection, and translation.
We use GWL to characterise the expressive power of GNNs that are invariant or
equivariant to physical symmetries in terms of the classes of geometric graphs they
can distinguish. This allows us to formalise the advantages of equivariant GNN
layers over invariant ones: equivariant GNNs have greater expressive power as they
enable propagating geometric information beyond local neighbourhoods, while
invariant GNNs cannot distinguish graphs that are locally similar, highlighting
their inability to compute global geometric quantities.

1 Introduction
Systems in biochemistry [1], material science [2], physical simulations [3], and multiagent robotics [4]
contain both geometry and relational structure. Such systems can be modelled via geometric graphs
embedded in Euclidean space. For example, molecules are represented as a set of nodes which contain
information about each atom and its 3D spatial coordinates as well as other geometric quantities
such as velocity or acceleration. Notably, the geometric attributes transform along with Euclidean
transformations of the system, i.e. they are equivariant to symmetry groups of rotations, reflections,
and translation. Standard Graph Neural Networks (GNNs) which do not take spatial symmetries into
account are ill-suited for geometric graphs, as the geometric attributes would no longer retain their
physical meaning and transformation behaviour [5, 6].

GNNs specialised for geometric graphs follow the message passing paradigm [7] where node features
are updated in a permutation equivariant manner by aggregating features from local neighbour-
hoods. Crucially, in addition to permutations, the updated geometric features of the nodes retain
the transformation behaviour of the initial attributes, i.e. they are also equivariant to the Lie group
of rotations (SO(d)) or rotations and reflections (O(d)). We use G as a generic symbol for these
Lie groups. We consider two classes of GNNs for geometric graphs: (1) G-equivariant models,
where the intermediate features and propagated messages are equivariant geometric quantities such as
vectors or tensors [8–12]; and (2) G-invariant models, which only propagate local invariant scalar
features such as distances and angles [13–15]. Both classes of architectures have shown promising
empirical results for applications ranging from protein design [16, 17], molecular dynamics [18–20],

∗Equal first authors.
†Qualcomm AI Research is an initiative of Qualcomm Technologies, Inc.

Joshi, Bodnar, et al., On the Expressive Power of Geometric Graph Neural Networks (Extended Abstract).
Presented at the First Learning on Graphs Conference (LoG 2022), Virtual Event, December 9–12, 2022.

On the Expressive Power of Geometric Graph Neural Networks

Figure 1: Geometric Weisfeiler-Leman Test. GWL distinguishes non-isomorphic geometric graphs
G1 and G2 by injectively assigning colours to distinct neighbourhood patterns, up to global symmetries
(here G = O(d)). Each iteration expands the neighbourhood from which geometric information can
be gathered (shaded for node i). Example inspired by [18].

and electrocatalysis [21, 22]. At the same time, key theoretical questions remain unanswered: (1)
How to characterise the expressive power of geometric GNNs? And (2) what is the tradeoff between
G-equivariant and G-invariant GNNs?

The graph isomorphism problem [23] and the Weisfeiler-Leman (WL) [24] test for distinguishing non-
isomorphic graphs have become a powerful tool for analysing the expressive power of non-geometric
GNNs [25, 26]. The WL framework has been a major driver of progress in graph representation
learning [27–31]. However, the WL framework does not directly apply to geometric graphs as they
exhibit a stronger notion of isomorphism that also takes spatial symmetries into account.

Contributions. In this work, we study the expressive power of geometric GNNs from the perspective
of discriminating non-isomorphic geometric graphs. We propose a geometric version of the Weisfeiler-
Leman graph isomorphism test, termed GWL. We use GWL to formally characterise classes of
graphs that can and cannot be distinguished by invariant and equivariant GNNs. We show how
invariant GNNs have limited expressive power as they cannot distinguish graphs where one-hop
local neighbourhoods are similar, while equivariant GNNs distinguish a larger class of graphs by
propagating geometric vector quantities beyond local neighbourhoods.

For Background and Preliminaries, please see Appendix B.

2 The Geometric Weisfeiler-Leman Test

Assumptions. Analogous to the WL test, the geometric and scalar features the nodes are equipped
with come from countable subsets C ⊂ Rd and C ′ ⊂ R, respectively. As a consequence, when we
require functions to be injective, we require them to be injective over the countable set of G-orbits
that are obtained by acting with the symmetry group G on the dataset. This mimics the practically
relevant situation of finite datasets, in which we have a finite pool P of geometric graphs (and their
symmetry transformations) which we would like to distinguish.

Intuition. For an intuition of how to generalise WL to geometric graphs, we note that WL uses a
local, node-centric, procedure to update the colour of each node i using the colours of its the 1-hop
neighbourhood Ni. In the geometric setting, Ni is an attributed point cloud around the central node i.
As a result, each neighbourhood carries two types of information: (1) neighbourhood type (invariant
to G) and (2) neighbourhood geometric orientation (equivariant to G). From an axiomatic point of
view, our generalisation of the WL aggregation procedure must meet two properties:

Property 1: Orbit injectivity of colours. If two neighbourhoods are the same up to an action of G
(e.g. rotation), then the colours of the corresponding central nodes should be the same. Thus, the
colouring must be G-orbit injective – which also makes it G-invariant – over the countable set of all
orbits of neighbourhoods in our dataset.

2

On the Expressive Power of Geometric Graph Neural Networks

Property 2: Preservation of local geometry. A key property of WL is that the aggregation is
injective. A G-invariant colouring procedure that purely satisfies Property 1 is not sufficient because,
by definition, it loses spatial properties of each neighbourhood such as the relative pose or orientation
[32]. Thus, we must additionally update auxiliary geometric information variables in a way that is
G-equivariant and injective.

Geometric Weisfeiler-Leman (GWL). These intuitions motivate the following definition of the
GWL test. At initialisation, we assign to each node i ∈ V a scalar node colour ci ∈ C ′ and an
auxiliary object gi containing the geometric information associated to it:

c
(0)
i := HASH(si), g

(0)
i :=

(
c
(0)
i , v⃗i

)
, (1)

where HASH denotes an injective map over the scalar attributes si of node i. To define the inductive
step, assume we have the colours of the nodes and the associated geometric objects at iteration t− 1.
Then, we can aggregate the geometric information around node i into a new object as follows:

g
(t)
i :=

(
(c

(t−1)
i , g

(t−1)
i) , {{(c(t−1)

j , g
(t−1)
j , x⃗ij) | j ∈ Ni}}

)
, (2)

Here {{·}} denotes a multiset – a set in which elements may occur more than once. Importantly, the
group G can act on the geometric objects above inductively by acting on the geometric information
inside it. This amounts to rotating (or reflecting) the entire t-hop neighbourhood contained inside:

g ·g(0)
i :=

(
c
(0)
i , Qgv⃗i

)
, g ·g(t)

i :=
(
(c

(t−1)
i , g ·g(t−1)

i), {{(c(t−1)
j , g ·g(t−1)

j ,Qgx⃗ij) | j ∈ Ni}}
)

Clearly, the aggregation building gi for any time-step t is injective and G-equivariant. Finally, we
can compute the node colours at iteration t for all i ∈ V by aggregating the geometric information in
the neighbourhood around node i:

c
(t)
i := I-HASH(t)

(
g
(t)
i

)
, (3)

by using a G-orbit injective and G-invariant function that we denote by I-HASH. That is for any
geometric objects g, g′, I-HASH(g) = I-HASH(g′) if and only if there exists g ∈ G such that
g = g · g′. Note that I-HASH is an idealised G-orbit injective function, similar to the HASH function
used in WL, which is not necessarily continuous.

Overview. With each iteration, g(t)
i aggregates geometric information in progressively larger t-hop

subgraph neighbourhoods N (t)
i around the node i. The node colours summarise the structure of these

t-hops via the G-invariant aggregation performed by I-HASH. The procedure terminates when the
partitions of the nodes induced by the colours do not change from the previous iteration. Finally, given
two geometric graphs G and H, if there exists some iteration t for which {{c(t)i | i ∈ V(G)}} ̸= {{c(t)i |
i ∈ V(H)}}, then GWL deems the two graphs as being geometrically non-isomorphic. Otherwise,
we say the test cannot distinguish the two graphs.

Invariant GWL. Since we are interested in understanding the role of G-equivariance, we also
consider a more restrictive Invariant GWL (IGWL) that only updates node colours using the G-orbit
injective I-HASH function and does not propagate geometric information:

c
(t)
i := I-HASH

(
(c

(t−1)
i , v⃗i) , {{(c(t−1)

j , v⃗j , x⃗ij) | j ∈ Ni}}
)
. (4)

IGWL with k-body scalars. In order to further analyse the construction of the node colouring
function I-HASH, we consider IGWL(k) based on the maximum number of nodes involved in the
computation of G-invariant scalars (also known as the ‘body order’ [33]):

c
(t)
i := I-HASH(k)

(
(c

(t−1)
i , v⃗i) , {{(c(t−1)

j , v⃗j , x⃗ij) | j ∈ Ni}}
)
, (5)

and I-HASH(k+1) is defined as:

HASH
(
{{I-HASH

(
(c

(t−1)
i , v⃗i), {{(c(t−1)

j1
, v⃗j1 , x⃗ij1), . . . , (c

(t−1)
jk

, v⃗jk , x⃗ijk)}}
)
| j ∈ (Ni)

k}}
)
,

where j = [j1, . . . , jk] are all possible k-tuples formed of elements of Ni. Therefore, IGWL(k) is
now constrained to extract information only from all the possible k-sized tuples of nodes (including
the central node) in a neighbourhood. For instance, I-HASH(2) can identify neighbourhoods only up
to pairwise distances among the central node and any of its neighbours (i.e. a 2-body scalar), while
I-HASH(3) up to distances and angles formed by any two edges (i.e. a 3-body scalar). Notably, dis-
tances and angles alone are incomplete descriptors of local geometry [34, 35]. Therefore, I-HASH(k)

with lower k makes the colouring weaker.

3

On the Expressive Power of Geometric Graph Neural Networks

Figure 2: Invariant GWL Test. IGWL cannot distinguish G1 and G2 as they are 1-hop identical:
The G-orbit of the 1-hop neighbourhood around each node is the same, and IGWL cannot propagate
geometric orientation information beyond 1-hop (here G = O(d)).

2.1 What Geometric Graphs can GWL and IGWL Distinguish?

In order to formalise the expressive power of GWL and IGWL, let us consider what geometric graphs
can and cannot be distinguished by the tests. As a simple first observation, we note that when all
coordinates and vectors are set equal to zero GWL coincides with the standard WL. In this edge case,
GWL has the same expressive power as WL.

Next, let us consider consider the simplified setting of two geometric graphs G1 = (A1,S1, V⃗1, X⃗1)

and G2 = (A2,S2, V⃗2, X⃗2) such that the underlying attributed graphs (A1,S1) and (A2,S2) are iso-
morphic. This case frequently occurs in chemistry, where molecules occur in different conformations,
but with the same graph topology given by the covalent bonding structure. Recall that each iteration of
GWL aggregates geometric information g

(k)
i from progressively larger neighbourhoods N (k)

i around
the node i, and distinguishes (sub-)graphs via comparing G-orbit injective colouring of g(k)

i . We say
G1 and G2 are k-hop distinct if for all graph isomorphisms b, there is some node i ∈ V1, b(i) ∈ V2

such that the corresponding k-hop subgraphs N (k)
i and N (k)

b(i) are distinct. Otherwise, we say G1 and

G2 are k-hop identical if all N (k)
i and N (k)

b(i) are identical up to group actions.

We can now formalise what geometric graphs can and cannot be distinguished by GWL. Proofs are
available in Appendix D.1.
Proposition 1. GWL can distinguish any k-hop distinct geometric graphs G1 and G2 where the
underlying attributed graphs are isomorphic, and k iterations are sufficient.
Proposition 2. Up to k iterations, GWL cannot distinguish any k-hop identical geometric graphs G1

and G2 where the underlying attributed graphs are isomorphic.

Additionally, we can state the following results about the more constrained IGWL.
Proposition 3. IGWL can distinguish any 1-hop distinct geometric graphs G1 and G2 where the
underlying attributed graphs are isomorphic, and 1 iteration is sufficient.
Proposition 4. Any number of iterations of IGWL cannot distinguish any 1-hop identical geometric
graphs G1 and G2 where the underlying attributed graphs are isomorphic.

An example illustrating Propositions 1 and 4 is shown in Figures 1 and 2, respectively.

We can now consider the more general case where the underlying attributed graphs for G1 =

(A1,S1, V⃗1, X⃗1) and G2 = (A2,S2, V⃗2, X⃗2) are non-isomorphic and constructed from point clouds
using radial cutoffs, as conventional for biochemistry and material science applications.
Proposition 5. Assuming geometric graphs are constructed from point clouds using radial cutoffs,
GWL can distinguish any geometric graphs G1 and G2 where the underlying attributed graphs are
non-isomorphic. At most kMax iterations are sufficient, where kMax is the maximum graph diameter
among G1 and G2.

These results enable us to compare the expressive powers of GWL and IGWL.

4

On the Expressive Power of Geometric Graph Neural Networks

Theorem 6. GWL is strictly more powerful than IGWL.

This statement formalises the advantage of G-equivariant intermediate layers for graphs and geometric
data, as prescribed in the Geometric Deep Learning blueprint [6], in addition to echoing similar
intuitions in the computer vision community. As remarked by Hinton et al. [32], translation invariant
models do not understand the relationship between the various parts of an image (colloquially called
the “Picasso problem”). Similarly, our results point to IGWL failing to understand how the various
1-hops of a graph are stitched together.

Finally, we identify a setting where this distinction between the two approaches disappears.
Proposition 7. IGWL has the same expressive power as GWL for fully connected geometric graphs.

2.2 Characterising the Expressive Power of Geometric GNNs

We would like to characterise the maximum expressive power of geometric GNNs based on the GWL
test. Firstly, we show that any message passing G-equivariant GNN can be at most as powerful as
GWL in distinguishing non-isomorphic geometric graphs. Proofs are available in Appendix D.2.
Theorem 8. Any pair of geometric graphs distinguishable by a G-equivariant GNN is also distin-
guishable by GWL.

With a sufficient number of iterations, the output of G-equivariant GNNs can be equivalent to GWL
if certain conditions are met regarding the aggregate, update and readout functions.
Proposition 9. G-equivariant GNNs have the same expressive power as GWL if the following
conditions hold: (1) The aggregation AGG is an injective, G-equivariant multiset function. (2) The
scalar part of the update UPDs is a G-orbit injective, G-invariant multiset function. (3) The vector
part of the update UPDv is an injective, G-equivariant multiset function. (4) The graph-level readout
f is an injective multiset function.

Similar statements can be made for G-invariant GNNs and IGWL. Thus, we can directly transfer our
results about GWL and IGWL to the class of GNNs bounded by the respective tests.

This has several interesting practical implications, discussed in Appendix C. Most notably, Proposi-
tions 1, 4, and 10 highlight a critical theoretical limitation of G-invariant GNNs: their inability to
compute global and non-local geometric quantities. Our results suggest that G-equivariant GNNs
should be preferred when working with large geometric graphs such as macromolecules with thou-
sands of nodes, where message passing is restricted to local radial neighbourhoods around each node.
Motivated by these limitations, two straightforward approaches to improving G-invariant GNNs may
be: (1) pre-computing non-local geometric properties as input features; and (2) working with fully
connected geometric graphs, as Proposition 7 suggests.

3 Discussion
We propose the Geometric Weisfeiler-Leman test (GWL), a novel theoretical tool to characterise the
expressive power of geometric GNNs from the perspective of geometric graph isomorphism. We
believe our work fills a key research gap as geometric graphs come with both relational structure and
geometric attributes, making theoretical tools for standard GNNs inapplicable in this increasingly
relevant real-world setting. We use GWL to provide practical insights into the workings and theoretical
limitations of geometric GNNs. Most notably, we formalise the advantages of equivariant GNNs
over invariant GNNs: invariant models have limited expressive power as they only reason locally
via scalar quantities, while equivariant GNNs can distinguish a larger class of graphs by propagating
geometric vector quantities beyond local neighbourhoods.

Future Work. GWL provides an abstraction to study the theoretical limits of geometric GNNs. In
practice it is challenging to build provably powerful GNNs that satisfy the conditions of Proposition
9 as GWL relies on perfect colouring and aggregation functions to identify distinct neighbourhoods
and propogate their geometric orientiation information, respectively. Based on the intuitions gained
from GWL, future work will explore building maximally powerful, practical geometric GNNs for
applications in biochemistry, material science, and multiagent robotics, and better characterise the
trade-offs related to practical implementation choices.

5

On the Expressive Power of Geometric Graph Neural Networks

Acknowledgements
We would like to thank Andrew Blake, Challenger Mishra, Charles Harris, Dávid Kovács, Erik
Thiede, Gabor Csanyi, Hannes Stärk, Ilyes Batatia, Iulia Duta, Justin Tan, Mario Geiger, Petar
Veličković, Ramon Vinãs, Rob Hesselink, Soledad Villar, Weihua Hu, and the anonymous reviewers
for helpful comments and discussions. CKJ was supported by the A*STAR Singapore National
Science Scholarship (PhD). SVM was supported by the UKRI Centre for Doctoral Training in
Application of Artificial Intelligence to the study of Environmental Risks (EP/S022961/1).

References
[1] Arian Rokkum Jamasb, Ramon Viñas Torné, Eric J Ma, Yuanqi Du, Charles Harris, Kexin

Huang, Dominic Hall, Pietro Lio, and Tom Leon Blundell. Graphein - a python library
for geometric deep learning and network analysis on biomolecular structures and interaction
networks. In NeurIPS, 2022. 1

[2] Lowik Chanussot, Abhishek Das, Siddharth Goyal, Thibaut Lavril, Muhammed Shuaibi, Mor-
gane Riviere, Kevin Tran, Javier Heras-Domingo, Caleb Ho, Weihua Hu, Aini Palizhati,
Anuroop Sriram, Brandon Wood, Junwoong Yoon, Devi Parikh, C. Lawrence Zitnick, and
Zachary Ulissi. Open catalyst 2020 (oc20) dataset and community challenges. ACS Catalysis,
2021. 1

[3] Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter
Battaglia. Learning to simulate complex physics with graph networks. In ICML, 2020. 1

[4] Qingbiao Li, Fernando Gama, Alejandro Ribeiro, and Amanda Prorok. Graph neural networks
for decentralized multi-robot path planning. In IROS, 2020. 1

[5] Alexander Bogatskiy, Sanmay Ganguly, Thomas Kipf, Risi Kondor, David W Miller, Daniel
Murnane, Jan T Offermann, Mariel Pettee, Phiala Shanahan, Chase Shimmin, et al. Symmetry
group equivariant architectures for physics. arXiv preprint, 2022. 1

[6] Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric deep learning:
Grids, groups, graphs, geodesics, and gauges. arXiv preprint, 2021. 1, 5

[7] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In ICML, 2017. 1

[8] Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, and Patrick
Riley. Tensor field networks: Rotation-and translation-equivariant neural networks for 3d point
clouds. arXiv preprint, 2018. 1, 11, 12, 13

[9] Brandon Anderson, Truong Son Hy, and Risi Kondor. Cormorant: Covariant molecular neural
networks. NeurIPS, 2019. 11

[10] Bowen Jing, Stephan Eismann, Patricia Suriana, Raphael John Lamarre Townshend, and Ron
Dror. Learning from protein structure with geometric vector perceptrons. In ICLR, 2020. 8, 11,
13

[11] Victor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E (n) equivariant graph neural
networks. In ICML, 2021. 11, 12, 13

[12] Johannes Brandstetter, Rob Hesselink, Elise van der Pol, Erik J Bekkers, and Max Welling.
Geometric and physical quantities improve e(3) equivariant message passing. In ICLR, 2022. 1,
11

[13] Kristof T Schütt, Huziel E Sauceda, P-J Kindermans, Alexandre Tkatchenko, and K-R Müller.
Schnet–a deep learning architecture for molecules and materials. The Journal of Chemical
Physics, 148(24):241722, 2018. 1, 10, 12, 13

[14] Tian Xie and Jeffrey C. Grossman. Crystal graph convolutional neural networks for an accurate
and interpretable prediction of material properties. Phys. Rev. Lett., 2018.

[15] Johannes Gasteiger, Janek Groß, and Stephan Günnemann. Directional message passing for
molecular graphs. In ICLR, 2020. 1, 10, 12, 13

[16] Zuobai Zhang, Minghao Xu, Arian Jamasb, Vijil Chenthamarakshan, Aurelie Lozano, Payel
Das, and Jian Tang. Protein representation learning by geometric structure pretraining. arXiv
preprint, 2022. 1, 12

6

On the Expressive Power of Geometric Graph Neural Networks

[17] Justas Dauparas, Ivan Anishchenko, Nathaniel Bennett, Hua Bai, Robert J Ragotte, Lukas F
Milles, Basile IM Wicky, Alexis Courbet, Rob J de Haas, Neville Bethel, et al. Robust deep
learning based protein sequence design using proteinmpnn. bioRxiv, 2022. 1

[18] Kristof Schütt, Oliver Unke, and Michael Gastegger. Equivariant message passing for the
prediction of tensorial properties and molecular spectra. In ICML, 2021. 1, 2, 11, 13, 19

[19] Simon Batzner, Albert Musaelian, Lixin Sun, Mario Geiger, Jonathan P Mailoa, Mordechai
Kornbluth, Nicola Molinari, Tess E Smidt, and Boris Kozinsky. E (3)-equivariant graph neural
networks for data-efficient and accurate interatomic potentials. Nature communications, 2022.

[20] Ilyes Batatia, Dávid Péter Kovács, Gregor NC Simm, Christoph Ortner, and Gábor Csányi.
Mace: Higher order equivariant message passing neural networks for fast and accurate force
fields. arXiv preprint, 2022. 1, 11, 12, 13

[21] Johannes Gasteiger, Florian Becker, and Stephan Günnemann. Gemnet: Universal directional
graph neural networks for molecules. In NeurIPS, 2021. 2, 8, 12

[22] Yu Shi, Shuxin Zheng, Guolin Ke, Yifei Shen, Jiacheng You, Jiyan He, Shengjie Luo, Chang
Liu, Di He, and Tie-Yan Liu. Benchmarking graphormer on large-scale molecular modeling
datasets. arXiv preprint, 2022. 2, 12

[23] Ronald C Read and Derek G Corneil. The graph isomorphism disease. Journal of graph theory,
1977. 2, 9

[24] Boris Weisfeiler and Andrei Leman. The reduction of a graph to canonical form and the algebra
which appears therein. NTI, Series, 1968. 2, 9

[25] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In ICLR, 2019. 2, 9, 16

[26] Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen,
Gaurav Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural
networks. In AAAI, 2019. 2, 9, 16

[27] Zhengdao Chen, Soledad Villar, Lei Chen, and Joan Bruna. On the equivalence between graph
isomorphism testing and function approximation with gnns. NeurIPS, 2019. 2, 9

[28] Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful
graph networks. NeurIPS, 2019.

[29] Vijay Prakash Dwivedi, Chaitanya K Joshi, Thomas Laurent, Yoshua Bengio, and Xavier
Bresson. Benchmarking graph neural networks. arXiv preprint, 2020.

[30] Cristian Bodnar, Fabrizio Frasca, Yuguang Wang, Nina Otter, Guido F Montufar, Pietro Lio,
and Michael Bronstein. Weisfeiler and lehman go topological: Message passing simplicial
networks. In ICML, 2021.

[31] Cristian Bodnar, Fabrizio Frasca, Nina Otter, Yuguang Wang, Pietro Lio, Guido F Montufar,
and Michael Bronstein. Weisfeiler and lehman go cellular: Cw networks. NeurIPS, 2021. 2, 9

[32] Geoffrey Hinton, Alex Krizhevsky, and Sida D Wang. Transforming auto-encoders. In ICANN,
2011. 3, 5

[33] Ilyes Batatia, Simon Batzner, Dávid Péter Kovács, Albert Musaelian, Gregor NC Simm, Ralf
Drautz, Christoph Ortner, Boris Kozinsky, and Gábor Csányi. The design space of e (3)-
equivariant atom-centered interatomic potentials. arXiv preprint, 2022. 3, 11

[34] Albert P Bartók, Risi Kondor, and Gábor Csányi. On representing chemical environments.
Physical Review B, 2013. 3, 10

[35] Sergey N Pozdnyakov, Michael J Willatt, Albert P Bartók, Christoph Ortner, Gábor Csányi, and
Michele Ceriotti. Incompleteness of atomic structure representations. Physical Review Letters,
2020. 3, 8, 10, 19, 20

[36] Alexander V Shapeev. Moment tensor potentials: A class of systematically improvable inter-
atomic potentials. Multiscale Modeling & Simulation, 2016.

[37] Ralf Drautz. Atomic cluster expansion for accurate and transferable interatomic potentials.
Physical Review B, 2019.

7

On the Expressive Power of Geometric Graph Neural Networks

[38] Genevieve Dusson, Markus Bachmayr, Gabor Csanyi, Ralf Drautz, Simon Etter, Cas van der
Oord, and Christoph Ortner. Atomic cluster expansion: Completeness, efficiency and stability.
arXiv preprint, 2019. 8, 12

[39] Nadav Dym and Haggai Maron. On the universality of rotation equivariant point cloud networks.
In ICLR, 2020. 8

[40] Soledad Villar, David W Hogg, Kate Storey-Fisher, Weichi Yao, and Ben Blum-Smith. Scalars
are universal: Equivariant machine learning, structured like classical physics. NeurIPS, 2021. 8

[41] Julian J. McAuley, Teófilo de Campos, and Tiberio S. Caetano. Unified graph matching in
euclidean spaces. In CVPR, 2010. 8

[42] Christopher Morris, Yaron Lipman, Haggai Maron, Bastian Rieck, Nils M Kriege, Martin Grohe,
Matthias Fey, and Karsten Borgwardt. Weisfeiler and leman go machine learning: The story so
far. arXiv preprint, 2021. 9

[43] Stefanie Jegelka. Theory of graph neural networks: Representation and learning. arXiv preprint
arXiv:2204.07697, 2022. 9

[44] Anthony Zee. Group theory in a nutshell for physicists. Princeton University Press, 2016. 9

[45] Maurice Weiler, Mario Geiger, Max Welling, Wouter Boomsma, and Taco S Cohen. 3d steerable
cnns: Learning rotationally equivariant features in volumetric data. NeurIPS, 31, 2018. 11

[46] Mario Geiger and Tess Smidt. e3nn: Euclidean neural networks. arXiv preprint, 2022. 11, 13

[47] Vikas Garg, Stefanie Jegelka, and Tommi Jaakkola. Generalization and representational limits
of graph neural networks. In ICML, 2020. 11, 18

[48] Chaitanya Joshi. Transformers are graph neural networks. The Gradient, 2020. 12

[49] Sergey N Pozdnyakov and Michele Ceriotti. Incompleteness of graph convolutional neural
networks for points clouds in three dimensions. arXiv preprint, 2022. 13

[50] Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric.
In ICLR Workshop, 2019. 13

[51] Hoang Nt and Takanori Maehara. Revisiting graph neural networks: All we have is low-pass
filters. arXiv preprint, 2019. 14

[52] Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical
implications. In ICLR, 2021.

[53] Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and
Michael M. Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature.
In ICLR, 2022. 14

A Related Work

Literature on the completeness of atom-centred interatomic potentials has focused on distinguishing
1-hop local neighbourhoods (point clouds) around atoms by building spanning sets for continuous,
G-equivariant multiset functions [35–38]. Recent theoretical work on geometric GNNs and their
universality has shown that architectures such as TFN, GemNet and GVP-GNN [10, 21, 39, 40] can
be universal approximators of continuous, G-equivariant or G-invariant multiset functions over point
clouds, i.e. fully connected graphs. In contrast, the GWL framework studies the expressive power of
geometric GNNs operating on sparse graphs from the perspective of discriminating geometric graphs.
The discrimination lens is potentially more granular and practically insightful than universality.
A model may either be universal or not. On the other hand, there could be multiple degrees of
discrimination depending on the classes of geometric graphs that can and cannot be distinguished,
which our work aims to formalise.

Geometric graph matching has also been studied from the perspective of finding global isometries in
the computer vision community [41]. Our notion of geometric graph isomorphism is more general as
it considers local message passing procedures as well as both scalar and geometric node attributes.

8

On the Expressive Power of Geometric Graph Neural Networks

B Background and Preliminaries
B.1 Graph Isomorphism and the Weisfeiler-Leman Test

An attributed graph G = (A,S) is a set V of n nodes connected by edges. A denotes an n × n
adjacency matrix where each entry aij ∈ {0, 1} indicates the presence or absence of an edge
connecting nodes i and j. The matrix of scalar features S ∈ Rn×f stores attributes si ∈ Rf

associated with each node i, where the subscripts index rows and columns in the corresponding
matrices. The graph isomorphism problem asks whether two graphs are the same, but drawn
differently [23]. Two attributed graphs G,H are isomorphic (denoted G ≃ H) if there exists an
edge-preserving bijection b : V(G) → V(H) such that s(G)i = s

(H)
b(i) .

The Weisfeiler-Leman test (WL) is an algorithm for testing whether two (attributed) graphs are
isomorphic [24]. At iteration zero the algorithm assigns a colour c(0)i ∈ C from a countable space
of colours C to each node i. Nodes are coloured the same if their features are the same, otherwise,
they are coloured differently. In subsequent iterations t, WL iteratively updates the node colouring by
producing a new c

(t)
i ∈ C:

c
(t)
i := HASH

(
c
(t−1)
i , {{c(t−1)

j | j ∈ Ni}}
)
, (6)

where HASH is an injective map (i.e. a perfect hash map) that assigns a unique colour to each input.
The test terminates when the partition of the nodes induced by the colours becomes stable. Given two
graphs G and H, if there exists some iteration t for which {{c(t)i | i ∈ V(G)}} ̸= {{c(t)i | i ∈ V(H)}},
then the graphs are not isomorphic. Otherwise, the WL test is inconclusive, and we say it cannot
distinguish the two graphs.

The graph isomorphism problem and WL have become a powerful tool for characterising the
theoretical limits of GNNs [42, 43]. It was shown by Xu et al. [25], Morris et al. [26] that message
passing GNNs are at most as powerful as WL at distinguishing non-isomorphic graphs, i.e. the
expressive power of GNNs is upper-bounded by WL. GNNs can have the same expressive power as
WL if their aggregate, update, and readout are injective functions over multisets. The WL framework
has since become a major driver of progress in designing more expressive GNNs [27–31].

B.2 Group Theory

We assume basic familiarity with group theory, see Zee [44] for an overview. We denote the action of
a group G on a space X by g · x. If G acts on spaces X and Y , we say: (1) A function f : X → Y is
G-invariant if f(g · x) = f(x), i.e. the output remains unchanged under transformations of the input;
and (2) A function f : X → Y is G-equivariant if f(g · x) = g · f(x), i.e. a transformation of the
input must result in the output transforming equivalently.

We also consider G-orbit injective functions. The G-orbit of x ∈ X is OG(x) = {g·x | g ∈ G} ⊆ X .
When x and x′ are part of the same orbit, we write x ≃ x′. We say a function f : X → Y is G-orbit
injective if we have f(x1) = f(x2) if and only if x1 ≃ x2 for any x1, x2 ∈ X . Necessarily, such a
function is G-invariant, since f(g · x) = f(x).

We work with the permutation group over n elements Sn and the Lie groups G = SO(d) or
G = O(d). Invariance to the translation group T (d) is conventionally handled using relative positions
or by subtracting the centre of mass from all nodes positions. Given one of the standard groups above,
for an element g we denote by Mg (or another capital letter) its standard matrix representation.

B.3 Geometric Graphs

A geometric graph G = (A,S, V⃗ , X⃗) is an attributed graph that is also decorated with geometric
attributes: node coordinates X⃗ ∈ Rn×d and (optionally) vector features V⃗ ∈ Rn×d (e.g. velocity,
acceleration). Without loss of generality, we work with a single vector feature per node. Our setup
generalises to multiple vector features or higher-order tensors. In biochemistry and material science,
the conventional procedure for constructing the geometric graph G = (A,S, V⃗ , X⃗) is via the
underlying point cloud (S, V⃗ , X⃗) using a predetermined radial cutoff r. Thus, the adjacency matrix
is defined as aij = 1 if ∥x⃗i − x⃗j∥2 ≤ r, or 0 otherwise, for all aij ∈ A.

9

On the Expressive Power of Geometric Graph Neural Networks

The geometric attributes transform as follows under the action of the relevant groups.

• The permutation group Sn acts via a permutation matrix Pσ on the graph attributes as PσG :=

(PσAP⊤
σ ,PσS,PσV⃗ ,PσX⃗);

• The group of rotation SO(d) or rotations and reflections O(d), denoted interchangeably by G,
acts via an orthogonal transformation matrix Qg ∈ G on the vector feature V⃗ as V⃗ Qg, and on
the coordinates X⃗ as X⃗Qg;

• The group of translations T (d) acts via a translation vector t⃗ ∈ T (d) on the coordinates X⃗ as
x⃗i + t⃗ for all nodes i.

Two geometric graphs G and H are geometrically isomorphic if there exists an attributed graph
isomorphism b such that the geometric attributes are equivalent, up to global group actions Qg ∈ G

and t⃗ ∈ T (d):(
s
(G)
i , v⃗

(G)
i , x⃗

(G)
i

)
=

(
s
(H)
b(i) , Qgv⃗

(H)
b(i) , Qg(x⃗

(H)
b(i) + t⃗)

)
for all i ∈ V(G). (7)

Geometric graph isomorphism and distinguishing (sub-)graph geometries has important practical
implications for representation learning. For e.g., in molecular systems, an ideal architecture should
map distinct local structural environments around atoms to distinct embeddings in representation
space [34, 35].

B.4 Geometric Graph Neural Networks

GNNs specialised for geometric graphs can be categorised according to the type of intermediate
representations: (1) Equivariant models, where the intermediate features and propagated messages are
geometric quantities; and (2) Invariant models, which only propagate local invariant scalar features
such as distances and angles.

G-invariant GNNs. G-invariant GNN layers aggregate scalar quantities from local neighbourhoods
via scalarising the geometric information. Scalar features are update from iteration t to t + 1 via
learnable aggregate and update functions, AGG and UPD, respectively:

s
(t+1)
i := UPD

(
s
(t)
i , AGG

(
{{(s(t)i , s

(t)
j , v⃗i, v⃗j , x⃗ij) | j ∈ Ni}}

))
. (8)

For e.g., SchNet [13] uses relative distances ∥x⃗ij∥ to scalarise local geometric information:

s
(t+1)
i := s

(t)
i +

∑
j∈Ni

f1

(
s
(t)
j , ∥x⃗ij∥

)
(SchNet) (9)

DimeNet [15] uses both distances and angles x⃗ij · x⃗ik among triplets, as follows:

s
(t+1)
i :=

∑
j∈Ni

f1

(
s
(t)
i , s

(t)
j ,

∑
k∈Ni\{j}

f2

(
s
(t)
j , s

(t)
k , ∥x⃗ij∥, x⃗ij · x⃗ik

))
(DimeNet) (10)

The updated scalar features are both G-invariant and T (d)-invariant as the only geometric information
used are the relative distances and angles, both of which remain unchanged under the action of G or
translations. For both G-invariant and G-equivariant architectures (described subsequently), the scalar
features {s(T)

i } at the final iteration T are mapped to graph-level features via a permutation-invariant
readout f : Rn×f → Rf ′

.

G-equivariant GNNs using cartesian vectors. G-equivariant GNN layers update both scalar and
vector features by propagating scalar as well as vector messages, m(t)

i and m⃗
(t)
i , respectively:

m
(t)
i , m⃗

(t)
i := AGG

(
{{(s(t)i , s

(t)
j , v⃗

(t)
i , v⃗

(t)
j , x⃗ij) | j ∈ Ni}}

)
(Aggregate) (11)

s
(t+1)
i , v⃗

(t+1)
i := UPD

(
(s

(t)
i , v⃗

(t)
i) , (m

(t)
i , m⃗

(t)
i)

)
(Update) (12)

10

On the Expressive Power of Geometric Graph Neural Networks

For e.g., PaiNN [18] interaction layers aggregate scalar and vector features via learnt filters condi-
tioned on the relative distance:

m
(t)
i := s

(t)
i +

∑
j∈Ni

f1

(
s
(t)
j , ∥x⃗ij∥

)
(13)

m⃗
(t)
i := v⃗

(t)
i +

∑
j∈Ni

f2

(
s
(t)
j , ∥x⃗ij∥

)
⊙ v⃗

(t)
j +

∑
j∈Ni

f3

(
s
(t)
j , ∥x⃗ij∥

)
⊙ x⃗ij (14)

E-GNN [11] and GVP-GNN [10] use similar operations. The update step applies a gated non-linearity
[45] on the vector features, which learns to scale their magnitude using their norm concatenated with
the scalar features:

s
(t+1)
i := m

(t)
i + f4

(
m

(t)
i , ∥m⃗(t)

i ∥
)
, v⃗

(t+1)
i := m⃗

(t)
i + f5

(
m

(t)
i , ∥m⃗(t)

i ∥
)
⊙ m⃗

(t)
i . (15)

The updated scalar features are both G-invariant and T (d)-invariant as the only geometric information
used is the relative distances, while the updated vector features are G-equivariant and T (d)-invariant
as they aggregate G-equivariant, T (d)-invariant vector quantities from the neighbours.

G-equivariant GNNs using spherical tensors. Another example of G-equivariant GNNs is the
e3nn framework [46], which can be used to instantiate Tensor Field Network [8], Cormorant [9],
SEGNN [12], and MACE [20]. These models use higher order spherical tensors h̃i,l ∈ R2l+1×f as
node feature, starting from order l = 0 up to arbitrary l = L. The first two orders correspond to
scalar features si and vector features v⃗i, respectively. The higher order tensors h̃i are updated via
tensor products of neighbourhood features h̃j for all j ∈ Ni with the higher order spherical harmonic
representations Y of the relative displacement x⃗ij

∥x⃗ij∥ = x̂ij :

h̃
(t+1)
i := h̃

(t)
i +

∑
j∈Ni

Y (x̂ij)⊗w h̃
(t)
j , (16)

where the weights w of the tensor product are computed via a learnt radial basis function of the
relative distance, i.e. w = f (∥x⃗ij∥). To obtain the entry m3 ∈ {−l3, . . . ,+l3} for the order-l3 part
of the updated higher order tensors h̃(t+1)

i , we can expand the tensor product in equation 16 as:

h̃
(t+1)
i,l3m3

:= h̃
(t)
i,l3m3

+

l3m3∑
l1m1,l2m2

Cl3m3

l1m1,l2m2

∑
j∈Ni

fl1l2l3 (∥x⃗ij∥)Y m1

l1
(x̂ij) h̃

(t)
j,l2m2

, (17)

where Cl3m3

l1m1,l2m2
are the Clebsch-Gordan coefficients ensuring that the updated features are equiv-

ariant. Notably, when restricting the tensor product to only scalars (up to l = 0), we obtain updates
of the form similar to equation 9. Similarly, when using only scalars and vectors (up to l = 1), we
obtain updates of the form similar to equation 13, equation 14 and equation 15.

C Understanding the Design Space of Geometric GNNs via GWL
Overview. We can use the GWL framework to better understand key design choices for building
geometric GNNs [33]: (1) Depth or number of layers; and (2) Body order of invariant scalars. In doing
so, we formalise theoretical limitations of current architectures and provide practical implications.
Proofs are available in Appendix D.3.

C.1 Role of Depth: Propagating Geometric Information

Each iteration of GWL expands the neighbourhood from which geoemtric information can be gathered.
We leveraged this construction in Section 2.1 to formalise the number of GWL iterations required to
distinguish classes of geometric graphs.

Consequently, stacking multiple G-equivariant GNN layers enables the computation of compositional
geometric features. This can be understood via a geometric version of computation trees [47], as
illustrated in Figure 3. A computation tree T (t)

i represents the maximum information contained in
GWL/IGWL colours or GNN features for node i at iteration t by an ‘unrolling’ of the message passing
procedure. GWL, IGWL, and the corresponding classes of GNNs can be intuitively understood as

11

On the Expressive Power of Geometric Graph Neural Networks

Figure 3: Geometric Computation Trees for GWL and IGWL. Unlike GWL, geometric orientation
information cannot flow from the leaves to the root in IGWL, restricting its expressive power. IGWL
cannot distinguish G1 and G2 as all 1-hop neighbourhoods are computationally identical.

colouring geometric computation trees. Critically, geometric orientation information cannot flow
from one level to another in the computation trees for IGWL and G-invariant GNNs, as they only
update scalar information.

As a result, even the most powerful G-invariant GNNs are restricted in their ability to compute global
and non-local geometric properties.
Proposition 10. IGWL and G-invariant GNNs cannot decide several geometric graph properties:
(1) perimeter, surface area, and volume of the bounding box/sphere enclosing the geometric graph;
(2) distance from the centroid or centre of mass; and (3) dihedral angles.

Practical Implications. Proposition 10, together with Propositions 1 and 4, highlight critical
theoretical limitations of G-invariant GNNs. Our results suggest that G-equivariant GNNs should
be preferred when working with large geometric graphs such as macromolecules with thousands of
nodes, where message passing is restricted to local radial neighbourhoods around each node.

Motivated by these limitations, two straightforward approaches to improving G-invariant GNNs may
be: (1) pre-computing non-local geometric properties as input features, e.g. models such as GemNet
[21] and GearNet [16] already use two-hop dihedral angles. And (2) working with fully connected
geometric graphs, as Proposition 7 suggests that G-equivariant and G-invariant GNNs can be made
equally powerful when performing all-to-all message passing. This is supported by the empirical
success of recent G-invariant ‘Graph Transformers’ [22, 48] for small molecules with tens of nodes,
where working with full graphs is tractable.

C.2 Role of Body Order: Distinguishing G-Orbits

At each iteration of GWL and IGWL, the I-HASH function assigns a G-invariant colouring to
distinct geometric neighbourhood patterns. I-HASH is an idealised G-orbit injective function which
is not necessarily continous. In geometric GNNs, this corresponds to scalarising local geometric
information when updating the scalar features; examples are shown in equation 9 and equation 10.
We can analyse the construction of the I-HASH function and the scalarisation step in geometric GNNs
via the k-body variations IGWL(k), described in Section 2.

Firstly, we formalise the relationship between the injectivity of I-HASH(k) and the maximum cardi-
nality of local neighbourhoods in a given dataset.
Proposition 11. I-HASH(m) is G-orbit injective for m = max({|Ni| | i ∈ V}), the maximum
cardinality of all local neighbourhoods Ni in a given dataset.

Practical Implications. While building provably injective I-HASH(k) functions may require
intractably high k, the hierarchy of IGWL(k) tests enable us to study the expressive power of practical
G-invariant aggregators used in current geometric GNN layers, e.g. SchNet [13], E-GNN [11],
and TFN [8] use distances, while DimeNet [15] uses distances and angles. Notably, MACE [20]
constructs a complete basis of scalars up to arbitrary body order k via Atomic Cluster Expansion [38],
which can be G-orbit injective if the conditions in Proposition 11 are met. We can state the following
about the IGWL(k) hierarchy and the corresponding GNNs.

12

On the Expressive Power of Geometric Graph Neural Networks

Proposition 12. IGWL(k) is at least as powerful as IGWL(k−1). For k ≤ 5, IGWL(k) is strictly more
powerful than IGWL(k−1).

Finally, we show that IGWL(2) is equivalent to WL when all the pairwise distances between the
nodes are the same. A similar observation was recently made by [49].
Proposition 13. Let G1 = (A1,S1, X⃗1) and G2 = (A2,S2, X⃗2) be two geometric graphs with the
property that all edges have equal length. Then, IGWL(2) distinguishes the two graphs if and only if
WL can distinguish the attributed graphs (A1,S1) and (A1,S1).

This equivalence points to limitations of distance-based G-invariant models like SchNet [13]. These
models suffer from all well-known failure cases of WL, e.g. they cannot distinguish two equilateral
triangles from the regular hexagon [15].

C.3 Synthetic Experiment on Propogating Geometric Information

k-chain geometric graphs. GWL is an abstract theoretical tool capable of perfectly aggregating
and propogating G-equivariant geometric information, which implies that the test can be run for any
number of iterations without loss of information. In geometric GNNs, G-equivariant information is
propogated via summing features from multiple layers in fixed dimensional spaces, which may lead
to distortion or loss of information from distant nodes. To study the practical implications of depth
in propagating geometric information, we consider k-chain geometric graphs which generalise the
examples from [18]. Each pair of k-chains consists of k + 2 nodes with k nodes arranged in a line
and differentiated by the orientation of the 2 end points. Thus, k-chain graphs are (⌊k

2 ⌋ + 1)-hop
distinguishable, and (⌊k

2 ⌋+ 1) GWL iterations are theoretically sufficient to distinguish them.

Setup and Hyperparameters. We experiment with the following models: (1) SchNet [13]
and DimeNet [15] as representative G-invariant GNNs; (2) E-GNN [11] and GVP-GNN [10] as
representative G-equivariant GNNs which use cartesian vectors; and (3) TFN [8] and MACE [20] to
study higher order G-equivariant GNNs using spherical tensors. For SchNet and DimeNet, we use
the implementation from PyTorch Geometric [50]. For E-GNN, GVP-GNN, and MACE, we adapt
implementations from the respective authors. Our TFN implementation is based on e3nn [46]. We
set scalar feature channels to 128 for SchNet, DimeNet, and E-GNN. We set scalar/vector/tensor

(k = 4-chains) Number of layers
GNN Layer ⌊k

2 ⌋ ⌊k
2 ⌋+ 1 = 3 ⌊k

2 ⌋+ 2 ⌊k
2 ⌋+ 3 ⌊k

2 ⌋+ 4

In
v.

IGWL 50% 50% 50% 50% 50%
SchNet 50.0 ± 0.00 50.0 ± 0.00 50.0 ± 0.00 50.0 ± 0.00 50.0 ± 0.00
DimeNet 50.0 ± 0.00 50.0 ± 0.00 50.0 ± 0.00 50.0 ± 0.00 50.0 ± 0.00

E
qu

iv
.

GWL 50% 100% 100% 100% 100%
E-GNN 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 100.0 ± 0.0
GVP-GNN 50.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
TFN 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 80.0 ± 24.5 85.0 ± 22.9
MACE 50.0 ± 0.0 90.0 ± 20.0 90.0 ± 20.0 95.0 ± 15.0 95.0 ± 15.0

Table 1: k-chain geometric graphs. k-chains are (⌊k
2 ⌋ + 1)-hop distinguishable and (⌊k

2 ⌋ + 1)
GWL iterations are theoretically sufficient to distinguish them. We train geometric GNNs with an
increasing number of layers to distinguish k = 4-chains. G-equivariant GNNs may require more
iterations that prescribed by GWL, pointing to preliminary evidence of oversmoothing and
oversquashing when geometric information is propogated across multiple layers using fixed
dimensional feature spaces. IGWL and G-invariant GNNs are unable to distinguish k-chains for
any k ≥ 2 and G = O(3). Anomolous results are marked in red and expected results in green .

13

On the Expressive Power of Geometric Graph Neural Networks

feature channels to 64 for GVP-GNN, TFN, MACE. TFN and MACE use order L = 2 tensors by
default. MACE uses local body order 4 by default. We train all models for 100 epochs using the
Adam optimiser, with an initial learning rate 1e− 4, which we reduce by a factor of 0.9 and patience
of 25 epochs when the performance plateaus. All results are averaged across 10 random seeds.

Results. In Table 1, we train G-equivariant and G-invariant GNNs with an increasing number
of layers to distinguish k-chains. Despite the supposed simplicity of the task, especially for small
chain lengths, we find that popular G-equivariant GNNs such as E-GNN and TFN may require more
iterations that prescribed by GWL. Notably, as the length of the chain gets larger than k = 4, all
G-equivariant GNNs tended to lose performance and required more than (⌊k

2 ⌋+1) iterations to solve
the task. IGWL and G-invariant GNNs are unable to distinguish k-chains.

This synthetic experiment supplements our theoretical results and points to preliminary evidence of
the oversmoothing and oversquashing phenomenon [51–53] for geometric GNNs. These issues are
most evident for E-GNN, which uses a single vector feature to aggregate and propogate geometric
information. This may have implications in modelling macromolecules where long-range interactions
often play important roles. Studying both these issues are exciting avenues for future work towards
building provably powerful, practical geometric GNNs.

D Proofs
D.1 Proofs for What GWL and IGWL can Distinguish

The following results are a consequence of the construction of GWL as well as the definitions of
k-hop distinct and k-hop identical geometric graphs. Note that k-hop distinct geometric graphs are
also (k + 1)-hop distinct. Similarly, k-hop identical geometric graphs are also (k − 1)-hop identical,
but not necessarily (k + 1)-hop distinct.

Given two distinct neighbourhoods N1 and N2, the G-orbits of the corresponding geometric multisets
g1 and g2 are mutually exclusive, i.e. OG(g1) ∩ OG(g2) ≡ ∅. By the properties of I-HASH this
implies c1 ̸= c2. Conversely, if N1 and N2 were identical up to group actions, their G-orbits would
overlap, i.e. g1 = g g2 for some g ∈ G and OG(g1) = OG(g2) ⇒ c1 = c2.
Proposition 1. GWL can distinguish any k-hop distinct geometric graphs G1 and G2 where the
underlying attributed graphs are isomorphic, and k iterations are sufficient.

Proof of Proposition 1. The k-th iteration of GWL identifies the G-orbit of the k-hop subgraph N (k)
i

at each node i via the geometric multiset g(k)
i . G1 and G2 being k-hop distinct implies that there exists

some bijection b and some node i ∈ V1, b(i) ∈ V2 such that the corresponding k-hop subgraphs N (k)
i

and N (k)
b(i) are distinct. Thus, the G-orbits of the corresponding geometric multisets g(k)

i and g
(k)
b(i) are

mutually exclusive, i.e. OG(g
(k)
i) ∩ OG(g

(k)
b(i)) ≡ ∅ ⇒ c

(k)
i ̸= c

(k)
b(i). Thus, k iterations of GWL are

sufficient to distinguish G1 and G2.

Proposition 2. Up to k iterations, GWL cannot distinguish any k-hop identical geometric graphs G1

and G2 where the underlying attributed graphs are isomorphic.

Proof of Proposition 2. The k-th iteration of GWL identifies the G-orbit of the k-hop subgraph N (k)
i

at each node i via the geometric multiset g(k)
i . G1 and G2 being k-hop identical implies that for all

bijections b and all nodes i ∈ V1, b(i) ∈ V2, the corresponding k-hop subgraphs N (k)
i and N (k)

b(i) are

identical up to group actions. Thus, the G-orbits of the corresponding geometric multisets g(k)
i and

g
(k)
b(i) overlap, i.e. OG(g

(k)
i) = OG(g

(k)
b(i)) ⇒ c

(k)
i = c

(k)
b(i). Thus, up to k iterations of GWL cannot

distinguish G1 and G2.

Proposition 3. IGWL can distinguish any 1-hop distinct geometric graphs G1 and G2 where the
underlying attributed graphs are isomorphic, and 1 iteration is sufficient.

Proof of Proposition 3. Each iteration of IGWL identifies the G-orbit of the 1-hop local neighbour-
hood N (k=1)

i at each node i. G1 and G2 being 1-hop distinct implies that there exists some bijection

14

On the Expressive Power of Geometric Graph Neural Networks

b and some node i ∈ V1, b(i) ∈ V2 such that the corresponding 1-hop local neighbourhoods N (1)
i

and N (1)
b(i) are distinct. Thus, the G-orbits of the corresponding geometric multisets g(1)

i and g
(1)
b(i) are

mutually exclusive, i.e. OG(g
(1)
i) ∩ OG(g

(1)
b(i)) ≡ ∅ ⇒ c

(1)
i ̸= c

(1)
b(i). Thus, 1 iteration of IGWL is

sufficient to distinguish G1 and G2.

Proposition 4. Any number of iterations of IGWL cannot distinguish any 1-hop identical geometric
graphs G1 and G2 where the underlying attributed graphs are isomorphic.

Proof of Proposition 4. Each iteration of IGWL identifies the G-orbit of the 1-hop local neighbour-
hood N (k=1)

i at each node i, but cannot identify G-orbits beyond 1-hop by the construction of IGWL
as no geometric information is propagated. G1 and G2 being 1-hop identical implies that for all
bijections b and all nodes i ∈ V1, b(i) ∈ V2, the corresponding 1-hop local neighbourhoods N (k)

i and
N (k)

b(i) are identical up to group actions. Thus, the G-orbits of the corresponding geometric multisets

g
(1)
i and g

(1)
b(i) overlap, i.e. OG(g

(1)
i) = OG(g

(1)
b(i)) ⇒ c

(k)
i = c

(k)
b(i). Thus, any number of IGWL

iterations cannot distinguish G1 and G2.

Proposition 5. Assuming geometric graphs are constructed from point clouds using radial cutoffs,
GWL can distinguish any geometric graphs G1 and G2 where the underlying attributed graphs are
non-isomorphic. At most kMax iterations are sufficient, where kMax is the maximum graph diameter
among G1 and G2.

Proof of Proposition 5. We assume that a geometric graph G = (A,S, V⃗ , X⃗) is constructed from a
point cloud (S, V⃗ , X⃗) using a predetermined radial cutoff r. Thus, the adjacency matrix is defined
as aij = 1 if ∥x⃗i − x⃗j∥2 ≤ r, or 0 otherwise, for all aij ∈ A. Such construction procedures are
conventional for geometric graphs in biochemistry and material science.

Given geometric graphs G1 and G2 where the underlying attributed graphs are non-isomorphic,
identify kMax the maximum of the graph diameters of G1 and G2, and chose any arbitrary nodes
i ∈ V1, j ∈ V2. We can define the kMax-hop subgraphs N (kMax)

i and N (kMax)
j at i and j, respectively.

Thus, N (kMax)
i = V1 for all i ∈ V1, and N (kMax)

j = V2 for all j ∈ V2. Due to the assumed construction

procedure of geometric graphs, N (kMax)
i and N (kMax)

j must be distinct. Otherwise, if N (kMax)
i and

N (kMax)
j were identical up to group actions, the sets (S1, V⃗1, X⃗1) and (S2, V⃗2, X⃗2) would have

yielded isomorphic graphs.

The kMax-th iteration of GWL identifies the G-orbit of the kMax-hop subgraph N (kMax)
i at each node

i via the geometric multiset g(kMax)
i . As N (kMax)

i and N (kMax)
j are distinct for any arbitrary nodes

i ∈ V1, j ∈ V2, the G-orbits of the corresponding geometric multisets g(kMax)
i and g

(kMax)
j are mutually

exclusive, i.e. OG(g
(kMax)
i) ∩ OG(g

(kMax)
j) ≡ ∅ ⇒ c

(kMax)
i ̸= c

(kMax)
j . Thus, kMax iterations of GWL

are sufficient to distinguish G1 and G2.

Theorem 6. GWL is strictly more powerful than IGWL.

Proof of Theorem 6. Firstly, we can show that the GWL class contains IGWL if GWL can learn the
identity when updating gi for all i ∈ V , i.e. g(t)

i = g
(t−1)
i = g

(0)
i ≡ (si, v⃗i). Thus, GWL is at least

as powerful as IGWL, which does not update gi.

Secondly, to show that GWL is strictly more powerful than IGWL, it suffices to show that there exist
a pair of geometric graphs that can be distinguished by GWL but not by IGWL. We may consider any
k-hop distinct geometric graphs for k > 1, where the underlying attributed graphs are isomorphic.
Proposition 1 states that GWL can distinguish any such graphs, while Proposition 4 states that IGWL
cannot distinguish them. An example is the pair of graphs in Figures 1 and 2.

Proposition 7. IGWL has the same expressive power as GWL for fully connected geometric graphs.

15

On the Expressive Power of Geometric Graph Neural Networks

Proof of Proposition 7. We will prove by contradiction. Assume that there exist a pair of fully
connected geometric graphs G1 and G2 which GWL can distinguish, but IGWL cannot.

If the underlying attributed graphs of G1 and G2 are isomorphic, by Proposition 1 and Proposition
4, G1 and G2 are 1-hop identical but k-hop distinct for some k > 1. For all bijections b and all
nodes i ∈ V1, b(i) ∈ V2, the local neighbourhoods N (1)

i and N (1)
b(i) are identical up to group actions,

and OG(g
(1)
i) = OG(g

(1)
b(i)) ⇒ c

(1)
i = c

(1)
b(i). Additionally, there exists some bijection b and

some nodes i ∈ V1, b(i) ∈ V2 such that the k-hop subgraphs N (k)
i and N (k)

b(i) are distinct, and

OG(g
(k)
i) ∩ OG(g

(k)
b(i)) ≡ ∅ ⇒ c

(k)
i ̸= c

(k)
b(i). However, as G1 and G2 are fully connected, for any k,

N (1)
i = N (k)

i and N (1)
b(i) = N (k)

b(i) are identical up to group actions. Thus, OG(g
(1)
i) = OG(g

(k)
i) =

OG(g
(1)
b(i)) = OG(g

(k)
b(i)) ⇒ c

(1)
i = c

(k)
i = c

(k)
b(i) = c

(k)
b(i). This is a contradiction.

If G1 and G2 are non-isomorphic and fully connected, for any arbitrary i ∈ V1, j ∈ V2 and any k-hop
neighbourhood, we know that N (1)

i = N (k)
i and N (1)

j = N (k)
j . Thus, a single iteration of GWL and

IGWL identify the same G-orbits and assign the same node colours, i.e. OG(g
(1)
i) = OG(g

(k)
i) ⇒

c
(1)
i = c

(k)
i and OG(g

(1)
j) = OG(g

(k)
j) ⇒ c

(1)
j = c

(k)
j . This is a contradiction.

D.2 Proofs for equivalence between GWL and Geometric GNNs

Our proofs adapt the techniques used in Xu et al. [25], Morris et al. [26] for connecting WL with
GNNs. Note that we omit including the relative position vectors x⃗ij in GWL and geometric GNN
updates for brevity, as relative positions vectors can be merged into the vector features.
Theorem 8. Any pair of geometric graphs distinguishable by a G-equivariant GNN is also distin-
guishable by GWL.

Proof of Theorem 8. Consider two geometric graphs G and H. The theorem implies that if the GNN
graph-level readout outputs f(G) ̸= f(H), then the GWL test will always determine G and H to be
non-isomorphic, i.e. G ̸= H.

We will prove by contradiction. Suppose after T iterations, a GNN graph-level readout outputs
f(G) ̸= f(H), but the GWL test cannot decide G and H are non-isomorphic, i.e. G and H always
have the same collection of node colours for iterations 0 to T . Thus, for iteration t and t + 1 for
any t = 0 . . . T − 1, G and H have the same collection of node colours {c(t)i } as well as the same

collection of neighbourhood geometric multisets
{
(c

(t)
i , g

(t)
i) , {{(c(t)j , g

(t)
j) | j ∈ Ni}}

}
up to group

actions. Otherwise, the GWL test would have produced different node colours at iteration t+ 1 for G
and H as different geometric multisets get unique new colours.

We will show that on the same graph for nodes i and k, if (c(t)i , g
(t)
i) = (c

(t)
k , g · g(t)

k), we always
have GNN features (s(t)i , v⃗

(t)
i) = (s

(t)
k ,Qgv⃗

(t)
k) for any iteration t. This holds for t = 0 because

GWL and the GNN start with the same initialisation. Suppose this holds for iteration t. At iteration
t+ 1, if for any i and k, (c(t+1)

i , g
(t+1)
i) = (c

(t+1)
k , g · g(t+1)

k), then:{
(c

(t)
i , g

(t)
i) , {{(c(t)j , g

(t)
j) | j ∈ Ni}}

}
=

{
(c

(t)
k , g · g(t)

k) , {{(c(t)j , g · g(t)
j) | j ∈ Nk}}

}
(18)

By our assumption on iteration t,{
(s

(t)
i , v⃗

(t)
i) , {{(s(t)j , v⃗

(t)
j) | j ∈ Ni}}

}
=

{
(s

(t)
k ,Qgv⃗

(t)
k) , {{(s(t)j ,Qgv⃗

(t)
j) | j ∈ Nk}}

}
(19)

As the same aggregate and update operations are applied at each node within the GNN, the same
inputs, i.e. neighbourhood features, are mapped to the same output. Thus, (s(t+1)

i , v⃗
(t+1)
i) =

(s
(t+1)
k ,Qgv⃗

(t+1)
k). By induction, if (c

(t)
i , g

(t)
i) = (c

(t)
k , g · g(t)

k), we always have GNN node
features (s(t)i , v⃗

(t)
i) = (s

(t)
k ,Qgv⃗

(t)
k) for any iteration t. This creates valid mappings ϕs, ϕv such that

s
(t)
i = ϕs(c

(t)
i) and v⃗

(t)
i = ϕv(c

(t)
i , g

(t)
i) for any i ∈ V .

16

On the Expressive Power of Geometric Graph Neural Networks

Thus, if G and H have the same collection of node colours and geometric multisets, then G and H
also have the same collection of GNN neighbourhood features{
(s

(t)
i , v⃗

(t)
i) , {{(s(t)j , v⃗

(t)
j) | j ∈ Ni}}

}
=

{
(ϕs(c

(t)
i), ϕv(c

(t)
i , g

(t)
i)) , {{(ϕs(c(t)j), ϕv(c

(t)
i , g

(t)
i)) | j ∈ Ni}}

}
Thus, the GNN will output the same collection of node scalar features {s(T)

i } for G and H and the
permutation-invariant graph-level readout will output f(G) = f(H). This is a contradiction.

Similarly, G-invariant GNNs can be at most as powerful as IGWL.
Theorem 14. Any pair of geometric graphs distinguishable by a G-invariant GNN is also distin-
guishable by IGWL.

Proof. The proof follows similarly to the proof for Theorem 8.

Proposition 9. G-equivariant GNNs have the same expressive power as GWL if the following
conditions hold: (1) The aggregation AGG is an injective, G-equivariant multiset function. (2) The
scalar part of the update UPDs is a G-orbit injective, G-invariant multiset function. (3) The vector
part of the update UPDv is an injective, G-equivariant multiset function. (4) The graph-level readout
f is an injective multiset function.

Proof of Theorem 9. Consider a GNN where the conditions hold. We will show that, with a sufficient
number of iterations t, the output of this GNN is equivalent to GWL, i.e. s(t) ≡ c(t).

Let G and H be any geometric graphs which the GWL test decides as non-isomorphic at iteration
T . Because the graph-level readout function is injective, i.e. it maps distinct multiset of node scalar
features into unique embeddings, it suffices to show that the GNN’s neighbourhood aggregation
process, with sufficient iterations, embeds G and H into different multisets of node features.

For this proof, we replace G-orbit injective functions with injective functions over the equivalence
class generated by the actions of G. Thus, all elements belonging to the same G-orbit will first be
mapped to the same representative of the equivalence class, denoted by the square brackets [. . .],
followed by an injective map. The result is G-orbit injective.

Let us assume the GNN updates node scalar and vector features as:

s
(t)
i = UPDs

([
(s

(t−1)
i , v⃗

(t−1)
i) , AGG

(
{{(s(t−1)

i , s
(t−1)
j , v⃗

(t−1)
i , v⃗

(t−1)
j) | j ∈ Ni}}

)])
(20)

v⃗
(t)
i = UPDv

(
(s

(t−1)
i , v⃗

(t−1)
i) , AGG

(
{{(s(t−1)

i , s
(t−1)
j , v⃗

(t−1)
i , v⃗

(t−1)
j) | j ∈ Ni}}

))
(21)

with the aggregation function AGG being G-equivariant and injective, the scalar update function
UPDs being G-invariant and injective, and the vector update function UPDv being G-equivariant and
injective.

The GWL test updates the node colour c(t)i and geometric multiset g(t)
i as:

c
(t)
i = hs

([
(c

(t−1)
i , g

(t−1)
i) , {{(c(t−1)

j , g
(t−1)
j) | j ∈ Ni}}

])
, (22)

g
(t)
i = hv

(
(c

(t−1)
i , g

(t−1)
i) , {{(c(t−1)

j , g
(t−1)
j) | j ∈ Ni}}

)
, (23)

where hs is a G-invariant and injective map, and hv is a G-equivariant and injective operation (e.g.
in equation 2, expanding the geometric multiset by copying).

We will show by induction that at any iteration t, there always exist injective functions φs and φv

such that s(t)i = φs(c
(t)
i) and v⃗

(t)
i = φv(c

(t)
i , g

(t)
i). This holds for t = 0 because the initial node

features are the same for GWL and GNN, c(0)i ≡ s
(0)
i and g

(0)
i ≡ (s

(0)
i , v⃗

(0)
i) for all i ∈ V(G),V(H).

Suppose this holds for iteration t. At iteration t + 1, substituting s
(t)
i with φs(c

(t)
i), and v⃗

(t)
i with

φv(c
(t)
i , g

(t)
i) gives us

s
(t+1)
i = UPDs

([
(φs(c

(t)
i), φv(c

(t)
i , g

(t)
i)) , AGG

(
{{(φs(c

(t)
i), φs(c

(t)
j), φv(c

(t)
i , g

(t)
i), φv(c

(t)
j , g

(t)
j)) | j ∈ Ni}}

)])
v⃗
(t+1)
i = UPDv

(
(φs(c

(t)
i), φv(c

(t)
i , g

(t)
i)) , AGG

(
{{(φs(c

(t)
i), φs(c

(t)
j), φv(c

(t)
i , g

(t)
i), φv(c

(t)
j , g

(t)
j)) | j ∈ Ni}}

))
17

On the Expressive Power of Geometric Graph Neural Networks

The composition of multiple injective functions is injective. Therefore, there exist some injective
functions gs and gv such that:

s
(t+1)
i = gs

([
(c

(t)
i , g

(t)
i) , {{(c(t)j , g

(t)
j) | j ∈ Ni}}

])
, (24)

v⃗
(t+1)
i = gv

(
(c

(t)
i , g

(t)
i) , {{(c(t)j , g

(t)
j) | j ∈ Ni}}

)
, (25)

We can then consider:

s
(t+1)
i = gs ◦ h−1

s hs

([
(c

(t)
i , g

(t)
i) , {{(c(t)j , g

(t)
j) | j ∈ Ni}}

])
, (26)

v⃗
(t+1)
i = gv ◦ h−1

v hv

(
(c

(t)
i , g

(t)
i) , {{(c(t)j , g

(t)
j) | j ∈ Ni}}

)
, (27)

Then, we can denote φs = gs ◦h−1
s and φv = gv ◦h−1

v as injective functions because the composition
of injective functions is injective. Hence, for any iteration t+ 1, there exist injective functions φs

and φv such that s(t+1)
i = φs

(
c
(t+1)
i

)
and v⃗

(t+1)
i = φv

(
c
(t+1)
i , g

(t+1)
i

)
.

At the T -th iteration, the GWL test decides that G and H are non-isomorphic, which means the
multisets of node colours {c(T)

i } are different for G and H. The GNN’s node scalar features
{s(T)

i } = {φs(c
(T)
i)} must also be different for G and H because of the injectivity of φs.

A weaker set of conditions is sufficient for a G-invariant GNN to be at least as expressive as IGWL.
Proposition 15. G-invariant GNNs have the same expressive power as IGWL if the following
conditions hold: (1) The aggregation ψ and update ϕ are G-orbit injective, G-invariant multiset
functions. (2) The graph-level readout f is an injective multiset function.

Proof. The proof follows similarly to the proof for Theorem 9.

D.3 Geometric GNN Design Space Proofs

Proposition 10. IGWL and G-invariant GNNs cannot decide several geometric graph properties:
(1) perimeter, surface area, and volume of the bounding box/sphere enclosing the geometric graph;
(2) distance from the centroid or centre of mass; and (3) dihedral angles.

Proof of Proposition 10. Following Garg et al. [47], we say that a class of models decides a geometric
graph property if there exists a model belonging to this class such that for any two geometric graphs
that differ in the property, the model is able to distinguish the two geometric graphs.

In Figure 4 we provide an example of two geometric graphs that demonstrate the proposition. G1 and
G2 differ in the following geometric graph properties:

• Perimeter, surface area, and volume of the bounding box enclosing the geometric graph3: (32
units, 40 units2, 16 units3) vs. (28 units, 24 units2, 8 units3).

• Multiset of distances from the centroid or centre of mass: {0.00, 1.00, 1.00, 2.45, 2.45} vs.
{0.40, 1.08, 1.08, 2.32, 2.32}.

• Dihedral angles: ∠(ljkm) =
(x⃗jk×x⃗lj)·(x⃗jk×x⃗mk)
|x⃗jk×x⃗lj ||x⃗jk×x⃗mk| are clearly different for the two graphs.

However, according to Proposition 4 and Theorem 14, both IGWL and G-invariant GNNs cannot
distinguish these two geometric graphs, and therefore, cannot decide all these properties.

We can also show this by constructing geometric computation trees for any number of IGWL or
G-invariant GNN iterations, as illustrated in Figure 3. Recall that a computation tree T (t)

i represents
the maximum information contained in GWL/IGWL colours or GNN features for node i at iteration t
by an ‘unrolling’ of the message passing procedure. Geometric computation trees are constructed

3The same result applies for the bounding sphere, not shown in the figure.

18

On the Expressive Power of Geometric Graph Neural Networks

Figure 4: Two geometric graphs for which IGWL and G-invariant GNNs cannot distinguish their
perimeter, surface area, volume of the bounding box/sphere, distance from the centroid, and dihedral
angles. The centroid is denoted by a red point and distances from it are denoted by dotted red lines.
The bounding box enclosing the geometric graph is denoted by the dotted green lines.

recursively: T (0)
i = (si, v⃗i) for all i ∈ V . For t > 0, we start with a root node (si, v⃗i) and add a

child subtree T (t−1)
j for all j ∈ Ni along with the relative position x⃗ij along the edge. To obtain

the root node’s embedding or colour, both scalar and geometric information is propagated from the
leaves up to the root. Thus, if two nodes have identical geometric computation trees, they will be
mapped to the same node embedding or colour.

Critically, geometric orientation information cannot flow from one level to another in the computation
trees for IGWL and G-invariant GNNs, as they only update scalar information. In the recursive
construction procedure, we must insert a connector node (sj , v⃗j) before adding the child subtree
T (t−1)
j for all j ∈ Ni and prevent geometric information propagation between them.

Following the construction procedure for the geometric graphs in Figure 4, we observe that the IGWL
computation trees of any pair of isomorphic nodes are identical, as all 1-hop neighbourhoods are
computationally identical. Therefore, the set of node colours or node scalar features will also be
identical, which implies that G1 and G2 cannot be distinguished.

Proposition 11. I-HASH(m) is G-orbit injective for m = max({|Ni| | i ∈ V}), the maximum
cardinality of all local neighbourhoods Ni in a given dataset.

Proof of Proposition 11. As m is the maximum cardinality of all local neighbourhoods Ni under
consideration, any distinct neighbourhoods N1 and N2 must have distinct multisets ofm-body scalars.
As I-HASH(m) computes scalars involving up to m nodes, it will be able to distinguish any such N1

and N2. Thus, I-HASH(m) is G-orbit injective.

Proposition 12. IGWL(k) is at least as powerful as IGWL(k−1). For k ≤ 5, IGWL(k) is strictly more
powerful than IGWL(k−1).

Proof of Proposition 12. By construction, I-HASH(k) computes G-invariant scalars from all possible
tuples of up to k nodes formed by the elements of a neighbourhood and the central node. Thus,
the I-HASH(k) class contains I-HASH(k−1), and I-HASH(k) is at least as powerful as I-HASH(k−1).
Thus, the corresponding test IGWL(k) is at least as powerful as IGWL(k−1).

Secondly, to show that IGWL(k) is strictly more powerful than IGWL(k−1) for k ≤ 5, it suffices to
show that there exist a pair of geometric neighbourhoods that can be distinguished by IGWL(k) but
not by IGWL(k−1):

• For k = 3 and G = O(3) or SO(3), for the local neighbourhood from Figure 1 in [18], two
configurations with different angles between the neighbouring nodes can be distinguished by
IGWL(3) but not by IGWL(2).

• For k = 4 and G = O(3) or SO(3), the pair of local neighbourhoods from Figure 1 in [35] can
be distinguished by IGWL(4) but not by IGWL(3).

• For k = 5 and G = O(3), the pair of local neighbourhoods from Figure 2(e) in [35] can be
distinguished by IGWL(5) but not by IGWL(4).

19

On the Expressive Power of Geometric Graph Neural Networks

• For k = 5 and G = SO(3), the pair of local neighbourhoods from Figure 2(f) in [35] can be
distinguished by IGWL(5) but not by IGWL(4).

Proposition 13. Let G1 = (A1,S1, X⃗1) and G2 = (A2,S2, X⃗2) be two geometric graphs with the
property that all edges have equal length. Then, IGWL(2) distinguishes the two graphs if and only if
WL can distinguish the attributed graphs (A1,S1) and (A1,S1).

Proof of Proposition 13. Let c and k the colours produced by IGWL(2) and WL, respectively, and
let i and j be two nodes belonging to any two graphs like in the statement of the result. We prove the
statement inductively.

Clearly, c(0)i = k
(0)
i for all nodes i and c(0)i = c

(0)
j if and only if k(0)i = k

(0)
j . Now, assume that the

statement holds for iteration t. That is c(t)i = c
(t)
j if and only if k(t)i = k

(t)
j holds for all i. Note that

c
(t+1)
i = c

(t+1)
j if and only if c(t)i = c

(t)
j and {{(c(t)p , ∥x⃗ip∥) | p ∈ Ni}} = {{(c(t)p , ∥x⃗jp∥) | p ∈ Nj}},

since the norm of the relative vectors is the only injective invariant that IGWL(2) can compute (up to
a scaling). Since all the norms are equal, by the induction hypothesis, this is equivalent to k(t)i = k

(t)
j

and {{k(t)p | p ∈ Ni}} = {{k(t) | p ∈ Nj}}. Therefore, this is equivalent to k(t+1)
i = k

(t+1)
j

20

	1 Introduction
	2 The Geometric Weisfeiler-Leman Test
	2.1 What Geometric Graphs can GWL and IGWL Distinguish?
	2.2 Characterising the Expressive Power of Geometric GNNs

	3 Discussion
	A Related Work
	B Background and Preliminaries
	B.1 Graph Isomorphism and the Weisfeiler-Leman Test
	B.2 Group Theory
	B.3 Geometric Graphs
	B.4 Geometric Graph Neural Networks

	C Understanding the Design Space of Geometric GNNs via GWL
	C.1 Role of Depth: Propagating Geometric Information
	C.2 Role of Body Order: Distinguishing G-Orbits
	C.3 Synthetic Experiment on Propogating Geometric Information

	D Proofs
	D.1 Proofs for What GWL and IGWL can Distinguish
	D.2 Proofs for equivalence between GWL and Geometric GNNs
	D.3 Geometric GNN Design Space Proofs

