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Abstract

Despite the widespread empirical success of ResNet, the generalization ability of
deep ResNet is rarely explored beyond the lazy-training regime. In this work, we
investigate ResNet in the limit of infinitely deep and wide neural networks, of which
the gradient flow is described by a partial differential equation in the large-neural
network limit, i.e., the mean-field regime. To derive the generalization bounds under
this setting, our analysis necessitates a shift from the conventional time-invariant
Gram matrix employed in the lazy training regime to a time-variant, distribution-
dependent version tailored to the mean-field regime. To this end, we provide a lower
bound on the minimum eigenvalue of the Gram matrix under the mean-field regime.
Besides, the traceability of the dynamic of Kullback-Leibler (KL) divergence is also
required under the mean-field regime. We therefore establish the linear convergence
of the empirical error and estimate the upper bound of the KL divergence over
parameters distribution. The above two results are employed to build the uniform
convergence for generalization bound via Rademacher complexity. Our results
offer new insights into the generalization ability of deep ResNet beyond the lazy
training regime and contribute to advancing the understanding of the fundamental
properties of deep neural networks.

1 Introduction

Deep neural networks (DNNs) have achieved great success empirically, a notable illustration of
which is ResNet [He et al., 2016], a groundbreaking network architecture with skip connections.
One typical way to theoretically understand ResNet (e.g., optimization, generalization), is based
on the neural tangent kernel (NTK) tool [Jacot et al., 2018]. Concretely, under proper assumptions,
the training dynamics of ResNet can be described by a fixed kernel function (NTK). Hence, the
global convergence and generalization guarantees can be given via NTK and the benefits of residual
connection can be further demonstrated by spectral properties of NTK [Hayou et al., 2019, Huang
et al., 2020, Hayou et al., 2021, Tirer et al., 2022]. However, the NTK analysis requires the parameters
of ResNet to not move much during training (which is called lazy training or kernel regime [Chizat
et al., 2019, Woodworth et al., 2020, Barzilai et al., 2022]). Accordingly, the NTK analysis fails to
describe the true non-linearity of ResNet.
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While previous works have obtained promising optimization results for deep ResNets, there is a
notable absence of generalization analysis, which is essential for theoretically understanding why
deep ResNet can generalize well beyond the lazy training regime. Accordingly, this naturally raises
the following question:

Can we build generalization analysis of trained Deep ResNets in the mean-field setting?

We answer this question affirmatively by providing a generalization analysis framework of deep
ResNet using Rademacher complexity.

Our contributions are summarized as below:

• The paper provides the first minimum eigenvalue estimation (lower bound) of the Gram
matrix of the gradients for deep ResNet parameterized by the ResNet encoder’s parameters
and MLP predictor’s parameters in the mean-field regime.

• The paper proves that the KL divergence of feature encoder ν and output layer ν can be
bounded by a constant (depending only on network architecture parameters) during the
training, which facilitates our generalization analysis.

• This paper builds the connection between the Rademacher complexity result and KL diver-
gence, and then derive the convergence rate O(1/

√
n) for generalization.

Our theoretical analysis provides an in-depth understanding on the global convergence under minimal
assumptions, sheds lights on the KL divergence of network measures before and after training, and
build the generalization guarantees under the mean field regime, matching classical results in the lazy
training regime [Allen-Zhu et al., 2019, Du et al., 2019b]. We expect that our analysis opens the door
to generalization analysis for feature learning and looking forward to which adaptive features can be
learned from the data under the mean field regime.

2 Problem Setting

For an integer L, we use the shorthand [L] = {1, 2, . . . , L}. Let X ⊆ Rd be a compact metric
space and Y ⊆ R. We assume that the training set Dn = {(xi, yi)}ni=1 is drawn from an unknown
distribution µ on X ×Y , and µX is the marginal distribution of µ over X . The goal of our supervised
learning task is to find a hypothesis (i.e., a ResNet used in this work) f : X → Y such that f(x;Θ)
parameterized by Θ is a good approximation of the label y ∈ Y corresponding to a new sample
x ∈ X . In this paper, we consider a binary classification task, denoted by minimizing the expected
risk, let ℓ0−1(f, y) = 1{yf < 0},

min
Θ

L0−1(Θ) := E(x,y)∼µ ℓ0−1(f(x;Θ), y) .

Note that the 0 − 1 loss is non-convex and non-smooth, and thus difficult for optimization. One
standard way in practice for training is using a surrogate loss for empirical risk minimization (ERM),
normally convex and smooth (or at least continuous), e.g., the hinge loss, the cross-entropy loss.
Interestingly, the squared loss, originally used for regression, can be also applied for classification
with good statistical properties in terms of robustness and calibration error, as systematically discussed
in Hui and Belkin [2020], Hu et al. [2022]. Therefore, we employ the squared loss in ERM for
training, let ℓ(f, y) = 1

2 (y − f)2,

min
Θ

L̂(Θ) :=
1

n

n∑
i=1

ℓ(f(xi;Θ), yi) = Ex∼Dn
ℓ(f(x;Θ), y(x)) , (1)

where Dn is the empirical measure of µX over {xi}ni=1 and note that y is a function of x.

We consider an infinite width and infinite depth ResNet parameterized by two measures: τ over the
feature encoder and ν over the output layer, respectively. To be more specific, let Zν(x, s),∀s ∈ [0, 1]
be the solution to

dz(x, s)

ds
= α ·

∫
Rkν

σ(z(x, s),θ)dν(θ, s), s ∈ [0, 1], z(x, 0) = x

which models the ResNet feature encoder. The full network will be denoted as:

fτ,ν(x) := β ·
∫
Rkτ

h(Zν(x, 1),ω)dτ(ω) , (2)

We defer the our model’s connection to discrete ResNets to Appendix C.
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3 Main results

In this section, we derive a quantitative estimation of the convergence rate of optimizing the ResNet
in the mean-field regime.

Our main results are three-fold: a) minimum eigenvalue estimation of the Gram matrix during the
training dynamics which controls the training speed; b) a quantitative estimation of KL divergence
between the weight destruction of trained ResNet with initialization; c) Rademacher complexity
generalization guarantees for the trained ResNet.

3.1 Gram Matrix and Minimum Eigenvalue

The training dynamics is governed by the Gram matrix of the coordinate tangent vectors to the
functional derivatives. We bound the minimal eigenvalue of the Gram matrix of the gradients through
the whole training dynamics, which controls the convergence speed of gradient flow.

For the ResNet parameter distribution ν, we define one Gram matrix G1(τ, ν) ∈ Rn×n by

G1(τ, ν) =

∫ 1

0

G1(τ, ν, s)ds, G1(τ, ν, s) = Eθ∼ν(·,s)J1(τ, ν,θ, s)J1(τ, ν,θ, s)
⊤ , (3)

where the row vector of J1 is defined as

(J1(τ, ν,θ, s))i,· = p⊤
ν (xi, s)∇θσ(Zν(xi, s),θ), 1 ≤ i ≤ n ,

where the dependence on τ on the right side of the equality is from the initial condition p⊤
ν (x, 1).

We also define the Gram matrix for the MLP parameter distribution τ , G2(τ, ν) ∈ Rn×n by

G2(τ, ν) = Eω∼τ(·)J2(ν,ω)J2(ν,ω)⊤ , (4)

where the row vector of J2 is defined as

(J2(ν,ω))i,· = ∇ωh(Zν(xi, 1),ω), 1 ≤ i ≤ n .

We characterize the training dynamics of the neural networks by the following theorem (the proof
deferred to Appendix E.1), which demonstrates the relationship between the gradient flow of the
loss and those of functional derivatives. From the definition of functional derivatives δL̂(τt,νt)

δνt
(θ, s)

and δL̂(τt,νt)
δτt

(ω), we immediately obtain Proposition 3.1, an extension of Theorem E.1, which
demonstrates that the training dynamics can be controlled by the corresponding Gram matrices.
Proposition 3.1. Let bt = (fτt,νt

(x1)− y(x1), · · · , fτt,νt
(xn)− y(xn)), using the Gram matrix

defined in Eq. (3) and (4), the training dynamics of L̂(τt, νt) can be written as:

dL̂(τt, νt)

dt
= −β2

n2
b⊤t (α

2G1(τt, νt) +G2(τt, νt))bt .

Our analysis mainly relies on the minimum eigenvalue of the Gram matrix, which is commonly
used in the analysis of overparameterized neural network [Arora et al., 2019, Chen et al., 2020].
The minimum eigenvalue of the Gram matrix controls the convergence rate of the gradient descent.
We remark that the Gram matrix G1(τt, νt) is always positive semi-definite for any t ≥ 0, and
G1(τ0, ν0) = 0n×n. Therefore, we only need to bound the minimum eigenvalue of G2(τt, νt). First,
we present such result under initialization, i.e., the lower bound of λmin(G2(τ0, ν0)) by the following
lemma. The proof is deferred to Appendix E.2.
Lemma 3.2. Under Assumption C.1, C.2, C.3, there exist a constant Λ := Λ(d), only depending on
the dimension d, such that λmin[G(τ0, ν0)] is lower bounded by

λ0 := λmin(G(τ0, ν0)) ≥ λmin(G2(τ0, ν0)) ≥ Λ(d) .

3.2 KL divergence between Trained network and Initialization

Based on our previous results on the minimum eigenvalue of the Gram matrix, we are ready to prove
the global convergence of the empirical loss over the weight distributions τ and ν of ResNets, and
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well control the KL divergence of them before and after training. The proofs in this subsection are
deferred to Appendix E.4.

By choosing certain α, β (independent of n), such that tmax = ∞, we restate Lemma E.9 as below,
which leads to the bound KL(τt∥τ0),KL(νt∥ν0) uniformly for all t > 0.

Theorem 3.3. Assume the PDE (14) has solution τt ∈ P2, and the PDE (16) has solution νt ∈
C(P2; [0, 1]). Under Assumption C.1, C.2, C.3, for some constant CKL dependent on d, α, taking

β̄ := β
n >

4
√

CKL(d,α)

Λrmax
, the following results hold for all t ∈ [0,∞):

L̂(τt, νt) ≤ e−
β2Λ
2n tL̂(τ0, ν0), KL(τt∥τ0) ≤

CKL(d, α)

Λ2β̄2
, KL(νt∥ν0) ≤

CKL(d, α)

Λ2β̄2
.

We also derive a lower bound for the KL divergence. In Lemma E.12, we have that the average
movement of the KL divergence is on the same order as the change in output layers.

3.3 Rademacher Complexity Bound

According to our previous estimates on the minimum eigenvalue of the Gram matrix as well as the
KL divergence, we are ready to build the generalization bound for such trained mean-field ResNets.
The proofs in this subsection are deferred to Appendix E.5.

Before we start the proof, we introduce some basic notations of Rademacher complexity. Let
DX = {xi}ni=1 be the training dataset, and η1, · · · , ηn be an i.i.d. family of Rademacher variables
taking values ±1 with equal probability. For any function set H, the global Rademacher complexity
is defined as Rn(H) := E

[
suph∈H

1
n

∑n
i=1 ηih(xi)

]
.

Let F =
{
fτ,ν(x) = β ·

∫
h(Zν(x, 1),ω)dτ(ω)

}
be the function class of infinite wide infinite

depth ResNet defined in Appendix C. We consider the following function class of infinite wide
infinite depth ResNets whose KL divergence to the initial distribution is upper bounded by some
r > 0: FKL(r) = {fτ,ν ∈ F : KL(τ∥τ0) ≤ r,KL(ν∥ν0) ≤ r}. The Rademacher complexity of
FKL(r) is given by the following lemma.

Lemma 3.4. Under Assumption C.3, if r ≤ sO(1/
√
n), the Rademacher complexity of FKL(r) can

be bounded by Rn(FKL(r)) ≲ β
√

r/n, where ≲ hides the constant dependence on d, α.

Now we consider the generalization error of the 0-1 classification problem,

Theorem 3.5 (Generalization). Assume τy ∈ C(P2; [0, 1]) and νy ∈ P2 be the ground truth
distributions, such that, y(x) = Eω∼τyh(Zνy

(x, 1),ω). Under the Assumption C.1, C.2 and C.3,
we set β > Ω(

√
n). For any δ > 0, with probability at least 1− δ, the following bound holds:

Ex∼µX
ℓ0−1(fτ⋆,ν⋆

(x), y(x)) ≲ 1/
√
n+ 6

√
log(2/δ)/2n,

where ≲ hides the constant dependence on d, α.

Remark: Our results of O(1/
√
n) matches the standard generalization error in the NTK regime [Du

et al., 2019b]. However, in contrast to setting α =
√
M,β =

√
K in Eq. (6) as the NTK regime, we

directly analyze the ResNet in the limiting infinite width depth model in Eq. (10), and select proper
choice of α, β independent of the width.

4 Conclusion

In this paper, we build the generalization bound for trained deep results beyond the NTK regime
under mild assumptions. Our results demonstrate that the KL divergence between the distribution of
parameters after training and initialization of an infinitely width and deep ResNet can be controlled
via lower bounding the eigenvalue of the Gram matrix during training. The generalization rate
at O(1/

√
n) could be improved if some advanced techniques are employed, e.g., the localized

Rademacher complexity. We leave it as the future work.
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A Overview of Appendix

We give a brief overview of the appendix here.

• Appendix D. In Appendix D.1, we prove some lemmas that will be useful. In Appendix D.2,
we provide the estimation of the activation function σ. In Appendix D.3, we provide the
prior estimation of Zν ,pν .

• Appendix E In Appendix E.1, we prove the gradient flow of dL̂
dt and dKL

dt . In Appendix E.2,
we bound the minimal eigenvalue at initialization. In Appendix E.3, we bound the perturba-
tion of minimal eigenvalue. In Appendix E.4, we bound the KL divergence in finite time,
and choose a scaling parameters to prove the main results in Theorem 3.3. In Appendix E.5,
we bound the KL divergence and provide the generalization bound.

B Related Work

In this section, we briefly introduce the large width/depth ResNets in an ODE formulation, NTK
analysis, and mean-field analysis for ResNets.

B.1 Infinite width, infinite depth ResNet, ODE

The limiting model of deep and wide ResNets can be categorized into three class, by either taking the
width or depth to infinity: a) the infinite depth limit to the ODE/SDE model [Sonoda and Murata,
2019, Weinan, 2017, Lu et al., 2018, Chen et al., 2018, Haber and Ruthotto, 2017, Marion et al.,
2023]; b) infinite width limit, [Hayou et al., 2021, Hayou and Yang, 2023, Frei et al., 2019]; c) infinite
depth width ResNets, mean-field ODE framework under the infinite depth width limit [Li et al., 2021,
Lu et al., 2020, Ding et al., 2021, 2022, Barboni et al., 2022]

In this work, we are particularly interested in mean-field ODE formulation. The deep ResNets
modeling by mean-field ODE formulation stems from [Lu et al., 2020], in which every residual
block is regarded as a particle and the target is changed to optimize over the empirical distribution
of particles. Sander et al. [2022] discusses the rationale behind such equivalence between discrete
dynamics and continuous ODE for ResNet under certain cases. The global convergence is built under
a modified cost function [Ding et al., 2021], and further improved by removing the regularization
term on the cost function [Ding et al., 2022]. However, the analysis in [Ding et al., 2022] requires
more technical assumptions about the limiting distribution. Barboni et al. [2022] show a local linear
convergence by parameterizing the network with RKHS. However, the radius of the ball containing
parameters relies on the N -universality, and is difficult to be estimated. Our work requires minimal
assumptions under a proper scaling of the network parameters and the design of architecture, and
hence foresters optimization and generalization analyses. There is a concurrent works [Marion et al.,
2023] that studies the implicit regularization of ResNets converging to ODEs, but the employed
technique is different from ours and the generalization analyse in their work is missing.

B.2 NTK analysis for deep ResNet

Jacot et al. [2018] demonstrate that the training process of wide neural networks under gradient flow
can be effectively described by the Neural Tangent Kernel (NTK) as the network’s width (denoted as
’M ’) tends towards infinity under the NTK scaling [Du et al., 2019b]. During the training, the NTK
remains unchanged and thus the theoretical analyses of neural networks can be transformed to those
of kernel methods. In this case, the optimization and generalization properties of neural networks
can be well controlled by the minimum eigenvalue of NTK [Cao and Gu, 2019, Nguyen et al., 2021].
Regarding ResNets, the architecture we are interested in, the NTK analysis is also valid [Tirer et al.,
2022, Huang et al., 2020, Belfer et al., 2021], as well as an algorithm-dependent bound [Frei et al.,
2019] in the lazy training regime. Compared with kernelized analysis of the wide neural network,
we do not rely on the convergence to a fixed kernel as the width approaches infinity to perform the
convergence and generalization analysis. Instead, under the mean field regime, the so-called kernel
falls into a time-varying, measure-dependent version. We also remark that, for a ResNet with an
infinite depth but constant width, the global convergence is given by Cont et al. [2022] beyond the
lazy training regime by studying the evolution of gradient norm. To our knowledge, this is the first
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work that analyzes the (varying) kernel eigenvalue of infinite-width/depth ResNet beyond the NTK
regime in terms of optimization and generalization.

B.3 Mean-field Analysis

Under suitable scaling limits [Mei et al., 2018, Rotskoff and Vanden-Eijnden, 2018, Sirignano and
Spiliopoulos, 2020a], as the number of neurons goes to infinity, i.e. M → ∞, neural networks work
in the mean-field limit. In this setting, the training dynamics of neural networks can be formulated
as an optimization problem over the distribution of neurons. A notable benefit of the mean-field
approach is that, after deriving a formula for the gradient flow, conventional PDE methods can be
utilized to characterize convergence behavior, which enables both nonlinear feature learning and
global convergence [Araújo et al., 2019, Fang et al., 2019, Nguyen, 2019, Du et al., 2019a, Chatterji
et al., 2021, Chizat and Bach, 2018, Mei et al., 2018, Wojtowytsch, 2020, Lu et al., 2020, Sirignano
and Spiliopoulos, 2021, 2020b, E et al., 2020, Jabir et al., 2021].

In the case of the two-layer neural network, Chizat and Bach [2018], Mei et al. [2018], Wojtowytsch
[2020], Chen et al. [2020], Barboni et al. [2022] justify the mean-field approach and demonstrate
the convergence of the gradient flow process, achieving the zero loss. For the wide shallow neural
network, Chen et al. [2022] proves the linear convergence of the training loss by virtue of the Gram
matrix. In the multi-layer case, Lu et al. [2020], Ding et al. [2021, 2022] translate the training process
of ResNet to a gradient-flow partial differential equation (PDE) and showed that with depth and width
depending algebraically on the accuracy and confidence levels, first-order optimization methods can
be guaranteed to find global minimizers that fit the training data.

In terms of the generalization of a trained neural network under the mean-field regime, current results
are limited to two-layer neural networks. For example, Chen et al. [2020] provide a generalized
NTK framework for two-layer neural networks, which exhibits a "kernel-like" behavior. Chizat and
Bach [2020] demonstrate that the limits of the gradient flow of two-layer neural networks can be
characterized as a max-margin classifier in a certain non-Hilbertian space. Our work, instead, focuses
on deep ResNets in the mean-field regime and derives the generalization analysis framework.

C From Discrete to Continuous ResNet

In this section, we present the problem setting of our deep ResNets for binary classification under the
infinite depth and width limit, which allows for parameter evolution of ResNets. Besides, several
mild assumptions are introduced for our proof.

C.1 Problem setting

For an integer L, we use the shorthand [L] = {1, 2, . . . , L}. Let X ⊆ Rd be a compact metric
space and Y ⊆ R. We assume that the training set Dn = {(xi, yi)}ni=1 is drawn from an unknown
distribution µ on X ×Y , and µX is the marginal distribution of µ over X . The goal of our supervised
learning task is to find a hypothesis (i.e., a ResNet used in this work) f : X → Y such that f(x;Θ)
parameterized by Θ is a good approximation of the label y ∈ Y corresponding to a new sample
x ∈ X . In this paper, we consider a binary classification task, denoted by minimizing the expected
risk, let ℓ0−1(f, y) = 1{yf < 0},

min
Θ

L0−1(Θ) := E(x,y)∼µ ℓ0−1(f(x;Θ), y) .

Note that the 0 − 1 loss is non-convex and non-smooth, and thus difficult for optimization. One
standard way in practice for training is using a surrogate loss for empirical risk minimization (ERM),
normally convex and smooth (or at least continuous), e.g., the hinge loss, the cross-entropy loss.
Interestingly, the squared loss, originally used for regression, can be also applied for classification
with good statistical properties in terms of robustness and calibration error, as systematically discussed
in Hui and Belkin [2020], Hu et al. [2022]. Therefore, we employ the squared loss in ERM for
training, let ℓ(f, y) = 1

2 (y − f)2,

min
Θ

L̂(Θ) :=
1

n

n∑
i=1

ℓ(f(xi;Θ), yi) = Ex∼Dn
ℓ(f(x;Θ), y(x)) , (5)
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where Dn is the empirical measure of µX over {xi}ni=1 and note that y is a function of x.

We call the probability measure ρ ∈ P2 if ρ has the finite second moment, and ρ ∈ C(P2; [0, 1]) if
ρs ∈ P2,∀s ∈ [0, 1]. For ρ1, ρ2 ∈ P2, the 2-Wasserstein distance is denoted by W2(ρ1, ρ2); and for
ρ1, ρ2 ∈ C(P2; [0, 1]), we define W2(ρ1, ρ2) := sups∈[0,1] W2(ρ

s
1, ρ

s
2).

C.2 ResNets in the inifinite depth and width limit

The continuous formulation of ResNets is a recent approach that uses differential equations to model
the behavior of the ResNet. This formulation has the advantage of enabling continuous analysis of
the ODE, which can make the analysis of ResNets easier [Lu et al., 2020, Ding et al., 2021, 2022,
Barboni et al., 2022]. We firstly consider the following ResNet [He et al., 2016] of depth L can be
formulated as z0(x) = x ∈ Rd, and

zl+1(x) = zl(x) +
α

ML

M∑
m=1

σ(zl(x),θl,m) ∈ Rd, l ∈ [L− 1] ,

fΩK ,ΘL,M
(x) =

β

K

K∑
k=1

h(zL,ωk) ∈ R ,

(6)

where x ∈ Rd is the input data, α, β ∈ R+ are the scaling factors. ΘL,M = {θl,m ∈ Rkν}L−1,M
l=0,m=0

is the parameters of the ResNet encoder σ : Rd → Rd ( activation functions are implicitly included
into σ), and ΩK = {ωk ∈ Rkτ }Kk=1 is the parameters of the predictor h : Rd → R. We introduce
a trainable MLP parametrized by ω in the end, which is different from the fixed linear predictor in
Lu et al. [2020], Ding et al. [2021, 2022]. We make the assumptions on the choices of activation
function σ and predictor h later in Assumption C.3. Different scaling of α, β leads to different
training schemes. Note that setting α =

√
M,β =

√
K corresponds to the standard scaling in the

NTK regime [Du et al., 2019b], while setting α = β = 1 corresponds to the mean field analysis [Mei
et al., 2018, Rotskoff and Vanden-Eijnden, 2018, Lu et al., 2020, Ding et al., 2022]. We will keep α, β
as a hyperparameter in our theoretical analysis and determine the choice of α, β in future discussions.
Besides, the scaling 1/L is necessary to derive the neural ODE limit [Marion et al., 2022], which has
been supported by the empirical observations from Bachlechner et al. [2021], Marion et al. [2023].

We then introduce the infinitely deep and wide ResNet which is known as the mean-field limit of
deep ResNet [Lu et al., 2020, Ma et al., 2020, Ding et al., 2022].

Infinite Depth To be specific, we re-parametrize the indices l ∈ [L] in Eq. (6) with s = l
L ∈ [0, 1].

We view z in Eq. (6) as a function in s that satisfies a coupled ODE, with 1/L being the stepsize.
Accordingly, we write θm(s) := θm(l/L) = θl,m, and ΘM (s) = {θm(s)}Mm=1. The continuous
limit of Eq. (6) by taking L → ∞ is

dz(x, s)

ds
=

α

M

M∑
m=1

σ(z(x, s),θm(s)) = α

∫
Rkν

σ(z(x, s),θ)dνM (θ, s), z(x, 0) = x , (7)

where the discrete probability νM (θ, s) is defined as νM (θ, s) := 1
M

∑M
i=1 δθm(s)(θ). Accordingly,

the empirical risk in Eq. (1) can be written as

L̂(ΩK ,ΘM ) := Ex∼Dn
ℓ(fΩK ,ΘM

(x), y(x)) . (8)

Infinite Width The mean-field limit is obtained by considering a ResNet of infinite width, i.e.
M → ∞. Denoting the limiting density of νM (θ, s) by ν(θ, s) ∈ C(P2; [0, 1]), Eq. (7) can be
written as

dz(x, s)

ds
= α ·

∫
Rkν

σ(z(x, s),θ)dν(θ, s), s ∈ [0, 1], z(x, 0) = x . (9)

We denote the solution of Eq. (9) as Zν(x, s). Besides, we also take the infinite width limit in the
final layer, i.e. K → ∞, and then the limiting density of ω is τ(ω). The whole network can be
written as

fτ,ν(x) := β ·
∫
Rkτ

h(Zν(x, 1),ω)dτ(ω) , (10)
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and the empirical loss in Eq. (1) can be defined as:

L̂(τ, ν) := Ex∼Dn
ℓ(fτ,ν(x), y(x)) . (11)

C.2.1 Parameter Evolution

In the discrete ResNet (6), consider minimizing the empirical loss L̂(ΩK ,ΘL,M ) with an infinitesi-
mally small learning rate, the updating process can be characterized by the particle gradient flow, see
Definition 2.2 in Chizat and Bach [2018]:

dΩK(t)

dt
= −K∇Ωk

L̂(ΩK(t),ΘL,M (t)), (12)

dΘL,M (t)

dt
= −LM∇ΘL,M

L̂(ΩK(t),ΘL,M (t)) , (13)

where t is the rescaled pseudo-time, which amounts to assigning a 1
K or 1

LM mass to each particle,
and is convenient to take the many-particle limit.

In the continuous ResNet (9), we use the gradient flow in the Wasserstein metric to characterize the
evolution of τ, ν [Chizat and Bach, 2018]. The evolution of the final layer distribution τ(ω) can be
characterized as

∂τ

∂t
(ω, t) = ∇ω ·

(
τ(ω, t)∇ω

δL̂(τ, ν)

δτ
(ω, t)

)
, t ≥ 0 , (14)

where

δL̂(τ, ν)

δτ
(ω) = Ex∼Dn

[β · (fτ,ν(x)− y(x)) · h(Zν(x, 1),ω)] . (15)

In addition, the evolution of the ResNet layer ν(θ, s) can be characterized as

∂ν

∂t
(θ, s, t) = ∇θ ·

(
ν(θ, s, t)∇θ

δL̂(τ, ν)

δν
(θ, s, t)

)
, t ≥ 0 . (16)

From the results in Lu et al. [2020], Ding et al. [2022, 2021], we can compute the functional derivative
as follows:

δL̂(τ, ν)

δν
(θ, s) = Ex∼Dn [β · (fτ,ν(x)− y(x)) · ω⊤ ∂Zν(x, 1)

∂Zν(x, s)

δZν(x, s)

δν
(θ, s)] (17)

= Ex∼Dn [β · (fτ,ν(x)− y(x)) · p⊤
ν (x, s) · α · σ(Zν(x, s),θ)] , (18)

where pν ∈ Rkν , parameterized by x, s, ν, is the solution to the following adjoint ODE, with initial
condition dependent on τ :

dp⊤
ν

ds
(x, s) = −α · p⊤

ν (x, s)

∫
Rkν

∇zσ(Zν(x, s),θ)dν(θ, s) , (19)

p⊤
ν (x, 1) =

∫
Rkτ

∇zh(Zν(x, 1),ω)dτ(ω) . (20)

For the linear ODE (19), we can directly obtain the explicit formula, p⊤
ν (x, s) = p⊤

ν (x, 1)qν(x, s),
where qν(x, s) is the exponentially scaling matrix defined in Eq. (21). The correctness of solution
(21) can be verified by taking the gradient w.r.t. s at both sides.

qν(x, s) = exp

(
α

∫ 1

s

∫
Rkν

∇zσ(Zν(x, s
′),θ)dν(θ, s′)

)
. (21)

C.3 Assumptions

In the following, we use the upper subscript for ResNet ODE layer s ∈ [0, 1], and the lower subscript
for training time t ∈ [0,+∞). For example, τt(ω) := τ(ω, t), and νst (θ) := ν(θ, s, t). First, we
assume the boundedness and second moment of the dataset by Assumption C.1.
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Assumption C.1 (Assumptions on data). We assume that for xi ̸= xj ∼ µX , the following holds
with probability 1,

∥xi∥2 = 1, |y(xi)| ≤ 1, ⟨xi,xj⟩ ≤ Cmax < 1 ,∀i, j ∈ [n] .

Remark: The assumption, i.e., xi,xj being not parallel, is attainable and standard in the analysis of
neural networks [Du et al., 2019b, Zhu et al., 2022].

Second, we adopt the standard Gaussian initialization for distribution τ and ν.
Assumption C.2 (Assumption on initialization). The initial distribution τ0, ν0 is standard Gaussian:
(τ0, ν0)(ω,θ, s) ∝ exp

(
−∥ω∥2

2+∥θ∥2
2

2

)
,∀s ∈ [0, 1].

Next, we adopt the following assumption on activation σ, h in terms of formulation and smoothness.
The widely used activation functions, such as Sigmoid, Tanh, satisfy this assumption.
Assumption C.3 (Assumptions on activation σ, h). Let θ := (u,w, b) ∈ Rkν , where u,w ∈
Rkν , b ∈ R, i.e. kν = 2d+ 1; ω := (a,w, b) ∈ Rkτ , where w ∈ Rkν , a, b ∈ R, i.e. kτ = d+ 2.

For any z ∈ Rkν , we assume

σ(z,θ) = uσ0(w
⊤z + b), h(z,ω) = aσ0(w

⊤z + b), σ0 : R → R. (22)
In addition, we have the following assumption on σ0. |σ0(x)| ≤ C1 max(|x|, 1), |σ′

0(x)| ≤
C1, |σ′′

0 (x)| ≤ C1, and let µi(σ0) be the i-th Hermite coefficient of σ0.

Based on our description of the evolution of deep ResNets and standard assumptions, we are ready to
present our main results on optimization and generalization in the following section.

C.4 Experiments

We validate our findings on the toy datasets “Two Spirals”, where the data dimension d = 2. We use
a neural ODE model [Poli et al., 2021] to approximate the infinite depth ResNets, where we take
the discretization L = 10. The neural ODE model and the output layer are both parametrized by a
two-layer network with the tanh activation function, and the hidden dimension is M = K = 20. The
parameters of ResNet encoder and the output layer are jointly trained by Adam optimizer with an
initial learning rate 0.01. We perform full-batch training for 1,000 steps on the training dataset of size
ntrain, and test the resulting model on the test dataset of size ntest = 1024 by the 0-1 classification
loss. We run experiments over 3 seeds and report the mean. We fit the results (after logarithm) by
ordinary least squares, and obtain the slope is −1.02 with p-value 10−5, as shown in Figure 1. That
means, the obtained rate is O(1/n), which is faster than our derived O(1/

√
n) rate. We hope we

could use some localized schemes, e.g., local Rademacher complexity, to close the gap. Nevertheless,
our experimental result demonstrates the tightness of our generalization bounds.

10 0 10

10

5

0

5

10

32 64 128
256

384
512

640
768

896
1024

ntrain

10 2

10 1

L 0
1 t

es
t e

rro
r

Figure 1: Left: "Two Spirals" datasets. Right: L0−1 test error v.s. the training dataset size ntrain

(blue), OLS fitted line (red) which is close to the O(1/n) rate with p-value 10−5.

D Useful Estimations

D.1 Useful Lemmas

Lemma D.1 (2-Wasserstein continuity for functions of quadratic growth, Proposition 1 in Polyanskiy
and Wu [2016]). Let µ, ν be two probability measures on Rd with finite second moments, and let

12



g : Rd → R be a C1 function obeying

∥∇g(w)∥2 ≤ c1∥w∥2 + c2,∀w ∈ Rd ,

for some constants c1 > 0 and c2 ≥ 0. Then

|Ew∼µg(w)− Ew∼νg(w)| ≤ (c1σ + c2)W2(µ, ν) ,

where σ2 = max{Ew∼µ∥w∥22,Ew∼ν∥w∥22}
Lemma D.2 (Corollary 2.1 in Otto and Villani [2000]). The probability measure ν0(θ) ∝
exp(−∥θ∥2

2

2 ) satisfies following Talagrand inequality (in short T ( 12 )) for any ν ∈ P2(Rkν )

W2
2 (ν, ν0) ≤ 4KL(ν∥ν0).

Lemma D.3 (Donsker-Varadhan representation [Donsker and Varadhan, 1975]). Let µ, λ be probabil-
ity measures on a measurable space (X,Σ). For any bounded, Σ-measurable functions Φ : X → R:∫

X

Φdµ ≤ KL(µ∥λ) + log

∫
X

exp(Φ)dλ.

D.2 Estimation of σ

Lemma D.4 (Boundedness of σ(z,θ)). Under Assumption C.3, for x ∈ Rd,θ ∈ Rk, we have

∥σ(z,θ)∥2 ≤ Cσ(∥z∥2 + 1)(∥θ∥22 + 1), (23)

∥∇zσ(z,θ)∥F ≤ Cσ(∥θ∥22 + 1), (24)
∥∇θσ(z,θ)∥F ≤ Cσ(∥z∥2 + 1)(∥θ∥2 + 1), (25)

∥∆θσ(z,θ)∥2 ≤ Cσ(∥z∥22 + 1)(∥θ∥2 + 1), (26)
∥∇θ(∇θσ(z,θ) · θ)∥F ≤ Cσ(∥θ∥2 + 1)(∥z∥2 + 1), (27)

∥∇θ∆θσ(z,θ)∥F ≤ Cσ(∥θ∥2 + 1)(∥z∥32 + 1), (28)

where ∆ is the Laplace operator. Let σ = (σi)
d
i=1, (∇zσ)ij = ∇zjσi, (∇θσ)ij = ∇θjσi,

(∆θσ)i = ∆θσi, (∇θσ · θ)ij = (∇θσ)ijθj .

Proof of Lemma D.4. We prove the relations directly in the following:

∥σ(z,θ)∥2 = ∥uσ0(w
⊤z + b)∥2 ≤ C1∥u∥2|w⊤z + b| ≤ C1(∥z∥2 + 1)(∥θ∥22 + 1), (29)

∥∇zσ(z,θ)∥F ≤ ∥u∥2|wσ′
0(w

⊤z + b)| ≤ ∥u∥2 · C1∥w∥2 ≤ C1(∥θ∥22 + 1). (30)

We can write ∇θσ(z,θ) ∈ Rd×k by

(∇θσ(z,θ))ij =


σ0(w

⊤z + b) j = i,

0, j ̸= i, 1 ≤ j ≤ d,

uizj−dσ
′
0(w

⊤z + b) d+ 1 ≤ j ≤ 2d,

uiσ
′
0(w

⊤z + b) j = 2d+ 1.

(31)

Therefore,

∥∇θσ(z,θ)∥2F =

d∑
i=1

[
σ2
0(w

⊤z + b) + u2
i (σ

′
0(w

⊤z + b))2
(
1 + ∥z∥22

)]
≤ dC2

1 (∥w∥2∥z∥2 + b)2 + C2
1∥u∥22(1 + ∥z∥22)

≤ 2dC2
1 (∥w∥22∥z∥22 + b2) + C2

1∥u∥22(1 + ∥z∥22)
≤ 2dC2

1 (1 + ∥z∥22)(∥w∥22 + ∥u∥22 + b2 + 1)

= 2dC2
1 (1 + ∥z∥22)(1 + ∥θ∥22) ≤ 2dC2

1 (1 + ∥z∥)2(1 + ∥θ∥2)2.

Therefore,

∥∇θσ(z,θ)∥F ≤
√
2dC1(1 + ∥z∥)(1 + ∥θ∥2). (32)
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For i ∈ [d]

|∆θσ(z,θ)i| =
∣∣ui(1 + ∥z∥22)σ′′

0 (w
⊤z + b)

∣∣ ≤ C1 · ui(∥z∥22 + 1). (33)

Therefore,

∥∆θσ(z,θ)∥2 ≤ C1(∥z∥22 + 1) ·

√√√√ d∑
i=1

u2
i ≤ C1(∥z∥22 + 1) · (∥θ∥2 + 1). (34)

By Eq. (31), we obtain

⟨∇θσ(z,θ)i,·,θ⟩ = uiσ0(w
⊤z + b) + ui(w

⊤z + b)σ′
0(w

⊤z + b), 1 ≤ i ≤ d.

Hence,

(∇θ⟨∇θσ(z,θ)i,·,θ⟩)j =


σ0(w

⊤z + b) + (w⊤z + b)σ′
0(w

⊤z + b) j = i,

0 j ̸= i, 1 ≤ j ≤ d,

uizj−d (σ
′
0(y) + (yσ′

0(y))
′) |y=w⊤z+b d+ 1 ≤ j ≤ 2d,

ui (σ
′
0(y) + (yσ′

0(y))
′) |y=w⊤z+b j = 2d+ 1.

By Assumption C.3, we have

∥∇θ⟨∇θσ(z,θ)i,·,θ⟩∥22 = (σ0(w
⊤z + b) + (w⊤z + b)σ′

0(w
⊤z + b))2

+ (ui (σ
′
0(y) + (yσ′

0(y))
′) |y=w⊤z+b)

2(1 + ∥z∥22)
≤ [2C1(∥θ∥2 + 1)(∥z∥2 + 1)]2 + 4u2

iC
2
1 (1 + ∥z∥22)

Hence,

∥∇θ⟨∇θσ(z,θ),θ⟩∥2F =

d∑
i=1

∥∇θ⟨∇θσ(z,θ)i,·,θ⟩∥22

≤ 4dC2
1 (∥θ∥2 + 1)2(∥z∥2 + 1)2 + 4∥u∥22C2

1 (∥z∥2 + 1)2

≤ (4d+ 4)C2
1 (∥θ∥2 + 1)2(∥z∥2 + 1)2 (35)

For the last part, by Eq. (33),

∇θ∆θσ(z,θ)ij =


(1 + ∥z∥22)σ′′

0 (w
⊤z + b) j = i

0 j ̸= i, 1 ≤ j ≤ d

uizj−d(1 + ∥z∥22)σ′′′(w⊤z + b) d+ 1 ≤ j ≤ 2d

ui(1 + ∥z∥22)σ′′′(w⊤z + b) j = 2d+ 1

Therefore,

∥∇θ∆θσ(z,θ)∥F ≤ C1(1 + ∥z∥22)

√√√√ d∑
i=1

1 + u2
i (1 + ∥z∥22)

≤
√
dC1(∥z∥22 + 1)1.5(∥θ∥2 + 1) ≤ 3

√
dC1(∥θ∥2 + 1)(∥z∥32 + 1) (36)

The last inequality is from that, for x > 0

x3 + 1 = x3 +
1

2
+

1

2
≥ 3

2
2
3

x, x3 + 1 = 1 +
x3

2
+

x3

2
≥ 3

2
2
3

x2,

then, we have

(1 + x2)
3
2 ≤ (1 + x2)(1 + x) = 1 + x+ x2 + x3 ≤ (1 + x3)(1 +

2
5
3

3
) < 3(1 + x3).

From Eq. (29), Eq. (30), Eq. (32), Eq. (34), Eq. (35), and Eq. (36), taking C1
σ = 4

√
dC1, the proof is

finished. We defer the definition of Cσ later.

14



Lemma D.5 (Stability of σ(z,θ)). Under Assumption C.3, for x ∈ Rd,θ ∈ Rk, we have

∥σ(z1,θ)− σ(z2,θ)∥2 ≤ Cσ · (∥θ∥22 + 1)∥z1 − z2∥2 (37)

∥∇zσ(z1,θ)−∇zσ(z2,θ)∥F ≤ Cσ · (∥θ∥22 + 1)∥z1 − z2∥2 (38)
∥∇zσ(z,θ1)−∇zσ(z,θ2)∥F ≤ Cσ · (∥θ1∥2 + ∥θ2∥2 + 1)∥θ1 − θ2∥2 (39)
∥∇θσ(z,θ1)−∇θσ(z,θ2)∥F ≤ Cσ · (∥z∥2 + 1)∥θ1 − θ2∥2 (40)

∥∇θσ(z1,θ)−∇θσ(z2,θ)∥F ≤ Cσ · (∥θ∥22 + 1)∥z1 − z2∥2 (41)

Proof of Lemma D.5. By the mean-value theorem, we have there exists ϵ ∈ [0, 1]

∥σ(z1,θ)− σ(z2,θ)∥2 ≤ ∥∇zσ(z1 + ϵ(z2 − z1),θ)∥F ∥z1 − z2∥2
≤ C1

σ · (∥θ∥22 + 1)∥z1 − z2∥2

Denote by θ = (u,w, b), we have

∥∇zσ(z1,θ)−∇zσ(z2,θ)∥F ≤ ∥uw⊤(σ′
0(w

⊤z1 + b)− σ′
0(w

⊤z2 + b))∥F
≤ C1

σ · (∥θ∥22 + 1)∥z1 − z2∥2
and

∥∇zσ(z,θ1)−∇zσ(z,θ2)∥F ≤ ∥u1w
⊤
1 σ

′
0(w

⊤
1 z + b1)− u2w

⊤
2 σ

′
0(w

⊤
2 z + b2)∥F

≤C1
σ∥u1w

⊤
1 − u2w

⊤
2 ∥F ≤ C1

σ∥(u1 − u2)(w1 −w2)
⊤ + (u1 − u2)w

⊤
2 + u1(w1 −w2)

⊤∥F
≤2C1

σ(∥θ1∥2 + ∥θ2∥2 + 1)∥θ1 − θ2∥2

In the next, we have
(∇θσ(z,θ1)−∇θσ(z,θ2))ij

=


σ0(w

⊤
1 z + b1)− σ0(w

⊤
2 z + b2) j = i,

0, j ̸= i, 1 ≤ j ≤ d,

u1
i zj−dσ

′
0(w

⊤
1 z + b1)− u2

i zj−dσ
′
0(w

⊤
2 z + b2) d+ 1 ≤ j ≤ 2d,

u1
iσ

′
0(w

⊤
1 z + b1)− u2

iσ
′
0(w

⊤
2 z + b2) j = 2d+ 1.

and then,

(∇θσ(z,θ1))ij − (∇θσ(z,θ2))ij | =


C1

σ · ∥w1 −w2∥2∥z∥2 j = i,

0, j ̸= i, 1 ≤ j ≤ d,

C1
σ · |u1

i − u2
i |zj−d d+ 1 ≤ j ≤ 2d,

C1
σ · |u1

i − u2
i | j = 2d+ 1.

Therefore,

∥∇θσ(z,θ1)−∇θσ(z,θ2)∥F ≤
√
2dC1

σ(∥z∥2 + 1) · ∥θ1 − θ2∥2.
Similarly, we have

(∇θσ(z1,θ))ij − (∇θσ(z2,θ))ij

=


σ0(w

⊤z1 + b)− σ0(w
⊤z2 + b) j = i,

0, j ̸= i, 1 ≤ j ≤ d,

uiz
1
j−dσ

′
0(w

⊤z1 + b1)− uiz
2
j−dσ

′
0(w

⊤z2 + b) d+ 1 ≤ j ≤ 2d,

uiσ
′
0(w

⊤z1 + b)− uiσ
′
0(w

⊤z2 + b) j = 2d+ 1,

and then

(∇θσ(z,θ1))ij − (∇θσ(z,θ2))ij | =


C1

σ · ∥w∥2∥z1 − z2∥2 j = i,

0, j ̸= i, 1 ≤ j ≤ d,

C1
σ · ui|z1j−d − z2j−d| d+ 1 ≤ j ≤ 2d,

C1
σ · ui∥z1 − z2∥2∥w∥2 j = 2d+ 1.

Therefore,

∥∇θσ(z1,θ)−∇θσ(z2,θ)∥F ≤
√
dC1

σ(∥θ∥22 + 1)∥z1 − z2∥2
taking C2

σ =
√
2dC1

σ , the proof is finished.
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Combined with the estimation in the proofs of Lemma D.4 and Lemma D.5, we let

Cσ := 6d · C1 (42)

D.3 Prior Estimation of ODE

The Lemma D.6 and Lemma D.7 establishes the boundedness and stability of Zν and pν with respect
to ν.
Lemma D.6 (Boundedness and Stability of Zν). Suppose that Assumption C.3 holds and that x is in
the support of X . Suppose that ν1, ν2 ∈ C(P2; [0, 1]) and Zν1 , Zν2 are the corresponding unique
solutions in Eq. (9).Then the following two bounds are satisfied for all s ∈ [0, 1]:

∥Zν1(x, s)∥2 ≤ CZ(∥ν1∥2∞;α),

and
∥Zν1

(x, s)−Zν2
(x, s)∥2 ≤ CZ(∥ν1∥2∞, ∥ν2∥2∞;α) · W2(ν1, ν2),

where CZ(∥ν1∥2∞, ∥ν2∥2∞;α) is a constant depending only on ∥ν1∥2∞, ∥ν2∥2∞ and α, and for
ν ∈ C(P2; [0, 1]), we denote by ∥ν∥2∞ := sups∈[0,1] Eθ∼ν(·,s)∥θ∥22 < ∞.

Proof of Lemma D.6. We firstly demonstrate that Eq. (9) has a unique C1 solution and then prove the
boundedness of Zν under different probability measures.

By Lemma D.5, we have∥∥∥∥∫
Rk

(σ(z1,θ)− σ(z2,θ))dν1(θ, s)

∥∥∥∥
2

≤ Cσ∥z1 − z2∥2
∫
Rk

(∥θ∥22 + 1)dν1(θ, s)

≤ Cσ∥z1 − z2∥2(∥ν1∥2∞ + 1) , (43)

which implies that
∫
Rk σ(z1,θ)dν1(θ, s) is locally Lipschitz. Combining this with the a-priori

estimate, the ODE theory implies that Eq. (9) has a unique C1 solution.

In the next, we aim to prove the boundedness of Zν . For any s ∈ [0, 1], by Eq. (23) in Lemma D.4,
we have∥∥∥∥∫

Rk

σ(z,θ)dν1(θ, s)

∥∥∥∥
2

≤
∫
Rk

∥σ(z,θ)∥2dν1(θ, s) ≤ Cσ(∥z∥2 + 1)

∫
Rk

(∥θ∥22 + 1)dν1(θ, s) .

To prove the boundedness of Zν1
, using Eq. (9) and Lemma D.4, we have

d∥Zν1
(x, s)∥22
ds

= 2Z⊤
ν1
(x, s)

dZν1
(x, s)

ds

≤ 2αCσ(∥Zν1
(x, s)∥22 + ∥Zν1

(x, s)∥2)
∫
Rk

(∥θ∥22 + 1)dν1(θ, s)

≤ 4αCσ(∥Zν1
(x, s)∥22 + 1)

∫
Rk

(∥θ∥22 + 1)dν1(θ, s).

By Grönwall’s inequality, and Zν1(x, 0) = x, we have

∥Zν1(x, s)∥2 ≤ exp

(
2αCσ

(∫ 1

0

∫
Rk

∥θ∥22dν1(θ, s) + 1

))
(∥x∥2 + 1)

≤ exp(2αCσ(∥ν1∥2∞ + 1))(∥x∥2 + 1).

By Assumption C.1, ∥x∥2 ≤ 1, we thus have a priori estimate of Zν1
. Let C1

Z(∥ν1∥2∞;α) :=
2 exp(2αCσ(∥ν1∥2∞ + 1)), we have ∥Zν1

(x, s)∥2 ≤ C1
Z(∥ν1∥2∞;α).

In the next, to estimate the difference under different measures ν1 and ν2, define

δ(x, s) = Zν1
(x, s)−Zν2

(x, s) ,

and we can easily obtain

d∥δ(x, s)∥22
ds

= 2α

〈
δ(x, s),

∫
Rk

σ(Zν1
(x, s),θ)dν1(θ, s)−

∫
Rk

σ(Zν2
(x, s),θ)dν2(θ, s)

〉
:= 2α ⟨δ(x, s), (A) + (B)⟩ , (44)
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where, by Eq. (43), we have

∥(A)∥2 :=

∥∥∥∥∫
Rk

(σ(Zν1(x, s),θ)− σ(Zν2(x, s),θ))dν1(θ, s)

∥∥∥∥
2

≤ Cσ∥δ(x, s)∥2(∥ν1∥2∞ + 1) ,

and

(B) :=

∫
Rk

σ(Zν2(x, s),θ)dν1(θ, s)−
∫
Rk

σ(Zν2(x, s),θ)dν2(θ, s) .

By Lemma D.1 and ∥∇θσ(Zν2
(x, s),θ)∥F ≤ Cσ ·(∥Zν2

(x, s),θ)∥2+1)(∥θ∥2+1), we can bound
(B) by

∥(B)∥2 ≤ Cσ · (∥Zν2(x, s),θ)∥2 + 1) · (∥θ∥2 + 1) · W2(ν
s
1 , ν

s
2)

≤ Cσ · (∥Zν2(x, s),θ)∥2 + 1) · (
√

max{∥νs1∥22, ∥νs2∥22}+ 1) · W2(ν
s
1 , ν

s
2)

≤ Cσ · (C1
Z(∥ν2∥2∞;α) + 1) · (

√
∥ν1∥2∞ + ∥ν2∥2∞ + 1)W2(ν1, ν2).

Plugging the estimate of (A) and (B) into Eq. (44), we have

d∥δ(x, s)∥22
ds

≤ 2αCσ

(
∥δ(x, s)∥22(∥ν1∥2∞ + 1)

+ ∥δ(x, s)∥2(C1
Z(∥ν1∥2∞;α) + 1)(

√
∥ν1∥2∞ + ∥ν2∥2∞ + 1) · W2(ν1, ν2)

)
≤ 2αCσ(∥δ(x, s)∥22 +W2

2 (ν1, ν2))(
√

∥ν1∥2∞ + ∥ν2∥2∞ + 1)2(C1
Z(∥ν1∥2∞;α) + 1)2 .

Since δ(x, 0) = 0, by Grönwall’s inequality, we have, ∀s ∈ [0, 1],

∥δ(x, s)∥2 ≤ (exp(αCσ)− 1) · (
√

∥ν1∥2∞ + ∥ν2∥2∞ + 1)(C1
Z(∥ν1∥2∞;α) + 1) · W2(ν1, ν2),

which concludes the proof.

Lemma D.7 (Boundedness and Stability of pν). Suppose that Assumption C.3 holds and that x
is in the support of X . Suppose that ν1, ν2 ∈ C(P2; [0, 1]) and pν1

(x, s), pν2
(x, s) are defined in

Eq. (19). Then the following three bounds are satisfied for all s ∈ [0, 1]:

∥pν1
(x, s)∥2 ≤ Cp(∥ν1∥2∞, ∥τ∥22;α), (45)

and

∥pν1
(x, s)− pν2

(x, s)∥2 ≤ Cp(∥ν1∥2∞, ∥ν2∥2∞, ∥τ∥22;α) · W2(ν1, ν2) , (46)

where Cp(∥ν1∥2∞, ∥ν2∥2∞, ∥τ∥22;α) is a constant depending only on ∥ν1∥2∞, ∥ν2∥2∞, ∥τ∥22 and α,
and for τ ∈ P2, we denote by ∥τ∥22 := Eω∼τ(·)∥τ∥22 < ∞.

Proof of Lemma D.7. For any s ∈ [0, 1], by Eq. (19) and the estimation of ∇zσ in Eq. (24), we have

d∥pν1
(x, s)∥22
ds

= 2
dp⊤

ν1
(x, s)

ds
pν1

(x, s)

≤ 2α∥p⊤
ν1
(x, s)∥22 ·

∥∥∥∥∫
Rk

∇zσ(Zν1
(x, s),θ)dν1(θ, s)

∥∥∥∥
F

≤ 2αCσ∥p⊤
ν1
(x, s)∥22

∫
Rk

(∥θ∥22 + 1)dν1(θ, s) .

It follows from the estimation of ∇zσ in Eq. (24),

∥p⊤
ν1
(x, 1)∥2 =

∥∥∥∥∫
Rkτ

∇zh(Zν1
(x, 1),ω)dτ(ω)

∥∥∥∥
2

≤ Cσ · (∥τ∥22 + 1) .

Therefore, by the Grönwall’s inequality

∥pν1
(x, s)∥2 ≤ Cσ · (∥τ∥22 + 1) · exp

(
αCσ

∫ 1

0

∫
Rk

(∥θ∥22 + 1)dν1(θ, s)

)
≤ C(∥ν1∥2∞, ∥τ∥22;α) .
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In the next, we deal with Eq. (46), define

δ2(x, s) := pν1
(x, s)− pν2

(x, s) ,

we have (taking s = 1)

∥δ2(x, 1)∥2 =

∥∥∥∥∫
Rkτ

∇zh(Zν1(x, 1),ω)−∇zh(Zν2(x, 1),ω)dτ(ω)

∥∥∥∥
2

≤ Cσ(∥τ∥22 + 1) · ∥Zν1
(x, 1)−Zν2

(x, 1)∥2
≤ C(∥ν1∥2∞, ∥ν2∥2∞, ∥τ∥22;α) · W2(ν1, ν2) .

The following ODE is satisfied by δ2(x, s) by Eq. (19),

∂δ⊤2 (x, s)

∂s
= −α · δ⊤2 (x,ω.s)

∫
Rk

∇zσ(Zν1
(x, s),θ)dν1(θ, s) + α · pν2

(x, s)⊤Dν1,ν2
(x, s) ,

with

Dν1,ν2(x, s) :=

∫
Rk

∇zσ(Zν2(x, s),θ)dν2(θ, s)−
∫
Rk

∇zσ(Zν1(x, s),θ)dν1(θ, s) .

Furthermore, we also split Dν1,ν2(x, s) as

∥Dν1,ν2(x, s)∥F ≤
∥∥∥∥∫

Rk

∇zσ(Zν2(x, s),θ)dν2(θ, s)−
∫
Rk

∇zσ(Zν2(x, s),θ)dν1(θ, s)

∥∥∥∥
F︸ ︷︷ ︸

(A)

+

∥∥∥∥∫
Rk

(∇zσ(Zν2(x, s),θ)−∇zσ(Zν1(x, s),θ)) dν1(θ, s)

∥∥∥∥
F︸ ︷︷ ︸

(B)

.

Clearly, (B) can be estimated by

(B) ≤ CZ(∥ν1∥2∞, ∥ν2∥2∞;α) · Cσ · (∥ν1∥2∞ + 1) · W2(ν1, ν2) .

To estimate (A), denote π⋆
ν ∈ Π(νs1 , ν

s
2) such that E(θ1,θ2)∼π⋆

ν
∥θ1 − θ2∥22 = W2

2 (ν
s
1 , ν

s
2), by

Lemma D.5, we then have

(A) ≤ E(θ1,θ2)∼π⋆
ν
∥∇zσ(Zν2(x, s),θ2)−∇zσ(Zν2(x, s),θ1)∥F

≤ Cσ ·
√

3E(θ1,θ2)∼π⋆
ν
∥θ1∥22 + ∥θ2∥22 + 1 ·

√
E(θ1,θ2)∼π⋆

ν
∥θ1 − θ2∥22

≤ Cσ ·
√

3(∥ν1∥2∞ + ∥ν2∥2∞ + 1) · W2(ν1, ν0) .

Combining the estimate of (A) and (B), we have

∥Dν1,ν2(x, s)∥F ≤ C(∥ν1∥2∞, ∥ν2∥2∞;α) · W2(ν1, ν2) .

Accordingly, we are ready to estimate δ2(x, s).

d∥δ2(x, s)∥22
ds

= 2

(
−α · δ⊤(x, s)

∫
Rk

∇zσ(Zν1
(x, s),θ)dν1(θ, s) + α · pν2

(x, s)⊤Dν1,ν2
(x, s)

)
δ2(x, s)

≤ 2α

(
∥δ2(x, s)∥22

(
1 +

∫
Rk

∥∇zσ(Zν1(x, s),θ)∥Fdν1(θ, s)
)
+ ∥pν2(x, s)

⊤Dν1,ν2(x, s)∥22
)

≤ α∥δ2(x, s)∥22(1 + Cσ · (1 + ∥ν1∥2∞)) + 2α[C(∥ν1∥2∞, ∥ν2∥2∞, ∥τ∥22;α)] · W2(ν1, ν2)
2

≤ C(∥ν1∥2∞, ∥ν2∥2∞, ∥τ∥22;α) · (∥δ2(x, s)∥22 +W2(ν1, ν2)
2) .

By the Grönwall’s inequality, ∥δ2(x, s)∥2 ≤ Cp(∥ν1∥2∞, ∥ν2∥2∞, ∥τ∥22;α) · W2(ν1, ν2), and the
proof is finished.
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E Main Results

E.1 Gradient Flow

Theorem E.1. The training dynamics of L̂(τt, νt) can be written as:

dL̂(τt, νt)

dt
= −

∫ 1

0

∫
Rkν

∥∥∥∥∥∇θ
δL̂(τt, νt)

δνt
(θ, s)

∥∥∥∥∥
2

2

dνt(θ, s)−
∫
Rkν

∥∥∥∥∥∇ω
δL̂(τt, νt)

δτt
(ω)

∥∥∥∥∥
2

2

dτt(ω) .

Proof of Theorem E.1. To prove Theorem E.1, we need to estimate

L̂(τt, νt)− L̂(τt0 , νt0) =
1

2
Ex∼Dn [(f̂τt,νt(x)− y(x))2 − (f̂τt0 ,νt0

(x)− y(x))2]

=Ex∼Dn
(f̂τt0 ,νt0

(x)− y(x))(f̂τt,νt
(x)− f̂τt0 ,νt0

(x)) + o(|f̂τt,νt
(x)− f̂τt0 ,νt0

(x)|),

by (a + ϵ)2 − a2 = 2aϵ + o(|ϵ|), where o(·) denotes the higher order of the error term. Then, we
estimate f̂τt,νt

(x)− f̂τt0 ,νt0
(x),

f̂τt,νt
(x)− f̂τt0 ,νt0

(x) = β ·
∫
Rkτ

h(Zνt
(x, 1),ω)dτt(ω)− h(Zνt0

(x, 1),ω)dτt0(ω)

=β ·


∫
Rkτ

h(Zνt(x, 1),ω)(dτt(ω)− dτt0(ω))︸ ︷︷ ︸
(A)

+

∫
Rkτ

(h(Zνt
(x, 1),ω)− h(Zνt0

(x, 1),ω))dτt0(ω)︸ ︷︷ ︸
(B)

 .

We estimate Zνt(x, s) in the following, in which we assume θs
t ∼ νt(·, s),θs

t0 ∼ νt0(·, s) in the
expectation. Similar to the derivation in Lu et al. [2020], Ding et al. [2022], we have

1

α
·
d(Zνt

−Zνt0
)(x, s)

ds
= E (σ(Zνt

(x, s),θs
t )− σ(Zνt0

(x, s),θs
t0))

=E (σ(Zνt(x, s),θ
s
t )− σ(Zνt0

(x, s),θs
t )) + E (σ(Zνt0

(x, s),θs
t )− σ(Zνt0

(x, s),θs
t0))

=E ∂zσ(Zνt0
(x, s),θs

t )(Zνt
(x, s)−Zνt0

(x, s)) + E ∂θσ(Zνt0
(x, s),θs

t0)(θ
s
t − θs

t0) + o(|t− t0|)
=E ∂zσ(Zνt0

(x, s),θs
t0)(Zνt(x, s)−Zνt0

(x, s)) + E ∂θσ(Zνt0
(x, s),θs

t0)(θ
s
t − θs

t0) + o(|t− t0|)
=E ∂zσ(Zνt0

(x, s),θs
t0)(Zνt

(x, s)−Zνt0
(x, s))

−E ∂θσ(Zνt0
(x, s),θs

t0)∇θ
δL̂(τt0 , νt0)

dνt0
(θs

t0 , s)(t− t0) + o(|t− t0|)

We therefore have, by the definition of qν in Eq. (21),

(Zνt −Zνt0
)(x, 1)

=−
∫ 1

0

qvt0 (x, s) · E

(
α∂θσ(Zνt0

(x, s),θs
t0)∇θ

δL̂(τt0 , νt0)

dνt0
(θ, s)

)
· (t− t0)ds+ o(|t− t0|)

and then we have ∥(Zνt
−Zνt0

)(x, 1)∥2 = O(|t− t0|). Using this fact and by the evolution of τt in
Eq. (14), we estimate (A),

(A) =

∫
Rkτ

h(Zνt0
(x, 1),ω)(dτt(ω)− dτt0(ω))

+

∫
Rkτ

(h(Zνt
(x, 1),ω)− h(Zνt0

(x, 1),ω))(dτt(ω)− dτt0(ω))

= −
∫
Rkτ

h(Zνt0
(x, 1),ω)∇ω

δL̂(τt0 , νt0)

δτt0
(ω)(t− t0)dτt0(ω) + o(|t− t0|)
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We can also estimate (B), in which h is hidden in the definition of pν in Eq. (21),

(B) =

∫
Rkτ

pνt0
(x, 1)⊤(Zνt −Zνt0

)(x, 1)dτt0(ω) + o(|t− t0|)

= −
∫
Rkτ

pνt0
(x, s)⊤(

E α∇θσ(Zνt0
(x, s),θs

t0)∇θ
δL̂(τt0 , νt0)

dνt0
(θs

t0 , s) · (t− t0)

)
dτt0(ω) + o(|t− t0|)

= −
∫
Rkτ ×Rkν×[0,1]

(
pνt0

(x, s)⊤ · α∇θσ(Zνt0
(x, s),θ)·

∇θ
δL̂(τt0 , νt0)

δνt0
(θ, s)

)
dνt0(θ, s) · (t− t0) + o(|t− t0|) .

Combine the estimation of (A) and (B), we have

L̂(τt, νt)− L̂(τt0 , νt0) = Ex∼Dn
β(f̂τt0 ,νt0

(x)− y(x))((A) + (B))

=− Ex∼Dn
β(f̂τt0 ,νt0

(x)− y(x))

∫
Rkτ ×Rk×[0,1]

dτt0(ω)dνt0(θ, s)(t− t0)

·

(
Z⊤

νt0
(x, 1)∇ω

δL̂(τt0 , νt0)

δτt0
(ω)

+ p⊤
νt0

(x, s) · α∇θσ(Zνt0
(x, s),θ)∇θ

δL̂(τt0 , νt0)

δνt0
(θ, s) + o(|t− t0|)

)

=− Eω∼τt0 ,(θ,s)∼νt0

∥∥∥∥∥∇θ
δL̂(τ, ν)

δν
(θ, s)

∥∥∥∥∥
2

2

+

∥∥∥∥∥∇ω
δL̂(τ, ν)

δτ
(ω)

∥∥∥∥∥
2

2

 (t− t0) + o(|t− t0|) ,

from the definition of functional gradient in Eq. (15) and Eq. (18). In all, the theorem is proved.

Proof of Proposition 3.1. We expand the function derivative:∫
Rkτ ×Rkν×[0,1]

∥∥∥∥∥∇θ
δL̂(τt, νt)

δνt
(θ, s)

∥∥∥∥∥
2

2

dτt(ω)dνt(θ, s)

=

∫
Rkτ ×Rkν×[0,1]

β2α2

n2

n∑
i,j=1

(f̂τt,νt
(xi)− y(xi))(f̂τt,νt

(xj)− y(xj))

· p⊤
νt
(xi, s)∇θσ(Zνt(xi, s),θ)∇⊤

θ σ(Zνt(xj , s),θ)pνt(xj , s)dτt(ω)dνt(θ, s)

=
α2β2

n2
b⊤t G1(τt, νt)bt ,

and similarly, ∫
Rkτ

∥∥∥∥∥∇ω
δL̂(τt, νt)

δτt
(ω)

∥∥∥∥∥
2

2

dτt(ω) =
β2

n2
b⊤t G2(τt, νt)bt.

In all, the lemma is proved.

Lemma E.2. The dynamics of the KL divergence KL(τt∥τ0),KL(νt∥ν0) through training can be
characterize by

dKL(τt∥τ0)
dt

:=−
∫
Rkτ

(
∇ω

δKL(τt∥τ0)
δτt

)
·

(
∇ω

δL̂(τt, νt)

δτt

)
dτt(ω) , ,

dKL(νt∥ν0)
dt

:=−
∫
Rkν×[0,1]

(
∇θ

δKL(νst ∥νs0)
δνst

)
·

(
∇θ

δL̂(τt, νt)

δνt

)
dνt(θ, s) .
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Proof of Lemma E.2. We use the expansion of the gradient flow:

dKL(τt∥τ0)
dt

=

∫
Rkτ

δKL(τt∥τ0)
δτt

dτt
dt

dω =

∫
Rkτ

δKL(τt∥τ0)
δτt

∇ ·

(
τt(ω)∇δL̂(τt, νt)

δτt

)
dω

= −
∫
Rkτ

τt(ω)

(
∇δKL(τt∥τ0)

δτt

)(
∇δL̂(τt, νt)

δτt

)
dω.

Similarly, we have

dKL(νst ∥νs0)
dt

=

∫
Rkν

δKL(νst ∥ν0t )
δνst

dνst
dt

dθ

=

∫
Rkν

δKL(νst ∥ν0t )
δνst

∇θ ·

(
νst (θ)∇θ

δL̂(τt, νt)

δνt
(θ, s)

)
dθ

= −
∫
Rkν

νst (θ)

(
∇θ

δKL(νst ∥ν0t )
δνst

)(
∇θ

δL̂(τt, νt)

δνt
(θ, s)

)
dθ.

Therefore, the proof is completed.

E.2 Minimum Eigenvalue at Initialization

Proof of Lemma 3.2. In the proof, similar to Assumption C.3, we assume θ = (u,w, b) ∈
R2d+1,ω = (a,w, b) ∈ Rd+2,u,w ∈ Rd, a, b ∈ R. At initialization, we notice that ν0(θ, s) ∝
exp

(
−∥θ∥2

2

2

)
, and τ0(ω) ∝ exp

(
−∥ω∥2

2

2

)
are standard Gaussian. Since the distribution of u, a is

symmetric, and independent from other parts of θ, ω respectively, we have

dZν0(x, s)

ds
=

∫
Rkν

u⊤σ0(w
⊤Zν0(x, s) + b)dν0(u,w, b, s)

=

∫
Rd

u⊤dν0(u)

∫
Rkν−d

σ0(w
⊤Zν0

(x, s) + b)dν0(w, b, s) = 0,∀s ∈ [0, 1],

dp⊤
ν0

ds
(x, s) = −α · p⊤

ν0
(x, s)

∫
Rkν

∇zσ(Zν0
(x, s),θ)dν0(θ, s)

= −α · p⊤
ν0
(x, s)

∫
Rkν

uw⊤σ′
0(w

⊤Zν0
(x, s) + b)dν0(u,w, b, s) = 0,

pν0(x, 1) =

∫
Rkτ

∇⊤
z h(Zν0(x, 1),ω)dτ0(ω)

=

∫
Rkτ

awσ′
0(w

⊤Zν0
(x, 1) + b)τ0(a,w, b) = 0.

From the first two equations, we have

Zν0(x, s) = x,∀s pν0(x, s) = pν0(x, 1) = 0

By the definition of G2(τ0, ν0), we have

G2(τ0, σ0) = E(a,w,b)∼N (0,I)∇ωh(X,ω)∇⊤
ωh(X,ω)

= E(a,w,b)∼N (0,I)(σ0((X,1)(w, b)), aσ′
0((X,1)(w, b)),σ′

0((X,1)(w, b)))

(σ0((X,1)(w, b)), aσ′
0((X,1)(w, b)),σ′

0((X,1)(w, b)))⊤,

≥ E(a,w,b)∼N (0,I)σ0((X,1)(w, b))σ0((X,1)(w, b))⊤ .
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Let x̄ = (x, 1), by Assumption C.1, the cosine similarity of x̄i and x̄j is no larger than (1+Cmax)/2.
Then we bound λmin(G

(2)):

λmin(G
(2)) ≥ λmin

(
Ew∼N (0,Id+1)[σ1(Xw)σ1(Xw)⊤]

)
= λmin

( ∞∑
s=0

µs(σ1)
2 ⃝s

i=1 (X̄X̄⊤)

)
[Nguyen and Mondelli, 2020, Lemma D.3]

≥ µr(σ1)
2λmin(⃝r

i=1XX⊤)

(
taking r ≥ 2 log(2n)

1− Cmax

)
≥ µr(σ1)

2

(
min
i∈[n]

∥x̄i∥2r2 − (n− 1)max
i ̸=j

|⟨x̄i, x̄j⟩|r
)

[Gershgorin circle theorem]

≥ µr(σ1)
2

(
1− (n− 1)

(
1 + Cmax

2

)r )
,

≥ µr(σ1)
2

(
1− (n− 1)

(
1− log(2n)

r

)r)
≥ µr(σ1)

2

(
1− (n− 1) exp(− log(2n))

)
≥ µr(σ1)

2/2 ,

where the last inequality holds by the fact that
(
1− log(2n)

r

)r
is an increasing function of r.

E.3 Perturbation of Minimum Eigenvalue

In this section, we analyze the minimum eigenvalue of the Gram matrix.
Lemma E.3. The perturbation of G2(τ, ν) can be upper bounded in the following, for any i, j ∈ [n],

|G2(τ, ν)−G2(τ0, ν0)|i,j ≤ CG(∥τ∥22, ∥ν∥2∞; d, α)(W2(τ, τ0) +W2(ν, ν0)),

where G2 is defined in Section 3.1, and τ0, ν0 satisfies Assumption C.2.

Proof of Lemma E.3. We deal with G2(τ, ν) in an element-wise way. Let (ω,ω0) ∼ π⋆
τ be the

optimal coupling of W2(τ, τ0), the difference can be estimated by

|G2(τ, ν)−G2(τ0, ν0)|i,j
≤E|∇ωh(Zν(xi, 1),ω)∇⊤

ωh(Zν(xj , 1),ω)−∇ωh(Zν0
(xi, 1),ω0)∇⊤

ωh(Zν0
(xj , 1),ω0)|

≤E|∇ωh(Zν(xi, 1),ω)(∇ωh(Zν(xj , 1),ω)−∇ωh(Zν0(xj , 1),ω0))
⊤|︸ ︷︷ ︸

(A)

+E|(∇ωh(Zν(xi, 1),ω)−∇ωh(Zν0
(xi, 1),ω0))∇⊤

ωh(Zν0
(xj , 1),ω0)|︸ ︷︷ ︸

(B)

.

We then estimate (A) and (B) separately. The term (A) involves

∥∇ωh(Zν(x, 1),ω)−∇ωh(Zν0
(x, 1),ω0)∥2

≤∥∇ωh(Zν(x, 1),ω)−∇ωh(Zν(x, 1),ω0)∥2 + ∥∇ωh(Zν(x, 1),ω0)−∇ωh(Zν0
(x, 1),ω0)∥2

≤Cσ · (∥Zν(x, 1)∥2 + 1) · ∥ω − ω0∥2 + Cσ · (∥ω0∥22 + 1) · ∥Zν(x, 1)−Zν0(x, 1)∥2
≤Cσ · ((CZ(∥ν∥2∞;α) + 1) · ∥ω − ω0∥2 + (∥ω0∥22 + 1) · CZ(∥ν∥2∞, ∥ν0∥2∞;α)W2(ν, ν0)) ,

where we use Lemmas D.5 and D.6 in our proof. Besides, the term (B) involves

∥∇ωh(Zν(x, 1),ω)∥2 ≤ Cσ · (∥Zν(x, 1)∥2 + 1) · (∥ω∥2 + 1)

≤ Cσ · (CZ(∥ν∥2∞;α) + 1) · (∥ω∥2 + 1).
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Therefore, by E∥ω0∥42 = 3kτ = 3(d+ 2).

(A) + (B) ≤ C(∥ν∥2∞, ∥ν0∥2∞;α)E(∥ω − ω0∥2 + (∥ω0∥22 + 1)W2(ν, ν0))(∥ω∥2 + ∥ω0∥2 + 2)

≤C(∥ν∥2∞, ∥ν0∥2∞;α)E(∥ω − ω0∥2 + (∥ω0∥22 + 1)W2(ν, ν0))(∥ω∥22 + ∥ω0∥22 + 4)

≤C(∥τ∥22, ∥τ0∥22, ∥ν∥2∞, ∥ν0∥2∞; d, α)(E∥ω − ω0∥2(∥ω∥22 + ∥ω0∥22 + 4) +W2(ν, ν0))

≤C(∥τ∥22, ∥τ0∥22, ∥ν∥2∞, ∥ν0∥2∞; d, α)[(E∥ω − ω0∥22)
1
2 (E(∥ω∥22 + ∥ω0∥22 + 4)2)

1
2 +W2(ν, ν0)]

≤C(∥τ∥22, ∥τ0∥22, ∥ν∥2∞, ∥ν0∥2∞; d, α)(W2(τ, τ0) +W2(ν, ν0)) ,

since E∥ω − ω0∥22 = (W2(τ, τ0))
2, by the definition of optimal coupling. Since ∥τ0∥22 = d +

2, ∥ν0∥2∞ = 2d+ 1, we can drop dependence of C on ∥τ0∥22, ∥ν0∥2∞ and replace them by d. In all,
the lemma is proved. Specifically, we could set

CG(∥τ∥22, ∥ν∥2∞; d, α)

:=16(d+ 1)C2
σ(CZ(∥ν∥2∞;α) + 1) + CZ(∥ν∥2∞, 2d+ 1;α))2(∥τ∥22 + d+ 1)

Lemma E.4. If ν ∈ C(P2; [0, 1]), τ ∈ P2, W2(ν, ν0) ≤
√
d, and W2(τ, τ0) ≤

√
d, we have

∀i, j ∈ [n],

|G2(τ, ν)−G2(τ0, ν0)|i,j ≤ CG(d, α) · (W2(νt, ν0) +W2(τt, τ0))

Proof of Lemma E.4. For any s ∈ [0, 1], let (θs,θs
0) ∼ π⋆

νs be the optimal coupling of W2(ν
s, νs0).

∥νs∥22 = E∥θs∥22 ≤ 2E(∥θs − θs
0∥22 + ∥θs

0∥22) = 2W2
2 (ν

s, νs0) + 2(2d+ 1) ≤ 6d+ 2.

where the last inequality holds, since W2(ν
s, νs0) ≤ W2(ν, ν0),∀s ∈ [0, 1].

We also let (ω,ω0) ∼ π⋆
τ be the optimal coupling of W2(τ, τ0).

∥τ∥22 = E∥ω∥22 ≤ 2E(∥ω − ω0∥22 + ∥ω0∥22) = 2W2
2 (τ, τ0) + 2(d+ 2) ≤ 4(d+ 1).

Therefore, ∥ν∥∞ ≤
√
6d+ 2, ∥τ∥2 ≤ 2

√
d+ 1.

By Lemma E.3, replacing ∥τ∥22, ∥ν∥2∞ with their upper bound w.r.t. d in the definition of
CG(∥τ∥22, ∥ν∥2∞; d, α), there exist CG(d, α) satisfying Lemma E.4.

Lemma E.5. If ν ∈ C(P2; [0, 1]), τ ∈ P2, W2(ν, ν0) ≤ r and W2(τ, τ0) ≤ r, we have

λmin(G2(τ, ν)) ≥
Λ

2
,with r := rmax(d, α) = min

{√
d,

Λ

4nCG(d, α)

}
.

where Λ is defined in Lemma 3.2, and CG(d, α) is defined in Lemma E.4.

Proof of Lemma E.5. By Lemma E.4, let

r := min
{√

d,
Λ

4nCG(d, α)

}
,

By Lemma 3.2, we have ∀i, j ∈ [n],

|G2(τ, ν)−G2(τ0, ν0)|i,j ≤ CG(d;α) · (W2(ν, ν0) +W2(τ, τ0)) ≤
Λ

2n
.

By the standard matrix perturbation bounds, we have

λmin(G2(τ, ν)) ≥ λmin(G2(τ0, ν0))− ∥G2(τ, ν)−G2(τ0, ν0)∥2
≥ λmin(G2(τ0, ν0))− n∥G2(τ, ν)−G2(τ0, ν0)∥∞,∞

≥ Λ

2
.
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E.4 Estimation of KL divergence.

Inspired by Lemma E.5, we propose the following definition:

Definition E.6. Define

tmax := sup{t0, s.t.∀t ∈ [0, t0],max{W2(νt, ν0),W2(τt, τ0)} ≤ rmax},

where rmax is defined in Lemma E.5.

By Lemma E.4 and Lemma E.5, for t ≤ tmax, we have max{∥νt∥2∞, ∥τt∥22} = O(d), and
λmin(G2(τt, νt)) ≥ Λ

2 .

We first prove the linear convergence of empirical loss under finite time.

Lemma E.7. Assume the PDE (14) has solution τt ∈ P2, and the PDE (16) has solution νt ∈
C(P2; [0, 1]). Under Assumption C.1, C.2, C.3, for all t ∈ [0, tmax), we have

L̂(τt, νt) ≤ e−
β2Λ
2n tL̂(τ0, ν0), KL(τt∥τ0) ≤

CKL(d, α)

Λ2β̄2
, KL(νt∥ν0) ≤

CKL(d, α)

Λ2β̄2
. (47)

Proof of Lemma E.7. Please see Lemma E.8, Lemma E.9, and Lemma E.10.

Lemma E.8. Assume τt, νt is the solution to PDE (14) and (16), we have for t < tmax,

L̂(τt, νt) ≤ e−
β2Λ
2n tL̂(τ0, ν0) ,

where Λ is defined in Lemma 3.2.

Proof of Lemma E.8. By Lemma E.5, for t < tmax, λmin(G(τt, νt)) ≥ Λ
2 ,

∂L̂(νt, τt)

∂t
= −β2

n2
b⊤t (α

2G1(τt, νt) +G2(τt, νt))bt ≤ −β2Λ

2n
L̂(τt, νt) ≤ −β2Λ

2n
L̂(τt, νt) .

Therefore, we have

L̂(τt, νt) ≤ e−
β2Λ
2n tL̂(τ0, ν0) .

Lemma E.9. Assume the PDE (16) has solution νt ∈ C(P2; [0, 1]), and the PDE (14) has solution
τt ∈ P2. Under Assumption C.3, C.1, C.2, then for all t ∈ [0, tmax), the following results hold,

KL(νst ∥νs0) ≤
1

Λ2β̄2
CKL(d, α), ∀s ∈ [0, 1].

Proof of Lemma E.9. By Gaussian initialization of νs0 , log νs0(θ) = −∥θ∥2
2

2 + C, and we thus have
∇θ

∂KL(νs
t ||ν

s
0)

∂νs
t

= ∇θ log ν
s
t + θ. Combining this with Lemma E.2 and Eq. (18), we have

∂KL(νst ||νs0)
∂t

= −Ex∼Dnβ · (fτt,νt(x)− y(x))

· α
∫
Rkτ

∇θ(p
⊤
νt
(x, s)σ(Zνt

(x, s),θ)) · (∇θ log ν
s
t + θ)dνst (θ).

Define

Js
t (x,θ) := −α · pνt

(x, s)⊤
(
∇θσ(Zνt

(x, s),θ) · θ −∆θσ(Zνt
(x, s),θ)

)
.

By the definition of Js
t (x,θ), and integration by parts, we have

∂KL(νst ||νs0)
∂t

= β · Ex∼Dn
[(fτt,νt

(x)− y(x))Eθ∼νs
t
Js
t (x,θ)].
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We can obtain the gradient of Js
t w.r.t. θ,

∇θJ
s
t (x,θ) = −α · pνt

(x, s)⊤
(
∇θ(∇θσ(Zνt

(x, s),θ) · θ)−∇θ∆θσ(Zνt
(x, s),θ)

)
Therefore, by Lemma D.4, and the estimate ∥Zνt

(x, s)∥2 ≤ CZ(∥νt∥2∞;α) from Lemma D.6, we
have

∥∇(∇θσ(Zνt
(x, s),θ) · θ)∥F ≤ Cσ · (∥θ∥2 + 1) · (CZ(∥νt∥2∞;α) + 1)

∥∇θ∆θσ(Zνt(x, s),θ)∥F ≤ Cσ · (∥θ∥2 + 1) · (CZ(∥νt∥2∞;α)3 + 1).

Therefore, we can estimate ∇θJ
s
t (x,θ),

∥∇θJ
s
t (x,θ)∥2 ≤ 2Cσ · (CZ(∥νt∥2∞;α)

3
+ 1)(∥θ∥2 + 1)∥pνt

(x, s)∥2
≤ 2Cσ · (CZ(∥νt∥2∞;α)

3
+ 1) · Cp(∥νt∥2∞, ∥τt∥22;α) · (∥θ∥2 + 1)

≤ C(∥τt∥22, ∥νt∥2∞;α) · (∥θ∥2 + 1)

By Lemma D.1 and Lemma D.2
Eνs

t
Js
t (x,θ)− Eνs

0
Js
0 (x,θ0) ≤ C(∥νt∥2∞, ∥τt∥22;α)W2(ν

s
t , ν

s
0)

≤ C(∥νt∥2∞, ∥τt∥22;α)
√

KL(νst ||νs0).

For t ∈ [0, tmax), by Definition E.6, we have ∥νt∥2∞, ∥τt∥22 = O(d). We have

Eνs
t
Js
t (x,θ)− Eνs

0
Js
0 (x,θ0) ≤ C(d, α)

√
KL(νst ||νs0).

Since pν0
(x, s) = 0,

Eνs
0
Js
0 (x,θ) = 0.

Therefore,
∂KL(νst ||νs0)

∂t
= β · Ex∼Dn(fτt,νt(x)− y(x))Eνs

t
Js
t (x,θ)

= β · Ex∼Dn
(fτt,νt

(x)− y(x))Eνs
t
(Js

t (x,θ)− Js
0 (x,θ))

≤ β · C(d, α)
√
KL(νst ||νs0)Ex∼Dn

(fτt,νt
(x)− y(x))

≤ β · C(d, α)
√

KL(νst ||νs0)
√

E(fτt,νt(x)− y(x))2

= β · C(d, α)
√

KL(νst ||νs0)
√

L̂(τt, νt),

where the last inequality holds owing to the Jesen’s inequality.

By the relation d2
√
x = dx/

√
x,

d

(
2
√
KL(νst ||νs0)

)
≤ β · C(d, α)

√
L(νt, τt)dt.

We have for t ∈ [0, tmax),

L̂(τt, νt) ≤ e−
β2Λ
2n tL̂(τ0, ν0).

Hence,

2
√
KL(νst ∥νs0) ≤ β · C(d, α)

∫ t

0

√
L̂(νt0 , τt0)dt0 ≤ 4C(d, α)

Λβ̄

√
L̂(τ0, ν0) .

Since τ0(u) is standard normal distribution, we have

fτ0,ν0(x) = β · a⊤
∫
Rkτ ×Rkτ ×R

u⊤σ0(w
⊤Zν0(x, 1) + b)dτ0(u,w, b) = 0 ,

and |y(x)| ≤ 1 (Assumption C.1), we have L̂(τ0, ν0) ≤ 1. Therefore, we obtain

KL(νst ∥νs0) ≤
CKL(d, α)

Λ2β̄2
,

where CKL is a constant dependent only on d, α.
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Lemma E.10. Assume the PDE (16) has solution τt ∈ P2, and the PDE (14) has solution τt ∈ P2.
Under Assumption C.3, C.1, C.2, then for all t ∈ [0, tmax), the following results hold:

KL(τt∥τ0) ≤
1

Λ2β̄2
CKL(d, α).

Proof of Lemma E.10. By Gaussian initialization of τ0, log τ0(ω) = −∥ω∥2
2

2 + C, and we have
∇ω

∂KL(τt||τ0)
∂τt

= ∇ω log τt + ω. Therefore, by Lemma E.2 and Eq. (18), we have

∂KL(τt||τ0)
∂t

=− β ·
∫
Rkτ

(Ex∼Dn(fτt,νt(x)− y(x))∇ωh(Zνt(x, 1),ω)) · (∇ω log τt + ω)dνst (θ).

Define

ũt(θ) := Ex∼Dn
[(fτt,νt

(x)− y(x))∇ωh(Zν(x, 1),ω)],

we have
∂KL(τt||τ0)

∂t
= −α ·

∫
Rkτ

τtũt · (∇ω log τt + ω)dω = −α ·
∫
Rkτ

τt[ũt · ω −∇ω · ṽst ]dω.

We also define

It(x,ω) := −
(
∇ωh(Zνt(x, 1),ω) · ω −∆ωh(Zνt(x, 1),ω)

)
.

By the definition of It(x,ω),

∂KL(τt||τ0)
∂t

= β · Ex∼Dn
[(fτt,νt

(x)− y(x))Eω∼τtIt(x,ω)].

Similar to the estimate Js
t , we have the estimation of It as

EτtIt(x,ω)− Eτ0I0(x,ω) ≤ C(∥τt∥22, ∥νt∥2∞;α)
√
KL(τt||τ0).

and we can have, by setting ω = (a,w, b), we have

Eτ0I0(x,ω) = Eτ0(−∇ωh(x,ω) · ω +∆ωh(x,ω))

= E(a,w,b)∼N (0,I)(−aσ0(w
⊤x+ b)− a(∇wσ0(w

⊤x+ b))w − abσ′
0(w

⊤x+ b))

+ E(a,w,b)∼N (0,I)(∆wσ0(w
⊤x+ b) + aσ′′

0 (w
⊤x+ b)) = 0.

Therefore, we obtain the KL divergence in a similar fashion.

KL(τt∥τ0) ≤
CKL(d, α)

Λ2β̄2
.

Lemma E.11 (Lower bound on the KL divergence). For any τ, τ ′ ∈ P2, ν, ν′ ∈ C(P2; [0, 1]), if
τ ′, ν′ satisfy the Talagrand inequality T ( 12 ), (ref Lemma D.2) We have the lower bound for the KL
divergence of τ, τ ′ and ν, ν′, such that for constant Clow(∥τ∥22, ∥τ ′∥22, ∥ν∥2∞, ∥ν′∥2∞;α),√

KL(τ∥τ ′) +
√
KL(ν∥ν′) ≥ Eω∼τh(Zν(x, 1),ω)− Eω′∼τ ′h(Zν′(x, 1),ω′)

Clow(∥τ∥22, ∥τ ′∥22, ∥ν∥2∞, ∥ν′∥2∞;α)
.

Proof of Lemma E.11. We have the following estimaation

Eω∼τh(Zν(x, 1),ω)− Eω′∼τ ′h(Zν′(x, 1),ω′)

= (Eω∼τh(Zν(x, 1),ω)− Eω′∼τ ′h(Zν(x, 1),ω
′))︸ ︷︷ ︸

(A)

+(Eω′∼τ ′h(Zν(x, 1),ω)− Eω′∼τ ′h(Zν′(x, 1),ω′))︸ ︷︷ ︸
(B)

,
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By Lemma D.4, we have
∥∇ωh(Zν(x, 1),ω)∥2 ≤ Cσ · (∥Zν(x, 1)∥2 + 1) · (∥ω∥2 + 1),

and by Lemma D.1, Lemma D.6 and Lemma D.2, we have
(A) ≤Cσ · (∥Zν(x, 1)∥2 + 1) ·max{∥τ∥22, ∥τ ′∥22} · W2(τ, τ

′)

≤Cσ · (CZ(∥ν1∥2∞;α) + 1) ·max{∥τ∥22, ∥τ ′∥22}W2(τ, τ
′).

≤2Cσ · (CZ(∥ν1∥2∞;α) + 1) ·max{∥τ∥22, ∥τ ′∥22}
√
KL(τ∥τ ′).

Besides, by Lemma D.5 and Lemma D.2, we have
(B) ≤ Eω′∼τ ′Cσ(∥ω∥22 + 1) · (∥Zν(x, 1)−Zν′(x, 1)∥2)

≤ (∥τ ′∥22 + 1) · CZ(∥ν1∥2∞, ∥ν2∥2∞;α) · W2(ν1, ν2)

≤ 2(∥τ ′∥22 + 1) · CZ(∥ν1∥2∞, ∥ν2∥2∞;α) ·
√

KL(ν∥ν′).

We let Clow be
Clow(∥τ∥22, ∥τ ′∥22, ∥ν∥2∞, ∥ν′∥2∞;α)

=min{2Cσ · (CZ(∥ν1∥2∞;α) + 1) ·max{∥τ∥22, ∥τ ′∥22}, 2(∥τ ′∥22 + 1) · CZ(∥ν1∥2∞, ∥ν2∥2∞;α)}
Therefore, we have√

KL(τ∥τ ′) +
√
KL(ν∥ν′) ≥ Eω∼τh(Zν(x, 1),ω)− Eω′∼τ ′h(Zν′(x, 1),ω′)

Clow(∥τ∥22, ∥τ ′∥22, ∥ν∥2∞, ∥ν′∥2∞;α)

Since ∥τ∥22, ∥τ ′∥22, ∥ν∥2∞, ∥ν′∥2∞ = O(d), we have that the average movement of the KL divergence
is on the same order as the change in output value.

Lemma E.12. Assume the PDE (16) has solution τt ∈ P2, and the PDE (14) has solution τt ∈ P2.
Under Assumption C.3, C.1, C.2, then for all t ∈ [0, tmax), We have the lower bound for the KL
divergence of τt and νt, we have for constant Clow(d;α), such that√

KL(τt∥τ0) +
√
KL(νt∥ν0) ≥

Eω∼τth(Zνt
(x, 1),ω)

Clow(d;α)
.

Proof of Lemma E.12. By the definition of rmax ≤
√
d, and the proof of Lemma E.4, we

have ∥τt∥22, ∥νt∥2∞ = O(d), and we can directly obtain ∥τ0∥22 = d + 2, ∥ν0∥2∞ = 2d + 1,
and Eω0∼τ0h(Zν0

(x, 1),ω0) = 0. Besides, Gaussian initialization satisfies T ( 12 ) condition in
Lemma D.2. We have, by Lemma E.11,√

KL(τt∥τ0) +
√
KL(νt∥ν0) ≥

Eω∼τth(Zνt
(x, 1),ω)

Clow(d;α)
,

where Clow(d;α) is a constant depending on d, α derived from Clow(∥τ∥22, ∥τ ′∥22, ∥ν∥2∞, ∥ν′∥2∞;α).

Lemma E.13. Under the Assumptions in Lemma E.9, let β̄ ≥ 4
√

CKL(d,α)

Λrmax
, we have tmax = ∞.

Proof of Lemma E.13. Otherwise, we have the following inequality, for ∀t < tmax:

W2(ν
s
t , ν

s
0) ≤ 2

√
KL(νst ∥ν0t ) ≤

2

Λβ̄

√
CKL(d, α), ∀s ∈ [0, 1].

Therefore,

W2(νt, ν0) ≤
2

Λβ̄

√
CKL(d, α).

According to the definition of tmax, we have W2(νt, ν0) ≤ rmax. Let

β̄ ≥
4
√
CKL(d, α)

Λrmax

we have W2(νt, ν0) ≤ rmax/2,∀t ∈ [0, tmax), which contradict to the definition of tmax in Defini-
tion E.6.

Proof of Theorem 3.3. Combine the results of Lemma E.13, Lemma E.10, and Lemma E.9, we prove
the theorem.
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E.5 Rademacher Complexity

Proof of Lemma 3.4. Let γ be a parameter whose value will be determined later in the proof. Let
ηi, 1 ≤ i ≤ n be the i.i.d. Rademacher random variables,

Rn(FKL(r)) =
β

γ
· Eη

(
sup

τ :KL(τ∥τ0)≤r,ν:KL(ν∥ν0)≤r

Eτ

(
γ

n

n∑
i=1

ηih(Zν(xi, 1),ω)

))

≤ β

γ
·

(
r + Eη sup

ν:KL(ν∥ν0)≤r

logEτ0 exp

(
γ

n

n∑
i=1

ηih(Zν(xi, 1),ω)

))

≤ β

γ
·

(
r + Eη logEτ0 exp

(
γ

n
sup

ν:KL(ν∥ν0)≤r

n∑
i=1

ηih(Zν(xi, 1),ω)

))

≤ β

γ
·

(
r + logEτ0Eη exp

(
γ

n
sup

ν:KL(ν∥ν0)≤r

n∑
i=1

ηih(Zν(xi, 1),ω)

))
,

where the first inequality follows by the Donsker-Varadhan representation of KL-divergence in
Lemma D.3. The second inequality follows from the increasing function log.

By Assumption C.3, where ω = (a,w, b), we have

|h(z1,ω)− h(z2,ω)| ≤ C1 · ∥z1 − z2∥2 · a∥w∥2.

We further estimate ∣∣∣∣∣
n∑

i=1

ηih(Zν(xi, 1),ω)−
n∑

i=1

ηih(Zν0
(xi, 1),ω)

∣∣∣∣∣
≤C1n · a∥w∥2 · ∥Zν(xi, 1)−Zν0(xi, 1)∥2
≤C1n · a∥w∥2 · CZ(∥ν∥2∞, ∥ν0∥2∞;α) · W2(ν, ν0)

≤C1n · a∥w∥2 · CZ(∥ν∥2∞, ∥ν0∥2∞;α) · 2
√
r

given KL(ν∥ν0) ≤ r. Further, we have ∥ν0∥2∞ = 2d + 1, and from r ≤ rmax, we have ∥ν∥2∞ ≤
6d+ 2.

In the following, we use Cd := 2C1 · CZ(6d+ 2, 2d+ 1;α) to denote the constant.

Rn(FKL(r)) ≤
β

γ
·

(
r + logEτ0Eη exp

(
γ

n

n∑
i=1

ηih(Zν0
(xi, 1),ω) + γ · Cd

√
r · a∥w∥2

))

=
β

γ
·

(
r + logEτ0 exp

(
γ · Cd

√
r · a∥w∥2

)
Eη exp

(
γ

n

n∑
i=1

ηih(Zν0
(xi, 1),ω)

))

≤β

γ
·

(
r + logEτ0 exp

(
γ · Cd

√
r · a∥w∥2 +

γ2

2n2

n∑
i=1

h2(Zν0(xi, 1),ω)

))

≤β

γ
·

(
r +

1

2
logEτ0 exp

(
2γ · Cd

√
r · a∥w∥2

)
+

1

2
logEτ0 exp

(
γ2

n2

n∑
i=1

h2(Zν0
(xi, 1),ω)

))
where the first inequality follows from the previous bound; and the second inequality follows from the
tail bound: Eη exp(

∑n
i=1 αiηi) ≤ exp( 12

∑n
i=1 α

2
i ); and the last inequality follows from the Cauchy

ineqaulity.

Still, we set the decomposition ω = (a,w, b) ∈ Rd+2, we have |h(Zν0(xi, 1),ω)| =
|aσ0(w

⊤Zν0
(xi, 1) + b)| ≤ |a|C1. We have

R(FKL(r))

≤β

γ
·
(
r +

1

2
logE(a,w,b)∼N (0,I) exp

(
2γ · Cd

√
r · a∥w∥2

)
+

1

2
logEa∼N (0,1) exp

(
γ2a2C2

1

n

))
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We remark that

logEt∼N (0,1) exp(Ct2) = −1

2
log(1− 2C) ≤ 2C

logEt∼N (0,1) exp(Ct) = exp(C2/2).

where the first inequality holds for C ≤ 1/4.

Therefore, setting γ =
√
nr/C1, we have

1

2
logEa∼N (0,1) exp

(
γ2a2C2

1

n

)
= −1

4
log(1− 2r) ≤ r,

1

2
logE(a,w,b)∼N (0,I) exp

(
2γ · Cd

√
r · a∥w∥2

)
=

1

2
logEω∼N (0,I) exp(2γ

2C2
dr∥w∥22)

≤ −1

4
log(1− 4nr2(Cd/C1)

2) ≤ 2nr2(Cd/C1)
2.

where the inequality holds iff r ≤ 1
4 and nr2(Cd/C1)

2 ≤ 1
8 . We set r0 = min{1/4, 1/(4

√
n) ·

C1/Cd}, we have for ∀r ≤ r0,

R(FKL(r)) ≤ β/γ(r + 2nr2(Cd/C1)
2 + r) ≤ β ·

√
r/n · 2(C1 + Cd).

where ≲ hides constant.

Theorem E.14 (Rademacher complexity). For any δ > 0, with probability at least 1−δ, the following
bound holds ∀fτ,ν ∈ FKL(r):

Ex∼µX
ℓ0−1(fτ,ν(x), y(x)) ≤ 4Rn(FKL(r)) + 6

√
log(2/δ)/2n+

√
EDn(fτ,ν(x)− y(x))2

Proof of Theorem E.14. We introduce the additional loss function

ℓ̄(f, y) = max{min{1− 2yf, 1}, 0}.

By definition, we have ℓ̄ is 2-Lipschitz in the first argument, and

ℓ0−1(f, y) ≤ ℓ̄(f, y) ≤ |f − y|,

for any f ∈ R and y ∈ {±1}. Using the standard properties of Rademacher complexity, we have that
with probability at least 1− δ, for all f ∈ FKL(r)

EµX
ℓ̄(f, y) ≤ EDn

ℓ̄(f, y) + 4Rn(FKL(r)) + 6

√
log(2/δ)

2n
.

Therefore, we have

EµX
ℓ0−1(f, y) ≤ EµX

ℓ̄(f, y) ≤
√
EDn

(f − y)2 + 4Rn(FKL(r)) + 6

√
log(2/δ)

2n

Lemma E.15. Let τy ∈ C(P2; [0, 1]) and νy ∈ P2 be the ground truth distributions, such that,

y(x) := Eω∼τyh(Zνy
(x, 1),ω) .

Then, we have the bound for the KL divergence,

max{KL(τ⋆∥τ0),KL(ν⋆∥ν0)} ≤ β−2(χ2(τy∥τ0) + χ2(νy∥ν0)) .

and

L̂(τ⋆, ν⋆) = 0.
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Proof of Lemma E.15. We assume that {τλ⋆ , νλ⋆ } is the solution to the following minimization prob-
lem:

{τλ⋆ , νλ⋆ } = argmin
τ,ν

L̂(τ, ν) + λ(KL(τ∥τ0) + KL(ν∥ν0)).

Consider the mixture distribution τ̂ , ν̂ be defined as

(τ̂ , ν̂) =
β − 1

β
(τ0, ν0) +

1

β
(τy, νy) ,

and we have

L̂(τ̂ , ν̂) = Ex∼Dn

(
β − 1

β
· βEω∼τ0h(Zν0(x, 1),ω) +

1

β
· βEω∼τyh(Zνy (x, 1),ω)− y(x)

)
= Ex∼Dn

(
0 +

1

β
· β · y − y

)2

= 0 ,

and by the definition of τλ⋆ , ν
λ
⋆ , we obtain

L̂(τλ⋆ , ν
λ
⋆ ) + λ(KL(τλ⋆ ∥τ0) + KL(νλ⋆ ∥ν0)) ≤ L̂(τ̂ , ν̂) + λ(KL(τ̂∥τ0) + KL(ν̂∥ν0)) .

This leads to
L̂(τλ⋆ , ν

λ
⋆ ) ≤ λ(KL(τ̂∥τ0) + KL(ν̂∥ν0))

KL(τλ⋆ ∥τ0) + KL(νλ⋆ ∥ν0) ≤ KL(τ̂∥τ0) + KL(ν̂∥ν0) .
Taking λ → 0, we have τλ⋆ → τ⋆, and νλ⋆ → ν⋆. Accordingly, we have

L̂(τ⋆, ν⋆) = 0

KL(τ⋆∥τ0) + KL(ν⋆∥ν0) ≤ KL(τ̂∥τ0) + KL(ν̂∥ν0)

We can explicitly compute the KL divergence such that

KL(τ̂∥τ0) ≤ χ2(τ̂∥τ0) =
∫ (

β − 1

β
+

τy(ω)

βτ0(ω)
− 1

)2

dω = β−2χ2(τy∥τ0) ,

and similarly, we have
KL(ν̂∥ν0) ≤ β−2χ2(νy∥ν0) .

Finally we conclude the proof.

Proof of Theorem 3.5. By Theorem E.14, for r > 0, for any δ > 0, with probability at least 1− δ,
the following bound holds ∀fτ,ν ∈ FKL(r):

Ex∼µX
ℓ0−1(fτ,ν(x), y(x)) ≤ 4Rn(FKL(r)) + 6

√
log(2/δ)/2n+

√
EDn(fτ,ν(x)− y(x))2 .

By Lemma E.15, and the definition of r0 in Lemma 3.4, we set β such that
β−2(χ2(τy∥τ0) + χ2(νy∥ν0)) ≤ r0 ,

i.e.,

β ≥

√
χ2(τy∥τ0) + χ2(νy∥ν0)

r0
,

and
fτ⋆,ν⋆

∈ FKL(β
−2(χ2(τy∥τ0) + χ2(νy∥ν0))) .

Therefore, we apply the Rademacher complexity bound in Lemma 3.4, and we have

Rn(FKL(β
−2(χ2(τy∥τ0) + χ2(νy∥ν0)))) ≲ β

√
β−2(χ2(τy∥τ0) + χ2(νy∥ν0))

n
= O(1/

√
n) .

where β cancels out. By Lemma E.15, we have L̂(τ⋆, ν⋆) = 0. Finally,

Ex∼µX
ℓ0−1(fτ,ν(x), y(x)) ≲ O(1/

√
n) + 6

√
log(2/δ)/2n.
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