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Abstract

We consider the problem of learning robust discriminative representations of latent vari-
ables that are causally related to each other via a directed graph. In addition to passively
collected observational data, the training dataset also includes interventional data obtained
through targeted interventions on some of these latent variables to learn representations
that are robust against the resulting interventional distribution shifts. However, existing ap-
proaches treat interventional data like observational data, even when the underlying causal
model is known, and ignore the independence relations that arise from these interventions.
Since these approaches do not fully exploit the causal relational information resulting from
interventions, they learn representations that produce large disparities in predictive perfor-
mance on observational and interventional data. This performance disparity worsens when
the number of interventional data samples available for training is limited. In this paper,
(1) we first identify a strong correlation between this performance disparity and adherence
of the representations to the statistical independence conditions induced by the underlying
causal model during interventions. (2) For linear models, we derive sufficient conditions
on the proportion of interventional data in the training dataset, for which enforcing sta-
tistical independence between representations corresponding to the intervened node and
its non-descendants during interventions lowers the test-time error on interventional data.
Combining these insights, (3) we propose RepLln, a training algorithm to explicitly enforce
this statistical independence during interventions. We demonstrate the utility of RepLIn
on a synthetic dataset and on real image and text datasets on facial attribute classification
and toxicity detection, respectively, with semi-synthetic causal structures. Our experiments
show that RepLIn is scalable with the number of nodes in the causal graph and is suitable to
improve the robustness of representations against interventional distribution shifts of both
continuous and discrete latent variables compared to the ERM baselines.

1 Introduction

We consider the problem of learning robust discriminative representations corresponding to latent random
variables for downstream prediction tasks from their observable data. These latent variables usually corre-
spond to semantic concepts such as the color of an object, the level of glucose in the blood, and a person’s
age. The relationship between these latent variables can be modeled using directed acyclic graphs (DAGs)
called causal graphs. Causal modeling allows manually altering the causal graph and observing its effects on
the data. E.g., intervene on the amount of insulin (parent variable) in the blood by consuming an insulin
inhibitor and then measuring the glucose level (child variable) in the blood. This procedure is known as a
causal intervention, and the data collected through this procedure is called interventional data. In contrast,
data passively collected without intervention is known as observational data. Several types of interventions
are possible on a causal graph, of which we are interested in hard interventions where we manually set the
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value of one or more variables. Intervening on a graph node renders it statistically independent of its parent
nodes in the causal graplﬂ See (Peters et al. [2017, Chapter 6) and (Pearl, 2009, Chapter 3).

Suppose the latent variables are A and B, such that A causes B (A — B) during observations. An attribute-
specific representation F4 corresponding to A learned by a model from observational training data alone
may contain information about its child node B due to the association between A and B. For instance,
consider a computer-aided diagnosis system that inputs a chest X-ray image and outputs two representations
corresponding to air sac inflammation (A4) to predict pneumonia and fluid accumulation around lungs (B)
to check for pleural effusion, respectively. This design makes the system modular and interpretable. These
representations will be used by separate predictors for the corresponding diagnosis. The causal relation
between these medical conditions is as follows: pneumonia can lead to excess fluid accumulation, although
similar fluid accumulation can occur due to factors unrelated to pneumonia. For instance, suppose that fluid
accumulation happened as a side effect of some medication. In this case, it is possible that the representation
corresponding to predicting pneumonia incorporates information about excess fluid accumulation to aid
pneumonia diagnosis, although the presence of fluid accumulation does not mean pneumonia. Moreover,
the practitioner does not know what conditions the patient has when their chest X-ray image is fed into
the system, prohibiting a system design that yields a separate representation for each medical condition.
To avoid such catastrophic mistakes, these representations must be designed explicitly to include only the
information corresponding to their diagnostic purpose. In other words, these models must be made robust
against interventional distribution shifts.

To improve the robustness of the learned representations, interventional data samples are included in the
training data to learn models that are robust to interventional distribution shifts. For example, in
[Geiger} [2021; |Gao et al.| 2023)), interventional data was generated to train image classification models invari-
ant to texture and background. In (Arjovsky et al.,2019; Heinze-Deml & Meinshausen| 2021)), interventional
data is treated merely as data sourced from different domains or environments, and they do not consider the
explicit statistical independence relations that arise from interventionsﬂ As we demonstrate, ignoring these
independence relations may result in representations that are still susceptible to interventional distribution
shifts during inference. Additionally, performing interventions is often challenging, thus limiting the amount
of interventional data available for training. This furthers the need for a causally motivated learning strategy
that exploits the limited amount of interventional training data.

We first consider a simple case study in which we observe that models that do not learn independent
representations during interventions show a performance drop on interventional data. We then derive suf-
ficient conditions on the proportion of interventional data during training, under which enforcing linear
independence between interventional features of linear models during training can reduce test-time error
on interventional data. Motivated by these theoretical insights, we propose “Representation Learning from
Interventional Data” (RepLIn), an algorithm to train models with improved robustness against interven-
tional distribution shifts. We confirm the utility of RepLIn on a variety of synthetic (Sec. and real
datasets (Secs. and on various modalities with semi-synthetic causal structures, and demonstrate its
scalability to the number of nodes (Sec. [6.2).

To summarize our contributions,

o We demonstrate a positive correlation between the accuracy drop during interventional distribution
shift and the dependence between representations corresponding to the label node and its children.
We refer to this as “interventional feature dependence” (Sec. [3.3).

o We theoretically explain why linear ERM models are susceptible to interventional distribution shifts
in the regime of linear causal models. In the same setting, we theoretically and empirically show that
enforcing linear independence between interventional features improves robustness when sufficient
interventional data is available during training and establish the sufficient condition (Sec. [3.4)).

1For ease of use, we refer to “statistical independence” as “independence”, and “hard interventions” as “interventions”. We
will also use “features” and “representations” interchangeably to denote the vector representations of the data learned by a
model.

2The distribution shift due to differing environments is more general than interventional distribution shift. However, this
work argues against an agnostic approach for robustness against interventional distribution shift.
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o We propose a novel training algorithm that combines these insights and demonstrates that this
model minimizes the drop in accuracy under interventional distribution shifts by explicitly enforcing
independence between interventional features (Sec. E[)

2 Related Works

Identifiable Causal Representation Learning (ICRL) (Locatello et al., [2019} [Scholkopf et al., [2021}
Hyvérinen et al., 2024) seek to learn representations of the underlying causal model under certain assump-
tions (Hyvérinen et all,2024)), and are important to interpretable representation learning. Interventions have
also been used in ICRL works (Lippe et al}[2022bf |2023; [Ahuja et al} 2023} |Squires et al., 2022} |von Kiigelgen|
et al] 2023} [Zhang et al] [Jiang & Aragaml| 2023} [Buchholz et all, [2023} [Varici et all] 20245} [Bing et alll,
2024} [Lachapelle et al] [2024)), with the key underlying idea that the variables that become independent
during a known intervention can be identifiably learned. In contrast to these works, we are interested in
a broader class of discriminative representation learning when some underlying causal relations are known.
Instead of learning the entire causal model, we seek to exploit the known independence relations from inter-
ventions to learn discriminative representations that are robust against these interventions. Moreover, the
representations learned by ICRL methods usually have permutation ambiguity. That is, the representations
are disentangled but not mapped to the semantic attribute that we wish to predict in a downstream task.
As we will describe later, our approach overcomes this ambiguity by explicitly learning attribute-specific
representations. We provide a detailed review of ICRL in App. [C|

Interventional data is key in causal discovery (Eberhardt et al.,|2005; [Yu et al.,|[2019} Ke et al.,[2019; [Lippe|
let all [2022a} [Wang et all [2022b]) as one can only retrieve causal relations up to a Markov equivalent graph
without interventions or assumptions on the causal model. For example, known interventional targets have
been used for unsupervised causal discovery of linear causal models (Subramanian et al.,|2022)), interventional
and observational data have been leveraged for training a supervised model for causal discovery (Ke et al.
2022)), and interventions with unknown targets were used for differentiable causal discovery (Brouillard et al.
2020)). Interventional data also find applications in reinforcement learning (Gasse et all 2021} Ding et al.
2022a)) and recommendation systems (Zhang et al. 2021} Krauth et al. [2022; |Luo et al.| 2024). While this
body of work focuses on discovering causal relations in the data, our work considers how to leverage known
causal relations to learn data representations that are robust to distribution shifts induced by interventions.

Our setting also differs from that of domain generalization (DG). In DG, the learning objective is a
predictor for an attribute of interest that is robust/invariant to changes in the domain/environment
[jan et al] [2021} [Wang et al] [2022a} [Ding et all] [2022D). Here, there is no interest in learning representations
for the domain, and multiple factors could be jointly treated as a single domain. Moreover, there is also no
requirement that the learned predictor for the attribute of interest is free of domain information
[2022)). Therefore, the learned representations obtained from domain generalization may not be trust-
worthy for modular applications such as the medical diagnosis system described in Sec. [I} A more detailed
discussion is provided in App.

Training with group-imbalanced data leads to models that suffer from group-bias during inference.
In such cases, resampling the data according to the inverse sample frequency can improve generalization
and robustness. Studies such as (Gulrajani & Lopez-Paz, [2021}; Idrissi et al., 2022 have shown that ERM
with resampling is effective against spurious correlations and is a strong baseline for domain generalization.
Recent works such as dynamic importance reweighting (Fang et al., [2020), SRDO (Shen et al., [2020)), and
MAPLE (Zhou et al., 2022) learn to resample using a separate validation set that acts as a proxy for the test
set. However, learning such a resampling requires a large dataset of both observational and interventional
data, which is often not practically feasible. In contrast, we will exploit known independence relations during
interventions to improve robustness to interventional distributional shifts.

3 The Learning from Interventional Data Problem

Notation: Random variables and random vectors are denoted by regular (e.g., A) and bold (e.g., a) serif
characters, respectively. The distribution of a random variable A is denoted by Pj.
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We now formally define the problem of interest During observation During intervention

in this paper, namely learning discriminative rep-
resentations to predict latent variables that are 6 @ T @ ° @ T
robust against interventional distribution shz'ftsEl, ‘
in general terms, and examine a specific case
—@ —

study in Sec. 3] The learning problem is char-
acterized by a DAG G that causally relates the
attributes of interest Ai,...,A,,, and B. Let
Pap = {A1,..., A} denote the parents of the at-
tribute B. These attributes along with other un-
observed exogenous variables U, generate the ob-
servable data X, i.e., X = gx (B, A41,...,4An,U).
During interventions, the variable B is set to val-
ues drawn from a known distribution independent of Pap. Therefore, the post-intervention variable B
(denoted by B) is statistically independent of its parents, i.e., B 1l Pag, as shown in Fig. Although
gx is not affected by this intervention, the distribution of X (now denoted by X’) will change since it is
a function of B. Note that to learn representations that are robust against distribution shift due to inter-
vention on B, our setting only provides us information about B and its parents in the causal graph, and
not of any causal relations between Aq,..., A,,. We also do not place restrictions on the functional form of
causal relations between Aj, ..., A,,, B, and X, or on their marginal distributions. For training, data sam-
ples from both observational and interventional distributions are available, i.e., D% = Dobs ([ Dint where
Db ~ P(X,B,Ay,...,A,) and D™ ~ P(X' B, A,...,Ay,). However, the number of interventional
training samples is much less compared to the number of observational training samples, i.e., |D°"| < | D]
Given DM and G, the goal is to learn attribute-specific discriminative representations Fp = hg(X) and
Fy4, = ha,(X) that are robust against distribution shifts due to intervention on B.

’
Y-

Figure 1: Causal graph modification due to inter-
vention: During observation, B is the effect of its parent
variables Pap = {A41,...,A,;;}. When we intervene on
B, it becomes statistically independent of its parents.

3.1 Does Accuracy Drop during Interventions Correlate with Interventional Feature Dependence?

In this section, we will design a case study using a synthetic dataset and establish a correlation between the
accuracy drop on interventional data and the statistical dependence between the attribute representations
under intervention.

2 Data legend
e N A=0, B=0
SR ; A=0, B=1
A=1, B=0
@—> -2 A=1, B=1
-2 0 2
X1 Xi
(a) Observational graph and data (b) Interventional graph and data

Figure 2: An illustration of Windmill Dataset: A and B are binary random variables that are causally
linked to each other and X, as shown in (a). By intervening on B as shown in (b), we make A 1. B.
X =gx (A, B,U) where U denotes unobserved noise variables. The true decision boundaries for predicting
A and B from X are shown in red and blue dashed lines, respectively. See App. E| for a detailed description.

Problem Setting: Consider the causal graph shown in Fig. Here, A and B are binary random variables
that generate the observed data X € R2. X is also affected by an unobserved noise variable U. Functionally,
X =gx(A,B,U). Aitself could be a function of unobserved random factors that are of no predictive interest
to us. Therefore, we model A ~ Bernoulli(0.6). The distribution of B is only affected by A, as denoted by
the arrow between them. Analytically, B := A, where := indicates the causal assignment operator, following

3We use “discriminative” to explicitly state that the purpose of these representations is robust prediction and not data
generation. Information loss with improved robustness is therefore acceptable.
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(Peters et al.l 2017). Visually, the observed data looks like a windmill. The value of A determines the
windmill’s blade, and B determines the radial distance. The precise angle and radial distance of the points
are sampled from a noise distribution independent of A and B. We also shear the windmill blades according
to a sinusoidal function of the radial distance. In Fig. we intervene on B, modeled as B ~ Bernoulli(0.5).
This induces a change in the distribution of B and subsequently that of X. Since the intervention is
independent of A, B is also independent of A, denoted by removing the arrow between A and B. Note that
gx is unaffected by this intervention. The exact mathematical formulation of the data-generating process is
provided in App. [l

Learning task: The task is to accurately predict A and B from X at test time. We have N samples
for training, where SN are interventional and (1 — 8)N are observational with 0 < § <« 1. For this
demonstration, we set N = 40,000, § = 0.01 to get 39,600 observational and 400 interventional samples.
We train a feed-forward network with two hidden layers to learn representations F4 and Fp corresponding
to A and B, respectively. We normalize them by dividing each by their corresponding Lo norm. Separate
linear classifiers predict A and B from F4 and Fg respectively. By construction, gx in the data-generating
process is a one-to-one mapping. Therefore, predicting A and B from X accurately is possible. However,
the true decision boundary for A is more complex than that of Bﬂ Therefore, the model may rely on
information from B to predict A due to their association during observation, similar to the concept of
simplicity bias from (Shah et all 2020). As a result, F4 may contain information about B even during
interventions when A 1L B. Following the standard ERM framework, the cross-entropy errors in predicting
A and B from F4 and Fp, respectively, provide the training signal. The statistical loss function can
be written as Liota(f) = Ep,,. [Lprea(f, X)]. The training distribution is a mixture of observational and
interventional distributions with (1—/) and § acting as the corresponding mixture weights. Thus, Liotal(f) =

(1 B B>EP°bS [Epmd(f’ XObS)] + /BEPint [‘Cpred<f> Xint)].

ERM version ‘ Accuracy in predicting A ‘ Accuracy in predicting B ‘ NHSIC

‘ Observation Intervention Relative drop ‘ Observation  Intervention Relative drop ‘
Vanilla 99.98£0.01 60.15+3.12  0.40+£0.03 100.00 £ 0.00  99.99 £ 0.01 0 0.72 £ 0.06
w/ Resampling | 94.53 £ 1.14 70.20+3.73  0.26 £ 0.03 100.00 +£0.00  99.99 £ 0.01 0 0.64 £0.08

Table 1: The relative drop in accuracy in predicting A correlates well with a gap in the measure of dependence
between the learned representations on interventional data.

Observations: Tab.[l|shows the accuracy of ERM in predicting A and B on observational and interventional
data during validation. Ideally, we expect no drop in accuracy from observation to intervention if the learned
representations are robust against interventional distribution shift. However, we observe that ERM performs
only slightly better than random chance in predicting A on interventional data. As a remedy, we modify the
vanilla ERM method to sample observational and interventional data in separate batches, and thus prevent
the gradients from interventional training samples being obfuscated by those from observational training sam-
ples, which are likely to be more in number in a given batch. This is equivalent to sampling interventional data

(%)—times as observational data. Therefore, we refer to this version as “ERM-Resampled”. The equivalent

loss for a learning function f in ERM-Resampled is Liotai(f) = Ep,,. [Lprea(f; X°P%)] +Ep,, [Lorea(f, X™)].
Note that 8 does not appear in Liota) (f) due to resampling. Although ERM-Resampled performs better than
vanilla. ERM, we observe that ERM-Resampled still exhibits a large drop in predictive accuracy between
observational and interventional data during inference. Also, we observe the drop in observational accuracy
of ERM-Resampled in predicting A as it improved interventional accuracy. As we will show in Sec. 3:4] the
reduced observational accuracy is due to the removal of spurious information previously exploited to boost
its observational accuracy.

3.2 Measuring Statistical Dependence Between Interventional Features

The key consequence of hard interventions in causal graphs is that the variable being intervened upon
becomes independent of all its non-descendants. Since the predictive accuracy on the parent node is affected

”

4We informally define “complexity” as the minimum polynomial degree required to approximate the decision boundary.
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by intervention, we hypothesize that the representation corresponding to the parent node remains dependent
on the child node during intervention, even when their underlying latent variables in the causal graph become
independent. To verify our hypothesis, we measure the dependence between the representations. We choose
to measure the dependence between the representations instead of between the representations and the latent
attributes because we aim to learn robust representations for every attribute.

Dependence Measure: We use HSIC (Gretton et al., 2005) to measure dependence between a pair
of high-dimensional continuous random variables X and Y. Empirical HSIC between N i.i.d. samples

X = {:c(i)}N and Y = {y(i)}jvzl from X and Y, respectively, can be computed as HSIC(X,)) =
o 1) > Trace [Kx HKy H|, where H is the N x N centering matrix, and Kx, Ky € RV*¥ are Gram

matrices whose (i, )" entries are ky (w(i), :c(j)) and ky (y(i), y(j)), respectively. Here, kx and ky are the
kernel functions associated with a universal kernel (e.g., RBF kernel). Since HSIC is unbounded, we nor-

malize it as NHSIC(X,Y) = \/HSICI?/,S\}(;\E;(H;}I)CW > , following (Cortes et al.l [2012; [Cristianini et al. |2001)).

We also use random Fourier features (Rahimi & Recht, [2007) to improve computational efficiency.

Observations: Tab.|l|compares NHSIC values between the features Fy and Fg learned by ERM and ERM-
Resampled on interventional data from WINDMILL dataset. We observe that features learned by ERM had
more statistical dependence during interventions than those by vanilla ERM, indicating a larger violation of
the underlying statistical independence relations in the causal graph during interventions. Interestingly, the
relative drop in accuracy also increases with the statistical dependence between interventional features.

3.3 Strength of Correlation between Drop in Accuracy and Interventional Features Dependence

How strong is the observed correlation between the dependence of features and the drop in accuracy? For
a given combination of predictive task and dataset, does it hold for a variety of hyperparameter settings?
To answer these questions, we train several models under the ERM-Resampled setting described in Sec.
The representations are learned using feed-forward networks, each with one to six hidden layers and with
20 to 200 hidden units. We also use early-stopping in our training, as it was noted as an effective regular-
izer (Sagawa et al.l 2020]). Early-stopping is executed in our expenmentb by choosing an arbitrary numbeI
of training epochs for each run. W g
as-a—regularizer: We measure the robustness of a model to mterventlonal dlstrlbutlon shlft using the relatlve
drop in accuracy between observational and interventional data: Rel.A = W. Similar experi-
ments were reported in (Sreekumar & Boddeti) [2023), although their primary research question concerned
the effect of data and model complexities on spurious correlations. In the following experiment, we expand
their setting to deeper models and more variety in hyperparameters while foregoing the variation in data
complexity.

In Fig. B] we plot the relative drop in accuracy o

against the interventional feature dependence. In 08

addition to NHSIC, we also use kernel canonical 08

correlation (KCC) (Bach & Jordan| [2002) to mea- g%° o

sure the dependence. We observe that all mod- 20_4 06

els with a high relative drop in accuracy also have

a large interventional feature dependence (see top- 0.2 0.4

right regions of the plots). However, the corollary is 00 R, B 051 (2075, 6B T8
not true — a large interventional feature dependence 00 weuracy 0.4 00 weuracy 0.4

does not mean a relative drop in accuracy. There-
fore, we conclude for this case study that a relative  (a) Rel.A against NHSIC  (b) Rel.A against KCC
drop in accuracy is always accompanied by interven-
tional feature dependence. The strength of the cor-
relation between the relative drop in accuracy and
interventional feature dependence is quantitatively
measured using Spearman rank correlation coeffi-
cient (p) (Spearman, [1904) and Kendall rank corre-

Figure 3: Across models with different capacities, a
relative drop in accuracy is always accompanied by
interventional feature dependence, while the corollary
does not hold. Interventional feature dependence is
measured using NHSIC and KCC.
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lation coefficient (7) (Kendall, [1938). In Fig. p = 0.81 and 7 = 0.61 when the dependence is measured
using NHSIC, indicating that the correlation we noted in Sec. [3.2) can be observed for a wide range of hyper-
parameters. When KCC is used for measuring dependence between interventional representations, p = 0.75
and 7 = 0.56 as shown in Fig. [35]

Note that the correlation measures are affected by the choice of measure of dependence. Both NHSIC
and KCC satisfy the postulates for an appropriate measure of dependence in and measure
dependence from the spectrum of the cross-covariance operator between RKHSs. However, NHSIC measures
the Hilbert-Schmidt norm of the cross-covariance operator while KCC measures its spectral norm (largest
singular value). As a result, KCC is more suited for independence tests where the presence of dependence is
more important than its overall strength. Informally, KCC is a “harsher” measure of dependence compared
to NHSIC. Another commonly used metric to measure and enforce independence between representations
is maximum mean discrepancy (MMD) (Gretton et al.| [2012). MMD was originally proposed as a tool to
check if two samples came from the same distribution or not. When used to measure dependence between
two random variables, MMD and HSIC are equivalent. Given two random variables between which we wish
to compute the dependence, HSIC between these random variables is equivalent to MMD between the joint
distribution and the product of marginals of these variables . Moreover, they have similar
computational costs. For the remainder of this work, we will use NHSIC for training and analysis, and
reserve KCC for evaluation.

Relation to Shannon mutual information (MI): Shannon mutual information (MI) is a general way
of measuring information between two given random variables. However, computing MI requires density
estimation as the first step, which is challenging for high-dimensional data (Paninskil [2003} [McAllester|
[& Stratos| [2020]). For the same reason, MI is also not suitable for training. A variational upper bound
can be obtained for MI (and minimized to learn independence) if the conditional density of one random
variable w.r.t. is known (Barber & Agakov] [2004} [Alemi et all 2018} [Poole et all] [2019). In addition to this
impractical assumption, the variational bound also requires a tractable density. In comparison to MI, HSIC
is computationally efficient and is optimization-friendly. HSIC is also a lower bound on MI
let al 2012} [Xu et al.| [2024)).

3.4 Will Minimizing Dependence between Interventional Features Improve Robustness?

In Sec. [3:3] we showed that strong interventional feature dependence always accompanies a large relative drop
in accuracy. Based on this correlation, we may ask the following question: will minimizing interventional
feature dependence improve the robustness to interventional distribution shifts? We consider a linear causal
model to answer this question theoretically. The detailed proof of each step is provided in App.

Causal Model: We use the causal model shown in Fig.[2a]with A and B being continuous random variables.
A and B are causally related during observation as B := wapA. The following analysis is valid if an external
noise was added to B. However, we will skip such a noise term in the proof for conciseness. The observed

XA} + U, where X, = wasA and Xp = wpB.

data signal X is generated from A and B as X := [ P%
B

U = [ZA] is exogenous noise. Uy and Up are independent of A and B respectively. We intervene on B as
B

shown in Fig. severing the causal relation between A and B. The intervened variable is denoted as B’
and B’ 1L A.

Learning model: Similar to the case study, the task is to predict the latent variables A and B from observed
data signal X . The training dataset is sampled from a training distribution P;;.i, that contains observational
and interventional samples. We model P;..i, as a mixture of observation distribution P,,s and interventional
distribution P, with (1 — ) and 8 acting as the mixture weights, i.e., Pyain = (1 — 8)Pobs + Pt We
use linear models to learn attribute-specific representations F4 and Fg, from which predictions A and B,
respectively, are made using the classifiers. The linear models are parameterized by @A) and ®®) and the
classifiers are parameterized by ¢(4) and ¢(P).
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Statistical Risk: The parameter matrix of the linear feature extractor described before can be written in

(AT
terms of its constituent parameter vectors as ©4) = Z’(“A)T . Assuming zero mean for all latent Variable
B

the statistical squared error of an arbitrary model in predicting A from an interventional test sample X is,

2 2 2 2
= (1w TA0) o (4TA0)" o, + (o) i+ ()

w )
E( E

where p% = Ep,, [Az], p% =Ep,, [B’Q], p%]A =Ep,, [Uﬂ, and p%-B =Ep,, [U%]. The statistical risk can
be split into two components: (1) ES) in terms of A and Uga, and (2) Eff) in terms of B and Up. Ef) #0
when HEA) # 0. A non-zero Hgl) indicates that the representation F4 is a function of Xp, i.e., it learns
a spurious correlation with B. Thus the prediction A is susceptible to interventions on B. In contrast, a

robust model will have 01(9’4) = 0, and thus Ef) = (0. Derivation of Eq. is provided in App.

Optimal ERM model: The optimal ERM model is obtained by minimizing the expected risk in predicting
the latent attributes. Since parameters are not shared between the prediction of a and b, we can consider
their optimization separately. We consider the optimization of parameters for predicting a since we are
interested in the performance drop while predicting A from interventional data.

2
W W — argmin Ep, [(A - c(A)Te(A)TX) ] (2)
O4) c(4)

For a given training error, there is no unique solution for @) and ¢(4). Therefore, we can equivalently

optimize for 4 = ¢ TOMWT. We write 94 = wl} where ¢; = c(A)TOI(L‘A) and ¥y = c(A)TOSBA). The
2

learning objective in Eq. then reduces to,

i = argminEp,,,, (A - ¥4 X)” (3)
Ya
We solve Eq. by setting the gradients to zero. To check the robustness of the optimal ERM model, we
can verify whether ¢¥5 = 0 or not, since a robust model will have HEBA) = 0. Solving Eq. , we get:

—(1 = Bywpwapoiop,

Y; = T #0 (4)

where T is a non-zero scalar. Eq. would have taken a different form if there was an added noise term in
the causal relation A — B, but would have still been non-zero. This implies that Eff) # 0 in optimal ERM
models. Therefore, optimal ERM weights are not robust against interventional distribution shift. Also, note
that a robust model is not a minimizer of prediction loss on the training distribution as the minimizer in
Eq. leads to non-zero 053'4). This can explain the drop in observational accuracy of ERM-Resampled, as

it improved the interventional accuracy in predicting A in Sec. [3.I] and is also illustrated later in App. [H]
The detailed derivation is provided in App.

Minimizing linear dependence: In Sec. we showed that dependence between interventional features
correlated positively with the drop in accuracy on interventional data. We will now verify if minimizing
dependence between interventional features can minimize the drop in accuracy in a linear setting. The
interventional features are given by Fy = ©T X and Fj = eBTXx.

Fy=0WTx = x,0Y + x50
Fi=0®7Tx = x,00) + x50

5The zero mean assumption is to make our calculations easier. This will not affect our conclusion from the proof, as we can
always learn the mean of the data separately.
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Since both the data generation process and the learned model are linear, it is sufficient to minimize the
linear interventional dependence between representations instead of the full statistical dependence that we
described in Sec. Following the definition of HSIC (Gretton et all 2005), the linear dependence in
interventional features can be defined as follows’}

Dep (Fa, Fp) = [Er,. [FaFH] | 5)

Leveraging the independence relations during interventions, we can expand Eq. as,
2 A) n(B)T A) o(B)T||?
[Er, [FaF5 1[5 = ||(wiof + 08,8500 T + (whih + o, )05 0577 | (6)

The dependence loss is thus the Frobenius norm of a sum of rank-one matrices. There are three classes of
solutions that minimize Eq. @: (1) 01(4‘4) = 9;‘4) = 0%3) = HEBB) =0, (2) 054‘4) = :I:'yOJ(BA) and 7923) = :FOJ(BB)
for some scalar v # 0, and (3) 01(4'4) =0 or 01(43) =0, and 953’4) =0 or BJ(BB) = 0. However, all except two
of these solutions produce trivial features and increase the classification error. The only remaining non-
degenerate solutions are: (S1) 05{4) = 0,0533) =0, and (S2) 01(3‘4) =0, 0543) = 0. Note that (S2) corresponds
to a robust model. Since both (S1) and (S2) minimize Eq. (5, the solution that minimizes the prediction
error on both A and B during training will prevail.

Proposition 1. The total training error for (S1) is strictly greater than that of (S2) when the following
conditions are satisfied: (1) 3 >1— ——, (2) 8 > min ( P PUA )

2 2 2 2 2
lwas|’ QPB/""pA’wAwABPA

Proposition [I] states that a robust model is guaranteed when a certain minimum amount of interventional
data is available during training. Note that Proposition 1] describes sufficient conditions for (S1) to have
a larger training error than (S2). In other words, this result conveys that, given a certain proportion of
interventional data in the training set, explicitly enforcing independence between learned representations
can provably improve robustness against interventional distributional shifts. More importantly, it does not
mean the contrary for smaller values of 5. In practice, 8 could be smaller. For instance, in Tab. [2| explicitly
enforcing independence using our proposed approach improves robustness even for 3 = 1%. Refer to App.
for a detailed derivation and experimental verification of Proposition [I]

I ERM I Linear independence

0.505

Test error

0.500

0.495

Test error

0.00
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Figure 4: Robust models achieve Eff) = 0in Eq. .
ERM models have a non-zero 053‘4) resulting in Ef) #*
0. Minimizing linear independence on interventional
features results in orthogonal interventional feature
spaces where 0§3A) = 0543) = 0. Thus, they result in

robust models with E@ — 0.
(a) B (b) B (c) Ea !

Experimental verification: To experimentally verify the theoretical results, we simulate the causal model
by setting wq = wp = wap = 1. The random variables A, B, Uy, and Up are sampled from independent
normal distributions with zero mean and unit variance. We generate N = 50000 data points for training
with 8 = 0.5. The classifiers use 2-dimensional features learned by linear feature extractors to predict A
and B. The experiment is repeated with 50 seeds. In Eq. , the statistical risk was shown to be composed

of ES) and Ef) , plotted in Figs. and @ respectively. An ideal robust model will achieve Ef) =0. As

expected, both models have similar ES)

a lower total error E4 shown in Fig.

. However, linear independence models minimize E1(4 ), resulting in

4 ReplLlin: Enforcing Statistical Independence between Interventional Features

As noted in the previous section, there is a strong correlation between the drop in accuracy during interven-
tions and interventional feature dependence. We also showed theoretically that minimizing linear dependence

6For a complete definition of the dependence, refer to App.
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Figure 5: Schematic illustration of RepLIn for a causal graph with two attributes (A — B) and X =
f(A,B,U). Encoders learn representations Fy and Fpg corresponding to A and B, which are then used
by their corresponding classifiers to predict A and B respectively. On interventional samples, we minimize
L4ep between the features to ensure their independence. On all samples, we minimize Lqr to encourage the
representations to learn only the relevant information.

between interventional features can improve test time error on interventional data for linear models. Based
on this observation, we propose “Representation Learning from Interventional data” (RepLIn) to learn dis-
criminative representations that are robust against interventional distribution shifts.

To enforce independence between interventional features, we propose to use dependence-guided regulariza-
tion denoted as Lqep over the prediction loss function (e.g., cross-entropy for classification tasks) used in
ERM. We refer to this regularization as “dependence loss” and is defined for the general case in Sec. [3| as

Laep = Y 1y NHSIC(Fi, F*) . We minimize the dependence loss only for the interventional samples in

our training set since congruent statistical independence occurs in the data space only during interventions.

However, L4op alone is insufficient since learning irrelevant features can minimize Lgcp. To avoid
such pathological scenarios and encourage the model to learn only relevant information, we intro-
duce another loss that maximizes the dependence between a feature and its corresponding label. We
employ this “self-dependence loss” on both observational and interventional data and define it as
J NHSIC(Fp,B)+Y " NHSIC(Fa,,A;)
self — 1 — 2(n+1)
resentations contain as much information about the modeled latent variables and not just the information
required to predict the given downstream task. In contrast to Lgcp, we use linear kernels in Lgor to max-
imize a lower estimate of the dependence between the resentations and the labels. Using linear kernels

Employing Le¢ in addition to Lpreq ensures that the rep-

in HSIC amounts to kp (z(,z()) = 2@ 2 in Sec. Since kernel approaches typically require much
computation and memory, we use random Fourier features (Rahimi & Recht| 2007) to compute NHSIC
values.

In summary, RepLIn optimizes the following total loss: Liotal = Lpred + AdepLdep + AscifLself , Where Adep

and Ageir are weights that control the contribution of the respective losses. The impact of the choice of these
hyperparameters is discussed in App. [H} A pictorial overview of the RepLIn pipeline is shown in Fig.

5 Experimental Evaluation

In this section, we compare the performance of RepLIn to the baselines on a synthetic dataset (WINDMILL)
and real image and text datasets (CelebA and CivilComments). We use the WINDMILL dataset introduced
in Sec. 3] to verify the effectiveness of RepLIn and evaluate its broader applicability to practical scenarios
through the facial attribute prediction task on the CelebA dataset toxicity prediction on the CivilComments
dataset. Since the underlying causal models in the real datasets are not known, we design plausible causal
models for these datasets based on the variables of interest, and create observation datasets by sampling
according to these causal models. Our experiments are designed to validate the following hypothesis: Does
explicitly minimizing the interventional feature dependence improve interventional accuracy?

10
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Training Hyperparameters and Baselines: We consider vanilla ERM and ERM-Resampled
let al., [2002; |Cateni et alJ, [2014) as our primary baselines since they are the most commonly used training
algorithms. Additionally, ERM-Resampled has been shown to be a strong baseline for group-imbalanced
training and domain generalization (Idrissi et al. [2022; |Gulrajani & Lopez-Paz, [2021). On WINDMILL
dataset, we also consider the following SOTA algorithms in domain generalization: IRMv1 (Arjovsky et al.,
2019)), Fish (Shi et al.,[2022)), GroupDRO (Sagawa et al.,[2020), SAGM (Wang et al.|[2023), DiWA (Rame
et al.,2022), and TEP (Qiao & Peng},2024)). The latter two are weight-averaging methods, for which we train
20 independent models per seed. We study two variants of our method: RepLIn and RepLIn-Resampled.
The latter variant uses the resampling strategy from ERM-Resampled. In each method, attribute-specific
representations are extracted from the input data, which feed into the classifiers to get the final prediction.
Since ICRL methods learn attribute-identifiable representations only up to permutation invariance, and
therefore, cannot be used with attribute-specific classifiers, we do not include them as baselines. All baselines
use the same architecture to learn representations and linear layers to make the final prediction from these
representations. The values of Agep and Agelr in RepLIn variants are tuned and kept fixed for all values of £.
A detailed description of the datasets and the training settings is provided in App. [A]

Evaluation Metrics: Our primary interest is in investigating the accuracy drop when predicting the
variables that are unaffected by interventions. Ideally, if the learned features respect causal relations during
interventions, we expect no change in the prediction accuracy of parent variables of the intervened variable
between observational and interventional distributions. To measure the change, we use the relative drop in
accuracy defined in Sec. Rel. A = W. Since we optimize NHSIC during training, we use
NKCC from Sec. [3.3] to evaluate the dependence between the features on interventional data during testing.

We repeat each experiment with five different random seeds and report the mean and standard deviation.

5.1 Windmill dataset

We first evaluate our method on WINDMILL dataset that helped us identify the relation between the perfor-
mance gap in predicting A on observational and interventional data in Sec. As a reminder, the causal
graph consists of two binary random variables A and B, where A — B during observations. We intervene
by setting B ~ Bernoulli(0.5), breaking the dependence between A and B. The proportion of interventional
samples in the training data varies from 5 = 0.01 to 5 = 0.5.

Accuracy on interventional data. The relative drop in accuracy is shown in parentheses.

Method | B=05 | =03 | B=0.1 | B =0.05 | B =0.01

ERM 76871105 (0.181001) | 69.861310  (0.29:0.04) | 62.781177  (0.37:x002) | 59521130  (0.40:0.01) | 60.15:512  (0.40:0.03)
ERM-Res. | 73.701310  (0.22:004) | 711943035  (0.24:003) | 73.62:154  (0.22:002) | 71.034283  (0.25:003) | 70201373  (0.26:0.03)
IRMv1 7824070 (0.1610.01) | 74.834174  (0.201002) | 78.61t224  (0.16:002) | 76.28+187  (0.181002) | 71751203  (0.24:0.02)
Fish 77231904 (0.19:t002) | 77.234130  (0.19:0.01) | 78241200  (0.18:0.02) | 76421105  (0.2010.02) | 73.92:253  (0.2320.03)
GroupDRO | 80.1011.66  (0.02+0.01) | 80.961133  (0.04:002) | 80.35:1.01  (0.06:0.02) | 77402116 (0.081001) | T1.86x160  (0.22:0.02)
SAGM 76434557  (0.192002) | 79.051205  (0.171002) | 76.961436  (0.18:003) | 79-86:181  (0.16:002) | 7281510  (0.234008)
DiWA 76614515  (0.192002) | 76.711050  (0.194001) | 76.094060  (0.20x0.01) | 75.83+183  (0.201002) | 73.39+181  (0.22:0.01)
TEP 58.68+472  (0.061010) | 60421150  (0.094006) | 56.074+335  (—0.041042) | 58.52:436  (0.011025) | 59.23+115  (0.1840.11)
RepLIn 87.94:1.46 (0.08:002) | 87.761230 (0.10x0.02) | 83.23:267 (0.16:003) | 73.631243  (0.25:0.02) | 67521230  (0.32:0.03)

RepLIn-Res. | 88.46.:0.96 (0.0740.01) | 88.0511.04 (0.0810.01) | 87.914136 (0.0840.01) | 86.38.085 (0.1040.01) | 78411127 (0.1840.02)

Table 2: Results on Windmill dataset: We evaluate the variants of RepLIn (highlighted in green)
against the baselines on two metrics: interventional accuracy and relative accuracy drop on interventional
data compared to observational. As the proportion of interventional data during training () decreases,
the problem becomes more challenging. Compared to the baselines, RepLIn maintains its interventional
accuracy. A similar trend is observed in the relative accuracy drop, where RepLIn significantly outperforms
most baselines. The best and the second-best results are shown in different colors. “Res.” stands for
“Resampled”.

Tab. 2] compares the interventional accuracy in predicting A for various amounts of interventional training
data. We make the following observations: (1) RepLIn outperforms every baseline in interventional accuracy
for all values of 8. This clearly demonstrates the advantage of exploiting the underlying causal relations
when learning from interventional data, instead of treating it as a separate domain. (2) Comparing ERM
and RepLIn with their resampling variants, we observe that resampling is a generally useful technique with
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large gains when § is very small (for example, consider results with § < 0.05). We are also interested
in the relative drop in accuracy between observational and interventional data (Rel.A). From Tab. |2} we
observe that GroupDRO has the lowest Rel.A among the considered methods for 5 > 0.05, and achieves its
best results when more interventional data is available during training. However, this improvement comes
at the cost of lower interventional accuracy — over = 7 percentage points difference compared to RepLIn.
Meanwhile, the relative drop in accuracy of RepLIn is comparable to GroupDRO at larger values of 5 and
has the least relative drop in accuracy at lower values of 3. DiWA and TEP were provided with the same
pool of models trained with minor variations in their hyperparameters. We do not consider the negative
Rel.A of TEP since (1) it achieves very low interventional accuracy, performing barely above random chance,
and (2) due to the high standard deviation of Rel.A. We discuss in Sec. how the representations learned
by RepLlIn are less affected by interventional shifts. As mentioned in Sec.[3.]] interventional robustness may
be at odds with observational accuracy as removing spurious information from representations may hurt
performance on observational data. We provide the results on observational data in App. [E}

5.2 Facial Attribute Prediction

We verify the utility of RepLIn for predicting facial attributes on the CelebA dataset . Images
in the CelebA dataset are annotated with 40 labeled binary attributes. We consider two of these attributes
— smiling and gender — as random variables affecting each other causally. Since the true underlying
relation between smile and gender is unknown, we adopt the resampling procedure from (Wang & Boddetil
to induce a desired causal relation between the attributes (smiling — gender) and obtain samples.
Specifically, to simulate this causal relation, we sample smiling from Bernoulli(0.6) first and then sample
gender according to a probability distribution conditioned on the sampled smiling variable. We then sample
a face image whose attribute labels match the sampled values. We model the diversity in the images due
to unobserved noise variables. Note that, unlike in WINDMILL, the noise variables in this experiment may
be causally related to the attributes that we wish to predict, adding to the challenges in the dataset. The
causal model for this experiment and some sample images are shown in Fig.[7] We first extract features from

(a) Observational causal graph and samples (b) Interventional causal graph and samples

Figure 7: Causal model for CelebA before and after intervention along with sample images from these models

the face images using a ResNet-50 (He et al., [2016)) model pre-trained on the ImageNet dataset (Deng et al.

2009). Then, similar to the architecture used for the WINDMILL experiments, we employ a shallow MLP to
act on these features, followed by a linear classifier to predict the attributes. Our loss functions act upon
the features of the MLP. We use 30,000 samples for training and 15,000 for testing. We use the relative drop
in interventional accuracy as the primary metric and compare RepLIn-Resampled against ERM-Resampled.
We also verify if the correlation between interventional feature dependence and the relative drop in accuracy
observed in Sec. 3.3 on WINDMILL experiments holds in a more practical scenario.

—&— ERM-Resampled —— RepLIn-Resampled

0.20
06 (a) RepLIn has a lower relative drop in accu-

racy compared to ERM-Resampled. (b) Minimizing

0.15

Rel.A
KcC

0.10

005 02 generalizes to testing. (c) Interventional feature

Figure 8: Facial Attribute Prediction:

interventional feature dependence during training

10! 10! ol 02 dependence correlates positively with the relative

p B Rel.A
drop in accuracy.
(a) Accuracy (b) Dependence  (c) Correlation
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Fig. [8 reports the experimental results on facial attribute prediction for various amounts of interventional
training data. We make the following observations: (1) as the proportion of interventional data increases, the
relative drop in accuracy in all methods decreases, (2) across all proportions of interventional data, RepLIn
consistently outperforms the baseline by 4% — 7% lower relative drop in accuracy despite the potential
challenges due to noise variable being causally related to the attributes of interest, (3) relative drop in
accuracy and interventional feature dependence show strong positive correlation (p = 0.86), and (4) the
interventional feature dependence of RepLIn steadily decreases as the amount of interventional data increases.

5.3 Toxicity Prediction in Text

We further evaluate RepLIn on a text classification task on the CivilComments dataset (Borkan et al., 2019).
CivilComments consists of comments from online forums, and we use a subset of this dataset labeled with
identity attributes (such as “Male”, “White”, “LGBTQ”, etc.) and toxicity scores by humans. The task is
to classify each comment as toxic or not. Previous works have identified gender bias in toxicity classifier
models (Dixon et al.| 2018; [Park et all [2018; |Nozza et al.,|2019). Therefore, we will simulate a causal model
in the training dataset between the attribute “female” and toxicity, similar to Sec.[5.2} During observation,
both attributes assume the same binary value. During interventions, toxicity takes value independent of
“female”. Input text comments are sampled according to these attributes. Similar to our facial attribute
prediction experiments, we first extract features from the comments using BERT (Devlin et al., [2019) and
train the models on these features. Our model architecture consists of a linear layer to learn representations
and a linear layer to predict toxicity.

—&— ERM-Resampled RepLIn-Resampled
o2 'Y 08 Figure 9: Toxicity Prediction in Text: (a) RepLIn
o0 06 \/. o6 has lower interventional accuracy drop compared to
3 008 g g ERM-Resampled; (b) Minimizing Lg4cp during train-
04 04 ing gives us representations that are independent dur-
0.06 . . . .
ing interventions; (¢) The strong correlation between
1072 10! 1072 10! 0.05 0.10 accuracy drop and interventional feature dependence
B B Rel.A

further corroborates our hypothesis in Sec. @
(a) Accuracy (b) Dependence  (c) Correlation

Fig. [9] compares the performance of RepLIn against ERM-Resampled. Fig. 0D shows that enforcing inde-
pendence between interventional features minimizes the interventional feature dependence during testing,
although its effectiveness drops as 8 approaches 0.01. Yet, RepLIn outperforms the baseline in terms of the
accuracy drop during interventions (Fig. . We also note that RepLIn becomes increasingly efficient in
minimizing the interventional feature dependence as [ increases.

6 Discussion

6.1 How are representations learned by RepLIn different from those by ERM?

In this section, we qualitatively and quantitatively inspect the differences between the interventional features
learned by RepLIn and baselines to understand how RepLIn improves robustness against interventional
distribution shift.

Windmill dataset: Robust representations of A change with A but not B. We quantify this change using
the Jensen-Shannon (JS) divergence between the distributions of Fi'* for a fixed value of A and changing
values of B. Tab. [3| shows the JS divergence between P(F|B = 0,A = a) and P(F|B = 1,A = a)
(obtained through binning) for multiple baselines trained on WINDMILL dataset. JS divergence for an ideal
robust model must be zero. We observe that Fi* learned by RepLIn achieves the lowest JS divergence,
indicating that Fi'* learned by RepLIn contains the least information about B among the baselines.

We can qualitatively examine the learned representations of the baselines by visualizing the spherical angles
subtended by the 3-dimensional features on a unit radius sphere. We compare the distributions of inclination
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Figure 10: Visualization of interventional features learned by various methods on WINDMILL dataset.

Method ERM ERM-Resampled IRMv1 Fish GroupDRO RepLIn RepLIn-Resampled
When A =0 | 0.45+0.058 0.423 £0.105 0.333£0.122 0.341£0.111 0.365+£0.066  0.15+0.03 0.188 £ 0.032
When A=1 | 0.499 £0.07 0.456 £ 0.11 0.405+0.111 0.37+£0.116 0.431 £0.048 0.183 £+ 0.058 0.168 + 0.047
Average 0.475 £ 0.063 0.439 £ 0.105 0.369 £0.116 0.355£0.113 0.398 £0.055 0.166 +0.035 0.178 £ 0.036

Table 3: Jensen-Shannon (JS) divergence: The distribution of Fi’ must be invariant to the value
assumed by B since A I B during interventions. Therefore, JS divergence between P(Fi*|B = 0,4 = a)
and P(F|B = 1,A = a) of a robust model must be zero, for a € {0,1}. We compare the JS divergence
between interventional features of the baselines for § = 0.5. Among the baselines, RepLIn achieves the lowest
values of Jensen-Shannon divergence. The lowest and the second lowest scores are highlighted in color.

and azimuth angles of F* learned by RepLIn-Resampled against the ERM baselines in Fig. Each row
shows the distribution of the spherical angles for different values of A. Distributions for different values of
B have separate colors. These feature distributions for a robust model must change with A but not B. We
observed from the figure that the feature distributions of the baselines are affected by B and not A due to
the dependence between F'* and B. However, the feature distributions learned by RepLIn change with
A and overlap significantly when B takes different values. Thus, models learned by RepLIn perform more
similarly to a robust model. Visualizations of the feature distributions of other baselines are provided in

App. @

Figure 11: Consider these sample face images where
the subjects are smiling. The ERM baseline misclassi-
fied these samples as not smiling, while RepLIn classi-
fied them correctly. We use GradCAM visualizations
to identify the regions in the input images that the
models used to make their predictions. The ERM
model relied on factors such as hair and the presence
of a hat that may correlate with gender to predict
whether the subjects are smiling. In contrast, RepLIn
attended to the lip regions to make predictions.

(b) RepLIn-Resampled

CelebA dataset: To analyze the high-dimensional features learned on CelebA, we employ Grad-CAM
[varaju et all |2017) and inspect their output attention maps. We consider some samples with smiling = 1
that were misclassified by ERM-Resampled but were correctly classified by RepLIn-Resampled. Fig.[[1]shows
the attention maps from models trained on datasets with 50% interventional data. A robust model would
attend to facial regions near the lips to make predictions about smiling. Observe that RepLIn-Resampled
tends to focus more on the region around the lips (associated with smiling) while ERM-Resampled attends
to other regions of the image, such as hair and cap. This supports the trustworthiness of representations
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learned by RepLIn. More GradCAM visualizations, including the samples accurately classified by ERM, but
not RepLIn are shown in App. [F]

6.2 Scalability with number of nodes

(a) Observational (b) Intervening on C' (c) Intervening on D (d) Intervening on E (e) Generating X

Figure 12: 5-variable causal graph: We construct a 5-variable causal graph to demonstrate the scalability
of our method with the number of nodes. To collect interventional data, we intervene on C, D, and FE
separately and measure the performance drop in predicting A and B during these interventions. Nodes in
the graphs with dashed borders indicate intervened nodes. Note that we do not intervene on multiple targets
at a time. The input data signal X is constructed as a concatenation of individual input signals, each being
a function of a latent variable, ie., X = [X| X5 X! X} X—EF]T Here, MLP; indicates a randomly
initialized MLP with [ linear layers, each followed by a ReLU. We also add Gaussian noise sampled from
N(0,0.01) to the output of the MLP.

Practical causal graphs can include many latent variables. The variable for which we wish to learn robust
representations may have several child nodes, depending on the density of the causal graph. Therefore,
it is imperative that RepLIn is scalable with both the number of intervened nodes and their parents. To
verify this scalability, we use the causal graph shown in Fig. [[2a] with five latent variables. It consists of
two binary source nodes A and B, and three binary derived nodes C, D, and E. During observations, A
and B are sampled from independent Bernoulli(0.5) distributions. During observation, the remaining nodes
take the following logical expressions: C':== A or B, D == A and B, and F = not B and C. Like our
previous experiments, the training dataset has interventional data samples collected by intervening on nodes
C, D, and F separately, in addition to the observational data. The changes in the causal graph due to these
interventions are shown in Figs. to Each intervened variable assumes values from a Bernoulli(0.5)
distribution independent of their parents. Each latent variable % is passed through a randomly initialized
MLP with noise added to its output to get a corresponding observed signal X,. These individual signals are
concatenated to obtain the observed input signal X, as shown in Fig. The task is to predict the latent
variables from the input signal X.

Each training batch comprises only observational or interventional data after intervention on a single target.
Therefore, our method only enforces the independence relations from at most one interventional target in
each batch. The validation and test sets consist of samples collected during interventions on C, D, or F.
Since we are interested in the robustness of the model against interventional distribution shift, our primary
metrics will be the predictive accuracy for A and B during interventions on C, D, and E.

Observations: The predictive performances on the test sets are reported in Table We observe that
RepLIn significantly improves over the baseline with sufficient interventional data, g > 0.1. When the
proportion of interventional data 8 < 0.1, RepLIn is comparable with the baseline, suggesting that the ben-
efits of enforcing independence between interventional features extend to larger causal graphs with multiple
intervention targets.

6.3 Limitations

RepLIn requires knowledge of interventional data, the intervened node, and its parent variables. RepLIn
could be sensitive to inaccurate knowledge about any of these, or lack thereof. For instance, interventional
data can be challenging to obtain in safety-critical applications such as drug testing and autonomous driving.
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Interventional ‘
target

Predictive accuracy on A Predictive accuracy on B

Method

| | B=05 5=03 B =0.1 =005 | B=05 5=03 B=0.1 B =0.05
c ERM-Resampled | 79.714+0.30  76.2240.42 73.97+0.39 73.56+0.36 | 87.60+0.06 85454023 83.89+0.33 83.71+0.40
RepLIn-Resampled | 95.37 +0.97 78.77+0.54 72.15+0.31 73.74+0.36 | 96.72+0.81 86.16+0.63 82.35+0.95 8243+ 0.65
D ERM-Resampled | 79.65+043  754740.64 71.76+0.35 70.27+0.34 | 91.05+£0.29 90.214+0.27  90.36 +£0.58  90.55+ 0.74
RepLIn-Resampled | 95.49+1.01 77.76 +£0.82 71.20+0.82 68.80+0.79 | 97.87+0.31 92.21+0.48 91.40+0.79 90.88 +0.89
B ‘ ERM-Resampled | 86.63+0.33 81.90+0.26 76.20+0.84 73.46+0.37 ‘ 81.124+0.22  78.004+0.48 74.02+0.38 72.97+0.38

RepLIn-Resampled | 96.71+0.49 84.68+0.36 75.01+0.53 71.52+0.87 | 96.89+0.68 80.88+0.57 72.81+1.13 71.60+0.59

Table 4: Results on 5-variable causal graph: We compare the accuracy of RepLIn in predicting the
source nodes A and B during interventions on non-source nodes C', D, and F against that of ERM-Resampled.
Our approach outperforms the baselines with sufficient interventional data.

In such cases, generative models that accurately model the data generation process could be used to generate
synthetic interventional data. There may be scenarios where only imperfect interventions are possible.
During imperfect interventions, the intervened variable would still be partially dependent on its parents,
although the strength of this dependence could be lower. We show the effect of imperfect interventions
on RepLIn in App. [B:4] where we modeled imperfect interventions by randomly replacing a proportion of
interventional data with observational data. We observed that although RepLIn’s performance deteriorated
compared to a vanilla predictor training on a training data with observational and perfect interventional
data, it still outperformed vanilla predictors trained on the same dataset, especially at lower values of .
These results indicate that RepLIn works best when perfect interventional samples are available. At the
same time, they also demonstrate the usefulness of RepLIn in those scenarios where interventional data
is scarce and sample-efficient methods are required to improve robustness. RepLIn could also be sensitive
to causal graph misspecification involving the intervened node. However, we are only concerned about the
misspecification where the edge from a parent to the intervened node is reversed. This misspecification would
result in an independent constraint not enforced during training.

7 Conclusion

This paper considered the problem of learning representations that are robust against interventional distri-
bution shifts and proposed a training algorithm for this objective that exploits the statistical independence
induced by interventions in the underlying data-generating process. First, we established a strong correla-
tion between the drop in accuracy during interventions and statistical dependence between representations
on interventional data. We then showed theoretically that minimizing linear dependence between interven-
tional representations can improve the robustness of a linear model against interventional distribution shift.
Building on this result, we proposed RepLIn to learn representations that are robust against interventional
distribution shift by explicitly enforcing statistical independence between learned representations on inter-
ventional data. Experimental evaluation of RepLIn across different causal graphs on both synthetic and real
datasets on image and text modalities with semi-synthetic causal structures showed that RepLIn can im-
prove predictive accuracy during interventions for various proportions of interventional data. RepLln is also
scalable to the number of causal attributes and can be used with continuous and discrete latent variables.
We used qualitative and quantitative tools to show that RepLIn is more successful in learning interventional
representations that do not contain information about their child nodes during interventions.
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A Implementation details

We implement our models using PyTorch (Paszke et all 2019) and use Adam (Kingma & Bal [2015) as our
optimizer with its default settings. Training hyperparameters for each dataset (such as the number of data
points, training epochs, etc.) are shown in Tab.[5| For training stability, we warm up Agep from 0 to its set
value between sIN and eN epochs where N is the total number of epochs, and s and e are fractions shown
in Tab. Bl

Table 5: List of hyperparameters used for each dataset.

Dataset ‘ #Training samples ‘ Epochs ‘ Batchsize ‘ Initial LR ‘ Scheduler ‘ Adep ‘ Aself ‘ Start (s) ‘ End (e)
WINDMILL 40,000 5000 1000 2e-3 MultiStepLR (milestones=[1000], gamma=0.5) 1 1 0.66 0.99
CelebA 30,000 2000 1000 le-3 MultiStepLR (milestones=[1000], gamma=0.1) | 20 2 0.01 0.99

For all methods, we first extract label-specific features from the inputs and pass them through a corresponding
classifier to predict the label. The architecture of the feature extractor is the same for all methods on a given
dataset, except on the WINDMILL dataset. The classification layer is a linear layer mapping from feature
dimensions to the number of classes. The specific details for each dataset are provided below.

Windmill dataset: For ERM baselines, we use an MLP with two layers of size 40 and 1, with a ReLU
activation after each layer (except the last) to extract the features. However, we observed that enforcing in-
dependence using 1-dimensional features was difficult. Therefore, we used 2-dimensional features for RepLlIn,
which were then normalized to lie on a sphere.

CelebA dataset: We first extract features from the raw image using a ResNet-50 (He et al., [2016) pre-
trained on ImageNet (Deng et al..[2009). Although these features are not optimal for face attribute prediction,
they are useful for face verification (Sharif Razavian et al}[2014). Additionally, it makes the binary attribute
prediction task more challenging. We extract attribute-specific features from this input using a linear layer
that maps it to a 500-dimensional space.

B Theoretical Motivation for RepLIn

In Sec. we theoretically motivated RepLIn. This section explains the motivation with detailed proof.

Sketch of proof: First, we estimate the statistical risk in predicting the latent variables from interventional
data from representations learned by arbitrary linear feature extractors and classifiers. In this statistical
risk, we will identify a term that is the source of performance drop during interventions. We will then
show that the optimal ERM models will suffer from this performance drop when trained on a dataset
comprising observational and interventional data. Finally, we show that minimizing linear dependence
between interventional features can lead to robust linear feature extractors.

Entity Notation Examples
Scalar Regular lowercase characters a, y
Random variable Regular serif uppercase characters A
Random vector Bold serif uppercase characters A
Distribution of a random variable A P with subscript Py

Table 6: Mathematical notation used in the proof.

Setup: We follow the same mathematical notation as the main paper, shown in Tab. [6] The input data X
is generated as a function of two latent variables of interest, A and B. There are noise variables collectively
denoted by U that participate in the data generation but are not of learning interest. Our task is to predict
A and B from X. A and B are causally related during observation. For ease of exposition, we will consider
a simple linear relation B := wapA. This causal relation breaks when we intervene on B. The intervened
variable is denoted with an added apostrophe (i.e., B’). The data generation process can be written in the
form of a structural causal model as follows:
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A~ Py Xa=waA+Uy
B' ~ Pp/ Xp =wpB+Up
B = wapA (during observations) De
B := B’ (during interventions) X = { XA}
Ua,Up ~ Py B

Training: The distribution from which training data is sampled is denoted by P;ain. The training data
consists of both observational and interventional samples, which themselves come from distributions Ppps
and P;. We are interested in the scenario where (1 — ) proportion of the training data is observational,
while the remaining § proportion is interventional, where 0 < § < 1. The training distribution can be
represented as a mixture of observational and interventional distributions as follows:

Ptrain(X7Aa B) = (1 - /B)Pobs(XvAa B) + 6Pint(XaA7B)

Typically, we assume 5 < 1. We will also assume that A, B, U, and X have zero mean, so that we may use
linear models without bias terms to extract representations corresponding to the variables of interest and
train linear classifiers on these representations. The corresponding classifiers are parameterized by ¢4 and
¢'P). The predictions are made by the classifiers from the learned representations as A=cNTOMNTX and
B = cBTOMB)T X The models are trained by minimizing the mean squared error on the training data,

Lyse = Ep,... [(HA - AH2 T HB B B’ 2)]

B.1 Statistical Risk in Predicting Interventional Latent Samples

The model predicts A and B from X during inference. The statistical squared error in predicting A from
interventional samples can be written as,

. [(A B 1‘1)2] CEp {(A _ c(A)T@(AWX)? (7)

The expectation is taken over the interventional distribution over X, A, B, U denoted by Pu. ®“) can be
written in terms of constituent parameter vectors as ©(4) = [g%ﬁ;:} . The predicted latent A can hence be
written in terms of these vectors as, 7
A=cMTOATX = AT (XAeff) + X0 4 G)(A)TU)
= wsAcVTOW +wpB M T 4 NTOWTY
: (A - c<A>T@<A>TX)2 - ((1 - wAc<A>Tof4A>) A+wpB AT c<A>T®<A)TU)2
-(1- wAc<A>Te§;“>)2 A% (chWTog‘)f B? 4 U?

+2 (1 - wAc<A>T0§;“)) (ch(A”a](;‘)) AB'

+2 (1= wacWT0) A+ 2 (wpeWTof) OB (8)
 Es=Ep., [(1 - wAc<A>T0£(‘>)2 A2 4 (ch<A)T@§;‘>)2 B?+ 02}
+2Ep,, [(1-wac V76 (wpeTol") ap|
+2Ep,, {(1 — wAc<A>T0£;“)) UA+2 (ch(A)TOEA» UB’}

where U = ¢ TOWTY = c(A)TGEL‘A)UA + c(A)THJ(BA)UB. U denotes exogenous variables that are indepen-
dent of A and B. Due to interventions, we also have A Il B. The expectation of AB’ will be zero since
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they are independent and have zero means marginally. Similarly, the expectation of the products of U with
A and B will be zero. Therefore,

2 2 2 2
Ba= (1= wac V00 3+ (<OTON) i, + (wneVT00) g+ (V00 i, (0

(1) (2)
EA EA

Where pi = ]EPint [AQ]’ p%}/ = EPim [B/Q], p?jA - ]EP

int

[Uﬁ], and p%,B =Ep,, [U}%}.

Statistical risk for a robust model: We are interested in robustness against interventional distribution
shifts. The predictions of A by a robust model are unaffected by interventions on its child variable B. If A

must not depend on B’, then the corresponding representation F4 must not depend on it either, i.e. 053‘4)
must be a zero vector. Eq. @ has two terms: ES) and Eff). Therefore, a robust model will have Ef) =0

since HJ(BA) = 0. Therefore, showing that an optimal ERM model has a non-zero BJ(BA) is sufficient to show
that the model is not robust.

B.2 Optimal ERM model

The optimal ERM model can be obtained by minimizing the expected risk in predicting the latent attributes.
Since parameters are not shared between the prediction of @ and b, we can consider their optimization
separately. We will consider the optimization of the parameters for predicting a since we are interested in
the performance drop in predicting A from interventional data.

@)(A)*7 oA — argmin Ep, . {(A — C(A)T@(A)TX>2]
o) c(4)

where Pipain i the joint distribution of (X, A, B) during training. As mentioned earlier, Py iy is a mixture of
observational distribution P,ps and interventional distribution Py, with (1 — ) and 8 acting as the mixture
weights. Therefore, the training objective can be rewritten as,

OW* A — argmin J(O@W, )
o) ¢(4)

2 2
where, J(©@@W, @) = ((1 — B)Ep,. [(A - c<A>T®<A)TX) } + BEp,, {(A - c<A>T®<A>TX) D (10)

Expanding the error term on observational data, we have,

CATAT x — (AT (XAGQA) n XBO(BA) T @(A)TU)
= wAAc(A)TOI(LXA) + wBBc(A)TOJ(BA) +cNTeW Ty

—waAcMTOW + wpwapAc T 4 ATEOWTY
. (A — C(A)TG(A)TX)2 = (A —waAcMTOY — wB’lUABAC(A)TngA) - C(A)TG(A)TU>2
2
= ((1 —waeMTe — waABc(A)TBS;)) A- C(A)TG(A)TU)
2 -
= (1 — wAc(A)TOEL,A) — waABc(A)THJ(BA)) A2+ U?

-2 (1 - wAc(A)THEL‘A) — waABc(A)THJ(BA)) AU

where U = cWTOWTY = UAC(A)TGI(LlA) + UBC(A)THJ(BA) from App. Since the exogenous variable U is
independent of A and B, the expectation of their products over the observational distribution becomes zero.
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Therefore,

2 2
Ep,, [(A - C(A)T@(A)TX) } = (1 — wAC(A)TBI(L‘A) _ U)BU)ABC(A)TQEBA)> Ep

2 2 2
= (1= wac® 705" — wpwancTORN) o4 + (VT ) oy, + (<YTO5Y) o,

(11)
Note that, p% = Ep,,, [4%], p¢;, = Ep,. [U4], and pg;, = Ep,,, [U] similar to App. since these values

are unaffected by interventions. The expansion of the error term on interventional data was derived in
Eq. @D Thus, the overall training objective Eq. (10]) can be written as,

2 2 2
(00,0 = (1) ({1 a6~ wane O A (O 4 (cT00) )
2 2 2 2
(R W R () R L R AR D

We set ¢y = T and ¢y = @701, Since ERM jointly optimizes the feature extractors and the
classifiers, no unique solution minimizes the prediction loss. For example, scaling the feature extractor
parameters by an arbitrary constant scalar v and the classifier parameters by 1/v will give the same error.
Therefore, we can optimize J(©), ¢(4)) over 11 and 1y, similar to (Arjovsky et al.| 2019).

JOW, ) = (1= 8) (1 - wats — wpwapva)® o + Wik, + V3ol )
+ 8 ((1 = wa)? 0% + whedph + viok, + viod, ) (12)

The optimal values of 1, and 1), are the stationary points of .J(©), ¢(4)) (denoted by .J for brevity). Thus
the optimal parameter values can be solved for by taking the first-order derivatives of J w.r.t. 7 and ¥y
and setting them to zero.

aJ
50 = 2(1 = B) (— (1 — wathy — wpwapa) wapy + Y1pgr, ) + 28 (— (1 — waty) wapi + 1ot
aJ
T 2(1 = B) (= (1 — waty — wpwapts) wpwappy + Y2pp,) + 28 (Whteph + Yapy,)
Setting (%]1 = ;—Jz = 0, we have,
(wip% + p¥,) +(1 = Bywawpwapp v —wapy =0

(1= B)wawpwappis + (Bwhph + (1 - Blwiwigri +p,) Y2 —(1— Blwpwappy =0
The equations are of the form w11 + v19 + wy = 0 and ugyy + Vo2 + we = 0. We can solve for 1, as

g = % Since we are only interested in probing the robustness of ERM models, we will check if

o is zero instead of fully solving the system of linear equations. EY in Eq. is zero if o = 0, ie. if
A
woty — wiug = 0.

wauy — wiug = —(1 = Blwpwap (Whph + pir,) Ph +4(1 — Blwiwpwappl

= —(1 = B)wpwaspirir,

Unless the training data is entirely composed of interventional data (i.e., 8 = 1), wou; — wyus is not zero.
Thus, the optimal ERM model is not robust against interventional distribution shifts.

B.3 Minimizing Linear Dependence

In Sec. we showed that dependence between interventional features correlated positively with the drop
in accuracy on interventional data. We will now verify if minimizing dependence between interventional
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features can minimize the drop in accuracy. For ease of exposition, we will minimize the linear dependence
between interventional features instead of enforcing statistical independence. The interventional features are
given by Fy = @ T X and Fj, = @5 TX.

X
Frec@®Tx = [gd) ) [ A}
s 050 6] e

= XABI(L‘A) + XBO(BA)

Fj,=0®7TXx = [95@ 09} Bﬂ
B

= XAHEL‘B) + XBB(BB)

To define linear independence between interventional features, we use the following definition of cross-
covariance from (Gretton et al., 2005)):

Definition 1. The cross-covariance operator associated with the joint probability pxy is a linear operator
Cxy : G — F defined as

Cxy = Exy [(¢(X) — px) @ (P(Y) — py)]

where G and F are reproducing kernel Hilbert spaces (RKHSs) defined by feature maps ¢ and v respectively,
and ® is the tensor product defined as follows

(f @ g)h = f{g,h)g for allh G
where (-,-) is the inner product defined over G.

In our case, instead of RKHS, we have finite-dimensional feature space R%. Therefore, we have the cross-
covariance matrix as follows,

Cxy =Exy [¢(X) @ ¥(Y)] = Exy [¢(X)¥(Y)"]

given that the feature maps have zero mean. Following the definition of HSIC (Gretton et al., [2005)), linear
dependence in the finite-dimensional case between X and Y is defined as the Frobenius norm of the cross-
covariance matrix. Therefore, we define the linear dependence loss between the interventional features as,

2
Laep = Dep (Fa, Fp) = ||En,. [FaFg']|[, (13)
Leveraging the independence relations during interventions, we can expand Eq. as,

Ep

int

[FaFp' ] =Ep,, |:<XA0,(4A) +x5605") (x40 +XBHEBB)>T}

:EP

int

x305007T + xax500057 T + Xax0500 " + x304V01)|
A T A T
= (Wirh + 0, )05 057 T + (whoh + 9,05 055
2
A B)T A B)T
* Laop = | (wheh + 08,0050 00 T + (whoh + s, 057057 |

In the last step, all cross-covariance terms are zero due to the independence of the corresponding random
variables in the causal graph. The dependence loss is the Frobenius norm of a sum of rank-one matrices
6 M0 P)7 and 6:V0P) 7. Consider the following general form: Z = ab' + cd . Then Z;; = a;b; + c¢id;.

1215 = (aib; + cidy)?

ij
1 Z ||§7 is a sum of squares and thus is zero iff a;b; + ¢;d; = 0, Vi, j. Therefore, Lgep is minimized when
954'3)954}?) + 953‘?953@) = 0, Vi,j. The potential solutions that minimize Lqe, are (1) 01(4'4) = 953‘4) = 0543) =
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01(93) =0, (2) 61(4'4) = :I:WHJ(BA) and 7054B) = $0§9B) for some v # 0, and (3) 0&{4) =0or HELXB) =0, and 0§3A) =0
or BJ(BB) = 0. The former two solutions result in trivial features and will increase the classification error.
The latter solution contains four possible solutions, out of which two solutions result in trivial features.
Solutions resulting in trivial features are unlikely to occur during optimization due to a large classification
error. Therefore, we need to consider only the remaining two solutions.

The possible solutions are: (1) 0;’4) = 0,0533) = 0, and (2) OEBA) = 0,9543) = 0. Intuitively, in the former
solution, A and B will be predicted using Xpg and X 4 respectively, and the latter solution corresponds to a
robust feature extractor that minimizes the reducible error in Eq. @ We will compare the predictive error
achieved by these solutions to compare their likelihood during training.

Recall the expression for training error in predicting A from Eq. .

JA(@W) ) —watar — wpwapYaz)” ph + VAP, + ¢,242P%JB>

( (1
( (1- IUA1/)A1 PA + wEYAeph + 77[},24110%],4 + 7/’%202&3)
( (1 —watar — wpwapYaz)” 0,24)

+5 ((1 —wathar)’ ph + w%zﬁiw%,) + 50t + Vhert,

We use 141 and ¥ 42 instead of 11 and 19 respectively to denote the parameters for predicting A. A similar
expression can be written for the error in predicting B with ¥ p; and ¥ps denoting the parameters for
predicting B.

Jp(@P) P —0B) ( (1 — watp1 — wpwapp:)’ pi + Vb1 pY, + 1/}?32P?13>
+ B (wivpipa + (1 —wp¥p2)’ph + VB10y, + VB2Pl,)
- f) ((1 —wathp — wpwaRYE2) p,24)
+ B (wivpiph + (1 —we¥s2)?ph) + V106, + Uhabtr,

Case 1: When 01(4’4) = 0,9533) = 0: In this case, Y41 = 0 and Yo = 0. Therefore, the predictive error
during training for each latent variable can be written as,

Ja=(1-8) (wpwapas —1)° p& + Bpi + Buwb?aps + V320U,
Jp = (1 - B) (wathp1 — wap)® p’ + Buwib o4 + Boh + VE100 .,

The optimal values of ¥ 42 and ¥ g1 can be obtained by equating the gradients of R4 and Rp to zero.

aJ
81/:2 =2(1 - B)wpwap (Wpwaphaz — 1) p% + 2Bwhhazphy + 20203, =0
b = (1 - B)wpwapp’
(1 = Bwhw? o + Bwhpl + piy,
7 (1= B)ph (Bwkply +ot,) 52
(I = Bwiwiprh + Bwhrh + rp,
aJ
Sons = 21 = Bwa (wavss = wap) ph + 28whpiph + 2ipipty, =0
e (= PBlwawapp}
. d}Bl -

wiph + g,
. (1= PBwippi(Bwiok +0E,) 5
JB = 5 9 p) + ﬁpB’
waps + Py,
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The combined training error for this solution is,
Jr=J1+Jg
(1= B)o% (Bwppl + 0,
(1 = Blwhwipph + Buwiph + piy,
(1 = B)wlpp4 (Bwipl + pp,)
wirh + Py,

+ Bp%

+ B (14)

+

Case 2: When GJ(BA) =0, 01(43) = 0: Here, 9942 = 0 and ¥p; = 0. The predictive error during training for
each latent variable can be written as,

Ja = (wathar — 1)2 P4+ 1/1,241P%JA
Jp = ((1 = B)wipp’ + Bpk) (wpps — 1)% + ¢3apd,

We follow the former procedure to estimate the optimal values of ¥ 41 and ¥ pgs.

dJ4
=2wa (watha1 — 1) p% + 2 a1pg, =0
0 a1
oy = wAPE&
RV S
PArt
JZ _ AFU

w4 + P,

0.Jp
Doy 2wp (1 - B)wiprh + Bok) (wedps — 1) + 2¥papiy,
g, = Blwpw}pp’ + Bwsph
(1= Bwhw?ppi + Bwhel + ot
Jr ((1 — B)wippi + 5/’23') plsz
x

(1 = Blwpwipph + Bwiph + ot
The combined training error for this solution is,
Jy=Jy+ Jg

PAPE (1 = B)wipr’ + Brky) i, (15)
wirh +rb, (1= Blwpwippl + Bwieh + pp,

Comparing J;y and J3,
(1= B)Bwipiph + (1 = B)part, — (1 — B)wipparts, — Bk ptr,
(1= Bwhwl e + Bwhpl + pi,
(1= B)Bwiwi pph + (1 — Bwiprirl, — PPt
wiph + P,

Jr— T =

+B(p% + pr)

_|_

Simplifying the above expression, we get the condition that J; —J3 > 0 if § satisfies the following conditions:

2

Pu s . . . .
3 2p1 >, =72 |. The conditions imply that enforcing linear indepen-
Ppr TPy WaWyapPy

dence results in robust feature extractors when enough interventional data is available during training.

(1)B>1—- 1= (2) B> min

lwasl|’

However, this is only a sufficient condition that strictly ensures J; — J3 > 0. In practice, 8 could be much
lower, especially when the total loss is of the form Liotal = AMsELMSE + AdepLdep, Where Ayige and Adep
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are positive hyperparameters. We verify this empirically by randomly setting the parameters of the data
generation process and plotting the predictive errors J; and J5 for different values of 5. We calculate J;
and J5 for 5000 runs (shown using thin curves) and plot the average error (shown using thick curves) in
Fig. [I3] We observe that the average value of Jf is always higher than that of J3 for all values of 5. But,
when 6 — 0, their average values get closer to each other.
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Figure 13: Comparing J; (Eq. ) and J3 (Eq. ) as functions of 8 for 5000 runs with randomly sampled
data generation parameters. We show individual runs using thin curves and the average error values using
thick curves. We only show the errors from a few randomly sampled runs for visual clarity. We observe that
the average value of J; (shown using thick red curve) is always higher than that of J5 (shown using thick
blue curve), indicating that enforcing linear independence between interventional features is more likely to
obtain robust feature extractors than degenerate solutions.

B.4 Additional Analysis on How RepLIn Improves Interventional Robustness

In the previous section, we demonstrated, using a linear 2-variable causal model, that enforcing independence
can provably improve statistical test-time risk over the interventional distribution for a sufficient proportion
of interventional data in the training distribution. In this section, we will further show how enforcing
dependence improves test-time risk over interventional distribution. We will limit this analysis to linear
models, but extend it to include multiple latent variables (including exogenous noise) with possibly nonlinear
causal relations between them and imperfect interventions.

Similar to our former setups, the observable data X is a function of the latent variables of interest, Z,
and exogenous noise variables U, X = ¢gx(Z,U). Here, gx could be a nonlinear function. Although a
linear model to predict Z from X may be insufficient for a nonlinear gx, the following analysis is still valid.
Consider the task of predicting one of the latent variable elements in Z, Z;, using linear weights w; as
Zl = wlTX

To learn this predictor, we have access to a training distribution P;,in, which is a mixture of the observational
distribution P, and the interventional distribution P, as follows:

Ptrain(sz) - (1 - 5)Pobs(XvZ) +ﬁP1nt(X7Z>

During observations, some latent variables are causally related to each other. For this analysis, let Z; be a
parent of multiple child variables during observation. Here also, the causal relation from Z; to its child nodes
may be nonlinear. These child variables are also affected by external noise variables. Similar to our previous
setups, during interventions, we intervene on one or more of these child nodes, rendering them independent
of Z;. To understand how enforcing independence between the predictors for Z; and its child nodes over
interventional distribution improves robustness, we will compare the weights w; obtained through vanilla risk
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minimization (minimizing only the prediction error), denoted by wWyym,1, and the weights obtained through
the proposed approach, denoted by wqep,1 against the weights of a robust linear predictor, denoted by wyop,1-

Robust linear predictor: The weights for a linear predictor that is robust against interventional distribu-
tion shifts can be obtained by minimizing the prediction error over a hypothetical training distribution that
consists of only interventional data. Here, P is the interventional distribution where all child nodes of Z
are intervened on.

. 2
w:ob,l = argmin[w;ep,1]Ep,, {(Zl - 'erob,lX) }

The closed-form solution to the above equation, under assumptions of zero-mean latent variables and a
mean-preserving mixing function gx, is

w:ob,l = C_;(l CZ1 Xins (16)

int

Note that wy,, ; are the weights of a robust linear predictor, irrespective of whether the mixing function gx
is linear or not.

Optimal linear predictor under vanilla risk minimization: The optimal linear predictor for Z; under
vanilla risk minimization can be obtained by minimizing the prediction error for Z; under the training
distribution. The weights of this optimal predictor will appear similar to Eq. , except the involving
terms will be computed over the training distribution. The optimal weights are

CZ1 Xirain (17)

Due to the discrepancy between training and intervention distributions, the optimal linear predictor under
the training distribution will have excess risk. This excess risk can be quantified as

* —1
w Cx

vrm, 1 train

T 2
eexcess(w\trm,l) = (w\trm,l - wl)fob,l) C-Xint (w\trm,l - w;kob,l) = Hw\trm,l - wl)“kob,IHCX. . (18)

How does enforcing independence over interventional distribution help? For this analysis, we
will use the simplified version of RepLIn that we used for our analysis in the previous section, which consists
of only the dependence loss. Specifically, we will minimize the squared covariance between the predictors
for Z; and its child nodes over the interventional distribution. Recollect that the latent variables had zero
mean, and the mixing function was mean-preserving. Combining this dependence loss with the prediction
loss from vanilla risk minimization, our training objective becomes the following.

J (wh s 7wdz) = EPu-am Z (ZZ - wiX)2 + Z E?Dint [’wlTX ’ w]TX}
i j€ECh(1)
=Ep, | (Zi—wiX)* |+ Y w/Cx,,w;
i JECh(1)

prediction loss dependence loss

where Ch(1) are the set of indices of the child nodes of Z;. The dependence loss in the above equation is
equivalent to HSIC without any additional nonlinear feature extractors over the predictors. Computing the
gradient of J (wy,...,wy,) w.r.t. wy and equating it to the zero vector gives the following expression:

.
Cx,ponWi1 + E w; Cx,,,wj - Cx,, , Wj = Cz, X\puin

JECh(1)
T —1 |
> wit Y, wCx,w; Cx|,, Cx,,w; = Cx, €7 X\ (19)
jECh(1)
Weorr,1:= correction vector for w;
Note that the RHS of Eq. (19) is wy},,, ;. Thus, we obtain w; = wy,,,, ; — Weorr,1. This means that enforcing

independence between Z; and its child nodes over the interventional distribution essentially adds a correction
vector to the optimal predictor under vanilla risk minimization.
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Can we obtain an analytical solution for wgyep, 7: We may write similar equations as Eq. for the
predictors of other latent variables in Z. In a 2-variable case, these equations would be those of a hyperboloid,
implying infinitely many solutions. A unique solution may be arrived at, although not analytically, through
additional commonplace regularization such as Lo regularization or SGD’s implicit regularization, resulting
in a minimum norm solution that satisfies Eq. . Even with heuristics such as selecting a minimum-
norm solution, it is not easy to obtain an analytical solution for wgep, since the correction vectors are
interdependent on the weights of the predictors for other latent variables.

Let wj,, ; be a solution to Eq. (19)). The excess risk for wj,, ; is

2
eexcess(wziep,l) = |‘w$ep,1 - w:ob,lHCX_ (20)

int

We can conclude that enforcing independence between predictors over interventional distribution improves
robustness if the excess risk for wj,, ; is lower than ecxcess(Wy,y,,1). In the next part, we will empirically
observe the effects of imperfect intervention and the amount of interventional data in the training distribution
on the utility of RepLIn.

Empirical Analysis of weorr,1: The empirical analysis in this section will focus on two aspects: (1) the
effect of imperfect interventions, and (2) how the correcting vector acts on wqep 1. To answer both questions,
we construct a 2-latent variable toy dataset. The latent variables are Z; ~ N(0,0%) and Z ~ P71+

A
where 01,09 ~ U(0,5) and € ~ N(0,107%). The observable data X is then constructed as X = W | Z, |,
U
where U ~ N(0,1072) is the exogenous noise variable and W € R%x*3 is a randomly generated orthogonal
matrix that acts as the linear mixing function. dx is also chosen randomly from {3, ...,20}.
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(a) Test error for RepLIn for various values of n com- (b) Difference between excess risks for a vanilla predictor
pared to a vanilla predictor trained on a training distri- and a RepLIn predictor for various values of 7.
bution with n = 0.

Figure 14: We examine the effect of imperfect intervention on RepLIn by (a) comparing the test error of
RepLIn predictors trained on distributions with various imperfectness probability 1 against a vanilla predictor
trained on a distribution with observational and perfect interventional data (n = 0), and (b) comparing the
errors for RepLIn and vanilla predictors trained on distributions with various values of n. The plots indicate
that imperfect intervention can hurt RepLIn’s performance, especially for higher values of 5.

We model the imperfect intervention using an imperfectness hyperparameter n by essentially replacing each
interventional sample in the training distribution with an observational sample with 7 probability. During
training, we minimize dependence between predictors over this imperfect intervention. As 7 increases, the
proportion of causally related latent variables masquerading as independent variables increases, and enforcing
independence between predictors over this imperfect intervention can then hurt the predictive performance.
Our intuition stems from the boundary case of n — 1 (all interventional samples replaced with observational
samples), where only random predictors can satisfy the independence condition that we aim to achieve.
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Fig. shows the results of RepLIn on imperfect interventions. In Fig. we compare the test error
for RepLIn for various values of 1 against the test error of a vanilla model (shown in black) trained on a
dataset with observational and perfect-interventional data (7 = 0). We can see that the test errors of RepLIn
are either lower or equal (near the boundary values of ) compared to the vanilla predictor when n — 0.
The errors match as 5 — 0 and f — 1 due to the unavailability and abundance of interventional data,
respectively. As the interventions become more imperfect, the test errors for RepLIn increase. In Fig. [[4D)]
we view the difference between the excess risks of vanilla predictors and RepLIn predictors for various values
of 7. Here, we note that RepLIn consistently outperforms the corresponding vanilla predictor for most values
of n at lower values of 5. As 7 increases, RepLIn begins to perform worse than vanilla predictors for higher
values of 3, and RepLIn eventually consistently underperforms vanilla predictors for n — 1.

Conclusion: Since RepLIn relies on enforcing independence between samples where the underlying variables
are truly independent, it is naturally prone to imperfect interventions, particularly for large values of .
However, we envisioned RepLIn for scenarios where interventional data is scarce (5 < 1), and where targeted
approaches to improve robustness are desirable. In this regime of § < 1, our results indicate RepLIn performs
better than vanilla predictors even when intervention noise 7 is considerable.

B =0.00 B=0.11 B=022 B=033

Figure 15: The weights of a linear RepLIn predictor are the sum of the weights of a vanilla predictor and a
correction vector (Eq. ) In this plot, black, red, and green arrows show the weights of robust, vanilla,
and RepLIn predictors. The negative correction vector is shown in magenta. We see that the correction
vector points nearly orthogonal to the robust predictor (black), and its magnitude decreases as ( increases,
when the vanilla predictor (red) approaches the robust predictor.

We repeat this experiment with dx = 2 so that we can plot the resulting predictor weights, as well as the
correction weights. In Fig. we plot the weights of robust (black), vanilla (red), and RepLIn (green)
predictors for various values of 8 over the density plot of X samples. The observed samples from X are
also shown underneath the contours of density. The samples are colored based on their corresponding value
of Z1. Among the subplots, 5 = 0 corresponds to the case without any interventional data, where red and
green arrows overlap. In the remaining scenarios, the RepLIn predictor (green) lies between robust (black)
and vanilla (red) predictors. From Eq. , we know that wj,, ; is the sum of the vanilla predictor weights
w1 and the negative of the correction vector weerr,1. Therefore, we also plot the negative of the correction
vector using magenta in Fig. We can see that weorr,1 is always nearly orthogonal to the robust predictor
weights, and indeed acts as a correction vector that “pushes” wy,,, ; towards wy, ;. As [ increases, the
vanilla predictor improves its performance, as we saw in Fig. [[4] eventually matching the robust predictor.
The magnitude of the correction vector also subsequently reduces as 3 increases.

C Review of identifiable causal representation learning

The primary objective of identifiable causal representation learning (ICRL) is to learn a representation such
that it is possible to identify the latent factors (up to permutation and elementwise transformation) from the
representation. These methods are commonly built upon autoencoder-based approaches and learn generative
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representations. The advantage of learning a causal representation is that the decoder then implicitly acts
as the true underlying causal model, facilitating counterfactual evaluation and interpretable representations.

[Locatello et al| (2019); [Khemakhem et al| (2020]) showed that disentangled representation learning was
impossible without additional assumptions on both the model and the data. Some of the inductive biases
that have been proposed since to learn disentangled representations include auxiliary labels (Hyvarinen &
Moriokal, 2016} [Hyvarinen et al. 2019; [Sorrenson et all, [2020; [Khemakhem et al.l [2020; [Lu et all, 2021} [Ahuja
et al., [2022bt [Kong et al.l [2022)), temporal data (Klindt et al., 2021} [Yao et all 2022} [Song et al., [2023), and
assumptions on the mixing function (Sorrenson et al.,|2020; [Yang et al.| [2021; Lachapelle et al., 2022; [Zheng
let al. 2022} [Moran et al., [2022).

Use of interventional data: Some works also use interventional data as weak supervision for identifiable
representation learning (Lippe et al., [2022b; Brehmer et all 2022} [Ahuja et al.| [2022a} 2023} [Varic et al.
[2023} von Kiigelgen et all, 2023). [Lippe et al. (2022b)) learns identifiable representations from temporal
sequences with possible interventions at any time step. Similar to our setting, they assume the knowledge of
the intervention target. They also assume that the intervention on a latent variable at a time step does not
affect other latent variables in the same time step. [Lippe et al| (2023) relaxes the latter assumption as long
as perfect interventions with known targets are available. [Von Kiigelgen et al| (2021); Zimmermann et al.|
showed that self-supervised learning with data augmentations allowed for identifiable representation
learning. Brehmer et al.| (2022)) use pairs of data samples before and after some unknown intervention to
learn latent causal models. |Ahuja et al] (2022al) learns identifiable representations from sparse perturbations,
with identifiability guarantees depending on the sparsity of these perturbations. Sparse perturbations can
be treated as a parent class of interventions where the latent is intervened through an external action such
as in reinforcement learning. |Ahuja et al.| (2022b)) use interventional data for causal learning for polynomial
mixing functions, under some assumptions on the nature of support for non-intervened variables.
relaxes the polynomial assumption on the mixing function and proves identifiability when
two uncoupled hard interventions per node are available along with observational data. [Varic1 et al| (2023)
learn identifiable representations from data observed under different interventional distributions with the
help of the score function during interventions. von Kiigelgen et al.| (2023) uses interventional data to learn
identifiable representations up to nonlinear scaling. In addition to the above uses of interventional data, a
few works (Saengkyongam & Silval, [2020} [Saengkyongam et all,[2024; [Zhang et all,[2023]) have also attempted
to predict the effect of unseen joint interventions with the help of observational and atomic interventions
under various assumptions on the underlying causal model.

Difference from our setting: The general objective in ICRL is to “learn both the true joint distribution
over both observed and latent variables” (Khemakhem et al., 2020). In contrast, the objective of our
work is to learn representations corresponding to latent variables that are robust against interventional
distributional shifts by leveraging known interventional independence relations. We pursue this objective in
the hope that, as large models (Radford et al., |2021; Brown et al. 2020; Touvron et al., 2023; |Dehghanil
become more ubiquitous, efficient methods to improve these models with minimal amounts of
experimentally collected data will be of interest. Stated more formally, full identifiability of the underlying
causal model is not in our interest, as robustness to interventional distribution shift can be achieved without
full identifiability. For instance, consider the following setup: Let A = [A;, As] cause B during observation.
Here, A; is a binary variable (also, the class we are interested in predicting) and A is a continuous variable
from a Gaussian mixture with 2 modes. The mode is decided by A;, and therefore informs the class. The
observed data is X = [X4, X4, Xp|, where X4, depends only on Ay, X4, only on Ay, and Xp only on
B. Suppose the relations from the latent variables to the corresponding observed variables are such that
it is possible to learn A; and B from X, but not As (say, due to noise or information loss in the mixing
function). The discriminative task here is to predict which class A belongs to. Here, RepLIn can learn robust
representations that can fully predict the class of A (through A;), but is not fully identifiable since it does
not have information about As.
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D Differences w.r.t DG/OOD Setting

Although the problem setting of RepLIn may seem superficially similar to those of domain generaliza-
tion (DG) or out-of-distribution (OOD) tasks, there are differences between them owing to the assumptions
in our setting that also allow us to get more benefits from RepLIn. Expressed in terms of the random
variables A, B, and X in our problem setting from Sec. [3] the task in DG is to predict some variable of
interest A from the observed data X such that the learned model can generalize to unseen domains
let all |2022a} Ding et all [2022b]). To ensure robust prediction, we have access to multiple sets of training
data that vary from each other in terms of some variable B. DG has a general framework with the goal
simply stated as learning a model that transfers well between domains. Tab. [f]shows the differences between
the DG framework and ours. The first two rows show the differences in settings, while the last two rows
show the differences in learned representations.

Differences

| DG/OOD

May or may not change

‘ RepLIn

Relation from A to X between
domains
Is A independent of B in one or

Does not change

May or may not be. It is also | A — B in observational data

more domains?

possible that A is always inde-
pendent of B.

and A independent of B in in-
terventional data.

Can accommodate more than
one B?

No. B is also not of interest.

Yes. Useful in cases where it is of
interest to learn representations
for B as well.

Is the representation learned for
A free of information from B?

Not necessarily. Some DG meth-
ods are designed to remove in-
formation from B, while others

are not (e.g, DARE (Rosenfeld
et all, [2022))

Yes, the dependence loss ensures
that the features for A are free
of information from B in the in-
terventional data.

Table 7: Differences between the problem settings of domain generalization and RepLIn.

E Additional Results from Experiments

As mentioned in the main paper, our objective is to improve the robustness of representations against
interventional distribution shifts. However, this robustness might come at the cost of observational accuracy
since it removes spurious information that gives better performance on observational data. In this section,
we report the results of the baselines and our methods on WINDMILL, CelebA, and CivilComments datasets.

Method B=05 | p=03 | p=01 | B=005 | B=0.01

ERM 93.85+1.84 | 98.06+1.20 | 99.70+0.08 | 99.92+0.02 | 99.98 + 0.01
ERM-Resampled 94.534+0.89 | 94.13+£1.19 | 94.84+0.92 | 94.56+0.71 | 94.53 +1.14
IRMv1 93.37+0.85 | 93.59+0.32 | 93.72+0.73 | 92.524+0.35 | 94.04 +0.63
Fish 95.544+0.42 | 95.37+0.36 | 95.42+0.59 | 95.83+0.51 | 96.28 + 1.12
GroupDRO 82.024+2.00 | 84.40+2.72 | 85.35+2.35 | 84.25+0.91 | 92.28 +1.11
SAGM 94.774+0.62 | 95.17+0.71 | 94.13+1.68 | 95.61 +0.69 | 94.04 + 1.98
DiWA 94.64+0.96 | 94.30+0.36 | 94.57+0.64 | 94.394+0.99 | 94.24 + 0.59
TEP 65.20 + 14.22 | 66.94 + 3.78 | 61.34 £19.35 | 63.02+15.59 | 73.77 £ 9.01
RepLIn 95.16 £ 0.53 | 97.83+0.40 | 99.24 +0.37 | 98.754+0.43 | 99.10 £ 0.47
RepLIn-Resampled | 95.57 +£0.62 | 95.77 £0.68 | 95.594+1.08 | 95.90£0.35 | 95.51 +1.71

Table 8: Observational accuracy of various methods used in Sec.
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Method | B=05 | B=03 | p=01 | B=005 | B=001

ERM 76.87 +1.08 | 69.86 +3.19 | 62.78 £ 1.77 | 59.52 +1.30 | 60.15 & 3.12
ERM-Resampled | 73.70 £ 3.19 | 71.19+3.23 | 73.62+ 1.54 | 71.03 +2.83 | 70.20 + 3.73
IRMv1 78,244 0.79 | 7T4.834+1.74 | 78.61+2.24 | 76.28 + 1.87 | 71.75 4+ 2.03
Fish 77234224 | 7T7.234+1.32 | 78.244+2.09 | 76.424+1.95 | 73.92 4+ 2.53
GroupDRO 80.10 + 1.66 | 80.96 + 1.33 | 80.35 + 1.01 | 77.40 + 1.16 | 71.86 + 1.60
SAGM 76.43 +2.37 | 79.05+2.23 | 76.96 + 4.36 | 79.86 4+ 1.81 | 72.81 £ 3.10
DiWA 76.61 £ 2.15 | 76.71+£0.59 | 76.09+0.69 | 75.83 +1.83 | 73.39 + 1.31
TEP 58.68 +4.72 | 60.42+ 1.30 | 56.07 +3.35 | 58.52 +4.36 | 59.23 + 1.13
RepLIn 87.94+ 1.46 | 87.76 +2.30 | 83.23 + 2.67 | 73.63 +2.43 | 67.52 + 2.30
RepLIn-Resampled | 88.46 4+ 0.96 | 88.05+ 1.04 | 87.91 + 1.36 | 86.38 + 0.85 | 78.41 + 1.27

Table 9: Interventional accuracy of various methods used in Sec.

Method | B=05 | pB=04 | B=03 | B=02 | B=01 | B=005

ERM-Resampled 01.38 +0.09 | 91.52+0.06 | 91.39 +0.07 | 90.89 + 0.10 | 90.57 +0.09 | 91.82 4+ 0.14

RepLIn-Resampled | 86.02 +£0.18 | 86.35£0.24 | 86.58 £ 0.11 | 86.94 +0.36 | 87.67 +0.21 | 89.83 £0.11
Table 10: Observational accuracy of various methods used in Sec.
Method | B=05 | pg=04 | =03 | p=02 | B=01 | B=005
ERM-Resampled 81.09 £ 0.17 | 80.56 £0.23 | 80.06 = 0.17 | 79.08 = 0.16 | 76.63 £ 0.24 | 73.42 £0.27
RepLIn-Resampled | 81.97 £0.14 | 81.94 £0.17 | 81.84 £0.18 | 80.65 £ 0.22 | 78.56 £ 0.20 | 75.77 + 0.05
Table 11: Interventional accuracy of various methods used in Sec.
Method | B=05 | B=03 | B=01 | B=005 | B=001

ERM-Resampled 81.26 £0.12 | 81.77£0.14 | 79.78 £0.08 | 79.97 £0.12 | 79.13 £0.09
RepLIn-Resampled | 79.27 £0.09 | 80.16 £0.12 | 77.65£0.06 | 77.84 +0.12 | 78.51 £ 0.16

Table 12: Observational accuracy of various methods used in Sec.

Method | =05 | =03 | B=01 | =005 | B=001
ERM-Resampled 74.51+0.07 | 75.20+£0.22 | 72.034+0.18 | 71.78 £ 0.12 | 69.80 + 0.45

RepLIn-Resampled | 75.30£0.37 | 75.81 £0.31 | 72.00£0.23 | 71.70+£0.14 | 69.99 £+ 0.80

Table 13: Interventional accuracy of various methods used in Sec.

F More GradCAM Visualization

We show more GradCAM visualizations to illustrate the differences between the representations between
ERM and RepLIn. In Sec. we compared the GradCAM visualizations for those samples that were
correctly classified by RepLIn, but incorrectly by ERM. Here, we visualize the GradCAM from samples that
were correctly classified by ERM, but incorrectly by RepLIn. In Fig. [I6] the top row shows the GradCAM
visualizations of ERM, while the bottom row shows the visualizations for RepLIn. These samples are chosen
randomly. Although these samples were incorrectly classified by RepLIn, the attention maps of RepLIn for
most of the shown samples focus on the mouth region. On the other hand, attention maps of ERM do not
focus on the mouth region as frequently.
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Figure 16

G Visualization of Feature Distribution Learned on Windmill dataset

In this section, we compare the feature distributions learned by RepLIn on WINDMILL dataset against all
the baselines from Sec. [5.1] The feature distributions are shown in Fig. [I7}
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Figure 17: Visualization of interventional features learned by various methods on WINDMILL dataset.

H Balancing L4ep and Lo during training
The goal of RepLIn is to learn robust discriminative representations corresponding to variables of predictive

interest such that each representation contains only the information from the latent variable it models,
especially when these latent variables are causally related. This goal must be evaluated on two fronts — the

38



Under review as submission to TMLR

absolute utility of the representations for downstream tasks and performance equity between observational
and interventional distributions. We quantified these evaluations in our experiments through the performance
on interventional data and the relative accuracy drop between observational and interventional distributions.
Our proposed loss functions also reflected these objectives: (1) self-dependence loss (Lgeif) maximizes the
information that a representation learns about its corresponding latent variable, and (2) dependence loss
(Ldep) minimizes the information shared by the representations of causally related latent variables during
interventions, to obtain distributionally robust representations.

However, Lgir and Lgep have somewhat conflicting objectives. Minimizing Lg.r maximizes the statistical
information shared between latent variables and their corresponding representations. It does not discrim-
inate the nature of this information and, thus, could include information about the child variables in the
representation when minimized on observational data. Minimizing L4ep, ensures that the interventional rep-
resentations corresponding to independent variables do not share any information, regardless of whether
these representations contain any discriminative information useful for predicting their corresponding latent
variable. Thus, fundamentally, Lg1r enriches the information in the representations, while L4c, removes the
information from the representations. If these loss functions are not balanced during training using their
respective hyperparameters Ageir and Agep, the learned representations may not be robust and discriminative.

We experimentally demonstrate the above statements with the help of a synthetic dataset with linear relations
between variables, similar to the one used for theoretical analysis in Sec.

Experiment setup: Our dataset consists of the high-dimensional observed signal X € R'% from which
we must predict two latent variables of interest, A, B € R'?. During observation, A — B in the underlying
causal graph with the following linear causal relation between them.

A~ N(0, Ip) (I, is p x p identity matrix)
e ~N(0, o) (Noise in observational relation)

B :=+v0.94+ V0.1e

To collect interventional data, we intervene on B and set it to independently sampled B~N (0, I1p). During
intervention, A 1l B. A and B, along with exogenous random variable U ~ A(0, Ig), create the observed
signal X from which we are tasked with learning representations corresponding to A and B. Formally,

~ N(0,0.2511¢) (Noise in the mixing function)
A =A+n
X=[A B U] (21)
X=WX+2,

where W € R100x100 and 7 € R0 are the linear coefficients of the mixing function whose entries are
independently sampled from A(0,1). During its sampling, we verify that W is a full-rank matrix to ensure
that a linear model can predict A and B from X. Note that the noise n added to A has a higher variance
than the noise € in the observational causal relation. This would prompt the model to learn shortcut (Geirhos
et al.l 2020) and rely on the information from B to predict A. Since we know the variance of the noise added
to A, we can also compute the statistical error of a robust linear model.

Our model consists of a linear layer each to learn the representations corresponding to A and B, and a linear
layer each to make the final predictions A and B from their respective representations. The model does
not have any non-linear activation function. The models are trained by minimizing the mean squared error
between their predictions and the ground truth, in addition to Lgep and Lgeir weighted by their corresponding
hyperparameters Agep and Agelr, respectively. Each batch comprises the entire training dataset. For each run,
we first generate a different random seed sy, that affects the sampled values for W, Z, A, and B. Random
values for s;u, are generated using a meta random seed Speta Obtained from the system timestamp during
the experiment run. We also use speta to randomly sample Agep and Ageir from their uniform distributions
in their log space. In total, 27,748 random hyperparameter settings were sampled.
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Figure 18: Results of RepLIn models trained with different values for the hyperparameters Agep and Ageis.
The heatmaps show the variations of interventional accuracy (left) and relative drop in accuracy between
observational and interventional distributions (right) with the hyperparameters.

The results of our experiments are shown in Fig. [I§ In the results, we plot and analyze the prediction
accuracy on A since we intervened on B. To obtain continuous-valued plots, we interpolate between the
sampled pairs of Agep and Agelr through triangulation. We make the following observations from the results:

(1) Small values for Agep and Ageir: RepLIn behaves similarly to vanilla ERM method as Adep, Aselr — 0.
In Fig. [I§] this setting corresponds to the lower-left quadrant of each plot. Due to the designed difficulty
in predicting A from X, the model uses information from B to predict A, resulting in a low error in
observational data (Fig. and a high error in interventional data (Fig. . Statistical dependence
between representations during interventions measured using NHSIC is also high (Fig. , as expected.

(2) Increasing Agep alone: When \gep is increased without changing Aserr, dependence between repre-
sentations of interventional data decreases, as expected. However, increasing Agep sometimes provides only
limited reductions in interventional error, as seen in Fig. [18¢| For instance, increasing Agep from 1072 to
1, while keeping a constant Agjf = 1072 slightly decreased the error on interventional data from 1.89 to
1.76, while nominally increasing the error on observational data from 0.127 to 0.129. This shows that while
minimizing interventional dependence helps learn robust representations against interventions, the benefits
in performance may be marginal.

(3) Increasing Ageir alone: Interestingly, increasing only Aseir leads to a drop in interventional dependence
and reduces the error disparity between observational and interventional data (Fig. , even when Agep is
nearly zero. However, this decrease in performance disparity comes at the cost of higher observational error
(left to right in Fig. [18a)).

(4) Lowest interventional error: In Fig. we can observe a valley

of relatively lower interventional error. The hyperparameter combination 5
corresponding to the lowest interventional error occurs within this valley, i
marked with a yellow diamond. The same position is marked on other s . P i
plots for ease of viewing. The lowest interventional error obtained exper- E 10 Int Error i
imentally was 0.4, considerably higher than the theoretical interventional 3 —— AbsInc !
error of 0.25 that a robust model would have attained. This indicates Sos{ — Dep '
that the best hyperparameter combination did not result in a fully robust

model. However, this is not surprising since our theoretical results in 00 '

10-3 107! 10!
Aself

Sec. suggested that a linear model cannot learn a fully robust model if
the training dataset contains any observational data. Additionally, note
that this hyperparameter combination did not result in the lowest perfor- Figure 19: Change in observa-
mance disparity between the distributions and, instead, it appeared near a tional and interventional error
phase change in the loss values. To observe this phase change more clearly, values for a fixed Agep corre-
we plot the loss values along the white dashed line in Fig. where we sponding to the yellow diamond
vary Aselr and fix Agep to the value it takes in the best hyperparameter in Fig. @ and varying Agelt-
combination (yellow diamond).
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In Fig. we observe that as Agef increases, interventional error drops rapidly, achieving its minimum at
Adep corresponding to the yellow diamond (denoted by the dashed black line in Fig. , and then increases
steadily to eventually saturate. Similarly, observational error gradually increases with increasing Agers initially
and then displays a more rapid increase, eventually matching the interventional error at higher values of
Aself- Throughout these changes, the statistical dependence between the representations of interventional
data remains nearly zero.

Our results indicate that, while both Lqep, and Lgcs are needed to learn discriminative representations
that are robust to interventional distribution shifts without losing their utility in downstream applications,
hyperparameter tuning is still necessary to balance the effects of these loss functions.

H.1 Why do the hyperparameters change between experiments?

In our main experiments, we chose different hyperparameters for different experiments. In this section, we
explore the factors that affect the choice of hyperparameters between experiments. In particular, we focus
on Adep; as Lgep is the primary loss function responsible for enforcing statistical independence between the
interventional representations. We start by noting that robust representations are obtained by (at least
partially) inverting the data-generating function from the latent variable to the observed signal. Therefore,
we hypothesize that as the complexity of this data-generating function increases, Aqep and Ageir generally
increase. Here, we use the term “complexity” to roughly mean the minimum degree of a polynomial required
to model the data-generating function. Informally, the more complex the data-generating function, the more
hesitant the model is to learn robust representations (Geirhos et al.l [2020]).

sin(0.4- (x+n) sin(0.5 - (x+n) 5in(0.6- (x+n)) sin(0.7- (x+n) sin(0.8- (x+n)) 5in(0.9- (x+n) sin(1.0- (x+n) sin(L.1- (x+n)) sin(12- (x+n))
1
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Figure 20: (Top) Sinusoidal transformation of a 1D Gaussian random variable z with added noise n ~
N(0,0.01), and (bottom) variation of interventional error for various values of Agep and Aseit-

We now formally verify our hypothesis by adding a non-linear function in Eq. of the simple dataset that
we used to investigate the effect of Agep and Age1r. We modify Eq. as follows:

X = [sin(&fl) B U} , (22)

where s controls the amount of non-linearity. A very low value for s will result in a nearly linear function,
as sin function is approximately linear near the origin. As s increases, the non-linearity also increases. For
higher values of s, multiple values of A will be mapped to the same value. For the remainder of this section,
we will refer to s as the “non-linearity factor.” See Fig.[20] (top) on how the value of s affects the sinusoidal
transformation of a Gaussian random variable with added noise.

In addition to modifying the data generation process by using a non-linear relation from the latent variable to
the observed signal, we also use non-linear models to learn the representations for each variable. Specifically,
we use MLPs with 2 hidden layers and the ReLU activation function. We are interested in the variation in Agep,
that gives us the minimum value of interventional error as the non-linearity factor s changes. If our hypothesis
is correct, then Agep must increase as the non-linearity factor s in Eq. increases. Following the previous
setup, we will sample several values for Aqep and Agelr, and train models for each combination of Agep and Agels.
To save compute, we restrict the range of Agei¢ to [107%%,101-?) while sampling Adep and Agelf, as the minimum
interventional error usually lies in that range. Additionally, we utilize Bayesian optimization, employing the
probability of improvement, to guide hyperparameter selection, thereby sampling more hyperparameters
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from promising regions where the interventional error is typically low. The interpolated heatmap showing
the interventional errors for various chosen hyperparameters is shown in Fig. [20] (bottom).
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Figure 21: Variation in the minimum interventional error, and the corresponding Aqep and Agelr when the
non-linearity factor s is increased. The results are for the bottom-5% percentile lowest interventional error
values obtained over 4500 runs for each value of s. The median values are shown using dark lines, and the
region between the first and third quartiles is shaded.

Fig. shows three plots: bottom-5% percentile of interventional error, and corresponding Agep and Ages
values. For each of these values, we plot the median value using dark blue curves, and the region between
the first and third quartiles is shaded in light blue. As expected, the minimum interventional error increases
with the non-linearity factor s. A similar trend can be observed for Agep and Agelr. Particularly, for Agep, the
shaded region expands as s increases, indicating that higher values of Agep can now obtain very low values
of interventional error.

I  Generating Windmill Dataset

We provide the exact mathematical formulation of WINDMILL dataset described in Sec. We define the
following constants:

Constants ‘ Description ‘ Default value
Tarms Number of “arms” in WINDMILL dataset 4

Tmax Radius of the circular region spanned by the observed data 2

Owid Angular width of each arm % = 0.7068
Aoff Offset wavelength. Determines the complexity of the dataset o

Omax-off Maximum offset for the angle /6

Table 14: Constants used for generating WINDMILL dataset, their meaning, and their values.

Rp ~ B(1,2.5) (Sample radius)
R= T“;X (BRg+ (1 —B)(2— Rp)) (Modify sampled radius based on B)

@ANC({Zwmarszrl :i:O,...,narms—l}) (Choose an arm)

. R .
Ooft = Omax-off SIN <7r)\0ﬂr ) (Calculate radial offset for the angle)
Tmax

U~U(0,1) (To choose a random angle)
@:ewid(U—Oﬁ)—i—A(@A—&— n” ) +(1-A)O, +Oug

(Angle is decided by A and the radial offset)

(Convert to Cartesian coordinates)

X) = Reos®, X = Rsin®, X = [Xl]

Xo
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PyTorch code to generate WINDMILL dataset is provided in Listing [T}

Listing 1: Code for WINDMILL dataset

import math
import torch

# Constants

num_arms = 4 # number of blades in the windmill

max_th_offset = 0.5236 # max offset that can be added to the angle for shearing (= pi/6)
r_max = 2 # length of the blade

num_p = 20000 # number of points to be generated

offset_wavelength = 6 # adjusts the complexity of the blade

# Sample latent variables according to the causal graph.
A = torch.bernoulli(torch.ones(num_points) * 0.6)
if observational_data:
B=A
else:
B = torch.bernoulli(torch.ones(num_points) * 0.5)

# Convert A, B to X.

th_AO = torch.linspace(0, 2*math.pi, num_arms+1) [:-1]

th_Al = torch.linspace(0, 2*math.pi, num_arms+1)[:-1] + math.pi/num_arms
# Choose a random arm for A=0 from possible arms. Likewise for A=1.
th_A0 = th_AO[torch.randint(num_arms, (num_p,))]

th_A1 = th_Al[torch.randint(num_arms, (num_p,))]

# beta distribution with alpha=1, beta=3
beta_dist = torch.distributions.beta.Beta(1l, 2.5)

# Sample r according to B. If B=0, sample a small r, else sample a large r.
# r ranges from O to r_max

BO_r = beta_dist.sample(torch.Size([num_p])) * r_max/2.

Bl_r = r_max - beta_dist.sample(torch.Size([num_p])) * r_max/2.

r =B * BO_r + (1-B) * Bi_r

# Sample theta according to A.
# Choose the theta arm according to A and then sample from this arm using a uniform distribution.

# First we will have a cartwheel style.
theta = torch.rand(num_p)*th_wid + th_AO*(1-A) + th_A1xA - th_wid/2.

# Add an offset to theta according to r.

th_offset_mod = torch.sin((r/r_max)*offset_wavelength*math.pi)
th_offset = max_th_offset*th_offset_mod

theta += th_offset

x1 = r*torch.cos(theta)
x2 = r*torch.sin(theta)

data = torch.stack([x1, x2], dim=1)
labels = torch.stack([A, B], dim=1).type(torch.long)
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