
Published as a conference paper at ICLR 2026

PROTOKV: LONG-CONTEXT KNOWLEDGES ARE AL-
READY WELL-ORGANIZED BEFORE YOUR QUERY

Zhiyuan Yu1∗, Shijian Xiao1∗, Zhangyue Yin2, Xiaoran Liu2, Lekai Xing1,
Wenzhong Li1†, Nguyen Cam-Tu1, Sanglu Lu1

1State Key Laboratory for Novel Software Technology, Nanjing University,
2School of Computer Science, Fudan University
zhiyuan yu@smail.nju.edu.cn, lwz@nju.edu.cn

ABSTRACT

Modern Large Language Models (LLMs) face fundamental challenges in process-
ing long text sequences due to the quadratic complexity of attention mechanisms.
Key-Value (KV) cache retention strategies mitigate this issue by selectively pre-
serving salient KV pairs for autoregressive generation. However, existing methods
fail to adequately and efficiently preserve the semantic integrity of the compressed
representations. In this paper, we discover a prevalent phenomenon in LLM: within
the key embedding space, while most tokens exhibit similarity with their contextual
neighbors (we term position-determined tokens), a small subset of special tokens
serving as semantic anchors consistently show local deviation property and form
one or several clusters (we term semantic-anchored tokens). Motivated by this ob-
servation, we propose ProtoKV that separately processes these two token categories
for KV cache compression. Within this framework, we first construct semantic
prototypes based on the inherent characteristics of the two token categories, and
subsequently form clusters of semantically similar tokens as basic compression
units. This approach preserves semantic integrity with high computational effi-
ciency. Experiments on LongBench demonstrate that ProtoKV achieves 2.11%
higher accuracy than state-of-the-art methods under matched memory constraints.
Our code can be available in https://github.com/yyy0959/ProtoKV.

1 INTRODUCTION

Large language models (LLMs) have become revolutionary in modern artificial intelligence (Brown
et al., 2020; Chowdhery et al., 2023; Touvron et al., 2023), showcasing remarkable capabilities in
dialogue (Li et al., 2024a), question answering (Ho et al., 2020) and reasoning (Wei et al., 2022).
However, deploying LLMs under fixed-memory hardware presents major computational hurdles
due to the Key-Value (KV) cache, which stores historical KV vectors to avoid recomputation but
consumes memory scaling as O(b · n), with respect to batch size b and sequence length n.

To address this challenge, strategies have been proposed to optimize the KV cache. Architecture-level
optimizations like MQA (Shazeer, 2019) and GQA (Ainslie et al., 2023) reduce memory via parameter
sharing, and quantization approaches (Hooper et al., 2024b; Shao et al., 2024) lowers numerical
precision. Both methods demonstrate limited efficacy when scaled to extremely long contexts. To
this end, eviction strategies emerge to optimize the KV cache by prioritizing and retaining salient
KV pairs in each head for generation. Importance of KV pairs is typically determined by various
configurable schemes, including prior knowledge (e.g., “attention sink” in (Xiao et al., 2024)) and
quantitative indicators like accumulative attention scores (Zhang et al., 2023). Considering that
measuring token importance isolatedly may compromise semantic integrity, recent methods (Li et al.,
2024b; Razzhigaev et al., 2025) retain both high-value tokens along with their surrounding context to
better maintain semantic coherence, leading to a significant boost in KV cache retention efficiency.

∗ Equal contribution
† Corresponding author

1

Published as a conference paper at ICLR 2026

Color represents
token ID of 0-1023

Clusters formed by
Semantic-Anchor Tokens

Chunks formed by
Position-Determined Tokens

Chunk semantics are
Encoded within SATs

Query Vector Retained For high-order semantic information
Retained For local fine-grained knowledge

(a) Key embedding distribution & How it helps KV cache

(c) What are semantic-anchored tokens? (on GovReport)
Layer 22 / Head 1 : Technical vocabulary Layer 28 / Head 4 : Discourse Markers

(b) An Example of semantic-anchored tokens (on SQuAD)
Super Bowl 50 was an … National Football League

(NFL) for the 2015 season. … Denver Broncos defeated
the National Football Conference (NFC) … to earn their
third Super Bowl title … As this was the 50th Super
Bowl, … each Super Bowl game with … have been
known as “Super Bowl L”), … Question: Which NFL

team represented the AFC at Super Bowl 50?

Layer 8 / Head 1

Figure 1: (a) T-SNE visualization of key embedding. As illustrated, semantic-anchored tokens typically form
clusters within the key embedding space. (b) We used a sequence from SQuAD and highlighted the tokens
corresponding to semantic anchors in a specific attention head, which are marked in red. (c) Different attention
heads are dedicated to distinct semantic-anchored tokens.

However in natural language, proximity in position does not imply semantic similarity. Existing
work has observed that when LLMs process input sequences, certain sequential information will
be compressed into anchor tokens, e.g., label words for in-context learning (Wang et al., 2023) or
some punctuation marks (Razzhigaev et al., 2025). These tokens share similar properties and play
analogous roles during inference, suggesting that they should be treated as a semantically cohesive
unit (either collectively discarded or retained). In practice, however, the diversity of anchor tokens
poses a significant challenge for systematically identifying and categorizing them.

Fortunately, we find that LLMs have inherently identified and organized these anchor tokens
during prefilling stage. Specifically, by analyzing the key embedding distributions, we identify that
tokens in long-context prompts mainly fall into two distinct categories. (i) Position-Determined To-
kens (PDT): These tokens exhibit strong key similarity with their contextual neighbors, corresponding
to the majority tokens where proximity implies semantic relatedness; and (ii) Semantic-Anchored
Tokens (SAT): These tokens violate such local adherence and demonstrate local deviation property.
Previous studies have primarily focused on PDTs, suggesting that rotary position encodings (Su et al.,
2023) cause key embeddings to exhibit manifold characteristics (Zandieh et al., 2024; Liu et al.,
2025b;c), while overlooking the existence of SATs. In this paper, we discover that although SATs
are few in number, they generally possess good clustering properties and serve as “semantic
anchors” for long-context inference. In Section 3, we conduct a detailed quantitative study to
investigate and analyze such properties of SATs, while also explaining the reasons behind such
distribution pattern of the key embeddings. In Figure 1, we illustrate the characteristics of this
distribution through T-SNE visualization, accompanied by examples for SATs.

Through further exploration, we find it imperative for KV cache compression to simultaneously
accommodate the aggregated information encapsulated by SATs and the fine-grained information
inherent in PDTs. To this end, we propose ProtoKV, a novel KV cache retention strategy that first
constructs hybrid semantic prototypes based on the inherent characteristics of the two token categories,
and then dynamically reassigns importance scores. Specifically, we employ outlier degree metric to
obtain a high-purity set of SATs, and apply locality-sensitive hashing to bucket them to form SAT
semantic prototypes that encapsulate anchor-level semantic information. For PDTs, we partition
them into contiguous chunks to form PDT semantic prototypes that are prioritized for fine-grained
information retrieval. Finally, an observation window-based selection mechanism is adopted to retain
the semantic clusters most relevant to subsequent queries. Through comprehensive comparisons
with existing KV cache retention strategies, we demonstrate that our approach not only preserves the
semantic integrity in a more reasonable manner, but also achieves superior robustness with higher
computational efficiency. This dual advantage remains unattainable by existing methods.

Extensive experiments demonstrate that ProtoKV achieves excellent performance on both real-world
and synthetic tasks. Specifically, ProtoKV delivers state-of-the-art accuracy (with an average gain
of 2.11%) on LONGBENCH, and also outperforms other baselines on the RULER benchmark. In
the Needle In A Haystack evaluation, ProtoKV maintains 97.3% retrieval accuracy with only 1.6%

2

Published as a conference paper at ICLR 2026

KV cache retention, demonstrating its powerful information retrieval capability. Moreover, ProtoKV
shows complementary benefits when combined with budget allocation methods.

2 PRELIMINARY

2.1 PROBLEM FORMULATION

Consider an autoregressive LLM with L layers and H attention heads. Let xt ∈ Rd denote the input
token embedding at decoding step t. To reduce recomputation, key-value pairs from previous steps are
stored in a KV-Cache for each of the H heads. The attention output o(h)

t ∈ Rdh at step t is computed
via a softmax attention mechanism using the current query vector and the cached key and value
matrices. For each head h, our objective is to find compressed representations {K̃(h)

1:t , Ṽ
(h)
1:t }Hh=1 under

a budget size B, such that ∥K̃(h)
1:t ∥0 = ∥Ṽ(h)

1:t ∥0 = B, and the approximation error ∥o(h)
t − õ

(h)
t ∥2 is

minimized. Here õ
(h)
t denotes the approximate output using the compressed KV pairs.

2.2 KV CACHE RETENTION

We focus on compressing long text prompts during the prefilling stage, i.e., the compression of
{K(h)

1:N ,V
(h)
1:N}Hh=1. Theoretically, the optimal strategy for KV cache retention should prioritize tokens

that consistently contribute to the model’s attention distribution throughout the entire generation
process, which can be measured through inference-stage cumulative attention defined as follows:
Definition 1 (Inference-stage Cumulative Attention). Given attention head h, let T denotes the total
number of generation steps and q

(h)
t the queries in step t. {k(h)

i }Ni=1 denote the key vectors of all N
context tokens. The inference-stage cumulative attention A(h)

i for context token i is defined as:

A(h)
i =

T∑
t=1

softmax

(
q
(h)⊤
t k

(h)
i√

dh

)
(1)

Precomputing A(h)
i is infeasible since q

(h)
t is unpredictable during autoregressive generation. As

a result, strategies using accumulative attention scores (Zhang et al., 2023; Chen et al., 2024; Liu
et al., 2024a; Zeng et al., 2024) offer more flexibility. However, most of their methods measure token
importance isolatedly, which may compromise semantic integrity for compressed KV pairs.

2.3 SEMANTIC-LEVEL COMPRESSION

The semantic-level compression paradigm addresses the limitations of token-level compression by
treating coherent semantic units as atomic elements in KV cache management. Let C = {C1, ..., Ck}
denote a partition of the KV sequence into k semantic clusters, where each cluster Ci contains
contiguous or semantically related tokens. The compression objective is to preserve or discard entire
clusters to maintain contextual integrity. Typically, clusters are ranked by importance scores ψ(h)(Ci).
The top-k′ clusters (k′ ≤ k) are retained to satisfy budget size B:

k∑
i=1

I[ψ(h)(Ci) ≥ ψ(h)
rank=k′] · |Ci| ≤ B. (2)

The compressed KV pairs {K̃(h)
1:N , Ṽ

(h)
1:N} retain only tokens from selected clusters, with a binary

mask M(h) ∈ {0, 1}t indicating preservation (M(h)
i = 1 if i belong to one of the selected clusters):

K̃
(h)
1:N = K

(h)
1:N ⊙M(h), Ṽ

(h)
1:N = V

(h)
1:N ⊙M(h). (3)

For instance, SnapKV (Li et al., 2024b) and ChunkKV (Liu et al., 2025a) group tokens into contiguous
chunks, and SentenceKV (Zhu et al., 2025) uses sentence boundaries for Ci. However in natural
language, proximity in position does not necessarily imply semantic similarity. Clustering-based KV
compression approaches (Liu et al., 2024b; Hooper et al., 2024a) employ K-means clustering on key
embeddings, but are plagued by inefficiency and poor robustness. By contrast, our proposed ProtoKV
is capable of simultaneously preserving semantic integrity and maintaining high efficiency.

3

Published as a conference paper at ICLR 2026

0 1000 2000
Token Position

0.4

0.6

0.8
N

ei
gh

bo
r S

im
.

(a) Layer 8

0 1000 2000
Token Position

0.2

0.4

0.6

0.8

(b) Layer 20

Head 4 Head 12 Head 20 Head 28

Figure 3: κ-Neighborhood Similarity tend to attain
low values for a small subset of input tokens. Detailed
results and analysis are in Appendix B.

1.5 2.0 2.5 3.0
Value of threshold

0.5

1.0

1.5

C
lu

st
er

in
g

D
eg

re
e

(a) Layer 8

1.5 2.0 2.5 3.0
Value of threshold

0.5

1.0

1.5

(b) Layer 20

H7 H9 H12 H18 H28

Figure 4: SATs form progressively compact clustering
with the increasing the threshold β. Detailed results
and analysis are in Appendix C.

3 LOCAL DEVIATION PROPERTY ANALYSIS

3.1 PROPERTY ANALYSIS FOR SEMANTIC-ANCHOR TOKENS

In this section, we highlight a prevalent phenomenon during the prefilling stage of LLMs: within the
key embedding space, the vast majority of tokens exhibit high similarity to their local neighbors,
while a compact subset demonstrably violates this locality prior, which we term Local Deviation
Property. Crucially, we find these spatially anomalous tokens consistently form one or several
clusters, and play a pivotal role in long-context generation as semantic anchors. To identify these
tokens, we first define the neighborhood similarity and outlier degree as follows.

Definition 2 (κ-Neighborhood Similarity & Outlier Degree). For token i with its key embedding k
(h)
i

in attention head h, we define its κ-neighborhood similarity as follows:

S(h)κ (i) =
1

2κ+ 1

i+κ∑
j=i−κ

cos(k
(h)
i ,k

(h)
j), (4)

In subsequent experiments, unless otherwise specified, we set κ = 5 by default. To identify tokens
with local heterogeneity in a normalized manner, we define outlier degree for token i as:

Θ(h)(i) =
(
S(h)κ (i)− E[S(h)κ (i)]

)
/

√
V[S(h)κ (i)], (5)

with E and V represent the mean and variance of the neighborhood similarity across all input tokens.

Figure 2: Outlier Degree distribution.

Figure 3 reveals that although most tokens maintain high
neighborhood similarity, there always exists a small subset
exhibiting markedly lower values. We term tokens violating
the locality property as Semantic-Anchored Tokens (SATs)
due to its aggregation of semantic information from partial
sequences, while tokens conforming to locality are termed
Position-Determined Tokens (PDTs). It is important to note
that the boundary between SATs and PDTs is often ambiguous
in practice (as illustrated in Figure 2); therefore, our analysis
focuses primarily on the evolutionary trends of token proper-
ties along a continuum of locality adherence/deviation. We
find that the following findings remain valid under the framework of Multi-Query Attention, which is
verified in Appendices B to E.

Property 1: SATs are clustered. To quantitatively validate the clustering property of SATs, by
setting a threshold β, we group tokens with Θ(i) > β into cluster C as SATs. Obviously, a larger β
indicates higher purity of the selected SATs. We then define the clustering degree of C as follows:

Definition 3 (Clustering Degree). Given a cluster C of tokens with their key representations {k(h)
i },

we define the intra-cluster similarity Sintra(C) and inter-cluster similarity Sinter(C) as:

Sintra(C) =
1

|C|2
∑
i,j∈C

cos(k
(h)
i ,k

(h)
j), Sinter(C) =

∑
i∈C,j /∈C cos(k

(h)
i ,k

(h)
j)

|C|(N − |C|)
, (6)

4

Published as a conference paper at ICLR 2026

2 4 6 8 10

0.05

0.10

0.15

At
te

nt
io

n

Layer 1

2 4 6 8 10
0.0

0.2

0.4
Layer 2

2 4 6 8 10
0.0

0.5

Layer 4

2 4 6 8 10
Localness Degree

0.0

0.5

At
te

nt
io

n

Layer 8

2 4 6 8 10
Localness Degree

0.0

0.5

Layer 16

2 4 6 8 10
Localness Degree

0.0

0.5

Layer 32

TriviaQA SAMSum No Attention Sink

Figure 5: Attention heads within all layers focus on
tokens with higher outlier degree. Detailed results and
analysis are in Appendix E.

0 25 50 75 100125150
Dropped KV Pairs

0

50

100

F1
 S

co
re

TriviaQA

0 25 50 75 100125150
Dropped KV Pairs

0

10

F1
 S

co
re

NarrativeQA

0 25 50 75 100125150
Dropped KV Pairs

5

10

F1
 S

co
re

2WikiMultihopQA

0 25 50 75 100125150
Dropped KV Pairs

0

10

20

R
ou

ge
-L

QMSum

0 25 50 75 100125150
Dropped KV Pairs

0

20

R
ou

ge
-L

SAMSum

0 25 50 75 100125150
Dropped KV Pairs

20

40

60

Ed
it

Si
m

RepoBench-P

Random Attention Outlier Outlier \ Attention Sink

Figure 6: Dropping KV pairs with highest outlier de-
grees can cause sharp performance drop. Other results
and analysis are in Appendix E.

whereN denotes the total number of tokens. The clustering degree of C that measures its compactness
is then defined as Γ(C) = Sintra(C)/Sinter(C).

Building upon these formulations, we systematically evaluate the clustering properties of SATs
selected under varying β thresholds. Figure 4 shows the results on TriviaQA for layers (8 and 20)
in Llama2-7B-chat, where increasing β leads to a more compact cluster of C with larger Γ(C).
Notably, when β exceeds a critical threshold, the clustering degree exhibits a sharp increase. This
suggests that in the key embedding space, tokens with high outlier degrees tend to cluster. Moreover,
we observe that in rare cases (e.g., when long-text semantics exhibit significant discontinuity), these
SATs may form multiple distinct clusters, with representative examples provided in Appendix D.

Property 2: SATs are salient for generation. To validate SATs’ critical role in long-context
inference, we analyze two complementary aspects. First, we examine if SATs are retrieved more
frequently during long-text generation. We stratify tokens into 10 groups by their outlier degree
Θ(i) (Eq.5) and compute summed inference-stage cumulative attention (Eq.1) per group for token
significance measurement. As Figure 5 shows, the top 10% outlier tokens account for over 60% of
cumulative attention in deeper layers, indicating that SATs act as persistent anchors of attention.

On the other hand, we study the impact of removing these SATs. Figure 6 shows that pruning key-
value pairs corresponding to highest outlier degree Θ(h)(i) per head significantly degrades LLM’s
performance for long-context inference, which is similar to pruning by inference-stage cumulative
attention. Random removal has no measurable effect. This confirms SATs’ functional equivalence to
the model’s inherent attention prioritization.

Conclusion. Previous studies have focused mainly on PDTs (Zandieh et al., 2024; Liu et al., 2025b;c).
In this paper, we first detected the presence of outliers within them, which spontaneously deviate
from their surrounding neighbors and cluster together, serving as anchors of attention across different
tasks. Considering their properties, we name them “semantic anchors”.

3.2 FURTHER EXPLORATION

How SATs Cluster. In real-world experiments, we observe that SATs predominantly form a single,
tightly-clustered group in the key embedding space across most attention heads. However, the
clustering behavior exhibits certain variations under specific conditions: in the initial layers of
the model, SATs may not yet emerge distinctly, resulting in a near-continuous distribution of key
embeddings without clear outliers. In some cases, SATs are clustered but exhibit a loosely-organized
structure; and in low-coherence texts such as multi-document data, SATs occasionally form multiple
well-separated semantic groups. Despite these variations, our subsequent experiments in Section 5.3
demonstrate that assuming SATs form a single compact cluster remains highly effective for KV cache
compression. Comprehensive analysis for each scenario is provided in Appendix D.

Causal Mechanisms Analysis. We attribute the above phenomenon to the following reason. First,
modern LLMs commonly employ Rotary Position Embedding (RoPE) (Su et al., 2023) to inject
positional information into keys, which leads to local similarity in the key representations of ad-
jacent tokens (Wang et al., 2024b; Liu et al., 2025c).During pre-training, different attention heads

5

Published as a conference paper at ICLR 2026

spontaneously specialize in capturing distinct linguistic patterns (Conmy et al., 2023; Syed et al.,
2023), and thus attend to their corresponding salient tokens. To efficiently access relevant value
embeddings, LLMs learn to cluster these salient keys in the key space. Such clustering mechanism
enables the heads to simultaneously assign higher attention weights to semantically relevant tokens
during generation. Meanwhile, tokens that are less relevant to a head’s specific role remain locally
constrained due to the inductive bias introduced by RoPE.

“Semantic Anchors” vs “Attention Sink” (Xiao et al., 2024) observed the “attention sink” phe-
nomenon where the initial tokens disproportionately absorb global semantic information. In Ap-
pendix B, we note that attention sinks generally exhibit high outlier degrees. However, our concept
of semantic anchors is broader in scope. As shown in Figures 5 and 6, even after excluding attention
sinks, the remaining SATs continue to play an indispensable role in long-context generation.

“Semantic Anchors” vs “Label words in In-context Learning” (Wang et al., 2023) demonstrated
that in in-context learning scenarios, label words act as anchors that absorb sample semantics for text
classification tasks. Our study reveals that these label word tokens also exhibit significant outlier
characteristics. Detailed experimental results are presented in the Appendix F.

4 METHODOLOGY

4.1 MOTIVATION Table 1: Performance for Llama3-8B (256 budget).

Dataset

Baseline NrtvQA HotpotQA SAMSum Lcc

SLM 17.98 37.83 34.82 54.84
H2O 23.67 41.57 40.19 57.52
SnapKV 23.32 42.70 39.78 60.27
SATKV 21.12 40.84 38.06 58.46

Considering the importance of SATs for long-context
tasks, an intuitive approach is to retain KV pairs
based on their outlier degree in descending order
(we term SATKV). Compared to prior approaches,
SATKV offers the advantage of eliminating the re-
liance on attention matrix, thereby reducing compu-
tational overhead (see Appendix H). However, we find this approach underperforms baselines like
SnapKV (Table 1). We attribute this to two factors: First, it neglects PDT selection patterns. Figure 5
shows PDTs comprise around 40% of attention, which necessitates simultaneous optimization for
PDTs retention especially when the KV budget exceeds SAT capacity. Second, similar to accumu-
lative attention methods like H2O, it assesses tokens individually and fails to maintain semantic
coherence. Thus, we require a retention strategy that preserves semantic coherence while integrating
both high-order semantic information (SATs) and local fine-grained knowledge (PDTs).

To this end, we introduce ProtoKV, a novel method that constructs semantic prototypes by leveraging
the inherent characteristics of both token categories. These prototypes form clusters of semantically
similar tokens, serving as fundamental compression units. We compare our method with existing
chunk-based and cluster-based approaches, demonstrating that our solution simultaneously preserves
semantic integrity while improving efficiency. Pseudo-code for ProtoKV is provided in Appendix I.

4.2 HYBRID SEMANTIC PROTOTYPE CONSTRUCTION

Considering that drawing a hard distinction between PDTs and SATs is often challenging, instead of
categorizing individual tokens, we propose extracting semantic prototypes holistically for patterns
capture. Given an input sequence of n tokens with corresponding key vectors T = {kt}nt=1 ⊆ Rdk ,
we first calculate the outlier degree Θ(i) of each token i according to Eq.(5). Tokens with top-p Θ(i)
are identified as candidate SATs O = {kj}pj=1. To better handle loosely-cluster or multi-cluster
scenarios, for these identified outlier tokens, we allocate them into u hash buckets. Specifically, the
key vector for jth token is projected into low-dimensional space using Random Fourier Features
(RFF) mapping ϕ : Rdk → Rr with Gaussian kernel approximation:

ϕ(kj) =

√
2

r
cos (Wkj + b) , with W ∼ N (0, γ2I) and b ∼ Uniform(0, 2π) (7)

The real-valued projections are then binarized to {0, 1} codes and subsequently interpreted as an
r-bit integer for bucket allocation:

hj = I (ϕ(kj) > 0) ∈ {0, 1}r, H(kj) =

(
r∑

i=1

2r−ih
(i)
j

)
mod u, (8)

6

Published as a conference paper at ICLR 2026

where I(·) denotes the element-wise indicator function, h(i)j the ith bit of hj , and u the total number
of hash buckets. To ensure clustering effectiveness, we typically require that u = 2r. This binary-to-
decimal conversion preserves the Hamming distance between original codes while enabling efficient
bucket indexing. For other tokens of T \ O, we partition them into v consecutive chunks {Cm}vm=1
of equal length ⌊(n− p)/v⌋. Based on this, we construct hybrid semantic prototypes of PDTs and
SATs as follows:

c(PDTs)
m =

∑
kt∈Cm

kt

∥
∑

kt∈Cm
kt∥2

, c(SATs)
s =

∑
kj∈Bs

kj

∥
∑

kj∈Bs
kj∥2

(9)

The hybrid semantic prototypesM is then obtained via:M = {c(PDTs)
m }vm=1 ∪ {c(SATs)

s }us=1. In Ap-
pendix D, we show that our approach for constructing semantic prototypes effectively accommodates
distinct patterns of key embedding distributions.

4.3 KV CACHE RETENTION VIA PROTOTYPE-GUIDED ATTENTION

M constructs semantic prototypes for both higher-level semantic anchors (c(SATs)) and fine-grained
textual details (c(PDTs)). For each token kt, the pattern to which it belongs (denoted as c(kt)) is
determined by the semantic prototype with the highest cosine similarity to it, formally:

c(kt) = argmax
c∈M

k⊤
t c

∥kt∥2∥c∥2
. (10)

This assignment machanism divides all tokens into n clusters {Cj}u+v
j=1 , and we calculate the impor-

tance score ψ(h)(Cj) for each through an observation window-based selection mechanism (Li et al.,
2024b). Given an input sequence with its length Lprompt = Lprefix + Lobs, where Lobs denotes the
observation window at the sequence end, for each attention head h ∈ [H], ψ(h)(Cj) is defined as:

ψ(h)(Cj) =
∑
i∈Cj

Lprompt∑
m=Lprefix+1

q⊤
mki. (11)

The compressed KV representations are then constructed according to Section 2.3.

4.4 COMPARISON WITH EXISTING KV CACHE COMPRESSION STRATEGIES

In this section, we compare our ProtoKV with existing chunk-based and cluster-based, showcasing
that it ensures more rational semantic coherence while maintaining compression efficiency.

2 5 8 11 14 17 20 23
Number of iterations

78

80

82

84

86

F1
 S

co
re

(a) Llama2-7B-chat

2 5 8 11 14 17 20 23
Number of iterations

80

85

90

95

(b) LlaMa3-8B-Instruct

StreamingLLM
H2O

SnapKV
PyramidKV

Squeeze Attention
 (Kmeans-based)

Figure 7: Clustering-based strategy requires
20 iterations before surpassing existing KV
cache compression methods on TriviaQA.

Chunk-based strategies Chunk-based strategies assume
that semantically similar tokens usually appear in contigu-
ous sequences. As a result, they partition input text into
chunks and perform uniform retention/eviction operations
on tokens within each chunk. However, our discovery of
SATs reveals limitations in this assumption. For instance,
as noted in (Razzhigaev et al., 2025), certain punctuation
marks carry critical information transmission and mem-
ory functions, so their semantically similar counterparts
should be other functionally equivalent punctuation marks.
However, chunk-based methods fail to preserve the seman-
tic integrity of such tokens.

Cluster-based strategies Clustering-based strategy (Liu et al., 2024b; Hooper et al., 2024a) global
captures semantically similar tokens through clustering within the key embedding space. Although
these methods can identify SATs, their iterative clustering process requires excessive computation. As
illustrated in Figure 7, Squeeze Attention (Hooper et al., 2024a) takes over 20 iterations to outperform
baselines (compress only during the prefilling stage). Moreover, prototype clustering typically
demands high-quality initialization, as poor initialization can cause the iterative process to converge
to a local optimum or lead to highly imbalanced token number distribution among clusters (Arthur
& Vassilvitskii, 2007). By comparison, our ProtoKV directly obtains high-quality cluster centers
by leveraging the properties of SATs and PDTs, thus reducing the computational complexity from
O(ent) to O(nt) for e iterations achieving t clusters.

7

Published as a conference paper at ICLR 2026

5 EXPERIMENT

5.1 IMPLEMENTATION

Dataset We primarily use LongBench (Bai et al., 2024) dataset to assess the performance of ProtoKV
on tasks involving long-context inputs. LongBench comprises 14 English tasks and 2 code-related
tasks, with an average length ranging from 5k to 15k tokens. We also use Ruler (Hsieh et al., 2024)
as benchmark. A detailed description of datasets is provided in the Appendix J.

Baseline We benchmark our method against StreamingLLM (Xiao et al., 2024), H2O (Zhang et al.,
2024d), SnapKV (Li et al., 2024b), PyramidKV (Cai. et al., 2024) and ChunkKV (Liu et al., 2025a).
We use open-sourced LLMs include the Llama family (Llama-2-7B-chat, LlaMA-3-8B-instruct) and
Mistral-7B-Instruct-v0.2, which can handle up to 32k context length. Detailed description of these
three LLMs is provided in the Appendix K. In Appendix S, we also evaluate the performance of
ProtoKV on two recent LLMs: Phi-3.5-mini-instruct and Mistral-7B-Instruct-v0.3.

Experiment Setup All experiments use two NVIDIA 3090 GPUs (48GB total) with consistent
prompts across datasets. The Operating system is ubuntu version 20.04.2 with CPU AMD Ryzen
Threadripper PRO 5945WX (12-Cores). KV cache budget for evaluation range from 64 to 512. Our
configuration balances experimental uniformity with task-specific optimizations.

5.2 RESULT ANALYSIS

5.2.1 REAL-WORLD AND SYNTHETIC BENCHMARKS

Figure 8 demonstrate the experimental results on LongBench across diverse KV cache configurations.
Generally, our method maintains the best performance between 64-512 budgets, with an average
improvement of 2.11%. As illustrated, ProtoKV outperforms Sota baselines by 0.35% to 4.27% across
diverse budget sizes. Task-specific experimental results are reported in Appendix L. Additionally,
Table 9 presents the performance of our ProtoKV on the Ruler dataset (NAIH and QA subsets),
demonstrating that ProtoKV consistently achieves either the best or second-best outcomes. Due to its
more rational partitioning of semantic clusters, our method achieves superior compression perfor-
mance compared to both SnapKV and ChunkKV. In appendix P, we further report the performance
comparison on RULER benchmark with a 16K/32K context length.

64 96128 256 512
KV Budget Size

20.0

22.5

25.0

27.5

30.0

Av
er

ag
e

Sc
or

e

(a) Llama2-7B-chat

64 96128 256 512
KV Budget Size

30

35

40

(b) Mistral-7B-Instruct

64 96128 256 512
KV Budget Size

30.0

32.5

35.0

37.5

40.0

(c) Llama-3-8B-Instruct

StreamingLLM
PyramidKV

SnapKV
H2O

ChunkKV
ProtoKV

Figure 8: Experimental results on LongBench under different KV cache
budget conditions. Average score is reported across 16 tasks.

Dataset
Method NIAH QA
FullKV 99.6 46.0
SLM 3.6/ 17.4 7.6 / 10.2
H2O 30.4 / 57.2 38.0 / 42.0
SnapKV 97.2 / 99.6 42.0 / 43.8
ChunkKV 97.2 / 99.6 42.4 / 42.2
PyramidKV 97.6 / 99.4 41.2 / 43.4
ProtoKV 98.2 / 99.6 42.8 / 43.6

Table 2: Performance (%) on Ruler for
Llama3-8B with budget size 128/512.

Performance
Approach Decoding Prefilling
SentenceKV 40.82 40.21
ClusterKV 41.32 40.45
SqueezeAtt 41.47 40.42
ProtoKV 42.59 40.76

Table 3: Longbench performance for
Llama3-8B under 512 budget.

We further compare ProtoKV with ClusterKV (Liu et al.,
2024b), Squeezed-Attention (Hooper et al., 2024a), and
SentenceKV (Zhu et al., 2025). These methods involve
dynamically loading or offloading KV pairs during the in-
ference stage. To ensure a fair comparison, we design two
experimental configurations: one constrains these baseline
methods to perform KV pair retention operations exclu-
sively during the prefilling phase, while the other modifies
ProtoKV to dynamically recall tokens at the granularity of
semantic clusters during the decoding phase. As shown in
Table 3, ProtoKV consistently outperforms other methods under both configurations. This advan-
tage stems from its more robust and higher-quality clustering results compared to K-means, which
ultimately enhances its performance over existing cluster-based approaches.

8

Published as a conference paper at ICLR 2026

5.2.2 NEEDLE IN A HAYSTACK

We conduct Needle In A Haystack experiment (Liu et al., 2024c; Fu et al., 2024a) using LlaMA-
3-8B-Instruct with up to 8K context length. This task requires precise information retrieval from
extensive contexts, simulating real-world scenarios where relevant data is buried among vast irrelevant
information.We compare other KV Cache techniques at a consistent cache budget size of 128 (a
retention ratio up to 1.6%). Results in Figure 9 indicate that StreamingLLM and H2O almost
collapses on retrieval task. Our ProtoKV attains 97.3% accuracy, which outperforms SnapKV
(94.2%). Interestingly, we observe that in the retrieval head (Wu et al., 2024), the needle text exhibits
consistently higher outlier degrees than the haystack text (detailed results in Appendix G). This
indicates that LLMs may detect semantic inconsistencies during the prefilling phase.

2000 4000 6000 8000
Context Length

0

33

67

100De
pt

h
Pe

rc
en

t

(a) ProtoKV (0.973)

2000 4000 6000 8000
Context Length

0

33

67

100

(b) SnapKV (0.942)

2000 4000 6000 8000
Context Length

0

33

67

100

(c) H2O (0.548)

2000 4000 6000 8000
Context Length

0

33

67

100

(d) SLM (0.311)

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

Figure 9: Results of the Needle In A HayStack experiment, where LLMs are required to retrieve a target
sentence (“needle”) inserted in long documents. The x-axis represents the context length while y-axis the depth
where the needle is inserted. E.g., context length of 4000 and depth of 11.0 implies that the needle is inserted at
location 4000 × 11% = 440 in the sequence. The color indicates retrieval accuracy, the greener, the better.

5.3 FURTHER DISCUSSION

Tasks ProtoKV ProtoKV + LA. ProtoKV + HA.

SDQA 32.87 33.12↑(0.54%) 33.58↑(1.02%)

MDQA 25.31 25.72↑(1.46%) 26.14↑(1.24%)

SUM 24.41 24.89↑(1.47%) 25.29↑(1.15%)

Few shot 66.43 66.85↑(1.21%) 67.34↑(1.65%)

SYN 37.15 37.43↑(0.82%) 37.91↑(1.73%)

Code 59.38 59.77↑(4.08%) 60.16↑(3.27%)

Table 4: Compatibility Analysis on Mistral-7B-
Instruct with KV budget 256, ↑ (·) denoting the
improvement compared with SnapKV+LA./HA..

128 256 512
KV Budget Size

30.0

32.5

35.0

37.5

40.0

Av
er

ag
e

Sc
or

e

(a) Mistral-7B-Instruct

128 256 512
KV Budget Size

30.0

32.5

35.0

37.5

40.0

(b) LlaMa-3-8B-Instruct

ProtoKV Chunk Clustering LSH Clustering

Figure 10: Ablation Study for different KV budgets.

Compatibility Analysis Methods for KV cache budget allocation (Wang et al., 2024a; Qin et al.,
2025; Feng et al., 2024; 2025) intelligently distribute memory by the importance of each layer
or head. We study their compatibility with our method, focusing on two strategies: Layer-wise
Allocation (LA.) (Nawrot et al., 2024) and Head-wise Allocation (HA.) (Feng et al., 2024). As
shown in Table 4, ProtoKV demonstrates strong compatibility, with ProtoKV +LA./HA. achieving
consistent improvement compared to SnapKV + LA./HA..

Ablation Study We compare ProtoKV with its two variants for ablation study: chunk-clustering that
only uses chunk-based aggregation to obtain semantic prototypes, and LSH-clustering that buckets
and groups all tokens via LSH in Eq. 8. Two variants adopt the same number of semantic prototypes
(i.e., cluster count) as the original ProtoKV, along with other basic settings. Figure 10 shows both
variants reduce KV cache compression performance, especially LSH-clustering.

200 500 1500 4000
Prototype Number

8

4

2

1SA
T

Pr
ot

ot
yp

e
N

um
be

r

39.31 40.15 39.89 38.63

39.56 40.46 40.01 39.12

39.42 40.62 39.98 39.04

39.51 40.23 39.77 38.82

200 500 1500 4000
Prototype Number

8

4

2

1

38.89 40.30 39.29 37.98

39.01 40.25 39.65 38.42

39.17 40.45 39.88 38.35

39.21 40.46 39.74 38.20
37

38

39

40

41

Figure 11: Average results on LongBench for
Mistral-7B (LEFT) and Llama3-8B (RIGHT).

4 20 40 100 400
SAT Number

37

38

39

40

41

Av
er

ag
e

Sc
or

e

LlaMa3
Mistral

1 3 5 10 20
Neighborhood Window

37

38

39

40

41

LlaMa3
Mistral

Figure 12: Average results on LongBench for Llama3-
8B with KV budget size of 256.

9

Published as a conference paper at ICLR 2026

Hyperparameter Analysis. As shown in Figure 11, optimal performance is achieved with around
500 prototypes, whereas SAT prototypes number require only 2–4. Figure 12 shows that selecting
SATs via outlier degree requires merely 20–40 to optimize ProtoKV performance, since additional
SAT prototypes may introduce PDT noise and impair clustering effectiveness. Moreover, the choice
of neighborhood window size κ in outlier degree computation shows negligible influence on the
overall performance.

2k 4k 8k 16k
Sequence Length

0

1

2

3

4

5

N
or

m
al

iz
ed

 T
im

e
(a) Computation Cost

SnapKV
ProtoKV
ClusterKV

50 100 150 200
Prototype Number

0.4

0.6

0.8

1.0

Ti
m

e
(h

)

(b) Time on LongBench

LlaMa2
LlaMa3
Mistral

Figure 13: Computation Cost Analysis

Computation Cost Analysis Fig-
ure 13 illustrates the computational
cost of our ProtoKV. It can be
observed that our time consumed
in evaluating the importance of se-
mantic clusters ψ after prefilling is
comparable with SnapKV, whereas
cluster-based methods require up to
3.9 × time overhead. Furthermore,
the overall computational time of
ProtoKV remains relatively stable
across different prototype numbers,
which is reported here as the average time over various tasks on LongBench.

6 CONCLUSION

In LLMs, we discovered an interesting phenomenon: within the key embedding space, while the
vast majority of tokens exhibit a manifold distribution along input position, a small subset of special
tokens which serve as semantic anchors consistently form one or several clusters. Based on this
insight, we propose ProtoKV, a simplified approach to KV cache compression that leverages semantic
prototypes to achieve a more rational and efficient semantic-level compression strategy.

ACKNOWLEDGEMENTS

This work was supported in part by the National Natural Science Foundation of China (Grant
Nos. 62572236,62502201,62441225), the Basic Research Program of Jiangsu Province (Grant Nos.
BK20222003, BK20251198, BK20253011), the Collaborative Innovation Center of Novel Software
Technology and Industrialization, and the Sino-German Institutes of Social Computing.

ETHICS STATEMENT

The primary objective of this paper is to provide a KV cache compression framework that designed
to accelerate inference. This work is based on the publicly available LongBench and Ruler dataset,
which predominantly contains English text. We comply with all dataset licenses, and confirm the
content contains neither private nor offensive information.

REPRODUCIBILITY STATEMENT

Pseudocode of this paper is shown in Appendix I. In Section 5.3, we provide a hyperparameter
analysis and employ the optimal set to conduct our specific experiments and obtain the final reported
results. We give the link to the source code in abstract.

REFERENCES

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebrón, and
Sumit Sanghai. GQA: training generalized multi-query transformer models from multi-head
checkpoints. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing, EMNLP 2023, Singapore,
December 6-10, 2023, pp. 4895–4901. Association for Computational Linguistics, 2023. doi:

10

Published as a conference paper at ICLR 2026

10.18653/V1/2023.EMNLP-MAIN.298. URL https://doi.org/10.18653/v1/2023.
emnlp-main.298.

David Arthur and Sergei Vassilvitskii. k-means++: the advantages of careful seeding. In ACM-SIAM
Symposium on Discrete Algorithms, 2007. URL https://api.semanticscholar.org/
CorpusID:1782131.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. Longbench: A bilingual,
multitask benchmark for long context understanding. In Lun-Wei Ku, Andre Martins, and Vivek
Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), ACL 2024, Bangkok, Thailand, August 11-16, 2024, pp. 3119–
3137. Association for Computational Linguistics, 2024. doi: 10.18653/V1/2024.ACL-LONG.172.
URL https://doi.org/10.18653/v1/2024.acl-long.172.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Zefan Cai., Yichi Zhang, Bofei Gao, Yuliang Liu, Tianyu Liu, Keming Lu, Wayne Xiong, Yue Dong,
Baobao Chang, Junjie Hu, and Wen Xiao. PyramidKV: Dynamic KV Cache Compression based
on Pyramidal Information Funneling, June 2024. URL http://arxiv.org/abs/2406.
02069. arXiv:2406.02069 [cs].

Yilong Chen, Guoxia Wang, Junyuan Shang, Shiyao Cui, Zhenyu Zhang, Tingwen Liu, Shuohuan
Wang, Yu Sun, Dianhai Yu, and Hua Wu. NACL: A general and effective KV cache eviction
framework for LLM at inference time. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar
(eds.), Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), ACL 2024, Bangkok, Thailand, August 11-16, 2024, pp. 7913–7926.
Association for Computational Linguistics, 2024. doi: 10.18653/V1/2024.ACL-LONG.428. URL
https://doi.org/10.18653/v1/2024.acl-long.428.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. Journal of Machine Learning Research, 24(240):1–113,
2023.

Arthur Conmy, Augustine N. Mavor-Parker, Aengus Lynch, Stefan Heimersheim, and Adrià
Garriga-Alonso. Towards automated circuit discovery for mechanistic interpretability.
ArXiv, abs/2304.14997, 2023. URL https://api.semanticscholar.org/CorpusID:
258418244.

Yuan Feng, Junlin Lv, Yukun Cao, Xike Xie, and S. Kevin Zhou. Ada-KV: Optimizing KV Cache
Eviction by Adaptive Budget Allocation for Efficient LLM Inference, aug 2024. URL http:
//arxiv.org/abs/2407.11550. arXiv:2407.11550 [cs].

Yuan Feng, Junlin Lv, Yukun Cao, Xike Xie, and S Kevin Zhou. Identify critical kv cache in llm
inference from an output perturbation perspective. arXiv preprint arXiv:2502.03805, 2025.

Yao Fu, Rameswar Panda, Xinyao Niu, Xiang Yue, Hannaneh Hajishirzi, Yoon Kim, and Hao
Peng. Data engineering for scaling language models to 128k context. In Forty-first International
Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net,
2024a. URL https://openreview.net/forum?id=TaAqeo7lUh.

Yu Fu, Zefan Cai, Abedelkadir Asi, Wayne Xiong, Yue Dong, and Wen Xiao. Not All Heads Matter:
A Head-Level KV Cache Compression Method with Integrated Retrieval and Reasoning, nov
2024b. URL http://arxiv.org/abs/2410.19258. arXiv:2410.19258 [cs].

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model tells
you what to discard: Adaptive KV cache compression for LLMs. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?
id=uNrFpDPMyo.

11

https://doi.org/10.18653/v1/2023.emnlp-main.298
https://doi.org/10.18653/v1/2023.emnlp-main.298
https://api.semanticscholar.org/CorpusID:1782131
https://api.semanticscholar.org/CorpusID:1782131
https://doi.org/10.18653/v1/2024.acl-long.172
http://arxiv.org/abs/2406.02069
http://arxiv.org/abs/2406.02069
https://doi.org/10.18653/v1/2024.acl-long.428
https://api.semanticscholar.org/CorpusID:258418244
https://api.semanticscholar.org/CorpusID:258418244
http://arxiv.org/abs/2407.11550
http://arxiv.org/abs/2407.11550
https://openreview.net/forum?id=TaAqeo7lUh
http://arxiv.org/abs/2410.19258
https://openreview.net/forum?id=uNrFpDPMyo
https://openreview.net/forum?id=uNrFpDPMyo

Published as a conference paper at ICLR 2026

Chi Han, Qifan Wang, Hao Peng, Wenhan Xiong, Yu Chen, Heng Ji, and Sinong Wang. LM-infinite:
Zero-shot extreme length generalization for large language models. In Kevin Duh, Helena Gomez,
and Steven Bethard (eds.), Proceedings of the 2024 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies (Volume 1:
Long Papers), pp. 3991–4008, Mexico City, Mexico, June 2024. Association for Computational
Linguistics. doi: 10.18653/v1/2024.naacl-long.222. URL https://aclanthology.org/
2024.naacl-long.222/.

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, and Akiko Aizawa. Constructing a multi-
hop QA dataset for comprehensive evaluation of reasoning steps. In Donia Scott, Nuria Bel,
and Chengqing Zong (eds.), Proceedings of the 28th International Conference on Computa-
tional Linguistics, pp. 6609–6625, Barcelona, Spain (Online), December 2020. International
Committee on Computational Linguistics. doi: 10.18653/v1/2020.coling-main.580. URL
https://aclanthology.org/2020.coling-main.580/.

Xiaobin Hong, Wenzhong Li, Chaoqun Wang, Mingkai Lin, and Sanglu Lu. Label attentive distillation
for gnn-based graph classification. AAAI’24/IAAI’24/EAAI’24. AAAI Press, 2024. ISBN 978-
1-57735-887-9. doi: 10.1609/aaai.v38i8.28693. URL https://doi.org/10.1609/aaai.
v38i8.28693.

Xiaobin Hong, Mingkai Lin, Xiangkai Ma, Wenzhong Li, and Sanglu Lu. Aggregation mechanism
based graph heterogeneous networks distillation. In Proceedings of the Thirty-Fourth International
Joint Conference on Artificial Intelligence, IJCAI ’25, 2025. ISBN 978-1-956792-06-5. doi:
10.24963/ijcai.2025/323. URL https://doi.org/10.24963/ijcai.2025/323.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Monishwaran Maheswaran, June Paik,
Michael W Mahoney, Kurt Keutzer, and Amir Gholami. Squeezed attention: Accelerating long
context length llm inference. arXiv preprint arXiv:2411.09688, 2024a.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W. Mahoney, Yakun Sophia
Shao, Kurt Keutzer, and Amir Gholami. Kvquant: Towards 10 million context length
LLM inference with KV cache quantization. In Amir Globersons, Lester Mackey, Danielle
Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), Ad-
vances in Neural Information Processing Systems 38: Annual Conference on Neural Infor-
mation Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15,
2024, 2024b. URL http://papers.nips.cc/paper_files/paper/2024/hash/
028fcbcf85435d39a40c4d61b42c99a4-Abstract-Conference.html.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, Yang
Zhang, and Boris Ginsburg. Ruler: What’s the real context size of your long-context language
models?, 2024. URL https://arxiv.org/abs/2404.06654.

Jiawei Huang, Meiting Xue, Chenpu Li, Huan Zhang, and Bei Zhao. Dynamickv: Data storage
strategy based on partition merging of log-structured merge tree. In 2nd International Conference
on Computer, Vision and Intelligent Technology, ICCVIT 2024, Huaibei, China, November 24-
27, 2024, pp. 1–6. IEEE, 2024. doi: 10.1109/ICCVIT63928.2024.10872622. URL https:
//doi.org/10.1109/ICCVIT63928.2024.10872622.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks,
2017. URL https://arxiv.org/abs/1609.02907.

Wonbeom Lee, Jungi Lee, Junghwan Seo, and Jaewoong Sim. InfiniGen: Efficient generative
inference of large language models with dynamic KV cache management. In 18th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 24), pp. 155–172, Santa
Clara, CA, July 2024. USENIX Association. ISBN 978-1-939133-40-3. URL https://www.
usenix.org/conference/osdi24/presentation/lee.

Jianan Li, Quan Tu, Cunli Mao, Zhengtao Yu, Ji-Rong Wen, and Rui Yan. Streamingdialogue: Pro-
longed dialogue learning via long context compression with minimal losses. In Amir Globersons,
Lester Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng
Zhang (eds.), Advances in Neural Information Processing Systems 38: Annual Conference on
Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December

12

https://aclanthology.org/2024.naacl-long.222/
https://aclanthology.org/2024.naacl-long.222/
https://aclanthology.org/2020.coling-main.580/
https://doi.org/10.1609/aaai.v38i8.28693
https://doi.org/10.1609/aaai.v38i8.28693
https://doi.org/10.24963/ijcai.2025/323
http://papers.nips.cc/paper_files/paper/2024/hash/028fcbcf85435d39a40c4d61b42c99a4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/028fcbcf85435d39a40c4d61b42c99a4-Abstract-Conference.html
https://arxiv.org/abs/2404.06654
https://doi.org/10.1109/ICCVIT63928.2024.10872622
https://doi.org/10.1109/ICCVIT63928.2024.10872622
https://arxiv.org/abs/1609.02907
https://www.usenix.org/conference/osdi24/presentation/lee
https://www.usenix.org/conference/osdi24/presentation/lee

Published as a conference paper at ICLR 2026

10 - 15, 2024, 2024a. URL http://papers.nips.cc/paper_files/paper/2024/
hash/9c43057f39d49b8b5c989cc1aac70ab7-Abstract-Conference.html.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye,
Tianle Cai, Patrick Lewis, and Deming Chen. Snapkv: LLM knows what you are
looking for before generation. In Amir Globersons, Lester Mackey, Danielle Belgrave,
Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), Advances in
Neural Information Processing Systems 38: Annual Conference on Neural Information
Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15,
2024, 2024b. URL http://papers.nips.cc/paper_files/paper/2024/hash/
28ab418242603e0f7323e54185d19bde-Abstract-Conference.html.

Mingkai Lin, Wenzhong Li, Ding Li, Yizhou Chen, and Sanglu Lu. Resource-efficient training
for large graph convolutional networks with label-centric cumulative sampling. In Proceedings
of the ACM Web Conference 2022, WWW ’22, pp. 1170–1180, New York, NY, USA, 2022.
Association for Computing Machinery. ISBN 9781450390965. doi: 10.1145/3485447.3512165.
URL https://doi.org/10.1145/3485447.3512165.

Mingkai Lin, Wenzhong Li, Ding Li, Yizhou Chen, Guohao Li, and Sanglu Lu. Multi-domain general-
ized graph meta learning. In Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intel-
ligence and Thirty-Fifth Conference on Innovative Applications of Artificial Intelligence and Thir-
teenth Symposium on Educational Advances in Artificial Intelligence, AAAI’23/IAAI’23/EAAI’23.
AAAI Press, 2023. ISBN 978-1-57735-880-0. doi: 10.1609/aaai.v37i4.25569. URL https:
//doi.org/10.1609/aaai.v37i4.25569.

Mingkai Lin, Wenzhong Li, Xiaobin Hong, and Sanglu Lu. Scalable multi-source pre-training for
graph neural networks. In ACM Multimedia 2024, 2024. URL https://openreview.net/
forum?id=rFRerAPdwI.

Mingkai Lin, Xiaobin Hong, Wenzhong Li, and Sanglu Lu. Unified graph neural networks pre-training
for multi-domain graphs. In Proceedings of the Thirty-Ninth AAAI Conference on Artificial Intelli-
gence and Thirty-Seventh Conference on Innovative Applications of Artificial Intelligence and Fif-
teenth Symposium on Educational Advances in Artificial Intelligence, AAAI’25/IAAI’25/EAAI’25.
AAAI Press, 2025. ISBN 978-1-57735-897-8. doi: 10.1609/aaai.v39i11.33325. URL https:
//doi.org/10.1609/aaai.v39i11.33325.

Di Liu, Meng Chen, Baotong Lu, Huiqiang Jiang, Zhenhua Han, Qianxi Zhang, Qi Chen, Chen-
gruidong Zhang, Bailu Ding, Kai Zhang, et al. Retrievalattention: Accelerating long-context llm
inference via vector retrieval. arXiv preprint arXiv:2409.10516, 2024a.

Guangda Liu, Chengwei Li, Jieru Zhao, Chenqi Zhang, and Minyi Guo. ClusterKV: Manipulating
LLM KV Cache in Semantic Space for Recallable Compression, December 2024b. URL http:
//arxiv.org/abs/2412.03213. arXiv:2412.03213 [cs].

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
Percy Liang. Lost in the middle: How language models use long contexts. Trans. Assoc. Comput.
Linguistics, 12:157–173, 2024c. doi: 10.1162/TACL\ A\ 00638. URL https://doi.org/
10.1162/tacl_a_00638.

Xiang Liu, Zhenheng Tang, Peijie Dong, Zeyu Li, Yue Liu, Bo Li, Xuming Hu, and Xiaowen Chu.
Chunkkv: Semantic-preserving kv cache compression for efficient long-context llm inference,
2025a. URL https://arxiv.org/abs/2502.00299.

Xiaoran Liu, Ruixiao Li, Qipeng Guo, Zhigeng Liu, Yuerong Song, Kai Lv, Hang Yan, Linlin Li,
Qun Liu, and Xipeng Qiu. Reattention: Training-free infinite context with finite attention scope,
2025b. URL https://arxiv.org/abs/2407.15176.

Xiaoran Liu, Zhigeng Liu, Zengfeng Huang, Qipeng Guo, Ziwei He, and Xipeng Qiu. Longllada:
Unlocking long context capabilities in diffusion llms, 2025c. URL https://arxiv.org/
abs/2506.14429.

13

http://papers.nips.cc/paper_files/paper/2024/hash/9c43057f39d49b8b5c989cc1aac70ab7-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/9c43057f39d49b8b5c989cc1aac70ab7-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/28ab418242603e0f7323e54185d19bde-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/28ab418242603e0f7323e54185d19bde-Abstract-Conference.html
https://doi.org/10.1145/3485447.3512165
https://doi.org/10.1609/aaai.v37i4.25569
https://doi.org/10.1609/aaai.v37i4.25569
https://openreview.net/forum?id=rFRerAPdwI
https://openreview.net/forum?id=rFRerAPdwI
https://doi.org/10.1609/aaai.v39i11.33325
https://doi.org/10.1609/aaai.v39i11.33325
http://arxiv.org/abs/2412.03213
http://arxiv.org/abs/2412.03213
https://doi.org/10.1162/tacl_a_00638
https://doi.org/10.1162/tacl_a_00638
https://arxiv.org/abs/2502.00299
https://arxiv.org/abs/2407.15176
https://arxiv.org/abs/2506.14429
https://arxiv.org/abs/2506.14429

Published as a conference paper at ICLR 2026

Piotr Nawrot, Adrian Lancucki, Marcin Chochowski, David Tarjan, and Edoardo M. Ponti. Dynamic
memory compression: Retrofitting llms for accelerated inference. In Forty-first International
Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net,
2024. URL https://openreview.net/forum?id=tDRYrAkOB7.

Ziran Qin, Yuchen Cao, Mingbao Lin, Wen Hu, Shixuan Fan, Ke Cheng, Weiyao Lin, and Jianguo
Li. Cake: Cascading and adaptive kv cache eviction with layer preferences. arXiv preprint
arXiv:2503.12491, 2025.

Anton Razzhigaev, Matvey Mikhalchuk, Temurbek Rahmatullaev, Elizaveta Goncharova, Polina
Druzhinina, Ivan Oseledets, and Andrey Kuznetsov. Llm-microscope: Uncovering the hidden role
of punctuation in context memory of transformers, 2025. URL https://arxiv.org/abs/
2502.15007.

Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang,
Peng Gao, Yu Qiao, and Ping Luo. Omniquant: Omnidirectionally calibrated quantization for large
language models. In The Twelfth International Conference on Learning Representations, ICLR
2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL https://openreview.
net/forum?id=8Wuvhh0LYW.

Noam Shazeer. Fast transformer decoding: One write-head is all you need. CoRR, abs/1911.02150,
2019. URL http://arxiv.org/abs/1911.02150.

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer: Enhanced
transformer with rotary position embedding, 2023. URL https://arxiv.org/abs/2104.
09864.

Aaquib Syed, Can Rager, and Arthur Conmy. Attribution patching outperforms automated circuit
discovery, 2023. URL https://arxiv.org/abs/2310.10348.

Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao, Baris Kasikci, and Song Han. QUEST: query-
aware sparsity for efficient long-context LLM inference. In Forty-first International Conference on
Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024. URL
https://openreview.net/forum?id=KzACYw0MTV.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Ao Wang, Hui Chen, Jianchao Tan, Kefeng Zhang, Xunliang Cai, Zijia Lin, Jungong Han, and
Guiguang Ding. Prefixkv: Adaptive prefix kv cache is what vision instruction-following models
need for efficient generation. arXiv preprint arXiv:2412.03409, 2024a.

Lean Wang, Lei Li, Damai Dai, Deli Chen, Hao Zhou, Fandong Meng, Jie Zhou, and Xu Sun. Label
words are anchors: An information flow perspective for understanding in-context learning, 2023.
URL https://arxiv.org/abs/2305.14160.

Zheng Wang, Boxiao Jin, Zhongzhi Yu, and Minjia Zhang. Model tells you where to merge: Adaptive
kv cache merging for llms on long-context tasks, 2024b. URL https://arxiv.org/abs/
2407.08454.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. In Proceedings of the 36th International Conference on Neural Information Processing
Systems, NIPS ’22, Red Hook, NY, USA, 2022. Curran Associates Inc. ISBN 9781713871088.

Wenhao Wu, Yizhong Wang, Guangxuan Xiao, Hao Peng, and Yao Fu. Retrieval head mechanistically
explains long-context factuality, 2024. URL https://arxiv.org/abs/2404.15574.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. In The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL
https://openreview.net/forum?id=NG7sS51zVF.

14

https://openreview.net/forum?id=tDRYrAkOB7
https://arxiv.org/abs/2502.15007
https://arxiv.org/abs/2502.15007
https://openreview.net/forum?id=8Wuvhh0LYW
https://openreview.net/forum?id=8Wuvhh0LYW
http://arxiv.org/abs/1911.02150
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2310.10348
https://openreview.net/forum?id=KzACYw0MTV
https://arxiv.org/abs/2305.14160
https://arxiv.org/abs/2407.08454
https://arxiv.org/abs/2407.08454
https://arxiv.org/abs/2404.15574
https://openreview.net/forum?id=NG7sS51zVF

Published as a conference paper at ICLR 2026

Dongjie Yang, Xiaodong Han, Yan Gao, Yao Hu, Shilin Zhang, and Hai Zhao. Pyramidinfer: Pyramid
KV cache compression for high-throughput LLM inference. In Lun-Wei Ku, Andre Martins, and
Vivek Srikumar (eds.), Findings of the Association for Computational Linguistics, ACL 2024,
Bangkok, Thailand and virtual meeting, August 11-16, 2024, pp. 3258–3270. Association for
Computational Linguistics, 2024. doi: 10.18653/V1/2024.FINDINGS-ACL.195. URL https:
//doi.org/10.18653/v1/2024.findings-acl.195.

Zhiyuan Yu, Wenzhong Li, Zhangyue Yin, Xiaobin Hong, Shijian Xiao, and Sanglu Lu. Contextual
structure knowledge transfer for graph neural networks. In Proceedings of the Thirty-Ninth AAAI
Conference on Artificial Intelligence and Thirty-Seventh Conference on Innovative Applications of
Artificial Intelligence and Fifteenth Symposium on Educational Advances in Artificial Intelligence,
AAAI’25/IAAI’25/EAAI’25. AAAI Press, 2025. ISBN 978-1-57735-897-8. doi: 10.1609/aaai.
v39i21.34381. URL https://doi.org/10.1609/aaai.v39i21.34381.

Amir Zandieh, Insu Han, Vahab Mirrokni, and Amin Karbasi. SubGen: Token Generation in
Sublinear Time and Memory, February 2024. URL http://arxiv.org/abs/2402.06082.
arXiv:2402.06082 [cs].

Zihao Zeng, Bokai Lin, Tianqi Hou, Hao Zhang, and Zhijie Deng. In-context KV-Cache Eviction
for LLMs via Attention-Gate, October 2024. URL http://arxiv.org/abs/2410.12876.
arXiv:2410.12876 [cs].

Hailin Zhang, Xiaodong Ji, Yilin Chen, Fangcheng Fu, Xupeng Miao, Xiaonan Nie, Weipeng Chen,
and Bin Cui. Pqcache: Product quantization-based kvcache for long context llm inference. CoRR,
abs/2407.12820, 2024a. URL https://doi.org/10.48550/arXiv.2407.12820.

Xuan Zhang, Cunxiao Du, Chao Du, Tianyu Pang, Wei Gao, and Min Lin. Simlayerkv: A simple
framework for layer-level KV cache reduction. CoRR, abs/2410.13846, 2024b. doi: 10.48550/
ARXIV.2410.13846. URL https://doi.org/10.48550/arXiv.2410.13846.

Yanqi Zhang, Yuwei Hu, Runyuan Zhao, John Lui, and Haibo Chen. Unifying kv cache compression
for large language models with leankv. arXiv preprint arXiv:2412.03131, 2024c.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark W. Barrett, Zhangyang Wang, and Beidi Chen. H2O:
heavy-hitter oracle for efficient generative inference of large language models. In Alice Oh,
Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.),
Advances in Neural Information Processing Systems 36: Annual Conference on Neural In-
formation Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 -
16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
6ceefa7b15572587b78ecfcebb2827f8-Abstract-Conference.html.

Zhenyu Zhang, Shiwei Liu, Runjin Chen, Bhavya Kailkhura, Beidi Chen, and At-
las Wang. Q-hitter: A better token oracle for efficient LLM inference via sparse-
quantized KV cache. In Phillip B. Gibbons, Gennady Pekhimenko, and Christo-
pher De Sa (eds.), Proceedings of the Seventh Annual Conference on Machine Learn-
ing and Systems, MLSys 2024, Santa Clara, CA, USA, May 13-16, 2024. mlsys.org,
2024d. URL https://proceedings.mlsys.org/paper_files/paper/2024/
hash/bbb7506579431a85861a05fff048d3e1-Abstract-Conference.html.

Junqi Zhao, Zhijin Fang, Shu Li, Shaohui Yang, and Shichao He. BUZZ: Beehive-structured Sparse
KV Cache with Segmented Heavy Hitters for Efficient LLM Inference, October 2024. URL
http://arxiv.org/abs/2410.23079. arXiv:2410.23079 [cs].

Yuxuan Zhu, Ali Falahati, David H. Yang, and Mohammad Mohammadi Amiri. Sentencekv: Efficient
llm inference via sentence-level semantic kv caching, 2025. URL https://arxiv.org/abs/
2504.00970.

15

https://doi.org/10.18653/v1/2024.findings-acl.195
https://doi.org/10.18653/v1/2024.findings-acl.195
https://doi.org/10.1609/aaai.v39i21.34381
http://arxiv.org/abs/2402.06082
http://arxiv.org/abs/2410.12876
https://doi.org/10.48550/arXiv.2407.12820
https://doi.org/10.48550/arXiv.2410.13846
http://papers.nips.cc/paper_files/paper/2023/hash/6ceefa7b15572587b78ecfcebb2827f8-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/6ceefa7b15572587b78ecfcebb2827f8-Abstract-Conference.html
https://proceedings.mlsys.org/paper_files/paper/2024/hash/bbb7506579431a85861a05fff048d3e1-Abstract-Conference.html
https://proceedings.mlsys.org/paper_files/paper/2024/hash/bbb7506579431a85861a05fff048d3e1-Abstract-Conference.html
http://arxiv.org/abs/2410.23079
https://arxiv.org/abs/2504.00970
https://arxiv.org/abs/2504.00970

Published as a conference paper at ICLR 2026

A USE OF LLMS

This study employs GPT-4 for text polishing and writing refinement. Moreover, we utilized Claude-
3.7-Sonnet to assist us with code generation.

B OUTLIER PROPERTY VISUALIZATION AND ANALYSIS

We conduct a detailed investigation into the properties of neighborhood similarity of token key
embeddings in long-text contexts. Figures 14 to 19 present results from various LLMs across different
attention heads on three datasets, from which we summarize the following patterns.

(1) In the initial layers of large models, we observe a universally high neighborhood similarity
among token key embeddings for most of the attention heads, with nearly no outlier tokens detected.
This suggests that initial representations remain relatively homogeneous and exhibit manifold charac-
teristics within the semantic space. We also notice that key embeddings in certain attention heads
remain relatively dispersed.

(2) As processing proceeds to shallower layers, the phenomenon of Attention Sink begins to mani-
fest. This is characterized by the initial tokens of the text aggregating global semantic information,
resulting in their key embeddings exhibiting significant outlier tendencies. These tokens, often
positioned at the beginning, absorb broad contextual attributes and become distinct from the more
localized representations of other tokens.

(3) Subsequently in deeper layers, the model shifts its focus to specific parts of the document,
leading to the emergence of local deviation. This means that certain non-initial tokens also start
to exhibit outlier characteristics, particularly those relevant to specialized or salient content within
the text. This progression highlights the model’s evolving semantic focus across layers, from broad
contextual integration to content-specific representation.

Meanwhile, we observed a very interesting phenomenon on the MK3 dataset, where the neighborhood
similarity exhibits a comb-shaped distribution, meaning that an outlier token appears every few tokens.
We present a sample from the MK3 dataset as follows:

A special magic uuid is hidden within the following text. Make sure to memorize it. I will quiz you
about the uuid afterwards.
One of the special magic uuids for 42e88605-a29a-4e5f-97b6-f1aaf2064a1c is: 73e5550d-b52f-4f46-
80b0-8dd0fac9b5b6.
One of the special magic uuids for fba75385-a98a-4cb0-bef5-27fe45e4307a is: 75b568d7-35eb-428f-
9775-0d0f5256e276.
...

It can be observed that each segment follows a key+uuid format. We found that the outliers across
different heads are typically around the colons and periods, which indicates that each key-uuid pair
is likely to be encoded into punctuation marks and the surrounding tokens, resulting in the periodic
appearance pattern of outliers.

0 2000

0.7

0.8

0.9

N
ei

gh
. S

im
.

Layer 1 / Head 4

0 2000

0.6

0.8

Layer 5 / Head 4

0 2000

0.4

0.6

0.8

Layer 12 / Head 4

0 2000

0.4

0.6

0.8

Layer 16 / Head 4

0 2000
0.2

0.4

0.6

0.8

Layer 17 / Head 4

0 2000
0.4

0.6

0.8

Layer 18 / Head 4

0 2000

0.6

0.8

Layer 21 / Head 4

0 2000
0.4

0.6

0.8

Layer 26 / Head 4

0 2000

0.4

0.6

0.8

N
ei

gh
. S

im
.

Layer 1 / Head 12

0 2000

0.6

0.8

Layer 5 / Head 12

0 2000

0.4

0.6

0.8

Layer 12 / Head 12

0 2000
0.00

0.25

0.50

0.75

Layer 16 / Head 12

0 2000
0.2

0.4

0.6

0.8

Layer 17 / Head 12

0 2000

0.6

0.8

Layer 18 / Head 12

0 2000

0.4

0.6

0.8

Layer 21 / Head 12

0 2000

0.6

0.8

Layer 26 / Head 12

0 2000
0.2

0.4

0.6

0.8

N
ei

gh
. S

im
.

Layer 1 / Head 20

0 2000

0.6

0.8

Layer 5 / Head 20

0 2000

0.4

0.6

0.8

Layer 12 / Head 20

0 2000

0.4

0.6

0.8

Layer 16 / Head 20

0 2000

0.4

0.6

0.8

Layer 17 / Head 20

0 2000

0.4

0.6

0.8

Layer 18 / Head 20

0 2000
0.4

0.6

0.8

Layer 21 / Head 20

0 2000

0.4

0.6

0.8

Layer 26 / Head 20

0 2000
Token Pos

0.0

0.2

0.4

0.6

N
ei

gh
. S

im
.

Layer 1 / Head 28

0 2000
Token Pos

0.6

0.8

Layer 5 / Head 28

0 2000
Token Pos

0.4

0.6

0.8

Layer 12 / Head 28

0 2000
Token Pos

0.25

0.50

0.75

Layer 16 / Head 28

0 2000
Token Pos

0.4

0.6

0.8

Layer 17 / Head 28

0 2000
Token Pos

0.4

0.6

0.8

Layer 18 / Head 28

0 2000
Token Pos

0.4

0.6

0.8

Layer 21 / Head 28

0 2000
Token Pos

0.4

0.6

0.8

Layer 26 / Head 28

Figure 14: Token Neighborhood Similarity Across Dif-
ferent Attention Heads (Llama2-7B on Samsum)

0 2000

0.6

0.8

Ne
ig

h.
 S

im
.

Layer1 / Head2

0 2000
0.0
0.2
0.4
0.6

Layer2 / Head2

0 20000.00

0.25

0.50

0.75

Layer10 / Head2

0 2000

0.25

0.50

0.75

Layer12 / Head2

0 2000
0.2

0.4

0.6

0.8

Layer16 / Head2

0 2000
0.00

0.25

0.50

0.75

Layer18 / Head2

0 2000
0.25

0.50

0.75

Layer21 / Head2

0 2000

0.25

0.50

0.75

Layer24 / Head2

0 2000
0.2

0.4

0.6

0.8

Ne
ig

h.
 S

im
.

Layer1 / Head4

0 2000
0.00

0.25

0.50

0.75
Layer2 / Head4

0 2000
0.0

0.5

Layer10 / Head4

0 2000

0.25

0.50

0.75

Layer12 / Head4

0 20000.00

0.25

0.50

0.75

Layer16 / Head4

0 2000

0.25

0.50

0.75

Layer18 / Head4

0 2000
0.25

0.50

0.75

Layer21 / Head4

0 2000

0.25

0.50

0.75

Layer24 / Head4

0 2000

0.4

0.6

0.8

Ne
ig

h.
 S

im
.

Layer1 / Head5

0 2000

0.2

0.4

0.6

Layer2 / Head5

0 2000
0.00

0.25

0.50

0.75

Layer10 / Head5

0 2000

0.25

0.50

0.75

Layer12 / Head5

0 2000

0.25

0.50

0.75

Layer16 / Head5

0 2000

0.25

0.50

0.75

Layer18 / Head5

0 2000

0.25

0.50

0.75

Layer21 / Head5

0 2000

0.25

0.50

0.75

Layer24 / Head5

0 2000
Token Pos

0.7

0.8

0.9

Ne
ig

h.
 S

im
.

Layer1 / Head7

0 2000
Token Pos

0.2

0.4

0.6

0.8Layer2 / Head7

0 2000
Token Pos

0.25

0.50

0.75

Layer10 / Head7

0 2000
Token Pos

0.00
0.25
0.50
0.75

Layer12 / Head7

0 2000
Token Pos

0.25

0.50

0.75

Layer16 / Head7

0 2000
Token Pos

0.25

0.50

0.75

Layer18 / Head7

0 2000
Token Pos

0.25

0.50

0.75

Layer21 / Head7

0 2000
Token Pos

0.25

0.50

0.75

Layer24 / Head7

Figure 15: Token Neighborhood Similarity Across Dif-
ferent Attention Heads (Llama3-8B on Samsum)

16

Published as a conference paper at ICLR 2026

0 2000

0.7

0.8

0.9

N
ei

gh
. S

im
.

Layer 1 / Head 4

0 2000

0.4

0.6

0.8

1.0
Layer 5 / Head 4

0 2000

0.4

0.6

0.8

1.0
Layer 12 / Head 4

0 2000

0.4

0.6

0.8

1.0
Layer 16 / Head 4

0 2000

0.25

0.50

0.75

1.00
Layer 17 / Head 4

0 2000

0.4

0.6

0.8

1.0
Layer 18 / Head 4

0 2000
0.4

0.6

0.8

1.0
Layer 21 / Head 4

0 2000
0.4

0.6

0.8

1.0
Layer 26 / Head 4

0 2000

0.4

0.6

0.8

N
ei

gh
. S

im
.

Layer 1 / Head 12

0 2000

0.4

0.6

0.8

1.0
Layer 5 / Head 12

0 2000

0.4

0.6

0.8

1.0
Layer 12 / Head 12

0 2000

0.5

1.0
Layer 16 / Head 12

0 2000

0.4

0.6

0.8

1.0
Layer 17 / Head 12

0 2000

0.4

0.6

0.8

1.0
Layer 18 / Head 12

0 2000

0.4

0.6

0.8

1.0
Layer 21 / Head 12

0 2000

0.4

0.6

0.8

1.0
Layer 26 / Head 12

0 2000

0.25

0.50

0.75

N
ei

gh
. S

im
.

Layer 1 / Head 20

0 2000
0.25

0.50

0.75

1.00
Layer 5 / Head 20

0 2000
0.4

0.6

0.8

1.0
Layer 12 / Head 20

0 2000

0.4

0.6

0.8

1.0
Layer 16 / Head 20

0 2000
0.4

0.6

0.8

1.0
Layer 17 / Head 20

0 2000

0.4

0.6

0.8

1.0
Layer 18 / Head 20

0 2000

0.4

0.6

0.8

1.0
Layer 21 / Head 20

0 2000
0.25

0.50

0.75

1.00
Layer 26 / Head 20

0 2000
Token Pos

0.0

0.5

N
ei

gh
. S

im
.

Layer 1 / Head 28

0 2000
Token Pos

0.4

0.6

0.8

1.0
Layer 5 / Head 28

0 2000
Token Pos

0.4

0.6

0.8

1.0
Layer 12 / Head 28

0 2000
Token Pos

0.4

0.6

0.8

1.0
Layer 16 / Head 28

0 2000
Token Pos

0.4

0.6

0.8

1.0
Layer 17 / Head 28

0 2000
Token Pos

0.4

0.6

0.8

1.0
Layer 18 / Head 28

0 2000
Token Pos

0.4

0.6

0.8

1.0
Layer 21 / Head 28

0 2000
Token Pos

0.4

0.6

0.8

1.0
Layer 26 / Head 28

Figure 16: Token Neighborhood Similarity Across Dif-
ferent Attention Heads (Llama2-7B on TriviaQA)

0 2000

0.6

0.8

Ne
ig

h.
 S

im
.

Layer1 / Head2

0 2000
0.0
0.2
0.4
0.6

Layer2 / Head2

0 20000.00

0.25

0.50

0.75

Layer10 / Head2

0 2000

0.25

0.50

0.75

Layer12 / Head2

0 2000
0.2

0.4

0.6

0.8

Layer16 / Head2

0 2000
0.00

0.25

0.50

0.75

Layer18 / Head2

0 2000
0.25

0.50

0.75

Layer21 / Head2

0 2000

0.25

0.50

0.75

Layer24 / Head2

0 2000
0.2

0.4

0.6

0.8

Ne
ig

h.
 S

im
.

Layer1 / Head4

0 2000
0.00

0.25

0.50

0.75
Layer2 / Head4

0 2000
0.0

0.5

Layer10 / Head4

0 2000

0.25

0.50

0.75

Layer12 / Head4

0 20000.00

0.25

0.50

0.75

Layer16 / Head4

0 2000

0.25

0.50

0.75

Layer18 / Head4

0 2000
0.25

0.50

0.75

Layer21 / Head4

0 2000

0.25

0.50

0.75

Layer24 / Head4

0 2000

0.4

0.6

0.8

Ne
ig

h.
 S

im
.

Layer1 / Head5

0 2000

0.2

0.4

0.6

Layer2 / Head5

0 2000
0.00

0.25

0.50

0.75

Layer10 / Head5

0 2000

0.25

0.50

0.75

Layer12 / Head5

0 2000

0.25

0.50

0.75

Layer16 / Head5

0 2000

0.25

0.50

0.75

Layer18 / Head5

0 2000

0.25

0.50

0.75

Layer21 / Head5

0 2000

0.25

0.50

0.75

Layer24 / Head5

0 2000
Token Pos

0.7

0.8

0.9

Ne
ig

h.
 S

im
.

Layer1 / Head7

0 2000
Token Pos

0.2

0.4

0.6

0.8Layer2 / Head7

0 2000
Token Pos

0.25

0.50

0.75

Layer10 / Head7

0 2000
Token Pos

0.00
0.25
0.50
0.75

Layer12 / Head7

0 2000
Token Pos

0.25

0.50

0.75

Layer16 / Head7

0 2000
Token Pos

0.25

0.50

0.75

Layer18 / Head7

0 2000
Token Pos

0.25

0.50

0.75

Layer21 / Head7

0 2000
Token Pos

0.25

0.50

0.75

Layer24 / Head7

Figure 17: Token Neighborhood Similarity Across Dif-
ferent Attention Heads (Llama3-8B on TriviaQA)

0 2000

0.7

0.8

0.9

N
ei

gh
. S

im
.

Layer 1 / Head 4

0 2000
0.0

0.5

Layer 5 / Head 4

0 2000
0.0

0.5

1.0
Layer 12 / Head 4

0 2000
0.00

0.25

0.50

0.75

Layer 16 / Head 4

0 2000
0.0

0.5

1.0
Layer 17 / Head 4

0 2000
0.0

0.5

Layer 18 / Head 4

0 2000
0.0

0.5

1.0
Layer 21 / Head 4

0 2000
0.0

0.5

1.0
Layer 26 / Head 4

0 2000

0.4

0.6

0.8

N
ei

gh
. S

im
.

Layer 1 / Head 12

0 2000
0.0

0.5

1.0
Layer 5 / Head 12

0 2000
0.0

0.5

1.0
Layer 12 / Head 12

0 2000

0.25

0.50

0.75

Layer 16 / Head 12

0 2000

0.25

0.50

0.75

1.00
Layer 17 / Head 12

0 2000

0.25

0.50

0.75

Layer 18 / Head 12

0 2000

0.25

0.50

0.75

1.00
Layer 21 / Head 12

0 2000
0.0

0.5

1.0
Layer 26 / Head 12

0 2000

0.4

0.6

0.8

N
ei

gh
. S

im
.

Layer 1 / Head 20

0 2000
0.0

0.5

1.0
Layer 5 / Head 20

0 2000
0.0

0.5

1.0
Layer 12 / Head 20

0 2000
0.0

0.5

1.0
Layer 16 / Head 20

0 2000

0.25

0.50

0.75

Layer 17 / Head 20

0 2000

0.25

0.50

0.75

1.00
Layer 18 / Head 20

0 2000
0.0

0.5

1.0
Layer 21 / Head 20

0 2000
0.00

0.25

0.50

0.75

Layer 26 / Head 20

0 2000
Token Pos

0.00

0.25

0.50

0.75

N
ei

gh
. S

im
.

Layer 1 / Head 28

0 2000
Token Pos

0.5

1.0
Layer 5 / Head 28

0 2000
Token Pos

0.25

0.50

0.75

Layer 12 / Head 28

0 2000
Token Pos

0.0

0.5

1.0
Layer 16 / Head 28

0 2000
Token Pos

0.0

0.5

1.0
Layer 17 / Head 28

0 2000
Token Pos

0.0

0.5

1.0
Layer 18 / Head 28

0 2000
Token Pos

0.25

0.50

0.75

1.00
Layer 21 / Head 28

0 2000
Token Pos

0.0

0.5

1.0
Layer 26 / Head 28

Figure 18: Token Neighborhood Similarity Across Dif-
ferent Attention Heads (Llama2-7B on MK3)

0 2000
0.6

0.7

0.8

0.9

Ne
ig

h.
 S

im
.

Layer1 / Head2

0 2000

0.2

0.4

0.6

Layer2 / Head2

0 20000.0

0.5

1.0Layer10 / Head2

0 2000

0.25

0.50

0.75

Layer12 / Head2

0 2000
0.2
0.4
0.6
0.8

Layer16 / Head2

0 2000
0.00

0.25

0.50

0.75

Layer18 / Head2

0 2000
0.25

0.50

0.75

Layer21 / Head2

0 2000

0.25

0.50

0.75

Layer24 / Head2

0 2000
0.2

0.4

0.6

0.8

Ne
ig

h.
 S

im
.

Layer1 / Head4

0 2000
0.00

0.25

0.50

0.75
Layer2 / Head4

0 2000
0.0

0.5

1.0Layer10 / Head4

0 2000

0.25

0.50

0.75

Layer12 / Head4

0 2000
0.0

0.5

Layer16 / Head4

0 2000
0.0

0.5

Layer18 / Head4

0 2000
0.25

0.50

0.75

Layer21 / Head4

0 2000

0.25

0.50

0.75

Layer24 / Head4

0 2000
0.2
0.4
0.6
0.8

Ne
ig

h.
 S

im
.

Layer1 / Head5

0 2000

0.2

0.4

0.6

Layer2 / Head5

0 2000
0.00
0.25
0.50
0.75

Layer10 / Head5

0 2000

0.25

0.50

0.75

Layer12 / Head5

0 2000

0.25
0.50
0.75
1.00Layer16 / Head5

0 2000

0.25

0.50

0.75

Layer18 / Head5

0 2000

0.25

0.50

0.75

Layer21 / Head5

0 2000

0.25

0.50

0.75

Layer24 / Head5

0 2000
Token Pos

0.7

0.8

0.9

Ne
ig

h.
 S

im
.

Layer1 / Head7

0 2000
Token Pos

0.2

0.4

0.6

0.8Layer2 / Head7

0 2000
Token Pos

0.25

0.50

0.75

Layer10 / Head7

0 2000
Token Pos

0.0

0.5

Layer12 / Head7

0 2000
Token Pos

0.25

0.50

0.75

Layer16 / Head7

0 2000
Token Pos

0.25

0.50

0.75

1.00Layer18 / Head7

0 2000
Token Pos

0.25

0.50

0.75

1.00Layer21 / Head7

0 2000
Token Pos

0.25

0.50

0.75

Layer24 / Head7

Figure 19: Token Neighborhood Similarity Across Dif-
ferent Attention Heads (Llama3-8B on MK3)

C CLUSTERING PROPERTY ANALYSIS

In this section, we primarily investigate whether SATs exhibit clustering properties across different
attention heads. Unlike the outlier property analysis experiment, where we analyzed a specific
long-context sequence, here we conduct analysis on the entire dataset by calculating the clustering
coefficient of key embeddings with outlier degree above the threshold β for each input sequence, and
then average them across the whole dataset.

As shown in Figures 20-23, for almost all attention heads, the clustering coefficient values show an
increasing trend as β rises, and eventually stabilize to a high value. We find that Stabilization occurs
because the selected tokens are predominantly attention sinks in most cases. Additionally, we observe
that the trends in the first layer are generally less pronounced, which aligns with our earlier analysis:
semantic information is not yet well aggregated at the first layer.

1.5 2.0

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Cl
us

te
rin

g
De

gr
ee

Layer 0

1.5 2.0 2.5
0.1

0.2

0.3

0.4

0.5

Cl
us

te
rin

g
De

gr
ee

Layer 1

1.5 2.0 2.5 3.0

0.5

1.0

1.5

Cl
us

te
rin

g
De

gr
ee

Layer 2

1.5 2.0 2.5 3.0

0.25

0.50

0.75

1.00

1.25

1.50

Cl
us

te
rin

g
De

gr
ee

Layer 3

1.5 2.0 2.5 3.0

0.25

0.50

0.75

1.00

1.25

1.50

Cl
us

te
rin

g
De

gr
ee

Layer 4

1.5 2.0 2.5 3.0

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Cl
us

te
rin

g
De

gr
ee

Layer 5

1.5 2.0 2.5 3.0

0.25

0.50

0.75

1.00

1.25

1.50

Cl
us

te
rin

g
De

gr
ee

Layer 6

1.5 2.0 2.5 3.0

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Cl
us

te
rin

g
De

gr
ee

Layer 7

1.5 2.0 2.5 3.0

0.25

0.50

0.75

1.00

1.25

1.50

Cl
us

te
rin

g
De

gr
ee

Layer 8

1.5 2.0 2.5 3.0

0.25

0.50

0.75

1.00

1.25

1.50

Cl
us

te
rin

g
De

gr
ee

Layer 9

1.5 2.0 2.5 3.0

0.25

0.50

0.75

1.00

1.25

1.50

Cl
us

te
rin

g
De

gr
ee

Layer 10

1.5 2.0 2.5 3.0

0.25

0.50

0.75

1.00

1.25

1.50

Cl
us

te
rin

g
De

gr
ee

Layer 11

1.5 2.0 2.5 3.0

0.25

0.50

0.75

1.00

1.25

1.50

Cl
us

te
rin

g
De

gr
ee

Layer 12

1.5 2.0 2.5 3.0

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Cl
us

te
rin

g
De

gr
ee

Layer 13

1.5 2.0 2.5 3.0
0.25

0.50

0.75

1.00

1.25

1.50

Cl
us

te
rin

g
De

gr
ee

Layer 14

1.5 2.0 2.5 3.0
0.25

0.50

0.75

1.00

1.25

1.50

Cl
us

te
rin

g
De

gr
ee

Layer 15

1.5 2.0 2.5 3.0

0.25

0.50

0.75

1.00

1.25

1.50

Cl
us

te
rin

g
De

gr
ee

Layer 16

1.5 2.0 2.5 3.0
0.25

0.50

0.75

1.00

1.25

1.50

Cl
us

te
rin

g
De

gr
ee

Layer 17

1.5 2.0 2.5 3.0

0.25

0.50

0.75

1.00

1.25

1.50

Cl
us

te
rin

g
De

gr
ee

Layer 18

1.5 2.0 2.5 3.0
0.25

0.50

0.75

1.00

1.25

1.50

Cl
us

te
rin

g
De

gr
ee

Layer 19

1.5 2.0 2.5 3.0
0.25

0.50

0.75

1.00

1.25

1.50

Cl
us

te
rin

g
De

gr
ee

Layer 20

1.5 2.0 2.5 3.0
0.25

0.50

0.75

1.00

1.25

1.50

Cl
us

te
rin

g
De

gr
ee

Layer 21

1.5 2.0 2.5 3.0

0.25

0.50

0.75

1.00

1.25

1.50

Cl
us

te
rin

g
De

gr
ee

Layer 22

1.5 2.0 2.5 3.0
0.25

0.50

0.75

1.00

1.25

1.50

Cl
us

te
rin

g
De

gr
ee

Layer 23

1.5 2.0 2.5 3.0

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Cl
us

te
rin

g
De

gr
ee

Layer 24

1.5 2.0 2.5 3.0

0.25

0.50

0.75

1.00

1.25

1.50

Cl
us

te
rin

g
De

gr
ee

Layer 25

1.5 2.0 2.5 3.0

0.25

0.50

0.75

1.00

1.25

1.50

Cl
us

te
rin

g
De

gr
ee

Layer 26

1.5 2.0 2.5 3.0

0.25

0.50

0.75

1.00

1.25

1.50

Cl
us

te
rin

g
De

gr
ee

Layer 27

1.5 2.0 2.5 3.0

0.25

0.50

0.75

1.00

1.25

1.50

Cl
us

te
rin

g
De

gr
ee

Layer 28

1.5 2.0 2.5 3.0

0.25

0.50

0.75

1.00

1.25

1.50

Cl
us

te
rin

g
De

gr
ee

Layer 29

1.5 2.0 2.5 3.0
0.25

0.50

0.75

1.00

1.25

1.50

Cl
us

te
rin

g
De

gr
ee

Layer 30

1.5 2.0 2.5 3.0
0.2

0.4

0.6

0.8

1.0

1.2

1.4

Cl
us

te
rin

g
De

gr
ee

Layer 31

Head 7 Head 9 Head 12 Head 18 Head 27

Figure 20: Clustering Property Analysis for Llama2-
7B on 2WikimQA.

1.5 2.0 2.5

0.2

0.3

0.4

0.5

0.6

0.7

Cl
us

te
rin

g
De

gr
ee

Layer 0

1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

Cl
us

te
rin

g
De

gr
ee

Layer 1

1.5 2.0 2.5 3.0

0.5

1.0

1.5

Cl
us

te
rin

g
De

gr
ee

Layer 2

1.5 2.0 2.5 3.0

0.25

0.50

0.75

1.00

1.25

1.50

Cl
us

te
rin

g
De

gr
ee

Layer 3

1.5 2.0 2.5 3.0

0.25

0.50

0.75

1.00

1.25

1.50

Cl
us

te
rin

g
De

gr
ee

Layer 4

1.5 2.0 2.5 3.0

0.25

0.50

0.75

1.00

1.25

1.50

Cl
us

te
rin

g
De

gr
ee

Layer 5

1.5 2.0 2.5 3.0

0.25

0.50

0.75

1.00

1.25

1.50

Cl
us

te
rin

g
De

gr
ee

Layer 6

1.5 2.0 2.5 3.0
0.25

0.50

0.75

1.00

1.25

1.50

Cl
us

te
rin

g
De

gr
ee

Layer 7

1.5 2.0 2.5 3.0

0.25

0.50

0.75

1.00

1.25

1.50

Cl
us

te
rin

g
De

gr
ee

Layer 8

1.5 2.0 2.5 3.0

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Cl
us

te
rin

g
De

gr
ee

Layer 9

1.5 2.0 2.5 3.0
0.25

0.50

0.75

1.00

1.25

1.50

Cl
us

te
rin

g
De

gr
ee

Layer 10

1.5 2.0 2.5 3.0

0.25

0.50

0.75

1.00

1.25

1.50

Cl
us

te
rin

g
De

gr
ee

Layer 11

1.5 2.0 2.5 3.0
0.25

0.50

0.75

1.00

1.25

1.50

Cl
us

te
rin

g
De

gr
ee

Layer 12

1.5 2.0 2.5 3.0

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Cl
us

te
rin

g
De

gr
ee

Layer 13

1.5 2.0 2.5 3.0

0.25

0.50

0.75

1.00

1.25

1.50

Cl
us

te
rin

g
De

gr
ee

Layer 14

1.5 2.0 2.5 3.0
0.25

0.50

0.75

1.00

1.25

1.50

Cl
us

te
rin

g
De

gr
ee

Layer 15

1.5 2.0 2.5 3.0

0.25

0.50

0.75

1.00

1.25

1.50

Cl
us

te
rin

g
De

gr
ee

Layer 16

1.5 2.0 2.5 3.0

0.25

0.50

0.75

1.00

1.25

1.50

Cl
us

te
rin

g
De

gr
ee

Layer 17

1.5 2.0 2.5 3.0

0.25

0.50

0.75

1.00

1.25

1.50

Cl
us

te
rin

g
De

gr
ee

Layer 18

1.5 2.0 2.5 3.0

0.25

0.50

0.75

1.00

1.25

1.50

Cl
us

te
rin

g
De

gr
ee

Layer 19

1.5 2.0 2.5 3.0

0.25

0.50

0.75

1.00

1.25

1.50

Cl
us

te
rin

g
De

gr
ee

Layer 20

1.5 2.0 2.5 3.0

0.25

0.50

0.75

1.00

1.25

1.50

Cl
us

te
rin

g
De

gr
ee

Layer 21

1.5 2.0 2.5 3.0
0.25

0.50

0.75

1.00

1.25

1.50

Cl
us

te
rin

g
De

gr
ee

Layer 22

1.5 2.0 2.5 3.0

0.25

0.50

0.75

1.00

1.25

1.50

Cl
us

te
rin

g
De

gr
ee

Layer 23

1.5 2.0 2.5 3.0

0.25

0.50

0.75

1.00

1.25

1.50

Cl
us

te
rin

g
De

gr
ee

Layer 24

1.5 2.0 2.5 3.0

0.25

0.50

0.75

1.00

1.25

1.50

Cl
us

te
rin

g
De

gr
ee

Layer 25

1.5 2.0 2.5 3.0

0.25

0.50

0.75

1.00

1.25

1.50

Cl
us

te
rin

g
De

gr
ee

Layer 26

1.5 2.0 2.5 3.0

0.25

0.50

0.75

1.00

1.25

1.50

Cl
us

te
rin

g
De

gr
ee

Layer 27

1.5 2.0 2.5 3.0

0.25

0.50

0.75

1.00

1.25

1.50

Cl
us

te
rin

g
De

gr
ee

Layer 28

1.5 2.0 2.5 3.0

0.25

0.50

0.75

1.00

1.25

1.50

Cl
us

te
rin

g
De

gr
ee

Layer 29

1.5 2.0 2.5 3.0

0.25

0.50

0.75

1.00

1.25

1.50

Cl
us

te
rin

g
De

gr
ee

Layer 30

1.5 2.0 2.5 3.0

0.25

0.50

0.75

1.00

1.25

1.50

Cl
us

te
rin

g
De

gr
ee

Layer 31

Head 7 Head 9 Head 12 Head 18 Head 27

Figure 21: Clustering Property Analysis for Llama2-
7B on TriviaQA.

1.5 2.0 2.5

0.4

0.6

0.8

1.0

Cl
us

te
rin

g
De

gr
ee

Layer 0

1.5 2.0 2.5 3.0
0.2

0.4

0.6

0.8

1.0

1.2

1.4

Cl
us

te
rin

g
De

gr
ee

Layer 1

1.5 2.0 2.5 3.0

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Cl
us

te
rin

g
De

gr
ee

Layer 2

1.5 2.0 2.5 3.0

0.4

0.6

0.8

1.0

1.2

1.4

Cl
us

te
rin

g
De

gr
ee

Layer 3

1.5 2.0 2.5 3.0

0.4

0.6

0.8

1.0

1.2

1.4

Cl
us

te
rin

g
De

gr
ee

Layer 4

1.5 2.0 2.5 3.0
0.2

0.4

0.6

0.8

1.0

1.2

1.4

Cl
us

te
rin

g
De

gr
ee

Layer 5

1.5 2.0 2.5 3.0

0.4

0.6

0.8

1.0

1.2

1.4

Cl
us

te
rin

g
De

gr
ee

Layer 6

1.5 2.0 2.5 3.0

0.4

0.6

0.8

1.0

1.2

1.4

Cl
us

te
rin

g
De

gr
ee

Layer 7

1.5 2.0 2.5 3.0

0.4

0.6

0.8

1.0

1.2

1.4

Cl
us

te
rin

g
De

gr
ee

Layer 8

1.5 2.0 2.5 3.0

0.4

0.6

0.8

1.0

1.2

1.4

Cl
us

te
rin

g
De

gr
ee

Layer 9

1.5 2.0 2.5 3.0
0.25

0.50

0.75

1.00

1.25

1.50

Cl
us

te
rin

g
De

gr
ee

Layer 10

1.5 2.0 2.5 3.0

0.4

0.6

0.8

1.0

1.2

1.4

Cl
us

te
rin

g
De

gr
ee

Layer 11

1.5 2.0 2.5 3.0

0.4

0.6

0.8

1.0

1.2

1.4

Cl
us

te
rin

g
De

gr
ee

Layer 12

1.5 2.0 2.5 3.0
0.2

0.4

0.6

0.8

1.0

1.2

1.4

Cl
us

te
rin

g
De

gr
ee

Layer 13

1.5 2.0 2.5 3.0

0.4

0.6

0.8

1.0

1.2

1.4

Cl
us

te
rin

g
De

gr
ee

Layer 14

1.5 2.0 2.5 3.0

0.4

0.6

0.8

1.0

1.2

1.4

Cl
us

te
rin

g
De

gr
ee

Layer 15

1.5 2.0 2.5 3.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Cl
us

te
rin

g
De

gr
ee

Layer 16

1.5 2.0 2.5 3.0

0.4

0.6

0.8

1.0

1.2

1.4

Cl
us

te
rin

g
De

gr
ee

Layer 17

1.5 2.0 2.5 3.0
0.25

0.50

0.75

1.00

1.25

1.50

Cl
us

te
rin

g
De

gr
ee

Layer 18

1.5 2.0 2.5 3.0
0.25

0.50

0.75

1.00

1.25

1.50

Cl
us

te
rin

g
De

gr
ee

Layer 19

1.5 2.0 2.5 3.0
0.25

0.50

0.75

1.00

1.25

1.50

Cl
us

te
rin

g
De

gr
ee

Layer 20

1.5 2.0 2.5 3.0

0.4

0.6

0.8

1.0

1.2

1.4

Cl
us

te
rin

g
De

gr
ee

Layer 21

1.5 2.0 2.5 3.0
0.25

0.50

0.75

1.00

1.25

1.50

Cl
us

te
rin

g
De

gr
ee

Layer 22

1.5 2.0 2.5 3.0

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Cl
us

te
rin

g
De

gr
ee

Layer 23

1.5 2.0 2.5 3.0
0.25

0.50

0.75

1.00

1.25

1.50

Cl
us

te
rin

g
De

gr
ee

Layer 24

1.5 2.0 2.5 3.0
0.25

0.50

0.75

1.00

1.25

1.50

Cl
us

te
rin

g
De

gr
ee

Layer 25

1.5 2.0 2.5 3.0
0.25

0.50

0.75

1.00

1.25

1.50

Cl
us

te
rin

g
De

gr
ee

Layer 26

1.5 2.0 2.5 3.0
0.25

0.50

0.75

1.00

1.25

1.50

Cl
us

te
rin

g
De

gr
ee

Layer 27

1.5 2.0 2.5 3.0

0.4

0.6

0.8

1.0

1.2

1.4

Cl
us

te
rin

g
De

gr
ee

Layer 28

1.5 2.0 2.5 3.0

0.4
0.6
0.8
1.0
1.2
1.4
1.6

Cl
us

te
rin

g
De

gr
ee

Layer 29

1.5 2.0 2.5 3.0

0.4

0.6

0.8

1.0

1.2

1.4

Cl
us

te
rin

g
De

gr
ee

Layer 30

1.5 2.0 2.5 3.0

0.4

0.6

0.8

1.0

1.2

Cl
us

te
rin

g
De

gr
ee

Layer 31

Head 1 Head 2 Head 5 Head 6 Head 7

Figure 22: Clustering Property Analysis for Llama3-
8B on NarrativeQA.

1.5 2.0 2.5 3.0

0.4

0.6

0.8

1.0

Cl
us

te
rin

g
De

gr
ee

Layer 0

1.5 2.0 2.5 3.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Cl
us

te
rin

g
De

gr
ee

Layer 1

1.5 2.0 2.5 3.0
0.4

0.6

0.8

1.0

1.2

1.4

1.6

Cl
us

te
rin

g
De

gr
ee

Layer 2

1.5 2.0 2.5 3.0

0.4

0.6

0.8

1.0

1.2

1.4

Cl
us

te
rin

g
De

gr
ee

Layer 3

1.5 2.0 2.5 3.0
0.25

0.50

0.75

1.00

1.25

1.50

Cl
us

te
rin

g
De

gr
ee

Layer 4

1.5 2.0 2.5 3.0
0.2

0.4

0.6

0.8

1.0

1.2

1.4

Cl
us

te
rin

g
De

gr
ee

Layer 5

1.5 2.0 2.5 3.0

0.4

0.6

0.8

1.0

1.2

1.4

Cl
us

te
rin

g
De

gr
ee

Layer 6

1.5 2.0 2.5 3.0

0.4

0.6

0.8

1.0

1.2

1.4

Cl
us

te
rin

g
De

gr
ee

Layer 7

1.5 2.0 2.5 3.0

0.4

0.6

0.8

1.0

1.2

1.4

Cl
us

te
rin

g
De

gr
ee

Layer 8

1.5 2.0 2.5 3.0
0.2

0.4

0.6

0.8

1.0

1.2

1.4

Cl
us

te
rin

g
De

gr
ee

Layer 9

1.5 2.0 2.5 3.0
0.25

0.50

0.75

1.00

1.25

1.50

Cl
us

te
rin

g
De

gr
ee

Layer 10

1.5 2.0 2.5 3.0

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Cl
us

te
rin

g
De

gr
ee

Layer 11

1.5 2.0 2.5 3.0

0.4

0.6

0.8

1.0

1.2

1.4

Cl
us

te
rin

g
De

gr
ee

Layer 12

1.5 2.0 2.5 3.0

0.4
0.6
0.8
1.0
1.2
1.4

Cl
us

te
rin

g
De

gr
ee

Layer 13

1.5 2.0 2.5 3.0

0.4

0.6

0.8

1.0

1.2

1.4

Cl
us

te
rin

g
De

gr
ee

Layer 14

1.5 2.0 2.5 3.0

0.4

0.6

0.8

1.0

1.2

1.4

Cl
us

te
rin

g
De

gr
ee

Layer 15

1.5 2.0 2.5 3.0

0.4

0.6

0.8

1.0

1.2

1.4

Cl
us

te
rin

g
De

gr
ee

Layer 16

1.5 2.0 2.5 3.0

0.4

0.6

0.8

1.0

1.2

1.4

Cl
us

te
rin

g
De

gr
ee

Layer 17

1.5 2.0 2.5 3.0
0.25

0.50

0.75

1.00

1.25

1.50

Cl
us

te
rin

g
De

gr
ee

Layer 18

1.5 2.0 2.5 3.0

0.4
0.6
0.8
1.0
1.2
1.4

Cl
us

te
rin

g
De

gr
ee

Layer 19

1.5 2.0 2.5 3.0
0.25

0.50

0.75

1.00

1.25

1.50

Cl
us

te
rin

g
De

gr
ee

Layer 20

1.5 2.0 2.5 3.0

0.4

0.6

0.8

1.0

1.2

1.4

Cl
us

te
rin

g
De

gr
ee

Layer 21

1.5 2.0 2.5 3.0

0.25

0.50

0.75

1.00

1.25

1.50

Cl
us

te
rin

g
De

gr
ee

Layer 22

1.5 2.0 2.5 3.0
0.25

0.50

0.75

1.00

1.25

1.50

Cl
us

te
rin

g
De

gr
ee

Layer 23

1.5 2.0 2.5 3.0
0.25

0.50

0.75

1.00

1.25

1.50

Cl
us

te
rin

g
De

gr
ee

Layer 24

1.5 2.0 2.5 3.0

0.25

0.50

0.75

1.00

1.25

1.50

Cl
us

te
rin

g
De

gr
ee

Layer 25

1.5 2.0 2.5 3.0

0.4
0.6
0.8
1.0
1.2
1.4

Cl
us

te
rin

g
De

gr
ee

Layer 26

1.5 2.0 2.5 3.0
0.25

0.50

0.75

1.00

1.25

1.50

Cl
us

te
rin

g
De

gr
ee

Layer 27

1.5 2.0 2.5 3.0

0.4

0.6

0.8

1.0

1.2

1.4

Cl
us

te
rin

g
De

gr
ee

Layer 28

1.5 2.0 2.5 3.0

0.4
0.6
0.8
1.0
1.2
1.4

Cl
us

te
rin

g
De

gr
ee

Layer 29

1.5 2.0 2.5 3.0

0.4

0.6

0.8

1.0

1.2

1.4

Cl
us

te
rin

g
De

gr
ee

Layer 30

1.5 2.0 2.5 3.0

0.4

0.6

0.8

1.0

1.2

Cl
us

te
rin

g
De

gr
ee

Layer 31

Head 1 Head 2 Head 5 Head 6 Head 7

Figure 23: Clustering Property Analysis for Llama3-
8B on HotpotQA.

17

Published as a conference paper at ICLR 2026

(a) continuous distribution (b) single-cluster distribution

(c) loosely-clustered distribution (d) multi-cluster distribution
Figure 24: Diverse Clustering Pattern of Key Embeddings.

D KEY EMBEDDING DISTRIBUTION PATTERN ANALYSIS

In this section, we examine various distribution patterns of key embeddings, including: 1) the continu-
ous distribution case, 2) the single-cluster distribution case, 3) the loosely-clustered distribution case,
and 4) the multi-cluster distribution case. For each case, we elucidate why our proposed ProtoKV
method achieves effective clustering performance.

(1) The continuous distribution case typically occurs in the earlier layers of the model, where semantic
information has not yet been effectively aggregated. As shown in Figure 24(a), the key embeddings
exhibit manifold characteristics without distinct outlier points. Under these circumstances, the
semantic anchors selected via outlier degree may correspond to arbitrary tokens, and the SAT
semantic prototypes may also reside in arbitrary regions. Nevertheless, the SAT semantic prototypes
have negligible impact on the clustering performance, as the PDT semantic prototypes can still be
effectively identified, ultimately achieving the desired chunk-partitioned clustering outcome.

(2) The single-cluster distribution case illustrated in Figure 24(b) is observed in the vast majority of
attention heads beyond the initial layers. In this scenario, our ProtoKV method is able to identify a
set of high-purity semantic anchors through outlier degree measurement. These anchor tokens are
tightly clustered within a specific region of the semantic space. Consequently, even when employing
a hashing-based bucketing strategy, the resulting semantic prototypes remain almost consistent.
Although this approach may introduce a limited number of redundant SAT semantic prototypes, it
has negligible impact on the final clustering performance.

(3) The loosely-clustered distribution case represents a specific variant of the single-cluster distribution
scenario. As illustrated in Figure 24(c), although the SATs are indeed concentrated within a certain
region of the semantic space, the clustering effectiveness remains suboptimal, exhibiting a dispersed
and loosely-organized structure. Under such conditions, if only a single semantic prototype (cluster
center) is selected, tokens near the cluster boundaries are likely to be misassigned to clusters governed
by PDT semantic prototypes. To address this, our hashing-based bucketing strategy performs a coarse
partitioning of these SATs, thereby expanding the coverage of the regions controlled by SAT semantic
prototypes. This approach enhances the capability to capture higher-order semantic anchor patterns.

(4) The multi-cluster distribution case typically occurs when the semantics of long texts exhibit low
coherence. For instance, Figure 24(d) presents a visualization of this phenomenon on the multi-
document 2WikiMQA dataset. Our observations are as follows: (1) Even in multi-document datasets,
only a small number of attention heads exhibit multi-cluster distributions for keys; the vast majority
still adhere to either single-cluster or loosely-clustered distributions. (2) Tokens from different
clusters generally originate from distinct text segments, whereas query tokens with light colors may
be assigned to different clusters, reflecting that the answer may come from different text segments. In
multi-cluster scenarios, it is highly reasonable for our ProtoKV to employ a hashing-based bucketing
strategy to construct semantic prototypes for different SAT clusters. Moreover, since these clusters
are well-separated, even a simple hashing mechanism can effectively distinguish them.

18

Published as a conference paper at ICLR 2026

E SATS ARE SALIENT FOR LONG-CONTEXT INFERENCE

0 25 50 75 100125150
Dropped KV Pairs

25

50

75

F1
 S

co
re

TriviaQA

0 25 50 75 100125150
Dropped KV Pairs

0

10

20

F1
 S

co
re

NarrativeQA

0 25 50 75 100125150
Dropped KV Pairs

10

20

30

F1
 S

co
re

2WikiMultihopQA

0 25 50 75 100125150
Dropped KV Pairs

10

20

R
ou

ge
-L

QMSum

0 25 50 75 100125150
Dropped KV Pairs

20

40

R
ou

ge
-L

SAMSum

0 25 50 75 100125150
Dropped KV Pairs

20

40

Ed
it

Si
m

RepoBench-P

Random Attention Score Outlier Degree

Figure 25: Dropping KV pairs with highest outlier degrees
can cause sharp performance drop for llama3.

In this section, we provide a detailed anal-
ysis of the properties of SATs as semantic
anchors. We present complete experimen-
tal results from the main text, as illustrated
in Figure 26 to 29. For Llama2, it can be
observed that in the first two layers, out-
lier tokens are not the primary focus of the
attention heads. However, starting from
the third layer, the model begins to attend
to outlying SATs. The situation is slightly
different for LlaMa3. In the LlaMa3-8B
model, it can be observed that all atten-
tion heads tend to focus on outlier tokens,
including those in the initial layers. Addi-
tionally, we found that even after removing
the first several tokens (i.e., the attention sink), the model still attends to the first group of tokens
with the highest outlier degree, we give the results in Appendix F. This demonstrates that SAT are
distributed throughout the text and commonly serve as semantic anchors.

Additionally, we also present the impact of removing the top-k KV pairs with the highest outlier
degrees on Llama3’s performance in processing long-text inputs (while the main text demonstrates
results for Llama2). As shown in Figure 25, removing 25 KV pairs with the highest outlier degrees
causes the model to almost completely malfunction. This indicates that tokens exhibiting outlier
properties generally function as semantic anchors.

2 4 6 8 10
0.05

0.10

0.15

At
te

nt
io

n

Layer 1

2 4 6 8 10

0.1

0.2

0.3

Layer 2

2 4 6 8 10
0.0

0.5

Layer 3

2 4 6 8 10
0.0

0.5

Layer 4

2 4 6 8 10
0.0

0.5

Layer 5

2 4 6 8 10
0.0

0.5

Layer 6

2 4 6 8 10
0.0

0.5

Layer 7

2 4 6 8 10
0.0

0.5

Layer 8

2 4 6 8 10
0.0

0.5

At
te

nt
io

n

Layer 9

2 4 6 8 10
0.0

0.5

Layer 10

2 4 6 8 10
0.0

0.5

Layer 11

2 4 6 8 10
0.0

0.5

Layer 12

2 4 6 8 10
0.0

0.5

Layer 13

2 4 6 8 10
0.0

0.5

Layer 14

2 4 6 8 10
0.0

0.5

Layer 15

2 4 6 8 10
0.0

0.5

Layer 16

2 4 6 8 10
0.0

0.5

At
te

nt
io

n

Layer 17

2 4 6 8 10
0.0

0.5

Layer 18

2 4 6 8 10
0.0

0.5

Layer 19

2 4 6 8 10
0.0

0.5

Layer 20

2 4 6 8 10
0.0

0.5

Layer 21

2 4 6 8 10
0.0

0.5

Layer 22

2 4 6 8 10
0.0

0.5

1.0
Layer 23

2 4 6 8 10
0.0

0.5

1.0
Layer 24

2 4 6 8 10
Localness Degree

0.0

0.5

At
te

nt
io

n

Layer 25

2 4 6 8 10
Localness Degree

0.0

0.5

1.0
Layer 26

2 4 6 8 10
Localness Degree

0.0

0.5

1.0
Layer 27

2 4 6 8 10
Localness Degree

0.0

0.5

1.0
Layer 28

2 4 6 8 10
Localness Degree

0.0

0.5

Layer 29

2 4 6 8 10
Localness Degree

0.0

0.5

Layer 30

2 4 6 8 10
Localness Degree

0.0

0.5

Layer 31

2 4 6 8 10
Localness Degree

0.0

0.5

Layer 32

Figure 26: Group-wise semantic anchor property anal-
ysis. (Llama2-7B on TriviaQA)

2 4 6 8 10
0.0

0.5

At
te

nt
io

n

Layer 1

2 4 6 8 10
0.0

0.5

Layer 2

2 4 6 8 10
0.0

0.5

Layer 3

2 4 6 8 10
0.0

0.5

Layer 4

2 4 6 8 10
0.0

0.5

Layer 5

2 4 6 8 10
0.0

0.5

Layer 6

2 4 6 8 10
0.0

0.5

Layer 7

2 4 6 8 10
0.00

0.25

0.50

Layer 8

2 4 6 8 10
0.00

0.25

0.50

At
te

nt
io

n

Layer 9

2 4 6 8 10
0.00

0.25

0.50

Layer 10

2 4 6 8 10
0.00

0.25

0.50

Layer 11

2 4 6 8 10
0.00

0.25

0.50

Layer 12

2 4 6 8 10
0.0

0.5

Layer 13

2 4 6 8 10
0.0

0.2

0.4

Layer 14

2 4 6 8 10

0.2

0.4

Layer 15

2 4 6 8 10
0.0

0.5

Layer 16

2 4 6 8 10
0.00

0.25

0.50

At
te

nt
io

n

Layer 17

2 4 6 8 10
0.00

0.25

0.50

Layer 18

2 4 6 8 10
0.0

0.5

Layer 19

2 4 6 8 10
0.00

0.25

0.50

Layer 20

2 4 6 8 10
0.0

0.5

Layer 21

2 4 6 8 10
0.0

0.5

Layer 22

2 4 6 8 10
0.0

0.5

Layer 23

2 4 6 8 10
0.0

0.5

Layer 24

2 4 6 8 10
Localness Degree

0.0

0.5

At
te

nt
io

n

Layer 25

2 4 6 8 10
Localness Degree

0.0

0.5

Layer 26

2 4 6 8 10
Localness Degree

0.0

0.5

Layer 27

2 4 6 8 10
Localness Degree

0.0

0.5

Layer 28

2 4 6 8 10
Localness Degree

0.0

0.5

Layer 29

2 4 6 8 10
Localness Degree

0.0

0.5

Layer 30

2 4 6 8 10
Localness Degree

0.0

0.5

Layer 31

2 4 6 8 10
Localness Degree

0.2

0.4

Layer 32

Figure 27: Group-wise semantic anchor property anal-
ysis. (LlaMa3-8B on TriviaQA)

2 4 6 8 10
0.05

0.10

0.15

At
te

nt
io

n

Layer 1

2 4 6 8 10
0.0

0.2

0.4
Layer 2

2 4 6 8 10
0.0

0.5

Layer 3

2 4 6 8 10
0.0

0.5

Layer 4

2 4 6 8 10
0.0

0.5

Layer 5

2 4 6 8 10
0.0

0.5

Layer 6

2 4 6 8 10
0.0

0.5

Layer 7

2 4 6 8 10
0.0

0.5

Layer 8

2 4 6 8 10
0.0

0.5

At
te

nt
io

n

Layer 9

2 4 6 8 10
0.0

0.5

Layer 10

2 4 6 8 10
0.0

0.5

Layer 11

2 4 6 8 10
0.0

0.5

Layer 12

2 4 6 8 10
0.0

0.5

Layer 13

2 4 6 8 10
0.0

0.5

Layer 14

2 4 6 8 10
0.0

0.5

Layer 15

2 4 6 8 10
0.0

0.5

Layer 16

2 4 6 8 10
0.0

0.5

At
te

nt
io

n

Layer 17

2 4 6 8 10
0.0

0.5

Layer 18

2 4 6 8 10
0.0

0.5

1.0
Layer 19

2 4 6 8 10
0.0

0.5

1.0
Layer 20

2 4 6 8 10
0.0

0.5

Layer 21

2 4 6 8 10
0.0

0.5

1.0
Layer 22

2 4 6 8 10
0.0

0.5

1.0
Layer 23

2 4 6 8 10
0.0

0.5

1.0
Layer 24

2 4 6 8 10
Localness Degree

0.0

0.5

1.0

At
te

nt
io

n

Layer 25

2 4 6 8 10
Localness Degree

0.0

0.5

1.0
Layer 26

2 4 6 8 10
Localness Degree

0.0

0.5

1.0
Layer 27

2 4 6 8 10
Localness Degree

0.0

0.5

1.0
Layer 28

2 4 6 8 10
Localness Degree

0.0

0.5

1.0
Layer 29

2 4 6 8 10
Localness Degree

0.0

0.5

1.0
Layer 30

2 4 6 8 10
Localness Degree

0.0

0.5

1.0
Layer 31

2 4 6 8 10
Localness Degree

0.0

0.5

Layer 32

Figure 28: Group-wise semantic anchor property anal-
ysis. (Llama2-7B on Samsum)

2 4 6 8 10
0.0

0.5

At
te

nt
io

n

Layer 1

2 4 6 8 10
0.0

0.5

Layer 2

2 4 6 8 10
0.0

0.5

Layer 3

2 4 6 8 10
0.0

0.5

Layer 4

2 4 6 8 10
0.0

0.5

Layer 5

2 4 6 8 10
0.0

0.5

Layer 6

2 4 6 8 10
0.0

0.5

Layer 7

2 4 6 8 10
0.00

0.25

0.50

Layer 8

2 4 6 8 10
0.00

0.25

0.50

At
te

nt
io

n

Layer 9

2 4 6 8 10
0.00

0.25

0.50

Layer 10

2 4 6 8 10
0.0

0.2

0.4

Layer 11

2 4 6 8 10
0.0

0.5

Layer 12

2 4 6 8 10
0.0

0.5

Layer 13

2 4 6 8 10
0.0

0.2

0.4

Layer 14

2 4 6 8 10

0.2

0.4

Layer 15

2 4 6 8 10
0.0

0.5

Layer 16

2 4 6 8 10
0.00

0.25

0.50

At
te

nt
io

n

Layer 17

2 4 6 8 10
0.0

0.5

Layer 18

2 4 6 8 10
0.00

0.25

0.50

Layer 19

2 4 6 8 10
0.00

0.25

0.50

Layer 20

2 4 6 8 10
0.0

0.5

Layer 21

2 4 6 8 10
0.0

0.5

Layer 22

2 4 6 8 10
0.0

0.5

Layer 23

2 4 6 8 10
0.0

0.5

Layer 24

2 4 6 8 10
Localness Degree

0.0

0.5

At
te

nt
io

n

Layer 25

2 4 6 8 10
Localness Degree

0.0

0.5

Layer 26

2 4 6 8 10
Localness Degree

0.0

0.5

Layer 27

2 4 6 8 10
Localness Degree

0.0

0.5

Layer 28

2 4 6 8 10
Localness Degree

0.0

0.5

Layer 29

2 4 6 8 10
Localness Degree

0.0

0.5

Layer 30

2 4 6 8 10
Localness Degree

0.00

0.25

0.50

Layer 31

2 4 6 8 10
Localness Degree

0.2

0.4

Layer 32

Figure 29: Group-wise semantic anchor property anal-
ysis. (LlaMa3-8B on Samsum)

F ALIGNMENT WITH PRIOR WORKS

We compare our findings with prior work. Specifically, (Xiao et al., 2024) observed the “attention
sink” phenomenon during large model generation, where the initial tokens disproportionately absorb
semantic information. In the visualization of Appendix B, we can observe that the initial few tokens
often exhibit extremely low neighborhood similarity.

Furthermore, to validate whether the SATs we propose as semantic anchors are equivalent to the
attention sinks mentioned in prior work, we conducted additional experiments. Specifically, we
removed the first ten tokens from the long-text prompt (prior studies indicate that the first four
are the most critical; here, we adopt a more aggressive approach by excluding the first ten). The

19

Published as a conference paper at ICLR 2026

remaining tokens were then divided into ten groups based on their outlier degree, and we measured
their inference-stage cumulative attention.

As illustrated in Figure 30, we observed that even after removing the attention sinks, large models
still tend to focus on tokens with higher outlier degrees. This demonstrates that our SATs not only
encompass attention sinks but are also capable of identifying anchors located elsewhere in the text.

(Wang et al., 2023) demonstrated that in in-context learning, label words act as anchors that cluster
sample semantics. Our study reveals that label word tokens also exhibit significant outlier char-
acteristics. We conduct experiments for LlaMa3-8B on two text classification datasets. These two
datasets are: the binary-class movie review dataset IMDB and the multi-class news dataset AGNews.

2 4 6 8 10
0.0

0.2

At
te

nt
io

n

Layer 1

2 4 6 8 10

0.025

0.050

Layer 2

2 4 6 8 10
0.0

0.1

0.2
Layer 3

2 4 6 8 10
0.0

0.1

0.2

Layer 4

2 4 6 8 10
0.0

0.1

0.2
Layer 5

2 4 6 8 10
0.0

0.1

0.2
Layer 6

2 4 6 8 10

0.1

0.2
Layer 7

2 4 6 8 10

0.05

0.10

0.15
Layer 8

2 4 6 8 10
0.0

0.1

0.2

At
te

nt
io

n

Layer 9

2 4 6 8 10

0.05

0.10

0.15

Layer 10

2 4 6 8 10

0.1

0.2
Layer 11

2 4 6 8 10

0.1

0.2

Layer 12

2 4 6 8 10

0.1

0.2
Layer 13

2 4 6 8 10

0.05

0.10

0.15

Layer 14

2 4 6 8 10

0.1

0.2
Layer 15

2 4 6 8 10

0.1

0.2

Layer 16

2 4 6 8 10

0.1

0.2

At
te

nt
io

n

Layer 17

2 4 6 8 10

0.1

0.2
Layer 18

2 4 6 8 10

0.1

0.2

Layer 19

2 4 6 8 10
0.0

0.1

0.2

Layer 20

2 4 6 8 10

0.1

0.2

Layer 21

2 4 6 8 10
0.0

0.1

0.2
Layer 22

2 4 6 8 10
0.0

0.1

0.2
Layer 23

2 4 6 8 10
0.0

0.1

0.2

Layer 24

2 4 6 8 10
Localness Degree

0.0

0.1

0.2

At
te

nt
io

n

Layer 25

2 4 6 8 10
Localness Degree

0.0

0.1

0.2

Layer 26

2 4 6 8 10
Localness Degree

0.0

0.1

0.2
Layer 27

2 4 6 8 10
Localness Degree

0.0

0.1

0.2

Layer 28

2 4 6 8 10
Localness Degree

0.05

0.10

0.15

Layer 29

2 4 6 8 10
Localness Degree

0.0

0.1

Layer 30

2 4 6 8 10
Localness Degree

0.05

0.10

0.15
Layer 31

2 4 6 8 10
Localness Degree

0.05

0.10

0.15

Layer 32

Figure 30: Dropping Attention Sink Tokens.

0 4 8 12 16 20 24
Layer Index

0.00

0.25

0.50

0.75

1.00

1.25

1.50

O
ut

lie
r D

eg
re

e

LlaMa3-8B-IMDB

0 4 8 12 16 20 24
Layer Index

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

O
ut

lie
r D

eg
re

e

LlaMa3-8B-AGNews

Review (text) Sentiment (label)

Figure 31: Label words are outliers.

The constructed prompt templates for each dataset are as follows: 1) For IMDB, the template is
“Review: [text]. Sentiment: [label],” where “text” represents the movie review content and “label”
indicates positive/negative sentiment. 2) For AGNews, the template is “Article: [text]. Category:
[label],” where “text” represents the news article content and “label” denotes the category label.
We constructed multiple sets of examples and combined them into a final prompt, which was then
fed into the large language model for prefilling. Subsequently, we measured the outlier degree of
different tokens in the “text” portion and the “label” portion respectively. The results, as illustrated in
Figure 31, show that the outlier degree for “text” is almost zero, while the outlier degree for “labe” is
generally higher and exhibits an increasing trend with deeper layers. This indicates that label words
gradually become semantic anchors as layer depth increases, which aligns with findings in (Wang
et al., 2023).

G NEEDLE IN A HAYSTACK ANALYSIS

We investigate the trends in the distribution of key embeddings of tokens in the “NEEDLE IN A
HAYSTACK” experiment. First, we present the key conclusion: in retrieval heads, the neighborhood
similarity of needle texts is lower than that of haystack texts, indicating that large language models
(LLMs) can perceive textual incoherence and assign a higher outlier degree to incoherent texts,
making them more likely to be retrieved subsequently.

0.0 0.2 0.4 0.6 0.8
Position

0.60

0.65

0.70

0.75

0.80

0.85

0.90

N
ei

gh
bo

rh
oo

d
Si

m
ila

rit
y

Layer 9 Head 6

Needle
Haystack

0.0 0.2 0.4 0.6 0.8
Position

0.60

0.65

0.70

0.75

0.80

0.85

0.90
Layer 21 Head 30

Needle
Haystack

Figure 32: Needle contexts are outliers.

Specifically, retrieval heads (Wu et al., 2024) refer to
specialized attention heads in transformer-based mod-
els that are mechanistically responsible for retrieving
critical information from long-context inputs. These
heads dynamically activate to identify and prioritize
salient contents (i.e., “needles”) within extensive con-
texts (i.e., “haystacks”), enabling the model to main-
tain factual consistency and coherence in long-range
dependencies. Taking Llama2 as an example, we fo-
cus on two retrieval heads identified by prior work: Head 16 in Layer 9 and Head 30 in Layer 21. As
shown in Figure 32, we observe that the neighborhood similarity of needle texts in these retrieval
heads is consistently lower, reinforcing their role in detecting out-of-context as salient information.

H SELECTING KV PAIRS VIA OUTLIER DEGREE

In the main text, we propose using the outlier degree as a criterion to select and retain important
KV pairs, termed SATKV. For a long-text input of length n, we always retain the last k KV pairs to

20

Published as a conference paper at ICLR 2026

ensure query integrity, and select from the preceding n− k KV pairs based on their outlier degree.
It is noteworthy that SATKV eliminates the need for query-based attention computation; instead, it
achieves effective KV compression using keys alone. This implies that SATKV’s compression results
may exhibit universality across diverse queries. Moreover, since κ is typically smaller than both the
budget B and the observation window size, SATKV operates more efficiently.

Table 5: Time Complexity Comparison
LLM H2O SnapKV SATKV

O(1) O(nBd) O(nLobsd) O(nκd)

I PSEUDOCODE

We present the pseudo-code for our ProtoKV as follows, it is worth noting that all loop statements
in this code can be executed in parallel. We analyze the time complexity for it, assuming a key
dimension of d. Computing the κ-Neighborhood Similarity to obtain the SAT requires O(nκd) time.
Constructing the hybrid semantic prototypes has a complexity of O(nd), while assigning prototypes
to each token incurs O(nkd) time. Finally, the observation window selection step takes O(nLobsd)
time. Since k is typically larger than both Lobs and κ in practical experiments, the overall time
complexity can be approximated as O(nkd).

Algorithm 1 Algorithm of ProtoKV

Require: Key vectors {kt}nt=1, chunk size v, hash bits r, buckets u, SAT selected number p,
observation window size Lobs, attention head number H , Key-Value budget size B

Ensure: Compressed KV cache {K̃(h), Ṽ (h)}Hh=1
1: for each head h ∈ [H] do
2: Calculate Θ(h)(i) according to Eq. 5
3: O ← Top-p of Θ(h)(i)
4: for m = 1 to v do
5: Cm ← {k(m−1)⌊n/v⌋+1, ...,km⌊nv⌋}
6: c(PDTs)

m ←
∑

kt∈Cm\O kt

|Cm\O|
7: end for
8: for kj ∈ O do
9: ϕ(kj)←

√
2/r cos(Wkj + b)

10: H(kj)← Binarize(ϕ(kj))
11: end for
12: for s = 1 to u do
13: Bs ← {kj |H(kj) = s}
14: c(SATs)

s ←
∑

kj∈Bs
kj

|Bs|
15: end for
16: M← {c(PDTs)

m }vm=1 ∪ {c(SATs)
s }us=1

17: for each token kt do
18: C(kt)← argmaxc∈M

k⊤
t c

∥kt∥2∥c∥2

19: end for
20: for i = 1 to n do
21: S(h)(i)←

∑Lprompt
m=Lprefix+1 q

⊤
mki

22: Ŝ(h)(i)← 1
|{t|C(kt)=C(ki)}|

∑
C(kt)=C(ki)

S(h)(t)

23: end for
24: I(h) ← Top-(B − Lobs) indices of Ŝ(h)

25: K̃(h) ← {k(h)
i }i∈I(h) ∪ {k(h)

j }
Lprompt
j=Lprefix+1

26: Ṽ (h) ← {v(h)
i }i∈I(h) ∪ {v(h)

j }
Lprompt
j=Lprefix+1

27: end for

21

Published as a conference paper at ICLR 2026

J LONGBENCH DATASET DETAILS

Dataset LongBench is a large-scale benchmark dataset designed for evaluating language models’
capabilities in understanding and generating long texts. It covers various types of tasks including, but
not limited to, Single-Document Question Answering (QA), Multi-Document QA, Summarization,
Few-shot Learning, and Synthetic tasks. The aim is to comprehensively assess models across different
application scenarios.

Here are some specific tasks included in the LongBench dataset along with their characteristics:

NarrativeQA: Focuses on understanding narrative texts, requiring models to read and answer
questions about stories or narratives.

Qasper: Involves asking and answering questions based on academic articles, testing the model’s
ability to understand scholarly literature.

MultiFieldQA-en: Covers QA tasks across multiple fields, enhancing the model’s capability to
understand texts from diverse domains.

HotpotQA, 2WikiMultihopQA, MuSiQue: These tasks emphasize reasoning and information
integration across multiple documents, challenging the model’s ability to find answers in a multi-
document environment.

GovReport, QMSum, MultiNews: Concentrate on extracting key information and generating
summaries from lengthy texts, assessing the model’s summarization capability.

TREC, TriviaQA, SAMSum: Evaluate the model’s learning ability and domain-specific knowledge
acquisition through few-shot examples.

PassageCount, PassageRetrieval-en: Synthetic tasks designed to test the model’s performance
under specific conditions, such as document counting or retrieval accuracy.

LCC, RepoBench-P: Involve code understanding and evaluation of editing similarity, catering to the
unique requirements of programming languages.

Each task comes with its own set of evaluation metrics (e.g., F1 Score, Rouge-L, Accuracy) to
quantify model performance. Moreover, LongBench includes texts from different languages and
domains, ensuring broad applicability and linguistic diversity of the models. This dataset plays a
crucial role in advancing the field of natural language processing, especially in improving models’
abilities to handle long texts. Detailed information is demonstrated in Table 6.

Task Task Type Source Eval metric Avg len Language License
NarrativeQA Single-Doc. QA Literature, Film F1 18,409 EN MIT License
Qasper Single-Doc. QA Science F1 3,619 EN MIT License
MultiFieldQA-en Single-Doc. QA Multi-field F1 4,559 EN MIT License
HotpotQA Multi-Doc. QA Wikipedia F1 9,151 EN MIT License
2WikiMultihopQA Multi-Doc. QA Wikipedia F1 4,887 EN MIT License
MuSiQue Multi-Doc. QA Wikipedia F1 11,214 EN MIT License
GovReport Summarization Government report Rouge-L 8,734 EN MIT License
QMSum Summarization Meeting Rouge-L 10,614 EN MIT License
MultiNews Summarization News Rouge-L 2,113 EN MIT License
TREC Few shot Web question Accuracy 5,177 EN MIT License
TriviaQA Few shot Wikipedia, Web F1 8,209 EN MIT License
SAMSum Few shot Dialogue Rouge-L 6,258 EN MIT License
PassageCount Synthetic Wikipedia Accuracy 11,141 EN MIT License
PassageRetrieval-en Synthetic Wikipedia Accuracy 9,289 EN MIT License
LCC Code Github Edit Sim 1,235 Python/C#/Java MIT License
RepoBench-P Code Github Edit Sim 4,206 Python/Java MIT License

Table 6: An overview of the dataset statistics in LongBench.

K LLM MODEL DETAILS

Meta-Llama-3-8B-Instruct is an 8B-parameter instruction-tuned variant of LLaMA-3, optimized
for dialogue tasks. Using transformer architecture with SFT and RLHF, it features a 128K vocabulary
and GQA for efficiency. The model supports 8K-context (extendable to 128K) and demonstrates
strong performance in text generation and reasoning tasks.

22

Published as a conference paper at ICLR 2026

Mistral-7B-Instruct-v0.2 is a 7.3B-parameter instruction-tuned model by Mistral AI, featuring 32K
context length via optimized RoPE embeddings. With grouped-query attention for efficiency, it
excels in conversational and coding tasks while supporting GGUF quantization. Benchmarks show it
outperforms comparable 7B models, particularly in code generation.

Llama2-7B-chat is Meta’s 7 billion parameter chat-optimized language model, fine-tuned for
dialogue applications using RLHF. The model features a 4K token context window and demonstrates
improved safety and helpfulness compared to its base version. It achieves strong performance in
conversational tasks while maintaining efficient inference through optimized transformer architecture.

Configuration LlaMA-3-8B-Instruct Mistral-7B-Instruct-v0.2 Llama2-7B-chat
Hidden Size 4,096 4,096 4,096
Layers 32 32 32
Q Heads 32 32 32
KV Heads 8 8 32
Attention Heads 32 32 32
Max Position Embeddings 8,192 32,768 4,096
Intermediate Size 14,336 14,336 11,008
Vocabulary Size 128,256 32,000 32,000

Table 7: Configuration of Models.

L DETAILED RESULTS FOR LONGBENCH

Model
Size

Method

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

Avg.NrtvQA
Qasper

MF-en
HotpotQA

2WikiMQA

Musique

GovReport

QMSum

MultiN
ews

TREC
TriviaQA

SAMSum
PCount

PRe Lcc
RB-P

18409 3619 4559 9151 4887 11214 8734 10614 2113 5177 8209 6258 11141 9289 1235 4206 –

L
la

M
A

-3
-8

B
-I

ns
tr

uc
t

– FullKV 25.16 32.29 40.43 45.35 37.04 23.84 28.62 23.34 26.33 75.00 90.23 42.65 5.10 70.0 59.41 55.60 42.34

128

SLM 17.47 8.55 21.31 32.86 26.28 15.54 17.91 20.42 20.16 45.00 73.36 30.78 5.75 68.50 48.38 49.31 31.29
H2O 21.58 12.54 28.57 39.86 28.62 18.88 20.23 22.16 20.14 35.50 86.62 39.19 5.83 69.50 54.46 50.81 34.66

SnapKV 22.35 16.00 31.52 36.82 28.39 19.49 19.06 21.36 20.07 50.00 87.74 38.94 5.75 68.00 57.42 51.84 35.92
ChunkKV 23.08 16.32 30.18 37.25 28.60 19.12 19.49 20.74 20.45 53.00 88.25 39.57 5.81 68.00 58.13 53.73 36.36
Pyramid 21.80 16.65 30.73 38.48 28.80 19.26 19.92 22.06 20.12 66.50 88.95 38.20 5.92 68.00 57.88 51.54 37.16
ProtoKV 22.26 17.05 31.84 39.68 29.28 19.35 19.83 22.31 20.82 62.00 89.35 38.74 5.37 69.00 58.84 54.61 37.52

256

SLM 17.98 11.09 23.85 37.83 29.97 16.02 20.30 20.94 24.56 52.00 79.68 34.82 5.83 69.50 54.84 50.46 34.30
H2O 23.67 16.85 32.70 41.57 31.08 18.91 22.28 22.81 23.69 41.00 90.36 40.19 5.54 69.50 57.52 52.16 36.85

SnapKV 23.32 20.31 37.35 42.70 31.08 20.47 22.63 23.04 23.93 71.00 90.39 39.78 5.50 69.50 60.27 55.62 39.81
ChunkKV 23.49 20.12 37.01 42.95 31.32 20.68 22.94 23.02 23.68 70.00 90.60 39.93 5.65 69.50 60.75 55.56 39.83
Pyramid 23.46 18.76 35.06 42.33 31.56 20.73 23.37 23.11 24.37 72.00 90.43 39.54 5.50 69.50 59.25 54.87 39.61
ProtoKV 23.58 19.92 36.38 43.72 32.29 20.89 23.25 22.98 23.42 70.00 90.81 40.07 5.80 69.50 61.22 55.49 39.95

M
is

tr
al

-7
B

-I
ns

tr
uc

t

– FullKV 25.07 32.92 49.34 39.77 27.32 16.83 32.87 24.24 27.10 70.00 86.57 43.30 2.75 59.25 56.86 50.48 40.29

128

SLM 17.76 13.46 35.11 27.25 22.29 9.80 18.26 19.02 19.16 43.50 74.12 36.50 2.67 27.17 43.65 43.79 28.34
H2O 19.99 20.34 38.60 28.50 21.63 12.88 20.65 22.61 22.08 53.00 81.29 39.75 2.20 75.38 49.54 44.27 33.83

SnapKV 22.14 21.14 42.98 32.96 22.12 14.12 19.19 21.89 21.01 64.00 83.77 39.92 2.51 66.50 51.81 46.51 35.84
ChunkKV 22.13 22.04 43.62 33.52 22.28 14.29 20.38 22.95 21.73 65.25 82.33 40.18 2.63 69.23 51.68 45.23 36.22
Pyramid 22.32 22.52 43.65 33.07 22.45 15.72 20.56 22.52 21.36 64.00 83.84 40.43 2.74 67.95 51.64 46.47 36.29
ProtoKV 23.11 23.70 44.89 36.12 22.88 15.57 21.63 23.75 22.49 67.50 84.89 41.96 3.10 72.30 53.54 47.95 37.84

256

SLM 19.26 17.78 36.82 27.74 22.78 10.53 24.47 19.84 25.48 51.00 76.39 40.24 2.50 31.92 46.15 45.56 31.14
H2O 22.35 23.22 41.76 30.76 22.88 14.03 23.53 22.96 24.53 53.50 83.82 41.08 1.66 78.49 50.77 46.70 36.39

SnapKV 23.08 25.95 48.04 34.79 24.75 14.41 24.14 23.69 24.47 67.50 85.64 41.51 1.95 68.11 53.74 49.31 38.19
ChunkKV 23.60 26.22 48.53 35.16 25.45 14.53 24.41 23.52 24.13 67.50 84.81 41.42 2.60 70.25 53.82 50.64 38.54
Pyramid 23.49 26.39 48.22 35.23 25.51 13.65 24.79 23.52 24.49 68.50 85.43 41.58 2.33 69.07 53.45 48.23 38.37
ProtoKV 23.76 26.02 48.82 34.96 26.32 14.66 24.69 23.62 24.91 70.50 86.02 42.76 2.90 71.40 55.62 51.14 39.25

L
la

m
a2

-7
B

-c
ha

t

– Full 14.82 9.5 22.76 7.35 10.71 9.23 25.63 23.79 26.51 65.00 89.16 34.28 2.50 9.50 68.24 61.83 29.72

128

SLM 10.12 4.94 15.8 5.93 9.07 3.05 18.07 19.30 18.30 42.50 76.97 24.18 2.00 3.11 61.47 44.26 22.93
H2O 13.22 4.55 16.28 6.58 9.01 3.82 20.92 21.86 18.44 40.00 79.40 27.85 1.20 7.38 55.75 53.36 24.09

SnapKV 13.13 5.84 21.62 7.12 9.19 3.90 18.91 21.41 18.21 45.00 84.12 27.85 1.60 7.02 61.48 54.87 25.62
ChunkKV 13.42 5.81 21.80 7.47 9.02 3.86 19.60 21.42 18.69 51.00 84.32 28.72 1.60 7.95 62.80 55.47 25.81
Pyramid 13.78 5.75 22.37 7.62 9.68 3.96 19.24 20.47 18.18 59.00 84.38 29.42 1.50 8.22 62.24 54.51 26.45
ProtoKV 13.97 5.94 22.08 7.76 9.29 4.09 20.85 21.60 19.02 59.50 84.69 29.99 1.50 8.18 63.22 56.97 26.94

256

SLM 12.74 4.94 15.8 5.93 9.12 3.48 25.70 19.31 24.87 54.00 81.67 31.47 2.00 4.38 61.87 52.20 25.60
H2O 14.55 5.95 18.67 6.42 8.67 4.17 23.69 22.07 22.72 56.00 82.66 30.48 2.50 8.89 58.83 56.83 26.45

SnapKV 17.12 6.75 21.52 7.38 10.03 4.12 24.56 22.39 23.07 63.00 84.96 31.54 1.52 7.25 64.94 56.88 28.01
ChunkKV 17.56 7.03 21.29 7.26 10.22 4.47 24.15 22.75 23.15 65.00 85.52 32.17 1.68 8.54 65.30 58.12 28.39
Pyramid 17.84 7.28 20.37 7.14 10.47 4.29 23.59 22.30 22.41 64.00 85.17 32.72 2.67 8.23 65.75 57.50 28.30
ProtoKV 17.29 7.34 20.94 7.58 11.43 4.80 24.73 22.57 22.89 68.00 86.78 34.51 1.68 7.67 66.88 60.34 29.11

Table 1: Performance comparison on the LongBench dataset for full KV cache, extant KV baselines (including
StreamingLLM, H2O, SnapKV, ChunkKV, PyramidKV) and our ProtoKV. Bold indicates the best performance and
text the second performance.

64 96 128 256 512
KV Budget Size

30

35

40

Av
er

ag
e

Sc
or

e

(a) Mistral-7B-Instruct

64 96 128 256 512
KV Budget Size

30.0

32.5

35.0

37.5

40.0

(b) Llama-3-8B-Instruct

StreamingLLM
PyramidKV

SnapKV
H2O

ClusterKV
ProtoKV

Figure 5: Experimental results on LongBench dataset
under different KV cache budget conditions. The final
experimental results are the average score.

5 Experiment393

5.1 Implementation394

Dataset We use LongBench (Bai et al., 2024)395

dataset to assess the performance of ProtoKV on396

tasks involving long-context inputs. The dataset 397

comprises 14 English tasks and 2 code-related 398

tasks. The majority of these tasks have an aver- 399

age length ranging from 5k to 15k tokens, with a 400

total of approximately 3,750 test samples. A de- 401

tailed description of LongBench dataset is provided 402

in the Appendix A. 403

Baseline We benchmark our method against 404

StreamingLLM (Xiao et al., 2024), H2O (Zhang 405

et al., 2024d), SnapKV (Li et al., 2024b), Pyra- 406

midKV (Cai. et al., 2024). We use state-of-the- 407

art open-sourced LLMs include the Llama fam- 408

ily (Llama-2-7B-chat, LlaMA-3-8B-instruct) and 409

Mistral-7B-Instruct-v0.2, which can handle up to 410

32k context length. Detailed description of these 411

three LLMs is provided in the Appendix C. 412

Experiment Setup We maintain identical av- 413

erage KV cache sizes across baseline to ensure 414

6

Figure 33: Performance comparison on the LongBench dataset for full KV cache, extant KV baselines (including
StreamingLLM, H2O, SnapKV, ChunkKV, PyramidKV) and our ProtoKV.

23

Published as a conference paper at ICLR 2026

M RELATED WORKS

KV Cache Compression focuses on retaining critical key-value pairs while permanently discarding
unimportant ones to optimize memory and inference. Two dominant strategies emerge: (1) static
methods with prefill-phase token selection (Ge et al., 2024; Li et al., 2024b; Zeng et al., 2024), and
(2) dynamic approaches updating cached entries via attention-based metrics or structural patterns
during decoding (Xiao et al., 2024; Han et al., 2024; Zhang et al., 2023; Zhao et al., 2024). Recent
advancements address persistent eviction challenges through multi-tier caching and asynchronous
retrieval (Lee et al., 2024; Tang et al., 2024; Zhang et al., 2024a; Hooper et al., 2024a; Liu et al.,
2024a). However, most of these solutions fail to efficiently preserve semantic coherence, leading to
suboptimal selection decisions.

Semantic-Level KV Cache Selection Optimizing KV cache at a semantic level is crucial to maintain-
ing output coherence. (Li et al., 2024b; Liu et al., 2025a) group tokens into semantic chunks, retaining
the most informative segments and discarding redundant ones to enhance long-context inference
efficiency. Recently, clustering-based KV compression approaches (Liu et al., 2024b; Hooper et al.,
2024a) clusters tokens semantically and recalls them at the granularity of semantic clusters.

Discussion: Why Clustering? In our view, clustering-based KV compression can be explained via
graph neural networks (GNNs) Kipf & Welling (2017); Hong et al. (2025); Lin et al. (2025); Yu et al.
(2025); Lin et al. (2023), as the two are closely related. In GNNs, a node’s importance is influenced
by its neighbors, similarly, a KV pair’s importance comes from aggregating its neighboring KVs.
SnapKV defines neighbors as fixed-window tokens and uses max pooling, while clustering-based
methods group tokens by key similarity and apply mean pooling, which is more reasonable. However,
like GNNs, clustering-based methods also face scalability challenges Lin et al. (2022); Hong et al.
(2024); Lin et al. (2024).

KV Cache Budget Allocation LLMs’ hierarchical layers exhibit distinct information extraction
patterns, motivating adaptive memory allocation across layers/heads. Layer-wise strategies (Cai.
et al., 2024; Yang et al., 2024; Huang et al., 2024; Zhang et al., 2024b) prioritize resource distribution
by analyzing attention concentration gradients, where lower layers retain uniform contextual signals
while higher layers preserve semantic focal points. Head-wise approaches (Feng et al., 2024; Zhang
et al., 2024c; Fu et al., 2024b) further enable finer-grained optimization through intra-layer importance
differentiation.

N FURTHER ANALYSIS FOR LOCAL DEVIATION PROPERTY

0 2 4 6
Outlier Degree

0.00

0.02

0.04

0.06

0.08

0.10

Fr
eq

ue
nc

y

GPTOSS-20B on AIME2024

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

Fr
eq

ue
nc

y

0 2 4 6
Outlier Degree

0.00

0.05

0.10

0.15

0.20

Fr
eq

ue
nc

y

LlaMa2-7B on AIME2024

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

Fr
eq

ue
nc

y

0 2 4 6
Outlier Degree

0.00

0.02

0.04

0.06

0.08

0.10

Fr
eq

ue
nc

y

Qwen3-4B on AIME2024

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

Fr
eq

ue
nc

y

0 2 4 6
Outlier Degree

0.000

0.025

0.050

0.075

0.100

0.125

0.150

Fr
eq

ue
nc

y

Starcoder on AIME2024

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

Fr
eq

ue
nc

y

Figure 34: Outlier degree distribution analysis for different models on AIME2024 dataset.

0 2 4 6
Outlier Degree

0.00

0.02

0.04

0.06

0.08

0.10

Fr
eq

ue
nc

y

GPTOSS-20B on HMMT

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

Fr
eq

ue
nc

y

0 2 4 6
Outlier Degree

0.00

0.05

0.10

0.15

0.20

Fr
eq

ue
nc

y

LlaMa2-7B on HMMT

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

Fr
eq

ue
nc

y

0 2 4 6
Outlier Degree

0.00

0.02

0.04

0.06

0.08

0.10

Fr
eq

ue
nc

y

Qwen3-4B on HMMT

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

Fr
eq

ue
nc

y

0 2 4 6
Outlier Degree

0.000

0.025

0.050

0.075

0.100

0.125

0.150

Fr
eq

ue
nc

y

Starcoder on HMMT

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

Fr
eq

ue
nc

y

Figure 35: Outlier degree distribution analysis for different models on HMMT dataset.

0 2 4 6
Outlier Degree

0.00

0.02

0.04

0.06

0.08

0.10

Fr
eq

ue
nc

y

GPTOSS-20B on VCSUM

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

Fr
eq

ue
nc

y

0 2 4 6
Outlier Degree

0.00

0.05

0.10

0.15

0.20

0.25

Fr
eq

ue
nc

y

 LlaMa2-7B on VCSUM

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

Fr
eq

ue
nc

y

0 2 4 6
Outlier Degree

0.00

0.02

0.04

0.06

0.08

0.10

Fr
eq

ue
nc

y

Qwen3-4B on VCSUM

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

Fr
eq

ue
nc

y

0 2 4 6
Outlier Degree

0.000

0.025

0.050

0.075

0.100

0.125

0.150

Fr
eq

ue
nc

y

Starcoder on VCSUM

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

Fr
eq

ue
nc

y

Figure 36: Outlier degree distribution analysis for different models on VCSUM dataset.

24

Published as a conference paper at ICLR 2026

1 6 11 16 21
Layer

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

Pr
op

or
tio

n
of

 S
AT

s

GPTOSS-20B on VCSUM
Threshold = 1.5
Threshold = 1.75
Threshold = 2

1 6 11 16 21 26 31
Layer

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

Pr
op

or
tio

n
of

 S
AT

s

LlaMa2-7B on VCSUM
Threshold = 1.5
Threshold = 1.75
Threshold = 2

1 6 11 16 21 26 31 36
Layer

0.0%

10.0%

20.0%

30.0%

40.0%

Pr
op

or
tio

n
of

 S
AT

s

Qwen3-4B on VCSUM
Threshold = 1.5
Threshold = 1.75
Threshold = 2

1 6 11 16 21 26 31
Layer

0.0%

5.0%

10.0%

15.0%

20.0%

Pr
op

or
tio

n
of

 S
AT

s

Starcoder on VCSUM
Threshold = 1.5
Threshold = 1.75
Threshold = 2

Figure 37: Layer-wise distribution analysis for SATs across different models using VCSUM dataset.

In this section, we further validate the widespread presence of the Local Deviation Property across
diverse large language model architectures and various types of datasets. To this end, we examine
representative models from three major attention architecture families: the original multi-head
attention (MHA), as represented by Llama2-7B; grouped-query attention (GQA), represented
by the recent Qwen3-4B; and multi-query attention (MQA), which is less commonly used today
and for which we employ the earlier model Starcoder. Additionally, we test GPTOSS-20B, an
open-source mixture-of-experts model with flash-attention-with-sink implements.

In terms of datasets, alongside LongBench used in the main text, we conduct key distribution anal-
yses on the AIME-2024 and HMMT datasets, both of which are mathematical problem datasets.
For instance, AIME comprises challenging problems from the American Invitational
Mathematics Examination, characterized by rigorous, logically sound solutions with minimal
noise. Each problem is formatted as “Problem: [...], Solution: [...]”, and then fed into to the large
language model for prefilling. After that, we extract the key vectors head-wise, and analyze the
outlier degree distribution of them.

Our experimental results demonstrate that:

• The Local Deviation Property persists across all tested attention architectures, including
the mixture-of-experts model. This is reflected in the presence of tokens with high outlier
degrees when processing various types of long-context data, as visualized in Figures 34-36.

• The phenomenon is observed consistently across both long-context benchmarks
(LongBench and RULER) and mathematical reasoning datasets. Moreover, the density
distribution of outlier degrees appears to be model-dependent rather than dataset-specific.

• We also provide layer-wise distributions of SATs in Figure 37. Specifically, we quantify
the number of outlier keys per KV head within each layer and visualize their number
distributions using box plots, with SAT detection thresholds set at 1.5, 1.75, and 2. The
results indicate that th‘e majority of KV heads contain outlier key vectors (i.e., SATs), which
aligns fully with the conclusions presented in the main text.

O DYNAMIC DECODING DESIGN

Table 8: Performance (%) for dynamic de-
coding setting with Llama3-8B.

Benchmark Method KV Budget

1024 2048

MATH

FullKV 82.38 82.38
H2O 71.64 78.15

SnapKV 74.43 80.50
ChunkKV 76.69 80.42
ProtoKV 79.67 81.39

AIME

FullKV 49.79 49.79
H2O 19.51 29.87

SnapKV 17.73 32.76
ChunkKV 18.32 34.98
ProtoKV 21.05 38.26

Different from focusing on the prefilling stage, Dynamic
Decoding Design focuses on the management of KV
cache during the reasoning stage of LLM. Specifically,
we allocate memory for two components: a cache of bud-
get size Bbudget to store retained KV tokens, and a buffer
of size Bbuffer for newly generated text tokens. The total
memory requirement is thus Btotal = Bbudget +Bbuffer. Af-
ter the model generates each fixed-length text segment in
the buffer, R-KV performs KV cache compression. At
the end of each text segment, the last α tokens are al-
ways retained in the cache as observation tokens. Next,
we concatenate the existing Bbudget tokens in the cache
with the first Bbuffer − α tokens in the buffer, resulting in
n = Bbudget +Bbuffer − α candidate KV tokens. Each can-
didate is assigned a selection score, and we select the top
k = Bbudget−α tokens to fit in the rest of the cache budget,
in addition to the α observation tokens. This process compresses the KV cache while preserving
critical context, enabling efficient memory utilization during autoregressive decoding.

25

Published as a conference paper at ICLR 2026

We evaluate the performance of different KV Cache compression algorithm on the MATH and AMIE
dataset, both of which are mathematical problem datasets. The results are presented in Table 8. As
shown, our method achieves consistent improvements over existing compression techniques. For
instance, under a KV budget of 1024, ProtoKV outperforms H2O by 8.03%, SnapKV by 5.24%,
and ChunkKV by 2.98%. When the KV budget increases to 2048, ProtoKV still maintains a clear
advantage. On the more challenging AIME benchmark, ProtoKV demonstrates even more significant
advantages. With a 1024 KV budget, it surpasses H2O, SnapKV, and ChunkKV by 7.89%, 18.73%,
and 14.90% respectively. When the KV budget expands to 2048, the performance gap further widens,
with ProtoKV achieving improvements of 8.39% over H2O, 5.50% over SnapKV, and 3.28% over
ChunkKV. These observations indicate that: ProtoKV remains effective not only during the prefilling
stage but also under dynamic decoding scenarios.

P ADDITIONAL EXPERIMENTAL RESULTS ON RULER

Context

Method 16K 32K

FullKV 85.7 79.9
H2O 27.4 24.6
SnapKV 64.0 53.4
ChunkKV 65.9 54.7
PyramidKV 64.2 53.9
ProtoKV 68.3 57.2

Table 9: Performance (%) on Ruler for
Llama3-8B with budget size 512.

In the main text, we evaluated various KV compression meth-
ods using the RULER benchmark with a 4K context length.
To further assess the scalability of these methods under more
demanding conditions, we extend the evaluation to longer con-
texts of 16K and 32K. We report the performance of Llama3-
8B with a budget size of 512 under different KV compression
approaches. As detailed in Table 9, our proposed ProtoKV
achieves superior performance, attaining 68.3% and 57.2% on
the 16K and 32K contexts, respectively. This represents a sub-
stantial margin over competing methods. Notably, ProtoKV
outperforms H2O remarkably under the 16K and 32K settings.
When compared to other strong baselines, ProtoKV maintains
consistent and non-trivial improvements: 6.7-7.1% over SnapKV, 3.6-4.6% over ChunkKV, and
6.1-6.4% over PyramidKV. While the performance gain of ProtoKV over other advanced methods
was marginal in the 4K context setting discussed in the main text, these new results demonstrate
that its advantage becomes pronounced and increasingly significant as the context length extends,
highlighting its superior scalability and effectiveness in long-context scenarios.

Q CONFIDENCE INTERVALS ANALYSIS WITH TEMPERATURE SAMPLING

To more rigorously validate that the performance improvements of our method are robust and not
merely attributable to the inherent stochasticity of large language models, we for the first time conduct
a significance analysis of different KV cache algorithms. Specifically, we configure the model to
perform sampling during the decoding phase, with a temperature of 0.6 and a top-k value of 20 (i.e.,
sampling is constrained to the top 20 tokens in the vocabulary at each generation step). We perform
five decoding runs on each sub-task dataset in LongBench and report the mean and standard deviation
for LlaMa3-8B.

Size 128 Size 1024
KV Budget Size

18

20

22

24

26

28

30

32

Sc
or

e
(%

)

(a) Single Document QA
ProtoKV - (Size 128)
ProtoKV - (Size 1024)
H2O
SnapKV
ChunkKV
Pyramid
ProtoKV

Size 128 Size 1024
KV Budget Size

24

26

28

30

32

34

36

38

Sc
or

e
(%

)

(b) Multi Document QA

Size 128 Size 1024
KV Budget Size

16

18

20

22

24

26

Sc
or

e
(%

)

(c) Summarization

Size 128 Size 1024
KV Budget Size

50

55

60

65

70

Sc
or

e
(%

)

(d) Few-Shot Learning

Size 128 Size 1024
KV Budget Size

36

37

38

39

40

Sc
or

e
(%

)

(e) Synthetic Tasks

Size 128 Size 1024
KV Budget Size

50

52

54

56

58

60

62

Sc
or

e
(%

)

(f) Code Generation

Figure 38: Results for Temperature Sampling.

26

Published as a conference paper at ICLR 2026

We present the experimental results in Figure 38. The analysis reveals three key findings: First,
our approach consistently achieves state-of-the-art performance across various subtask benchmarks.
Second, in specific domains such as Summarization, the lower confidence bound of our method
exceeds the upper bounds of competing baselines, demonstrating that the observed improvements are
statistically significant and not merely artifacts of LLM stochasticity. Third, our method exhibits the
smallest variance in performance scores, indicating enhanced robustness and more reliable model
outputs compared to existing techniques.

R COULD PROTOKV ACHIEVES FULLKV’S LEVEL OF PRECISION?

Table 10: Average score on Longbench for Llama-3B.

10%
Budget

20%
Budget

30%
Budget

FullKV 42.34 42.34 42.34
ProtoKV 41.66 42.27 42.49
Improvement -1.61% -0.16% +0.37%

In our preliminary experiments, we observed a
discernible performance gap between our pro-
posed ProtoKV and the FullKV baseline. To
investigate whether ProtoKV can attain the pre-
cision level of FullKV under an increased bud-
get allocation, we conducted additional experi-
ments on LongBench using LlaMa3-8B. Specif-
ically, we adhered to the experimental protocol
of ChunkKV and evaluated performance using
budget percentages relative to the total context size. As illustrated in Table 10, given LongBench’s
average input length of approximately 10K tokens, a 20% budget—corresponding to roughly 2048 to-
kens, which suffices to nearly match FullKV’s performance. Moreover, with a 30% budget, ProtoKV
slightly surpasses FullKV, which we attribute to the selective eviction of certain KV cache entries
that helps the model focus more effectively on task-relevant text segments while reducing attention to
less relevant information.

S EXPERIMENTS FOR MORE RECENT LLMS

In addition to the three large language models discussed in the main text, we have extended our
evaluation to include two more recent and advanced models: Phi-3.5-mini-instruct and Mistral-7B-
Instruct-v0.3.

Phi-3.5-mini is a lightweight, state-of-the-art open model constructed from the dataset used for Phi-3,
which incorporates synthetic data and filtered publicly available web data, with a strong emphasis on
high-quality, reasoning-intensive information. As a member of the Phi-3 model family, it supports
an extensive context length of 128K tokens. The model has undergone a rigorous enhancement
process that combines supervised fine-tuning, proximal policy optimization, and direct preference
optimization to ensure precise instruction adherence and robust safety measures.

Mistral-7B-Instruct-v0.3 is a 7-billion parameter instruction-tuned language model developed by
Mistral AI. It utilizes advanced architectural features such as Grouped-Query Attention and Sliding-
Window Attention, which enhance computational efficiency and performance across various tasks
including question answering, text generation, summarization, and logical reasoning. The model
is fully open-source and designed for efficient deployment on consumer-grade hardware, making it
suitable for both research and practical applications.

In Table 11, we present the performance of these two models on the LongBench benchmark using
different KV cache compression strategies. In terms of average results, the ProtoKV method achieves
the most significant performance improvement on both models. For Mistral-7B-Instruct-v0.3, Pro-
toKV attains an average score of 43.56, which represents a 1.6% improvement over the second-best
compression method, ChunkKV (42.89). On the Phi-3.5-mini model, ProtoKV achieves an average
score of 18.49, outperforming the second-best SnapKV method (17.80) by 3.9%. These results
indicate that ProtoKV delivers consistent and significant performance improvements across different
recent models.

27

Published as a conference paper at ICLR 2026

Model
Size

Method

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

Avg.
NrtvQA

Qasper
MF-en

HotpotQA

2WikiMQA

Musique

GovReport

QMSum

MultiN
ews

TREC
TriviaQA

SAMSum
PCount

PRe Lcc
RB-P

18409 3619 4559 9151 4887 11214 8734 10614 2113 5177 8209 6258 11141 9289 1235 4206 –

Ph
i-

3.
5-

m
in

i
-i

ns
tr

uc
t

– FullKV 22.17 22.29 37.63 25.19 27.59 15.21 32.41 21.96 23.39 67.50 86.34 15.32 3.65 79.79 34.89 41.53 37.43

1024

SLM 3.52 11.69 10.64 8.58 7.29 3.88 26.75 11.00 14.68 48.84 4.26 6.94 1.67 5.12 17.61 15.51 12.38
H2O 5.63 11.77 13.41 13.92 10.00 4.82 25.35 15.54 15.44 28.75 15.67 19.24 2.54 37.58 18.62 14.67 15.81

SnapKV 5.67 16.65 17.73 18.56 15.24 7.56 29.22 16.06 15.42 48.18 20.95 20.11 2.52 16.00 17.88 17.04 17.80
ChunkKV 6.18 16.32 16.18 16.25 14.60 7.12 27.49 17.74 16.45 48.73 21.25 19.57 3.21 15.00 18.99 16.73 17.61
Pyramid 6.00 16.38 16.30 16.79 13.81 7.13 27.40 17.00 16.18 49.29 21.86 19.20 2.83 15.50 18.16 16.28 17.51
ProtoKV 6.26 17.05 16.95 17.87 16.28 8.35 28.91 18.32 16.92 49.37 22.05 20.74 3.37 16.00 19.84 17.61 18.49

M
is

tr
al

-7
B

-I
ns

tr
uc

t-
v0

.3

– FullKV 25.56 40.03 51.40 45.28 36.39 24.53 33.85 24.51 27.16 73.00 91.33 50.65 6.50 93.08 62.13 62.70 46.76

1024

SLM 18.99 24.40 38.23 32.57 20.04 14.73 29.02 19.35 26.22 69.50 68.44 18.98 6.00 8.83 38.03 34.58 29.24
H2O 23.11 32.99 48.33 42.66 34.23 22.19 28.09 22.88 25.57 48.00 88.95 46.81 3.00 64.50 58.25 55.58 42.08

SnapKV 23.89 36.28 49.38 43.63 35.28 22.95 28.59 23.34 25.20 72.50 88.75 47.01 4.50 64.50 58.81 58.39 42.69
ChunkKV 23.51 36.11 49.49 44.89 35.49 23.45 29.32 22.86 25.47 72.00 88.76 47.54 4.50 64.50 59.84 58.45 42.89
Pyramid 23.43 36.04 49.67 44.81 35.67 23.12 29.38 22.99 26.13 72.00 88.91 47.18 4.50 64.50 58.98 58.12 42.84
ProtoKV 23.58 36.50 50.63 45.13 36.18 24.34 30.31 23.82 26.90 73.00 89.75 48.32 5.00 64.50 59.69 59.36 43.56

Table 11: Performance comparison on the LongBench dataset for two recent LLMs.

28

	Introduction
	Preliminary
	Problem Formulation
	KV Cache Retention
	Semantic-Level Compression

	Local Deviation Property Analysis
	Property Analysis for Semantic-anchor Tokens
	Further Exploration

	Methodology
	Motivation
	Hybrid Semantic Prototype Construction
	KV Cache Retention via Prototype-Guided Attention
	Comparison with Existing KV Cache Compression Strategies

	Experiment
	Implementation
	Result Analysis
	Real-world and Synthetic Benchmarks
	Needle In A Haystack

	Further Discussion

	Conclusion
	Use of LLMs
	Outlier Property Visualization and Analysis
	Clustering Property Analysis
	Key Embedding Distribution Pattern Analysis
	SATs are salient for long-context inference
	Alignment with Prior Works
	Needle In A Haystack Analysis
	Selecting KV pairs via Outlier degree
	Pseudocode
	LongBench Dataset Details
	LLM Model Details
	Detailed results for LongBench
	Related Works
	Further Analysis for Local Deviation Property
	Dynamic Decoding Design
	Additional Experimental Results on RULER
	Confidence Intervals Analysis with Temperature Sampling
	Could ProtoKV achieves FullKV’s level of precision?
	Experiments for more recent LLMs

