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ABSTRACT

In this paper, we propose a novel node-level graph diffusion method with low-rank
feature learning for few-shot node classification (FSNC), termed Low-Rank Few-
Shot Graph Diffusion Model or LR-FGDM. LR-FGDM first employs a novel Few-
Shot Graph Diffusion Model (FGDM) as a node-level graph generative method to
generate an augmented graph with an enlarged support set, then performs low-
rank transductive classification to obtain the few-shot node classification results.
Our graph diffusion model, FGDM, comprises two components, the Hierarchical
Graph Autoencoder (HGAE) with an efficient hierarchical edge reconstruction
method and a new prototypical regularization, and the Latent Diffusion Model
(LDM). The low-rank regularization is robust to the noise inherently introduced by
the diffusion model and empirically inspired by the Low Frequency Property. We
also provide a strong theoretical guarantee justifying the low-rank regularization
for the transductive classification in few-shot learning. Extensive experimental
results evidence the effectiveness of LR-FGDM for few-shot node classification,
which outperforms the current state-of-the-art. The code of the LR-FGDM is
available at https://anonymous.4open.science/r/LR-FGDM/.

1 INTRODUCTION

Graph Neural Networks (GNNs) (Kipf & Welling, 2016b; Hamilton et al., 2017) are widely used
for semi-supervised node classification (Velickovi¢ et al., 2018), but their effectiveness relies on am-
ple labeled data, which is often costly or impractical to obtain. This challenge motivates few-shot
node classification (FSNC), where only a few labeled nodes per class are available. Most FSNC
methods (Zhou et al., 2019; Ding et al., 2020; Wang et al., 2022; Huang & Zitnik, 2020; Qian et al.,
2021; Lan et al., 2020; Liu et al., 2021b) follow a meta-learning framework (Finn et al., 2017; Snell
et al., 2017) to generalize across tasks. More recent approaches (Tan et al., 2022; Huang & Zitnik,
2020) leverage self-supervised Graph Contrastive Learning (GCL) (Mo et al., 2022; Jin et al., 2021)
to train simple classifiers from pre-trained embeddings, achieving superior performance despite us-
ing only unlabeled data. However, all existing methods remain constrained by the limited support
set size. Although techniques like mix-up (Liu et al., 2025b) and random perturbation (Wu et al.,
2022) offer marginal gains, the potential of generative models to synthesize support nodes remains
underexplored. Building on the success of diffusion models in vision, recent works have extended
them to synthetic graph generation. Methods like EDP-GNN (Niu et al., 2020) and its successors (Jo
et al., 2022; Haefeli et al., 2022; Vignac et al., 2023; Limnios et al., 2023) adapt diffusion models to
capture both discrete and continuous graph properties, generating realistic structures that align well
with real-world networks. However, these approaches focus on graph-level generation and do not
support structured node- or edge-level synthesis. Node-level graph augmentation typically relies on
GANSs (Jia et al., 2023; Wu et al., 2023; Wang et al., 2018; Liang et al., 2020; Yang et al., 2019)
to generate minority class nodes in imbalanced graphs, despite known issues with GAN training
instability and poor distributional matching (Dhariwal & Nichol, 2021).

In this work, we propose a novel node-level graph diffusion method with low-rank feature learning
for FSNC, termed Low-Rank Few-Shot Graph Diffusion Model or LR-FGDM. LR-FGDM employs
a novel Few-Shot Graph Diffusion Model (FGDM) to generate an augmented graph with an enlarged
support set. The FGDM in LR-FGDM consists of two components, including the Hierarchical Graph
Autoencoder (HGAE) with an efficient hierarchical edge reconstruction method and the Latent Dif-
fusion Model (LDM). The HGAE learns compact latent node features for LDM by incorporating


https://anonymous.4open.science/r/LR-FGDM/

Under review as a conference paper at ICLR 2026

a prototypical regularization to encourage semantic structure in the latent space. The hierarchical
edge reconstruction method enables efficient reconstruction of the edges connecting to a node from
the latent space in a hierarchical manner to avoid the quadratic complexity in edge reconstruction
of the regular GAE (Kipf & Welling, 2016a). Given a FSNC task, the FGDM first generates the
synthetic graph structure, consisting of the synthetic support nodes and the edges connecting to the
original graph. The synthetic graph structure is then incorporated into the original graph, forming
an augmented graph with an enlarged support set consisting of the original support nodes and the
synthetic support nodes.

Although prior methods enlarge the support set via random
perturbations (Gao et al., 2023b) or mix-up (Liu et al., 2025b),
they fail to generate faithful graph structures, often assigning
edges to synthetic nodes by reusing neighbors of real nodes.
In contrast, our FGDM jointly encodes nodes and edges into a
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and Frechet Edge Distance (FED) in Section F.8, FGDM pro-
duces more realistic synthetic nodes and edges than existing
augmentation methods. Let Vg, and Vg, denote the set of syn-
thetic support nodes and the original support set. As shown in
Figure 1, while adding synthetic support nodes with FGDM _ j4.q. and denote the
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et al., 202.4; Azizi et al., 2023; He et al., 2022), including ran- - while COLA (FGDM) is trained
domness in the forward process (Ho et al., 2020) and errors in
class conditioning (Fu et al., 2024). To this end, we propose a
low-rank learning method inspired by the widely-studied Low Frequency Property (LFP) (Rahaman
et al., 2019; Arora et al., 2019; Cao et al., 2021; Choraria et al., 2022; Wang et al., 2024; 2025),
which suggests that the projection of the ground truth class labels mostly concentrates on the top
eigenvectors of the kernel gram matrix of the model, to be detailed in Section 3.4. Motivated by
LFP, the truncated nuclear norm (TNN) is added as a low-rank regularization term to the training
loss function of the transductive few-shot node classifier on the augmented graph. It is observed
from Figure 1 that the COLA trained with the low-rank regularization performs much better than
the regular COLA when the synthetic nodes added in the augmented graph are more than 3|Vyp|.

Figure 1: 5-way 5-shot code
classification accuracies on Cora-
Full trained with different num-
bers of synthetic support nodes

without the regularization.

Existing graph few-shot learning methods (Huang & Zitnik, 2020; Wang et al., 2023; Ma et al.,
2025; Zhao et al., 2025) show that training graph encoders without label supervision yields better
generalization to novel classes. However, the diffusion-based generator DoG (Wang et al., 2025)
relies on class labels as conditioning signals during both training and generation, which is problem-
atic in few-shot settings where test-time labels are disjoint from training. Although semi-supervised
K-means (Basu et al., 2002; Bair, 2013) can be applied on the node attributes to obtain pseudo
labels for conditioning, as illustrated in Figure 2 (a), it often leads to semantic drift and unreliable
conditioning due to entangled base and novel class semantics. In contrast, our LR-FGDM condi-
tions the diffusion model on cluster prototypes jointly learned with the prototypical regularization,
as illustrated in Figure 2 (b), rather than pseudo labels, to avoid this issue. As another significant
difference from DoG (Wang et al., 2025), a new prototypical regularization is introduced to HGAE
to improve cluster separability in the latent space, making the prototype-based conditioning seman-
tically aligned and robust.

Contributions. The contributions of this paper are presented as follows.

First, we propose the Low-Rank Few-Shot Graph Diffusion Model (LR-FGDM), a novel generative
framework for FSNC tasks by synthesizing labeled support nodes and the associated edges through
a node-level graph diffusion model, Few-Shot Graph Diffusion Model (FGDM). The FGDM fea-
tures a new Hierarchical Graph Autoencoder (HGAE) that incorporates prototypical regularization
to structure the latent space semantically, and our LDM uses the prototypes instead of class labels
such as those in DoG (Wang et al., 2025) as the conditioning features. To mitigate the inherent
inefficiency of the quadratic complexity in edge reconstruction over the entire graph, FGDM also
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introduces a hierarchical edge reconstruction method, which hierarchically reconstructs the edges
connecting to each synthetic support node. While prior methods (Liu et al., 2025b; Wu et al., 2022)
have shown promising results in enlarging the support set for FSNC, Table 7 in Section F.2 shows
that LR-FGDM substantially outperforms existing support set augmentation approaches. Moreover,
we introduce the Frechet Node Distance (FND) and the Frechet Edge Distance (FED) to validate the
faithfulness of the synthetic support nodes and the associated edges in Section F.8 of the appendix.

Second, we introduce a low-rank regularization method in LR-FGDM for the transductive node
classifier trained on the augmented graph, which is empirically motivated by the widely studied
Low Frequency Property (LFP) in deep learning (Rahaman et al., 2019; Arora et al., 2019; Cao
et al., 2021; Choraria et al., 2022; Wang et al., 2024; 2025) and theoretically justified by a novel
generalization bound for the transductive few-shot node classifier in Theorem 3.1. The low-rank
regularization promotes lower kernel complexity (KC) thus leads to a lower generalization bound for
the test loss of the transductive classifier. Section F.3 demonstrates the much lower KC and the upper
bound for the test loss of LR-FGDM compared to the baseline without low-rank regularization.
Furthermore, as shown in Table 1 in Section 4.2, Table 9 in Section F.4, and Table 5 in Section F.1
of the appendix, LR-FGDM consistently outperforms state-of-the-art FSNC methods across multiple
graph benchmarks.

2 RELATED WORKS

2.1 FEW-SHOT NODE CLASSIFICATION (FSNC)

While GNNs for node classification are commonly trained in a semi-supervised fashion (Kipf &
Welling, 2016b), many efforts (Sun et al., 2020; Hamilton et al., 2017; Veli¢kovi¢ et al., 2018) aim
to reduce label reliance; however, they struggle with unseen classes at inference, motivating the
study of FSNC. Most previous FSNC methods (Zhou et al., 2019; Finn et al., 2017; Yao et al., 2020;
Snell et al., 2017; Huang & Zitnik, 2020; Wang et al., 2022; Wu et al., 2024; Zhang et al., 2025a)
adopt a meta-learning framework by training the FSNC model through a series of meta tasks. More
recently, several works have incorporated contrastive learning into meta-learning to enhance task-
specific representation learning. (Liu et al., 2021a) and CPLAE (Gao et al., 2021) apply supervised
contrastive losses within meta-tasks using augmented views, while PsCo (Jang et al., 2023) and
MetaContrastive (Ni et al., 2021) introduce the momentum encoder for unsupervised contrastive
meta-learning. COLA (Huang & Zitnik, 2020) contrasts support and query prototypes to promote
class-level consistency, and COSMIC (Wang et al., 2023) leverages multi-view contrastive regular-
ization between structural and feature-based representations.

2.2  GRAPH DIFFUSION MODELS AND GENERATIVE DATA AUGMENTATION ON GRAPH

Score-based diffusion models (Song et al., 2021b) have achieved state-of-the-art performance in di-
verse generative tasks (Ho et al., 2020; Song & Ermon, 2019; Gao et al., 2023a; Rombach et al.,
2022; Baranchuk et al., 2022; Song et al., 2021c;a; Song & Ermon, 2020; Rombach et al., 2022).
Graph diffusion models have emerged for synthetic graph generation (Niu et al., 2020; Haefeli et al.,
2022; Jo et al., 2022; Zhou et al., 2024), with early works (Jo et al., 2022; Haefeli et al., 2022; Vi-
gnac et al., 2023) designing discrete diffusion processes over adjacency matrices. SaGess (Limnios
et al., 2023) performs conditional generation of graphs inspired by latent diffusion models (LDMs).
However, these models primarily target graph-level generation, limiting their utility in node-level
tasks such as FSNC. To enhance the performance of GNNs, node-level data augmentation has been
applied to structure (Zhao et al., 2021b; Rong et al., 2020; Feng et al., 2022; Lai et al., 2024), fea-
tures (You et al., 2020; Kong et al., 2022; Azad & Fang, 2024), and labels (Han et al., 2022; Wang
et al., 2021; Verma et al., 2021; Zhao et al., 2024b). In FSNC, recent methods enhance the support
set by perturbing node features and leveraging pseudo-labeled queries (Wu et al., 2022), or by using
LLM-based prompting to generate synthetic support nodes for text-attributed graphs (Zhang et al.,
2025b). Generative data augmentation has been used to enhance GNN performance by generating
synthetic nodes and edges to address class imbalance and enrich minority class features and connec-
tivity (Zhao et al., 2021b; Zhou et al., 2024; Qu et al., 2021; Zhao et al., 2021a; Hsu et al., 2024;
Gao et al., 2023b; Hsu et al., 2023). However, these approaches often rely on GANs (Jia et al., 2023;
Wu et al., 2023; Wang et al., 2018; Liang et al., 2020; Yang et al., 2019), which suffer from training
instability and poor alignment with real data distributions (Dhariwal & Nichol, 2021). To the best
of our knowledge, our proposed FGDM is among the first to synthesize synthetic graph structures
via diffusion models in a principled manner for FSNC.
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3 FORMULATION

We aim to boost the performance of existing FSNC methods by augmenting the support set in a
few-shot task, thereby alleviating the data scarcity in each novel class.

The Pipeline of Integrating LR-FGDM Clustering Pseudo Label
with an Existing Few-Shot Learning J-Amibmes 111 (ode Aurbutes]
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followed by training a low-rank transductive classifier on the augmented support set. Figure 2 (b)
illustrates the training of the LR-FGDM, and Figure 4 (b) in the appendix illustrates the generation
of the synthetic support nodes by LR-FGDM. LR-FGDM improves few-shot classification by ex-
panding the support set, leveraging the benefits of stronger supervision and reduced overfitting as
shown in prior augmentation studies (Wu et al., 2022; Liu et al., 2025b).

HGAE LDM LDM HGAE Reconstructed | |
Encoder Forward Reverse Decoder Edges 1

Our LR-FGDM contains two components, which are the generation of an augmented graph with
synthetic support data by FGDM, and few-shot learning with low-rank transductive classification on
the augmented graph. Our FGDM features a novel Hierarchical Graph Autoencoder (HGAE) with an
efficient hierarchical edge reconstruction method and a new prototypical regularization, detailed in
Section 3.2. Then, the generation of an augmented graph with the synthetic support nodes and edges
is explained in Section 3.3. The low-rank transductive linear classifier for few-shot classification
with theoretical guarantee is detailed in Section 3.4.

3.1 PRELIMINARIES

Few-Shot Node Classification (FSNC). FSNC assumes disjoint label sets across splits, denoted as
Cirains Cval, and Cieqy (Huang & Zitnik, 2020; Luo et al., 2024; Wang et al., 2023; Zhao et al., 2024a).
An n-way task requires the model to classify nodes into n distinct classes randomly sampled from
Crest» With only k labeled instances per class provided in the support set. Each task consists of a
labeled support set of n x k nodes and an unlabeled query set. The support set guides the model to
learn a transductive classifier to predict the labels of nodes in the query set.

Attributed Graph and Notations. An attributed graph with N nodes is denoted by G = (V, £, X).
Here, V = {vy,vq,...,un} represents the nodes, and £ C V x V represents the edges. Node
attributes are given by X € RV*P where each row X; € R” corresponds to the attributes of node
v;. The adjacency matrix A € {0, 1}?*¥ of graph G defines connections. Each row A; represents
the connections of node v;. The neighborhood N (i) = {j | A;; = 1} includes node v; itself and
all nodes connected to v;. The notation [ N] denotes all natural numbers from 1 to N inclusive. [A],
stands for the i-th row of a matrix A. ||-||,, denotes the p-norm of a vector or a matrix.

3.2 FEW-SHOT GRAPH DIFFUSION MODEL (FGDM)

Hierarchical Graph Autoencoder (HGAE) with Prototypical Regularization. To encode a node
v;, we first generate a latent feature of the node attribute X; as f(X;), where f(-) is a Multi-Layer
Perceptron (MLP) layer. To incorporate the information from the edges connected to v;, we add
positional embeddings (Ma et al., 2021; You et al., 2019) to the node attributes of v;’s neighbors.
For each neighbor j € N(i), we modify the node attributes as X', = X; + pos(j), where pos(-) is
a function converting the position index into an embedding vector (Vaswani et al., 2017). We apply
two Graph Attention Network (GAT) (Velickovic et al., 2018) layers to aggregate the information
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in {X; | 5 € N(i)} into a single latent feature Z;. Next, we concatenate Z; with f(X;) to obtain

the latent feature of node v; by Z; = f'(Z,| f(X;)), where f’ is another MLP layer encoding the
concatenated features to the latent space of LDM with lower dimension D’. After encoding a node

v; in the graph to a latent feature Z;, the decoder of the HGAE reconstructs the node attribute )AQ by

three consecutive MLP layers and its associated edges f&z by the hierarchical edge reconstruction
method to be introduced later.

Prototypical Regularization. Existing FSNC methods (Snell et al., 2017; Laenen & Bertinetto, 2021;
Ding et al., 2020; Lin et al., 2022) show that prototypical learning improves node embeddings by
promoting intra-class compactness and inter-class separability. To align latent features of seman-
tically similar nodes, we add a prototypical regularization to the HGAE loss, encouraging nodes
within the same cluster to approach shared prototypes. The cluster assignments are obtained via
semi-supervised K-means (Basu et al., 2002; Bair, 2013) utilizing labeled nodes to guide cluster-
ing while incorporating unlabeled nodes for better generalization to unseen classes. Let p. € R? '
represent the prototype of cluster ¢ € [K], where K is the number of prototypes. The prototypical

2

, where p(;) = —Wﬂl(i)l Zjev,,(,;) Z;.
(i) is the cluster index of node v; and V, ;) is the set of nodes in the cluster 7(¢). Unlike prior
works (Ding et al., 2020; Lin et al., 2022) that use prototypes for query classification in FSNC, we
employ prototypes as a regularization to learn semantically coherent latent features for improved
conditional sampling in few-shot generation.

regularization loss is defined as Lyror0 = Ef\; ||ZZ — p,r(i)‘

To address the quadratic complexity inherent in conventional GAEs (Zhai et al., 2018; Kipf &
Welling, 2016a), we introduce a prototype-guided hierarchical edge reconstruction framework de-
signed to promote efficient edge decoding. The edge reconstruction is conducted hierarchically
based on clusters induced by learned prototype representations. We define an inter-cluster neighbor
map C € {0, 1}N XK where C;j, = 1 indicates that node v; connects to at least one node within the
cluster represented by prototype k. Additionally, an intra-cluster neighbor map M € {0, 1}V xKxM
is constructed, where M;,,, = 1 signifies that node v; is connected to the m-th node within clus-
ter k, with M denoting the maximum number of nodes in any cluster. In contrast to the Bi-Level
Neighborhood Decoder (BLND) employed in DoG (Wang et al., 2025) using balanced K -means
applied to node attributes, our method leverages prototype clusters learned jointly with the encoder,
because nodes in the same prototype cluster have similar latent features, thus tend to connect with
each other. The structure of the network used for the hierarchical edge reconstruction in the HGAE
with prototypical regularization is illustrated in Figure 5 in Section E of the appendix. Furthermore,
Table 4 in Section E of the appendix demonstrates the superior performance of the hierarchical edge
reconstruction when compared with the BLND.

Training the HGAE with Prototypical Regularization. For each node v;, the hierarchical edge
reconstruction method first reconstructs its inter-cluster neighbor map C; with one MLP layer. Af-
ter that, the predicted cluster indices C(i) = {k € [K]|C;r = 1} are separately fed to an embed-
ding layer to generate a set of class-conditional features Z (i) = < g(k) € RP |k e C (z)} using the

class-conditional embedding method in Classifier-Free Guidance (Ho & Salimans, 2022), where g
contains one text embedding layer followed by an MLP layer. Next, each of the class-conditional
features g(k) € Z(i) is concatenated with the latent feature of the other branch for decoding the

intra-cluster neighbor map by My, = ¢’ (Z;]|g(k)), where ¢’ is another MLP layer. The HGAE is
trained by minimizing the sum of the node reconstruction loss, the hierarchical edge reconstruction
loss, and the prototypical loss L0 as follows,

~ 12 ~ 12 12
e e R (S A e RV SEC

Node Reconstruction Loss Hierarchical Edge Reconstruction Loss

where ||-||, denotes the Euclidean norm. We perform a detailed complexity analysis of the hier-
archical edge reconstruction method in Section B of the appendix. Table 12 in Section F.6 of the
appendix demonstrates the improved efficiency of the proposed hierarchical edge reconstruction
method compared to the decoder in a regular GAE.

Training the LDM. Once the HGAE with the hierarchical edge reconstruction method is trained, we
obtain a set of latent representations Z = {Z; € R”" | v; € V} encoding both node attributes and
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edges. Traditional class-conditional diffusion models typically condition on class labels, including
DoG (Wang et al., 2025), as illustrated in Figure 2 (a). However, in FSNC, the classes in the support
and query sets are novel and disjoint from those used during training. As the diffusion model is
trained prior to test-time adaptation, it cannot directly condition on these unseen class labels. To
overcome this limitation, we leverage the prototypical regularization introduced in the HGAE, which
encourages the latent representations Z; to cluster around their respective prototype representations.
These prototypes, computed as the mean latent representation of each cluster, serve as semantically
meaningful and continuous conditioning signals. Instead of relying on discrete class labels, the
LDM is conditioned directly on the corresponding prototype representation for each training node,
enabling prototype-based conditional generation. As illustrated in Figure 2 (b), each latent feature
is paired with its assigned prototype as the conditioning input under the Classifier-Free Guidance
(CFG) framework (Ho & Salimans, 2022). This design allows the LDM to learn to generate latent
features aligned with the semantic structure of the data without requiring access to class labels. The
training algorithm of FGDM is presented in Algorithm 1 in Section G of the appendix.

3.3 GENERATION OF AUGMENTED GRAPH WITH SYNTHETIC SUPPORT DATA BY FGDM

Generation of Synthetic Graph Structures with FGDM. Once the FGDM is trained, we aim to
generate synthetic graph structures consisting of synthetic support nodes and edges connecting to
the original graph. We first obtain the cluster label of each of the support nodes obtained from
the prototypical regularization, which is used to get the prototype representation for the conditional
generation of the synthetic graph structure, as illustrated in Figure 4 (b) in the appendix. Let Vg
be the original support nodes and Vy, be the synthetic support nodes. Let the node attributes of
Viyn be Xgyn and the affinity matrix encoding edges between the synthetic nodes and real nodes be
A,yn. Then the synthetic graph structure is denoted as (Vsyn, Xyn; Agyn). Let M be the number
of nodes in the synthetic graph structure. The adjacency matrix of the augmented graph is A,,, =
[A Agyn; Agn A] € RWVHM)X(N+M) “and the node attributes of the augmented graph is Xy, =
[X; Xgyn] € RV+HMIXD " The augmented graph, which is the combination of the original graph
G and the synthetic graph structure, is then denoted by Guug = (V U Viyn, Xaug; Aaug)- Let Vp =
Vsup U Veyn denote the augmented support set. In practice, we generate the synthetic graph structures,
consisting of M = ¢ x n x k synthetic support nodes and their edges connecting to the original
graph, where g denotes the number of synthetic nodes generated per real support node. The value
of q for different tasks on different datasets is selected by cross-validation as detailed in Section F.5.
The augmented support set V. then consists of (¢ + 1)nk support nodes with (¢ + 1)k nodes in each
of the n novel classes. The augmented graph G, is then encoded using existing few-shot graph
encoders, such as COSMIC (Wang et al., 2023) and COLA (Huang & Zitnik, 2020), yielding the
representation for all the nodes in the augmented graph, which is denoted as H € R(N+M)xd The
generation of the augmented graph is described in Algorithm 2 in Section G of the appendix.

3.4 LoOW-RANK TRANSDUCTIVE LINEAR CLASSIFIER FOR FEW-SHOT LEARNING

Due to the inherent stochasticity of diffusion models (Ho et al., 2020; Rombach et al., 2022), the
synthetic graph structures generated by LR-FGDM may introduce noise, leading to semantic mis-
matches between synthetic support nodes and their labels (Azizi et al., 2023; He et al., 2022). To
address this, we follow prior FSNC methods (Wang et al., 2023; Huang & Zitnik, 2020) by training
a transductive node classifier on embeddings from a few-shot graph encoder. Motivated by the Low
Frequency Property (LFP) (Rahaman et al., 2019; Arora et al., 2019; Cao et al., 2021; Choraria et al.,
2022; Wang et al., 2024; 2025), which suggests that class labels concentrate on top eigenvectors of
the model’s kernel gram matrix, we introduce a novel low-rank regularization for the classifier with
theoretical guarantees.

Notation Definition. Let u € RY' be a vector, we use [u] 4 to denote a vector formed by elements
of u with indices in A for A C [N']. If u is a matrix, then [u] , denotes a submatrix formed by
rows of u with row indices in A. ||-[; denotes the Frobenius norm, and |[-[|,, denotes the p-norm.
Let Vgs denote all the nodes from the n novel classes in an n-way k-shot task, and let V, and Vy,
denote the labeled support set and the unlabeled query set in Vgs. Let IV denote the number of nodes
in Vgs. Let Vs = {v], v}, ..., v}, where v} is the i-th node in Vgs. Let y; € R™ be the ground-
truth one-hot class label vector for v/ in Vgs, and define Ygs = [y1;y2;...yn] € RV*" be the
ground-truth label matrix defined on the n novel classes for all the nodes in Vgs. Let Hps € RV >4
be the representations of all the nodes in Vgs. We define F(W) = Hgs W as the linear output of the
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transductive few-shot classifier with W € R?*™ being the weight matrix. Let K be the gram matrix

3N
of the node representations Hrs, which is calculated by K = H{(Hps € RY*V Let {)\i} with
i=1
A1 2 A2 2 Amin{N,d} = Amin{N,d}+1 = - - -, = 0 be the eigenvalues of K.
Low-Rank Transductive Few-Shot Node Classification. In order to encourage the features Hgg
or the gram matrix K = HHgs to be low-rank, we explicitly add the truncated nuclear norm
1K, = Zivzm 41 i to the loss function of the transductive few-shot node classifier. The starting

rank o < min(N, d) is the rank of the features Hps we aim to keep in the node representation, that
is, if [ K[|, = 0, then rank(K) = rg. Therefore, the overall loss function is

. 1
min L(W) = — > KL (y;, [softmax (HpsW)],) + 7/ K]],.., 2)
’U,EEVL
where KL is the KL divergence. 7 > 0 is the weighting parameter for the truncated nuclear norm
[K]|,,- We use a regular gradient descent to optimize (2) with a learning rate n € (0, Xi) W is
1
initialized by W(9) = 0, and at the ¢-th iteration of gradient descent for ¢ > 1, W is updated by

WO = WD —nVw L(W)|w_w-1. The optimal rank 7o on different datasets is decided by
cross-validation as detailed in Section 4.1 of the appendix.

Motivation of the Low-Rank Regularization. We study how ;582

the information of the ground-truth class label defined on the 503

novel classes are distributed on different eigenvectors of the fea- £02

ture gram matrix K = H(Hgs by performing eigen-projection. Eo.l

We first compute the eigenvectors U of the feature gram matrix O s 10000 15000 20600
K. Let UL ¢ RNX" be the top r-eigenvectors of K and Rank

U™ be the r-th eigenvector of K. Then, the eigen-projection 210

value of the ground-truth lngel Yrgs 2on U™ is computed by 54:0'3

pr= 1, U Y J HY}E_‘;)H2 forr € [N], where Y(§  Zou

is the c-th column of Ygs. We let p = [p1,...,pn] € RY. The E 02

eigen-projection p, reflects the amount of the signal in the label & OO o To660 15000 30500
projected onto the r-th eigenvector of K, and the signal concen- Rank

Figure 3: Eigen-projection (first
row) and concentration ratio
(second row) of the ground truth
label on Cora-Full. By the rank
r =19 = 0.2min {N, D'}, the
It is observed from the curves in the first row of Figure 3 that the  signal concentration ratio of the
projection of the ground truth labels for the novel classes mostly  ground truth label is 0.792.
concentrates on the top eigenvectors of K, known as the Low

Frequency Property (LFP) widely studied in other areas of machine learning (Rahaman et al., 2019;
Arora et al., 2019; Cao et al., 2021; Choraria et al., 2022; Wang et al., 2024; 2025). We remark that
the low-rank regularization ensures that mostly only the low-rank part of the node representations
Hgg is used for the FSNC, so that our transductive node classifier trained by (2) is free of the noise in
the high-rank part of the Hgs, thus being robust to the noise in the synthetic graph structures intro-
duced by LR-FGDM. The low-rank learning is also theoretically justified by Theorem 3.1, showing
that the low-rank learning reduces the kernel complexity and renders a tighter bound for the test loss.

tration ratio of a rank r reflects the proportion of signal projected
onto the top r eigenvectors of K. The signal concentration ratio
for rank r is computed by ||p(1 : 7)||;, where p(1 : r) contains
the first r elements of p.

Theoretical Justification for the Low-Rank Regularization. We have the following theoretical re-
sult, Theorem 3.1, on the Mean Squared Error (MSE) loss of the unlabeled query nodes ¢/ measured
by the gap between [F(W,¢)],, and [Ygs],, when using the low-rank feature Hgs with o € [N],
which is the generalization error bound for the linear transductive classifier using F(W) = HggW
to predict the labels of the qurey nodes. Similar to existing works such as (Kothapalli et al., 2023)
that use the Mean Squared Error (MSE) to analyze the optimization and the generalization of GNNss,
we employ the MSE loss to provide the generalization error of the node classifier in the following
theorem. It is remarked that the MSE loss is necessary for the generalization analysis of transductive
learning using transductive local Rademacher complexity (Tolstikhin et al., 2014; Yang, 2025).

Theorem 3.1. Letm > ¢N for a constant ¢ € (0, 1), and 7o € [N]. Assume that a set £ with |£]| =
m is sampled uniformly without replacement from [N], and the remaining nodes Vi, = Vgs \ V are
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the test nodes. Then for every > 0, with probability at least 1 — exp(—x), after the ¢-th iteration
of gradient descent on the training loss L(W) for all ¢ > 1, we have

1 2¢oL(K, Ygs, t Cox
Uen(t) = LIF(W, 1) — Yesly |2 < 20 E Ym0 | pe) 4 97, 3)
u m U
where ¢ is a positive number depending on U, {Xl} ’ , and 79 with Tg = maX;e[n] K.
i=1

. 2
’(Im -n[K], L) [Yes],|| » KC is the kernel complexity of the kernel gram
F

matrix K = HsHyy defined by KC(K) = min, (v o (£ + 2) + /IK]|, (ﬁ + ﬁ)

m

L(K, Yys, 1) =

This theorem is proved in Section A of the appendix. Detailed explanation about Theorem 3.1 is
deferred to Section A.1 of the appendix.

4 EXPERIMENTS

We evaluate the performance of the LR-FGDM for shot augmentation combined with the low-rank
regularization for FSNC. In Section 4.1, we present the implementation details of the proposed LR-
FGDM. In Section 4.2, we present the results for different FSNC settings. An ablation study on the
effectiveness of the prototypical regularization in the HGAE and low-rank regularization on the few-
shot classifier is performed in Section 4.3. Additional experiment results are presented in Section F
of the appendix. In Section F.1, we present the results for FSNC on three additional graph datasets.
We also compare the LR-FGDM against existing state-of-the-art shot augmentation methods in Sec-
tion F.2. In Section F.3, we study the effectiveness of LR-FGDM in reducing the kernel complexity
of the kernel gram matrix and the upper bound for the test loss of the transductive linear classifier in
LR-FGDM. In Section F.4, we study the effectiveness of LR-FGDM on a heterophilic graph dataset,
the Roman-Empire dataset (Platonov et al., 2023). In Section E.5 of the appendix, we present the
details about cross-validation used to select the number of synthetic support nodes. In Section F.6,
we perform the efficiency analysis of LR-FGDM. In Section F.7, we perform the sensitivity analysis
of the hyperparameters 7, ro, K, and q. We have proposed the Frechet Node Distance (FND) and
the Frechet Edge Distance (FED) to validate the faithfulness of the synthetic support nodes and the
associated edges with comparison to existing shot augmentation methods in Section F.8 of the ap-
pendix. The statistical significance of the improvements achieved by LR-FGDM in Section 4.2 and
Section 4.3 is validated by the student ¢-test detailed in Section F.9. In our experiments, we apply
LR-FGDM on top of existing FSNC methods, COSMIC (Wang et al., 2023) and COLA (Huang &
Zitnik, 2020), which are the most recent state-of-the-art FSNC methods with the best performance.

4.1 IMPLEMENTATION DETAILS

We conduct experiments for FSNC on CoraFull (Bojchevski & Giinnemann, 2018), ogbn-arxiv (Hu
et al., 2020), Coauthor-CS (Shchur et al., 2018), DBLP (Tang et al., 2008), Roman-Empire (Platonov
et al., 2023), Amazon-Computers, Amazon-Photo (Shchur et al., 2018), and Citeseer (Sen et al.,
2008), with details in Section C.1 of the appendix. The training settings of LR-FGDM and the
hyper-parameter tuning are described in Section C.2 of the appendix.

4.2 RESULTS

We compare the performance of the proposed LR-FGDM with state-of-the-art FSNC methods, in-
cluding ProtoNet (Snell et al., 2017), Meta-GNN (Zhou et al., 2019), GPN (Ding et al., 2020),
G-Meta (Huang & Zitnik, 2020), TENT (Wang et al., 2022), KD-FSNC (Wu et al., 2024), Norm-
Prop (Zhang et al., 2025a), COSMIC (Wang et al., 2023), COLA (Huang & Zitnik, 2020), and
STAR (Liu et al., 2025a). We also compare LR-FGDM with the diffusion-based synthetic graph
structure generation method DoG (Wang et al., 2025). Since DoG requires label-conditioning dur-
ing training and generation, which is unavailable for unseen classes in few-shot settings, we employ
semi-supervised K -means (Basu et al., 2002; Bair, 2013) to obtain pseudo labels as conditioning
signals for DoG. The number of clusters and the number of synthetic nodes are all decided by cross-
validation. We integrate LR-FGDM into COSMIC and COLA, resulting in two variants, denoted
as COSMIC (LR-FGDM) and COLA (LR-FGDM). The experiments are conducted for 2-way and
5-way classification tasks, each with 1-shot and 5-shot settings following (Huang & Zitnik, 2020;
Wang et al., 2023). The mean accuracy and standard deviation across 20 independent runs for each
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setting are reported. It is observed in Table 1 that LR-FGDM consistently improves the perfor-
mance of COSMIC and COLA on all the datasets. For example, COLA (LR-FGDM) outperforms
COLA by 2.29% on Coauthor-CS for the 5-way 5-shot FSNC. The results on the heterophilic graph
dataset, Roman-Empire, and three additional graph datasets, Amazon-Computers, Amazon-Photo,
and Citeseer, are deferred to Table 9 in Section F.4 and Table 5 in Section F.1 of the appendix.

Table 1: The overall FSNC results of all methods under different settings. The best result is in bold,
and the second-best result is underlined. The statistical significance of the results is deferred to
Table 17 of the appendix.

Dataset CoraFull ogbn-arxiv
Task 2-way l-shot ~ 2-way 5-shot  5-way I-shot S-way 5-shot 2-way 1-shot 2-way 5-shot 5-way l-shot  5-way 5-shot
ProtoNet (Snell et al., 2017) 5710+£247 T7271£255 3243+£1.61 5I.54F£1.68 [ 6256286 75.82£279 37.30£2.00 53.31+1.71
Meta-GNN (Zhou et al., 2019) 75.28 £ 3.85 84.59 +2.89 55.33 £2.43 70.50 & 2.02 62.52 £ 3.41 70.15 + 2.68 27.14+£1.94 31.52+£1.71

GPN (Ding et al., 2020) 74.294+3.47 8558 £2.53 52754232 72824188 | 6400£3.71 76.78+3.50 37.81+£2.34  50.50 £2.13
G-Meta (Huang & Zitnik, 2020) | 78.23 & 3.41 89.49+£2.04 60.44£248 7584£1.70 | 63.03£3.32 7656289 3148+1.70 47.16£1.73
TENT (Wang et al., 2022) TT.75+£3.29  88.20£2.61  55.44+208 70.10+1.73 70.30+£2.85  81.35+£2.77 4826+ 1.73 61.38+1.72

KD-FSNC (Wu et al., 2024) 83.92+£2.68  94.08 £2.42 74.55 4247  85.894+2.15 74.86 + 3.15 84.67+2.39  52.74+£2.13 6491+ 1.70
NormProp (Zhang et al., 2025a) | 83.61 +£2.64  93.87 £+ 2.39 74.21+£2.52  85.47+2.14 74.33+3.10  84.36 £2.41 52.37+2.11 64.28 +1.72
STAR (Liu et al., 2025a) 85.224+1.69  94.95+1.48 75854+ 1.72  87.31+1.55 76.454+2.03  86.11+£2.10 5482+ 1.75 66.98+1.25
DoG (Wang et al., 2025) 85.10+£1.98  94.35 £1.82 75134156  86.47+1.13 77.33 +£2.31 86.89 +2.21 53.42+147  65.69 £1.85
COSMIC (Wang et al., 2023) 84.32+2.75 9451 £247 74.934+249  86.34 £2.17 75.71+3.17  85.19+£235 53.28+2.19  65.42+1.69
COLA (Huang & Zitnik, 2020) | 85.834+1.92  95.17+1.85 76474212  87.834+1.89 77124236  86.42+£2.28 55244204 67.524+1.75

COSMIC (LR-FGDM) 8621 +238 9674211 76.93£215 8881£1.93 | 77.68+275 87.24+2.13 5548+2.01 67.59F1.52

COLA (LR-FGDM) 87.54+1.74 97.38+1.67 7852+1.94 89.66+1.72 | 79.02+2.18 88.34+210 57.28+1.86 69.63+1.57
Dataset Coauthor-CS DBLP

Task 2-way l-shot ~ 2-way 5-shot  5-way I-shot S-way 5-shot 2-way 1-shot 2-way 5-shot 5-way l-shot  5-way 5-shot

ProtoNet (Snell et al., 2017) 59.92+£2.70  71.69 £2.51 3213 £1.52 49.25 £1.50 60.97 £2.56 72.81£273 3131158 52.26+£1.88
Meta-GNN (Zhou et al., 2019) 85.90+£2.96  90.11£2.17 52.86+2.14  68.59 £1.49 82.60 £3.23  86.15+3.29 67.24+£2.72 72.154+2.40

GPN (Ding et al., 2020) 84.31+£2.73 9036 £1.90  60.66 +2.07 81.79+1.18 79.554+3.46  85.85+£2.61  59.38+£2.40  75.46 4+ 1.87
G-Meta (Huang & Zitnik, 2020) | 84.19+2.97  91.02+1.61 59.68 £2.16 7418 £1.29 | 80.46+3.29 88.53£236 63.32+2.70 75.82+2.11
TENT (Wang et al., 2022) 87.85+248 9L.75+£1.60 63.70£1.88  76.90+1.19 | 84.40£2.73  90.05+2.34 61.56+2.23  T74.84+£2.04

KD-FSNC (Wu et al., 2024) 89.78 £2.36  93.21 £2.01 67.05+£1.66 8442+ 1.17 | 91.81+2.41 94.37+1.70 7483 £2.15 83.75+191
NormProp (Zhang et al., 2025a) | 89.34 +2.41 93.62+1.97 67.48+1.68 84.61+1.14 91.52 £2.45 94.05+1.72  75.39+2.18 84.12+1.89
STAR (Liu et al., 2025a) 91.28 +£1.15  9541+£1.85 69254123 87.60+1.33 93.10£1.47 95524155 77.14+1.35 87.10+£1.05
DoG (Wang et al., 2025) 91.10+£1.84 9488 +£1.53 6896180 87.35%1.41 93.55 £ 1.35 96.05+1.22 7887 +£1.37  87.59+1.25
COSMIC (Wang et al., 2023) 90.29+2.30 94.32+1.93 6821+1.63 85.47+1.11 92.35 £2.52 94.82+1.69 76.52+2.24 85.31+1.92
COLA (Huang & Zitnik, 2020) | 91.534+2.03  95.78 £1.84 70.46 +1.57  87.544+1.19 93.48£2.17 95924168 78184205 87.23+1.87
COSMIC (LR-FGDM) 92.48 +£2.01 96.71 £1.67 70414148 87.72+1.03 9478 £2.29  96.95+1.53 78.66+2.03 87.44+1.71
COLA (LR-FGDM) 93.84+185 9791+156 72.93+1.41 89.83+1.11 | 95.89+2.03 97.98+1.47 80.16+1.88 89.51+1.65

4.3 ABLATION STUDY

To thoroughly study the effectiveness of the prototypical regularization in the HGAE and low-rank
regularization on the classifier, we conduct an ablation study on CoraFull, ogbn-arxiv, Coauthor-
CS, and DBLP under the 5-way 5-shot setting for FSNC. We evaluate three variants of the COLA
(LR-FGDM), which are the COLA (LR-FGDM) without the prototypical regularization, COLA
(LR-FGDM) without the low-rank regularization, and COLA (LR-FGDM) without both the low-
rank regularization and the prototypical regularization. It is observed from Table 2 that both the
low-rank regularization on training the few-shot node classifier and the prototypical regularization
on training the HGAE play important roles in improving the performance of the baseline method.

Table 2: Ablation study on the low-rank regularization and the prototypical regularization. The
statistical significance of the results is deferred to Table 18 of the appendix.

Method CoraFull  ogbn-arxiv  Coauthor-CS  DBLP
COLA (Huang & Zitnik, 2020) 87.83 67.52 87.54 87.23
COLA (LR-FGDM) w/o both low-rank and prototypical regularization 88.12 67.91 87.93 87.55
COLA (LR-FGDM) w/o low-rank regularization 88.74 68.60 88.72 88.28
COLA (LR-FGDM) w/o prototypical regularization 88.79 68.45 89.02 88.64
COLA (LR-FGDM) 89.66 69.63 89.83 89.51

5 CONCLUSION

In this paper, we propose a novel node-level graph diffusion method with low-rank feature learn-
ing for FSNC, termed Low-Rank Few-Shot Graph Diffusion Model or LR-FGDM. LR-FGDM ad-
dresses the limitation of data scarcity in few-shot settings by augmenting the support set through a
novel node-level graph diffusion model and enforcing low-rank regularization on the training of the
few-shot node classifier. FGDM integrates a Hierarchical Graph Autoencoder (HGAE) with a hier-
archical edge reconstruction method and a Latent Diffusion Model (LDM). The low-rank regular-
ization is motivated by the Low Frequency Property (LFP) and theoretically justified by a theorem to
show lower generalization error. Extensive experiments on multiple graph benchmark datasets show
that LR-FGDM significantly improves the performance of few-shot node classifiers, demonstrating
superior generalization capabilities compared to state-of-the-art methods.
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A THEORETICAL RESULTS
We present the proof of Theorem 3.1 in this section.

Proof of Theorem 3.1. It can be verified that at the ¢-th iteration of gradient descent for ¢ > 1, we
have

W = WD~ [His) ) [Hes W — Y] .- @)
It follows by (4) that
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It follows from the above equality and the recursion that
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We apply (Yang, 2025, Corollary 3.7) to obtain the following bound for the test loss
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where (D follows from the Cauchy-Schwarz inequality, (6), and Zévzro 41 //\\q = |IK]|,,- (3) then

follows directly from (8). O]

A.1 FURTHER EXPLANATION OF THEOREM 3.1

Define F(W,t) := Hps W (") as the output of the classifier after the ¢-th iteration of gradient descent
for t > 1. It is noted that Uy (t) is the test loss of the unlabeled query nodes measured by the
distance between the classifier output F(W ¢) and Ygs. There are two terms on the upper bound
for the test loss in (3), L(K, Ys,¢) and KC(K), which are explained as follows. L(K, YFs,t)
corresponds to the training loss of the node classifier with the ground-truth label for the novel classes.
KC(K) is the kernel complexity (KC), which measures the complexity of the kernel gram matrix
from the node representation Hys. We remark that the TNN ||K(|,. “appears on the RHS of the upper
bound (3), theoretically justifying why we learn the low-rank features K for FSNC by adding the
TNN [[K]l,,, to the training loss. Moreover, when the low frequency property holds, L(K, YFs, )

would be very small with enough iteration number ¢. K = H Hps is approximately a low-rank
matrix of rank r( since Hgg is approximately a rank-ry matrix with its TNN optimized through the
optimization of the encoder of the HGAE. A smaller || K]||, is obtained by optimizing the training
loss in Equation (2), which in turn ensures a smaller kernel complexity (KC) defined in Theorem 3.1,
contributing to a smaller generalization bound for transductive node classification.

B COMPLEXITY ANALYSIS OF THE HIERARCHICAL EDGE RECONSTRUCTION
METHOD

In our work, we have proposed an efficient hierarchical edge reconstruction method to reconstruct
the edges connected to a node in the graph. To show its efficiency, we analyze the inference time
complexity and the parameter size of the HGAE with the hierarchical edge reconstruction method.
For comparison, we also analyze the inference time complexity and the parameter size of GAE,
where the hierarchical edge reconstruction method is replaced by a regular edge decoder that directly
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reconstructs the adjacency matrix A (Kipf & Welling, 2016a). For ease of comparison, we denote
the number of parameters and inference cost of all the MLP and GAT layers except the hierarchical
edge reconstruction process as Sy p and Cyyp, respectively. For a node v; in the graph, let d; =

Zszl élk be the number of clusters predicted to be connected to v;. Let D’ be the dimension
of the input feature for the hierarchical edge reconstruction. The inference time complexity of
HGAE with hierarchical edge reconstruction is O(K D’ + d; D’ M + Cyrp), where O(K D') is the
additional complexity for computing the inter-cluster neighbor map and encoding the cluster indices.
O(d; D' M) is the computation cost for computing the intra-cluster neighbor map. In contrast, the
inference time complexity of a regular GAE with a regular edge decoder is O(D'KM + Cpwrp).
We note that d; is upper bounded by the degree of the node v;. In most graph datasets, the average
degree of nodes is usually very small. For instance, on CoraFull, where the average node degree is
6.41, we have d; < 6.41. Asaresult, D'(K +d; M) < D'K M. For example, setting KX = 200 and
M = 100 on Pubmed, we find that the inference time complexity of HGAE with hierarchical edge
reconstruction is O(841D’ 4+ Cyp), which is much more efficient than the regular edge decoder
whose inference time complexity is O(20000D’ + Cyyrp). In general, the inference time complexity
of HGAE with hierarchical edge reconstruction is much lower than that of GAE with a regular edge
decoder.

Table 3: Statistics of the graph datasets.

Dataset #Nodes  #Edges  #Features # Classes
CoraFull 19,793 63,421 8,710 70
ogbn-arxiv 169,343 1,166,243 128 40
Coauthor-CS 18,333 81,894 6,805 15
DBLP 40,672 144,135 7,202 137
Roman-Empire 22,662 32,927 64 18
Citeseer 3,327 4,732 3,703 6
Amazon-Computers 13,752 245,861 767 10
Amazon-Photo 7,650 119,081 745 8

C ADDITIONAL EXPERIMENT DETAILS

C.1 DATASETS

To evaluate the performance of our method on FSNC, we conduct experiments on eight widely
used real-world benchmark datasets, which are CoraFull (Bojchevski & Gilinnemann, 2018), ogbn-
arxiv (Hu et al., 2020), Coauthor-CS (Shchur et al., 2018), DBLP (Tang et al., 2008), Roman-
Empire (Platonov et al., 2023), Amazon-Computers, Amazon-Photo (Shchur et al., 2018), and Cite-
seer (Sen et al., 2008) with their statistics summarized in Table 3. CoraFull is an extended version
of the Cora dataset, constructed from the entire citation network, where nodes represent papers and
edges denote citation links; node classes correspond to paper topics. ogbn-arxiv is a directed ci-
tation graph derived from the arXiv Computer Science category in the Microsoft Academic Graph
(MAG) (Wang et al., 2020a), where nodes are arXiv papers and edges represent citation relations.
Node labels are based on 40 CS subject areas. Coauthor-CS is a co-authorship graph extracted
from MAG during the KDD Cup 2016 challenge, where nodes denote authors and edges indicate
co-authorship. Node features are derived from paper keywords, and node classes correspond to the
authors’ most active research fields. DBLP is another citation network in which nodes represent
papers and edges denote citation links. Node features are based on paper abstracts, and labels corre-
spond to publication venues. Roman-Empire is a synthetic dependency graph designed to simulate
extreme heterophily where adjacent nodes often belong to different classes. Nodes represent words
and edges reflect syntactic dependencies, with class labels assigned based on grammatical roles.
Amazon-Computers and Amazon-Photo are two product co-purchase networks from the Amazon
dataset, where nodes represent products and edges indicate frequently co-purchased items. Node
features are extracted from product reviews, and class labels represent product categories. Citeseer
is a citation network where nodes are scientific publications and edges represent citation links. Node
features are TF-IDF weighted word vectors, and classes correspond to research topics.
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C.2 TRAINING SETTINGS OF HGAE AND LDM

The training of the HGAE is divided into two phases. In the first phase, we pre-train the HGAE by
only minimizing the node reconstruction loss and the edge reconstruction loss in Equation (1) for
500 epochs. In the second phase, we minimize Lygag With the prototypical loss for another 500
epochs. We use the Adam optimizer with a learning rate of 0.001 for the training. The weight decay
is set to 1 x 10~°. We train the LDM in the LR-FGDM after finishing the training of the HGAE.
We use the Adam optimizer with a learning rate of 0.0002 to train the LDM for 1000 epochs.

The rank parameter 7o and the weighting parameter 7 associated with the TNN loss are selected
through cross-validation tailored to each dataset. We define the rank as ro = [ymin{N,d}],
where ~y represents the rank ratio and d is the dimension of the learned node representations. The
hyperparameter -y is searched over the set {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9}, while the TNN
weight 7 is chosen from {0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.45,0.5}. The number of the
prototype clusters, K, is selected from {5, 10, 15, 20, 25}.

D ILLUSTRATION OF THE SYNTHETIC SUPPORT NODE GENERATION BY
LR-FGDM

Figure 4 illustrates the generation of the synthetic support nodes and the associated synthetic edges
by the LR-FGDM and the DoG (Wang et al., 2025), with the difference between LR-FGDM and
DoG marked in red.

Pseudo Label - Aract Pre
Support =N B Associated Support Nearest Prototype Associated
Node Synthetic Edges Node D:ll:D Synthetic Edges
Gaussian LDM HGAE Synthetic Gaussian LDM HGAE
Noise Reverse Decoder Support Node Noise Reverse Decoder Support Node

(a) DoG (b) LR-FGDM

Figure 4: Figure (a) illustrates the generation of the synthetic support nodes and the associated
synthetic edges by the DoG (Wang et al., 2025). Figure (b) illustrates the generation of the synthetic
support nodes and the associated synthetic edges by the LR-FGDM.

E DETAILS AND STUDIES ON THE HIERARCHICAL EDGE RECONSTRUCTION
METHOD

Figure 5 illustrates the structure of the network used for the hierarchical edge reconstruction in
the HGAE with prototypical regularization. In contrast to the Bi-Level Neighborhood Decoder
(BLND) employed in DoG (Wang et al., 2025) using balanced K-means on node attributes, our
method leverages prototype cluster assignment and prototype representations learned jointly with
the encoder of the HGAE with prototypical regularization, because nodes in the same prototype
cluster have similar latent features, thus tend to connect with each other.

To validate the effectiveness of the hierarchical edge reconstruction method compared to the BLND
proposed in DoG (Wang et al., 2025), we perform an ablation study by comparing the performance of
the LR-FGDM with an ablation model where the hierarchical edge reconstruction module is replaced
by the BLND in DoG (Wang et al., 2025). The ablation model is denoted as LR-FGDM (BLND).
The study is performed for the 5-way 5-shot FSNC task on CoraFull, ogbn-arxiv, Coauthor-CS,
and DBLP. It is observed in Table 4 that LR-FGDM consistently outperforms LR-FGDM (BLND)
across all datasets. For example, LR-FGDM achieves a 1.16% improvement on ogbn-arxiv, high-
lighting the superiority of the proposed hierarchical edge reconstruction method in capturing mean-
ingful structural patterns for few-shot learning. These results underscore the benefits of leveraging
prototype-guided inter-cluster and intra-cluster connectivity over purely attribute-based neighbor-
hood decoders like BLND.
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Figure 5: Illustration of the network architecture for the hierarchical edge reconstruction method in
the HGAE with prototypical regularization.
Table 4: Performance comparison between the proposed hierarchical edge reconstruction method
and the Bi-Level Neighborhood Decoder (BLND) in DoG (Wang et al., 2025) for the 5-way 5-shot

FSNC task.

Data CoraFull ogbn-arxiv Coauthor-CS  DBLP
LR-FGDM (BLND) 88.52 68.47 88.96 88.37
LR-FGDM 89.66 69.63 89.83 89.51

F ADDITIONAL EXPERIMENT RESULTS

F.1 FEW-SHOT NODE CLASSIFICATION ON CITESEER, AMAZON COMPUTERS, AND
AMAZON PHOTOS

In this section, we further validate the effectiveness of LR-FGDM for FSNC on additional datasets,
including Citeseer (Sen et al., 2008), Amazon Computers (Shchur et al., 2018), and Amazon Pho-
tos (Shchur et al., 2018). Due to the limited number of classes in these three datasets, we follow
(Wu et al., 2024) and only perform FSNC under the 2-way 1-shot and the 2-way 5-shot settings. It is
observed in Table 5 that LR-FGDM consistently improves the performance of COSMIC and COLA
on all three datasets and significantly outperforms all competing FSNC methods. To demonstrate
the statistical significance of the improvements achieved by LR-FGDM over the baseline methods,
we perform ¢-tests on the few-shot classification accuracies obtained from 20 independent few-shot
tasks for each setting and each dataset. It is observed in Table 6 that models enhanced by LR-FGDM
consistently yield statistically significant improvements over the corresponding methods across all
few-shot settings with p-values p < 0.05.

Table 5: The overall FSNC results of all methods under different settings for Amazon-Computers,
Amazon-Photo, and Citeseer. The node classification accuracy and its standard deviation are in %.
The best result under each setting is in bold, and the second-best result is underlined.

Method Amazon-Computers Amazon-Photo Citeseer
2-way I-shot ~ 2-way 5-shot | 2-way I-shot ~ 2-way 5-shot | 2-way I-shot  2-way 5-shot
ProtoNet (Snell et al., 2017) 56.67+2.54 63.11+£2.60 | 66.74+2.08 72.64+£1.94 | 67.39+1.65 79.02+£2.33
Meta-GNN (Zhou et al., 2019) | 60.54 £2.79  68.36 £2.15 | 69.34 £2.03 7620+ 1.87 | 67.41+£1.60 79.08+2.27

GPN (Ding et al., 2020) 63.85 £ 2.31 71.02 £2.07 72.35£1.92 77.88 £1.74 69.12+1.68  80.02+2.14
G-Meta (Huang & Zitnik, 2020) | 62.56 + 3.11 71.47£2.97 70.18 £2.10 77.45£1.81 65.53 = 1.58 78.01 £ 1.80
TENT (Wang et al., 2022) 77.74 £+ 3.16 86.06 £+ 2.16 84.62 £ 2.78 86.53 £ 2.00 75.03 £2.81 85.31 +2.42

KD-FSNC (Wu et al., 2024) 86.92+1.74  95.30 £0.85 91.08 £2.17  96.60 £ 0.41 79.48+£2.62  86.43 £1.32
NormProp (Zhang et al., 2025a) | 85.10 4 2.08 94.35 + 1.30 90.42 +2.21 96.15 £ 0.53 78.41+£2.37  85.60 £1.61
COSMIC (Wang et al., 2023) 87.12£1.82 95.60 £ 1.01 91.544+2.04  96.12+£0.42 79.77+£220  86.23+1.53
COLA (Huang & Zitnik, 2020) | 87.52 £1.78 95.89 4 1.02 91.744+1.04 96.38 £0.33 80.13 +2.11 87.02 +1.30
COSMIC (LR-FGDM) 88.63 £1.70  96.74 £0.97 92.38 +£1.91 97.22 £0.29 80.92 £ 2.01 87.62 +1.27
COLA (LR-FGDM) 89.144+1.66 97.21+0.89 | 93.41+1.75 9745+0.26 | 81.73+1.84 88.21+1.23

F.2 COMPARISON WITH EXISTING SHOT AUGMENTATION METHODS

In this section, we compare LR-FGDM with existing shot augmentation methods. IA-FSNC (Wu
et al., 2022) incorporates confidently predicted query nodes as additional labeled instances and in-
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Table 6: p-values from ¢-tests comparing COSMIC (LR-FGDM) and COLA (LR-FGDM) against
their corresponding baseline methods, COSMIC and COLA, in Table 5.

Dataset Amazon-Computers Amazon-Photo Citeseer
Task 2-way l-shot 2-way 5-shot | 2-way 1-shot 2-way 5-shot | 2-way 1-shot 2-way 5-shot
COSMIC (LR-FGDM) 0.026 0.018 0.021 0.012 0.034 0.017
COLA (LR-FGDM) 0.008 0.004 0.006 0.003 0.010 0.005

troduces noise-based perturbations to the node features. We also compare LR-FGDM with the
best-performing GAN-based synthetic graph structure generation method, Semantic-aware Node
Synthesis (SNS) (Gao et al., 2023b), which is originally proposed to generate synthetic nodes in the
minority class for imbalanced datasets with a Generative Adversarial Network (GAN) (Goodfellow
et al., 2020). SNS is adapted to the FSNC scenario as a baseline for shot augmentation by gen-
erating synthetic support nodes. We further compare LR-FGDM with another shot augmentation
method SMILE (Liu et al., 2025b), which augments the support set using a mix-up strategy. For
a fair comparison, we apply IA-FSNC, SNS, and SMILE to augment the support set in COLA for
5-way 5-shot FSNC in the same manner as LR-FGDM. It is observed in Table 7 that LR-FGDM
always outperforms all the competing shot augmentation methods across multiple graph datasets
and few-shot settings.

Table 7: Comparison of LR-FGDM with existing shot augmentation methods on 5-way 5-shot node
classification. All methods are applied to augment the COLA (Huang & Zitnik, 2020). The statistical
significance of the results is deferred to Table 19 of the appendix.

Method CoraFull ogbn-arxiv  Coauthor-CS ~ DBLP
COLA (Huang & Zitnik, 2020) 87.83 67.52 87.54 87.23
COLA (SMILE) (Liu et al., 2025b) 88.21 68.01 88.02 88.07
COLA (IA-FSNC) (Wu et al., 2022) 88.36 68.17 88.21 88.16
COLA (SNS) (Gao et al., 2023b) 88.49 68.32 88.34 88.28
COLA (LR-FGDM) 89.66 69.63 89.83 89.51

F.3 STUDY ON THE KERNEL COMPLEXITY (KC) AND THE UPPER BOUND FOR THE TEST
Loss IN THEOREM 3.1

In this section, we study the effectiveness of LR-FGDM in reducing the upper bound for the test loss
in Equation (3) and the two terms in it, including the kernel complexity of the kernel gram matrix,
KC(K), and the training loss of the node classifier with the ground-truth label, L(K, Ys,¢). The
study is performed for 5-way 5-shot node classification tasks on Cora-Full and Coauthor-CS with
two baseline models, COSMIC (Wang et al., 2023) and COLA (Huang & Zitnik, 2020), as well as
the corresponding models augmented by LR-FGDM, which are COSMIC (LR-FGDM) and COLA
(LR-FGDM). It is observed from Table 8 that the upper bound for the test loss for the few-shot node
classifiers trained by LR-FGDM is significantly lower than that of the baseline without low-rank
regularization. Furthermore, LR-FGDM achieves substantially lower values in both KC(K) and
L(K, YFs, t) in the upper bound, validating the theoretical motivation behind low-rank regulariza-
tion and confirming the robustness and generalization benefits of LR-FGDM in FSNC.

F.4 EFFECTIVENESS OF LR-FGDM ON HETEROPHILIC GRAPHS

While most existing FSNC studies have primarily targeted homophilous graphs, where connected
nodes tend to share similar labels, many real-world graphs exhibit heterophily, where neighboring
nodes often belong to different classes. In such cases, standard GNN-based few-shot methods face
fundamental limitations, as neighborhood aggregation mechanisms become less effective or even
detrimental to learning discriminative node representations. This poses an even greater challenge
under few-shot conditions, where only a handful of labeled nodes per class are available to guide
the model. To assess the generalization capability of our proposed LR-FGDM in this challenging
scenario, we conduct experiments on the Roman-Empire dataset (Platonov et al., 2023) following
COLA (Huang & Zitnik, 2020), which is a syntactic word dependency graph characterized by ex-
treme heterophily. In this graph, node labels reflect grammatical roles rather than local connectivity,
making the graph structure highly non-homophilous. To demonstrate the statistical significance of
the improvements achieved by LR-FGDM over the baseline methods, we perform ¢-tests on the
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Table 8: Comparisons on L(K, Yrs, t), KC(K) and the value of the upper bound for the test loss
from Theorem 3.1. The lowest values for each dataset in the table are bold, and the second-lowest
values are underlined. A baseline without “(LR-FGDM)” indicates that the low-rank regularization
is not used for training the transductive linear classifier in , and a method “(LR-FGDM)” indicates
that the low-rank regularization is used.

Datasets COSMIC (Wang et al., 2023) COLA (Huang & Zitnik, 2020) COSMIC (LR-FGDM) COLA (LR-FGDM)
L(K, Yrs, t) 6.44 6.38 372 3.65
CoraFull KC 0.35 0.40 0.20 0.18
Upper Bound 10.80 11.25 7.05 6.74
L(K, Yrs, t) 4.54 4.69 4.02 3.95
ogbn-arxiv KC 0.47 0.50 0.24 0.21
Upper Bound 9.40 9.84 8.20 7.97
L(K, Yrs, t) 426 3.95 3.38 3.40
Coauthor-CS KC 0.52 0.66 0.30 0.28
Upper Bound 7.99 7.63 6.25 6.16
L(K, Yrs, t) 4.63 4.41 375 3.58
DBLP KC 0.48 0.53 0.26 0.23
Upper Bound 8.25 8.01 6.85 6.50

few-shot classification accuracies obtained from 20 independent few-shot tasks for each setting. It is
observed in Table 10 that models enhanced by LR-FGDM consistently yield statistically significant
improvements over the corresponding methods across all few-shot settings with p-values p < 0.05.

Table 9: FSNC results on the Roman-Empire dataset, which features extreme heterophily. Accuracy
and standard deviation are reported in %. The best result for each setting is in bold, and the second-
best is underlined.

Method 2-way 1-shot 2-way 5-shot 5-way 1-shot 5-way 5-shot

MAML (Finn et al., 2017) 42.83 £2.31 50.12 +2.24 19.45+1.20 25.73+1.41
ProtoNet (Snell et al., 2017) 48.67£2.65 < 61.344+247  2852+1.69 44.10+£1.72
Meta-GNN (Zhou et al., 2019) 63.45+3.20 73.28+285 44.80+2.14  60.33 +2.06
GPN (Ding et al., 2020) 62.10£3.14 74.01£263 42.73+2.21 63.45 £ 1.90
AMM-GNN (Wang et al., 2020b) | 65.02+3.05  76.48 £2.13  48.92+2.39 66.22+1.84
G-Meta (Huang & Zitnik, 2020) 66.74+£3.22 7836+£214 50.14+243 66.40+1.75
TENT (Wang et al., 2022) 66.23 £3.08  77.29+239  45.73+2.01 61.78 £1.81
KD-FSNC (Wu et al., 2024) 69.15+259  80.16 £2.11  5892+2.34 73.28+1.90
NormProp (Zhang et al., 2025a) 69.02 + 2.67 80.13 £ 2.14 57.84 +£2.30 72.46 £1.92
COSMIC (Wang et al., 2023) 71.84+271 8235+£226 60.25+242  75.33+2.05
COLA (Huang & Zitnik, 2020) 70.96 £2.44  81.48+£2.09 59.31+237 74.02+1.88
COSMIC (LR-FGDM) 73.38 £2.56 83.79+2.18 61.45+234 76.52+1.91
COLA (LR-FGDM) 75.62+2.35 8541+2.02 63.18+211 78.23+1.76

Table 10: p-values from t-tests comparing COSMIC (LR-FGDM) and COLA (LR-FGDM) against
their corresponding baseline methods, COSMIC and COLA, on Roman-Empire.

Task 2-way 1-shot 2-way 5-shot 5-way l-shot 5-way 5-shot
COSMIC (LR-FGDM) 0.034 0.024 0.028 0.012
COLA (LR-FGDM) 0.019 0.022 0.013 0.002

F.5 CROSS-VALIDATION ON THE NUMBER OF SYNTHETIC NODES

The number of synthetic nodes generated for each novel class given each support node, denoted as g,
plays a crucial role in determining the effectiveness of LR-FGDM. While generating more synthetic
nodes can potentially enrich the support set and provide stronger supervision signals, it may also
introduce redundancy or noise if excessive synthetic samples are added. In our experiments, we
select the value of ¢ for different datasets using 5-fold cross-validation over the base training classes.
The value of ¢ is selected from a range of candidate values, including {1, 2, 3,4,5,6,7,8,9,10}.

F.6 TRAINING EFFICIENCY ANALYSIS

To study the efficiency of the FGDM, we compare the training time between our HGAE with hi-
erarchical edge reconstruction and the regular GAE without hierarchical edge reconstruction. In
addition, we also compare the time for the generation of our FGDM and FGDM without hierar-
chical edge reconstruction in its HGAE. All evaluations are conducted using a single Nvidia A100
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Table 11: The selected number of synthetic nodes per support node (q) for each dataset and few-shot
setting.

Dataset 2-way 1-shot 2-way 5-shot 5-way 1-shot 5-way 5-shot
CoraFull 2 3 3 5
ogbn-arxiv 5 8 5 7
Coauthor-CS 4 6 4 5
DBLP 5 3 4 5

GPU. It is observed from the results in Table 12 that the hierarchical edge reconstruction method
significantly reduces the computation cost of the training and synthetic graph structure generation.
For instance, the training of GAE without hierarchical edge reconstruction takes over five times the
training time of our GAE with hierarchical edge reconstruction on ogbn-arxiv. In addition, the hier-
archical edge reconstruction method also significantly reduces the time for synthetic graph structure
generation. For instance, the data generation without the hierarchical edge reconstruction method
takes over four times the data generation time of our FGDM with the hierarchical edge reconstruc-
tion method on ogbn-arxiv.

Table 12: Time for the training of GAE and LDM in FGDM and data generation with FGDM on
different datasets.

Datasets Training Time (minutes) Generation Time (s/sample)
HGAE GAE without hierarchical edge reconstruction LDM | FGDM FGDM without hierarchical edge reconstruction
CoraFull 41 129 154 0.067 0.073
Coauthor CS 52 145 179 0.074 0.088
ogbn-arxiv 301 1690 315 0.130 0.426
DBLP 11 16 39 0.049 0.066

F.7 SENSITIVITY ANALYSIS ON THE HYPERPARAMETERS T, 1o, K, AND ¢

In this section, we first conduct a sensitivity analysis 7, which is the weighting parameter for the
TNN [|K][,, in Equation 2. The study is performed using COLA (LR-FGDM) on the CoraFull
dataset for the 5-way 5-shot node classification task. We evaluate the performance of the COLA
(LR-FGDM) with 7 varying in {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9}. As shown in Table 13,
although the best performance is achieved at 7 = 0.6, the performance of COLA (LR-FGDM)
remains stable across different values of 7. Even the lowest performing setting, 7 = 0.1, results in
only a marginal 0.18% decrease in accuracy compared to the best result. In addition, we perform an
ablation study to examine the influence of the rank parameter ro = [y min N, d|, where v € (0, 1]
controls the effective rank used in the truncated nuclear norm. We evaluate COLA (LR-FGDM)
with ~ varying from 0.05 to 0.5. As shown in Table 13, the accuracy is robust to different values
of =y, with the highest performance observed at v = 0.2. We also conduct an ablation study on the
hyperparameter K, which denotes the number of clusters used for prototype regularization in the
HGAE. We vary K from 5 to 50 with a step size of 5. As shown in Table 13, the performance
remains stable across different values of K, with a slight peak at K = 10. This suggests that the
model is not sensitive to the choice of cluster number, K.

Table 13: Sensitivity analysis on the weighting parameter 7 for the TNN, the rank ratio y used
in rg = [ymin{N,d}], and the number of clusters K for prototype computation in COLA (LR-
FGDM) for the 5-way 5-shot node classification task on CoraFull.

T 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Accuracy | 89.48 89.55 89.59 89.57 89.63 89.66 89.62 89.65 89.58

v 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Accuracy | 89.27 89.44 89.58 89.66 89.62 89.55 89.64 89.60 89.60 89.55

K 5 10 15 20 25 30 35 40 45 50
Accuracy | 89.30 89.66 89.58 89.64 89.53 89.59 89.62 89.56 8§9.48 89.44

23



Under review as a conference paper at ICLR 2026

Furthermore, we perform a sensitivity analysis to evaluate the effect of the number of synthetic
nodes per support node, g, on FSNC performance under the 5-way 5-shot setting. For each dataset,
we vary ¢ from 1 to 10 and report the mean classification accuracy over 20 tasks. As shown in
Table 14, increasing ¢ generally leads to consistent improvements in performance up to a certain
threshold, beyond which the gains tend to saturate or marginally decline. This trend highlights
the benefit of augmenting the support set with a moderate number of synthetic nodes, which helps
enhance generalization by enriching the local representation space. Notably, while further increasing
q beyond the optimal value does not continue to improve performance, the resulting degradation is
marginal.

Table 14: Sensitivity analysis on the number of synthetic nodes per support node (q) for four datasets
under the 5-way 5-shot FSNC setting.

q 1 2 3 4 5 6 7 8 9 10
CoraFull 88.71 89.02 8937 89.51 89.66 89.53 89.59 89.44 8941 89.40
ogbn-arxiv | 67.80 6821 68.84 69.08 69.33 6942 69.63 69.59 6945 69.20
Coauthor-CS | 88.33 88.82 89.08 89.31 89.83 89.62 89.54 89.48 89.30 89.12
DBLP 8793 88.44 8887 89.02 89.51 8935 89.29 89.10 88.94 8891

F.8 QUALITY EVALUATION OF THE AUGMENTED GRAPH

This paper introduces a novel node-level graph diffusion model named FGDM, which synthesizes
the graph structures. The synthetic graph structure, which consists of the synthetic support nodes
and the associated edges, generated by the FGDM, is subsequently combined with the original graph
to form an augmented graph. In Section 4.2, we have shown that the FSNC methods trained on the
augmented graph achieve significantly better performance. In this section, we directly evaluate the
data quality of the synthetic graph structures generated by the FGDM. In the visual domain, the
Frechet Inception Distance (FID) is a widely used metric to evaluate the quality of the synthetic
images generated by the generative models (Brock et al., 2019; Ho et al., 2020). The FID score
measures the similarity between the distribution of the generated images and the distribution of the
real images. To compute the FID score, the pre-trained Inception v3 (Szegedy et al., 2016) is used to
extract the features from both the real images and the generated images, which are then modeled as
the multivariate Gaussian distributions. The FID score is then calculated using the Frechet Distance
(FD) (Brock et al., 2019) between the two multivariate Gaussian distributions modeling the real and
the generated images (Dowson & Landau, 1982). A lower FID score indicates that the generated
images are more similar to the real images, suggesting better quality.

Quality Evaluation of the Synthetic Nodes. Although the Inception model cannot be applied to
the graph data, we can replace the Inception model in the computation of the FID score with the pre-
trained GCN (Kipf & Welling, 2017) for extracting node features to adapt the metric to evaluate the
quality of synthetic nodes generated by the FGDM. To this end, we define the Frechet Node Distance
(FND), which is the FD between the multivariate Gaussians modeling the node features extracted by
pre-trained GCN. We randomly split the nodes from the novel classes in the original graph into two
partitions of equal size, which are the base partition and the test partition. To mitigate the influence
of the randomness, we compute the FND scores with 10 different random splits and report the mean
and the standard deviation of the FND scores across different runs. The FND computed between
the nodes in the test partition and the base partition of the original graph establishes the baseline
of the expected FND score for high-quality support nodes. By computing the FND score between
the features of the synthetic support nodes in the synthetic graph structures generated by the FGDM
and the features of the nodes in the base partition of the original graph, we evaluate the quality of
the synthetic support nodes. For simplicity, we refer to the FND score for the synthetic support
nodes as the FND between their features and the features of the nodes in the base partition of the
original graph. To show the effectiveness of the prototypical regularization in the training of the
HGAE for the PGDM, we also compute the FND for the nodes in the synthetic graph structures
generated by the PGDM without the prototypical regularization. To demonstrate the advantages of
the FGDM over the vanilla diffusion model, the DDPM (Ho et al., 2020), we train a baseline DDPM
model on the input node attributes of the original graph and synthesize the same number of synthetic
nodes as the FGDM. The synthetic edges are then generated by connecting each synthetic node to
its K-nearest neighbors in the original graph using the K-nearest neighbors (KNN) algorithm with
K = [daye], where d,y. is the average degree of the original graph. The synthetic graph structures,
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including the synthetic nodes and edges generated by the baseline DDPM model, are combined with
the original graph to form the augmented graph. Next, we compute the FND score for the nodes in
the synthetic graph structures generated by the baseline DDPM model. In addition, we also compute
the FND for the support nodes generated by three competing shot augmentation methods, including
SMILE (Liu et al., 2025b), IA-FSNC (Wu et al., 2022), and SNS (Gao et al., 2023b). The ablation
study is performed for the 5-way 5-shot setting of the FSNC. The lower FND scores indicate that
the node features are more similar to the features of nodes in the base partition of the original graph.
It is observed in Table 15 that the FND score of the nodes in the synthetic graph structures generated
by the FGDM is closest to the FND score of the original graph, which demonstrates that the FGDM
generates faithful synthetic nodes.

Table 15: Frechet Node Distance (FND) to the nodes in the base partition of the original graph. The
mean and standard deviation of the FND scores computed with 10 different random splits of the base
partition and the test partition in the original graph are reported. The evaluation is performed for the
5-way 5-shot setting of the FSNC. The FND score for the original graph is computed between the
nodes in the test partition and the nodes in the base partition of the original graph.

Data CoraFull ogbn-arxiv  Coauthor-CS DBLP

Baseline DDPM 13.41+0.43  8.95+0.28 10.32+0.41  7.3440.39
SMILE (Liu et al., 2025b) 10.21£0.39  6.03+0.32  8.21+043  6.48+0.34
IA-FSNC (Wu et al., 2022) 9.924+0.41 5.87+029  7.88+0.36  6.124+0.37
SNS (Gao et al., 2023b) 9.73+0.40  5.69+0.31 7.45+0.34  6.01+0.33
FGDM (w/o Prototypical Regularization) | 9.244+0.48  5.23+0.30  7.13+£0.47  5.95+0.36
FGDM 8.10+0.27 4.39+0.30  5.294+0.21  4.08+0.42
Original Graph 7.954+0.32 4.33+0.27 4214026  3.84+0.33

Quality Evaluation of the Synthetic Edges. Similar to the design of the FND score for evaluat-
ing the quality of synthetic nodes, we replace the Inception model in the computation of FID with
the pre-trained GNN (Zhu et al., 2021) for edge feature extraction to adapt the metric to evaluate
the quality of the synthetic edges generated by the FGDM. To this end, we define Frechet Edge
Distance (FED), which is the FD between the multivariate Gaussians modeling the edge features
extracted by a pre-trained GNN. Similar to the evaluation of the FND, we randomly split the edges
in the original graph into two partitions of equal size, which are the base partition and the test par-
tition. To mitigate the influence of the randomness, we compute the FED scores with 10 different
random splits and report the mean and the standard deviation of the FED across different runs. The
FED computed between the edges in the test partition and the edges in the base partition of the
original graph establishes the baseline of the expected FED score for the high-quality edges. By
computing the FED between the features of edges in the synthetic graph structures generated by the
FGDM and the features of edges in the base partition of the original graph, we evaluate the quality
of the edges in the synthetic graph structures. For simplicity, we refer to the FED score for the
synthetic edges as the FED between their features and the features of edges in the base partition of
the original graph. Similar to the evaluation of the synthetic nodes, we also compute the FED score
for the edges in the synthetic graph structures generated by the FGDM without the prototypical
regularization. We compute the FED score for the edges in the synthetic graph structures gener-
ated by the baseline DDPM model. Since the edges in the synthetic graph structures are generated
by the KNN algorithm, we evaluate the baseline DDPM models using different values of K from
{[dave /4], [dave /2], [dave |s 2 X [dave], 4 X [dave/4]}. In addition, we also compute the FED for
the edges generated by three competing shot augmentation methods, including SMILE (Liu et al.,
2025b), IA-FSNC (Wu et al., 2022), and SNS (Gao et al., 2023b). The FED score for edges in the
original graph is also computed. We use the same NBFNet (Zhu et al., 2021) pre-trained on the
original graph to extract the edge features for computing the FED score. The ablation study is per-
formed for the 5-way 5-shot setting of the FSNC. Lower FED scores indicate that the edge features
are more similar to the features of edges in the base partition of the original graph. It is observed in
Table 16 that the FED score of the edges in the synthetic graph structures generated by the FGDM is
closest to the FED score of the original graph, which demonstrates that the FGDM generates more
faithful synthetic edges compared to the competing methods.
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Table 16: Frechet Edge Distance (FED) to the edges in the base partition of the original graph. The
mean and standard deviation of the FED scores computed with 10 different random splits of the base
partition and the test partition in the original graph are reported. The evaluation is performed for the
5-way 5-shot setting of the FSNC. The FED score for the original graph is computed between the

nodes in the test partition and the nodes in the base partition of the original graph.

Data CoraFull ogbn-arxiv  Coauthor-CS DBLP

Baseline DDPM (K = [dy./4]) 12.17£0.47 8.85£0.30  10.89+0.38  8.054+0.41
Baseline DDPM (K = [dyye/2]) 11.34+0.36  8.53£0.28  9.43+£0.34  7.324+0.33
Baseline DDPM (K = [dye]) 10.48+0.39 8.01£0.31  9.04+£0.36  6.88+0.32
Baseline DDPM (K = [2 X daye|) 10.51£0.35 7.96+0.29  9.17£0.37  6.94+0.34
Baseline DDPM (K = [4 X daye|) 10.92+0.42 8.05£0.33  9.41£0.39  7.10+0.36
SMILE (Liu et al., 2025b) 10.41£0.36  7.89+£0.30  8.93+0.34  6.67+0.31
IA-FSNC (Wu et al., 2022) 10.96+0.34 7.80£0.29  8.62+£0.33  6.391+0.30
SNS (Gao et al., 2023b) 10.18+0.35 7.77£0.28  8.66+£0.32  6.46+0.29
FGDM (w/o Prototypical Regularization) | 10.13£0.38  7.70+0.27 8.79+£0.35  6.33+0.30
FGDM 8.294+0.30  5.33+0.24  6.56+0.26  5.39+0.27
Original Graph 8.10£0.27 5.144+0.22  6.374+0.25  5.19+0.26

Table 17: p-values from t-tests comparing COSMIC (LR-FGDM) and COLA (LR-FGDM) against

their corresponding baseline methods, COSMIC and COLA, in Table 1.

Dataset CoraFull ogbn-arxiv
Task 2-way 1-shot  2-way 5-shot 5-way l-shot 5-way 5-shot | 2-way 1-shot 2-way 5-shot 5-way l-shot 5-way 5-shot
COSMIC (LR-FGDM) 0.031 0.022 0.018 0.014 0.027 0.039 0.044 0.017
COLA (LR-FGDM) 0.009 0.005 0.006 0.004 0.012 0.007 0.011 0.003
Dataset Coauthor-CS DBLP
Task 2-way 1-shot 2-way 5-shot  5-way l-shot 5-way 5-shot | 2-way I-shot 2-way 5-shot 5-way l-shot 5-way 5-shot
COSMIC (LR-FGDM) 0.013 0.015 0.034 0.025 0.019 0.011 0.027 0.014
COLA (LR-FGDM) 0.007 0.003 0.009 0.004 0.006 0.002 0.005 0.003

Table 18: p-values from ¢-tests comparing the COLA (LR-FGDM) with the second-best ablation

model in Table 2.

Dataset

CoraFull

ogbn-arxiv

Coauthor-CS  DBLP

p-values

0.012

0.009

0.043

0.008

Table 19: p-values from ¢-tests comparing the COLA (LR-FGDM) with the second-best ablation

model in Table 7.

Dataset

CoraFull

ogbn-arxiv

Coauthor-CS

DBLP

p-values

0.025

0.032

0.026

0.018
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F.9 IMPROVEMENT STATISTICAL SIGNIFICANCE ANALYSIS

To demonstrate the statistical significance of the improvements achieved by LR-FGDM over the
baseline methods, we perform ¢-tests on the few-shot classification accuracies obtained from 20 in-
dependent few-shot tasks for each setting. For results in Table 1, we compare COSMIC (LR-FGDM)
and COLA (LR-FGDM) against their corresponding baseline methods, COSMIC and COLA. 1t is
observed in Table 17 that models enhanced by LR-FGDM consistently yield statistically signifi-
cant improvements over the corresponding methods across all datasets and settings with p-values
p < 0.05. In addition, we further validate the statistical significance of the improvements of COLA
(LR-FGDM) over the ablation models in Table 2 and models augmented by other support set aug-
mentation methods in Table 7. It is observed from Table 18 and Table 19 that COLA (LR-FGDM)
significantly outperforms all competing variants, with all p-values below 0.05, further supporting
the statistical significance of the improvements by LR-FGDM over existing methods.

Algorithm 1 Training FGDM (Training the HGAE and the LDM)

Input: The input attribute matrix X, adjacency matrix A, the training epochs of the HGAE tngaE, the labels
Yhase of the labeled nodes Vpase in the base training set, the training epochs of the LDM ¢ pm, and the
learning rate n

Output The parameters of the HGAE w and the parameters of the LDM 0

: Obtain the inter-cluster neighbor map C and the intra-cluster neighbor map M by applying balanced K-

Means clustering on X

: Initialize the parameter w of the HGAE

. for t < 1 to tugae do

Update w by w <— w — NV, Lucag With Lygag from Eq.(1)

: end for

: Compute cluster prototypes {p.} from the latent representations Z using semi-supervised K-means clus-

tering (Bair, 2013)
7: Assign each node to its cluster prototype based on the clustering result
8: Initialize the parameter 8 of the LDM

9: Map the node attributes X and the adjacency matrix A to the latent space using the encoder g. of the
HGAEas H = ¢.(X, A)

10: Train the LDM with CFG (Ho & Salimans, 2022) on latent pairs (Z;, pr(;)) where pr(;) is the prototype
associated with node v;

11: return The parameters of the HGAE w and the parameters of the LDM 6

-

Algorithm 2 Generation of the Augmented Graph G,

Input: The input attribute matrix X, the adjacency matrix A, the set of support nodes Vo = {v1,...,vs},
number of synthetic nodes per support node ¢, and the prototype assignments {pr;) }le
Output: The augmented graph Gug = (V U Viyn, Xaug, Aaug)

1: Let M = g X |Vyypl, total number of synthetic nodes

2: Initialize counter m < 1

3: for i <— 1 to |Vsyp| do

4: forj <+ 1togdo

5: Sample noise € ~ N(0,1)

6: Condition on prototype p(;) of support node v;

7. Generate latent feature Zm using LDM conditioned on pr ;)
8: m+<—m+1

9:  end for
10: end for
11: Decode Z = {Z:}}, to Xy and Ay, with the decoder of the HGAE (Xqyn, Ayn) = ga(Z)
12: Form augmented attribute matrix: Xag = [X; Xyn]
13: Form augmented adjacency matrix: A = [A Agn; Agn A
14: return Gy = (V U Vign, Xaug, Aaug)

G ALGORITHMS FOR THE TRAINING OF LR-FGDM

We present the training algorithm of the FGDM in Algorithm 1, which comprises two steps. The first
step, which is from Line 1 to Line 5 in Algorithm 1, describes the training of the HGAE. The second
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step, which is from Line 6 to Line 10, describes the training of the LDM. Algorithm 2 describes the
generation process for the augmented graph G,y,.
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