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ABSTRACT

In this paper, we propose a novel node-level graph diffusion method with low-rank
feature learning for few-shot node classification (FSNC), termed Low-Rank Few-
Shot Graph Diffusion Model or LR-FGDM. LR-FGDM first employs a novel Few-
Shot Graph Diffusion Model (FGDM) as a node-level graph generative method to
generate an augmented graph with an enlarged support set, then performs low-
rank transductive classification to obtain the few-shot node classification results.
Our graph diffusion model, FGDM, comprises two components, the Hierarchical
Graph Autoencoder (HGAE) with an efficient hierarchical edge reconstruction
method and a new prototypical regularization, and the Latent Diffusion Model
(LDM). The low-rank regularization is robust to the noise inherently introduced by
the diffusion model and empirically inspired by the Low Frequency Property. We
also provide a strong theoretical guarantee justifying the low-rank regularization
for the transductive classification in few-shot learning. Extensive experimental
results evidence the effectiveness of LR-FGDM for few-shot node classification,
which outperforms the current state-of-the-art. The code of the LR-FGDM is
available at https://anonymous.4open.science/r/LR-FGDM/.

1 INTRODUCTION

Graph Neural Networks (GNNs) (Kipf & Welling, 2016b; Hamilton et al., 2017) are widely used
for semi-supervised node classification (Veličković et al., 2018), but their effectiveness relies on
ample labeled data. This challenge motivates few-shot node classification (FSNC), where only a
few labeled nodes per class are available. Most FSNC methods (Zhou et al., 2019; Ding et al.,
2020; Wang et al., 2022; Huang & Zitnik, 2020; Qian et al., 2021; Lan et al., 2020; Liu et al.,
2021b) follow a meta-learning framework (Finn et al., 2017; Snell et al., 2017) to generalize across
tasks. More recent approaches (Tan et al., 2022; Liu et al., 2024) leverage self-supervised Graph
Contrastive Learning (GCL) (Mo et al., 2022; Jin et al., 2021), and achieve superior performance
despite using only unlabeled data. However, all existing methods remain constrained by the limited
support set size. Although techniques like mix-up (Liu et al., 2025b) and random perturbation (Wu
et al., 2022) offer marginal gains, the potential of generative models to synthesize support nodes
remains underexplored. Building on the success of diffusion models in vision, recent works have
extended them to synthetic graph generation. Recent works (Niu et al., 2020; Jo et al., 2022; Haefeli
et al., 2022; Vignac et al., 2023; Limnios et al., 2023) adapt diffusion models to generate realistic
structures that align well with real-world networks. However, these approaches focus on graph-
level generation and do not support structured node- or edge-level synthesis. Node-level graph
augmentation typically relies on GANs (Jia et al., 2023; Wu et al., 2023; Wang et al., 2018; Liang
et al., 2020; Yang et al., 2019) to generate minority class nodes in imbalanced graphs, despite known
issues of training instability and poor distributional matching (Dhariwal & Nichol, 2021).

In this work, we propose a novel node-level graph diffusion method with low-rank feature learning
for FSNC, termed Low-Rank Few-Shot Graph Diffusion Model or LR-FGDM. LR-FGDM employs
a novel Few-Shot Graph Diffusion Model (FGDM) to generate an augmented graph with an enlarged
support set. The FGDM in LR-FGDM consists of two components, including the Hierarchical Graph
Autoencoder (HGAE) with an efficient hierarchical edge reconstruction method and the Latent Dif-
fusion Model (LDM). The HGAE learns compact latent node features for LDM by incorporating a
prototypical regularization to encourage semantic structure in the latent space. The hierarchical edge
reconstruction method enables efficient reconstruction of the edges connecting to a node from the
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latent space in a hierarchical manner to avoid the quadratic complexity in edge reconstruction of the
regular GAE (Kipf & Welling, 2016a). Given a FSNC task, the FGDM generates the synthetic graph
structure, consisting of the synthetic support nodes and the edges connecting to the original graph.
The synthetic graph structure is then incorporated into the original graph, forming an augmented
graph with an enlarged support set consisting of the original and synthetic support nodes.
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Figure 1: 5-way 5-shot code
classification accuracies on Cora-
Full trained with different numbers
of synthetic support nodes added.
COLA (LR-FGDM) is trained on
the augmented graph by FGDM
with the low-rank regularization,
while COLA (FGDM) is trained
without the regularization.

Although prior methods enlarge the support set via random
perturbations (Gao et al., 2023b) or mix-up (Liu et al., 2025b),
they fail to generate faithful graph structures, often assigning
edges to synthetic nodes by reusing neighbors of real nodes.
In contrast, our FGDM jointly encodes nodes and edges into
a semantically regularized latent space for training the LDM,
capturing the true joint distribution of features and structure.
Let Vsyn and Vsup denote the set of synthetic support nodes and
the original support set. As shown in Figure 1, while adding
synthetic support nodes with FGDM improves COLA’s perfor-
mance when |Vsyn| ≤ 3|Vsup|, further increasing the number of
synthetic nodes leads to a sharp performance drop. This is due
to inherent noise in the diffusion generation process (Ho et al.,
2020; Fu et al., 2024; Azizi et al., 2023; He et al., 2022). To
this end, we propose a low-rank learning method inspired by
the widely-studied Low Frequency Property (LFP) (Rahaman
et al., 2019; Arora et al., 2019; Cao et al., 2021; Choraria et al.,
2022; Wang et al., 2024; 2025), which suggests that the projection of the ground truth class labels
mostly concentrates on the top eigenvectors of the kernel gram matrix of the model, to be detailed in
Section 3.4. Motivated by LFP, the truncated nuclear norm (TNN) is added as a low-rank regulariza-
tion term to the training loss of the few-shot classifier on the augmented graph. It is observed from
Figure 1 that the COLA trained with the low-rank regularization performs significantly better than
the regular COLA when the synthetic nodes added in the augmented graph are more than 3|Vsup|.
Existing graph few-shot learning methods (Liu et al., 2024; Wang et al., 2023; Ma et al., 2025; Zhao
et al., 2025) show that training graph encoders without label supervision yields better generalization
to novel classes. However, the diffusion-based generator DoG (Wang et al., 2025) relies on class
labels as conditioning signals during both training and generation, which is problematic as test-
time labels are disjoint from the training labels. Although semi-supervised K-means (Basu et al.,
2002; Bair, 2013) can be applied on the node attributes to obtain pseudo labels for conditioning, as
illustrated in Figure 3 (a), it often leads to semantic drift and unreliable conditioning due to entangled
base and novel class semantics. In contrast, our LR-FGDM conditions the diffusion model on cluster
prototypes jointly learned with the prototypical regularization, as illustrated in Figure 3 (b), rather
than pseudo labels, to avoid this issue. As another significant difference from DoG (Wang et al.,
2025), a new prototypical regularization is introduced to HGAE to improve cluster separability in
the latent space, making the prototype-based conditioning semantically aligned and robust.

Contributions. The contributions of this paper are presented as follows.

First, we propose the Low-Rank Few-Shot Graph Diffusion Model (LR-FGDM), a novel generative
framework for FSNC tasks by synthesizing labeled support nodes and the associated edges through
a node-level graph diffusion model, Few-Shot Graph Diffusion Model (FGDM). The FGDM fea-
tures a new Hierarchical Graph Autoencoder (HGAE) that incorporates prototypical regularization
to structure the latent space semantically, and our LDM uses the prototypes instead of class labels
such as those in DoG (Wang et al., 2025) as the conditioning features. To mitigate the inherent
inefficiency of the quadratic complexity in edge reconstruction over the entire graph, FGDM also
introduces a hierarchical edge reconstruction method, which hierarchically reconstructs the edges
connecting to each synthetic support node. While prior methods (Liu et al., 2025b; Wu et al., 2022)
have shown promising results in enlarging the support set for FSNC, Table 8 in Section G.2 shows
that LR-FGDM substantially outperforms existing support set augmentation approaches. Moreover,
we introduce the Frechet Node Distance (FND) and the Frechet Edge Distance (FED) to validate the
faithfulness of the synthetic support nodes and the associated edges in Section G.7 of the appendix.

Second, we introduce a low-rank regularization method in LR-FGDM for the transductive node
classifier trained on the augmented graph, which is empirically motivated by the Low Frequency
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Property (LFP) in deep learning (Rahaman et al., 2019; Arora et al., 2019; Cao et al., 2021; Choraria
et al., 2022; Wang et al., 2024; 2025) and theoretically justified by a novel generalization bound
for the transductive few-shot node classifier in Theorem A.1. The low-rank regularization promotes
lower kernel complexity (KC), thus leading to a lower generalization bound for the test loss of the
transductive classifier. Section G.3 demonstrates the much lower KC and the upper bound for the
test loss of LR-FGDM compared to the baseline without low-rank regularization. Furthermore, as
shown in Table 1 in Section 4.2, Table 6, and Table 10 in the appendix, LR-FGDM consistently
outperforms state-of-the-art FSNC methods across multiple graph benchmarks.

2 RELATED WORKS

2.1 FEW-SHOT NODE CLASSIFICATION (FSNC)

While GNNs for node classification are commonly trained in a semi-supervised fashion (Kipf &
Welling, 2016b), many efforts (Sun et al., 2020; Hamilton et al., 2017; Veličković et al., 2018) aim
to reduce label reliance; however, they struggle with unseen classes at inference, motivating the
study of FSNC. Most previous FSNC methods (Zhou et al., 2019; Finn et al., 2017; Yao et al., 2020;
Snell et al., 2017; Liu et al., 2024; Wang et al., 2022; Wu et al., 2024; Zhang et al., 2025a) adopt a
meta-learning framework by training the FSNC model through a series of meta tasks. More recently,
several works have incorporated contrastive learning into meta-learning to enhance task-specific rep-
resentation learning. (Liu et al., 2021a) and CPLAE (Gao et al., 2021) apply supervised contrastive
losses within meta-tasks using augmented views, while PsCo (Jang et al., 2023) and MetaCon-
trastive (Ni et al., 2021) perform unsupervised contrastive meta-learning. COLA (Liu et al., 2024)
contrasts support and query prototypes to promote class-level consistency, and COSMIC (Wang
et al., 2023) leverages multi-view contrastive regularization.

2.2 GRAPH DIFFUSION MODELS AND GENERATIVE DATA AUGMENTATION ON GRAPH

Score-based diffusion models (Song et al., 2021b) have achieved state-of-the-art performance in
diverse generative tasks (Ho et al., 2020; Song & Ermon, 2019; Gao et al., 2023a; Rombach et al.,
2022; Baranchuk et al., 2022; Song et al., 2021c;a; Song & Ermon, 2020; Rombach et al., 2022).
Graph diffusion models have emerged for synthetic graph generation (Niu et al., 2020; Haefeli et al.,
2022; Jo et al., 2022; Zhou et al., 2024), with early works (Jo et al., 2022; Haefeli et al., 2022; Vignac
et al., 2023) designing discrete diffusion processes over adjacency matrices. SaGess (Limnios et al.,
2023) performs conditional generation of graphs inspired by LDM. However, these models primarily
target graph-level generation, limiting their utility in node-level tasks such as FSNC. To enhance the
performance of GNNs, node-level data augmentation has been applied to structure (Zhao et al.,
2021b; Rong et al., 2020; Feng et al., 2022; Lai et al., 2024), features (You et al., 2020; Kong
et al., 2022; Azad & Fang, 2024), and labels (Han et al., 2022; Wang et al., 2021; Verma et al.,
2021; Zhao et al., 2024c). In FSNC, recent methods enhance the support set by perturbing node
features and leveraging pseudo-labeled queries (Wu et al., 2022), or by using LLM-based prompting
to generate synthetic support nodes for text-attributed graphs (Zhang et al., 2025b). Generative data
augmentation has been used to enhance GNN performance by generating synthetic nodes and edges
to address class imbalance and enrich minority class features and connectivity (Zhao et al., 2021b;
Zhou et al., 2024; Qu et al., 2021; Zhao et al., 2021a; Hsu et al., 2024; Gao et al., 2023b; Hsu et al.,
2023). However, these approaches often rely on GANs (Jia et al., 2023; Wu et al., 2023; Wang
et al., 2018; Liang et al., 2020; Yang et al., 2019), which suffer from training instability and poor
alignment with real data distributions (Dhariwal & Nichol, 2021). To the best of our knowledge,
FGDM is among the first to synthesize synthetic graph structures via diffusion models for FSNC.

3 FORMULATION

We aim to boost the performance of existing FSNC methods by augmenting the support set in a
few-shot task, thereby alleviating the data scarcity in each novel class.

The Pipeline of Integrating LR-FGDM with an Existing Few-Shot Learning Method. The
proposed LR-FGDM serves as a plug-in module to enhance existing FSNC methods like COS-
MIC (Wang et al., 2023) and COLA (Liu et al., 2024) by augmenting the support set. LR-FGDM
consists of three steps for FSNC: (1) training FGDM, which includes learning a Hierarchical Graph
Autoencoder (HGAE) on the original graph and a Latent Diffusion Model (LDM) on its latent space;
(2) generating an augmented graph by injecting synthetic support nodes and their edges into the
original graph; and (3) applying an existing FSNC method to learn node embeddings, followed by
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training a low-rank transductive classifier on the augmented support set. Figure 2 (a) illustrates the
entire training pipeline with LR-FGDM. Figure 2 (b) illustrates the training of the LR-FGDM, and
Figure 4 (b) in the appendix illustrates the generation of the synthetic support nodes by LR-FGDM.
LR-FGDM improves few-shot classification by expanding the support set, leveraging the benefits of
stronger supervision as in prior augmentation studies (Wu et al., 2022; Liu et al., 2025b).

HGAE
Encoder

Prototype

HGAE
Decoder

LDM
Forward

LDM
Reverse

Prototypical
Regularization

Node 
Attributes

Edges

Reconstructed
Node Attributes

Reconstructed
Edges

(b) LR-FGDM

(a) Training Pipeline of LR-FGDM

Training of the HGAE 
with Prototypical 

Regularization

Training of 
the LDM

Generation of 
the SGS

Training of the Low-Rank 
Transductive Classifier with

 the Low-Rank Regularization

Figure 2: Figure (a) illustrates the entire training
pipeline of the FSNC method with LR-FGDM, and
Figure (b) illustrates the training of LR-FGDM for syn-
thetic graph structure generation.

Our LR-FGDM contains two compo-
nents, which are the generation of an
augmented graph with synthetic support
data by FGDM, and few-shot learning
with low-rank transductive classification
on the augmented graph. Our FGDM fea-
tures a novel Hierarchical Graph Autoen-
coder (HGAE) with an efficient hierar-
chical edge reconstruction method and a
new prototypical regularization, detailed
in Section 3.2. Then, the generation of an
augmented graph with the synthetic sup-
port nodes and edges is explained in Sec-
tion 3.3. The low-rank transductive linear
classifier for few-shot classification with theoretical guarantee is detailed in Section 3.4.

3.1 PRELIMINARIES

Few-Shot Node Classification (FSNC). FSNC assumes disjoint label sets across splits, denoted as
Ctrain, Cval, and Ctest (Liu et al., 2024; Luo et al., 2024; Wang et al., 2023; Zhao et al., 2024a). An
n-way task requires the model to classify nodes into n distinct classes randomly sampled from Ctest,
with only k labeled instances per class provided in the support set. Each task consists of a labeled
support set of n × k nodes and an unlabeled query set. The support set guides the model to learn a
transductive classifier to predict the labels of nodes in the query set.

Attributed Graph and Notations. An attributed graph with N nodes is denoted by G = (V, E ,X).
Here, V = {v1, v2, . . . , vN} represents the nodes, and E ⊆ V × V represents the edges. Node
attributes are given by X ∈ RN×D, where each row Xi ∈ RD corresponds to the attributes of node
vi. The adjacency matrix A ∈ {0, 1}N×N of graph G defines connections. Each row Ai represents
the connections of node vi. The neighborhood N (i) = {j | Ãi,j = 1} includes node vi itself and
all nodes connected to vi. The notation [N ] denotes all natural numbers from 1 to N inclusive. [A]i
stands for the i-th row of a matrix A. ∥·∥p denotes the p-norm of a vector or a matrix.

3.2 FEW-SHOT GRAPH DIFFUSION MODEL (FGDM)

Hierarchical Graph Autoencoder (HGAE) with Prototypical Regularization. To encode a node
vi, we first generate a latent feature of the node attribute Xi as f(Xi), where f(·) is a Multi-Layer
Perceptron (MLP) layer. To incorporate the information from the edges connected to vi, we add
positional embeddings (Ma et al., 2021; You et al., 2019) to the node attributes of vi’s neighbors.
For each neighbor j ∈ N (i), we modify the node attributes as X′

j = Xj + pos(j), where pos(·) is
a function converting the position index into an embedding vector (Vaswani et al., 2017). We apply
two Graph Attention Network (GAT) (Veličković et al., 2018) layers to aggregate the information
in {X′

j | j ∈ N (i)} into a single latent feature Z
′

i. Next, we concatenate Z
′

i with f(Xi) to obtain
the latent feature of node vi by Zi = f ′(Z

′

i∥f(Xi)), where f ′ is another MLP layer encoding the
concatenated features to the latent space of LDM with lower dimension D′. After encoding a node
vi in the graph to a latent feature Zi, the decoder of the HGAE reconstructs the node attribute X̂i by
three consecutive MLP layers and its associated edges Âi by the hierarchical edge reconstruction
method to be introduced later.

Prototypical Regularization. Existing FSNC methods (Snell et al., 2017; Laenen & Bertinetto, 2021;
Ding et al., 2020; Lin et al., 2022) show that prototypical learning improves node embeddings by
promoting intra-class compactness and inter-class separability. To align latent features of seman-
tically similar nodes, we add a prototypical regularization to the HGAE loss, encouraging nodes
within the same cluster to approach shared prototypes. The cluster assignments are obtained via
semi-supervised K-means (Basu et al., 2002; Bair, 2013) utilizing labeled nodes to guide cluster-
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ing while incorporating unlabeled nodes for better generalization to unseen classes. Let pc ∈ RD′

represent the prototype of cluster c ∈ [K], where K is the number of prototypes. The prototypical
regularization loss is defined as Lproto =

∑N
i=1

∥∥Zi − pπ(i)

∥∥2, where pπ(i) =
1

|Vπ(i)|
∑

j∈Vπ(i)
Zj .

π(i) is the cluster index of node vi and Vπ(i) is the set of nodes in the cluster π(i).

To address the quadratic complexity inherent in conventional GAEs (Zhai et al., 2018; Kipf &
Welling, 2016a), we introduce a prototype-guided hierarchical edge reconstruction framework de-
signed to promote efficient edge decoding. The edge reconstruction is conducted hierarchically
based on clusters induced by learned prototype representations. We define an inter-cluster neighbor
map C ∈ {0, 1}N×K , where Cik = 1 indicates that node vi connects to at least one node within the
cluster represented by prototype k. Additionally, an intra-cluster neighbor map M ∈ {0, 1}N×K×M

is constructed, where Mikm = 1 signifies that node vi is connected to the m-th node within clus-
ter k, with M denoting the maximum number of nodes in any cluster. In contrast to the Bi-Level
Neighborhood Decoder (BLND) employed in DoG (Wang et al., 2025) using balanced K-means
applied to node attributes, our method leverages prototype clusters learned jointly with the encoder,
because nodes in the same prototype cluster have similar latent features, thus tend to connect with
each other. The structure of the network used for the hierarchical edge reconstruction in the HGAE
with prototypical regularization is illustrated in Figure 5 in Section F of the appendix.

Training the HGAE with Prototypical Regularization. For each node vi, the hierarchical edge
reconstruction method first reconstructs its inter-cluster neighbor map Ĉi with one MLP layer. Af-
ter that, the predicted cluster indices C(i) = {k ∈ [K]|Cik = 1} are separately fed to an embed-
ding layer to generate a set of class-conditional features Z(i) =

{
g(k) ∈ RD′ |k ∈ C(i)

}
using the

class-conditional embedding method in Classifier-Free Guidance (Ho & Salimans, 2022), where g
contains one text embedding layer followed by an MLP layer. Next, each of the class-conditional
features g(k) ∈ Z(i) is concatenated with the latent feature of the other branch for decoding the
intra-cluster neighbor map by M̂ik = g′(Zi∥g(k)), where g′ is another MLP layer. The HGAE is
trained by minimizing the sum of the node reconstruction loss, the hierarchical edge reconstruction
loss, and the prototypical loss Lproto as follows,

LHGAE =
∥∥∥X− X̂

∥∥∥2
2︸ ︷︷ ︸

Node Reconstruction Loss

+

(∥∥∥C− Ĉ
∥∥∥2
2
+
∥∥∥M− M̂

∥∥∥2
2

)
︸ ︷︷ ︸

Hierarchical Edge Reconstruction Loss

+Lproto, (1)

where ∥·∥2 denotes the Euclidean norm. We perform a detailed complexity analysis of the hierarchi-
cal edge reconstruction method in Section C of the appendix. Table 3 in Section 4.4 of the appendix
demonstrates the improved efficiency of the proposed hierarchical edge reconstruction method com-
pared to the decoder in a regular GAE.

Training the LDM. Once the HGAE with the hierarchical edge reconstruction method is trained, we
obtain a set of latent representations Z = {Zi ∈ RD′ | vi ∈ V} encoding both node attributes and
edges. Traditional class-conditional diffusion models typically condition on class labels, including
DoG (Wang et al., 2025), as illustrated in Figure 3 (a). However, in FSNC, the classes in the support
and query sets are novel and disjoint from those used during training. As the diffusion model is
trained prior to test-time adaptation, it cannot directly condition on these unseen class labels. To
overcome this limitation, we leverage the prototypical regularization introduced in the HGAE, which
encourages the latent representations Zi to cluster around their respective prototype representations.
These prototypes, computed as the mean latent representation of each cluster, serve as semantically
meaningful and continuous conditioning signals. Instead of relying on discrete class labels, the
LDM is conditioned directly on the corresponding prototype representation for each training node,
enabling prototype-based conditional generation. As illustrated in Figure 3 (b), each latent feature
is paired with its assigned prototype as the conditioning input under the Classifier-Free Guidance
(CFG) framework (Ho & Salimans, 2022). This design allows the LDM to learn to generate latent
features aligned with the semantic structure of the data without requiring access to class labels. The
training algorithm of FGDM is presented in Algorithm 1 in Section H of the appendix.

3.3 GENERATION OF AUGMENTED GRAPH WITH SYNTHETIC SUPPORT DATA BY FGDM
Generation of Synthetic Graph Structures with FGDM. Once the FGDM is trained, we aim to
generate synthetic graph structures consisting of synthetic support nodes and edges connecting to
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the original graph. We first obtain the cluster label of each of the support nodes obtained from
the prototypical regularization, which is used to get the prototype representation for the conditional
generation of the synthetic graph structure, as illustrated in Figure 4 (b) in the appendix. Let Vsup
be the original support nodes and Vsyn be the synthetic support nodes. Let the node attributes of
Vsyn be Xsyn and the affinity matrix encoding edges between the synthetic nodes and real nodes be
Asyn. Then the synthetic graph structure is denoted as (Vsyn,Xsyn,Asyn). Let M be the number
of nodes in the synthetic graph structure. The adjacency matrix of the augmented graph is Aaug =

[A Asyn;Asyn A] ∈ R(N+M)×(N+M), and the node attributes of the augmented graph is Xaug =

[X;Xsyn] ∈ R(N+M)×D. The augmented graph, which is the combination of the original graph
G and the synthetic graph structure, is then denoted by Gaug = (V ∪ Vsyn,Xaug,Aaug). Let VL =
Vsup∪Vsyn denote the augmented support set. In practice, we generate the synthetic graph structures,
consisting of M = q × n × k synthetic support nodes and their edges connecting to the original
graph, where q denotes the number of synthetic nodes generated per real support node. The value of
q for different tasks on different datasets is selected by cross-validation as detailed in Section G.5.
The augmented support set VL then consists of (q + 1)nk support nodes with (q + 1)k nodes in
each of the n novel classes. The augmented graph Gaug is then encoded using existing few-shot
graph encoders, such as COSMIC (Wang et al., 2023) and COLA (Liu et al., 2024), yielding the
representation for all the nodes in the augmented graph, which is denoted as H ∈ R(N+M)×d. The
generation of the augmented graph is described in Algorithm 2 in Section H of the appendix.

3.4 LOW-RANK TRANSDUCTIVE LINEAR CLASSIFIER FOR FEW-SHOT LEARNING

Due to the inherent stochasticity of diffusion models (Ho et al., 2020; Rombach et al., 2022), the
synthetic graph structures generated by LR-FGDM may introduce noise, leading to semantic mis-
matches between synthetic support nodes and their labels (Azizi et al., 2023; He et al., 2022). To
address this, we follow prior FSNC methods (Wang et al., 2023; Liu et al., 2024) by training a
transductive node classifier on embeddings from a few-shot graph encoder. Motivated by the Low
Frequency Property (LFP) (Rahaman et al., 2019; Arora et al., 2019; Cao et al., 2021; Choraria et al.,
2022; Wang et al., 2024; 2025), which suggests that class labels concentrate on top eigenvectors of
the model’s kernel gram matrix, we introduce a novel low-rank regularization for the classifier with
theoretical guarantees.

Notation Definition. Let u ∈ RN ′
be a vector, we use [u]A to denote a vector formed by elements

of u with indices in A for A ⊆ [N ′]. If u is a matrix, then [u]A denotes a submatrix formed by
rows of u with row indices in A. ∥·∥F denotes the Frobenius norm, and ∥·∥p denotes the p-norm.
Let VFS denote all the nodes from the n novel classes in an n-way k-shot task, and let VL and VU
denote the labeled support set and the unlabeled query set in VFS. Let N denote the number of nodes
in VFS. Let VFS = {v′1, v′2, . . . , v′N}, where v′i is the i-th node in VFS. Let yi ∈ Rn be the ground-
truth one-hot class label vector for v′i in VFS, and define YFS := [y1;y2; . . .yN ] ∈ RN×n be the
ground-truth label matrix defined on the n novel classes for all the nodes in VFS. Let HFS ∈ RN×d

be the representations of all the nodes in VFS. We define F(W) = HFSW as the linear output of the
transductive few-shot classifier with W ∈ Rd×n being the weight matrix. Let K be the gram matrix

of the node representations HFS, which is calculated by K = H⊤
FSHFS ∈ RN×N . Let

{
λ̂i

}N

i=1
with

λ̂1 ≥ λ̂2 . . . ≥ λ̂min{N,d} ≥ λ̂min{N,d}+1 = . . . ,= 0 be the eigenvalues of K.

Low-Rank Transductive Few-Shot Node Classification. In order to encourage the features HFS
or the gram matrix K = H⊤

FSHFS to be low-rank, we explicitly add the truncated nuclear norm
∥K∥r0 :=

∑N
r=r0+1 λ̂i to the loss function of the transductive few-shot node classifier. The starting

rank r0 < min(N, d) is the rank of the features HFS we aim to keep in the node representation, that
is, if ∥K∥r0 = 0, then rank(K) = r0. Therefore, the overall loss function is

min
W

L(W) =
1

m

∑
v′
i∈VL

KL (yi, [softmax (HFSW)]i) + τ∥K∥r0 , (2)

where KL is the KL divergence. τ > 0 is the weighting parameter for the truncated nuclear norm
∥K∥r0 . We use a regular gradient descent to optimize (2) with a learning rate η ∈ (0, 1

λ̂1
). W is

initialized by W(0) = 0, and at the t-th iteration of gradient descent for t ≥ 1, W is updated by

6
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W(t) = W(t−1) − η∇WL(W)|W=W(t−1) . The optimal rank r0 on different datasets is decided by
cross-validation as detailed in Section 4.1 of the appendix.

Motivation of the Low-Rank Regularization. We study how the information of the ground-truth
class label defined on the novel classes is distributed on different eigenvectors of the feature gram
matrix K = H⊤

FSHFS by performing eigen-projection in Section G.9 of the appendix. It is observed
in Figure 6 in Section G.9 of the appendix that the projection of the ground truth labels for the novel
classes mostly concentrates on the top eigenvectors of K, known as the Low Frequency Property
(LFP) widely studied in other areas of machine learning (Rahaman et al., 2019; Arora et al., 2019;
Cao et al., 2021; Choraria et al., 2022; Wang et al., 2024; 2025). We remark that the low-rank
regularization ensures that mostly only the low-rank part of the node representations HFS is used
for the FSNC, so that our transductive node classifier trained by (2) is free of the noise in the high-
rank part of the HFS, thus being robust to the noise in the synthetic graph structures introduced by
LR-FGDM. The low-rank learning is also theoretically justified by Theorem A.1 in Section A of the
appendix, showing that the low-rank learning reduces the kernel complexity and renders a tighter
bound for the test loss.

3.5 LRA-LR-FGDM: IMPROVING LR-FGDM BY LOW RANK ATTENTION

To further improve the performance of LR-FGDM, we introduce LRA-LR-FGDM with a novel
LR-Attention layer, or the LRA layer, which applies self-attention to the output of the LR-FGDM
encoder by F = BHFS, where HFS ∈ RN×d is the low-rank node representations produced by the
LR-FGDM encoder. F is the attention output and B ∈ RN×N is our new attention matrix in the LRA
layer. We recall that the kernel gram matrix of the node features HFS is K = HFSH

⊤
FS. The attention

weight matrix B is set to B = K/λ̂1. The gram matrix KF of the node representations F ∈ RN×d

is then KF = FF⊤ = K3/λ̂2
1. Let {λi}Ni=1 be the eigenvalues of KF with λ1 ≥ λ2 ≥ ...λN ≥ 0,

then we have λi = λ̂3
i /λ̂

2
1 for every i ∈ [N ]. Noting that λi = λ̂i · λ̂2

i /λ̂
2
1 ≤ λ̂i due to λ1 ≥ λi for

all i ∈ [N ], therefore, the LRA layer can reduce the kernel complexity of the kernel gram matrix K,
because the KC of KF is always not greater than that of K. We then train a transductive classifier
on top of F similar to Section 3.4 by minimizing the loss function

min
W

L(W) =
1

m

∑
vi∈VL

KL (yi, [softmax (FW)]i) + τ∥K∥r0 . (3)

Such a linear classifier trained with the LRA layer through the optimization of (3) is termed LRA-
LR-FGDM. It then follows from the above discussion and the upper bound for the test loss (4) in
Theorem A.1 that LRA-LR-FGDM has a lower KC, so that the test loss Utest(t) of LRA-LR-FGDM
can be even lower than that of LR-FGDM, suggesting a better prediction accuracy of LRA-LR-
FGDM than LR-FGDM. This is empirically justified in Table 9 where LRA-LR-FGDM exhibits
lower KC and lower upper bound for the test loss than that of LR-FGDM.

4 EXPERIMENTS

We evaluate the performance of the LR-FGDM for shot augmentation combined with the low-rank
regularization for FSNC. In Section 4.1, we present the implementation details of the proposed LR-
FGDM. In Section 4.2, we present the results for different FSNC settings. An ablation study on
the effectiveness of the prototypical regularization in the HGAE and low-rank regularization on the
few-shot classifier is performed in Section 4.3. In Section 4.4, we perform the efficiency analysis
of LR-FGDM. Additional experiment results are presented in Section G of the appendix. In Sec-
tion G.1, we present the results for FSNC on three additional graph datasets. We also compare
the LR-FGDM against existing state-of-the-art shot augmentation methods in Section G.2. In Sec-
tion G.3, we study the effectiveness of LR-FGDM in reducing the kernel complexity of the kernel
gram matrix and the upper bound for the test loss of the transductive linear classifier in LR-FGDM.
In Section G.4, we study the effectiveness of LR-FGDM on a heterophilic graph dataset, the Roman-
Empire dataset (Platonov et al., 2023). In Section G.5, we present the details about cross-validation
used to select the number of synthetic support nodes. In Section G.6, we perform the sensitivity anal-
ysis of the hyperparameters τ , r0, K, and q. We have proposed the Frechet Node Distance (FND)
and the Frechet Edge Distance (FED) to validate the faithfulness of the synthetic support nodes and
the associated edges with comparison to existing shot augmentation methods in Section G.7. The
statistical significance of the improvements achieved by LR-FGDM in Section 4.2 and Section 4.3 is
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validated by the student t-test detailed in Section G.8. In Section G.9, we analyze how the ground-
truth label signal distributes across the eigenvectors of the feature Gram matrix. In Section G.10, we
study an automatic eigengap-based strategy for selecting r0. In Section G.11, we provide a t-SNE
visualization comparing the embeddings of synthetic nodes generated by LR-FGDM with those of
real nodes in the novel classes. In Section G.12, we conduct an ablation study to evaluate the impact
of the LDM. In Section G.13, we report the training time of LR-FGDM and LRA-LR-FGDM on
the augmented graphs. In Section G.14, we evaluate whether augmented graphs generated by LR-
FGDM preserve key graph structural properties. In our experiments, we apply LR-FGDM on top of
existing FSNC methods, COSMIC (Wang et al., 2023) and COLA (Liu et al., 2024), which are the
most recent state-of-the-art FSNC methods with the best performance.

4.1 IMPLEMENTATION DETAILS

We conduct experiments for FSNC on CoraFull (Bojchevski & Günnemann, 2018), ogbn-arxiv (Hu
et al., 2020), Coauthor-CS (Shchur et al., 2018), DBLP (Tang et al., 2008), Roman-Empire (Platonov
et al., 2023), Amazon-Computers, Amazon-Photo (Shchur et al., 2018), and Citeseer (Sen et al.,
2008), with details in Section D.1 of the appendix. The training settings of LR-FGDM and the
hyper-parameter tuning are described in Section D.2 of the appendix.

Table 1: The overall FSNC results of all methods under different settings. The best result is in bold,
and the second-best result is underlined. The statistical significance of the results is deferred to
Table 17 of the appendix.

Dataset CoraFull ogbn-arxiv
Task 2-way 1-shot 2-way 5-shot 5-way 1-shot 5-way 5-shot 2-way 1-shot 2-way 5-shot 5-way 1-shot 5-way 5-shot

ProtoNet (Snell et al., 2017) 57.10± 2.47 72.71± 2.55 32.43± 1.61 51.54± 1.68 62.56± 2.86 75.82± 2.79 37.30± 2.00 53.31± 1.71
Meta-GNN (Zhou et al., 2019) 75.28± 3.85 84.59± 2.89 55.33± 2.43 70.50± 2.02 62.52± 3.41 70.15± 2.68 27.14± 1.94 31.52± 1.71

GPN (Ding et al., 2020) 74.29± 3.47 85.58± 2.53 52.75± 2.32 72.82± 1.88 64.00± 3.71 76.78± 3.50 37.81± 2.34 50.50± 2.13
G-Meta (Huang & Zitnik, 2020) 78.23± 3.41 89.49± 2.04 60.44± 2.48 75.84± 1.70 63.03± 3.32 76.56± 2.89 31.48± 1.70 47.16± 1.73

TENT (Wang et al., 2022) 77.75± 3.29 88.20± 2.61 55.44± 2.08 70.10± 1.73 70.30± 2.85 81.35± 2.77 48.26± 1.73 61.38± 1.72
KD-FSNC (Wu et al., 2024) 83.92± 2.68 94.08± 2.42 74.55± 2.47 85.89± 2.15 74.86± 3.15 84.67± 2.39 52.74± 2.13 64.91± 1.70

NormProp (Zhang et al., 2025a) 83.61± 2.64 93.87± 2.39 74.21± 2.52 85.47± 2.14 74.33± 3.10 84.36± 2.41 52.37± 2.11 64.28± 1.72
STAR (Liu et al., 2025a) 85.22± 1.69 94.95± 1.48 75.85± 1.72 87.31± 1.55 76.45± 2.03 86.11± 2.10 54.82± 1.75 66.98± 1.25
DoG (Wang et al., 2025) 85.10± 1.98 94.35± 1.82 75.13± 1.56 86.47± 1.13 77.33± 2.31 86.89± 2.21 53.42± 1.47 65.69± 1.85

COSMIC (Wang et al., 2023) 84.32± 2.75 94.51± 2.47 74.93± 2.49 86.34± 2.17 75.71± 3.17 85.19± 2.35 53.28± 2.19 65.42± 1.69
COLA (Liu et al., 2024) 85.83± 1.92 95.17± 1.85 76.47± 2.12 87.83± 1.89 77.12± 2.36 86.42± 2.28 55.24± 2.04 67.52± 1.75
COSMIC (LR-FGDM) 86.21± 2.38 96.74± 2.11 76.93± 2.15 88.81± 1.93 77.68± 2.75 87.24± 2.13 55.48± 2.01 67.59± 1.52

COSMIC (LRA-LR-FGDM) 86.78± 2.07 97.29± 1.88 77.44± 1.95 89.47± 1.72 78.33± 2.14 87.89± 1.96 56.02± 1.73 68.11± 1.49
COLA (LR-FGDM) 87.54± 1.74 97.38± 1.67 78.52± 1.94 89.66± 1.72 79.02± 2.18 88.34± 2.10 57.28± 1.86 69.63± 1.57

COLA (LRA-LR-FGDM) 88.14± 1.62 97.97± 1.55 79.17± 1.80 90.32± 1.59 79.62± 1.93 89.03± 1.84 57.88± 1.71 70.22± 1.48

Dataset Coauthor-CS DBLP
Task 2-way 1-shot 2-way 5-shot 5-way 1-shot 5-way 5-shot 2-way 1-shot 2-way 5-shot 5-way 1-shot 5-way 5-shot

ProtoNet (Snell et al., 2017) 59.92± 2.70 71.69± 2.51 32.13± 1.52 49.25± 1.50 60.97± 2.56 72.81± 2.73 31.31± 1.58 52.26± 1.88
Meta-GNN (Zhou et al., 2019) 85.90± 2.96 90.11± 2.17 52.86± 2.14 68.59± 1.49 82.60± 3.23 86.15± 3.29 67.24± 2.72 72.15± 2.40

GPN (Ding et al., 2020) 84.31± 2.73 90.36± 1.90 60.66± 2.07 81.79± 1.18 79.55± 3.46 85.85± 2.61 59.38± 2.40 75.46± 1.87
G-Meta (Huang & Zitnik, 2020) 84.19± 2.97 91.02± 1.61 59.68± 2.16 74.18± 1.29 80.46± 3.29 88.53± 2.36 63.32± 2.70 75.82± 2.11

TENT (Wang et al., 2022) 87.85± 2.48 91.75± 1.60 63.70± 1.88 76.90± 1.19 84.40± 2.73 90.05± 2.34 61.56± 2.23 74.84± 2.04
KD-FSNC (Wu et al., 2024) 89.78± 2.36 93.21± 2.01 67.05± 1.66 84.42± 1.17 91.81± 2.41 94.37± 1.70 74.83± 2.15 83.75± 1.91

NormProp (Zhang et al., 2025a) 89.34± 2.41 93.62± 1.97 67.48± 1.68 84.61± 1.14 91.52± 2.45 94.05± 1.72 75.39± 2.18 84.12± 1.89
STAR (Liu et al., 2025a) 91.28± 1.15 95.41± 1.85 69.25± 1.23 87.60± 1.33 93.10± 1.47 95.52± 1.55 77.14± 1.35 87.10± 1.05
DoG (Wang et al., 2025) 91.10± 1.84 94.88± 1.53 68.96± 1.80 87.35± 1.41 93.55± 1.35 96.05± 1.22 78.87± 1.37 87.59± 1.25

COSMIC (Wang et al., 2023) 90.29± 2.30 94.32± 1.93 68.21± 1.63 85.47± 1.11 92.35± 2.52 94.82± 1.69 76.52± 2.24 85.31± 1.92
COLA (Liu et al., 2024) 91.53± 2.03 95.78± 1.84 70.46± 1.57 87.54± 1.19 93.48± 2.17 95.92± 1.68 78.18± 2.05 87.23± 1.87
COSMIC (LR-FGDM) 92.48± 2.01 96.71± 1.67 70.41± 1.48 87.72± 1.03 94.78± 2.29 96.95± 1.53 78.66± 2.03 87.44± 1.71

COSMIC (LRA-LR-FGDM) 92.94± 1.88 97.24± 1.59 70.90± 1.36 88.21± 1.12 95.33± 2.10 97.44± 1.41 79.11± 1.92 87.96± 1.58
COLA (LR-FGDM) 93.84± 1.85 97.91± 1.56 72.93± 1.41 89.83± 1.11 95.89± 2.03 97.98± 1.47 80.16± 1.88 89.51± 1.65

COLA (LRA-LR-FGDM) 94.33± 1.71 98.41± 1.49 73.46± 1.29 90.39± 1.03 96.41± 1.92 98.52± 1.39 80.65± 1.75 90.07± 1.57

4.2 RESULTS

We compare the performance of the proposed LR-FGDM with state-of-the-art FSNC methods, in-
cluding ProtoNet (Snell et al., 2017), Meta-GNN (Zhou et al., 2019), GPN (Ding et al., 2020),
G-Meta (Huang & Zitnik, 2020), TENT (Wang et al., 2022), KD-FSNC (Wu et al., 2024), Norm-
Prop (Zhang et al., 2025a), COSMIC (Wang et al., 2023), COLA (Liu et al., 2024), and STAR (Liu
et al., 2025a). We also compare LR-FGDM with the diffusion-based synthetic graph structure gen-
eration method DoG (Wang et al., 2025). Since DoG requires label-conditioning during training and
generation, which is unavailable for unseen classes in few-shot settings, we employ semi-supervised
K-means (Basu et al., 2002; Bair, 2013) to obtain pseudo labels as conditioning signals for DoG.
The number of clusters and the number of synthetic nodes are all decided by cross-validation. We
integrate LR-FGDM and LRA-LR-FGDM into COSMIC and COLA, resulting in four variants,
denoted as COSMIC (LR-FGDM), COLA (LR-FGDM), COSMIC (LRA-LR-FGDM), and COLA
(LRA-LR-FGDM). The experiments are conducted for 2-way and 5-way classification tasks, each
with 1-shot and 5-shot settings following (Liu et al., 2024; Wang et al., 2023). The mean accuracy
and standard deviation across 20 independent runs for each setting are reported. It is observed in
Table 1 that LR-FGDM consistently improves the performance of COSMIC and COLA on all the
datasets. For example, COLA (LR-FGDM) outperforms COLA by 2.29% on Coauthor-CS for the
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5-way 5-shot FSNC. LRA-LR-FGDM models show further improved performance over our LR-
FGDM models, which significantly outperform the COSMIC and COLA. The results on the het-
erophilic graph dataset, Roman-Empire, and three additional graph datasets, Amazon-Computers,
Amazon-Photo, and Citeseer, are deferred to Table 10 and Table 6 in the appendix.

4.3 ABLATION STUDY

To thoroughly study the effectiveness of the prototypical regularization in the HGAE and low-rank
regularization on the classifier, we conduct an ablation study on CoraFull, ogbn-arxiv, Coauthor-
CS, and DBLP under the 5-way 5-shot setting for FSNC. We evaluate three variants of the COLA
(LR-FGDM), which are the COLA (LR-FGDM) without the prototypical regularization, COLA
(LR-FGDM) without the low-rank regularization, and COLA (LR-FGDM) without both the low-
rank regularization and the prototypical regularization. It is observed from Table 2 that both the
low-rank regularization on training the few-shot node classifier and the prototypical regularization
on training the HGAE play important roles in improving the performance of the baseline method.

Table 2: Ablation study on the low-rank regularization and the prototypical regularization. The study
is performed under the 5-way 5-shot setting for FSNC. The statistical significance of the results is
deferred to Table 18 of the appendix.

Method CoraFull ogbn-arxiv Coauthor-CS DBLP
COLA (Liu et al., 2024) 87.83 67.52 87.54 87.23
COLA (LR-FGDM) w/o both low-rank and prototypical regularization 88.12 67.91 87.93 87.55
COLA (LR-FGDM) w/o low-rank regularization 88.74 68.60 88.72 88.28
COLA (LR-FGDM) w/o prototypical regularization 88.79 68.45 89.02 88.64
COLA (LR-FGDM) 89.66 69.63 89.83 89.51
COLA (LRA-LR-FGDM) 90.32 70.22 90.39 90.07

4.4 TRAINING EFFICIENCY ANALYSIS

To study the efficiency of the FGDM, we compare the training time between our HGAE with hi-
erarchical edge reconstruction and the regular GAE without hierarchical edge reconstruction. In
addition, we also compare the time for the generation of our FGDM and FGDM without hierar-
chical edge reconstruction in its HGAE. All evaluations are conducted using a single Nvidia A100
GPU. It is observed from the results in Table 3 that the hierarchical edge reconstruction method
significantly reduces the computation cost of the training and synthetic graph structure generation.
For instance, the training of GAE without hierarchical edge reconstruction takes over five times the
training time of our GAE with hierarchical edge reconstruction on ogbn-arxiv. In addition, the hier-
archical edge reconstruction method also significantly reduces the time for synthetic graph structure
generation. For instance, the data generation without the hierarchical edge reconstruction method
takes over four times the data generation time of our FGDM on ogbn-arxiv.

Table 3: Time for the training of GAE and LDM in FGDM and data generation with FGDM on
different datasets. The training time for the FSNC models on the augmented graphs generated by
FGDM is shown in Table 22 of the appendix.

Datasets Training Time (seconds) Generation Time (s/sample)
HGAE GAE w/o Hierarchical Edge Reconstruction LDM FGDM FGDM w/o Hierarchical Edge Reconstruction

CoraFull 41 129 154 0.067 0.073
Coauthor CS 52 145 179 0.074 0.088
ogbn-arxiv 301 1690 315 0.130 0.426

DBLP 11 16 39 0.049 0.066

5 CONCLUSION

In this paper, we propose a novel node-level graph diffusion method with low-rank feature learn-
ing for FSNC, termed Low-Rank Few-Shot Graph Diffusion Model or LR-FGDM. LR-FGDM ad-
dresses the limitation of data scarcity in few-shot settings by augmenting the support set through a
novel node-level graph diffusion model and enforcing low-rank regularization on the training of the
few-shot node classifier. FGDM integrates a Hierarchical Graph Autoencoder (HGAE) with a hier-
archical edge reconstruction method and a Latent Diffusion Model (LDM). The low-rank regular-
ization is motivated by the Low Frequency Property (LFP) and theoretically justified by a theorem to
show lower generalization error. Extensive experiments on multiple graph benchmark datasets show
that LR-FGDM significantly improves the performance of few-shot node classifiers, demonstrating
superior generalization capabilities compared to state-of-the-art methods.
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A THEORETICAL JUSTIFICATION FOR THE LOW-RANK REGULARIZATION

We have the following theoretical result, Theorem A.1, on the Mean Squared Error (MSE) loss of the
unlabeled query nodes U measured by the gap between [F(W, t)]U and [YFS]U when using the low-
rank feature HFS with r0 ∈ [N ], which is the generalization error bound for the linear transductive
classifier using F(W) = HFSW to predict the labels of the qurey nodes. Similar to existing works
such as (Kothapalli et al., 2023) that use the Mean Squared Error (MSE) to analyze the optimization
and the generalization of GNNs, we employ the MSE loss to provide the generalization error of the
node classifier in the following theorem. It is remarked that the MSE loss is necessary for the
generalization analysis of transductive learning using transductive local Rademacher complexity
(Tolstikhin et al., 2014; Yang, 2025).
Theorem A.1. Let m ≥ cN for a constant c ∈ (0, 1), and r0 ∈ [N ]. Assume that a set L with |L| =
m is sampled uniformly without replacement from [N ], and the remaining nodes VU = VFS \VL are
the test nodes. Then for every x > 0, with probability at least 1 − exp(−x), after the t-th iteration
of gradient descent on the training loss L(W) for all t ≥ 1, we have

Utest(t) :=
1

u
∥[F(W, t)−YFS]U∥

2
F ≤ 2c0L(K,YFS, t)

m
+ c0KC(K) +

c0x

u
, (4)

where c0 is a positive number depending on U,
{
λ̂i

}r0

i=1
, and τ0 with τ20 = maxi∈[N ] Kii.

L(K,YFS, t) :=

∥∥∥∥(Im − η [K]L,L

)t
[YFS]L

∥∥∥∥2
F
, KC is the kernel complexity of the kernel gram

matrix K = HFSH
⊤
FS defined by KC(K) = minr0∈[N ] r0

(
1
u + 1

m

)
+
√
∥K∥r0

(
1√
u
+ 1√

m

)
.

This theorem is proved in Section B of the appendix. Detailed explanation about Theorem A.1 is
deferred to Section B.1 of the appendix.

B THEORETICAL RESULTS

We present the proof of Theorem A.1 in this section.

Proof of Theorem A.1. It can be verified that at the t-th iteration of gradient descent for t ≥ 1, we
have

W(t) = W(t−1) − η [HFS]
⊤
L

[
HFSW

(t−1) −YFS

]
L
. (5)

It follows by (5) that

[HFS]L W(t) = [HFS]L W(t−1) − ηKL,L

[
HFSW

(t−1) −YFS

]
L
, (6)

where KL,L := [HFS]L [HFS]
⊤
L ∈ Rm×m. With F(W, t) = HFSW

(t), it follows by (6) that

[F(W, t)−YFS]L =
(
Im − η [K]L,L

)
[F(W, t− 1)−YFS]L .

It follows from the above equality and the recursion that

[F(W, t)−YFS]L = −
(
Im − η [K]L,L

)t
[YFS]L . (7)

We apply (Yang, 2025, Corollary 3.7) to obtain the following bound for the test loss
1
u∥[F(W, t)−YFS]U∥

2
F:

1

u
∥[F(W, t)−YFS]U∥

2
F ≤ c0

m
∥[F(W, t)−YFS]L∥

2
F + c0 min

0≤Q≤n
r(u,m,Q) +

c0x

u
, (8)
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with

r(u,m,Q) := Q

(
1

u
+

1

m

)
+


√√√√√ N∑

q=Q+1

λ̂q

u
+

√√√√√ N∑
q=Q+1

λ̂q

m

 ,

where c0 is a positive constant depending on U,
{
λ̂i

}r

i=1
, and τ0 with τ20 = maxi∈[N ] Kii.

It follows from (7) and (8) that for every r0 ∈ [N ], we have

1

u
∥[F(W, t)−YFS]U∥

2
F

≤ c0
m

∥∥∥∥(Im − η [K]L,L

)t
[YFS]L

∥∥∥∥2
F
+ c0r0

(
1

u
+

1

m

)
+ c0


√√√√√ N∑

q=r0+1
λ̂q

u
+

√√√√√ N∑
q=r0+1

λ̂q

m

+
c0x

u

1⃝
≤ 2c0

m

∥∥∥∥(Im − η [K]L,L

)t
[YFS]L

∥∥∥∥2
F
+ c0r0

(
1

u
+

1

m

)
+ c0

√
∥K∥r0

(√
1

u
+

√
1

m

)
+

c0x

u
,

(9)

where 1⃝ follows from the Cauchy-Schwarz inequality, (7), and
∑N

q=r0+1 λ̂q = ∥K∥r0 . (4) then
follows directly from (9).

B.1 FURTHER EXPLANATION OF THEOREM A.1

Define F(W, t) := HFSW
(t) as the output of the classifier after the t-th iteration of gradient descent

for t ≥ 1. It is noted that Utest(t) is the test loss of the unlabeled query nodes measured by the
distance between the classifier output F(W, t) and YFS. There are two terms on the upper bound
for the test loss in (4), L(K,YFS, t) and KC(K), which are explained as follows. L(K,YFS, t)
corresponds to the training loss of the node classifier with the ground-truth label for the novel classes.
KC(K) is the kernel complexity (KC), which measures the complexity of the kernel gram matrix
from the node representation HFS. We remark that the TNN ∥K∥r0 appears on the RHS of the upper
bound (4), theoretically justifying why we learn the low-rank features K for FSNC by adding the
TNN ∥K∥r0 to the training loss. Moreover, when the low frequency property holds, L(K,YFS, t)

would be very small with enough iteration number t. K = H⊤
FSHFS is approximately a low-rank

matrix of rank r0 since HFS is approximately a rank-r0 matrix with its TNN optimized through the
optimization of the encoder of the HGAE. A smaller ∥K∥r0 is obtained by optimizing the training
loss in Equation (2), which in turn ensures a smaller kernel complexity (KC) defined in Theorem A.1,
contributing to a smaller generalization bound for transductive node classification.

C COMPLEXITY ANALYSIS OF THE HIERARCHICAL EDGE RECONSTRUCTION
METHOD

In our work, we have proposed an efficient hierarchical edge reconstruction method to reconstruct
the edges connected to a node in the graph. To show its efficiency, we analyze the inference time
complexity and the parameter size of the HGAE with the hierarchical edge reconstruction method.
For comparison, we also analyze the inference time complexity and the parameter size of GAE,
where the hierarchical edge reconstruction method is replaced by a regular edge decoder that directly
reconstructs the adjacency matrix A (Kipf & Welling, 2016a). For ease of comparison, we denote
the number of parameters and inference cost of all the MLP and GAT layers except the hierarchical
edge reconstruction process as SMLP and CMLP, respectively. For a node vi in the graph, let di =∑K

k=1 Ĉik be the number of clusters predicted to be connected to vi. Let D′ be the dimension
of the input feature for the hierarchical edge reconstruction. The inference time complexity of
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HGAE with hierarchical edge reconstruction is O(KD′ + diD
′M + CMLP), where O(KD′) is the

additional complexity for computing the inter-cluster neighbor map and encoding the cluster indices.
O(diD

′M) is the computation cost for computing the intra-cluster neighbor map. In contrast, the
inference time complexity of a regular GAE with a regular edge decoder is O(D′KM + CMLP).
We note that di is upper bounded by the degree of the node vi. In most graph datasets, the average
degree of nodes is usually very small. For instance, on CoraFull, where the average node degree is
6.41, we have di ≤ 6.41. As a result, D′(K+diM) ≪ D′KM . For example, setting K = 200 and
M = 100 on Pubmed, we find that the inference time complexity of HGAE with hierarchical edge
reconstruction is O(841D′ + CMLP), which is much more efficient than the regular edge decoder
whose inference time complexity is O(20000D′+CMLP). In general, the inference time complexity
of HGAE with hierarchical edge reconstruction is much lower than that of GAE with a regular edge
decoder.

Table 4: Statistics of the graph datasets.

Dataset # Nodes # Edges # Features # Classes
CoraFull 19,793 63,421 8,710 70
ogbn-arxiv 169,343 1,166,243 128 40
Coauthor-CS 18,333 81,894 6,805 15
DBLP 40,672 144,135 7,202 137
Roman-Empire 22,662 32,927 64 18
Citeseer 3,327 4,732 3,703 6
Amazon-Computers 13,752 245,861 767 10
Amazon-Photo 7,650 119,081 745 8

D ADDITIONAL EXPERIMENT DETAILS

D.1 DATASETS

To evaluate the performance of our method on FSNC, we conduct experiments on eight widely
used real-world benchmark datasets, which are CoraFull (Bojchevski & Günnemann, 2018), ogbn-
arxiv (Hu et al., 2020), Coauthor-CS (Shchur et al., 2018), DBLP (Tang et al., 2008), Roman-
Empire (Platonov et al., 2023), Amazon-Computers, Amazon-Photo (Shchur et al., 2018), and Cite-
seer (Sen et al., 2008) with their statistics summarized in Table 4. CoraFull is an extended version
of the Cora dataset, constructed from the entire citation network, where nodes represent papers and
edges denote citation links; node classes correspond to paper topics. ogbn-arxiv is a directed ci-
tation graph derived from the arXiv Computer Science category in the Microsoft Academic Graph
(MAG) (Wang et al., 2020a), where nodes are arXiv papers and edges represent citation relations.
Node labels are based on 40 CS subject areas. Coauthor-CS is a co-authorship graph extracted
from MAG during the KDD Cup 2016 challenge, where nodes denote authors and edges indicate
co-authorship. Node features are derived from paper keywords, and node classes correspond to the
authors’ most active research fields. DBLP is another citation network in which nodes represent
papers and edges denote citation links. Node features are based on paper abstracts, and labels corre-
spond to publication venues. Roman-Empire is a synthetic dependency graph designed to simulate
extreme heterophily where adjacent nodes often belong to different classes. Nodes represent words
and edges reflect syntactic dependencies, with class labels assigned based on grammatical roles.
Amazon-Computers and Amazon-Photo are two product co-purchase networks from the Amazon
dataset, where nodes represent products and edges indicate frequently co-purchased items. Node
features are extracted from product reviews, and class labels represent product categories. Citeseer
is a citation network where nodes are scientific publications and edges represent citation links. Node
features are TF-IDF weighted word vectors, and classes correspond to research topics.

D.2 TRAINING SETTINGS OF HGAE AND LDM

The training of the HGAE is divided into two phases. In the first phase, we pre-train the HGAE by
only minimizing the node reconstruction loss and the edge reconstruction loss in Equation (1) for
500 epochs. In the second phase, we minimize LHGAE with the prototypical loss for another 500
epochs. We use the Adam optimizer with a learning rate of 0.001 for the training. The weight decay
is set to 1 × 10−5. We train the LDM in the LR-FGDM after finishing the training of the HGAE.
We use the Adam optimizer with a learning rate of 0.0002 to train the LDM for 1000 epochs.
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The rank parameter r0 and the weighting parameter τ associated with the TNN loss are selected
through cross-validation tailored to each dataset. We define the rank as r0 = ⌈γmin {N, d}⌉,
where γ represents the rank ratio and d is the dimension of the learned node representations. The
hyperparameter γ is searched over the set {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, while the TNN
weight τ is chosen from {0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5}. The number of the
prototype clusters, K, is selected from {5, 10, 15, 20, 25}.

E ILLUSTRATION OF THE SYNTHETIC SUPPORT NODE GENERATION BY
LR-FGDM

Figure 3 illustrates the encoding and decoding process of the node attributes and the associated
edges by the LR-FGDM and the DoG (Wang et al., 2025), with the difference between LR-FGDM
and DoG marked in red.
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Figure 3: Figure (a) and (b) illustrate the training of the DoG (Wang et al., 2025) and the training of
the LR-FGDM, respectively, with the difference between LR-FGDM and DoG marked in red.

Figure 4 illustrates the generation of the synthetic support nodes and the associated synthetic edges
by the LR-FGDM and the DoG (Wang et al., 2025), with the difference between LR-FGDM and
DoG marked in red.
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Figure 4: Figure (a) illustrates the generation of the synthetic support nodes and the associated
synthetic edges by the DoG (Wang et al., 2025). Figure (b) illustrates the generation of the synthetic
support nodes and the associated synthetic edges by the LR-FGDM.

F DETAILS AND STUDIES ON THE HIERARCHICAL EDGE RECONSTRUCTION
METHOD

Figure 5 illustrates the structure of the network used for the hierarchical edge reconstruction in
the HGAE with prototypical regularization. In contrast to the Bi-Level Neighborhood Decoder
(BLND) employed in DoG (Wang et al., 2025) using balanced K-means on node attributes, our
method leverages prototype cluster assignment and prototype representations learned jointly with
the encoder of the HGAE with prototypical regularization, because nodes in the same prototype
cluster have similar latent features, thus tend to connect with each other.

To validate the effectiveness of the hierarchical edge reconstruction method compared to the BLND
proposed in DoG (Wang et al., 2025), we perform an ablation study by comparing the performance of
the LR-FGDM with an ablation model where the hierarchical edge reconstruction module is replaced
by the BLND in DoG (Wang et al., 2025). The ablation model is denoted as LR-FGDM (BLND).
The study is performed for the 5-way 5-shot FSNC task on CoraFull, ogbn-arxiv, Coauthor-CS,
and DBLP. It is observed in Table 5 that LR-FGDM consistently outperforms LR-FGDM (BLND)
across all datasets. For example, LR-FGDM achieves a 1.16% improvement on ogbn-arxiv, high-
lighting the superiority of the proposed hierarchical edge reconstruction method in capturing mean-
ingful structural patterns for few-shot learning. These results underscore the benefits of leveraging
prototype-guided inter-cluster and intra-cluster connectivity over purely attribute-based neighbor-
hood decoders like BLND.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Latent Feature

M
L

P

Inter-Cluster 

Neighbor Map

M
L

P

Intra-Cluster 

Neighbor Map

M
L

P

Embedding Layer

M
L

P

1 . . . K

MLP

.
 
.
 
.
 

. . . 

Concat

Concat

Prototype Representation

Cluster Assignment

H
ie

ra
ch

ic
al

 E
d
g
e 

R
ec

o
n
st

ru
ct

io
n
 L

o
ss

Figure 5: Illustration of the network architecture for the hierarchical edge reconstruction method in
the HGAE with prototypical regularization.

Table 5: Performance comparison between the proposed hierarchical edge reconstruction method
and the Bi-Level Neighborhood Decoder (BLND) in DoG (Wang et al., 2025) for the 5-way 5-shot
FSNC task.

Data CoraFull ogbn-arxiv Coauthor-CS DBLP
LR-FGDM (BLND) 88.52 68.47 88.96 88.37
LR-FGDM 89.66 69.63 89.83 89.51

G ADDITIONAL EXPERIMENT RESULTS

G.1 FEW-SHOT NODE CLASSIFICATION ON CITESEER, AMAZON COMPUTERS, AND
AMAZON PHOTOS

In this section, we further validate the effectiveness of LR-FGDM for FSNC on additional datasets,
including Citeseer (Sen et al., 2008), Amazon Computers (Shchur et al., 2018), and Amazon Pho-
tos (Shchur et al., 2018). Due to the limited number of classes in these three datasets, we follow
(Wu et al., 2024) and only perform FSNC under the 2-way 1-shot and the 2-way 5-shot settings. It is
observed in Table 6 that LR-FGDM consistently improves the performance of COSMIC and COLA
on all three datasets and significantly outperforms all competing FSNC methods. To demonstrate
the statistical significance of the improvements achieved by LR-FGDM over the baseline methods,
we perform t-tests on the few-shot classification accuracies obtained from 20 independent few-shot
tasks for each setting and each dataset. It is observed in Table 7 that models enhanced by LR-FGDM
consistently yield statistically significant improvements over the corresponding methods across all
few-shot settings with p-values p < 0.05.

Table 6: The overall FSNC results of all methods under different settings for Amazon-Computers,
Amazon-Photo, and Citeseer. The node classification accuracy and its standard deviation are in %.
The best result under each setting is in bold, and the second-best result is underlined.

Method Amazon-Computers Amazon-Photo Citeseer
2-way 1-shot 2-way 5-shot 2-way 1-shot 2-way 5-shot 2-way 1-shot 2-way 5-shot

ProtoNet (Snell et al., 2017) 56.67± 2.54 63.11± 2.60 66.74± 2.08 72.64± 1.94 67.39± 1.65 79.02± 2.33
Meta-GNN (Zhou et al., 2019) 60.54± 2.79 68.36± 2.15 69.34± 2.03 76.20± 1.87 67.41± 1.60 79.08± 2.27

GPN (Ding et al., 2020) 63.85± 2.31 71.02± 2.07 72.35± 1.92 77.88± 1.74 69.12± 1.68 80.02± 2.14
G-Meta (Huang & Zitnik, 2020) 62.56± 3.11 71.47± 2.97 70.18± 2.10 77.45± 1.81 65.53± 1.58 78.01± 1.80

TENT (Wang et al., 2022) 77.74± 3.16 86.06± 2.16 84.62± 2.78 86.53± 2.00 75.03± 2.81 85.31± 2.42
KD-FSNC (Wu et al., 2024) 86.92± 1.74 95.30± 0.85 91.08± 2.17 96.60± 0.41 79.48± 2.62 86.43± 1.32

NormProp (Zhang et al., 2025a) 85.10± 2.08 94.35± 1.30 90.42± 2.21 96.15± 0.53 78.41± 2.37 85.60± 1.61
COSMIC (Wang et al., 2023) 87.12± 1.82 95.60± 1.01 91.54± 2.04 96.12± 0.42 79.77± 2.20 86.23± 1.53

COLA (Liu et al., 2024) 87.52± 1.78 95.89± 1.02 91.74± 1.04 96.38± 0.33 80.13± 2.11 87.02± 1.30
COSMIC (LR-FGDM) 88.63± 1.70 96.74± 0.97 92.38± 1.91 97.22± 0.29 80.92± 2.01 87.62± 1.27

COSMIC (LRA-LR-FGDM) 89.12± 1.58 97.25± 0.88 92.87± 1.79 97.71± 0.27 81.38± 1.86 88.15± 1.19
COLA (LR-FGDM) 89.14± 1.66 97.21± 0.89 93.41± 1.75 97.45± 0.26 81.73± 1.84 88.21± 1.23

COLA (LRA-LR-FGDM) 89.63± 1.55 97.74± 0.82 93.92± 1.63 97.96± 0.25 82.25± 1.71 88.74± 1.16
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Table 7: p-values from t-tests comparing COSMIC (LR-FGDM), COLA (LR-FGDM), COSMIC
(LRA-LR-FGDM) and COLA (LRA-LR-FGDM) against their corresponding baseline methods,
COSMIC and COLA, in Table 6.

Dataset Amazon-Computers Amazon-Photo Citeseer
Task 2-way 1-shot 2-way 5-shot 2-way 1-shot 2-way 5-shot 2-way 1-shot 2-way 5-shot

COSMIC (LR-FGDM) 0.026 0.018 0.021 0.012 0.034 0.017
COLA (LR-FGDM) 0.008 0.004 0.006 0.003 0.010 0.005

COSMIC (LRA-LR-FGDM) 0.004 0.003 0.007 0.002 0.004 0.010
COLA (LRA-LR-FGDM) 0.003 0.001 0.001 0.001 0.003 0.002

G.2 COMPARISON WITH EXISTING SHOT AUGMENTATION METHODS

In this section, we compare LR-FGDM with existing shot augmentation methods. IA-FSNC (Wu
et al., 2022) incorporates confidently predicted query nodes as additional labeled instances and in-
troduces noise-based perturbations to the node features. We also compare LR-FGDM with the
best-performing GAN-based synthetic graph structure generation method, Semantic-aware Node
Synthesis (SNS) (Gao et al., 2023b), which is originally proposed to generate synthetic nodes in the
minority class for imbalanced datasets with a Generative Adversarial Network (GAN) (Goodfellow
et al., 2020). SNS is adapted to the FSNC scenario as a baseline for shot augmentation by gen-
erating synthetic support nodes. We further compare LR-FGDM with another shot augmentation
method SMILE (Liu et al., 2025b), which augments the support set using a mix-up strategy. For
a fair comparison, we apply IA-FSNC, SNS, and SMILE to augment the support set in COLA for
5-way 5-shot FSNC in the same manner as LR-FGDM. It is observed in Table 8 that LR-FGDM
always outperforms all the competing shot augmentation methods across multiple graph datasets
and few-shot settings.

Table 8: Comparison of LR-FGDM with existing shot augmentation methods on 5-way 5-shot node
classification. All methods are applied to augment the COLA (Liu et al., 2024). The statistical
significance of the results is deferred to Table 19 of the appendix.

Method CoraFull ogbn-arxiv Coauthor-CS DBLP
COLA (Liu et al., 2024) 87.83 67.52 87.54 87.23
COLA (SMILE) (Liu et al., 2025b) 88.21 68.01 88.02 88.07
COLA (IA-FSNC) (Wu et al., 2022) 88.36 68.17 88.21 88.16
COLA (SNS) (Gao et al., 2023b) 88.49 68.32 88.34 88.28
COLA (LR-FGDM) 89.66 69.63 89.83 89.51
COLA (LRA-LR-FGDM) 90.32 70.22 90.39 90.07

G.3 STUDY ON THE KERNEL COMPLEXITY (KC) AND THE UPPER BOUND FOR THE TEST
LOSS IN THEOREM A.1

In this section, we study the effectiveness of LR-FGDM in reducing the upper bound for the test
loss in Equation (4) and the two terms in it, including the kernel complexity of the kernel gram ma-
trix, KC(K), and the training loss of the node classifier with the ground-truth label, L(K,YFS, t).
The study is performed for 5-way 5-shot node classification tasks on Cora-Full and Coauthor-CS
with two baseline models, COSMIC (Wang et al., 2023) and COLA (Liu et al., 2024), as well as
the corresponding models augmented by LR-FGDM, which are COSMIC (LR-FGDM) and COLA
(LR-FGDM). It is observed from Table 9 that the upper bound for the test loss for the few-shot node
classifiers trained by LR-FGDM is significantly lower than that of the baseline without low-rank
regularization. Furthermore, LR-FGDM achieves substantially lower values in both KC(K) and
L(K,YFS, t) in the upper bound, validating the theoretical motivation behind low-rank regulariza-
tion and confirming the robustness and generalization benefits of LR-FGDM in FSNC.

G.4 EFFECTIVENESS OF LR-FGDM ON HETEROPHILIC GRAPHS

While most existing FSNC studies have primarily targeted homophilous graphs, where connected
nodes tend to share similar labels, many real-world graphs exhibit heterophily, where neighboring
nodes often belong to different classes. In such cases, standard GNN-based few-shot methods face
fundamental limitations, as neighborhood aggregation mechanisms become less effective or even
detrimental to learning discriminative node representations. This poses an even greater challenge
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Table 9: Comparisons on L(K,YFS, t), KC(K), and the upper bound for the test loss. The lowest
values for each dataset are bold, and the second-lowest are underlined. The study is performed for
5-way 5-shot FSNC on CoraFull, ogbn-arxiv, Coauthor-CS, DBLP, and Roman-Empire, and for 2-
way 5-shot FSNC on Amazon-Computers, Amazon-Photo, and Citeseer.

Datasets Terms COSMIC COSMIC
(LR-FGDM)

COSMIC
(LRA-LR-FGDM) COLA COLA

(LR-FGDM)
COLA

(LRA-LR-FGDM)

CoraFull
L(K,YFS, t) 6.44 3.72 3.57 6.38 3.65 3.52

KC 0.35 0.20 0.19 0.40 0.18 0.17
Upper Bound 10.80 7.05 6.78 11.25 6.74 6.52

ogbn-arxiv
L(K,YFS, t) 4.54 4.02 3.89 4.69 3.95 3.82

KC 0.47 0.24 0.23 0.50 0.21 0.20
Upper Bound 9.40 8.20 7.95 9.84 7.97 7.73

Coauthor-CS
L(K,YFS, t) 4.26 3.38 3.29 3.95 3.40 3.32

KC 0.52 0.30 0.29 0.66 0.28 0.23
Upper Bound 7.99 6.25 6.09 7.63 6.16 6.03

DBLP
L(K,YFS, t) 4.63 3.75 3.63 4.41 3.58 3.46

KC 0.48 0.26 0.25 0.53 0.23 0.21
Upper Bound 8.25 6.85 6.63 8.01 6.50 6.32

Amazon-Computers
L(K,YFS, t) 5.12 3.88 3.74 4.95 3.79 3.62

KC 0.44 0.25 0.24 0.47 0.22 0.20
Upper Bound 9.12 7.10 6.93 8.80 6.85 6.60

Amazon-Photo
L(K,YFS, t) 4.41 3.52 3.45 4.28 3.48 3.38

KC 0.39 0.21 0.20 0.42 0.19 0.18
Upper Bound 8.35 6.55 6.40 8.09 6.33 6.12

Citeseer
L(K,YFS, t) 6.92 5.10 4.98 6.78 4.95 4.82

KC 0.58 0.31 0.29 0.61 0.27 0.22
Upper Bound 11.44 8.92 8.70 11.22 8.55 8.32

Roman-Empire
L(K,YFS, t) 8.35 6.62 6.48 8.10 6.55 6.31

KC 0.73 0.42 0.40 0.76 0.38 0.36
Upper Bound 13.92 11.08 10.90 13.55 10.82 10.55

under few-shot conditions, where only a handful of labeled nodes per class are available to guide
the model. To assess the generalization capability of our proposed LR-FGDM in this challenging
scenario, we conduct experiments on the Roman-Empire dataset (Platonov et al., 2023) following
COLA (Liu et al., 2024), which is a syntactic word dependency graph characterized by extreme
heterophily. In this graph, node labels reflect grammatical roles rather than local connectivity, mak-
ing the graph structure highly non-homophilous. To demonstrate the statistical significance of the
improvements achieved by LR-FGDM over the baseline methods, we perform t-tests on the few-
shot classification accuracies obtained from 20 independent few-shot tasks for each setting. It is
observed in Table 11 that models enhanced by LR-FGDM consistently yield statistically significant
improvements over the corresponding methods across all few-shot settings with p-values p < 0.05.

Table 10: FSNC results on the Roman-Empire dataset, which features extreme heterophily. Accu-
racy and standard deviation are reported in %. The best result for each setting is in bold, and the
second-best is underlined.

Method 2-way 1-shot 2-way 5-shot 5-way 1-shot 5-way 5-shot
MAML (Finn et al., 2017) 42.83± 2.31 50.12± 2.24 19.45± 1.20 25.73± 1.41

ProtoNet (Snell et al., 2017) 48.67± 2.65 61.34± 2.47 28.52± 1.69 44.10± 1.72
Meta-GNN (Zhou et al., 2019) 63.45± 3.20 73.28± 2.85 44.80± 2.14 60.33± 2.06

GPN (Ding et al., 2020) 62.10± 3.14 74.01± 2.63 42.73± 2.21 63.45± 1.90
AMM-GNN (Wang et al., 2020b) 65.02± 3.05 76.48± 2.13 48.92± 2.39 66.22± 1.84
G-Meta (Huang & Zitnik, 2020) 66.74± 3.22 78.36± 2.14 50.14± 2.43 66.40± 1.75

TENT (Wang et al., 2022) 66.23± 3.08 77.29± 2.39 45.73± 2.01 61.78± 1.81
KD-FSNC (Wu et al., 2024) 69.15± 2.59 80.16± 2.11 58.92± 2.34 73.28± 1.90

NormProp (Zhang et al., 2025a) 69.02± 2.67 80.13± 2.14 57.84± 2.30 72.46± 1.92
COSMIC (Wang et al., 2023) 71.84± 2.71 82.35± 2.26 60.25± 2.42 75.33± 2.05

COLA (Liu et al., 2024) 70.96± 2.44 81.48± 2.09 59.31± 2.37 74.02± 1.88
COSMIC (LR-FGDM) 73.38± 2.56 83.79± 2.18 61.45± 2.34 76.52± 1.91

COSMIC (LRA-LR-FGDM) 73.89± 2.31 84.33± 2.01 61.98± 2.12 77.04± 1.78
COLA (LR-FGDM) 75.62± 2.35 85.41± 2.02 63.18± 2.11 78.23± 1.76

COLA (LRA-LR-FGDM) 76.17± 2.18 85.93± 1.89 63.69± 1.97 78.79± 1.63

G.5 CROSS-VALIDATION ON THE NUMBER OF SYNTHETIC NODES

The number of synthetic nodes generated for each novel class given each support node, denoted as q,
plays a crucial role in determining the effectiveness of LR-FGDM. While generating more synthetic
nodes can potentially enrich the support set and provide stronger supervision signals, it may also
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Table 11: p-values from t-tests comparing COSMIC (LR-FGDM), COLA (LR-FGDM), COSMIC
(LRA-LR-FGDM), and COLA (LRA-LR-FGDM) against their corresponding baseline methods,
COSMIC and COLA, on Roman-Empire.

Task 2-way 1-shot 2-way 5-shot 5-way 1-shot 5-way 5-shot
COSMIC (LR-FGDM) 0.034 0.024 0.028 0.012

COLA (LR-FGDM) 0.019 0.022 0.013 0.002
COSMIC (LRA-LR-FGDM) 0.007 0.006 0.008 0.005

COLA (LRA-LR-FGDM) 0.004 0.003 0.006 0.003

introduce redundancy or noise if excessive synthetic samples are added. In our experiments, we
select the value of q for different datasets using 5-fold cross-validation over the base training classes.
The value of q is selected from a range of candidate values, including {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

Table 12: The selected number of synthetic nodes per support node (q) for each dataset and few-shot
setting.

Dataset 2-way 1-shot 2-way 5-shot 5-way 1-shot 5-way 5-shot
CoraFull 2 3 3 5

ogbn-arxiv 5 8 5 7
Coauthor-CS 4 6 4 5

DBLP 5 3 4 5

G.6 SENSITIVITY ANALYSIS ON THE HYPERPARAMETERS τ , r0, K , AND q

In this section, we first conduct a sensitivity analysis τ , which is the weighting parameter for the
TNN ∥K∥r0 in Equation 2. The study is performed using COLA (LR-FGDM) on the CoraFull
dataset for the 5-way 5-shot node classification task. We evaluate the performance of the COLA
(LR-FGDM) with τ varying in {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. As shown in Table 13,
although the best performance is achieved at τ = 0.6, the performance of COLA (LR-FGDM)
remains stable across different values of τ . Even the lowest performing setting, τ = 0.1, results in
only a marginal 0.18% decrease in accuracy compared to the best result. In addition, we perform an
ablation study to examine the influence of the rank parameter r0 = ⌈γminN, d⌉, where γ ∈ (0, 1]
controls the effective rank used in the truncated nuclear norm. We evaluate COLA (LR-FGDM)
with γ varying from 0.05 to 0.5. As shown in Table 13, the accuracy is robust to different values
of γ, with the highest performance observed at γ = 0.2. We also conduct an ablation study on the
hyperparameter K, which denotes the number of clusters used for prototype regularization in the
HGAE. We vary K from 5 to 50 with a step size of 5. As shown in Table 13, the performance
remains stable across different values of K, with a slight peak at K = 10. This suggests that the
model is not sensitive to the choice of cluster number, K.

Table 13: Sensitivity analysis on the weighting parameter τ for the TNN, the rank ratio γ used
in r0 = ⌈γmin{N, d}⌉, and the number of clusters K for prototype computation in COLA (LR-
FGDM) for the 5-way 5-shot node classification task on CoraFull.

τ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Accuracy 89.48 89.55 89.59 89.57 89.63 89.66 89.62 89.65 89.58

γ 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Accuracy 89.27 89.44 89.58 89.66 89.62 89.55 89.64 89.60 89.60 89.55

K 5 10 15 20 25 30 35 40 45 50
Accuracy 89.30 89.66 89.58 89.64 89.53 89.59 89.62 89.56 89.48 89.44

Furthermore, we perform a sensitivity analysis to evaluate the effect of the number of synthetic
nodes per support node, q, on FSNC performance under the 5-way 5-shot setting. For each dataset,
we vary q from 1 to 10 and report the mean classification accuracy over 20 tasks. As shown in
Table 14, increasing q generally leads to consistent improvements in performance up to a certain
threshold, beyond which the gains tend to saturate or marginally decline. This trend highlights
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the benefit of augmenting the support set with a moderate number of synthetic nodes, which helps
enhance generalization by enriching the local representation space. Notably, while further increasing
q beyond the optimal value does not continue to improve performance, the resulting degradation is
marginal.

Table 14: Sensitivity analysis on the number of synthetic nodes per support node (q) for four datasets
under the 5-way 5-shot FSNC setting.

q 1 2 3 4 5 6 7 8 9 10
CoraFull 88.71 89.02 89.37 89.51 89.66 89.53 89.59 89.44 89.41 89.40

ogbn-arxiv 67.80 68.21 68.84 69.08 69.33 69.42 69.63 69.59 69.45 69.20
Coauthor-CS 88.33 88.82 89.08 89.31 89.83 89.62 89.54 89.48 89.30 89.12

DBLP 87.93 88.44 88.87 89.02 89.51 89.35 89.29 89.10 88.94 88.91

G.7 QUALITY EVALUATION OF THE AUGMENTED GRAPH

This paper introduces a novel node-level graph diffusion model named FGDM, which synthesizes
the graph structures. The synthetic graph structure, which consists of the synthetic support nodes
and the associated edges, generated by the FGDM, is subsequently combined with the original graph
to form an augmented graph. In Section 4.2, we have shown that the FSNC methods trained on the
augmented graph achieve significantly better performance. In this section, we directly evaluate the
data quality of the synthetic graph structures generated by the FGDM. In the visual domain, the
Frechet Inception Distance (FID) is a widely used metric to evaluate the quality of the synthetic
images generated by the generative models (Brock et al., 2019; Ho et al., 2020). The FID score
measures the similarity between the distribution of the generated images and the distribution of the
real images. To compute the FID score, the pre-trained Inception v3 (Szegedy et al., 2016) is used to
extract the features from both the real images and the generated images, which are then modeled as
the multivariate Gaussian distributions. The FID score is then calculated using the Frechet Distance
(FD) (Brock et al., 2019) between the two multivariate Gaussian distributions modeling the real and
the generated images (Dowson & Landau, 1982). A lower FID score indicates that the generated
images are more similar to the real images, suggesting better quality.

Quality Evaluation of the Synthetic Nodes. Although the Inception model cannot be applied to
the graph data, we can replace the Inception model in the computation of the FID score with the pre-
trained GCN (Kipf & Welling, 2017) for extracting node features to adapt the metric to evaluate the
quality of synthetic nodes generated by the FGDM. To this end, we define the Frechet Node Distance
(FND), which is the FD between the multivariate Gaussians modeling the node features extracted by
pre-trained GCN. We randomly split the nodes from the novel classes in the original graph into two
partitions of equal size, which are the base partition and the test partition. To mitigate the influence
of the randomness, we compute the FND scores with 10 different random splits and report the mean
and the standard deviation of the FND scores across different runs. The FND computed between
the nodes in the test partition and the base partition of the original graph establishes the baseline
of the expected FND score for high-quality support nodes. By computing the FND score between
the features of the synthetic support nodes in the synthetic graph structures generated by the FGDM
and the features of the nodes in the base partition of the original graph, we evaluate the quality of
the synthetic support nodes. For simplicity, we refer to the FND score for the synthetic support
nodes as the FND between their features and the features of the nodes in the base partition of the
original graph. To show the effectiveness of the prototypical regularization in the training of the
HGAE for the PGDM, we also compute the FND for the nodes in the synthetic graph structures
generated by the PGDM without the prototypical regularization. To demonstrate the advantages of
the FGDM over the vanilla diffusion model, the DDPM (Ho et al., 2020), we train a baseline DDPM
model on the input node attributes of the original graph and synthesize the same number of synthetic
nodes as the FGDM. The synthetic edges are then generated by connecting each synthetic node to
its K-nearest neighbors in the original graph using the K-nearest neighbors (KNN) algorithm with
K = ⌈dave⌉, where dave is the average degree of the original graph. The synthetic graph structures,
including the synthetic nodes and edges generated by the baseline DDPM model, are combined with
the original graph to form the augmented graph. Next, we compute the FND score for the nodes in
the synthetic graph structures generated by the baseline DDPM model. In addition, we also compute
the FND for the support nodes generated by three competing shot augmentation methods, including
SMILE (Liu et al., 2025b), IA-FSNC (Wu et al., 2022), and SNS (Gao et al., 2023b). The ablation
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study is performed for the 5-way 5-shot setting of the FSNC. The lower FND scores indicate that
the node features are more similar to the features of nodes in the base partition of the original graph.
It is observed in Table 15 that the FND score of the nodes in the synthetic graph structures generated
by the FGDM is closest to the FND score of the original graph, which demonstrates that the FGDM
generates faithful synthetic nodes.

Table 15: Frechet Node Distance (FND) to the nodes in the base partition of the original graph. The
mean and standard deviation of the FND scores computed with 10 different random splits of the base
partition and the test partition in the original graph are reported. The evaluation is performed for the
5-way 5-shot setting of the FSNC. The FND score for the original graph is computed between the
nodes in the test partition and the nodes in the base partition of the original graph.

Data CoraFull ogbn-arxiv Coauthor-CS DBLP
Baseline DDPM 13.41±0.43 8.95±0.28 10.32±0.41 7.34±0.39
SMILE (Liu et al., 2025b) 10.21±0.39 6.03±0.32 8.21±0.43 6.48±0.34
IA-FSNC (Wu et al., 2022) 9.92±0.41 5.87±0.29 7.88±0.36 6.12±0.37
SNS (Gao et al., 2023b) 9.73±0.40 5.69±0.31 7.45±0.34 6.01±0.33
FGDM (w/o Prototypical Regularization) 9.24±0.48 5.23±0.30 7.13±0.47 5.95±0.36
FGDM 8.10±0.27 4.39±0.30 5.29±0.21 4.08±0.42
Original Graph 7.95±0.32 4.33±0.27 4.21±0.26 3.84±0.33

Quality Evaluation of the Synthetic Edges. Similar to the design of the FND score for evaluat-
ing the quality of synthetic nodes, we replace the Inception model in the computation of FID with
the pre-trained GNN (Zhu et al., 2021) for edge feature extraction to adapt the metric to evaluate
the quality of the synthetic edges generated by the FGDM. To this end, we define Frechet Edge
Distance (FED), which is the FD between the multivariate Gaussians modeling the edge features
extracted by a pre-trained GNN. Similar to the evaluation of the FND, we randomly split the edges
in the original graph into two partitions of equal size, which are the base partition and the test par-
tition. To mitigate the influence of the randomness, we compute the FED scores with 10 different
random splits and report the mean and the standard deviation of the FED across different runs. The
FED computed between the edges in the test partition and the edges in the base partition of the
original graph establishes the baseline of the expected FED score for the high-quality edges. By
computing the FED between the features of edges in the synthetic graph structures generated by the
FGDM and the features of edges in the base partition of the original graph, we evaluate the quality
of the edges in the synthetic graph structures. For simplicity, we refer to the FED score for the
synthetic edges as the FED between their features and the features of edges in the base partition of
the original graph. Similar to the evaluation of the synthetic nodes, we also compute the FED score
for the edges in the synthetic graph structures generated by the FGDM without the prototypical
regularization. We compute the FED score for the edges in the synthetic graph structures gener-
ated by the baseline DDPM model. Since the edges in the synthetic graph structures are generated
by the KNN algorithm, we evaluate the baseline DDPM models using different values of K from
{⌈dave/4⌉, ⌈dave/2⌉, ⌈dave⌉, 2× ⌈dave⌉, 4× ⌈dave/4⌉}. In addition, we also compute the FED for
the edges generated by three competing shot augmentation methods, including SMILE (Liu et al.,
2025b), IA-FSNC (Wu et al., 2022), and SNS (Gao et al., 2023b). The FED score for edges in the
original graph is also computed. We use the same NBFNet (Zhu et al., 2021) pre-trained on the
original graph to extract the edge features for computing the FED score. The ablation study is per-
formed for the 5-way 5-shot setting of the FSNC. Lower FED scores indicate that the edge features
are more similar to the features of edges in the base partition of the original graph. It is observed in
Table 16 that the FED score of the edges in the synthetic graph structures generated by the FGDM is
closest to the FED score of the original graph, which demonstrates that the FGDM generates more
faithful synthetic edges compared to the competing methods.

G.8 IMPROVEMENT STATISTICAL SIGNIFICANCE ANALYSIS

To demonstrate the statistical significance of the improvements achieved by LR-FGDM over the
baseline methods, we perform t-tests on the few-shot classification accuracies obtained from 20 in-
dependent few-shot tasks for each setting. For results in Table 1, we compare COSMIC (LR-FGDM)
and COLA (LR-FGDM) against their corresponding baseline methods, COSMIC and COLA. It is
observed in Table 17 that models enhanced by LR-FGDM consistently yield statistically signifi-
cant improvements over the corresponding methods across all datasets and settings with p-values
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Table 16: Frechet Edge Distance (FED) to the edges in the base partition of the original graph. The
mean and standard deviation of the FED scores computed with 10 different random splits of the base
partition and the test partition in the original graph are reported. The evaluation is performed for the
5-way 5-shot setting of the FSNC. The FED score for the original graph is computed between the
nodes in the test partition and the nodes in the base partition of the original graph.

Data CoraFull ogbn-arxiv Coauthor-CS DBLP
Baseline DDPM (K = ⌈dave/4⌉) 12.17±0.47 8.85±0.30 10.89±0.38 8.05±0.41
Baseline DDPM (K = ⌈dave/2⌉) 11.34±0.36 8.53±0.28 9.43±0.34 7.32±0.33
Baseline DDPM (K = ⌈dave⌉) 10.48±0.39 8.01±0.31 9.04±0.36 6.88±0.32
Baseline DDPM (K = ⌈2× dave⌉) 10.51±0.35 7.96±0.29 9.17±0.37 6.94±0.34
Baseline DDPM (K = ⌈4× dave⌉) 10.92±0.42 8.05±0.33 9.41±0.39 7.10±0.36
SMILE (Liu et al., 2025b) 10.41±0.36 7.89±0.30 8.93±0.34 6.67±0.31
IA-FSNC (Wu et al., 2022) 10.96±0.34 7.80±0.29 8.62±0.33 6.39±0.30
SNS (Gao et al., 2023b) 10.18±0.35 7.77±0.28 8.66±0.32 6.46±0.29
FGDM (w/o Prototypical Regularization) 10.13±0.38 7.70±0.27 8.79±0.35 6.33±0.30
FGDM 8.29±0.30 5.33±0.24 6.56±0.26 5.39±0.27
Original Graph 8.10±0.27 5.14±0.22 6.37±0.25 5.19±0.26

Table 17: p-values from t-tests comparing COSMIC (LR-FGDM), COLA (LR-FGDM), COSMIC
(LRA-LR-FGDM), and COLA (LRA-LR-FGDM) against their corresponding baseline methods,
COSMIC and COLA, in Table 1.

Dataset CoraFull ogbn-arxiv
Task 2-way 1-shot 2-way 5-shot 5-way 1-shot 5-way 5-shot 2-way 1-shot 2-way 5-shot 5-way 1-shot 5-way 5-shot

COSMIC (LR-FGDM) 0.031 0.022 0.018 0.014 0.027 0.039 0.044 0.017
COLA (LR-FGDM) 0.009 0.005 0.006 0.004 0.012 0.007 0.011 0.003

COSMIC (LRA-LR-FGDM) 0.007 0.005 0.008 0.006 0.004 0.003 0.007 0.005
COLA (LRA-LR-FGDM) 0.004 0.003 0.007 0.005 0.006 0.004 0.008 0.002

Dataset Coauthor-CS DBLP
Task 2-way 1-shot 2-way 5-shot 5-way 1-shot 5-way 5-shot 2-way 1-shot 2-way 5-shot 5-way 1-shot 5-way 5-shot

COSMIC (LR-FGDM) 0.013 0.015 0.034 0.025 0.019 0.011 0.027 0.014
COLA (LR-FGDM) 0.007 0.003 0.009 0.004 0.006 0.002 0.005 0.003

COSMIC (LRA-LR-FGDM) 0.006 0.004 0.008 0.007 0.005 0.004 0.009 0.006
COLA (LRA-LR-FGDM) 0.003 0.002 0.006 0.005 0.004 0.001 0.007 0.003

Table 18: p-values from t-tests comparing COLA (LR-FGDM) and COLA (LRA-LR-FGDM) with
the second-best ablation model in Table 2.

Dataset CoraFull ogbn-arxiv Coauthor-CS DBLP
COLA (LR-FGDM) 0.012 0.009 0.043 0.008
COLA (LRA-LR-FGDM) 0.004 0.003 0.007 0.004

Table 19: p-values from t-tests comparing COLA (LR-FGDM) and COLA (LRA-LR-FGDM) with
the second-best ablation model in Table 8.

Dataset CoraFull ogbn-arxiv Coauthor-CS DBLP
COLA (LR-FGDM) 0.025 0.032 0.026 0.018
COLA (LRA-LR-FGDM) 0.005 0.004 0.006 0.003
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p < 0.05. In addition, we further validate the statistical significance of the improvements of COLA
(LR-FGDM) over the ablation models in Table 2 and models augmented by other support set aug-
mentation methods in Table 8. It is observed from Table 18 and Table 19 that COLA (LR-FGDM)
significantly outperforms all competing variants, with all p-values below 0.05, further supporting
the statistical significance of the improvements by LR-FGDM over existing methods.

G.9 EIGEN-PROJECTION AND CONCENTRATION RATIO ANALYSIS

We first compute the eigenvectors U of the feature gram matrix K. Let U(1:r) ∈ RN×r be the top
r-eigenvectors of K and U(r) be the r-th eigenvector of K. Then, the eigen-projection value of the

ground-truth label YFS on U(r) is computed by pr = 1
n

∑n
c=1

∥∥∥U(r)⊤Y
(c)
FS

∥∥∥2
2
/
∥∥∥Y(c)

FS

∥∥∥2
2

for r ∈ [N ],

where Y
(c)
FS is the c-th column of YFS. We let p = [p1, . . . , pN ] ∈ RN . The eigen-projection pr

reflects the amount of the signal in the label projected onto the r-th eigenvector of K, and the signal
concentration ratio of a rank r reflects the proportion of signal projected onto the top r eigenvectors
of K. The signal concentration ratio for rank r is computed by ∥p(1 : r)∥1, where p(1 : r) contains
the first r elements of p. Figure 6 illustrates the eigen-projection and concentration ratio of the
ground truth label on Cora-Full. By the rank r = r0 = 0.2min {N,D′}, the signal concentration
ratio of the ground truth label is 0.792.

Figure 6: Eigen-projection (left) and concentration ratio (right) of the ground truth label on Cora-
Full.

G.10 STUDY ON THE AUTOMATIC SELECTION OF THE RANK r0

We explore an automatic rank-selection strategy based on the eigenvalue decay of the feature ker-
nel Gram matrix K. In particular, we evaluate an eigengap-based method widely used in spec-
tral dimensionality selection, in which r0 is selected at the index corresponding to the largest rel-
ative decay between consecutive eigenvalues (Ng et al., 2001). As a result, r0 is computed as
r0 = argmax1≤i<N

λ̂i−λ̂i+1

λ̂i
. The study is performed using the base FSNC model, COLA (Liu

et al., 2024). As shown in Table 20, the performance of LR-FGDM and LRA-LR-FGDM with the
automatically selected rank r0 is only marginally different from that achieved via cross-validation.
The deviations remain consistently marginal, typically smaller than 0.2%. The results suggest that
the automatic rank-selection strategy based on the eigenvalue decay rate provides an efficient alter-
native to tuning the rank r0, without sacrificing performance.

Table 20: Ablation study on the selection strategy of r0 for the low-rank regularization within LR-
FGDM and LRA-LR-FGDM. Results are reported under the 5-way 5-shot FSNC setting.

Method Selection Method of r0 CoraFull ogbn-arxiv Coauthor-CS DBLP
COLA (Liu et al., 2024) - 87.83 67.52 87.54 87.23
COLA (LR-FGDM) Cross-Validation 89.66 69.63 89.83 89.51
COLA (LR-FGDM) Automatic 89.56 69.68 89.74 89.55
COLA (LRA-LR-FGDM) Cross-Validation 90.32 70.22 90.39 90.07
COLA (LRA-LR-FGDM) Automatic 90.36 70.04 90.21 90.11

G.11 T-SNE VISUALIZATION COMPARING THE SYNTHETIC NODES AND REAL NODES IN THE
NOVEL CLASSES

To provide a more intuitive assessment of the semantic correctness of the generated nodes, we
perform a t-SNE visualization study in this section. The visualization results illustrate the spatial
distribution of the node embeddings of the synthetic nodes generated by LR-FGDM compared to
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the node embeddings of the real nodes in the corresponding few-shot classes. For each of the 5-way
5-shot novel classes, 20 real nodes are randomly sampled, and 20 synthetic nodes are generated
by FGDM for comparison. As illustrated in Figure 7, embeddings of the synthetic nodes produced
by LR-FGDM form compact clusters aligned closely with the real node clusters, demonstrating
that the generated nodes preserve both semantic structure and class-level discriminativeness. These
qualitative results complement the quantitative FND/FED metrics and provide additional evidence
that LR-FGDM generates semantically meaningful node representations.

(a) Cora-Full (b) Coauthor-CS (c) ogbn-arxiv

Figure 7: t-SNE visualization of the embeddings of real nodes and synthetic nodes generated by
FGDM. For each of the 5-way 5-shot novel classes, 20 real nodes are randomly sampled, and 20
synthetic nodes are generated by FGDM for comparison.

G.12 ABLATION STUDY ON THE LDM

To demonstrate the contribution of the proposed generative mechanism, we perform an additional
ablation study in which the LDM in LR-FGDM is replaced with two alternative generative models,
including a Variational Autoencoder (VAE) (Kipf & Welling, 2016a) and a generic diffusion model,
DDPM (Ho et al., 2020). The study is performed using the base FSNC model, COLA (Liu et al.,
2024). The ablation models are denoted as COLA (DDPM) and COLA (VAE). It is observed in Ta-
ble 21 that COLA (LR-FGDM) significantly outperforms the two ablation models, COLA (DDPM)
and COLA (VAE), demonstrating the better quality of the augmented graphs generated by FGDM.

Table 21: Ablation study on the generative model used in LR-FGDM. Results are reported under the
5-way 5-shot FSNC setting.

Method CoraFull ogbn-arxiv Coauthor-CS DBLP
COLA (Liu et al., 2024) 87.83 67.52 87.54 87.23
COLA (DDPM) 88.85 68.35 88.42 88.12
COLA (VAE) 88.47 68.26 88.30 88.07
COLA (LR-FGDM) 89.56 69.68 89.74 89.55

G.13 TRAINING TIME COMPARISON AGAINST BASELINE FSNC METHODS

We report the training time of LR-FGDM and LRA-FGDM when integrated with COSMIC and
COLA on the augmented graphs in Table 22. The evaluation is performed on a single 80G NVIDIA
A100 GPU. It is observed that LR-FGDM introduces additional computational overhead due to the
training of the HGAE, the LDM, and the subsequent low-rank transductive classifier. However, the
increase in training time is moderate relative to the performance improvements it delivers. While
lightweight metric-based methods such as ProtoNet and NormProp remain the fastest, their accu-
racy is substantially lower across all benchmarks. In contrast, strong meta-learning and contrastive
methods already incur significantly higher training costs. LR-FGDM adds only a modest overhead
on top of COSMIC and COLA while consistently improving accuracy on all datasets. Across all
datasets, the increase in training time introduced by LR-FGDM and LRA-LR-FGDM is in the range
of 3.4%–6.2% compared to the corresponding baselines, COSMIC and COLA.

G.14 STRUCTURAL PROPERTY EVALUATION OF THE AUGMENTED GRAPH

To demonstrate that the synthetic edges preserve key graph properties, we evaluate two quantita-
tive graph structural properties, including the small-world property (Telesford et al., 2011) and the
power-law degree distribution property (Clauset et al., 2009; Zhao et al., 2024b). The small-world
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Table 22: Training time comparison (in seconds) and corresponding 5-way 5-shot accuracy (%)
under the 5-way 5-shot setting. The training time for the HGAE and LDM in FGDM and the
generation time of the synthetic graph structures by FGDM are reported in Table 3.

Method CoraFull Coauthor-CS ogbn-arxiv DBLP
Time Acc Time Acc Time Acc Time Acc

ProtoNet 19.4 51.54% 15.8 49.25% 40.6 53.31% 22.9 52.26%
Meta-GNN 83.3 70.50% 68.7 68.59% 125.1 31.52% 92.4 72.15%
GPN 53.0 72.82% 42.4 81.79% 171.8 50.50% 63.7 75.46%
G-Meta 662.5 75.84% 542.1 74.18% 598.4 47.16% 328.9 75.82%
TENT 58.9 70.10% 47.8 76.90% 84.2 61.38% 71.6 74.84%
KD-FSNC 74.6 85.89% 60.8 84.42% 112.3 64.91% 83.5 83.75%
NormProp 22.3 85.47% 18.1 84.61% 41.9 64.28% 25.8 84.12%
STAR 267.4 87.31% 217.6 87.60% 398.5 66.98% 302.7 87.10%
DoG 850.5 86.47% 690.2 87.35% 1225.3 65.69% 1042.4 87.59%
COSMIC 824.9 86.34% 668.2 85.47% 1221.7 65.42% 1015.3 85.31%
COLA 781.6 87.83% 632.3 87.54% 1155.1 67.52% 958.6 87.23%
COSMIC (LR-FGDM) 854.2 88.81% 691.3 87.72% 1266.5 67.59% 1056.3 87.44%
COSMIC (LRA-LR-FGDM) 875.3 89.47% 704.4 88.21% 1295.1 68.11% 1078.1 87.96%
COLA (LR-FGDM) 810.5 89.66% 652.3 89.83% 1200.2 69.63% 992.4 89.51%
COLA (LRA-LR-FGDM) 829.2 90.32% 670.4 90.39% 1221.5 70.22% 1008.2 90.07%

property is measured by the small-world coefficient σ = C/Crand
L/Lrand

where C and L denote the clustering
coefficient and characteristic path length of the augmented graph, and Crand, Lrand are the clustering
coefficient and characteristic path length a degree-preserving random graph. The power-law de-
gree distribution property is measured by the power-law exponent and the Kolmogorov–Smirnov
(KS) statistic between the empirical degree distribution and a fitted power-law. To evaluate the
two structural properties above of the augmented graphs obtained by LR-FGDM, we compute the
small-world coefficient σ and the KS statistic for both the edges in the original graphs and their LR-
FGDM–augmented counterparts across CoraFull, ogbn-arxiv, Coauthor-CS, and DBLP. The study
is performed for the 5-way 5-shot FSNC setting. It is observed in Table 23 that the synthetic graph
structures generated by LR-FGDM exhibit a small-world coefficient σ and power-law exponent α
that closely match those of the original graph, with only marginal deviation in the KS statistic. These
results confirm that the hierarchical edge reconstruction in HGAE successfully preserves both the
small-world characteristics and the heavy-tailed degree patterns of real-world graphs.

Table 23: Structural property evaluation of the augmented graph. We report the small-world coeffi-
cient σ and KS statistic for both the original graph and the LR-FGDM–augmented graph.

Metric Graph CoraFull ogbn-arxiv Coauthor-CS DBLP

σ
Original 3.27 2.56 4.11 2.99

Augmented 3.12 2.48 3.99 2.94

KS Original 0.067 0.054 0.062 0.049
Augmented 0.068 0.056 0.061 0.052

H ALGORITHMS FOR THE TRAINING OF LR-FGDM

We present the training algorithm of the FGDM in Algorithm 1, which comprises two steps. The first
step, which is from Line 1 to Line 5 in Algorithm 1, describes the training of the HGAE. The second
step, which is from Line 6 to Line 10, describes the training of the LDM. Algorithm 2 describes the
generation process for the augmented graph Gaug.

I EFFICIENT COMPUTATION OF THE TNN ∥K∥r0

To approximate the top-r0 eigenvectors, U(r0) ∈ Rn×r0 , of the gram matrix K using the Nyström
method (Kumar et al., 2012), we first sample m landmark points from the training set, indexed by
I ⊂ [n] with |I| = m ≪ n. Let FI ∈ Rm×d be the features corresponding to the landmark set. We
define C = FF⊤

I ∈ Rn×m as the cross-covariance matrix and W = FIF
⊤
I ∈ Rm×m as the gram

matrix on the landmarks. Next, we compute the top-r0 eigen-decomposition of W as W = QΛQ⊤,
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Algorithm 1 Training FGDM (Training the HGAE and the LDM)
Input: The input attribute matrix X, adjacency matrix A, the training epochs of the HGAE tHGAE, the labels

Ybase of the labeled nodes Vbase in the base training set, the training epochs of the LDM tLDM, and the
learning rate η

Output: The parameters of the HGAE ω and the parameters of the LDM θ
1: Obtain the inter-cluster neighbor map C and the intra-cluster neighbor map M by applying balanced K-

Means clustering on X
2: Initialize the parameter ω of the HGAE
3: for t← 1 to tHGAE do
4: Update ω by ω ← ω − η∇ωLHGAE with LHGAE from Eq.(1)
5: end for
6: Compute cluster prototypes {pc} from the latent representations Z using semi-supervised K-means clus-

tering (Bair, 2013)
7: Assign each node to its cluster prototype based on the clustering result
8: Initialize the parameter θ of the LDM
9: Map the node attributes X and the adjacency matrix A to the latent space using the encoder ge of the

HGAE as H = ge(X,A)
10: Train the LDM with CFG (Ho & Salimans, 2022) on latent pairs (Zi,pπ(i)) where pπ(i) is the prototype

associated with node vi
11: return The parameters of the HGAE ω and the parameters of the LDM θ

Algorithm 2 Generation of the Augmented Graph Gaug

Input: The input attribute matrix X, the adjacency matrix A, the set of support nodes Vsup = {v1, . . . , vS},
number of synthetic nodes per support node q, and the prototype assignments {pπ(i)}Si=1

Output: The augmented graph Gaug = (V ∪ Vsyn,Xaug,Aaug)
1: Let M = q × |Vsup|, total number of synthetic nodes
2: Initialize counter m← 1
3: for i← 1 to |Vsup| do
4: for j ← 1 to q do
5: Sample noise ε ∼ N (0, I)
6: Condition on prototype pπ(i) of support node vi

7: Generate latent feature Ẑm using LDM conditioned on pπ(i)

8: m← m+ 1
9: end for

10: end for
11: Decode Ẑ = {Ẑi}Mi=1 to Xsyn and Asyn with the decoder of the HGAE (Xsyn,Asyn) = gd(Ẑ)
12: Form augmented attribute matrix: Xaug = [X;Xsyn]
13: Form augmented adjacency matrix: Aaug = [A Asyn;Asyn A]
14: return Gaug = (V ∪ Vsyn,Xaug,Aaug)
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where Q ∈ Rm×r0 contains the top-r0 eigenvectors and Λ ∈ Rr0×r0 is the diagonal matrix of
corresponding eigenvalues. The Nyström approximation of K is then given by K̃ = CW†C⊤, and
the approximate top-r0 eigenvectors are computed as Ũ(r0) = CQΛ−1/2 ∈ Rn×r0 , which serves
as an efficient approximation to U(r0) with significantly reduced computational cost.

We let Ur0 = Ũ(r0), then the sum of the top-r0 eigenvalues of Kn is approximated by
tr
(
Ur0

⊤KnUr0

)
. Since tr (Kn) =

∑n
i=1 K(xi,xi) =

∑n
i=1 λ̂i, and tr

(
Ur0

⊤KnUr0

)
=

n∑
i=1

(
r∑

s=1

n∑
k=1

[Ur0 ]
⊤
si [Kn]ik [Ur0 ]ks), we can approximate the TNN ∥K∥r0 by ∥K∥r0 =

tr (Kn) − tr
(
Ur0

⊤KnUr0

)
which is separable. In particular, ∥K∥r0 =

∑n
i=1 K(xi,xi) −

n∑
i=1

(
r∑

s=1

n∑
k=1

[Ur0 ]
⊤
si [Kn]ik [Ur0 ]ks

)
. We remark that ∥K∥r0 is ready to be optimized by stan-

dard SGD algorithms because it is separable and expressed as the summation of losses on individual
training data points. We perform the optimization for low-rank transductive few-shot node classifi-
cation in (2) with the approximate TNN ∥K∥r0 instead of the original TNN ∥K∥r0 .
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