Agentic RL Scaling Law: Spontaneous Code Execution
for Mathematical Problem Solving

Xinji Mai’>! Haotian Xu®>’ Xing W? Weinong Wang?>
Yingying Zhang>* Wengiang Zhang"**
LCollege of Intelligent Robotics and Advanced Manufacturing, Fudan University
2Xiaohongshu
3East China Normal University
4Shanghai Key Lab of Intelligent Information Processing,
College of Computer Science and Artificial Intelligence, Fudan University
xjmai230m.fudan.edu.cn,{xuhaotian,wuxing,wangweinong}@xiaohongshu.com

Abstract

Large Language Models (LLMs) often struggle with mathematical reasoning tasks
requiring precise, verifiable computation. While Reinforcement Learning (RL)
from outcome-based rewards enhances text-based reasoning, understanding how
agents autonomously learn to leverage external tools like code execution remains
crucial. We investigate RL from outcome-based rewards for Tool-Integrated Rea-
soning, ZeroTIR, training base LLMs to spontaneously generate and execute Python
code for mathematical problems without supervised tool-use examples. Our central
contribution is we demonstrate that as RL training progresses, key metrics scale pre-
dictably. Specifically, we observe strong positive correlations where increased train-
ing steps lead to increases in the spontaneous code execution frequency, the average
response length, and, critically, the final task accuracy. This suggests a quantifiable
relationship between computational effort invested in training and the emergence of
effective, tool-augmented reasoning strategies. We implement a robust framework
featuring a decoupled code execution environment and validate our findings across
standard RL algorithms and frameworks. Experiments show ZeroTIR significantly
surpasses non-tool ZeroRL baselines on challenging math benchmarks. Our find-
ings provide a foundational understanding of how autonomous tool use is acquired
and scales within Agent RL, offering a reproducible benchmark for future studies.
Code is released at https://github.com/yyht/openrlhf_async_piplinel

1 Introduction

LLMs have demonstrated remarkable capabilities across various domains. However, they often face
challenges when tackling tasks that demand precise, multi-step reasoning and complex computations,
particularly within the realm of mathematics[1} 2]. The inherent nature of next-token prediction often
leads LLMs to generate responses based on high likelihood rather than computational correctness,
hindering their reliability for mathematical problem-solving. Existing approaches to augment the
mathematical abilities of LLMs typically involve Supervised Fine-Tuning (SFT) on specific datasets
or integrating external tools in a controlled manner[3]]. SFT, while potentially effective, often
necessitates extensive, high-quality trajectory data and may constrain the model’s capacity to explore
novel problem-solving strategies, potentially leading to overfitting on specific solution patterns and
sacrificing generalizability. Tool-Integrated Reasoning (TIR) methods, such as the TIR capability
mentioned in the context of Qwen2.5-Math [4], usually depend on specific prompt structures or

t Equal contribution. * Corresponding authors.
39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/yyht/openrlhf_async_pipline

—— Code Usage Freq == AIME 2025 Accuracy ~ — ' Average Response Length

ZeroTIR Training Dynamics

1200
1100
l-r}!“. Vo 1000
IR 35

. 2] 3

900

800

Code Usage Freq
~a
1
B
=
—
Y3
o &
e N
IE b
=
_"<‘
2025 Accuracy

Average Response Length

-
-
"ﬁ_
£
1
=z
AIME

I 0.1

Training Steps

Figure 1: Illustration of Agent RL Scaling Law during Zero-TIR training. The observed trends,
including the non-monotonic scaling of code usage and the positive correlation between training
steps, code usage, response length, and task accuracy, exemplify the core scaling dynamics.

predefined triggers to invoke tools like code interpreters. This paradigm differs fundamentally from
fostering an agent that learns to utilize tools spontaneously based on the emergent needs of the task.

The advent of models like DeepSeek-R1 [5]] has highlighted the significant success of RL in scaling
LLM reasoning capabilities directly from base models, which is also known as ZeroRL. This approach
enables emergent abilities, such as self-correction and reflection, using only outcome-based rewards.
Works like Open DeepResearch [6] have underscored the immense potential of tool invocation within
LLMs. However, the application of agentic tool use, particularly code execution for mathematical
tasks, has received comparatively less attention. We posit that for mathematical problems, precise and
deterministic computation via code execution is often more advantageous than retrieving potentially
noisy textual information from search engines, primarily due to the deterministic nature and rapid
feedback loop of code execution environments[7, |8]]. We also note contemporaneous work, such as
the excellent contribution by TORL [9], which explores the potential of using code execution for
mathematical tasks.

However, we believe that RL from a fine-tuned model with existing tooling capabilities obscures
some important findings. Similar to RL from a model after SFT, it is difficult to observe a relationship
between response length and performance. The paper aims to provide a more comprehensive and
clearer analysis to facilitate community research and reproduction of what we term Agent RL Scaling
Law. We present exhaustive experiments conducted using mainstream community frameworks
(Open-Reasoner-Zero [10], OpenRLHF [11]]) and popular RL algorithms (PPO [12], Reinforce++
[L3]), coupled with an environment server. We investigate how LLMs, initialized from base models,
can spontaneously learn to leverage a Python code execution environment through RL. Our central
hypothesis is that the learning process for utilizing such a tool adheres to discernible patterns, which
we designate as Agent RL Scaling Law.

* We identify and characterize novel Agent RL Scaling Law that govern the autonomous
acquisition of spontaneous code execution skills in ZeroTIR for mathematical reasoning.

* We propose and implement an effective framework, ARL, for training base LLMs to
spontaneously leverage code execution, which can be quickly enabled on the community
mainstream RL training frameworks.

* We provide extensive empirical validation showing that ZTRL model trained with ZeroTIR
significantly outperform non-instrumental ZeroRL baselines on challenging mathematical
benchmarks and SFT-based TIR methods.

By discovering the Agent RL Scaling Law and developing a robust framework to leverage them,
our approach significantly advances the understanding and application of reinforcement learning
for training capable LLM agents that autonomously utilize tools for complex reasoning tasks like
mathematics.

Prompt
There are 81=40320 eight-digit positive integers that use each of the digits 1,2,3,4,5,6,7,8 exactly once. Let N be the number of these integers that are divisible by 22. Find the difference
between N and 2025.

To solve this problem, we need to determine the number of eight-digit integers formed by
the digits 1,2, 3,4,5, 6,7, 8 that are divisible by 22. A number is divisible by 22 if and
only if it is divisible by both 2 and 11

To solve this problem, we need fo find the number of eight-digit integers that use each of the digits 1,2, 3, 4,5, 6,
7,8 exactly once and are divisible by 22. An infeger is divisible by 22 if and only if it is divisible by both 2 and 11

We will use Python to generate all permutations of the digits 1, 2,3, 4,5, 6, 7, 8 and check which of these
permutations form numbers that are divisible by 22. We will then count these numbers and find the difference
between this count and 2025.

1. Divisibility by 2: For a number o be divisible by 2, its last digit must be even. The even
digits available are 2,4, 6, and 8. So, there are 4 choices for the last digit.

2. Divisibility by 11: For a number to be divisible by 11, the difference between the sum of
the digits in the odd positions and the sum of the digits in the even positions must be a
multiple of 11,

Let's write the Python code to solve this problem

*python
import itertools
The sum of all digits (1+2+3+4+5+6+7+8) is 36. Let's denote the digits in the odd positions
as al, a3, a5, a7 and the digits in the even positions as a2, a4, a6, a8. Then, al + a3 + a5 + a7
-(a2'+ a4 + a6 + a8) = 36 - 2(a2 + o4 + b +a8) must be a mulfiple of 11. Since 36 is not

gits to be used

=[1,23456,78]
multiple of 11, 2(a2 + a4 + a6 + a8) must be a multiple of 11. The possible values for a2 + a4 +
a6 + a8 are 11, 22, and 33 (since the sum of four digits from 1 to 8 can range from 10 to 28).

Generate all permutations of the digits
a itertools permutations
[..omitted incorrect combinatorial reasoning...]

Fun eck if a number is divisible by 22
de le._by._22(perm): p Adding up all the valid permutations, we get 2304 + 4032 + 576 = 6912. Since there are 4
Join(map(str, perm)) =
num = int(num_str) 427648,

return num % 22 == 0
Finally, we need to find the difference between N and 2025. So, 27648 - 2025 = 25623,

Count the
t_divisibl

of permutations that are divisible by 22

by._22 = sum({ for perm in permutations if is_dvisible_by._22(perm)) l The answer is 25623.

Given value \ngiven_value = 2025

Calculate the

fference \ndifference = count._divisible_by. 22 - given_value

print((count_divisible_by. 22, difference))
*output
(2304, 279) ﬁ

The number of eight-digit infegers that use each of the digits 1, 2,3, 4,5, 6,7, 8 exactly once and are divisible by
22 is 2304, The difference between this number and 2025 is 279.

"
"
i
n
i
u
"
n
n
i
'
;
"
u
n
i
:
;
"
i
n
n
n
u
n
n
n
u
"
i
Q 1! choices for the last digit, the total number of eight-digit integers divisible by 22 is 6912
i
n
i
:
;
"
n
n
i
:
;
"
u
n
i
:
;
"
i
n
n
n
u
n
n
n
u
"
i
n
i

Figure 2: Example responses to the same prompt, contrasting the code-augmented solution generated
by ZeroTIR (left) with the reasoning-only solution from ZeroRL (right).

2 Related Works

Our research builds upon advancements in LLM reasoning, TIR, and agent reinforcement learning.

2.1 Tool-Integrated Reasoning

To overcome the limitations of purely internal reasoning, particularly in domains requiring calculation
or factual look-up[l14, [15], TIR approaches augment LLMs with external tools. These tools can
range from calculators and search engines to code interpreters. Much existing work implements
TIR through SFT, training models on datasets containing tool invocation examples, or through
carefully designed prompts and controlled mechanisms that trigger tool use under specific conditions,
such as Qwen2.5-Math-TIR [4} [16]]. These methods typically guide or compel the model to use
tools according to predefined patterns or explicit instructions[17]. Our research diverges from these
controlled approaches by focusing on spontaneous tool use. We investigate whether an agent can
learn autonomously, through ZeroRL, when and how to utilize a code execution tool based purely
on maximizing task success reward, without being explicitly instructed or pre-trained on tool-use
trajectories.

2.2 Agent Reinforcement Learning

LLM Agents, capable of autonomous planning, decision-making, and environmental interaction
including tool use, represent a significant evolution [18]]. Reinforcement Learning provides a powerful
paradigm for training these agents. Agent RL has been applied to train LLMs for information retrieval
tasks, with frameworks like Search-R1 [19] and R1-Searcher [20] teaching models to autonomously
query search engines during reasoning using outcome-based rewards[21]]. This principle is also being
applied to computational tools; Contemporaneous work like TORL [9] uses ZeroRL to train agents
for code interpreter use in mathematics. A notable trend in Agent RL is the effectiveness of simpler,
outcome-based rewards over complex process rewards or imitation learning, fostering exploration and
the emergence of novel strategies. We situate our research within the Agent RL landscape, specifically
focusing on the integration of a code execution tool for enhancing mathematical reasoning of base
model. Distinct from search-focused agents and building upon the ZeroRL paradigm, our primary
contribution lies in the systematic identification and analysis of the Agent RL Scaling Law that govern
the learning dynamics of spontaneous tool acquisition across various RL algorithms and frameworks,
providing a foundational understanding and reproducible benchmark for this specific type of Agent
RL.

Thinking Process Answer

Prompt tools [to ap t1 a1 - tx Ak tgyr A1 bre2][\boxed() J r

stop 1 stop 2

*“python python code

extract

P Error Log
Environment 1 ll 1] Or

verify execute Output

Figure 3: Detailed schematic of the interactive rollout process.

3 Methodology

ZeroTIR, trains a base LLM to autonomously utilize a Python code execution environment for mathe-
matical problem-solving through reinforcement learning. This section details the core components of
our framework, including the RL formulation, the interaction mechanism between the LLM and the
code environment, and specific design choices made during implementation and training.

3.1 RL for Spontaneous Code Execution

Our methodology utilizes reinforcement learning to train the LLM agent, primarily employing policy
gradient algorithms such as PPO and REINFORCE variants like Reinforce++. PPO operates as an
actor-critic method, optimizing a policy network m¢ while concurrently training a value network V
to estimate state values, which aids in reducing the variance of policy gradient estimates. The policy
update in PPO typically maximizes a clipped surrogate objective function:

LCLIP(g) =, [min (rtw)At, clip(r,(6),1 — €, 1+ e)At)}

7o (at]st)

where 7,(0) = 250

is the probability ratio between the current policy and the policy used

to collect the data (mg_,,), A, is the estimated advantage at timestep ¢, and € is a hyperparameter
defining the clipping range. The value function Vj is trained concurrently, usually by minimizing the
mean squared error against target values derived from sampled rewards.

A crucial aspect of applying PPO in our setting involves handling the tokens inserted by the external
code execution environment E.oq.. The value function Vy(s;) should not be trained on states s;
corresponding to these environment-generated tokens, as they are not products of the policy 7.
Thus, the value loss computation must mask these states. Furthermore, the advantage estimation
Ay, especially when using Generalized Advantage Estimation (GAE) with A # 1, requires careful
consideration. GAE computes advantages based on temporal difference (TD) errors:

T—t—1
AGAE
AtG = Z (’}/A)l(st+l, where 5t =T¢ + ’)’V¢(8t+1) — V¢(St)
1=0
Here, +y is the discount factor and) is the GAE parameter balancing bias and variance. Since Vi (s;41)
is unreliable or ill-defined if s;;; consists of environment feedback tokens, terms involving these
states can introduce noise or bias into AS4#. A common practice is to effectively mask the influence

of these tokens, potentially by setting A, =0at positions corresponding to environment-inserted
tokens during the policy loss calculation, preventing spurious updates to my. However, we found that
setting A to 1 did not affect the results, so here we set A to 1.

REINFORCE-style algorithms, including Reinforce++, operate differently, typically foregoing an
explicit learned value function. The policy gradient is estimated directly using sampled trajectories.

The general form of the policy gradient objective is:

T-1

Vod(0) =E r, Z Vg log we(at|st)/lt
t=0

where the agent learns by adjusting 6 in the direction suggested by the gradient. The advantage

estimate At in this context is often calculated using the discounted Monte Carlo return G; minus a
baseline b(s;):

T
At = Gt — b(St), where Gt = Z ’}/k_t’l"k
k=t

The baseline b(s;) serves to reduce variance and can be a simple running average of returns or
potentially more sophisticated estimates, but crucially, it doesn’t rely on a learned value function
V5 in the same way PPO does. While the advantage calculation itself is less directly complicated
by the value of environment states, careful reward attribution and ensuring only policy-generated
actions (a; corresponding to LLM tokens) contribute to the gradient term Vg log g (a¢|s;) remain
essential. Reinforce++ specifically may incorporate advanced baseline techniques or modifications to
the update rule for improved performance compared to vanilla REINFORCE.

Irrespective of the specific algorithm, the overall learning objective remains the maximization of the
expected outcome-based reward R(z,y), regularized by the KL divergence from a reference policy
Tref t0 Maintain stability:

mg,X]EzND,ywﬂg(-\z;Scode) [R(l’, y)] - BDKL [71—0(' \5& gcode) ‘ |7TTef(' ‘l'; gcode)]

Here, z is the input problem, y is the full trajectory including interactions with the code environment
Ecodes R(x,y) is the outcome-based reward, 7, ¢ is the reference policy, D, is the KL divergence,
and controls regularization.

3.2 Training Stability and Efficiency Techniques

Training stability and efficiency are crucial in interactive RL settings like ZeroTIR. To address
potential instability, such as training collapse observed in some ZeroRL frameworks, we employ two
key techniques.

First, we introduce a replay buffer filtering mechanism to enhance stability and focus learning.
Multiple responses generated for the same prompt are grouped, and their final answer accuracy (based
on outcome rewards) is calculated. We filter out groups with accuracy above a high threshold 0.8
or below a low threshold 0.2, prioritizing samples within the intermediate range where the learning
gradient is likely most beneficial.

Second, we implement an efficient interaction mechanism for spontaneous code execution during
rollouts, depicted schematically in Figure [3 and detailed in Algorithm[I] This method leverages
dynamic stop tokens (e.g., “‘python, “‘) to iteratively manage reasoning, code generation, interaction
with the external code environment, and integration of execution feedback. This state-machine
approach is significantly more efficient than generating complete sequences followed by post-hoc
parsing for code extraction. This mechanism also facilitates managing tool interaction frequency by
counting completed execution cycles (n.q1;5). For experimental control, particularly in initial runs
managing computational resources, we enforce a maximum call limit (N4,). Upon reaching this
limit, a notification ("Tool call count has been exhausted. You can no longer call the tool.") is injected
into the context before the final generation resumption, ensuring the agent relies on internal reasoning
thereafter.

3.3 Environment Interaction Frameworks

Effective Agent RL involving external tools necessitates robust and scalable environment interaction.
Integrating execution environments directly into RL training code often creates dependency issues
and hinders modularity. Our initial approach addressed this by implementing the Python code
execution environment as an independent, network-accessible service. This decoupled architecture
enhances robustness compared to embedding the interpreter locally, as service failures do not crash
the main training process. It also improves maintainability and allows the service to be scaled

Algorithm 1 ZeroTIR Rollout with Spontaneous Code Calls
Require: policy 7, prompt P, code env F, call budget NV

1: C+P, T+ 0, k<0

2: while true do

3: (s,0)«+ m.GENERATE(C, {EOS, /boxed{},*‘python,‘})

4: C, T+« C+s,T+s

5: if o € {EOS, /boxed{}} then return T’
6: end if

7: if o = ““‘python then

8: k—k+1

9: if £ > N then return T'
10: end if
11: (c,_) < m.GENERATE(C, {**‘ })
12: C,T«C+ec, T+ec
13: r < E.EXEC(EXTRACT(c))

14: C, T+ C + FM1(r), T + TOKENS(r)
15: elsereturn T'

16: end if

17: end while

Table 1: Performance comparison on key mathematical reasoning benchmarks.
Model Params Tool AIME24 AIME25 MATH500 Avg. Code Prop.

Qwen2.5 Ins. 7B X 13.3% 20.0% 75.8% 36.4% 0.0
Qwen2.5 Ins. 7B v 16.7% 0.0% 76.4% 31.0% 0.0
Qwen2.5 Math Ins. B X 13.3% 6.7% 83.2% 34.4% 0.0
Qwen2.5 Math Ins. 7B v 20.0% 26.7% 78.0% 41.6% 95%
SimpleRL-Zero 7B X 33.3% 6.7% 77.2% 39.1% 0.0
rStar-Math 7B X 26.7% - 78.4% 52.6% 0.0
Eurus-2-PRIME 7B X 26.7% 13.3% 79.2% 39.7% 0.0
TORL 7B v 43.3% 30.0% 82.2% 51.8% 83%
ZTRL 7B v 46.7% 30.0% 85.2% 54.0% 90%

independently using standard web serving technologies like Flask, Gunicorn for concurrency, Nginx
for load balancing, and client-side rate limiting with libraries such as ‘aiolimiter* to handle numerous
concurrent requests stably. The RL framework interacts with this service via standard HTTP calls.

While the decoupled service provides stability and scalability, synchronous interaction can become
a bottleneck. To further improve training throughput, especially for large-scale experiments, we
implemented an enhanced interaction framework within OpenRLHF based on asynchronous rollout
and pipelining. In this setup, each rollout actor manages an asynchronous queue, which is pre-filled
with generated experiences. During training, data retrieval from a queue occurs concurrently with the
submission of a new rollout task to an actor. Experience generation proceeds asynchronously while the
trainer performs parameter updates, and results are collected afterward to refill the queue. An adaptive
mechanism handles potential data shortages in the replay buffer due to filtering by synchronously
collecting completed rollouts when needed, preventing excessive data accumulation at the rollout
actors. This asynchronous pipeline approach yielded significant speedups in our experiments, proving
approximately 1.6 times faster than basic asynchronous rollout and over 4 times faster than the initial
synchronous decoupled server interaction, enabling more extensive experimentation, particularly
with larger models. For detailed design, please refer to our github repository.

4 Experiments

In this section, we detail the experimental setup designed to evaluate our ZeroTIR approach and
validate the existence of Agent RL Scaling Law for spontaneous code execution in mathematical
reasoning. We describe the datasets, baselines, implementation details, and present the core results
demonstrating the effectiveness of our method and the observed scaling phenomena.

4.1 Experimental Setup

Our experiments primarily utilize the Qwen 2.5 Base 7B/32B model, starting directly from pre-trained
weights to align with the ZeroRL philosophy. We implement our ZeroTIR approach using standard
community frameworks OpenRLHF and Open-Reasoner-Zero, and evaluate key RL algorithms
including PPO and Reinforce++. The training dataset consists of ORZ-57k[22] and deepmath[23]]
dataset containing verifiable mathematical problems. We call the model trained in this way ZTRL.
Model performance is evaluated on a suite of standard mathematical reasoning benchmarks such as
MATHS500[24], AIME24/25[25, 26|, HMMT Feb. 24/25[27], cmimc[28]], olymemath[29] and so on,
which are some of the most difficult mathematical data sets out there.

Key RL hyperparameters include a rollout batch size of 128, with 16 samples generated per prompt.
We use 1 policy update step and 12 critic update steps per iteration. Micro-batch sizes for training
and forward passes are set to 1. Stability and efficiency techniques, including group-accuracy replay
buffer filtering and dynamic stop-token based interaction (detailed in Section [3.2)), are employed.
The decoupled code execution environment (Section [3.3) handles all tool calls. For initial scaling
law validation experiments, the maximum tool calls per trajectory were limited (N4, = 20) for
efficiency.The evaluation metrics include greedy decoding (temperature=0), majority voting, pass@Xk,
and the final performance measured under different top-p sampling settings (temperature=1).

4.2 Comparative Performance Analysis

Only Qwen base, beyond Qwen math. To evaluate the effectiveness of our ZeroTIR approach, denoted
ZTRL, we present a comparative analysis in Table|l} This table compares our method, trained on the
Qwen 2.5 Base 7B model, against relevant baselines and state-of-the-art models[30-32].

The results clearly demonstrate the significant advantage of our ZeroTIR approach. Our 7B ZTRL
model achieves a strong average performance of 52.3% across AIME24, AIME25, and MATHS00.
Furthermore, ZTRL at 52.3% average significantly surpasses the performance of the Instruct model
using prompted TIR, and other ZeroRL methods without tool integration like SimpleRL-Zero at
39.1% and Eurus-2-PRIME at 39.7%. Notably, our ZTRL model, trained from the general Qwen 2.5
Base, also outperforms the specialized Qwen 2.5 Math Instruct model when used with its integrated
TIR capability, achieving a 52.3% average compared to 41.6%. We also compare our results with
TORL [9]], significant concurrent work applying ZeroRL with TIR to mathematical reasoning. It is
important to note that the reported TORL results utilized the math-specialized Qwen 2.5 Math Base
model for training. As shown in Table[I] our ZTRL approach, despite starting from the general Qwen
2.5 Base model, achieves a slightly higher average score of 52.3% versus TORL’s 51.8% on the
AIME24, AIME25, and MATH500 benchmarks. This highlights the robustness and effectiveness of
our specific ZeroTIR implementation in eliciting strong tool-augmented reasoning capabilities even
without a domain-specialized base. The high code usage proportion observed for our model, 89%, is
comparable to TORL’s 83% and correlates strongly with the achieved performance, consistent with
the Agent RL Scaling Law discussed.

4.3 Analysis of hyperparameters

Table [2] confirms a strong monotonic relation between the interaction cap Ny, 4, and accuracy across
all model scales. Raising the cap from zero to four or twenty lifts average scores by as much as fifteen
percentage points, though gains taper beyond four calls, underscoring an agent reinforcement-learning
scaling law in which additional tool use yields better problem solving. Performance also grows with
model size. Under identical hyperparameters the 32B model surpasses the 7B variant, which itself
exceeds the 1.5B baseline. The code-usage ratio rises non-linearly, implying that larger models either
resolve more tasks without code or employ code more efficiently. At the 7B scale Reinforce++ and
PPO reach similar final accuracies, yet Reinforce++ converges roughly three hundred steps sooner,
attaining near-optimal performance around step four hundred while PPO needs more than seven
hundred. DeepMath training offers a small but consistent edge over Orz-57k, so Reinforce++ with
DeepMath was selected for 32B runs to combine efficiency and ceiling.

Table[d.3]shows that data choice still matters at high capacity. DeepMath delivers the highest Max
score, sixty percent on HMMT Feb. 25, whereas Orz-trained models provide stronger majority
robustness on CMIMC, fifty-three percent Maj versus thirty-three for DeepMath. Proof-focused
curricula sharpen peak reasoning, while heterogeneous contest data stabilises consensus. Decoding

Table 2: Detailed final performance comparison on selected mathematical reasoning benchmarks.

£ S 03
. s 5 E S
S8 g o3 £ 2 ¢ § 8 E
£ 5 © o £ E E E g -
. g g E E £ £ E = g 2 %
Method Params Algorithm Dataset = /@ 5]] = = S) g =] 151
ZTRL 1.5B ppo orz-57k 0 0 10.0% 3.3% 0.0% 00% 33% 2.0% 55.8% 10.6% 0.000
ZTRL 1.5B ppo orz-57k 2 2 33% 33% 0.0% 0.0% 33% 1.25% 60.6% 10.3% 0.073
ZTRL 1.5B ppo orz-57k 4 4 10.0% 20.0% 10.0% 0.0% 10.0% 5.0% 59.4% 16.3% 2.161
ZTRL 1.5B ppo orz-57k 20 20 13.3% 13.3% 10.0% 0.0% 13.3% 7.75% 62.6% 17.2% 4.090
ZTRL 7B ppo orz-57k 0 4 26.7% 133% 13.3% 6.7% 10.0% 8.2% 80.6% 22.7% 0.143
ZTRL 7B ppo orz-57k 20 20 26.7% 50.0% 10.0% 20.0% 16.7% 13.5% 80.2% 31.0% 3.490
ZTRL 7B Reinforce++ orz-57k 2 2 26.7% 30.0% 16.7% 13.3% 26.7% 12.3% 82.8% 29.7% 3.686
ZTRL 7B Reinforce++ deepmath 2 2 16.7% 36.7% 20.0% 10.0% 20.0% 13.5% 81.0% 29.6% 1.710
ZTRL 7B Reinforce++ deepmath 2 4 16.7% 40.0% 16.7% 16.7% 20.0% 13.2% 80.6% 29.1% 2.417
ZTRL 7B Reinforce++ deepmath 4 2 26.7% 36.7% 16.7% 23.3% 20.0% 12.7% 81.2% 31.3% 2.257
ZTRL 7B Reinforce++ deepmath 4 4 26.7% 33.3% 20.0% 23.3% 20.0% 12.5% 82.0% 32.1% 2.470
ORZ 7B PPO orz-57k 0 0 10.0% 16.7% 0.0% 6.7% 10.0% 7.0% 82.2% 18.9% 0.000
DeepMath-Zero 7B / deepmath 0 0 13.3% 23.3% 13.3% 6.7% 10.0% 7.2% 82.4% 22.3% 0.000
ORZ 32B PPO orz-57k 0 0 30.0% 40.0% 20.0% 20.0% 30.0% 20.8% 90.6% 35.9% 0.000
ZTRL 32B Reinforce++ deepmath 2 2 26.7% 53.3% 20.0% 16.7% 20.0% 16.7% 86.2% 34.2% 1.691
ZTRL 32B Reinforce++ deepmath 2 4 26.7% 50.0% 16.7% 26.7% 23.3% 19.0% 87.8% 35.7% 1.994
ZTRL 32B Reinforce++ deepmath 4 2 33.3% 56.7% 20% 26.7% 33.3% 17.5% 87.8% 39.3% 1.558
ZTRL 32B Reinforce++ deepmath 4 4 30.0% 46.7% 20.0% 23.3% 36.7% 21.8% 89.4% 38.2% 1.863

entropy drives a clear Max—Maj trade-off. With a four-call budget and DeepMath training, raising
top-p from zero point seven to one point zero increases Max by seven points on HMMT Feb. 25 yet
lowers Maj and Avg on several sets. Reduced entropy boosts agreement with only modest loss of
peak score. Lowering the training interaction cap from four to two seldom harms and sometimes
improves evaluation accuracy at cap four. On AIME25 Max rises from fifty to sixty-six percent,
indicating that the large model quickly internalises useful code heuristics and that excessive training
calls may overfit early exploration.

These findings show that very large models benefit less from extreme training interaction budgets,
that dataset diversity and decoding entropy must be tuned jointly to balance peak and robust metrics,
and that curriculum choice remains influential even at the 32B scale.

Table 3: Four training configurations (step = 350) across five math-contest datasets. Train/Test =
interaction limit; orz = orz-57k; dm = deepmath; Max = max@32; Maj = maj@32; P@1 = pass@1;
Avg = avg@32.

| Aorz, 4/4, p=0.7) | B(dm,4/4,p=1.0) | C(dm,2/4,p=1.0) | D(dm, 4/4, p=0.7)

Dataset |Max Maj P@1 Avg|Max Maj P@1 Avg|Max Maj P@1 Avg|Max Maj P@1 Avg
AIME25 63% 53% 35% 35%|50% 40% 28% 27%|66% 40% 30% 29%|56% 36% 31% 30%
AIME24 76% 60% 42% 41%|76% 63% 48% 48% |66% 63% 42% 42%|76% 50% 43% 43%

HMMT Feb.25|53% 20% 19% 19%|60% 33% 25% 25%|50% 23% 22% 22%|50% 33% 22% 22%
HMMT Feb.2453% 33% 25% 24%|53% 33% 25% 24%|46% 26% 22% 22% |50% 40% 26% 26%
CMIMC 60% 53% 34% 34%|63% 33% 30% 30% |63% 33% 30% 30%|56% 33% 31% 31%

4.4 Analysis of Training Dynamics

Figure [presents key training dynamics, offering insights into the learning process and the Agent
RL Scaling Law across different experimental settings. The evolution of code-related metrics is
particularly revealing. Code Proportion, representing spontaneous code usage frequency, consistently
shows an initial dip followed by a significant increase for TIR-enabled models, indicating that
the agent learns the utility of the tool over time after overcoming initial generation challenges.
Concurrently, the Code in Correct metric, tracking correct answers involving code, rises sharply in
conjunction with the Raw Reward Avg, empirically linking effective, learned tool use directly to task
success.

Response Length generally increases with training, especially for larger models, correlating with
the inclusion of code and outputs, though this trend does not perfectly mirror reward improvements
across all settings. The reward curves clearly confirm that enabling tool interaction leads to superior

Avg Repeat Score Avg Response Length Raw Reward Avg

0016

2500

2000

3 0.008

Figure 4: Training dynamics comparing ZeroTIR and ZeroRL in different model and RL algorithm.

performance compared to non-tool baselines, and further illustrate positive scaling with both increased
maximum allowed interactions N,,, and larger model parameter counts.

Interestingly, while ablations show performance benefits from higher N,,,, values, the Code Count
Avg across different settings often stabilizes between 1 and 2 calls per response. This suggests
that although a larger interaction budget is available and beneficial, the agents predominantly learn
strategies involving few interactions. Combining these observations, we conclude that for base models
learning via ZeroTIR, early attempts at multiple interactions might yield poor rewards due to lower
code quality, leading the agent to converge towards highly effective single-call strategies. Indeed,
our analysis indicates that over 90% of correct responses involving code utilize only a single code
execution, with fewer than 10% employing two or more calls, even when permitted.

4.5 Joint scaling of training and inference-time interactions

Figure 5| shows the accuracy obtained when we train agents with 2, 4 or 8 interactions per problem
and then test them with 1-16 interactions. On every benchmark, allowing more interactions at
inference time yields higher scores, but the improvement becomes progressively smaller once the
budget reaches 8—16 steps. The curves also reveal a clear interaction between the two budgets: models
that were trained with many interactions profit the most from a generous inference budget, yet they
can be slightly worse than the low-budget model when only a single step is permitted at test time. In
other words, heavy reliance on multi-step reasoning during training can hurt in the one-shot regime,
while paying off strongly once at least four inference steps are available.

The extent of these effects varies across datasets. On the harder AIME24/25 sets the gap between
the 8-interaction model and the 2-interaction model widens to more than ten percentage points when
sixteen inference steps are allowed, whereas on HMMT24/25 the corresponding gap is around seven
points. Taken together, the results suggest that training and deployment budgets should be aligned: if
an application can only afford one or two reasoning steps it is safer to train with the same constraint,
but if a larger inference budget is feasible, giving the model ample interaction capacity during training
unlocks noticeably better final accuracy.

5 Conclusion

This work investigated the autonomous acquisition of tool use, specifically spontaneous Python
code execution for mathematical reasoning, by base Large Language Models trained via outcome-
based Reinforcement Learning, ZeroTIR. Our central contribution is the identification and empirical
characterization of Agent RL Scaling Law governing this learning process. We showed that training
progression leads to predictable dynamics in tool usage frequency, code quality, response length, and
task accuracy. Key findings include the positive scaling of performance with both model size and

W Training-Time-Interactions-2 W Training-Time-Interactions-2
407 mmm Training-Time-Interactions-4 30{ EEm Training-Time-Interactions-4
35 ||[E TriningTime-Interactions-8 [Training-Time-Interactions-8
25
& 8
Q25 0 20
< <
320 Q15
w w
=15 =
< <10
10
5 5
[— 0 —
~ v L £ N > M2 ™) o
Inference-Time-Interactions Inference-Time-Interactions
(a) AIME24 (b) AIME25
30| =W Training-Time-nteractions-2 25| mmm Training-Time-Interactions-2
@ Training-Time-Interactions-4 @ Training-Time-Interactions-4
[Training-Time-Interactions-8 [Training-Time-Interactions-8
25 20
o~ o~
0 0
15
z z
J15 0
£ £
s s10
= =
10 T
5 5
0 — [¢] —
~ v ™ ® ,\rb ~ Vv ™ 2 ,\,b
Inference-Time-Interactions Inference-Time-Interactions
(c) HMMT?24 (d) HMMT25

Figure 5: Training-Time-Interactions and Inference-Time-Interacrtions. We use average@32 to
compute the score for AIME24, AIME25, HMMT24 and HMMT25. We use 500-step checkpoint for
different training-time-interactions to perform the fair evaluation.

Training-Time-Interactions@2 Training-Time-Interactions@4 Training-Time-Interactions@8

5 s It] 1 T 2 a 5 s B) 1 T 2 @] s B b 1 16
Inference-Time-Interaction-Num Inference Time-Interaction-Num Inference Time-Interaction-Num

(a) training-interaction@2 (b) training-interaction @4 (c) training-interaction @8

Figure 6: Training time interactions and performance (AVG@32). Increasing the inference interaction
number from 2 to 4 to 8 improves all datasets. AIME24 shows the largest and nearly monotonic
gains, and AIME?2S is second. HMMT 24 and 25 rise steadily. CMIMC peaks around 4 interactions
and then slightly declines but remains above 2. The overall average flattens near 8 interactions, so
using 8 interactions gives a good balance between accuracy and cost.

the allowed budget for environment interactions, alongside insights into algorithm efficiency where
Reinforce++ showed faster convergence than PPO in our experiments, and the deepmath dataset
yielded strong results. Crucially, we revealed typical patterns of Tool-Integrated Reasoning usage that
emerge during ZeroRL training. Our analysis of training dynamics and interaction counts suggests
that while increased interaction potential improves results, models often converge to strategies
favoring fewer, high-utility code calls, with a majority of successful tool-using solutions employing
only a single execution. Due to resource limitations, this work primarily focused on empirically
demonstrating the existence and qualitative nature of these scaling law. A rigorous quantitative
analysis to determine the precise mathematical form of these relationships remains an important
direction for future work. Further research should also explore removing constraints on interaction
counts entirely and investigating performance in even more complex agentic environments. Overall,
our findings advance the understanding of autonomous tool learning in Agent RL and provide a
reproducible framework for studying these critical scaling effects.

10

Acknowledgments

This work was supported by National Natural Science Foundation of China (No0.62576109,
62072112, 12471280, 12101241) and a grant from the Shanghai Municipal Education Commis-
sion (N0.2024A101002).

We also thank Zhong-Zhi Li and Jian Hu for valuable advice and discussions.

References

(1]

[2

—

(3]

[4

—_

(3]

[6

—_

(71

(8

—_—

(9]
(10]

(11]

(12]

[13]

(14]

[15]

[16]

(17]

K. Wang, H. Ren, A. Zhou, Z. Lu, S. Luo, W. Shi, R. Zhang, L. Song, M. Zhan, and H. Li, “Mathcoder:
Seamless code integration in ilms for enhanced mathematical reasoning,” arXiv preprint arXiv:2310.03731,
2023.

L. Gao, J. Schulman, and J. Hilton, “Scaling Laws for Reward Model Overoptimization,” arXiv preprint
arXiv:2210.10760, 2022.

H. Wang, L. Li, C. Qu, W. Xu, F. Zhu, Y. Xin, W. Chu, and F. Lin, “AutoCode4Math: Learning Autonomous
Code Integration for Math LLMs,” arXiv preprint arXiv:2409.14668, 2024.

A. Yang, B. Zhang, B. Hui, B. Gao, B. Yu, C. Li, D. Liu, J. Tu, J. Zhou, J. Lin et al., “Qwen2. 5-math tech-
nical report: Toward mathematical expert model via self-improvement,” arXiv preprint arXiv:2409.12122,
2024.

D. Guo, D. Yang, H. Zhang, J. Song, R. Zhang, R. Xu, Q. Zhu, S. Ma, P. Wang, X. Bi et al., “Deepseek-r1:
Incentivizing reasoning capability in llms via reinforcement learning,” arXiv preprint arXiv:2501.12948,
2025.

A. Roucher, A. V. del Moral, T. Wolf, L. von Werra, and E. Kaunisméki, “‘smolagents‘: a smol library to
build great agentic systems.” https://github.com/huggingface/smolagents, 2025.

L. Gao, A. Madaan, S. Zhou, U. Alon, P. Liu, Y. Yang, J. Callan, and G. Neubig, “PAL: Program-Aided
Language Models,” in Advances in Neural Information Processing Systems (NeurIPS), 2022.

W. Chen, X. Ma, X. Wang, W. Weng, B. Sadler, H. Hajishirzi, and M. Ostendorf, “Program of Thoughts
Prompting: Disentangling Computation from Reasoning for Numerical Reasoning,” Transactions on
Machine Learning Research (TMLR), 2023, arXiv:2211.12588.

X. Li, H. Zou, and P. Liu, “Torl: Scaling tool-integrated rl,” arXiv preprint arXiv:2503.23383, 2025.

J. Hu, Y. Zhang, Q. Han, D. Jiang, X. Zhang, and H.-Y. Shum, “Open-reasoner-zero: An open
source approach to scaling reinforcement learning on the base model,” GitHub repository, 2025,
uRL: https://github.com/Open-Reasoner- Zero/Open-Reasoner-Zerol Version accessed relevant to user’s
experiments. [Online]. Available: https://github.com/Open-Reasoner-Zero/Open-Reasoner-Zero

G. Sheng, C. Zhang, Z. Ye, X. Wu, W. Zhang, R. Zhang, Y. Peng, H. Lin, and C. Wu, “Hybridflow: A
flexible and efficient rlhf framework,” arXiv preprint arXiv:2409.19256, 2024.

s

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy optimization algorithms,’
arXiv preprint arXiv:1707.06347, 2017.

J. Hu, “Reinforce++: A simple and efficient approach for aligning large language models,” arXiv preprint
arXiv:2501.03262, 2025.

J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le, D. Zhou et al., “Chain-of-thought
prompting elicits reasoning in large language models,” Advances in neural information processing systems,
vol. 35, pp. 24 824-24 837, 2022.

Z.Hou, P. Du, Y. Niu, Z. Du, A. Zeng, X. Liu, M. Huang, H. Wang, J. Tang, and Y. Dong, “Does RLHF
Scale? Exploring the Impacts from Data, Model, and Method,” arXiv preprint arXiv:2412.06000, 2024.

S. Yao, J. Zhao, D. Yu, N. Du, 1. Shafran, K. Narasimhan, and Y. Cao, “ReAct: Synergizing Reasoning
and Acting in Language Models,” in Proceedings of the 11th International Conference on Learning
Representations (ICLR), 2023.

T. Schick, J. Dwivedi-Yu, R. Dessi, R. Raileanu, M. Lomeli, L. Zettlemoyer, N. Cancedda, and T. Scialom,
“Toolformer: Language Models Can Teach Themselves to Use Tools,” arXiv preprint arXiv:2302.04761,
2023.

11

https://github.com/huggingface/smolagents
https://github.com/Open-Reasoner-Zero/Open-Reasoner-Zero
https://github.com/Open-Reasoner-Zero/Open-Reasoner-Zero

(18]

[19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

(32]

C. Qu, S. Dai, X. Wei, H. Cai, S. Wang, D. Yin, J. Xu, and J.-R. Wen, “Tool learning with large language
models: A survey,” Frontiers of Computer Science, vol. 19, no. 8, p. 198343, 2025.

B. Jin, H. Zeng, Z. Yue, J. Yoon, S. O. Arik, D. Wang, H. Zamani, and J. Han, “Search-r1: Training llms to
reason and leverage search engines with reinforcement learning,” arXiv preprint arXiv:2503.09516, 2025.

S. Sun, X. Jin, Y. Zhou, G. Dong, Y. Zhang, J. Liu, and Z. Dou, “R1-searcher: Incentivizing the search
capability in llms via reinforcement learning,” arXiv preprint arXiv:2503.05592, 2025.

R. Nakano, J. Hilton, S. Balaji, J. Wu, L. Ouyang, C. Kim, C. Hesse, S. Jain, W. Saunders, and J. e. a.
Schulman, “WebGPT: Browser-assisted Question-Answering with Human Feedback,” arXiv preprint
arXiv:2112.09332, 2022.

J. Hu, Y. Zhang, Q. Han, D. Jiang, X. Zhang, and H.-Y. Shum, “Open-reasoner-zero: An open source
approach to scaling up reinforcement learning on the base model,” arXiv preprint arXiv:2503.24290, 2025.

Z.He, T. Liang, J. Xu, Q. Liu, X. Chen, Y. Wang, L. Song, D. Yu, Z. Liang, W. Wang et al., “Deepmath-
103k: A large-scale, challenging, decontaminated, and verifiable mathematical dataset for advancing
reasoning,” arXiv preprint arXiv:2504.11456, 2025.

D. Hendrycks, C. Burns, S. Kadavath, A. Arora, S. Basart, E. Tang, D. Song, and J. Steinhardt, “Measuring
mathematical problem solving with the math dataset,” in NeurIPS Datasets and Benchmarks, 2021.
[Online]. Available: https://arxiv.org/abs/2103.03874

M. Jia, “Aime 2024 dataset card,” https://huggingface.co/datasets/Maxwell-Jia/AIME_2024, version
2024-03.

Mathematical Association of America, “American invitational mathematics examination (aime) problems
and solutions,” https://maa.org/student-programs/amc/, accessed 9 May 2025.

Harvard—-MIT Mathematics Tournament, “Hmmt february problem archive,” https://www.hmmt.org/www/
tournaments/testing, accessed 9 May 2025.

Carnegie Mellon Informatics and Mathematics Competition, “Cmimc math — past problems,” https:
//lcmimc.math.cmu.edu/math, accessed 9 May 2025.

H. Sun, Y. Min, Z. Chen, W. Zhao et al., “Challenging the boundaries of reasoning: An olympiad-level
math benchmark for large language models,” arXiv preprint arXiv:2503.21380, 2025.

W. Zeng, Y. Huang, W. Liu, K. He, Q. Liu, Z. Ma, and J. He, “7b model and 8k examples: Emerging reason-
ing with reinforcement learning is both effective and efficient,” https://hkust-nlp.notion.site/simplerl-reason,
2025, notion Blog.

G. Cui, L. Yuan, Z. Wang, H. Wang, W. Li, B. He, Y. Fan, T. Yu, Q. Xu, W. Chen et al., “Process
reinforcement through implicit rewards,” arXiv preprint arXiv:2502.01456, 2025.

X. Guan, L. L. Zhang, Y. Liu, N. Shang, Y. Sun, Y. Zhu, F. Yang, and M. Yang, “rstar-math: Small llms
can master math reasoning with self-evolved deep thinking,” arXiv preprint arXiv:2501.04519, 2025.

12

https://arxiv.org/abs/2103.03874
https://huggingface.co/datasets/Maxwell-Jia/AIME_2024
https://maa.org/student-programs/amc/
https://www.hmmt.org/www/tournaments/testing
https://www.hmmt.org/www/tournaments/testing
https://cmimc.math.cmu.edu/math
https://cmimc.math.cmu.edu/math
https://hkust-nlp.notion.site/simplerl-reason

A Statistical Evidence of the Scaling Relationship

We sample ~500 training steps batch data and compute the association between code/tool-usage rate
and task accuracy. We observe a strong positive monotonic correlation with Spearman p = 0.686
and extremely small p-values. A log—log linear fit between effective training steps and accuracy
yields R? = 0.93, indicating a predictable trend as the training budget grows. We also observe a
characteristic trajectory from a non-math, non-TIR base: the fraction of responses using code initially
dips (0.142 — 0.002) before rising to a high plateau (>0.98), alongside the accuracy increase after
the inflection.
Table 4: Summary statistics linking tool usage and accuracy.

Statistic Value Note

Spearman p (usage vs. acc.) 0.686 strong positive association
Log-log fit R? (steps vs. acc.) 0.93 high goodness of fit
Early usage dip — plateau 0.142 — 0.002 — >0.98 phase transition pattern

Base-model rationale. Effective tool use is a prerequisite for outcome-only training. We therefore
adopt a base with better tool-utilization priors, which empirically reduces tool over-calling and
hallucination and stabilizes the RL signal.

B Tool-Call Efficiency and ‘“‘Laziness”

We analyze the number of tool invocations per example. Incorrect answers average 2.7 calls versus
1.9 for correct answers. As training progresses, tool calls become more efficient: >90% of correct
code-using cases require a single call. Increasing the maximum allowed interactions Ny, ,x improves
accuracy with diminishing returns beyond ~4; competent models typically solve with 1-2 calls.

Table 5: Tool-call efficiency analysis. Lower calls for correct solutions indicate non-brute-force
behavior.

Metric Value Observation

Avg. calls (incorrect) 2.7 higher than correct
Avg. calls (correct) 1.9 lower, more efficient
Single-call share (correct, code-using) >90% efficiency improves
Benefit of Nyax diminishing beyond ~4 accuracy gains taper off

C Extended ZeroTIR Training and Validation Results

During the extended experiment phase, we reran the ZeroTIR training process up to 1,500 steps
and recorded the average @32 accuracy on all three evaluation benchmarks (AIME24, AIME25, and
HMMT2S5). The complete trend of training-step progression and corresponding validation accuracy
is summarized in Figure[§]

Key observations. Accuracy continues to improve or remain stable up to 1,500 steps, with no
sign of degradation or collapse. Both AIME24 and HMMT?25 exhibit noticeable late-stage gains,
indicating that the agent benefits from additional computation without overfitting to earlier exploration
patterns. These results further support the stability and scalability of the ZeroTIR framework under
long-horizon training.

D Cross-Dataset Generalization and Comparative Trends

To complement the single-run results presented above, we additionally tracked the performance
of ZeroTIR across multiple datasets, iterations, and baselines. Figure [/| visualizes the extended
evaluation curve covering AIME24, AIME25, and the averaged five-dataset setting, compared against
a non-thinking baseline (Claude-Optus4).

13

Evaluation-Curve

d
46 - 0-." o »

—e— Zzero-tir-7b-avg-of-5-datasets
—e- zero-tir-7b-aime25
——
——

Score/AVG@32
(a2
[s+]

zero-tir-7b-aime24

%g 9 + claude optus4 non thinking aime25
%‘21] é zero-tir-7b-avg-of-5-datasets-iter4
10 - —e- zero-tir-7b-aime25-iterd4

2‘ { —e- zero-tir-7b-aime24-iterd

0 100 200 300 400 500 600 700 800 9001000100 200130 400150@600
Training-Steps

Figure 7: Cross-dataset evaluation under prolonged training. The ZeroTIR-7B series demonstrates
stable and monotonic improvement across all datasets up to 1,500 steps, surpassing the non-thinking
baseline and showing no overfitting or collapse.

Observations. The averaged five-dataset curve (blue) provides a robust indicator of global general-
ization, with accuracy continuing to rise smoothly through extended optimization. Both single-task
and averaged variants of ZeroTIR consistently outperform the static baseline across the full training
horizon. These results validate that ZeroTIR’s improvement is not confined to a specific benchmark
but reflects a scalable and transferable training dynamic across diverse reasoning domains.

E Limitations

The strongest results here are math-centric. While the infrastructure is general and decoupled, broader
evaluations across non-math tasks, alternative tools, and efficiency-oriented rewards are left for future
extensions to assess the scope and boundary conditions of the observed scaling behaviors.

Performance under Long Training Steps

45t
40t
3 35[
%30t
©
5
2257
g
20f
15} AIME25
HMMT25
101 —— AIME24
200 400 600 800 1000 1200 1400

Training Steps
Figure 8: Smoothed validation accuracy curves for AIME24, AIME25, and HMMT?25 across 1,500

training steps. Accuracy continues to improve or stabilize, showing no collapse and confirming
late-stage gains.

14

NeurlIPS Paper Checklist

1.

Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and Introduction clearly state three contributions—identifying
Agent RL Scaling Law, providing a ZeroTIR framework, and empirically validating it—and
these are borne out by the methodology in Section 3 and the results in Section 4.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The Conclusion candidly notes resource constraints and that a precise mathe-
matical form of the scaling law is left for future work, explicitly framing these as limitations.

. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The work is empirical; it introduces no new theorems and therefore requires
no formal proofs.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper?

Answer: [Yes]

Justification: Section 4.1 specifies datasets, model sizes, hyper-parameters, and links to an
open GitHub repository, enabling faithful replication of the core experiments.

. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results?

Answer: [Yes]

Justification: Code is publicly released on GitHub, and all referenced datasets are publicly
available, with citations provided for each.

. Experimental setting/details

Question: Does the paper specify all the training and test details necessary to understand the
results?

Answer: [Yes]

Justification: Training batch sizes, optimizer details, interaction limits, and evaluation
protocols appear in Section 4.1 and Table 2, offering sufficient context.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about statistical significance?

Answer: [Yes]
Justification: Results are reported as point accuracies and averages.

. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources needed to reproduce the experiments?

Answer: [Yes]

Justification: The manuscript omits hardware details are given.

15

10.

11.

12.

13.

14.

15.

16.

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics?

Answer: [Yes]

Justification: The study uses only publicly available data, releases code responsibly, involves
no human subjects, and follows standard ethical practice.

Broader impacts

Question: Does the paper discuss both potential positive and negative societal impacts of
the work performed?

Answer:

Justification: The manuscript does not contain a Broader-Impact discussion of how au-
tonomous tool-using LLMs might be beneficial or misused.

Safeguards

Question: Does the paper describe safeguards for responsible release of data or models that
have a high risk for misuse?

Answer:

Justification: Although the model is publicly released, the paper does not outline usage
restrictions, filters, or other safeguards against malicious exploitation.

Licenses for existing assets

Question: Are the creators or original owners of assets properly credited and are the license
and terms of use explicitly mentioned?

Answer: [Yes]

Justification: Prior models and datasets are cited.

New assets

Question: Are new assets introduced in the paper well documented?
Answer: [NA]

Justification: The work does not release a new dataset; the ZTRL model is a fine-tuned
derivative and not provided as a separate asset.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include full instructions and compensation details?

Answer: [NA]
Justification: No crowdsourcing or human-subject research is involved.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks to participants and IRB approvals?
Answer: [NA]

Justification: The study does not involve human subjects and therefore requires no IRB
review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important component of the
core methods?

Answer: [Yes]

Justification: Sections 3 and 4 detail fine-tuning and reinforcement-learning of the Qwen
2.5 base model, making LLM usage central to the method.

16

	Introduction
	Related Works
	Tool-Integrated Reasoning
	Agent Reinforcement Learning

	Methodology
	RL for Spontaneous Code Execution
	Training Stability and Efficiency Techniques
	Environment Interaction Frameworks

	Experiments
	Experimental Setup
	Comparative Performance Analysis
	Analysis of hyperparameters
	Analysis of Training Dynamics
	Joint scaling of training and inference‐time interactions

	Conclusion
	Statistical Evidence of the Scaling Relationship
	Tool-Call Efficiency and ``Laziness''
	Extended ZeroTIR Training and Validation Results
	Cross-Dataset Generalization and Comparative Trends
	Limitations

