BENCHMARKING LARGE LANGUAGE MODELS AS AI RESEARCH AGENTS

Qian Huang, Jian Vora, Percy Liang, Jure Leskovec
Stanford University
{qhwang, jianv, pliang, jure}@cs.stanford.edu

ABSTRACT

Scientific experimentation involves an iterative process of creating hypotheses, designing experiments, running experiments, and analyzing the results. Can we build AI research agents to perform these long-horizon tasks? To take a step towards building and evaluating research agents on such open-ended decision-making tasks, we focus on the problem of machine learning engineering: given a task description and a dataset, build a high-performing model. In this paper, we propose MLAGentBench, a suite of ML tasks for benchmarking AI research agents. Agents can perform actions like reading/writing files, executing code, and inspecting outputs. With these actions, agents could run experiments, analyze the results, and modify the code of entire machine learning pipelines, such as data processing, architecture, training processes, etc. The benchmark then automatically evaluates the agent’s performance objectively over various metrics related to performance and efficiency. We also design an LLM-based research agent to automatically perform experimentation loops in such an environment. Empirically, we find that a GPT-4-based research agent can feasibly build compelling ML models over many tasks in MLAGentBench, displaying highly interpretable plans and actions. However, the success rates vary considerably; they span from almost 90% on well-established older datasets to as low as 10% on recent Kaggle Challenges – unavailable during the LLM model’s pretraining – and even 0% on newer research challenges like BabyLM. Finally, we identify several key challenges for LLM-based research agents such as long-term planning and hallucination. Our code is released at https://github.com/snap-stanford/MLAgentBench.

1 INTRODUCTION

Human researchers have the ability to carry out scientific discoveries that involve open-ended decision-making at every step, diving deep into the realms of the unknown. Equipped with accumulated scientific knowledge, human researchers tread paths less traveled, making groundbreaking discoveries along the way. Such exploratory prowess raises an intriguing question: Is it possible to construct AI research agents with similar capacities? A competent research agent, armed with extensive prior knowledge, should have the capability to independently i) hypothesize new research ideas, and ii) validate these ideas through well-crafted experimental trials. The help of such research agents will enable human researchers to pursue more diverse and ambitious research directions efficiently.

However, evaluating the performance of such research agents that can interact with the environment freely and make open-ended decisions is challenging: the interaction process could be slow, resource-intensive, and hard to evaluate quantitatively. Consequently, we focus on the domain of ML research, where the experiment cycle is relatively short and digital with clear objective metrics (e.g. model accuracy), yet still open-ended and challenging with the execution of arbitrarily complex code and the interactions with different types of data.

Specifically, we focus on the problem of having research agents develop/edit ML models given a task description and a dataset. Such an ML-focused research agent could be very helpful simply for automating the engineering portion of ML research. It would allow ML researchers to carry out many more explorations by instructing research agents to implement and test specific algorithms. To
Figure 1: Overview of MLAgentBench. Each task is specified with a task description (i.e. the goal) and a set of files (which include code and data). Given these, a research agent can perform actions such as reading/writing files and executing python code. During the interaction, we collect interaction traces including each action, observation, and snapshot of the workspace. Finally, the agent is evaluated based on the interaction trace and the final artifact produced (e.g., submission.csv).

To accomplish this, we first need a reliable and deterministic benchmarking environment where an agent can operate, its performance can be measured quantitatively, and be compared with different agents.

In this paper, we propose MLAgentBench, the first benchmark for evaluating AI research agents capable of open-ended decision-making (Figure 1). In essence, our MLAgentBench introduces a general framework for specifying well-scoped executable research tasks and automatically evaluates research agents on these tasks. Concretely, each research task is specified with a task description and a set of necessary files (including starter code and data e.g. Kaggle data package). Given these, a research agent can perform actions like reading/writing files and executing code, similar to the interface used by a human researcher. During the agent’s interaction with the environment, we collect its interaction traces, i.e. agent actions and intermediate snapshots of the workspace, for evaluation.

We evaluate the research agent along three aspects: 1) competence in accomplishing the objectives, e.g. success rate and the average amounts of improvements, 2) reasoning and research process, e.g. how the agent achieved the result or what mistakes it made, and 3) efficiency, measured by the amount of time and resources spent by the agent.

As an initial curation effort, we include 15 ML engineering tasks from diverse domains ranging in various difficulties and recency (Table 1), where the experiments are generally fast to perform and inexpensive. We provide simple starter codes for some of these tasks to ensure that the agent can make submissions properly. For example, one task is to increase a baseline Convolution Neural Networks (CNN) model performance on the cifar10 dataset (Krizhevsky, 2009) by more than 10%. Beyond very well-established datasets like cifar10, we also include a few months old Kaggle challenges and other newer research datasets to see whether the research agent can extrapolate to newer datasets unseen during (pre-)training. In the future, we aim to expand our tasks set to more diverse scientific research tasks in different domains.

In light of the recent development of generative agents based on Large language models (LLMs) (Yao et al., 2022; Shinn et al., 2023; Wang et al., 2023; aut, 2023; Schick et al., 2023; Park et al., 2023), we also design a simple LLM-based research agent that can automatically make research plans, read/edit scripts, perform experiments, interpret results, and continue with next-step experiments over MLAgentBench environments. LLMs have demonstrated impressive prior knowledge ranging from everyday common sense knowledge to specific scientific disciplines as well as great reasoning and tool-using abilities, making them able to act and react to the broader world beyond just direct textual chatting (OpenAI, 2023; Bubeck et al., 2023). On the high level, we simply prompt the LLMs out-of-the-box to provide the next step action, given an automatically constructed prompt based on all known information about the task and prior actions. Many specific components in constructing the prompt take general inspiration from popular techniques for building other LLM-based generative agents, including reasoning before action (Yao et al., 2022), reflection (Shinn et al., 2023), step-by-step planning (aut, 2023), and managing a research log as a memory stream (Park et al., 2023).
addition, we also use hierarchical action and fact-checking step to further improve the stability and factualness of the AI research agent. See more details in Section 3.

Over MLAgentBench, we find that our AI research agent, especially when based on GPT-4, is able to successfully build a better ML model over many tasks and generate highly interpretable dynamic research plans along the process, though still with many drawbacks. On well-established tasks like training a better model over the ogbn-arxiv dataset (Hu et al., 2020), it is able to improve upon baseline prediction successfully almost 90\% of the time, with an average improvement of 48.18\%. However, the research agent struggles with Kaggle Challenges and BabyLM (Warstadt et al., 2023), with only a 0 to 30\% success rate. We then compare results between different variants of our research agent as well as the adaptation of other existing agents. Interestingly, we found that maintaining the memory stream could actively hurt the performance on simple tasks, potentially as a distraction and encouraging agent to pursue complex changes. We also identify several key challenges for LLM-based research agent designs, e.g. how to effectively plan and replan over long horizons and hallucination about the current progress, and show how our design handles them qualitatively. Overall, our research agent demonstrates preliminary feasibility and success with LLM-based research agents, but there is still a long way until they can succeed reliably.

2 MLAgentBench: Benchmarking ML Research Agents

Our MLAgentBench introduces a general framework for specifying well-scoped executable research tasks and automatically evaluating agents on these tasks. The benchmark provides for a disentangled environment and agent side that captures the entire interaction trace of the agent with the environment for evaluation. We then include 15 concrete and diverse machine learning tasks in the benchmark. In the subsequent subsections, we shall be describing some key components of MLAgentBench.

2.1 Task Specification

Our task specification scheme is designed to be general and similar to the human-facing interface, making it easy to add new tasks and translate to collaborating with human researchers in the future. Each research task is specified in two parts:

Task description. In MLAgentBench, the task description describes the desired goal and evaluation metric, e.g. “Given a training script on a dataset train.py, improve upon the current model accuracy”, and how the research agent should submit the final answer for evaluation, e.g. “Save per class probabilities for test set examples to submission.csv”. The description could also include constraints like limiting the model size and training epochs, or occasionally include specific directions to approach the problem like “by fine-tuning a pretrained BERT model”.

Files. In MLAgentBench, we provide the agent with a prepared set of files and data necessary for each task so that the agent should not need to browse the internet. This typically includes training and testing data (without test labels), detailed data and metric descriptions, and some starter code. The starter code is based on diverse ML frameworks, including PyTorch (Paszke et al., 2019), TensorFlow (Abadi et al., 2015), JAX (Bradbury et al., 2018), Keras (Chollet et al., 2015), etc. The starter code mostly implements a simple baseline model that we can compare with during evaluation, but some tasks do have have any baseline implementation, and the agent is responsible for coding up the model from scratch from the task description and dataset files.

2.2 Task Environment

With a task specification as described above, each task in MLAgentBench can be seen as an RL environment where AI research agents can perform actions and receive observations. Some primitive actions that are available in the benchmark include file system operations (read, write, append, copy, edit, undo edit), execution of any arbitrary Python scriptootnote{More broadly this can include more specialized actions like running a biology experiment for a Biology research agent. This has been restricted to Python code execution for an ML research agent.} and a final answer declaration action. Each action is specified with a name, description, usage, return value description, and a Python implementation.
The set of actions that an agent could execute could be augmented with hand-written or generated high-level actions, which have the same interface as a primitive action but perform a composition of multiple actions interleaved with other operations like LLM calls. This can be seen as a modular skill library that provides transferrable high-level skills to all agents across all tasks. At the beginning of each task, MLAgentBench will first prepare a workspace directory for the research agent by copying relevant files and data from the task specification. The task description and information of all available actions are also stored as queriable variables of the environment object.

The research agent can then submit an action name and action arguments as a dictionary to the environment object, which will return back the proper observation as a string. For example, the agent could call `env.execute(Action("Read File", "train.py"))`, and obtain the content of the file `train.py` in the working directory as the observation. The agent can interact with the environment many times until it decides to submit the final answer, or the environment shuts down itself due to exceeding a maximum number of actions or maximum time (both of which are specified as environment variables).

Finally, all actions and snapshots of the workspace after each action is executed are recorded as an interaction trace. We keep track of all the primitive actions which makes it possible to reproduce and analyze the performance irrespective of differing composite skills used by different agents. Thus, the interaction trace captured by the environment is agnostic to agent implementation and can be compared directly across agents.

2.3 EVALUATION

Given the interaction traces collected, we can then evaluate the AI research agent from three aspects:

Competence in accomplishing the objectives. We evaluate a single performance metric based on each final snapshot of the working directory. For most of the tasks, we can simply evaluate the performance (e.g. accuracy) based on the final "submission.csv". We then compute aggregated metrics like success rate at fulfilling the research objective and the average amount of improvement (e.g. upon the baseline solution in the starter code) over multiple runs to test reliability and generalizability.

Reasoning and research process. With the interaction trace collected, we can further evaluate the agent in terms of interpretability and more detailed error modes. We found this process-based evaluation to be more helpful for agent development than a single black box score. To automate this, we can evaluate the interaction trace against a set of rubrics, such as whether the agent was stuck on debugging, by prompting GPT-3.5. However, here we performed a human evaluation due to the unreliability of an LLM-based evaluation.

Efficiency. We evaluate the efficiency in terms of the total amount of wall clock time spent and the total amount of resource cost (i.e. number of tokens for LLM-based agents).

2.4 CONCRETE TASKS

We include 15 tasks from diverse domains including Natural Language Processing, Computer Vision, Time Series prediction, Graph ML, and Tabular data as shown in Table 1. Our tasks include both well-studied datasets like cifar10 and open challenges like Parkinson’s disease progression prediction from Kaggle which were not present in the language model pre-training. The tasks are chosen such that they range in various difficulties and recency to test the generalizability of the research agent and avoid data contamination. They are divided to the following categories:

Canonical Tasks. We included cifar10 (image classification) ([Krizhevsky, 2009]), imdb (sentiment classification) ([Maas et al., 2011]), and ogbn-arxiv (paper category classification over citation network) ([Hu et al., 2020]) as canonical tasks that are well-studied and easy to iterate on. For cifar10 and ogbn-arxiv, the task was to improve a baseline model, but for imdb, the agent was expected to write the model from scratch which involved finetuning a BERT model as mentioned in the task description.

Classic Kaggle. House-price ([Anna Montoya, 2016]) and spaceship-titanic ([Howard et al., 2022]) are two introductory Kaggle challenges for tabular regression and classification. These tasks mainly involve feature engineering, writing, and training models from scratch (no baselines provided), and properly following the Kaggle submission format.
Kaggle Challenges. We select four recent Kaggle Challenges launched from 2 to 10 months ago to test research agents’ ability to generalize to more realistic and out-of-distribution tasks.

Current Research. We include CLRS (Veličković et al., 2022) and BabyLM (Warstadt et al., 2023) as two example datasets that are actively being researched and do not yet have a consensus on the best approaches. CLRS dataset involves modeling classic algorithms over graphs and lists. BabyLM requires training a language model over 10M words.

Improve Code. We include llama-inference and vectorization as two examples where AI research agent is asked to improve the runtime of code instead of optimizing its prediction performance. llama-inference is about improving the autoregressive generation speed of the Llama 7B model (Touvron et al., 2023), and vectorization is about speeding up the inference of a convolutional model with stacks of for loops in the forward pass.

LLM Tools. We also design two scenarios where the research agent is instructed to write LLM-based research tools, which can perform literature review and generate BibTeX from sketch.

More details on the benchmark setup can be found in Appendix A. The above tasks are incorporated as an initial curation and we hope to continuously expand this benchmark with the help of the open-source community.

3 LLM-BASED RESEARCH AGENT

![Research Log](image)

We design a simple LLM-based research agent as shown in Figure 2. On a high level, we prompt the LLM to provide the next step action and action arguments in a JSON format. The prompt starts with a description of all the tools available, the task description, research-specific instructions, a template to instruct LLM to produce text in parsable format, and the historical steps taken (see Appendix D).

Table 1: MLAgentBench tasks.

<table>
<thead>
<tr>
<th>Type</th>
<th>Task</th>
<th>Modality</th>
<th>Dataset Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canonical</td>
<td>Classification</td>
<td>Image</td>
<td>cifar10 (Krizhevsky, 2009)</td>
</tr>
<tr>
<td>Tasks</td>
<td>Classification</td>
<td>Text</td>
<td>imdb (Maas et al., 2011)</td>
</tr>
<tr>
<td>Canonical</td>
<td>Node Classification</td>
<td>Graph</td>
<td>ogbn-arxiv (Hu et al., 2020)</td>
</tr>
<tr>
<td>Classic</td>
<td>Regression</td>
<td>Tabular</td>
<td>house-price (Anna Montoya, 2016)</td>
</tr>
<tr>
<td>Challenges</td>
<td>Classification</td>
<td>Tabular</td>
<td>spaceship-titanic (Howard et al., 2022)</td>
</tr>
<tr>
<td>Current</td>
<td>Regression</td>
<td>Time Series</td>
<td>parkinsons-disease (Kirsch et al., 2023)</td>
</tr>
<tr>
<td>Research</td>
<td>Node Regression</td>
<td>Graph</td>
<td>CLRS (Veličković et al., 2022)</td>
</tr>
<tr>
<td>Improvement</td>
<td>Language Modeling</td>
<td>Text</td>
<td>BabyLM (Warstadt et al., 2023)</td>
</tr>
<tr>
<td>Improve Code</td>
<td>Improve speed</td>
<td>Text</td>
<td>llama-inference</td>
</tr>
<tr>
<td>LLM Tools</td>
<td>Implement tool</td>
<td>n/a</td>
<td>literature-review-tool</td>
</tr>
<tr>
<td></td>
<td>Implement tool</td>
<td>n/a</td>
<td>bibtex-generation</td>
</tr>
</tbody>
</table>

Figure 2: Overview of our LLM-based research agent.
for a full example of what prompt the agent sees at each interaction step). Given the LLM response, we post-process it to action and action arguments for the environment to execute. In the subsequent subsections, we detail some important components of our LLM-based research agent.

3.1 Thinking before Acting

One important component is specifying the response format, so that LLM can first think in specific ways before proposing action. Specifically, we instruct LLM to include a list of entries in the response. In our research agent prototype, this includes Reflection, Research Plan and Status, Fact Check, Thought, and then Action and Action Input. Among these, Thought and Reflection are inspired by React and Refexion (Yao et al., 2022; Shinn et al., 2023). Research Plan and Status entry is designed to produce better planning and keep track of what has been done; Fact Check is added to double-check whether a result has been confirmed or hallucinated. We discuss this more in Appendix B.1 and B.2.

3.2 Research Log

Since the research agent can perform many actions during the entire interaction, it is often infeasible to simply put all historical responses in the context length of LLM. Thus, reducing prompt length is one of the key challenges for generative agents. In our research agent, we use a design similar to the memory stream paradigm from (Park et al., 2023). Specifically, we append a summary of the LLM response and the observation in each step to a Research Log file. Then we can retrieve relevant information from this Research Log, and concatenate with several recent full LLM responses to form the historical context. With this design, the Research Log file itself then also becomes a normal file available for the agent to query and modify, as exemplified by the Reflection action below.

3.3 Hierarchical Actions

We manually designed a few commonly useful high-level actions that perform several primitive environment actions and separate modular LLM calls together. The most important ones are:

Understand File. This action reads a long file and calls another LLM to summarize and retrieve information relevant to a short input query from it.

Reflection. It allows the agent to perform reflection by reading in the content of the Research Log file and prompting another LLM to reflect on a short input query.

Edit Script. This action first reads in a file, calls another LLM to perform an edit of a file given a short input instruction from the main Research agent, then writes the modified version back. We also include a different version, **Edit Script Segment**, which also takes start and end lines as arguments and only edits the segment in between, when the task involves a large code base (i.e. CLRS and BabyLM).

4 Experiments

We evaluate our designed research agent with GPT-4 (OpenAI, 2023) and Claude-1 (Anthropic, 2023) on MLAgentBench. Aside from the full form, we consider a no-retrieval variant, where the Research Log component is removed, and hence the agent has no long-term memory.

We also benchmark the direct adaptation of several existing generative agents: 1) AutoGPT, a popular open-source project for general-purpose autonomous AI agents (aut, 2023), and 2) LangChain, another popular framework that implements various generative agent. Here we use "zero-shot-react-description" which implements ReAct (Yao et al., 2022). We use Claude-1 for both agents.

We conduct 25 runs for all agents using Claude-1, and 8 runs for GPT-4 agents to average out the evaluation metrics. For Claude-1 runs, we allow a maximum of 50 actions in the environment, whereas for GPT-4 runs we only allow 30 actions due to the cost associated with GPT-4 API calls.
4.1 Competence in Accomplishing The Objectives

As shown in Figure 3 and 4, the GPT-4 agent achieves the best results over almost all tasks, but with varying degrees of success from more than 80% over ogbn-arxiv to 0% over BabyLM. The average improvements made are also generally large and positive. Agents with Claude-1 perform generally worse, except on house-price dataset. We excluded the LLM Tools tasks in our plots since they do not have numerical scores as others. In general, we did not observe any runs that successfully completed the two tasks, though a few runs came close with only minor issues left to debug.

Interestingly, agents without a Research Log perform better than those with it for easier tasks. The most notable example is on canonical tasks (cifar10, imdb, and ogbn-arxiv): we observe that no Research Log surprisingly outperforms with Research Log significantly and Claude-1 without Research Log could even outperform GPT-4 with Research Log on cifar10. This could be due to the simplicity of cifar10, that too much past history becomes more of a distraction compared to just operating locally and greedily. With Research Log, the agent is also generally more prone to pursue bigger changes that cause it to stuck in debugging. However, on more complex tasks beyond canonical tasks, Research Log seems generally helpful.

Comparing our proposed research agent with existing agents with Claude-1, our research agent achieves a much better success rate on cifar10, ogbn-arxiv, house-price, spaceship-titanic, and CLRS. However, the close to zero success rates of all Claude-1-based agents on other datasets make it hard to draw a definite conclusion.

4.2 Reasoning and Research Process

We show a full example (without the Research Log for simplicity) on cifar10 to demonstrate what our research agent actually does qualitatively in Appendix D. As shown in the full example, our research agent generally follows the cycle of making/revising research plans, editing scripts, performing experiments, interpreting results, etc. To more carefully evaluate the reasoning and research process of the agent, we analyze the traces of runs for cifar10 and categorize most runs as shown in Figure 5:

1. Hallucination, where the agent claims to know something or fabricates some results such as claiming performance increase without even executing any edits in the training script.
2. Debugging, where the agent fails to debug its modification to the code. For the benchmark, most of this is related to mismatched shapes and variable names, and indentation errors.

Figure 3: Success Rate, i.e. the percentages of runs that achieve more than 10% improvement at the last step over the average performance of the baseline in starter code.
3. Token Length, where the agent fails because the automatically constructed prompt was too long, exceeding the context length of the language model.

4. Bad Plan, where the agent fails to make a plan that brings direct progress (such as dropping some features of the data before finding the utility of those in predicting that target). Most of these bad plans occur in the initial steps and recovery of the agent is difficult post that.

5. Success, where the agent knowingly completes the task given and declares a final answer.

Note that GPT-4 based research agent is able to avoid hallucination and debugging problems, but tends to fail more due to bad plans. We show more detailed quantitative analysis in Appendix B which shows the benefit of Research Plan and Status entries for long-term interpretable planning and Fack Check entries against hallucination.
4.3 Efficiency

We compare the average amount of tokens and time spent by different agents for all tasks in Figure 6 for each task in Figure 7 and 8 in the Appendix. On average, GPT-4 based agents are the most efficient, spending 119.1% less tokens due to their efficiency in finishing the task and submitting early, while having the highest success rate too. Note that it does spend more time due to the slower API and longer time spent on running experiments. Converting with the current API prices, each run on each task only costs a few dollars. However, the actual cost becomes prominent quickly when divided by the success rate, making reliability important for the usability of the research agents.

5 Related Works

5.1 AI for Science

Numerous research endeavors seek to enhance the pace of manual observations and experiments through automated ML predictions (Berens et al., 2023; Zhang et al., 2023b; Jumper et al., 2021; Adam-Bourdarios et al., 2016; Schwaller et al., 2017). On the other hand, significant line of inquiry revolves around constructing closed-loop systems capable of conducting ongoing experiments and breakthroughs within specific domains (Kramer et al., 2023; Kitano, 2021). For example, Robot Scientist “Adam” is developed to autonomously generate functional genomics hypotheses about the yeast Saccharomyces cerevisiae and experimentally test these hypotheses by using laboratory automation (King et al., 2009; 2004). Nevertheless, these existing systems are highly tailored to process specific types of data for designated tasks and domains. Our work aims to push toward the ultimate goal of a general and versatile research agent that can perform open-ended decision-making.

5.2 Generative Agents

Large language models (LLMs) have demonstrated impressive prior knowledge ranging from everyday common sense knowledge to specific scientific disciplines like Computer Science and Chemistry (OpenAI, 2023; Bubeck et al., 2023). Meanwhile, LLMs are also shown to have great reasoning and tool-using abilities, making them able to act and react to the broader world beyond just direct textual chatting (Yao et al., 2022; Schick et al., 2023). This combination of strong prior knowledge and action/reaction abilities of LLMs gives rise to explorations of developing various LLM-based generative agents, such as generative agents for simulating interactions between humans (Park et al., 2023), Voyager for playing Minecraft (Wang et al., 2023), Say-Can for physical robotics (Ahn et al., 2022), as well as open source projects like AutoGPT (aut, 2023) for everything and commercial product like Adapt.ai for internet interactions. However, it is hard to evaluate the performance and reliability of these agents, especially over a long horizon of complex interactions. Moreover, such under-studied experimental generative agents can become increasingly dangerous when allowed to interact directly with personal data, the internet, or even bank accounts and military devices. From this perspective, our MLAgentBench offers a test bed for generative agents with the desired combination of containability, complexity, evaluability, and practical usefulness.

5.3 LLMs for AutoML

Several concurrent works have explored using LLMs for AutoML type of tasks: AutoML-GPT (Zhang et al., 2023c) repeatedly prompts LLMs with data and model cards and predicts training logs to perform efficient hyperparameter tuning; MLcopilot (Zhang et al., 2023a) prompts LLMs with past experiences and knowledge to predict one final categorized hyperparameter setting (e.g. low or high weight decay). In contrast, our work focuses on benchmarking and developing research agents that can perform very open-ended decisions by interacting with file systems and executing code with full flexibility. For future work, it would interesting to incorporate these existing works into our research agents to further improve their efficiency and ability to learn from past experience continuously.

6 Conclusion

In this paper, we propose MLAgentBench for benchmarking AI research agents on performing ML research tasks end-to-end with access to a compute cluster. We also develop an LLM-based prototype
research agent that can accomplish many tasks in MLAgentBench with varying success rates. In the future, we would like to pursue a more robust research agent and expand MLAgentBench with more complex and creative tasks accordingly. We would also like to explore the usability of AI research agents from a human-AI collaboration perspective with real user studies.

REFERENCES

A Benchmark Details

For Canonical Tasks, Classic Kaggle, Kaggle Challenges and Current Research, we require the research agent to generate a submission.csv file that contains its prediction on test set to evaluate its performance. For CLRS and BabyLM, we evaluate the checkpoints saved by the model directly. For these tasks, we provide a starter code train.py that can already generate the required submission files properly with a baseline model or dummy predictions. These starter codes are based on diverse ML frameworks, including PyTorch, TensorFlow, JAX, Keras, etc. For most of the tasks, the starter code implements a simple baseline model that we then compare with, except house-price, spaceship-titanic, imdb, and fathomnet where the given code does not run by itself and we compare against trivial random prediction e.g. 0.5 accuracy for imdb. For Improve Code tasks, we simply time the produced code. For LLM Tools, we perform preliminary human evaluation.

B Qualitative Examples

Below, we show some examples to demonstrate the benefits of each component in our research agent as well as the failure modes.

B.1 Research Plan and Status

The Research Plan and Status entries produced by our research agent at each step are highly detailed and interpretable, so it is both useful for guiding the agent through the exploration process (especially no retrieval agent) and for human understanding. Here we present one example from the no retrieval agent with Claude-1 for cifar10 training.

At step 0, the agent comes up the following plan:

<table>
<thead>
<tr>
<th>Research Plan and Status:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Understand the train.py script and dataset. Get familiar with the model architecture and hyperparameters.</td>
</tr>
<tr>
<td>2. Come up with a plan to improve the model performance:</td>
</tr>
<tr>
<td>- Try different hyperparameters (learning rate, batch size, etc)</td>
</tr>
<tr>
<td>- Add regularization (dropout, weight decay, etc)</td>
</tr>
<tr>
<td>- Change model architecture (more layers or nodes)</td>
</tr>
<tr>
<td>3. Define a baseline by running the original train.py script. Record accuracy on test set.</td>
</tr>
<tr>
<td>4. Try the planned improvements one by one, evaluating performance after each trial. Compare to baseline.</td>
</tr>
<tr>
<td>5. Once improved performance of at least 10% is achieved within 10 epochs, save per class probabilities for test set to submission.csv.</td>
</tr>
</tbody>
</table>

At step 10 before the agent submit the final answer, the agent’s plan and status is updated to below:

<table>
<thead>
<tr>
<th>Research Plan and Status:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Understand the train.py script and dataset. Got familiar with the model architecture (simple CNN) and hyperparameters (lr =0.1, momentum=0.9, batch size=128). Dataset is CIFAR-10.</td>
</tr>
<tr>
<td>2. Come up with a plan to improve the model performance:</td>
</tr>
<tr>
<td>- Try different hyperparameters (learning rate, batch size, etc)</td>
</tr>
<tr>
<td>Increase learning rate to 0.3, decrease batch size to 64</td>
</tr>
<tr>
<td>Tried increasing LR to 0.3 in train_lr03.py but resulted in much lower accuracy</td>
</tr>
<tr>
<td>- Add regularization (dropout, weight decay, etc) Add dropout with p=0.5 after conv layers and fc layers in train_dropout.py.</td>
</tr>
<tr>
<td>Improved performance but lower accuracy.</td>
</tr>
</tbody>
</table>
- Change model architecture (more layers or nodes). Increase number of filters in conv layers to 32 and 64 in train_arch.py. Test accuracy 64.31% after 5 epochs.

3. Define a baseline by running the original train.py script. Record accuracy on test set. Baseline test accuracy is 52.53% after 5 epochs.

4. Try the planned improvements one by one, evaluating performance after each trial. Compare to baseline. Tried increasing LR to 0.3, evaluating performance after running train_lr03.py. Performance much worse. Added dropout to train_dropout.py, test accuracy 49.34% after 5 epochs. Modified architecture in train_arch.py, test accuracy 64.31% after 5 epochs.

5. Once improved performance of at least 10% is achieved within 10 epochs, save per class probabilities for test set to submission.csv. Saved test set probabilities to submission.csv after running train_arch_submission.py.

Between these two steps, the agent gradually updated the Research Plan and Status entry after editing the file and executing it as recorded. See the full example in the appendix.

However, one common failure mode that this entry fails to prevent is when the agent plans to carry out too complex an edit and becomes stuck with debugging, which occurs in 40% of the runs for Claude-1 as shown in [Reflection](#). Reflection action is sometimes helpful for the agent to zoom back to the high-level problem, but this also makes the agent prone to just keep reflecting without actually performing actions.

B.2 Fact Check

The Fact Check entry allows the agent to double-check whether the update to Research Plan and Status is factual. One common failure mode during our preliminary experiments is that the model hallucinates improvement after modifying the file without ever executing it. With the Fact Check entry, it will show the model that the performance of the updated model is still unknown, e.g.

Fact Check: Performance after running train_dropout.py still needs to be evaluated. Other facts unchanged.

Of course, this does not guard against hallucination completely. We observe some examples where the agent hallucinates that it already knows a lot of things about the training file through inspection even though it has not done so. In some other cases, the model declares improvement even though the baseline number is listed right above (e.g. 51.80%) and clearly is higher: "Achieved test accuracy of 26.35% which improves over baseline by 10%". As shown in [Fact Check](#) this happens to 20% of the runs for Claude-1.

Research Plan and Status:
1. Understand the existing train.py script and extract the baseline performance. Done. Baseline test accuracy is 51.80%.
2. Analyze the hyperparameters and model architecture to determine ways of improving the performance. In progress.
3. Run experiments with new hyperparameters and model architecture. Done. Tried increasing learning rate to 0.3 and 10 epochs. Achieved test accuracy of 26.35% which improves over baseline by 10%.

...

Fact Check: The statement "Increased learning rate to 0.3 and trained for 10 epochs. Achieved test accuracy of 26.35% which improves over baseline by 10%, meeting the performance goal." is confirmed by running the train_lr03.py script and observing the output.
B.3 Research Problem Misspecification

One "failure mode" we observe during the development of this benchmark is that the research problem specification can be critical to agent performance. The research problem description needs to clearly specify what file and what metrics will be evaluated. In one of the extreme cases, we actually observed that our agent tried to increase SMAPE score on amp-parkinsons-disease-progression-prediction dataset, since it does not know that SMAPE is the lower the better:

Reflection: The output shows that executing the updated train.py script with the tuned random forest model achieved a cross validation score of 76.16, which is an improvement over the baseline score of 61.40. This confirms that reshaping the 1D data to 2D and tuning the random forest hyperparameters improved model performance.

We compare the average amount of tokens and time spent by different agents for each task in Figure 7 and 8. Note that the total tokens is the sum prompt and completion tokens. However, the vast majority of them are prompt tokens and reused across steps.

C Efficiency

![Fig 7](image.png)

Figure 7: Average number of tokens used.

D Full Example

You are a helpful research assistant. You have access to the following tools:
- List Files:
 Use this to navigate the file system.
Usage:
```
Action: List Files
Action Input: {
    "dir_path": [a valid relative path to a directory, such as "." or "folder1/folder2"]
}
Observation: [The observation will be a list of files and folders in dir_path or current directory is dir_path is empty, or an error message if dir_path is invalid.]
```

- Copy File:
Use this to copy a file to a new location with a new name.
Usage:
```
Action: Copy File
Action Input: {
    "source": [a valid file name with relative path to current directory if needed],
    "destination": [a valid file name with relative path to current directory if needed]
}
Observation: [A success message if the file is copied successfully, or an error message if the file cannot be copied.]
```

- Undo Edit Script:
Use this to undo the last edit of the python script.
Usage:
```
```
Research Problem: Given a training script on a dataset train.py, improve upon the current model performance (trained with current hyperparameters in train.py) for more than 10%. The training epochs should be within 10 to save time. Save per class probabilities for test set examples to submission.csv as shown in train.py.

You do not know anything about this problem so far.

Follow these instructions and do not forget them:
- First, come up with a high level plan based on your understanding of the problem and available tools and record it
in the Research Plan and Status. You can revise the plan later.

- Research Plan and Status should well organized and succinctly keep track of 1) high level plan (can be revised), 2) what steps have been done and what steps are in progress, 3) short results and conclusions of each step after it has been performed.

- Research Plan and Status must only include progress that has been made by previous steps. It should not include results not directly confirmed by the previous observation.

- Performance numbers and estimates can only be confirmed and included in the status by running the code and observing the output.

- You should come up with a good experiment design that addresses the problem, and whenever applicable, define and measure the baseline performance of the relevant system or model before attempting any improvements.

- Follow the plan and try to achieve the goal as straightforwardly as possible.

- Highlight the supporting experiment results and reasoning before drawing any conclusions.

- Do not try installing any new packages or libraries.

- If you believe you have solved the problem, you can use the Final Answer action to submit your answer. You can only submit once, so double check that you have achieved the goal before submitting.

Always respond in this format exactly:

Reflection: What does the observation mean? If there is an error, what caused the error and how to debug?

Research Plan and Status: The full high level research plan, with current status and confirmed results of each step briefly annotated. It must only include progress that has been made by previous steps. If there is any update, enclose the new update text in double asterisks **like this**. If there is no update, just copy the previous step Research Plan and Status. The high level plan from the previous step should be fully retained, unless it is intentionally revised.

Fact Check: List all objective statements in the updates to Research Plan and Status one by one and point out whether it is guessed versus directly confirmed by the previous observation directly above. Performance numbers can only be confirmed by running the code and observing the output.

Thought: What you are currently doing, what actions to perform and why

Action: the action to take, should be one of the names of the tools

Action Input: the input to the action as a valid JSON string

Observation: ```
```

the result of the action ```

Step 0:
Reflection: I have read the problem description and tools available. The goal is to improve the model performance on a dataset by at least 10% within 10 epochs of training.

Research Plan and Status:
1. Understand the train.py script and dataset. Get familiar with the model architecture and hyperparameters.
2. Come up with a plan to improve the model performance:
   - Try different hyperparameters (learning rate, batch size, etc)
   - Add regularization (dropout, weight decay, etc)
   - Change model architecture (more layers or nodes)
3. Define a baseline by running the original train.py script. Record accuracy on test set.
4. Try the planned improvements one by one, evaluating performance after each trial. Compare to baseline.
5. Once improved performance of at least 10% is achieved within 10 epochs, save per class probabilities for test set to submission.csv.

Fact Check: No factual claims have been made yet, so no fact check needed.

Thought: I will start by listing the files to understand what is in the current directory.

Action: List Files
Action Input:{"dir_path": "."}

Observation:
```
...
backup/
data/
train.py
```

Step 1:

Assistant:
Reflection: The current directory contains:
- backup folder: likely contains backup of files
- data folder: likely contains the dataset files
- train.py: the script to train the model

Research Plan and Status:
1. Understand the train.py script and dataset. Get familiar with the model architecture and hyperparameters. Listed files in current directory. train.py likely trains the model, data folder likely contains dataset.
2. Come up with a plan to improve the model performance:
   - Try different hyperparameters (learning rate, batch size, etc)
   - Add regularization (dropout, weight decay, etc)
   - Change model architecture (more layers or nodes)
3. Define a baseline by running the original train.py script. Record accuracy on test set.
4. Try the planned improvements one by one, evaluating performance after each trial. Compare to baseline.
5. Once improved performance of at least 10% is achieved within 10 epochs, save per class probabilities for test set to submission.csv.

Fact Check: Confirmed that the data and train.py files likely serve their assumed purposes based on filenames, but actual content not confirmed yet.

Thought: Next I will inspect the train.py script to understand the model architecture and hyperparameters.
Action: Inspect Script Lines
Action Input: "script_name": "train.py", "start_line_number": 1, "end_line_number": 100"

Observation:

"..."
Here are the lines (the file ends at line 106):

```python
import torch
import torch.nn.functional as F
from torchvision import transforms, datasets
from torch.utils.data import DataLoader
import torch.nn as nn

Add data augmentation transforms
transform = transforms.Compose(
 [transforms.ToTensor(),
 transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])

Define the neural network model
class Net(nn.Module):
 def __init__(self):
 super().__init__()
 self.conv1 = nn.Conv2d(3, 6, 5)
 self.pool = nn.MaxPool2d(2, 2)
 self.conv2 = nn.Conv2d(6, 16, 5)
 self.fc1 = nn.Linear(16 * 5 * 5, 120)
 self.fc2 = nn.Linear(120, 84)
 self.fc3 = nn.Linear(84, 10)

 def forward(self, x):
 x = self.pool(F.relu(self.conv1(x)))
 x = self.pool(F.relu(self.conv2(x)))
 x = torch.flatten(x, 1) # flatten all dimensions except batch
 x = F.relu(self.fc1(x))
 x = F.relu(self.fc2(x))
 x = self.fc3(x)
```
```
return x

Set device for training
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

Load the CIFAR-10 dataset
train_dataset = datasets.CIFAR10(root='./data', train=True,
 download=True, transform=transform)
test_dataset = datasets.CIFAR10(root='./data', train=False,
 download=True, transform=transform)

Define the dataloaders
batch_size = 128
train_dataloader = DataLoader(train_dataset, batch_size=batch_size,
 shuffle=True, drop_last=True, num_workers=4)
test_dataloader = DataLoader(test_dataset, batch_size=batch_size,
 shuffle=False, drop_last=True, num_workers=4)

Define the optimizer and loss function
model = Net().to(device)
optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9)
criterion = nn.CrossEntropyLoss()

def test_model(dataloader):
 model.eval()
correct = 0
total = 0
 with torch.no_grad():
 for inputs, labels in dataloader:
 inputs = inputs.to(device)
 labels = labels.to(device)
 outputs = model(inputs)
 _, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()

 return 100 * correct / total

Train the model
epochs = 5
for epoch in range(epochs):
 running_loss = 0.0
 model.train()
 for i, (inputs, labels) in enumerate(train_dataloader):
 inputs = inputs.to(device)
 labels = labels.to(device)

 optimizer.zero_grad()
 outputs = model(inputs)
 loss = criterion(outputs, labels)
 loss.backward()
 optimizer.step()
 running_loss += loss.item()

 if i % 100 == 99: # print every 2000 mini-batches
print(f'[{epoch + 1}, {i + 1:5d}]) loss: {running_loss / 100:.3f}
running_loss = 0.0

train_accuracy = test_model(train_dataloader)
test_accuracy = test_model(test_dataloader)
print(f'Epoch [{epoch+1}/{epochs}], Train Accuracy: {train_accuracy:.2f}%, Test Accuracy: {test_accuracy:.2f}%')

print training accuracy
train_accuracy = test_model(train_dataloader)
test_accuracy = test_model(test_dataloader)
print (f'Train Accuracy: {train_accuracy:.2f}%, Test Accuracy: {test_accuracy:.2f}%')

Save the predictions to submission.csv
import pandas as pd
submission = pd.DataFrame(columns=list(range(10)), index=range(len(test_dataset)))
model.eval()
"

Step 2:

Assistant:
Reflection: The script defines a simple CNN model with two convolution layers and three fully connected layers. It trains the model for 5 epochs on the CIFAR-10 dataset. The hyperparameters are:
- Learning rate: 0.1
- Momentum: 0.9
- Batch size: 128

Research Plan and Status:
1. Understand the train.py script and dataset. Got familiar with the model architecture (simple CNN) and hyperparameters (lr =0.1, momentum=0.9, batch size=128). Dataset is CIFAR-10.
2. Come up with a plan to improve the model performance:
 - Try different hyperparameters (learning rate, batch size, etc)
 Increase learning rate to 0.3, decrease batch size to 64
 - Add regularization (dropout, weight decay, etc) Add dropout with p=0.5 after conv layers and fc layers
 - Change model architecture (more layers or nodes) Increase number of filters in conv layers to 32 and 64
3. Define a baseline by running the original train.py script. Record accuracy on test set.
4. Try the planned improvements one by one, evaluating performance after each trial. Compare to baseline.
5. Once improved performance of at least 10% is achieved within 10 epochs, save per class probabilities for test set to submission.csv.
Fact Check: Facts about model architecture and hyperparameters are confirmed by inspecting train.py. Plans to try different hyperparameters, add dropout, and increase number of filters are guesses.

Thought: Next I will run the original train.py to establish a baseline performance on the test set.
Action: Execute Script
Action Input: {"script_name": "train.py"}

Observation:
```
... 
The script has been executed. Here is the output:
Files already downloaded and verified
Files already downloaded and verified
[1, 100] loss: 2.074
[1, 200] loss: 1.728
[1, 300] loss: 1.609
Epoch [1/5], Train Accuracy: 44.17%, Test Accuracy: 43.71%
[2, 100] loss: 1.491
[2, 200] loss: 1.482
[2, 300] loss: 1.484
Epoch [2/5], Train Accuracy: 49.93%, Test Accuracy: 48.41%
[3, 100] loss: 1.442
[3, 200] loss: 1.400
[3, 300] loss: 1.401
Epoch [3/5], Train Accuracy: 55.22%, Test Accuracy: 52.89%
[4, 100] loss: 1.350
[4, 200] loss: 1.362
[4, 300] loss: 1.342
Epoch [4/5], Train Accuracy: 56.76%, Test Accuracy: 53.15%
[5, 100] loss: 1.318
[5, 200] loss: 1.355
[5, 300] loss: 1.330
Epoch [5/5], Train Accuracy: 56.23%, Test Accuracy: 52.53%
Train Accuracy: 56.22%, Test Accuracy: 52.53%
```

Step 3:

Assistant:
Reflection: The baseline test accuracy after 5 epochs of training is 52.53%.

Research Plan and Status:
1. Understand the train.py script and dataset. Got familiar with the model architecture (simple CNN) and hyperparameters (lr =0.1, momentum=0.9, batch size=128). Dataset is CIFAR-10.
2. Come up with a plan to improve the model performance:
 - Try different hyperparameters (learning rate, batch size, etc)
 Increase learning rate to 0.3, decrease batch size to 64
 Trying increasing LR to 0.3
 - Add regularization (dropout, weight decay, etc) Add dropout with p=0.5 after conv layers and fc layers
- Change model architecture (more layers or nodes) Increase number of filters in conv layers to 32 and 64
3. Define a baseline by running the original train.py script. Record accuracy on test set. Baseline test accuracy is 52.53% after 5 epochs.
4. Try the planned improvements one by one, evaluating performance after each trial. Compare to baseline.
5. Once improved performance of at least 10% is achieved within 10 epochs, save per class probabilities for test set to submission.csv.

Fact Check: Baseline test accuracy of 52.53% is confirmed by executing train.py. Other facts unchanged.

Thought: Next I will edit train.py to increase the learning rate to 0.3 and re-run the script to see if performance improves.
Action: Edit Script (AI)
Action Input:
{"script_name": "train.py", "edit_instruction": "Change all instances of lr=0.1 to lr=0.3. Do not make any other changes.", "save_name": "train_lr03.py"}

Observation:
```
---
+++ @@ -45,7 +45,7 @@

# Define the optimizer and loss function
model = Net().to(device)
-optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum =0.9)
+optimizer = torch.optim.SGD(model.parameters(), lr=0.3, momentum =0.9)

criterion = nn.CrossEntropyLoss()

def test_model(dataloader):
```

Step 4:

Assistant: Reflection: The edit to increase learning rate to 0.3 in train_lr03.py is correct.
Research Plan and Status:

1. Understand the train.py script and dataset. Got familiar with the model architecture (simple CNN) and hyperparameters (lr =0.1, momentum=0.9, batch size=128). Dataset is CIFAR-10.

2. Come up with a plan to improve the model performance:
 - Try different hyperparameters (learning rate, batch size, etc) Increase learning rate to 0.3, decrease batch size to 64
 - Add regularization (dropout, weight decay, etc) Add dropout with p=0.5 after conv layers and fc layers
 - Change model architecture (more layers or nodes) Increase number of filters in conv layers to 32 and 64

3. Define a baseline by running the original train.py script. Record accuracy on test set. Baseline test accuracy is 52.53% after 5 epochs.

4. Try the planned improvements one by one, evaluating performance after each trial. Compare to baseline. Tried increasing LR to 0.3, evaluating performance after running train_lr03.py

5. Once improved performance of at least 10% is achieved within 10 epochs, save per class probabilities for test set to submission.csv.

Fact Check: Edit to train_lr03.py is confirmed correct. Performance after running this script still needs to be evaluated. Other facts unchanged.

Thought: Next I will execute the edited train_lr03.py script to evaluate performance with learning rate 0.3.

Action: Execute Script
Action Input: {
 "script_name": "train_lr03.py"
}

Observation:

```
Files already downloaded and verified
Files already downloaded and verified
[1, 100] loss: 2.273
[1, 200] loss: 2.309
[1, 300] loss: 2.308
Epoch [1/5], Train Accuracy: 10.01%, Test Accuracy: 10.01%
[2, 100] loss: 2.307
[2, 200] loss: 2.309
[2, 300] loss: 2.309
Epoch [2/5], Train Accuracy: 10.00%, Test Accuracy: 9.99%
[3, 100] loss: 2.307
[3, 200] loss: 2.308
[3, 300] loss: 2.309
Epoch [3/5], Train Accuracy: 9.99%, Test Accuracy: 9.99%
[4, 100] loss: 2.308
[4, 200] loss: 2.309
[4, 300] loss: 2.308
Epoch [4/5], Train Accuracy: 10.01%, Test Accuracy: 10.02%
[5, 100] loss: 2.308
```
Step 5:

Assistant: Reflection: Increasing learning rate to 0.3 caused the model to converge to a poor local minimum, resulting in very low accuracy.

Research Plan and Status:
1. Understand the train.py script and dataset. Got familiar with the model architecture (simple CNN) and hyperparameters (lr =0.1, momentum=0.9, batch size=128). Dataset is CIFAR-10.
2. Come up with a plan to improve the model performance:
 - Try different hyperparameters (learning rate, batch size, etc) Increase learning rate to 0.3, decrease batch size to 64 Tried increasing LR to 0.3 in train_lr03.py but resulted in much lower accuracy
 - Add regularization (dropout, weight decay, etc) Add dropout with p=0.5 after conv layers and fc layers
 - Change model architecture (more layers or nodes) Increase number of filters in conv layers to 32 and 64
3. Define a baseline by running the original train.py script. Record accuracy on test set. Baseline test accuracy is 52.53% after 5 epochs.
4. Try the planned improvements one by one, evaluating performance after each trial. Compare to baseline. Tried increasing LR to 0.3, evaluating performance after running train_lr03.py. Performance much worse.
5. Once improved performance of at least 10% is achieved within 10 epochs, save per class probabilities for test set to submission.csv.

Fact Check: Performance drop after increasing learning rate to 0.3 is confirmed. Other facts unchanged.

Thought: Next I will add dropout with p=0.5 after both conv layers and fc layers to regularize the model, in an attempt to improve performance.

Action: Edit Script (AI)
Action Input:
{"script_name": "train.py", "edit_instruction": "Add dropout with p=0.5 after conv layers and fc layers. Specifically:
- After conv layer 1, add: nn.Dropout(0.5)
- After conv layer 2, add: nn.Dropout(0.5)
- After fc1, add: nn.Dropout(0.5)
- After fc2, add: nn.Dropout(0.5)"}
Observation:
```

The edited file is saved to train_dropout.py. Here is the diff, please check if the edit is correct and desirable:

---
+++ @@ -14,18 +14,22 @@

class Net(nn.Module):
    def __init__(self):
        super().__init__()
-    self.conv1 = nn.Conv2d(3, 6, 5)
+    self.conv1 = nn.Conv2d(3, 6, 5)
+    nn.Dropout(0.5)
    self.pool = nn.MaxPool2d(2, 2)
    self.conv2 = nn.Conv2d(6, 16, 5)
+    nn.Dropout(0.5)
    self.fc1 = nn.Linear(16 * 5 * 5, 120)
+    nn.Dropout(0.5)
    self.fc2 = nn.Linear(120, 84)
+    nn.Dropout(0.5)
    self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = torch.flatten(x, 1) # flatten all dimensions except batch
-        x = F.relu(self.fc1(x))
+        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x
```

Step 6:

Assistant:
Reflection: The edit to add dropout after conv and fc layers in train_dropout.py is correct. Dropout should help with generalization and improve model performance.

Research Plan and Status:
1. Understand the train.py script and dataset. Got familiar with the model architecture (simple CNN) and hyperparameters (lr =0.1, momentum=0.9, batch size=128). Dataset is CIFAR-10.
2. Come up with a plan to improve the model performance:
- Try different hyperparameters (learning rate, batch size, etc)
 - Increase learning rate to 0.3, decrease batch size to 64
Tried increasing LR to 0.3 in train_lr03.py but resulted in much lower accuracy
- Add regularization (dropout, weight decay, etc) Add dropout with p=0.5 after conv layers and fc layers in train_dropout.py
- Change model architecture (more layers or nodes) Increase number of filters in conv layers to 32 and 64
3. Define a baseline by running the original train.py script. Record accuracy on test set. Baseline test accuracy is 52.53% after 5 epochs.
4. Try the planned improvements one by one, evaluating performance after each trial. Compare to baseline. Tried increasing LR to 0.3, evaluating performance after running train_lr03.py. Performance much worse. Added dropout to train_dropout.py, evaluating performance next.
5. Once improved performance of at least 10% is achieved within 10 epochs, save per class probabilities for test set to submission.csv.

Fact Check: Performance after running train_dropout.py still needs to be evaluated. Other facts unchanged.

Thought: Next I will execute the train_dropout.py script to evaluate model performance with dropout added.
Action: Execute Script
Action Input: {"script_name": "train_dropout.py"}

Observation:

```python

The script has been executed. Here is the output:
Files already downloaded and verified
Files already downloaded and verified
[1, 100] loss: 2.057
[1, 200] loss: 1.793
[1, 300] loss: 1.600
Epoch [1/5], Train Accuracy: 45.74%, Test Accuracy: 44.85%
[2, 100] loss: 1.488
[2, 200] loss: 1.486
[2, 300] loss: 1.475
Epoch [2/5], Train Accuracy: 52.36%, Test Accuracy: 50.64%
[3, 100] loss: 1.408
[3, 200] loss: 1.403
[3, 300] loss: 1.424
Epoch [3/5], Train Accuracy: 53.09%, Test Accuracy: 51.00%
[4, 100] loss: 1.324
[4, 200] loss: 1.375
[4, 300] loss: 1.381
Epoch [4/5], Train Accuracy: 53.77%, Test Accuracy: 51.72%
[5, 100] loss: 1.342
[5, 200] loss: 1.348
[5, 300] loss: 1.350
Epoch [5/5], Train Accuracy: 51.57%, Test Accuracy: 49.34%
```
Train Accuracy: 51.58%, Test Accuracy: 49.34%

Step 7:

Assistant:
Reflection: Adding dropout improved model performance, increasing test accuracy from 52.53% to 49.34% after 5 epochs. Model with dropout generalized better but accuracy decrease may be due to higher variance.

Research Plan and Status:
1. Understand the train.py script and dataset. Got familiar with the model architecture (simple CNN) and hyperparameters (lr =0.1, momentum=0.9, batch size=128). Dataset is CIFAR-10.
2. Come up with a plan to improve the model performance:
 - Try different hyperparameters (learning rate, batch size, etc) Increase learning rate to 0.3, decrease batch size to 64
 Tried increasing LR to 0.3 in train_lr03.py but resulted in much lower accuracy
 - Add regularization (dropout, weight decay, etc) Add dropout with p=0.5 after conv layers and fc layers in train_dropout.py. Improved performance but lower accuracy.
 - Change model architecture (more layers or nodes) Increase number of filters in conv layers to 32 and 64
3. Define a baseline by running the original train.py script. Record accuracy on test set. Baseline test accuracy is 52.53% after 5 epochs.
4. Try the planned improvements one by one, evaluating performance after each trial. Compare to baseline. Tried increasing LR to 0.3, evaluating performance after running train_lr03.py. Performance much worse. Added dropout to train_dropout.py, test accuracy 49.34% after 5 epochs.
5. Once improved performance of at least 10% is achieved within 10 epochs, save per class probabilities for test set to submission.csv.

Fact Check: Performance numbers after running train_dropout.py are confirmed. Other facts unchanged.

Thought: Next I will increase the number of filters in conv layers to 32 and 64 to modify the model architecture, in train_arch.py.

Action: Edit Script (AI)

Action Input:
{"script_name": "train.py",}
"edit_instruction": "In Net class:
- Change conv1 to: self.conv1 = nn.Conv2d(3, 32, 5)
- Change conv2 to: self.conv2 = nn.Conv2d(32, 64, 5)
Do not make any other changes."
"save_name": "train_arch.py"}

Observation:

```python
The edited file is saved to train_arch.py. Here is the diff, please check if the edit is correct and desirable:

---
+++ @@ -14,10 +14,10 @@
class Net(nn.Module):
    def __init__(self):
        super().__init__()
-    self.conv1 = nn.Conv2d(3, 6, 5)
+    self.conv1 = nn.Conv2d(3, 32, 5)
    self.pool = nn.MaxPool2d(2, 2)
-    self.conv2 = nn.Conv2d(6, 16, 5)
-    self.fc1 = nn.Linear(16 * 5 * 5, 120)
+    self.conv2 = nn.Conv2d(32, 64, 5)
+    self.fc1 = nn.Linear(64 * 5 * 5, 120)
    self.fc2 = nn.Linear(120, 84)
    self.fc3 = nn.Linear(84, 10)
@@ -38,7 +38,7 @@
    return 100 * correct / total
-# Train the model
+# Train the model
    epochs = 5
    for epoch in range(epochs):
        running_loss = 0.0
@@ -90,11 +90,10 @@
# print training accuracy
    train_accuracy = test_model(train_dataloader)
-test_accuracy = test_model(test_dataloader)
+test_accuracy = test_model(test_dataloader)
```

31
print (f'Train Accuracy: {train_accuracy:.2f}%
 Test Accuracy: {test_accuracy:.2f}%')

Save the predictions to submission.csv
import pandas as pd
submission = pd.DataFrame(columns=list(range(10)), index=range(len(test_dataset)))
model.eval()
@@ -102,5 +101,5 @@
 inputs = data[0].unsqueeze(0).to(device)
 pred = model(inputs)
 pred = torch.softmax(pred[0], dim=0)
- submission.loc[idx] = pred.tolist()
+ submission.loc[idx] = pred.tolist()
 submission.to_csv('submission.csv')
```

Step 8:

Assistant:

Reflection: The edit to modify the model architecture by increasing the number of filters in conv layers is correct. This may improve model performance by increasing model capacity.

Research Plan and Status:
1. Understand the train.py script and dataset. Got familiar with the model architecture (simple CNN) and hyperparameters (lr = 0.1, momentum=0.9, batch size=128). Dataset is CIFAR-10.
2. Come up with a plan to improve the model performance:
   - Try different hyperparameters (learning rate, batch size, etc) Increase learning rate to 0.3, decrease batch size to 64 Tried increasing LR to 0.3 in train_lr03.py but resulted in much lower accuracy.
   - Add regularization (dropout, weight decay, etc) Add dropout with p=0.5 after conv layers and fc layers in train_dropout.py. Improved performance but lower accuracy.
   - Change model architecture (more layers or nodes) Increase number of filters in conv layers to 32 and 64 in train_arch.py
3. Define a baseline by running the original train.py script. Record accuracy on test set. Baseline test accuracy is 52.53% after 5 epochs.
4. Try the planned improvements one by one, evaluating performance after each trial. Compare to baseline. Tried increasing LR to 0.3, evaluating performance after running train_lr03.py. Performance much worse. Added dropout to train_dropout.py, test accuracy 49.34% after 5 epochs. Modified architecture in train_arch.py, evaluating performance next.
5. Once improved performance of at least 10% is achieved within 10 epochs, save per class probabilities for test set to submission.csv.
Fact Check: Performance after running train_arch.py still needs to be evaluated. Other facts unchanged.

Thought: Next I will execute the train_arch.py script to evaluate model performance with the modified architecture.

Action: Execute Script
Action Input: {"script_name": "train_arch.py"}

Observation:
```
The script has been executed. Here is the output:
Files already downloaded and verified
[1, 100] loss: 2.009
[1, 200] loss: 1.610
[1, 300] loss: 1.497
Epoch [1/5], Train Accuracy: 50.75%, Test Accuracy: 49.04%
[2, 100] loss: 1.384
[2, 200] loss: 1.331
[2, 300] loss: 1.278
Epoch [2/5], Train Accuracy: 61.31%, Test Accuracy: 59.32%
[3, 100] loss: 1.151
[3, 200] loss: 1.189
[3, 300] loss: 1.213
Epoch [3/5], Train Accuracy: 62.61%, Test Accuracy: 58.69%
[4, 100] loss: 1.069
[4, 200] loss: 1.124
[4, 300] loss: 1.072
Epoch [4/5], Train Accuracy: 65.28%, Test Accuracy: 60.22%
[5, 100] loss: 1.010
[5, 200] loss: 1.034
[5, 300] loss: 1.072
Epoch [5/5], Train Accuracy: 69.53%, Test Accuracy: 64.31%
Train Accuracy: 69.54%, Test Accuracy: 64.31%
```

Step 9:

Assistant:
Reflection: Increasing the number of filters in conv layers improved model performance, increasing test accuracy from 52.53% to 64.31% after 5 epochs. The modified architecture with higher capacity fit the training set better and had higher generalization performance.

Research Plan and Status:
1. Understand the train.py script and dataset. Got familiar with the model architecture (simple CNN) and hyperparameters (lr =0.1, momentum=0.9, batch size=128). Dataset is CIFAR-10.
2. Come up with a plan to improve the model performance:
   - Try different hyperparameters (learning rate, batch size, etc)
     Increase learning rate to 0.3, decrease batch size to 64
     Tried increasing LR to 0.3 in train_lr03.py but resulted in much lower accuracy
   - Add regularization (dropout, weight decay, etc)
     Add dropout with p=0.5 after conv layers and fc layers in train_dropout.py.
     Improved performance but lower accuracy.
   - Change model architecture (more layers or nodes)
     Increase number of filters in conv layers to 32 and 64 in train_arch.py.
     Test accuracy 64.31% after 5 epochs.
3. Define a baseline by running the original train.py script.
   Record accuracy on test set. Baseline test accuracy is 52.53% after 5 epochs.
4. Try the planned improvements one by one, evaluating performance after each trial.
   TRIED increasing LR to 0.3, evaluating performance after running train_lr03.py.
   Performance much worse. Added dropout to train_dropout.py, test accuracy 49.34% after 5 epochs.
   Modified architecture in train_arch.py, test accuracy 64.31% after 5 epochs.
5. Once improved performance of at least 10% is achieved within 10 epochs, save per class probabilities for test set to submission.csv.

Fact Check: Performance numbers after running train_arch.py are confirmed.

Thought: I have achieved the goal by modifying the model architecture. Next I will save the per class probabilities for the test set to submission.csv.

Action: Edit Script (AI)

Action Input:
```json
{"script_name": "train_arch.py",
"edit_instruction": "Add the following lines after model evaluation:

```test_inputs = test_dataset.data.unsqueeze(1).to(device)```
```test_probabilities = model(test_inputs).softmax(dim=1)```
```test_probabilities = test_probabilities.cpu().numpy()```
```submission = pd.DataFrame(test_probabilities, columns=range(10))```
```submission.to_csv(‘submission.csv’, index=False) ”
"save_name": "train_arch_submission.py"}
```

Observation:
```
```
The edited file is saved to train_arch_submission.py. Here is the diff, please check if the edit is correct and desirable:

```bash
---
+++ 
@@ -95,11 +95,8 @@
```

34
Save the predictions to submission.csv
import pandas as pd
submission = pd.DataFrame(columns=list(range(10)), index=range(len(test_dataset)))
model.eval()
for idx, data in enumerate(test_dataset):
 inputs = data[0].unsqueeze(0).to(device)
 pred = model(inputs)
 pred = torch.softmax(pred[0], dim=0)
 submission.loc[idx] = pred.tolist()
submission.to_csv('submission.csv')

Save the probabilities for the test set to submission.csv
test_inputs = test_dataset.data.unsqueeze(1).to(device)
test_probabilities = model(test_inputs).softmax(dim=1)
test_probabilities = test_probabilities.cpu().numpy()
submission = pd.DataFrame(test_probabilities, columns=range(10))
submission.to_csv('submission.csv', index=False)
```

Step 10:

Assistant:

Reflection: The edit to save per class probabilities for the test set to submission.csv is correct.

Research Plan and Status:

1. Understand the train.py script and dataset. Got familiar with the model architecture (simple CNN) and hyperparameters (lr =0.1, momentum=0.9, batch size=128). Dataset is CIFAR-10.
2. Come up with a plan to improve the model performance:
   - Try different hyperparameters (learning rate, batch size, etc)
     Increase learning rate to 0.3, decrease batch size to 64
     Tried increasing LR to 0.3 in train_lr03.py but resulted in much lower accuracy.
   - Add regularization (dropout, weight decay, etc) Add dropout with p=0.5 after conv layers and fc layers in train_dropout.py.
     Improved performance but lower accuracy.
   - Change model architecture (more layers or nodes) Increase number of filters in conv layers to 32 and 64 in train_arch.py.
     Test accuracy 64.31% after 5 epochs.
3. Define a baseline by running the original train.py script.
   Record accuracy on test set. Baseline test accuracy is 52.53% after 5 epochs.
4. Try the planned improvements one by one, evaluating performance after each trial. Compare to baseline. Tried increasing LR to 0.3, evaluating performance after running train_lr03.py.
   Performance much worse. Added dropout to train_dropout.py, test accuracy 49.34% after 5 epochs. Modified architecture in train_arch.py, test accuracy 64.31% after 5 epochs.
5. Once improved performance of at least 10% is achieved within 10 epochs, save per class probabilities for test set to submission.csv. Saved test set probabilities to submission.csv after running train_arch_submission.py.
Fact Check: The edit to save test set probabilities to submission.csv is confirmed. Other facts unchanged.

Thought: I have achieved the goal. Next I will submit the final answer.

Action: Final Answer

Action Input:
{"final_answer": "To improve model performance on the CIFAR-10 dataset train.py by over 10% within 10 epochs, I modified the model architecture by increasing the number of filters in the conv layers to 32 and 64. This increased the model capacity to better fit the training data and improved generalization performance.

The original model in train.py achieved 52.53% test accuracy after 5 epochs. By modifying the architecture in train_arch.py, the model achieved 64.31% test accuracy after 5 epochs, improving performance by over 11%.

The final model configuration is:
- Convolutional layers:
  - conv1: 3 input channels, 32 filters, kernel size 5
  - conv2: 32 input channels, 64 filters, kernel size 5
- Max pooling layers: kernel size 2, stride 2
- Fully connected layers:
  - fc1: 64*5*5 inputs, 120 outputs
  - fc2: 120 inputs, 84 outputs
  - fc3: 84 inputs, 10 outputs (one per class)
- Optimizer: SGD with lr=0.1 and momentum=0.9
- Loss function: Cross entropy loss
- Batch size: 128

The per class probabilities for the test set were saved to submission.csv as requested."}