

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 CROSS-SPECIES PROTEIN INTERACTION PREDICTION BY HIERARCHICAL CONTRASTIVE PRETRAINING

Anonymous authors

Paper under double-blind review

ABSTRACT

Protein-protein interaction prediction is fundamental for understanding cellular processes, yet most existing approaches struggle with both intra-species accuracy and cross-species generalization. We present HIPPO, a hierarchical contrastive framework for protein-protein interaction prediction across organisms. HIPPO integrates amino acid sequences, biological hierarchies, and functional annotations into a unified representation learning objective. By aligning proteins not only at the sequence level but also according to their hierarchical relationships, HIPPO enforces embeddings that reflect the multi-level organization of protein functions. This structured supervision enables more accurate predictions within species while also facilitating transfer to unseen proteins and species. To capture global network context, protein embeddings are propagated through interaction graphs using graph neural architectures. Experiments on benchmark datasets demonstrate that HIPPO achieves consistent state-of-the-art performance, with substantial improvements in both intra-species and cross-species prediction. Crucially, extensive interpretability analyses reveal that hierarchical supervision highlights conserved motifs, binding residues, and post-translational modification regions, yielding biologically grounded interpretability and improving the reliability of protein interaction discovery.

1 INTRODUCTION

Protein–protein interactions (PPIs) are central to virtually all cellular processes and play a critical role in elucidating molecular mechanisms, disease pathways, and therapeutic targets (Vidal et al., 2011; Stumpf et al., 2008). Accurate mapping of PPIs is indispensable for understanding how proteins coordinate to regulate biological systems (Stelzl et al., 2005; Rual et al., 2005). Experimental techniques such as yeast two-hybrid assays, co-immunoprecipitation, pulldown experiments, chemical cross linking, and proximity-based labeling have provided valuable insights (Brückner et al., 2009a; Kaboord & Perr, 2008a; Tan et al., 2016a; Cho et al., 2020a). However, these methods are costly, labor intensive, and limited in scalability. In well studied species such as human and yeast, lots of efforts have yielded valuable interactome data (Rolland et al., 2014; Yu et al., 2008). By contrast, many organisms remain under characterized, with only sparse PPI data available (Consortium, 2011; Mosca et al., 2013).

Many computational approaches struggle when applied to less-studied organisms, primarily because training datasets of PPIs must be sufficiently large to provide representative interaction samples. A major barrier to bridging the species gap is that there are often too few experimentally verified interactions to train PPI inference models for these organisms (Mosca et al., 2013; Consortium, 2011). For computational models to effectively address this challenge, they must be capable of making accurate PPI inferences on less-studied organisms while leveraging data from well-characterized species during training (Sharan et al., 2005; Kuchaiev et al., 2010).

Based on xxxx.Cross-species inference provides a promising solution, as it enables the prediction of intraspecies PPI networks for a target organism using training data from another, typically well-studied, species. This setting requires models to perform accurate out-of-distribution (OOD) inference, transferring knowledge across evolutionary boundaries. However, existing PPI inference methods have historically failed to generalize in this scenario, producing inaccurate predictions when both interacting proteins belong to OOD distributions (?). Based on prior work on network alignment and cross-species function transfer (Sharan et al., 2005; Kuchaiev et al., 2010), cross-species

054 inference provides a promising solution, as it enables the prediction of intra species PPI networks
 055 for a target organism using training data from another, typically well-studied, species. This setting
 056 requires models to perform accurate out-of-distribution (OOD) inference, transferring knowledge
 057 across evolutionary boundaries (Mosca et al., 2013; Littmann et al., 2021). However, existing PPI
 058 inference methods have historically failed to generalize in this scenario, producing inaccurate pre-
 059 dictions when both interacting proteins belong to OOD distributions (Bileschi et al., 2022; Rolland
 060 et al., 2014).

061 In this paper, we introduce HIPPO, a hierarchical multimodal framework that integrates sequence,
 062 annotation, and hierarchical supervision into a unified contrastive learning objective. HIPPO not
 063 only outperforms within species but also substantially enhances cross-species transfer, especially
 064 for Protein pairs with less similarity. Importantly, it offers interpretability by revealing conserved
 065 motifs and functional sites captured by attention analysis.

066 Our main contributions are:
 067

- 068 • We introduce HIPPO, a hierarchical contrastive framework that unifies sequence, annotation,
 069 and biological hierarchy relationship for protein–protein interaction prediction across
 070 species.
- 071 • We demonstrate that hierarchical supervision substantially improves predictive perfor-
 072 mance in both intra-species and cross-species settings, particularly on challenging cases
 073 involving unseen proteins and species.
- 074 • We conduct extensive interpretability analyses and find that HIPPO highlights conserved
 075 motifs, binding residues, and post-translational modification regions, thereby providing
 076 biologically meaningful explanations for model predictions.

078 2 RELATED WORK

080 2.1 CROSS SPECIES PREDICTION

082 Cross-species function prediction aims to transfer biological knowledge across organisms by ex-
 083 ploiting evolutionary conservation. Early approaches primarily relied on sequence homology, un-
 084 der the assumption that orthologous genes share similar functions ?. While effective in closely
 085 related species, the accuracy of homology-based transfer degrades with evolutionary distance and
 086 fails to capture species-specific functions. To overcome these limitations, network-based approaches
 087 have been developed to align protein–protein interaction networks or integrate multi-omics evidence
 088 across organisms Sharan et al. (2005); Kuchaiev et al. (2010). More recently, representation learning
 089 methods have extended cross-species prediction by incorporating diverse biological signals. Large-
 090 scale protein language models provide universal embeddings that generalize across species and im-
 091 prove annotation in less-studied organisms Bileschi et al. (2022); Littmann et al. (2021). In parallel,
 092 deep metric learning frameworks such as INTREPPPID introduce orthology-informed quintuplet
 093 networks for cross-species protein–protein interaction prediction, combining sequence and inter-
 094 action features to improve out-of-distribution generalization. Together, these advances expand the
 095 coverage of functional annotation beyond model organisms and facilitate applications in transla-
 096 tional medicine, agriculture, and synthetic biology.

097 2.2 PROTEIN-PROTEIN INTERACTION PREDICTION

099 Protein–protein interactions are fundamental molecular events *in vivo* and represent key targets for
 100 therapeutic interventions. Experimental assays such as yeast two-hybrid (Brückner et al., 2009b),
 101 co-immunoprecipitation (Kaboard & Perr, 2008b), pull-down (Aronheim et al., 1997), cross-linking
 102 (Tan et al., 2016b), and proximity labeling (Cho et al., 2020b) have been widely used to detect and
 103 characterize interactions. However, the high cost and limited throughput of these techniques make
 104 it infeasible to comprehensively map unknown interactions. As a result, computational approaches
 105 have emerged as efficient and scalable alternatives for predicting protein–protein interactions and
 106 mapping the human interactome.

107 With recent advances in artificial intelligence, PPI prediction has shifted from traditional machine
 108 learning to deep learning frameworks. Current methods largely focus on learning protein represen-

108 tations from sequence and structure. Sequence-based approaches remain the most widely used for
 109 functional prediction, with architectures including convolutional neural networks (Shanehsazzadeh
 110 et al., 2011), recurrent networks such as LSTMs (Alley et al., 2019), Transformers (Elnaggar et al.,
 111 2022), and dilated residual networks (Rao et al., 2019).
 112

113 2.3 INTERPRETABILITY ANALYSIS

114 Interpretability is increasingly recognized as a critical requirement for biological prediction models,
 115 particularly when aiming to generate mechanistic insights or guide downstream experiments. Early
 116 interpretability efforts relied on post-hoc attribution methods, such as saliency maps or attention
 117 scores, to highlight influential residues or sequence motifs (Sundararajan et al., 2017; Vig et al.,
 118 2020). In the context of protein research, attention-based models have revealed functional sites,
 119 conserved domains, and binding interfaces (Rao et al., 2021; Rives et al., 2021). For graph-based
 120 models, interpretability techniques such as node/edge masking, gradient-based relevance propagation,
 121 and subgraph extraction have been employed to identify key residues and structural motifs
 122 (Ying et al., 2019; Vu et al., 2023). Furthermore, biology-specific interpretability frameworks have
 123 emerged, including methods that correlate learned embeddings with known ontologies, Pfam
 124 families, or Gene Ontology terms (Littmann et al., 2021; Bepler & Berger, 2021). These methods not
 125 only improve trust in computational predictions but also enable hypothesis generation, such as iden-
 126 tifying putative binding sites or uncovering conserved substructures across species.
 127

128 3 METHOD

130 3.1 HIERARCHICAL PRETRAINING METHODS

131 To enable effective downstream prediction of protein-protein interactions, we introduce a pretraining
 132 framework that integrates hierarchical relationships and functional annotations into protein sequence
 133 representations. The framework is composed of two complementary components: hierarchical con-
 134 trastive learning and multimodal sequence and annotation alignment.
 135

136 **Hierarchical Contrastive Learning for Hierarchical Labels** Protein functions and structures
 137 are naturally organized into hierarchical categories such as clans, families, and domains. To reflect
 138 this structure, we adapt the Hierarchical Multi-label Constraint Enforcing Contrastive Loss (HiMul-
 139 ConE) (??), which enforces consistency across hierarchical levels.
 140

141 Given a set of levels L , the objective ensures that ancestor labels (e.g., clan) maintain higher confi-
 142 dence than their descendants (e.g., family). Formally, the hierarchical contrastive loss is

$$143 \mathcal{L}_{\text{HC}} = \sum_{l \in L} \frac{1}{|L|} \sum_{i \in I} \frac{-\lambda_l}{|P(i)|} \sum_{p_l \in P_l} \max(L^{\text{pair}}(i, p_l^i), L_{\max}(l-1)), \quad (1)$$

144 where f_i and f_p^l are protein feature representations at level l , λ_l is a weighting factor, and $L^{\text{pair}}(i, p_l^i)$
 145 is a contrastive pair loss:

$$146 L^{\text{pair}}(i, p_l^i) = \log \frac{\exp(f_i \cdot f_p^l / \tau)}{\sum_{a \in A \setminus i} \exp(f_i \cdot f_a / \tau)}. \quad (2)$$

147 This design encourages embeddings to respect the hierarchical organization of protein functions.
 148

149 **Multimodal Sequence-Annotation Alignment** To incorporate curated biological knowledge, we
 150 align protein sequence embeddings with their corresponding functional annotation embeddings. Fol-
 151 lowing ProteinBERT (Brandes et al., 2022), we encode sequences using a protein language model
 152 (PLM), producing sequence embeddings $\{\mathbf{z}_i^S\}_{i=1}^N$, and annotations using an annotation language
 153 model (ALM), producing embeddings $\{\mathbf{z}_i^T\}_{i=1}^N$.
 154

155 We first employ a symmetric InfoNCE loss (van den Oord et al., 2018) to maximize the agreement
 156 between matching sequence-annotation pairs:
 157

$$158 \mathcal{L}_{\text{SAC}} = -\frac{1}{2N} \sum_{i=1}^N \left(\log \frac{\exp(\mathbf{z}_i^S \cdot \mathbf{z}_i^A / \tau)}{\sum_{j=1}^N \exp(\mathbf{z}_i^S \cdot \mathbf{z}_j^T / \tau)} + \log \frac{\exp(\mathbf{z}_i^A \cdot \mathbf{z}_i^T / \tau)}{\sum_{j=1}^N \exp(\mathbf{z}_j^A \cdot \mathbf{z}_i^T / \tau)} \right). \quad (3)$$

162 To further distinguish true matches from mismatches, we introduce a Sequence–Annotation Matching
 163 (SAM) loss based on focal loss:
 164

$$165 \quad \mathcal{L}_{\text{SAM}} = -\frac{1}{N} \sum_{i=1}^N \left(\alpha(1-p_i)^\gamma \log(p_i) \cdot y_i^{\text{SAM}} + (1-\alpha)p_i^\gamma \log(1-p_i) \cdot (1-y_i^{\text{SAM}}) \right), \quad (4)$$

168 where p_i is the predicted probability of a valid sequence–annotation match and y_i^{SAM} is the ground
 169 truth indicator.
 170

171 The final pre-training objective combines hierarchical supervision and multimodal alignment:

$$172 \quad \min_{\theta} [\mathcal{L}_{\text{HC}} + \mathcal{L}_{\text{SAC}} + \mathcal{L}_{\text{SAM}}], \quad (5)$$

174 where θ includes all parameters of the PLM, ALM, and projection heads. This objective encourages
 175 protein representations that simultaneously respect biological hierarchies and align with functional
 176 annotations.
 177

178 4 EXPERIMENT

180 4.1 EXPERIMENTAL SETUP

182 In this section, we first describe the experimental setup for pretraining and evaluation. We then
 183 present results on protein–protein interaction (PPI) prediction across both intra-species and cross-
 184 species settings, followed by interpretability analyses. Additional experiments and ablation studies
 185 are provided in Appendix A2-3.

186 **Pretraining datasets** We use the 440K Swiss-Prot protein sequence database (Bairoch & Ap-
 187 weiler, 2000) for pretraining. This database provides high quality, manually curated protein se-
 188 quences and annotations. We map the proteins to the Pfam database to obtain hierarchical labels,
 189 including protein families and clans. Annotations from Swiss-Prot are derived from the keywords
 190 section, which incorporates controlled vocabulary terms manually curated to cover Gene Ontol-
 191 ogy (GO) terms, disease associations, protein domains, ligands, and post-translational modifications
 192 (PTMs) (The UniProt Consortium, 2025).
 193

194 **Protein-Protein Interaction prediction** We seeks to classify 7 types of PPI pairs within the in-
 195 teractome(Lv et al., 2021) across intra- and cross- species mode. PPI datasets comes from STRING
 196 database(Szklarczyk et al., 2021; 2025), where human dataset include SHS148k and SHS27k.
 197 SHS27k comprises 63,408 interactions among 1,690 proteins, while SHS148k includes 36,902 in-
 198 teractions among 5,189 proteinsLv et al. (2021). Besides human, we adopt interactome datasets
 199 from Escherichia coli, Saccharomyces cerevisiae (yeast), Mus musculus (mouse), Caenorhabditis
 200 elegans, Arabidopsis thaliana, and Drosophila melanogaster.
 201

202 **Dataset splits** For intra-species PPI predictionwe follow Breadth-First Search (BFS), and Depth-
 203 First Search (DFS) method in Lv et al. (2021) to ensure that the test set contains PPI pairs containing
 204 proteins with less similarity to the training set(Lv et al., 2021; Wang et al., 2023). For cross species
 205 prediction, training set comes from human, and test set contains PPI from different organisms(Wang
 206 et al., 2023), where proteins are different origins. To better evaluate generalizability on intra-species
 207 dataset, we further divide the test data into two subsets based on whether or not two proteins have
 208 been seen in the training data, including(1) Easy: either one proteins has been seen; and (2) Hard:
 209 neither one has seen.
 210

210 **Baselines** Following prior work (Hu et al., 2023), we compare our framework with a diverse set of
 211 protein representation learning methods. Specifically, we include graph neural network–based PPI
 212 predictors (GNN-PPI (Lv et al., 2021), two large-scale pretrained protein language models (Protein-
 213 BERT (Brandes et al., 2022) and ESM2 (Lin et al., 2023)), one sequence-based deep learning method
 214 (PIPR (Chen et al., 2019)). Moreover, we include one model reported to deal with cross species PPI
 215 prediction(Wang et al., 2023). These baselines cover a broad range of modeling paradigms, includ-
 ing sequence-driven approaches, pretrained language models, and graph-based architectures.
 216

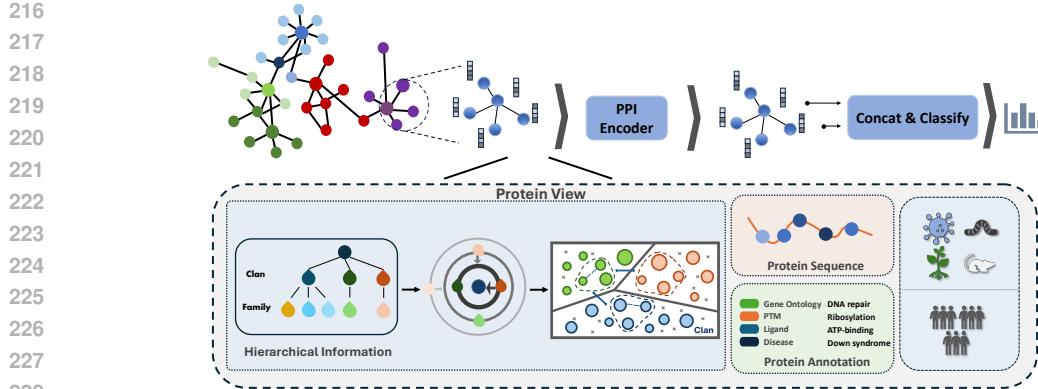


Figure 1: **Overview of HIPPO.** The framework integrates protein sequences, hierarchical annotations, and PPI networks to predict interactions.

3.2 NETWORK CONSTRUCTION FOR PROTEIN PAIRS

We represent protein-protein interaction (PPI) complexes as a labeled graph. Given a protein set

$$\mathcal{P} = \{p_0, p_1, \dots, p_n\}$$

and the corresponding set of protein interactions

$$\mathcal{X} = \{x_{ij} = \{p_i, p_j\} \mid i \neq j, p_i, p_j \in \mathcal{P}\},$$

we define a label space

$$\mathcal{L} = \{l_0, l_1, \dots, l_6\},$$

where each interaction x_{ij} is associated with a multi-label set $y_{ij} \subseteq \mathcal{L}$. The dataset can then be written as

$$\mathcal{D} = \{(x_{ij}, y_{ij}) \mid x_{ij} \in \mathcal{X}\},$$

and naturally represented as a graph $\mathcal{G} = (\mathcal{P}, \mathcal{X})$ with proteins as nodes and interactions as labeled edges.

To incorporate functional and evolutionary context, each protein node is encoded into a hierarchical embedding informed by family- and clan-level annotations. These embeddings capture evolutionary lineage and structural similarity, providing richer context for modeling interaction mechanisms.

The PPI prediction task is formulated as learning a mapping

$$\mathcal{F} : x_{ij} \rightarrow \hat{y}_{ij},$$

using a training set $\mathcal{X}_{\text{train}} \subseteq \mathcal{X}$ and evaluating on a disjoint test set $\mathcal{X}_{\text{test}}$, with $\mathcal{X}_{\text{train}} \cup \mathcal{X}_{\text{test}} = \mathcal{X}$.

We adopt the Graph Isomorphism Network (GIN) (Xu et al., 2019) as the backbone encoder. GIN aggregates neighborhood information to produce discriminative node embeddings. For a protein pair x_{ij} , the node embeddings g_{p_i} and g_{p_j} are combined via dot product and passed through a fully connected (FC) layer for prediction. We train the model with a binary cross-entropy loss over all interaction types:

$$L = \sum_{k=0}^n \sum_{x_{ij} \in \mathcal{X}_{\text{train}}} (-y_{ij}^k \log \hat{y}_{ij}^k - (1 - y_{ij}^k) \log(1 - \hat{y}_{ij}^k)),$$

where y_{ij}^k and \hat{y}_{ij}^k denote the ground truth and predicted probability of the k -th interaction type for protein pair x_{ij} .

Training For PPI prediction, the model is trained for 100 epochs, covering both intra-species and cross-species settings. To ensure fair comparison with baselines, all models are trained under the same optimization protocol. For pretraining, we adopt two complementary tracks depending on the type of labels: 1. Hierarchical labels derived from Pfam families and clans are used as supervisory signals, guiding the model to learn biologically structured representations that reflect

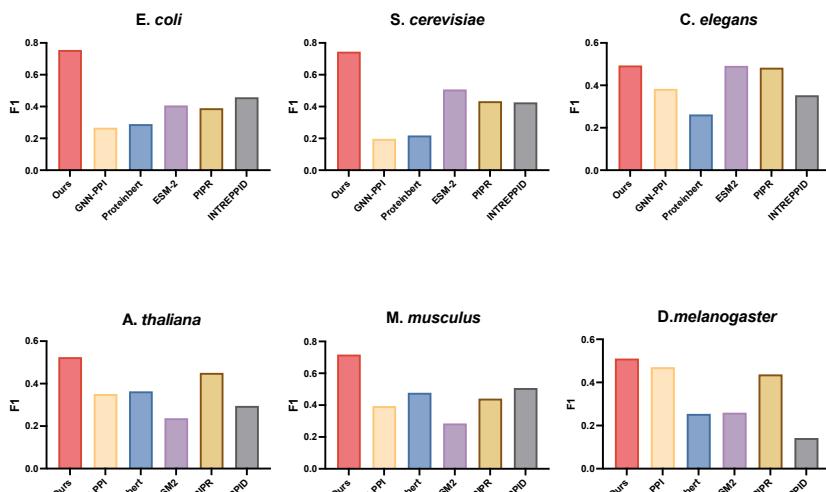


Figure 2: **Cross-species PPI prediction.** HIPPO outperforms or matches baselines (GNN-PPI, ProteinBERT, ESM-2, PIPR, INTREPPID) across six organisms.

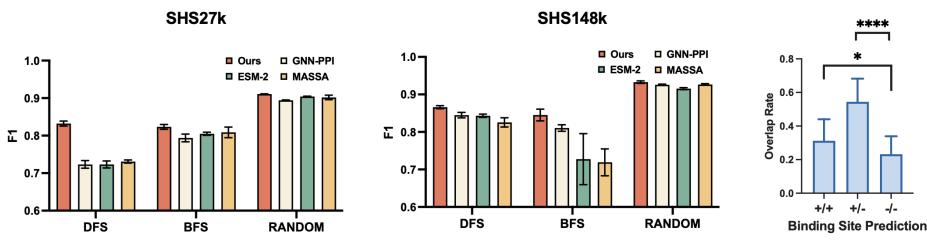


Figure 3: **Performance on human PPI datasets.** HIPPO achieves higher F1 scores than GNN-PPI, ESM-2, and MASSA under DFS, BFS, and random sampling.

evolutionary and functional hierarchies. 2. Non-hierarchical functional descriptors such as UniProt keywords are incorporated through an unsupervised contrastive objective (Chen et al., 2020; He et al., 2020), encouraging proteins with similar descriptors to cluster in the embedding space. The model is pretrained on Swiss-Prot for 100 epochs. All these models are trained on 8 GTX4090 GPUs. Detailed hyperparameter settings can be found in Appendix C.2.

Evaluation For PPI prediction, we evaluate the performance with the micro F1 values, which is common used in the PPI prediction task(Lv et al., 2021; Zhang et al., 2022; Song et al., 2022). Models with the best performance on validation sets are selected for evaluation.

4.2 RESULTS

HIPPO outperforms all baselines on Intra- and Cross-Species PPI Prediction As summarized in Fig.2, our model consistently outperforms existing methods, including GNN-PPI, ProteinBERT, ESM-2, PIPR, and INTREPPID, across all 6 cross-species datasets. The proposed approach achieves the highest F1 scores in each species, demonstrating its robustness and superior predictive power in challenging cross-species settings. These results highlight the capacity of our hierarchical, multimodal framework to learn transferable protein representations that generalize well to novel proteomes. For intra-species prediction, HIPPO also achieves the best average performance according to Fig.2A. On SHS27k dataset, the improvement is most pronounced under the DFS split, where our model substantially outperforms GNN-PPI. On SHS148k dataset, our method continues to yield

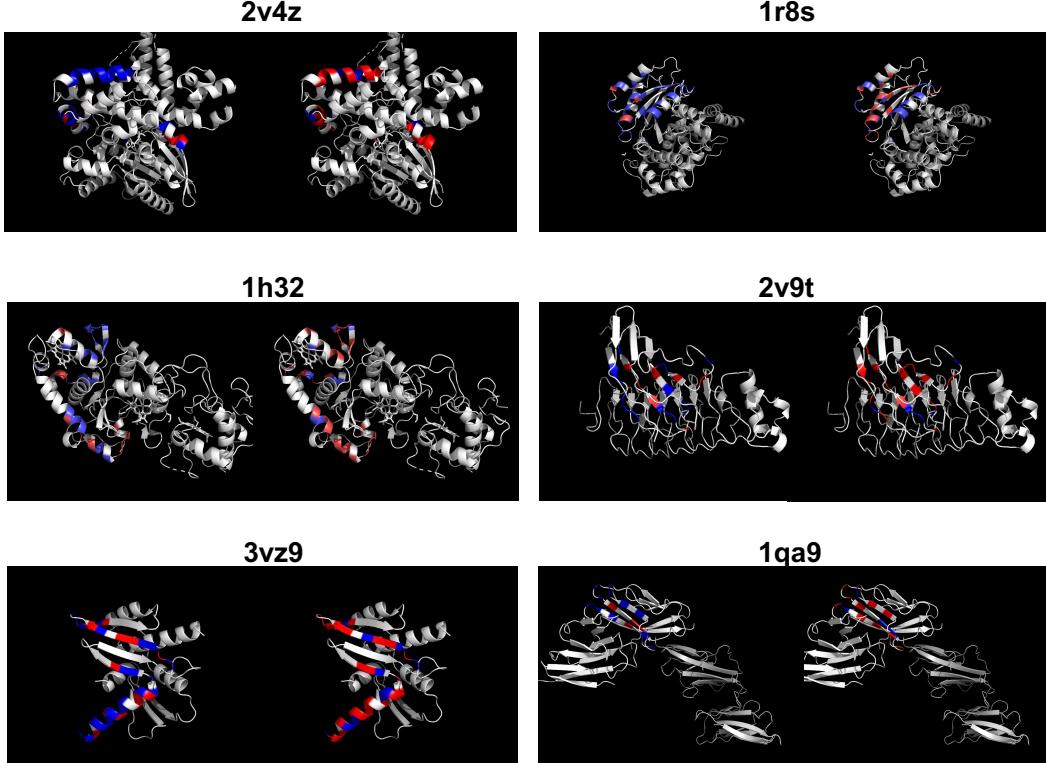


Figure 4: **Interpretability of binding site prediction.** Visualization on six proteins shows that hierarchical (HRC) pretraining improves accuracy, with correct sites in red and errors in blue.

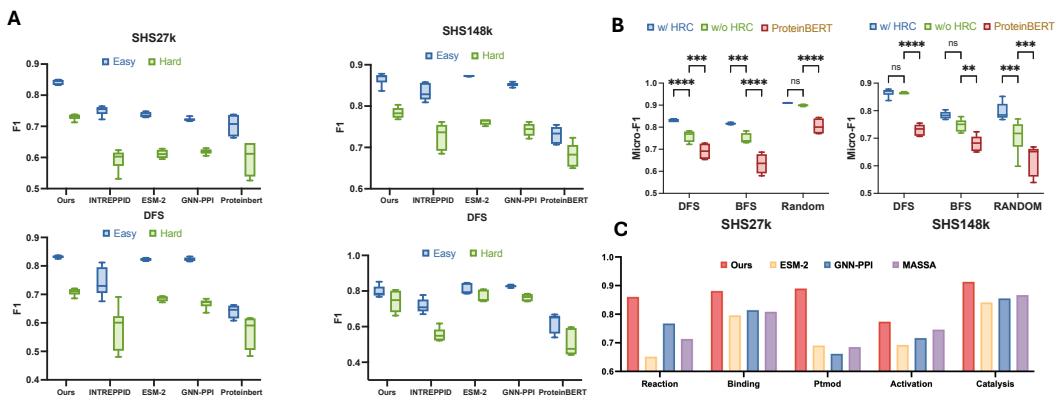


Figure 5: Sample figure caption.

consistent gains, surpassing GNN-PPI under both DFS and BFS splits. In contrast, performance differences narrow under the random split.

HIPPO demonstrates superior performance in predicting unseen protein pairs. We stratified protein-protein pairs into “easy” and “hard” categories: in the former, at least one interacting protein is seen during training, while in the latter, both proteins are unseen. As shown in Fig. 5B, all models achieve comparable F1 scores on easy pairs across both datasets and split strategies, indicating similar predictive capacity when at least partial training information is available. However, the differences between models become much more pronounced on hard pairs. While all methods ex-

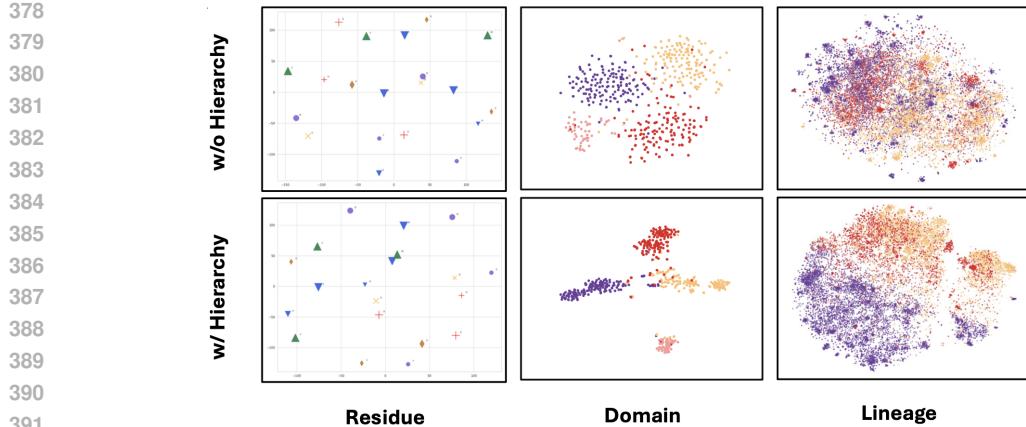


Figure 6: **Performance on interaction types and difficulty levels.** (A) Box plots on SHS27k comparing easy and hard subsets under DFS and BFS, showing consistent gains of our method. (B) Micro-F1 scores on SHS27k and SHS148k under DFS, BFS, and random sampling, where hierarchical(HRC) pretraining outperforms both without HRC and ProteinBERT, with significance indicated by ns, **, ***, and ****. (C) F1 scores of four models(Ours, ESM2, GNNPPI, MASSA) on five interaction types of SHS27k under DFS sampling.

perience a performance drop in this scenario, our model consistently outperforms the baselines and exhibits lower prediction variance. This advantage is particularly notable on the SHS27k dataset, where the gap between our method and others widens substantially for hard cases.

Attention based Interpretability Reveals Functional Binding Site We utilized attention weights extracted from the model to identify functional three dimensional binding site positions within protein–protein interaction complexes. According to Fig. 4, regions shown in red correspond to correctly predicted binding sites, while those in blue indicate missed sites. Incorporating hierarchical contrastive learning leads to a substantially higher overlap rate for binding site prediction in this complex compared to training without hierarchical supervision, highlighting HIPPO’s ability to precisely capture interaction interfaces.

As shown in Fig.3, we further evaluated binding site prediction across a broader set of 35 protein complexes using three model configurations: hierarchical information with flat annotations, hierarchical information alone, and no annotations. Models with hierarchical supervision consistently outperformed the annotation-free model, confirming the importance of structured information for interface detection. Interestingly, adding flat annotations together with hierarchical labels slightly reduced performance relative to using hierarchical information alone, suggesting that non-hierarchical labels may introduce noise and weaken the model’s ability to localize functional regions.

4.3 ABLATION STUDIES

As shown in Fig. 5B and Tab.1, removing hierarchical relationships among protein properties leads to a clear reduction in predictive accuracy across all intra-species datasets. The decline is most evident on challenging test pairs where both interacting proteins are unseen during training, indicating that hierarchical modeling is particularly important for generalizing to novel or under-annotated proteins.

To further assess whether hierarchical supervision captures biologically meaningful structure, we visualized the learned protein embeddings at the residue, domain, and lineage levels with and without hierarchical constraints. As shown in Fig.6, without hierarchical supervision, the embeddings appear disorganized, with dispersed points and poorly defined clusters. Incorporating hierarchical information yields compact clustering at the domain and lineage levels, showing that the model leverages hierarchical relationships to capture functional and evolutionary structure. This prior al-

Method	SHS27k			SHS148k		
	DFS	BFS	Random	DFS	BFS	Random
Full	0.8227	0.8328	0.9115	0.8673	0.8541	0.9376
w/o HRC	0.7753	0.7710	0.9083	0.8630	0.7951	0.9487
w/o kw	0.8110	0.8010	0.9030	0.8591	0.8426	0.9316
w/o HRC & kw	0.6231	0.6231	0.8441	0.7509	0.6140	0.9080

Table 1: Performance comparison on the SHS27k and SHS148k datasets under different ablation settings. The results are reported for three sampling strategies (DFS, BFS, Random). “Full” denotes the complete model; “w/o HRC” and “w/o kw” denote the model without hierarchical attributes and keyword annotations, respectively; “w/o HRC & kw” indicates both modules are removed. Higher values indicate better performance.

lows proteins with shared characteristics to cluster more closely in the embedding space, improving discrimination between interacting and non-interacting pairs.

Moreover, we analyzed the role of non-hierarchical annotations. When non-hierarchical information was excluded and the model relied solely on hierarchical annotations, performance did not degrade, suggesting that hierarchical information is the dominant factor in guiding the learning of effective protein representations.

5 CONCLUSIONS

In this work, we introduce HIPPO, a hierarchical contrastive framework for cross species protein-protein interaction prediction. HIPPO integrates amino acid sequences with multi-level annotations, including biological hierarchies and protein functions, and performs structured message passing on protein-protein interaction graphs. A hierarchical supervision mechanism is proposed to enforce embeddings that reflect evolutionary and functional relationships, thereby facilitating transfer across species. Moreover, extensive experiments on diverse benchmark datasets demonstrate that HIPPO achieves consistent improvements over existing methods, particularly on challenging cross species settings. HIPPO also provides insights into protein interpretability by revealing conserved motifs and functional regions that are associated with interaction predictions. We believe that our work represents a significant step forward in cross species prediction research.

REFERENCES

Ethan C. Alley, Gabrielle Khimulya, Surojit Biswas, Mohammed AlQuraishi, and George M. Church. Unified rational protein engineering with sequence-based deep representation learning. *Nature Methods*, 16(12):1315–1322, 2019. doi: 10.1038/s41592-019-0598-1. URL <https://doi.org/10.1038/s41592-019-0598-1>.

Ami Aronheim, Elahe Zandi, Holger Hennemann, Stephen J. Elledge, and Michael Karin. Isolation of an AP-1 repressor by a novel method for detecting protein–protein interactions. *Molecular and Cellular Biology*, 17(6):3094–3102, 1997. doi: 10.1128/MCB.17.6.3094. URL <https://doi.org/10.1128/MCB.17.6.3094>.

Amos Bairoch and Rolf Apweiler. The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. *Nucleic Acids Research*, 28(1):45–48, 2000. doi: 10.1093/nar/28.1.45. URL <https://doi.org/10.1093/nar/28.1.45>.

Tristan Bepler and Bonnie Berger. Learning the protein language: Evolution, structure, and function. *Cell Systems*, 12(6):654–669, 2021. doi: 10.1016/j.cels.2021.05.017. URL <https://doi.org/10.1016/j.cels.2021.05.017>.

Michael L. Bileshi, David Belanger, Drew H. Bryant, Thomas Sanderson, Brendan Carter, D. Sculley, Alex Bateman, Debora S. Marks, and Lucy J. Colwell. Using deep learning to annotate the protein universe. *Nature Biotechnology*, 40:932–937, 2022. doi: 10.1038/s41587-021-01179-w. URL <https://doi.org/10.1038/s41587-021-01179-w>.

486 Nadav Brandes, Dan Ofer, Yariv Peleg, Nadav Rappoport, and Michal Linial. ProteinBERT: A
 487 universal deep-learning model of protein sequence and function. *Bioinformatics*, 38(8):2102–
 488 2110, 2022. doi: 10.1093/bioinformatics/btac020. URL <https://doi.org/10.1093/bioinformatics/btac020>.

489

490 Angelika Brückner, Carole Polge, Nicolas Lentze, Daniel Auerbach, and Uwe Schlattner. Yeast
 491 two-hybrid, a powerful tool for systems biology. *International Journal of Molecular Sciences*,
 492 10(6):2763–2788, 2009a. doi: 10.3390/ijms10062763. URL <https://doi.org/10.3390/ijms10062763>.

493

494 Angelika Brückner, Carole Polge, Nicolas Lentze, Daniel Auerbach, and Uwe Schlattner. Yeast
 495 two-hybrid, a powerful tool for systems biology. *International Journal of Molecular Sciences*, 10
 496 (6):2763–2788, 2009b. doi: 10.3390/ijms10062763. URL <https://doi.org/10.3390/ijms10062763>.

497

498 Min Chen, Changjiang Ju, Yunlong Zhou, Xue Chen, Bo Wang, Feng Cheng, Yadong Jiang, and
 499 Jian Huang. PIPR: an end-to-end deep learning method for predicting protein–protein interactions
 500 by combining local and global sequence features. *Bioinformatics*, 35(14):239–248, 2019. doi:
 501 10.1093/bioinformatics/btz315. URL <https://doi.org/10.1093/bioinformatics/btz315>.

502

503

504 Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A Simple Frame-
 505 work for Contrastive Learning of Visual Representations. In *International Conference on Ma-
 506 chine Learning (ICML)*, pp. 1597–1607, 2020. URL <http://proceedings.mlr.press/v119/chen20j.html>.

507

508 Kyungsoo F. Cho, Thijs C. Branon, Raghavendra A. Rajeev, Tanya Svinkina, Namrata D. Udeshi,
 509 Tomba Thoudam, Changyu Kwak, Hwajin Rhee, Il-Hyung Lee, Steven A. Carr, and Alice Y.
 510 Ting. Proximity labeling in mammalian cells with TurboID. *Nature Protocols*, 15(12):3971–
 511 3999, 2020a. doi: 10.1038/s41596-020-0399-0. URL <https://doi.org/10.1038/s41596-020-0399-0>.

512

513

514 Kyungsoo F. Cho, Thijs C. Branon, Raghavendra A. Rajeev, Tanya Svinkina, Namrata D. Udeshi,
 515 Tomba Thoudam, Changyu Kwak, Hwajin Rhee, Il-Hyung Lee, Steven A. Carr, and Alice Y.
 516 Ting. Proximity labeling in mammalian cells with TurboID. *Nature Protocols*, 15(12):3971–
 517 3999, 2020b. doi: 10.1038/s41596-020-0399-0. URL <https://doi.org/10.1038/s41596-020-0399-0>.

518

519 Arabidopsis Interactome Mapping Consortium. Evidence for network evolution in an Arabidopsis
 520 interactome map. *Science*, 333(6042):601–607, 2011. doi: 10.1126/science.1203877. URL
 521 <https://doi.org/10.1126/science.1203877>.

522

523 Ahmed Elnaggar, Michael Heinzinger, Christian Dallago, Ghalia Rehawi, Yu Wang, Llion Jones,
 524 Tom Gibbs, Tibor Feher, Christoph Angerer, Martin Steinegger, Debsindhu Bhowmik, and
 525 Burkhard Rost. ProtTrans: Towards cracking the language of life’s code through self-supervised
 526 deep learning and high performance computing. *IEEE Transactions on Pattern Analysis and
 527 Machine Intelligence*, 44(10):7112–7127, 2022. doi: 10.1109/TPAMI.2021.3095381. URL
 528 <https://doi.org/10.1109/TPAMI.2021.3095381>.

529

530 Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum Contrast for Unsu-
 531 pervised Visual Representation Learning. In *Proceedings of the IEEE/CVF Conference on Com-
 532 puter Vision and Pattern Recognition (CVPR)*, pp. 9729–9738, 2020. doi: 10.1109/CVPR42600.
 533 2020.00975. URL <https://doi.org/10.1109/CVPR42600.2020.00975>.

534

535 Fenglin Hu, Yifan Hu, Wei Zhang, Hong Huang, Yi Pan, and Peng Yin. A Multimodal Pro-
 536 tein Representation Framework for Quantifying Transferability Across Biochemical Downstream
 537 Tasks. *Advanced Science*, pp. 2301223, 2023. doi: 10.1002/advs.202301223. URL <https://doi.org/10.1002/advs.202301223>.

538

539 Brian Kaboord and Mary Perr. Isolation of proteins and protein complexes by immunoprecipitation.
 540 In *Methods in Molecular Biology*, volume 424, pp. 349–364. Humana Press, 2008a. doi: 10.1007/978-1-60327-064-9_29. URL https://doi.org/10.1007/978-1-60327-064-9_29.

540 Brian Kaboord and Mary Perr. Isolation of proteins and protein complexes by immunoprecipitation.
 541 In *Methods in Molecular Biology*, volume 424, pp. 349–364. Humana Press, 2008b. doi: 10.1007/
 542 978-1-60327-064-9_29. URL https://doi.org/10.1007/978-1-60327-064-9_29.

543

544 Oleksii Kuchaiev, Tijana Milenković, Vesna Memišević, Wayne Hayes, and Nataša Pržulj. Topolog-
 545 ical network alignment uncovers biological function and phylogeny. *Journal of the Royal Society*
 546 *Interface*, 7(50):1341–1354, 2010. doi: 10.1098/rsif.2010.0063. URL <https://doi.org/10.1098/rsif.2010.0063>.

547

548

549 Zeming Lin, Hannes Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Tom Sercu, and
 550 Alexander Rives. Language models of protein sequences at the scale of evolution enable accurate
 551 structure prediction. *bioRxiv*, 2023. doi: 10.1101/2022.07.20.500902. URL <https://doi.org/10.1101/2022.07.20.500902>.

552

553 Maria Littmann, Michael Heinzinger, Christian Dallago, Konstantin Weissenow, and Burkhard Rost.
 554 The power of universal contextualised protein embeddings in cross-species protein function pre-
 555 diction. *Briefings in Bioinformatics*, 22(6):bbab067, 2021. doi: 10.1093/bib/bbab067. URL
 556 <https://doi.org/10.1093/bib/bbab067>.

557

558 Xiaoyong Lv, Xiang Cheng, Zhiwei Ji, Zhiqiang Zhao, Chen Wang, Jiguang Gu, and Jianyang Zeng.
 559 Learning Unknown from Correlations: Graph Neural Network for Inter-novel-protein Interaction
 560 Prediction. *Bioinformatics*, 37(17):i111–i118, 2021. doi: 10.1093/bioinformatics/btab322. URL
 561 <https://doi.org/10.1093/bioinformatics/btab322>.

562

563 Jaina Mistry, Sara Chuguransky, Lowri Williams, Matloob Qureshi, Gustavo A. Salazar, Erik L. L.
 564 Sonnhammer, Silvio C. E. Tosatto, Lisanna Paladin, Shriya Raj, Lorna J. Richardson, Robert D.
 565 Finn, and Alex Bateman. Pfam: The protein families database in 2021. *Nucleic Acids Research*,
 566 49(D1):D412–D419, 2021. doi: 10.1093/nar/gkaa913. URL <https://doi.org/10.1093/nar/gkaa913>.

567

568 Roberto Mosca, Arnaud Ceol, and Patrick Aloy. Interactome3D: adding structural details to protein
 569 networks. *Nature Methods*, 10(1):47–53, 2013. doi: 10.1038/nmeth.2289. URL <https://doi.org/10.1038/nmeth.2289>.

570

571 Typhaine Paysan-Lafosse, Antonina Andreeva, Matthias Blum, Sara Rocio Chuguransky, Tiago
 572 Grego, Beatriz Lazaro Pinto, Gustavo A. Salazar, Maxwell L. Bileschi, Felipe Llinares-López,
 573 Laetitia Meng-Papaxanthos, Lucy J. Colwell, Nick V. Grishin, R. Dustin Schaeffer, Damiano
 574 Clementel, Silvio C. E. Tosatto, Erik Sonnhammer, Valerie Wood, and Alex Bateman. The Pfam
 575 protein families database: Embracing AI/ML. *Nucleic Acids Research*, 53(D1):D523–D534,
 576 2025. doi: 10.1093/nar/gkae997. URL <https://doi.org/10.1093/nar/gkae997>.

577

578 Roshan Rao, Nicholas Bhattacharya, Neil Thomas, Yan Duan, Xi Chen, John Canny,
 579 Pieter Abbeel, and Yun S. Song. Evaluating Protein Transfer Learning with TAPE.
 580 In *Advances in Neural Information Processing Systems (NeurIPS)*, volume 32,
 581 2019. URL <https://proceedings.neurips.cc/paper/2019/hash/86c3cfb6a7f9f3c8f5397492d5c313eb-Abstract.html>.

582

583 Roshan Rao, Joshua Meier, Tom Sercu, Sergey Ovchinnikov, and Alexander Rives. Transformers for
 584 Protein Multiple Sequence Alignment. In *International Conference on Learning Representations
 585 (ICLR)*, 2021. URL https://openreview.net/forum?id=MSAj0C9zO_j.

586

587 Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi
 588 Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. Biological structure and
 589 function emerge from scaling unsupervised learning to 250 million protein sequences. *Pro-
 590 ceedings of the National Academy of Sciences (PNAS)*, 118(15):e2016239118, 2021. doi:
 591 10.1073/pnas.2016239118. URL <https://doi.org/10.1073/pnas.2016239118>.

592

593 Thomas Rolland, Murat Taşan, Benoît Charlotteaux, Samuel J. Pevzner, Qi Zhong, Nishant Sahni,
 594 Song Yi, Irma Lemmens, Cristina Fontanillo, Roberto Mosca, et al. A proteome-scale map of
 595 the human interactome network. *Cell*, 159(5):1212–1226, 2014. doi: 10.1016/j.cell.2014.10.050.
 596 URL <https://doi.org/10.1016/j.cell.2014.10.050>.

594 Jean-François Rual, Kavitha Venkatesan, Tong Hao, Tomoko Hirozane-Kishikawa, Anny Dricot,
 595 Ning Li, Gabriel F. Berriz, F. Dylan Gibbons, Matija Dreze, Nathalie Ayivi-Guedehoussou, et al.
 596 Towards a proteome-scale map of the human protein–protein interaction network. *Nature*, 437
 597 (7062):1173–1178, 2005. doi: 10.1038/nature04209. URL <https://doi.org/10.1038/nature04209>.

598

599 Amirhossein Shaneszadeh, Jeffrey Skolnick, Tameem Khazaei, and Christopher Bystroff. A
 600 deep learning approach to protein function prediction. In *Proceedings of the IEEE International
 601 Conference on Bioinformatics and Biomedicine (BIBM)*, pp. 656–661, 2011. doi: 10.1109/BIBM.
 602 2011.6120392. URL <https://doi.org/10.1109/BIBM.2011.6120392>.

603

604 Roded Sharan, Silpa Suthram, Ryan M. Kelley, Tilmann Kuhn, Sarah McCuine, Peter Uetz, Tilmann
 605 Sittler, Richard M. Karp, and Trey Ideker. Conserved patterns of protein interaction in multiple
 606 species. *Proceedings of the National Academy of Sciences (PNAS)*, 102(6):1974–1979, 2005. doi:
 607 10.1073/pnas.0409522102. URL <https://doi.org/10.1073/pnas.0409522102>.

608

609 Zhen Song, Dongbo Wang, Yue Zhang, Xiang Li, and Jianyang Zeng. MAPE-PPI: a multi-scale
 610 adaptive protein embedding model for protein–protein interaction prediction. *Bioinformatics*, 38
 611 (17):4121–4128, 2022. doi: 10.1093/bioinformatics/btac526. URL <https://doi.org/10.1093/bioinformatics/btac526>.

612

613 Ulrich Stelzl, Ulrike Worm, Maciej Lalowski, Christian Haenig, Felix H. Brembeck, Heike Goehler,
 614 Miriam Stroedicke, Manuela Zenkner, Alexander Schoenherr, Susanne Koeppen, et al. A human
 615 protein–protein interaction network: a resource for annotating the proteome. *Cell*, 122(6):957–
 616 968, 2005. doi: 10.1016/j.cell.2005.08.029. URL <https://doi.org/10.1016/j.cell.2005.08.029>.

617

618 Michael P. H. Stumpf, Thomas Thorne, Eamonn de Silva, Rachael Stewart, Hye-Jung An, Markus
 619 Lappe, and Carsten Wiuf. Estimating the size of the human interactome. *Proceedings of the Na-
 620 tional Academy of Sciences (PNAS)*, 105(19):6959–6964, 2008. doi: 10.1073/pnas.0708078105.
 621 URL <https://doi.org/10.1073/pnas.0708078105>.

622

623 Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic Attribution for Deep Networks. In
 624 *Proceedings of the 34th International Conference on Machine Learning (ICML)*, pp. 3319–3328,
 625 2017. URL <http://proceedings.mlr.press/v70/sundararajan17a.html>.

626

627 Damian Szklarczyk, Annika L. Gable, Katerina C. Nastou, David Lyon, Rebecca Kirsch, Sampo
 628 Pyysalo, Nadezhda T. Doncheva, Marc Legeay, Tao Fang, Peer Bork, Lars J. Jensen, and Chris-
 629 tian von Mering. The STRING database in 2021: customizable protein–protein networks, and
 630 functional characterization of user-uploaded gene/measurement sets. *Nucleic Acids Research*, 49
 631 (D1):D605–D612, 2021. doi: 10.1093/nar/gkaa1074. URL <https://doi.org/10.1093/nar/gkaa1074>.

632

633 Damian Szklarczyk et al. The STRING database in 2025: protein networks across 15,000 organisms.
 634 *Nucleic Acids Research*, 2025. doi: 10.1093/nar/gkae123. URL <https://doi.org/10.1093/nar/gkae123>. in press.

635

636

637 Chee Seng Tan, Kuan Hu Go, Fruzsina Bánáti, and David Fenyö. Trifunctional cross-linker for
 638 mapping protein–protein interactions. *Journal of the American Chemical Society*, 138(24):
 639 7673–7684, 2016a. doi: 10.1021/jacs.6b01801. URL <https://doi.org/10.1021/jacs.6b01801>.

640

641 Chee Seng Tan, Kuan Hu Go, Fruzsina Bánáti, and David Fenyö. Trifunctional cross-linker for
 642 mapping protein–protein interactions. *Journal of the American Chemical Society*, 138(24):7673–
 643 7684, 2016b. doi: 10.1021/jacs.6b01801. URL <https://doi.org/10.1021/jacs.6b01801>.

644

645 The UniProt Consortium. UniProt: the Universal Protein Knowledgebase in 2025. *Nucleic Acids
 646 Research*, 53(D1):D437–D446, 2025. doi: 10.1093/nar/gkae110. URL <https://doi.org/10.1093/nar/gkae110>.

648 Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation Learning with Contrastive Pre-
 649 dictive Coding. *arXiv preprint arXiv:1807.03748*, 2018. URL <https://arxiv.org/abs/1807.03748>.
 650

651 Marc Vidal, Michael E. Cusick, and Albert-László Barabási. Interactome networks and human
 652 disease. *Cell*, 144(6):986–998, 2011. doi: 10.1016/j.cell.2011.02.016. URL <https://doi.org/10.1016/j.cell.2011.02.016>.
 653

654 Jesse Vig, Ali Madani, Lav R. Varshney, Caiming Xiong, Richard Socher, and Nazneen Fatema
 655 Rajani. BERTology meets biology: Interpreting attention in protein language models. *arXiv
 656 preprint arXiv:2006.15222*, 2020. URL <https://arxiv.org/abs/2006.15222>.
 657

658 Minh Vu, Fabian Fuchs, Petar Veličković, Oriol Vinyals, Charles Blundell, and Pietro Liò.
 659 GraphMask: A Generalizable Explanation for Graph Neural Networks. *Bioinformatics*, 39(6):
 660 btad367, 2023. doi: 10.1093/bioinformatics/btad367. URL <https://doi.org/10.1093/bioinformatics/btad367>.
 661

662 Yuxiang Wang, Wenpin Li, Xiaoyang Guo, Xin Gao, Dongbo Wang, and Jianyang Zeng. INTREPP-
 663 PID: an orthologue-informed quintuplet network for cross-species prediction of protein–protein
 664 interaction. *Bioinformatics*, 39(6):btad367, 2023. doi: 10.1093/bioinformatics/btad367. URL
 665 <https://doi.org/10.1093/bioinformatics/btad367>.
 666

667 Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How Powerful are Graph Neu-
 668 ral Networks? In *International Conference on Learning Representations (ICLR)*, 2019. URL
 669 <https://openreview.net/forum?id=ryGs6ia5Km>.
 670

671 Rex Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. GNN-
 672 NExplainer: Generating Explanations for Graph Neural Networks. In *Advances
 673 in Neural Information Processing Systems (NeurIPS)*, volume 32, pp. 9244–9255,
 674 2019. URL <https://proceedings.neurips.cc/paper/2019/hash/d80b7040b773199015de6d3b4293c8d3-Abstract.html>.
 675

676 Haiyuan Yu, Pascal Braun, Muhammed A. Yildirim, Irma Lemmens, Kavitha Venkatesan, Jason
 677 Sahalie, Tomoko Hirozane-Kishikawa, Fasil Gebreab, Ning Li, Nicolas Simonis, Tong Hao, Jean-
 678 François Rual, Anny Dricot, Alex Vazquez, Robert R. Murray, et al. High-quality binary protein
 679 interaction map of the yeast interactome network. *Science*, 322(5898):104–110, 2008. doi: 10.
 680 1126/science.1158684. URL <https://doi.org/10.1126/science.1158684>.
 681

682 Dong Zhang, Fan Jin, Sheng Sun, Hao Wu, and Qi Jin. Hierarchical graph learning for protein–
 683 protein interaction. *Briefings in Bioinformatics*, 23(1):bbab401, 2022. doi: 10.1093/bib/bbab401.
 684 URL <https://doi.org/10.1093/bib/bbab401>.
 685

686 A ADDITIONAL FIGURES

687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701

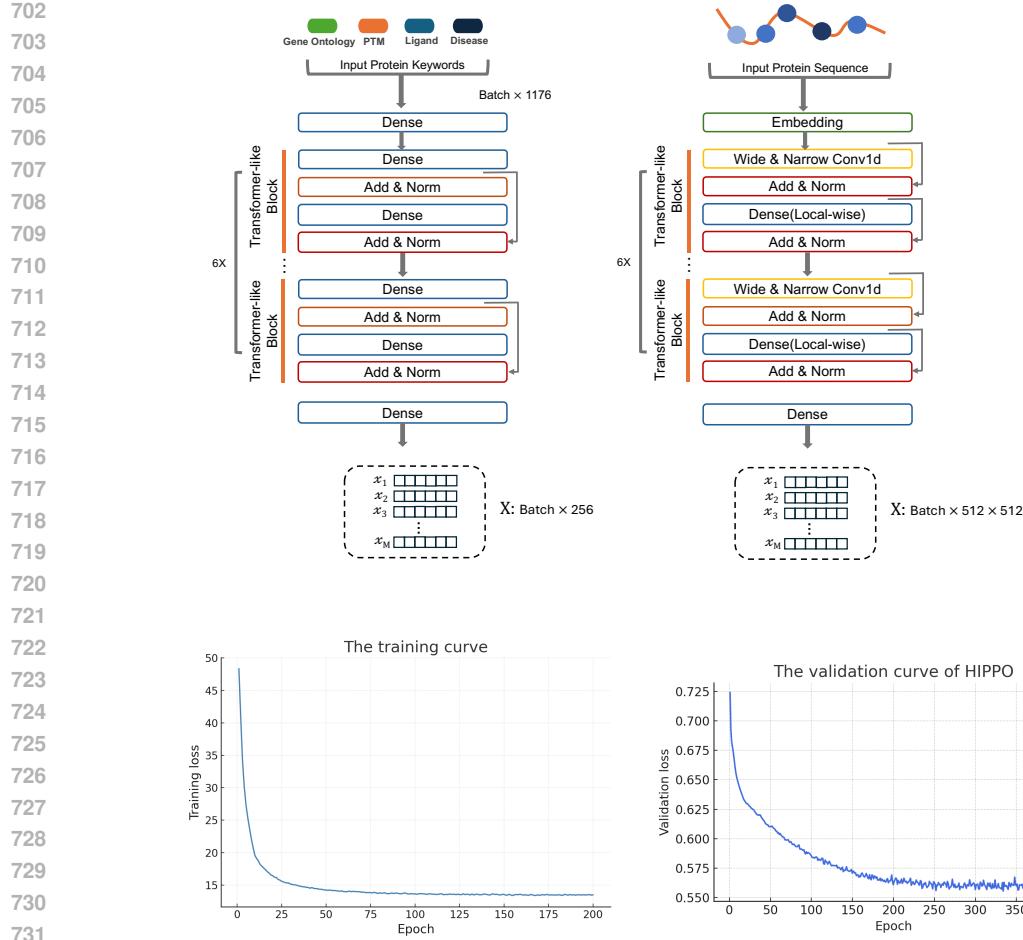


Figure A1: **Model architectures and training curves.** Overview of the sequence–annotation encoder within HIPPO. The protein sequence is embedded, processed by transformer-like blocks with 1D convolutions and local dense layers, pooled by attention to a global embedding, and projected to 256 dimensions for downstream PPI prediction.

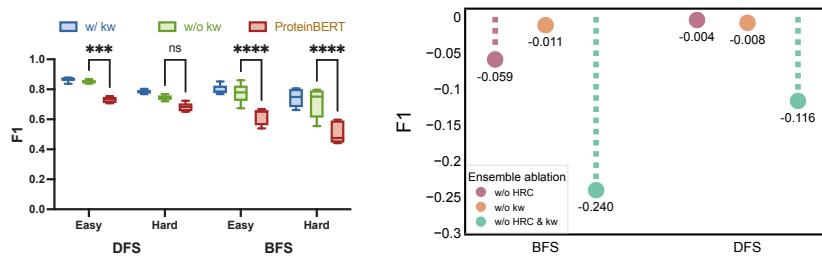
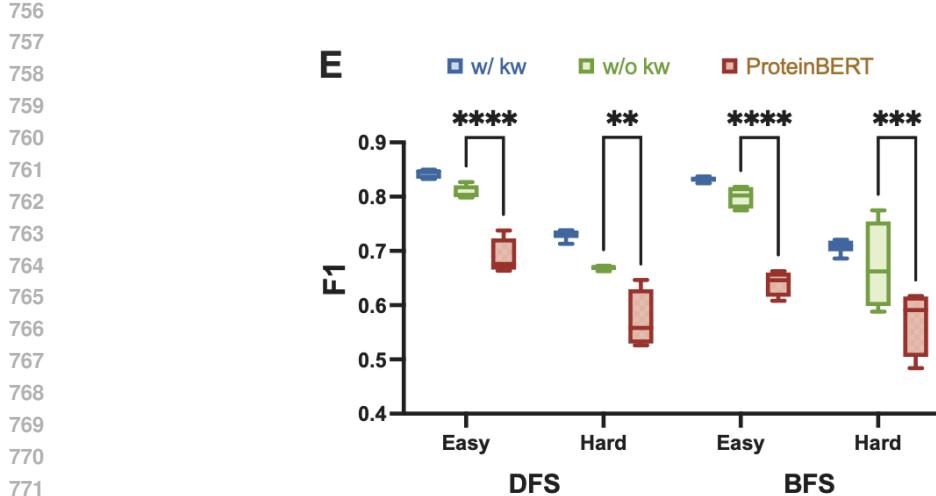
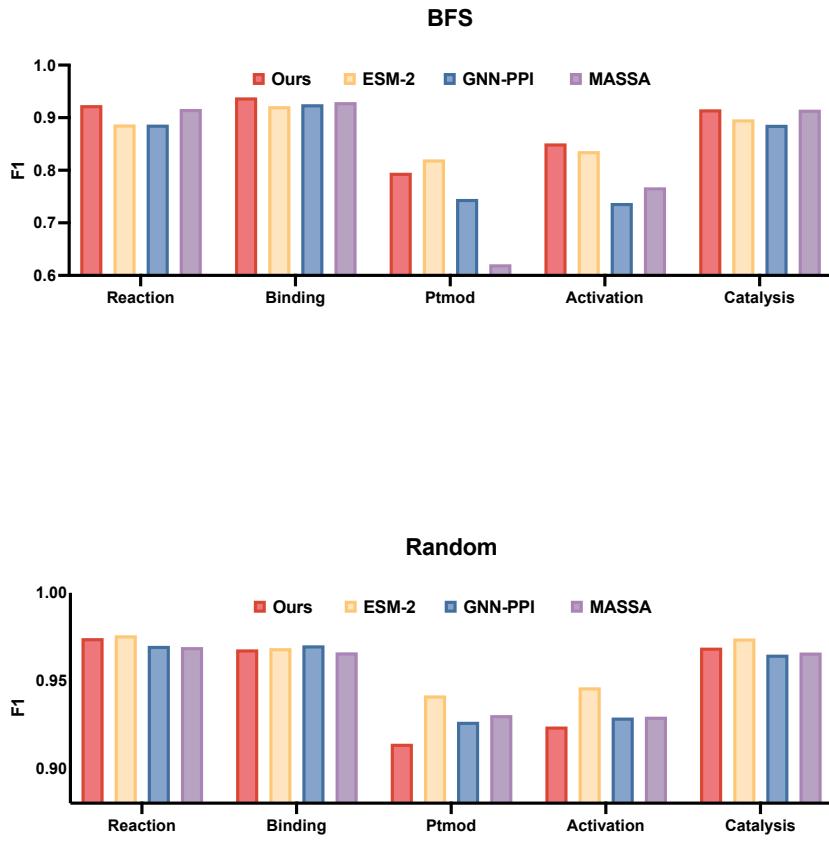


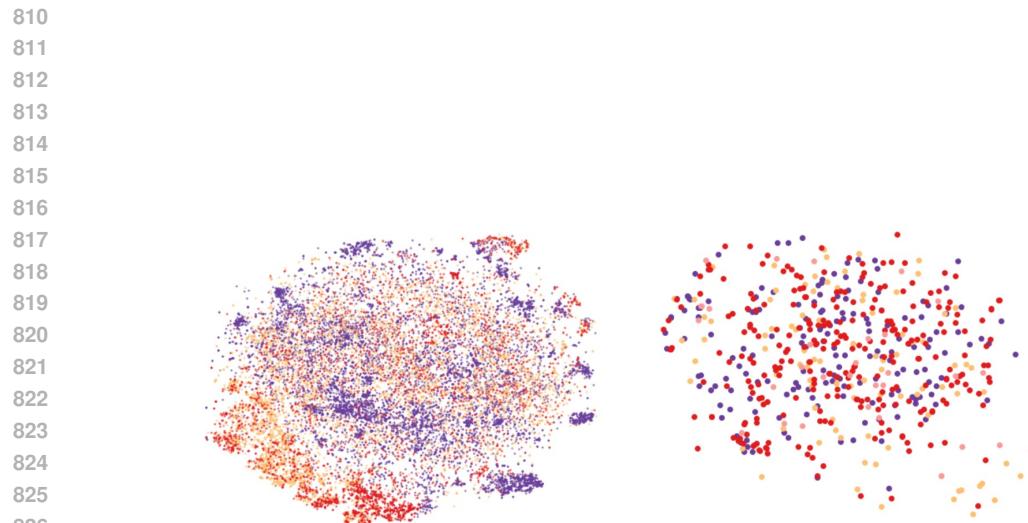
Figure A2: **Ablation and comparison on SHS148k.** Left: performance with and without keyword annotations, and ProteinBERT baseline. Significance: **** ($p < 0.0001$), *** ($p < 0.001$), ** ($p < 0.01$). Right: relative F1 drop ΔF_1 when removing hierarchical attributes (HRC) and/or keyword annotations (kw).



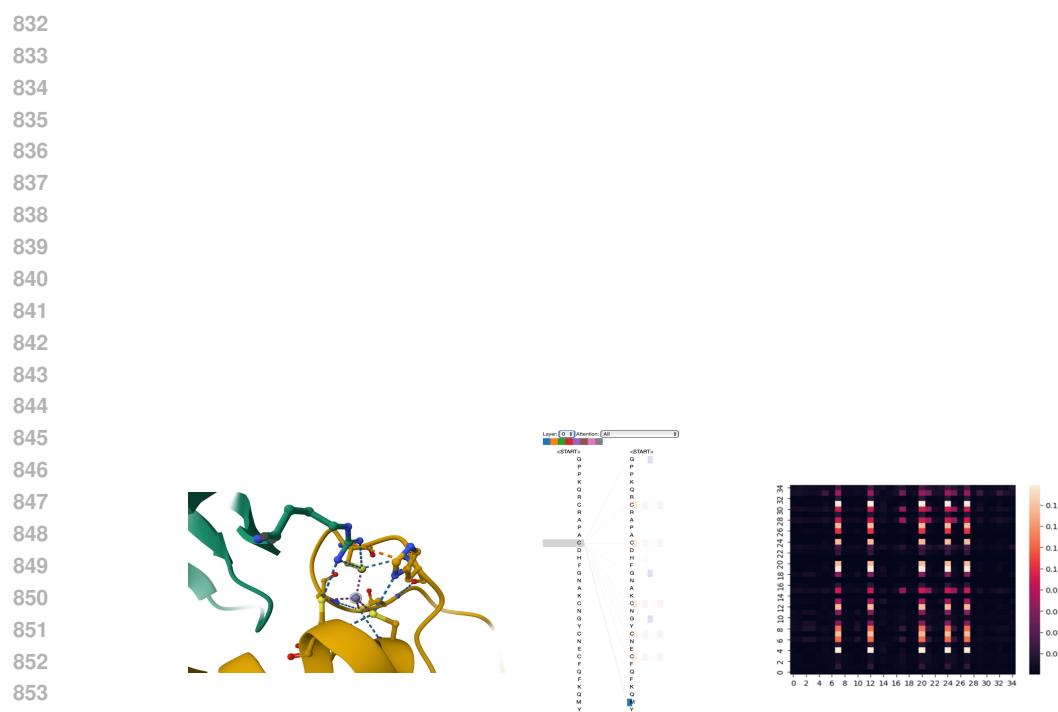
773 **Figure A3: Comparison of model performance on SHS27k.** Box plots show results with keyword
774 annotations (w kw), without keyword annotations (w o kw), and the baseline ProteinBERT. Statisti-
775 cal significance is indicated by asterisks: *** p \leq 0.001, ** p \leq 0.01.



807 **Figure A4: Performance across PPI types on SHS27k.** F1 scores of four models (Ours, ESM2,
808 GNNPPI, MASSA) on five interaction types (Reaction, Binding, PTM, Activation, Catalysis) under
809 BFS (upper) and Random (lower) sampling.



828 **Figure A5: Feature visualization of protein representations.** Left: domain embeddings (Protein
829 kinase, WD40 repeats, Immunoglobulin, Ankyrin repeat). Right: lineage embeddings (Actinobac-
830 teria, Bacteroidetes, Firmicutes) on Pfam PF00144. Encoder trained without keyword pretraining;
831 t-SNE projections shown.



855 **Figure A6: Attention-based visualization of binding motifs.** Cys4 zinc-finger motif (PDB:
856 3VUX): structure view with zinc-coordinating residues, sequence-level attention map, and atten-
857 tiation heatmap highlighting strong attention among binding cysteines.

858
859
860
861
862
863

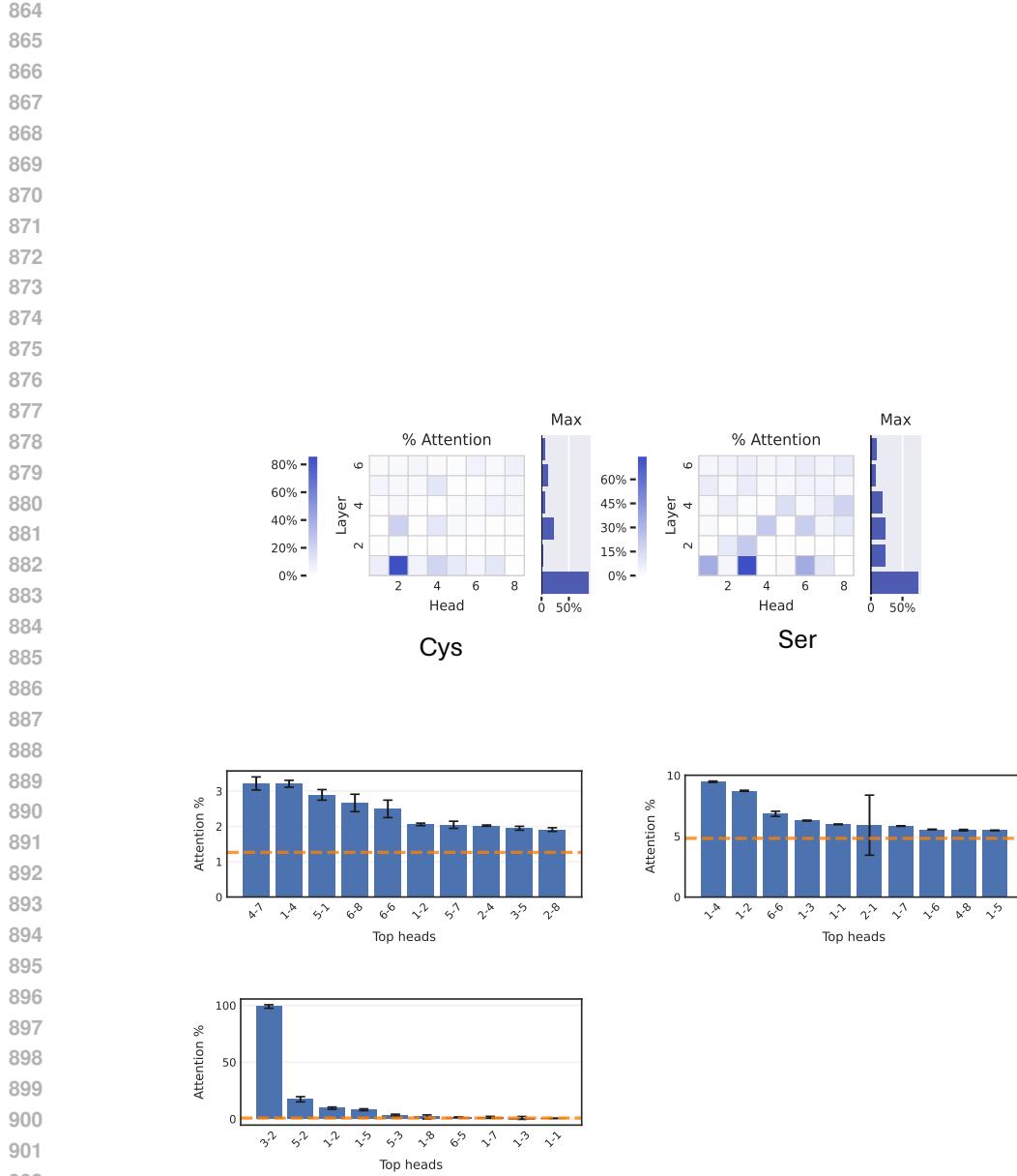


Figure A7: **Attention head specialization.** Top: per-head attention allocation to cysteine and serine across the test set. Bottom: proportion of attention on contact maps, binding sites, and PTM sites with 95% confidence intervals; dashed lines show uniform baseline.

918 **B ADDITIONAL TABLES**
919

SHS27k	DFS			BFS		
	All	Medium/ES	Hard/NS	All	Medium/ES	Hard/NS
Ours	0.831 ± 0.003	0.843 ± 0.003	0.730 ± 0.004	0.816 ± 0.002	0.832 ± 0.002	0.708 ± 0.005
GNN-PPI	0.711 ± 0.002	0.722 ± 0.002	0.619 ± 0.003	0.803 ± 0.002	0.824 ± 0.003	0.688 ± 0.007
ESM-2	0.723 ± 0.005	0.737 ± 0.004	0.611 ± 0.007	0.806 ± 0.003	0.823 ± 0.003	0.686 ± 0.005
INTREPID	0.736 ± 0.006	0.751 ± 0.006	0.593 ± 0.014	0.722 ± 0.022	0.742 ± 0.021	0.581 ± 0.031

927 Table B1: **Performance on SHS27k by difficulty.** Mean ± standard deviation over repeated runs
928 under DFS and BFS.
929

SHS148k	DFS			BFS	
	Medium/ES	Hard/NS	Medium/ES	Hard/NS	
Ours	0.866 ± 0.006	0.784 ± 0.006	0.797 ± 0.013	0.742 ± 0.025	
GNN-PPI	0.852 ± 0.020	0.743 ± 0.0065	0.844 ± 0.0027	0.764 ± 0.008	
ESM-2	0.873 ± 0.0008	0.763 ± 0.00037	0.811 ± 0.0139	0.770 ± 0.0153	
INTREPID	0.833 ± 0.0005	0.728 ± 0.0129	0.717 ± 0.016	0.555 ± 0.015	

937 Table B2: **Performance on SHS148k by difficulty.** Mean ± standard deviation under DFS and
938 BFS.
939

Method	Reaction	Binding	PTM	Activation	Inhibition	Catalysis	Expression
Ours	0.8606	0.8811	0.8899	0.7737	0.6304	0.9131	0.2209
ESM-2	0.6514	0.7957	0.6905	0.6925	0.7673	0.8412	0.3780
GNN-PPI	0.7676	0.8142	0.6616	0.7165	0.7779	0.8551	0.3515
MASSA	0.7134	0.8085	0.6851	0.7461	0.7338	0.8667	0.3771

940 Table B3: **F1 across interaction categories on SHS27k.**
941

Method	Reaction	Binding	PTM	Activation	Inhibition	Catalysis	Expression
Ours	0.9239	0.9387	0.7954	0.8510	0.7513	0.9159	0.5054
ESM-2	0.8871	0.9219	0.8208	0.8365	0.7308	0.8969	0.4424
GNN-PPI	0.8868	0.9258	0.7455	0.7377	0.7661	0.8864	0.4884
MASSA	0.9164	0.9292	0.6209	0.7673	0.7355	0.9149	0.4217

942 Table B4: **F1 across interaction categories on SHS148k.**
943

Species	E. coli	Yeast	C. elegans	Arabidopsis	Mouse	D. melanogaster
Pairs count	73224	769028	3123146	4251642	4850272	1495180

944 Table B5: **Cross-species PPI pair counts.**
945

Method	E. coli	Yeast	C. elegans	Arabidopsis	Mouse	D. melanogaster
Ours	0.7559	0.7452	0.4940	0.7028	0.7177	0.5108
GNN-PPI	0.2671	0.1968	0.3831	0.3511	0.3942	0.4709
ProteinBERT	0.2899	0.2182	0.2626	0.3638	0.4776	0.0600
ESM-2	0.4067	0.5079	0.4916	0.2371	0.2851	0.2598
INTREPID	0.4586	0.4264	0.3533	0.2951	0.5079	0.1423
PIPR	0.3898	0.4337	0.4833	0.4509	0.4408	0.4374

946 Table B6: **Cross-species F1 scores across six organisms.**
947

972 C ADDITIONAL METHODS
973
974975 C.1 DATA PREPARATION AND ANALYSIS
976
977

978 During the pretraining stage, we employed the Swiss-Prot dataset from UniProtKB Bairoch & Ap-
979 weiler (2000) due to its extensive protein data coverage and high-quality, manually curated anno-
980 tations. Protein attributes include various protein families and clans accessible through the Pfam
981 database Mistry et al. (2021), and annotations curated within the UniProtKB Keywords section.
982 The keywords section incorporates controlled vocabulary terms manually annotated to include Gene
983 Ontology (GO) terms, disease associations, protein domains, ligands, and post-translational modifi-
984 cations (PTMs) The UniProt Consortium (2025).

985 During protein–protein interaction (PPI) prediction stage, we utilized three datasets derived from
986 STRING Szklarczyk et al. (2021; 2025): SHS148k and SHS27k. SHS27k and SHS148k datasets
987 were created by selecting proteins longer than 50 amino acids with less than 40% sequence identity
988 to form more challenging subsets. SHS27k comprises 63,408 interactions among 1,690 proteins,
989 while SHS148k includes 36,902 interactions among 5,189 proteins Lv et al. (2021). Three partition
990 methods—Random, Breadth-First Search (BFS), and Depth-First Search (DFS)—were employed
991 for dataset splitting Lv et al. (2021); Hu et al. (2023). To rigorously assess model generalization, we
992 evaluated performance on unfamiliar proteins within the test set by checking if interacting proteins
993 existed in the training set, with detailed splitting procedures described in the Results section.

994 Hierarchical protein labels represent multiple interconnected annotations related to protein functions
995 and residue-level details, organized in a tree structure. In this hierarchy, leaf nodes correspond to
996 unique sequence identifiers, while non-leaf nodes indicate evolutionary classifications at various hi-
997 erarchical levels. Higher hierarchy levels (e.g., Clan l_1) represent broader evolutionary relationships,
998 situated closer to the root, whereas lower levels (e.g., Family l_2) represent narrower classifications.
999 Clans integrate multiple related protein domain families, reflecting extensive evolutionary connec-
1000 tions and similarities. Positive sequence pairs at a given hierarchical level $l \in L$ are defined as
1001 sequences sharing common ancestry up to level l but diverging thereafter. As illustrated in Fig. 1, a
1002 pair at the clan level l_1 implies their lowest common ancestor is at this hierarchical level. Our frame-
1003 work comprises 6,329 distinct families and 621 clans, collectively forming a hierarchical clan-family
1004 tree capturing intrinsic protein properties such as evolutionary relationships, sequence similarities,
1005 and structural homologies Paysan-Lafosse et al. (2025).

1006
1007 C.2 TRAINING DETAILS
1008
1009

1010 For the pretraining stage on Swiss-Prot, we used a batch size of 128 and trained the model for up to
1011 100 epochs. The initial learning rate was set to 3×10^{-4} with cosine decay, a minimum learning rate
1012 of 1×10^{-6} , and a warmup schedule with 3,000 steps (warmup learning rate 1×10^{-6}). We applied
1013 weight decay of 0.05. The queue size for contrastive learning was set to 65,536 and the momentum
1014 coefficient α was 0.4. A learning rate decay rate of 0.9 was applied across epochs. For supervised
1015 PPI prediction, we trained with a batch size of 128 for 400 epochs. The learning rate was set to
1016 1×10^{-6} . Checkpoints were saved throughout training to monitor performance.

1017
1018 C.3 CROSS-SPECIES PPI PREDICTION
1019
1020

1021 We train on human PPIs (SHS148k) and evaluate on six species: *Escherichia coli*, yeast, *Caenorhab-
1022 ditis elegans*, *Arabidopsis thaliana*, mouse, and *Drosophila melanogaster*. Test PPIs are disjoint
1023 from training. Performance is measured by F1; counts and results are in Tables B5 and B6. Our
1024 hierarchical model achieves the best F1 on all species, with higher scores on evolutionarily closer
1025 organisms (e.g., mouse).

1026
1027

C.4 ATTENTION-BASED BINDING SITE PREDICTION

1028
1029

Given an input sequence of length L , the model produces self-attention matrices $A_{l,h} \in \mathbb{R}^{L \times L}$ for layer l and head h . We aggregate attention over selected layers and heads and score residue i by

1030
1031
1032
1033

$$a_i = \frac{1}{N_h N_l} \sum_{h=1}^{N_h} \sum_{l=1}^{N_l} \sum_{j=1}^L A_{l,h}[i, j].$$

1034
1035
1036

Top- k residues by a_i are predicted as binding sites; consensus voting across heads improves robustness. Overlap and false-positive rates are reported; qualitative cases in Figure ?? show that HRC pretraining improves specificity and accuracy.

1037
1038

C.5 ATTENTION ANALYSIS

1039
1040
1041
1042
1043

We visualize residue–residue attention (Figure A6) and quantify per-head specialization (Figure A7). For each head, we compute the fraction of attention allocated to specific residue types (e.g., cysteine, serine) and to annotated functional positions (contacts, binding, PTMs), normalized by total head attention. Heads showing large fractions above background indicate biologically meaningful specialization.

1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079