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Abstract

Large language models (LLMs) can perform
a wide range of tasks in a zero-shot fashion.
Yet, defining the task and communicating it to
the model remains a challenge. While prior
work focuses on prompting strategies taking
the task definition as a given, we explore the
novel use of LLMs for arriving at an optimal
task definition in the first place. We propose an
experimental framework consisting of a prompt
manipulation module, reference data and a mea-
surement kit, and use it to study citation text
generation — a popular natural language pro-
cessing task without clear consensus on the
task definition. Our results highlight the impor-
tance of both task definition and task instruc-
tion for prompting LLMs, and reveal non-trivial
relationships between different evaluation met-
rics used for the citation text generation task.
Our human study illustrates the impact of task
definition on non-author human-generated out-
put and reveals the discrepancies between auto-
matic and manual NLG evaluation. Our work
contributes to the study of citation text gener-
ation in NLP and paves the path towards the
systematic study of task definitions in the age
of LLMs. Our code is publicly available.!

1 Introduction

Conventional empirical studies in natural language
processing (NLP) mostly follow an established
methodology: a task is defined, a model is con-
structed, and a performance metric is used to eval-
uate the model. Through a combination of large-
scale pre-training and instruction-tuning followed
by fine-tuning with human feedback, modern large
language models (LLMs) learn to perform many
tasks in a zero-shot fashion following a natural
language prompt. This allows for unprecedented
flexibility and speed with which new tasks can
be specified, while removing the need for costly
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Figure 1: Citation text generation with LLMs. The task
is to generate a paragraph of related work from the cit-
ing paper (A) about a cited paper (B). This task can be
formalized in many different ways. We use the Llama
2-Chat LLM to explore the relationship between task
definition and model outputs by manipulating the avail-
able inputs and the task instruction (left) and evaluating
the output using a range of measurements (right) on a
reference collection (top).

task-specific architecture design and model train-
ing (Touvron et al., 2023a,b; Taori et al., 2023;
Ouyang et al., 2022; OpenAl, 2023; Chung et al.,
2022). Yet, it remains unclear how to effectively
leverage LLMs to formally define complex NLP
tasks. Furthermore, accurately conveying these
tasks to LLMs in natural language poses a novel
and ongoing challenge.

We highlight the conceptual difference between
the task definition and the task instruction. Task
definition is a set of input components considered
sufficient to solve the problem at hand, and the
expected output. For example, sentiment analy-
sis can be defined as predicting a label [ € L :
{positive|netural|negative} given an input sen-
tence s;. Task instruction is a free-form natural



language description of the task based on the task
definition. Coupled with the instance-specific data
inputs, it forms a prompt. An example task in-
struction would be "Given a sentence, predict its
sentiment from the following options:...". Both task
definitions and task instructions are variable. The
input for sentiment analysis can be enriched with
context, and the output can use a different senti-
ment scale. The task definition can be verbalized
into an instruction in many ways, as well.

Task definitions and instructions have been
around throughout the history of NLP. While in-
structions are commonplace in annotation studies,
their direct use during inference is a novel feature
introduced by LLMs. Prompting study searches
for optimal strategies to arrive at good task instruc-
tions for LLMs (Section 2.1). Strategies to explore
task definitions, on the other hand, are less studied.
While this has historically required modifications
to the model architecture and fine-tuning of the
model, due to their zero-shot capabilities and flex-
ibility with respect to the input, LLMs provide a
new and exciting opportunity for such exploration.

In this work, we use LLMs to systematically
study the task of citation text generation — a
widely studied scholarly text generation task (Li
and Ouyang, 2022; Funkquist et al., 2022). This
task is particularly well-suited for our work since
it lacks consensus on the precise task definition,
features a complex input space combined with mul-
tiple plausible outputs, and has not yet been tackled
in a zero-shot setting with instruction-tuned LLMs.
While Funkquist et al. (2022) unify multiple cita-
tion text generation datasets to enable systematic
comparison of NLP models, they leave open the
exact definition of the task and focus on the su-
pervised learning scenario, while leaving zero-shot
citation generation under-investigated.

To address this gap, we design a framework to
systematically investigate the impact of task defini-
tion and task instruction on citation text generation
(Figure 1). It consists of three parts: the (1) prompt
manipulation module systematically varies the task
instruction and the input components available to
the model; (2) reference data serves as a source of
examples and reference for evaluation; (3) measure-
ment kit allows characterizing the model outputs
in response to the prompts. Through extensive ex-
periments, we study the interactions between the
instruction, input components and measurable prop-
erties of the outputs for citation text generation. In

summary, this work contributes the following:

* We outline a framework for studying task defi-
nitions for citation text generation using LLMs,
featuring a novel use of unstructured intents as an
input component to guide the generation process;

* We introduce a measurement kit to characterize
the generated citation texts from multiple per-
spectives, along with a novel reference corpus
of citation texts based on the ACL Anthology
enriched with unstructured citation intents;

* We use our framework to study the impact of
task definition on the model outputs, and exam-
ine the relationships between the metrics in the
measurement Kit;

* We refine our findings in a human evaluation
study, where we compare human- and machine-
generated citation texts in terms of both auto-
matic measurements and human rankings.
Summary of findings. We find (Section 5) that

LLM generations do not always obey the formal re-

quirements stated in the task instruction and tend to

over-generate text. Task definition and task instruc-
tion both impact the generations, and their effects
add up. The results suggest that while the relative
performance of different task definitions might be
estimated using a small set of instructions, the best
absolute performance requires experimenting with

a wide array of instruction wordings. Through cor-

relation analysis we observe that the NLG metrics

used in our measurement kit are complementary,
motivating the use of wide-spanning measurement
sets for NLG tasks that feature several equally ac-

ceptable answers. Our human studies (Section 6)

reveal that — contrary to the automatic measure-

ments — humans still prefer human-generated ci-
tation texts, and that the effects of task definition

on LLM generation quality can be replicated in a

setting where humans generate citation texts man-

ually. Our qualitative analysis provides additional
hypotheses and insights to guide future work in

LLM-based citation text generation.

2 Background
2.1 LLMs and Prompting

Instruction-tuned large language models (LLMs)
demonstrate competitive performance across a
wide range of NLP tasks (Touvron et al., 2023a,b;
Taori et al., 2023; Ouyang et al., 2022; OpenAl,
2023; Chung et al., 2022). Unlike traditional mod-
els, LLMs can be prompted with free-form textual
queries. Prompts can be manipulated through sim-



Study Level | Abstract | Intent | Example Model Evaluation

(AbuRa’ed et al., 2020) sent Tgt - - PG ROUGE

(Xing et al., 2020) sent Tgt - - PG ROUGE, Human

(Ge et al., 2021) sent Tgt C - Enc. + LSTM | ROUGE, Human

(Kasanishi et al., 2023) para Tgt - - FiD ROUGE, Human

(Chen et al., 2021) para Tgt - - Hier. Enc. ROUGE, Human

(Luu et al., 2021) sent Src/Tgt - - GPT-2 ROUGE, BLEU, Human

(Lu et al., 2020) para Src/Tgt - - PG ROUGE, Human

(Arita et al., 2022) sent Src/Tgt - T5 ROUGE

(Jung et al., 2022) sent | Src/Tgt - 15, BART | ROUGE, SciBERTScore
Human

(Wu et al., 2021) para Src/Tgt C - FiD ROUGE, BLEU, BLEURT,
Meteor
ROUGE, BERTScore,

Ours para Src/Tgt F v Llama 2-Chat | BLEURT, TRUE, SummacC,
Surface measurements, Human

Table 1: Our work in the context of prior work on citation text generation. We explore alternative task definitions
for citation text generation in the context of state-of-the-art instruction-following LLMs, using a comprehensive
measurement kit and two novel input components: free-form citation intent and example sentence. sent — sentence,
para — paragraph, PG — pointer-generator network, FiD — fusion-in-decoder network, C — categorical intents, F -
free-form intents, Src - source (citing) paper, Tgt - target (cited) paper.

ple textual adjustments, allowing the user to guide
model behavior at inference time without the need
to update the model.

The search for efficient prompting strategies is
a trending research topic. The initial enthusiasm
about zero-shot capabilities of LLMs (Brown et al.,
2020; Kojima et al., 2022; Sanh et al., 2022) has
been countered by evidence that LLLMs are sensi-
tive to minor changes in prompt formulation (Lu
etal., 2022; Mishra et al., 2022; Wang et al., 2023a;
Zhu et al., 2023). Several techniques for arriving at
an optimal task wording have been proposed, e.g.
choosing lowest-perplexity prompts (Gonen et al.,
2022; Yin et al., 2023; Gu et al., 2023; Lou et al.,
2023). In-context learning (ICL) based on task
demonstrations has shown promise (Ouyang et al.,
2022; Wang et al., 2022b, 2023b; Chung et al.,
2022), yet Min et al. (2022) suggest that the main
source of performance improvements in ICL is not
the task demonstration, but the information it pro-
vides about the label space, input distribution and
output format. Allin all, findings to date emphasize
the importance and complexity of communicating
the task at hand to an LLM. While prior work fo-
cuses on arriving at an optimal task instruction, we
investigate the impact of alternative task definitions
on LLM behavior for citation text generation.

2.2 Citation Text Generation

Citation text generation is a widely studied task
aiming to increase the efficiency of scientific work.

It has been cast as a sentence-level (AbuRa’ed et al.,
2020; Ge et al., 2021; Li et al., 2022b, 2023) and
paragraph-level task (Lu et al., 2020; Chen et al.,
2021, 2022; Wu et al., 2021; Kasanishi et al., 2023),
as extractive (Hoang and Kan, 2010; Hu and Wan,
2014; Chen and Zhuge, 2019; Wang et al., 2020)
and abstractive summarization (AbuRa’ed et al.,
2020; Li et al., 2022a; Lu et al., 2020; Chen et al.,
2021; Luu et al., 2021; Kasanishi et al., 2023). Dif-
ferent input components such as categorical cita-
tion intents and citation network information have
been explored (Wu et al., 2021; Arita et al., 2022;
Gu and Hahnloser, 2022; Jung et al., 2022; Ge et al.,
2021; Wang et al., 2021, 2022a; Chen et al., 2022;
Gu and Hahnloser, 2023). Table 1 summarizes task
definitions and modeling approaches from prior
work: we are the first to systematically assess the
impact of different task definitions for citation text
generation using a modern instruction-tuned LLM.

The differences in task definitions prevent sys-
tematic comparison of citation text generation ap-
proaches. To address this, Funkquist et al. (2022)
propose a benchmark that incorporates multiple
prior datasets under a general task definition frame-
work and casts the task as text-to-text generation.
Our paper builds upon this work and differs from it
in two major regards. First, Funkquist et al. (2022)
unify a range of prior datasets adhering to differ-
ent task definitions, yet they do not systematically
compare different task definitions and leaves the
question of "what information is in fact required



to produce accurate citation texts" open for future
investigation. Our work addresses this question.
Second, while Funkquist et al. (2022) assume the
supervised learning scenario, we — for the first time
— explore citation text generation in a zero-shot set-
ting using instruction-tuned LLMs, in the broader
context of state-of-the-art LLM research.

In addition, we explore the impact of citation
intents on citation text generation. Citation intent
prediction and the use of intent in citation text gen-
eration have been previously investigated (Teufel
et al., 2006; Abu-Jbara et al., 2013; Jurgens et al.,
2018; Cohan et al., 2019; Lauscher et al., 2022). Ci-
tation intent is commonly modeled via categorical
labels, e.g., "Background" or "Method" (Wu et al.,
2021; Arita et al., 2022; Gu and Hahnloser, 2022;
Jung et al., 2022). Directly integrating categori-
cal intents into generation has potential limitations:
information loss due to coarse labeling will lead
to difficulties in generating a paragraph-level cita-
tion text based on a single intent label. Motivated
by this, we for the first time experiment with al-
ternative machine-generated unstructured intents
derived for each citation text paragraph, discussed
in Section 3.2 and exemplified in Figure 2.

2.3 NLG Evaluation

Natural language generation (NLG) is notoriously
hard to evaluate automatically, and human evalu-
ation is often associated with high cost and low
reproducibility (Belz et al., 2023). Conventional
automatic evaluation metrics based on token or to-
ken embedding similarity like ROUGE (Lin, 2004),
BERTScore (Zhang et al., 2020), BLEURT (Sellam
et al., 2020) are widely used in NLG. Yet, these
metrics cannot detect factual errors in the model
output. Furthermore, they are not well suited for
evaluating whether the model output meets the for-
mal criteria set by the task definition.

The former challenge can be partially addressed
by natural language inference-based metrics. In
particular, TRUE (Honovich et al., 2022) and Sum-
maC (Laban et al., 2022) aim to detect compatibil-
ity between the generated output and the reference.
The latter challenge — lack of formal evaluation
of the outputs — can be mitigated by using sim-
ple surface-level metrics to check whether task
instructions are followed. Yet this type of anal-
ysis is often omitted (Jang et al., 2022). While
most prior work in citation text generation relies
on a small number conventional evaluation metrics

(Table 1), our measurement kit encompasses con-
ventional, surface-level and NLI-based metrics and
enables comprehensive analysis of the generated
texts. We complement this by a human evalua-
tion study where we manually rank citation texts,
detailed in Section 6.

3 Method

The goal of our study is to explore the impact of
task definition on citation text generation outputs
in the context of state-of-the-art LL.Ms. We fo-
cus on paragraph-level citation text generation for
the paragraphs that cite a single paper, as it rep-
resents the most dominant use case and provides
an ideal, straightforward setup to explore the task
definition space for citation text generation. The
key components of our experimental framework
are the prompt manipulation module, the reference
data, and the measurement kit, detailed below.

3.1 Prompt Manipulation

The prompt manipulation module enables system-
atic variation of task definitions and the subse-
quent task instructions. For the task definition, we
experiment with four types of input components,
combined with six distinct dynamically-adjusted
human-written task instructions. The four task def-
inition input components are as follows:

¢ Target (cited) paper abstract: Contains the ab-
stract of the cited paper, which is expected to
contain core information about the cited work.

* Source (citing) paper abstract: Contains the
abstract of the citing paper, which is expected to
provide additional context to guide generation.
Cited and citing paper abstracts are commonly
used input components in citation text generation
literature (see Table 1).

« Citation intent: A single natural-language sen-
tence describing the intent of the citation para-
graph automatically derived from the reference
paragarph (Section 3.2).

* Example sentence: An example sentence that
refers to the cited paper but does not belong to the
currently considered citing paper (Section 3.2).
The instructions generally ask the model to write

a single related work paragraph based on the in-

put components from the citing and cited paper,

while using [REF#1] to refer to the cited paper

(Figure 2). The specific wording of the instructions

varies. The full list of instructions is given in the

Appendix D. The prompt is constructed by adjust-



Your aim is to generate an exactly single paragraph to be used in related work section in a

Instruction —

+

Input components
. Source abstract
. Target abstract

main paper. You will be given main paper's abstract, a relevant paper's abstract and the
intent of the paragraph. The paragraph should reflect the intent and you need to refer the
relevant paper in the same paragraph by using citation mark [REF#1]. Your output must
strictly consist of the related work paragraph only, nothing else.

-4

Main paper abstract: We address relation extraction as an analogy problem by <...>

Intent Relevant paper abstract: We show that relation extraction can be reduced to <...>

* Example

Intent! To describe a method to extract schemas from knowledge bases via distant supervision.

Figure 2: Prompt manipulation module constructs the prompt by combining the instruction (top) with selected input
components (left) and the corresponding instance data (bottom), incl. machine-generated citation intent sentence.

The result serves as input to the LLM.

ing the instruction depending on the chosen input
component combination, and concatenating the in-
struction with the input data for a given instance.
The result is passed to the model for inference.

3.2 Reference Data

The range of possible task definition depends on
the available data. Thus, our study requires rich
input data representation. For paragraph-level gen-
eration, the data must contain full paragraphs. We
further focus on paragraphs that belong to related
work sections, where the authors are most likely to
discuss cited work rather than their own contribu-
tions, compared to other sections. This requires the
papers to be structured at least on the section level.
The cited papers’ data should be readily accessible
based on the citation. Both citing and cited papers
should be complemented with metadata, includ-
ing at least their abstracts, since this information is
commonly used to generate citation texts.

Among public datasets, Kasanishi et al. (2023)
and Lu et al. (2020) come closest to our require-
ments. Yet, Kasanishi et al. (2023) is limited to
literature review and survey papers, and our prelim-
inary investigation of Lu et al. (2020) has shown
that some abstracts and citations were missing from
the data. To address these limitations, we com-
piled a new reference dataset based on the parsed
ACL Anthology by Rohatgi (2022). The dataset
construction details and statistics are provided in
Appendix C. We have used the above parsed cor-
pus to extract citation text paragraphs, limiting our
paragraph selection such that the cited papers also
belong to our reference data, ensuring that full pa-
per content and metadata are readily available for
both citing and cited papers. Using the structured
parses from the data and a set of rule-based heuris-
tics we selected 5,971 related work paragraphs —
comparable in size to the test set of Lu et al. (2020).
For the experiment (Section 4), the data was fur-

ther filtered to paragraphs that contain a citation
to a single paper, resulting in 2, 729 related work
paragraphs.

We also use this related work paragraph collec-
tion to extract example sentences that exemplify
how a certain paper can be cited independently
from the current citing paper. During experiments,
we use this pool to select example sentences most
similar to the gold reference paragraph via the
SBERT model (Reimers and Gurevych, 2019). Ad-
ditionally, to steer generation, we enrich the refer-
ence paragraphs with free-form intent sentences
defined as a single sentence describing the reason
a particular paper is cited in a given paragraph.
Intuitively, intents serve as a "hint" to reduce the
possible space of generations and steer the LLM
output towards the golden reference.? In this work,
we used FlanT5-XXL (11B) model to generate the
intents: an example generated intent sentence can
be found in Figure 2. We discuss the advantages
and limitations of this approach in Section 8, and
provide details on intent generation along with ex-
amples in Appendix C.5.

3.3 Measurement Kit

We characterise the generated paragraphs with mul-
tiple groups of measurements: surface metrics, con-
ventional NLG metrics, and NLI-based metrics. As
we show later, these groups provide complemen-
tary insights about the model outputs in response
to the varying task definition and instruction.
Surface metrics. All of our task instructions
request the model to generate one paragraph of
citation text. However, the model might not follow
this requirement precisely. To evaluate, we measure
the average paragraph count in generated citation

“This is in line with the expert recommendations for writ-
ing literature reviews: for instance, Ridley (2012) suggests to
use informal writing to form the basis for the actual literature
review, such as “What are the methodological flaws of the
previous methods?”



texts. Similarly, our instructions request the model
to use a citation mark to refer to the cited paper
in the generated text, e.g. [REF#1]. We check
whether the model has used this token at least once
during generation. Lastly, we calculate n-gram
overlap between the input and the model output to
check whether the model copies from the prompt.

Conventional metrics. To compare the gen-
erated text to the reference, we compute several
conventional NLG metrics: ROUGE-L (Lin, 2004),
BERTScore (Zhang et al., 2020) and BLEURT (Sel-
lam et al., 2020). ROUGE is the most commonly
used metric in prior work on citation text genera-
tion — yet it operates on the surface level and lacks
the capacity to evaluate semantic correspondence
between the two sequences. This is addressed by
the two more recent metrics — BERTScore and
BLEURT - that use BERT-based (Devlin et al.,
2019) representations to compare the generated
text to the reference on semantic level, showing
greater robustness to paraphrases and better align-
ment with human assessments.

NLI-based metrics. To measure factual consis-
tency between the gold reference and the model out-
put, we use two NLI models (TRUE and SummaC)
trained on curated fact-checking datasets. Note that
we use {gold reference, model output} instead of
{abstracts, model output} as the input to the NLI
models because we focus on exploring the task
definition space for related work generation and
identifying the key input components needed to re-
construct the gold reference. TRUE makes binary
decisions regarding entailment for a given textual
pair (Honovich et al., 2022). SummaC (Laban et al.,
2022) generates NLI scores from the sentences of
compared texts and calculates an overall score.

4 Experiments

For all experiments we use Llama 2-Chat (13B)
(Touvron et al., 2023b) — a state-of-the-art, open
instruction-tuned LLM. We use the prompt manip-
ulation module to generate prompts consisting of
instructions and data inputs, according to the cho-
sen configuration. It is passed to the model for
inference, for each data instance. We analyze the
outputs using our measurement kit. Generating
citation texts for all instances and all configura-
tions discussed below takes ~30 hours on a single
NVIDIA A100 GPU with 80GB memory. Further
details are specified in Appendix A.

Conf. NG-3 | PC | CM | (ctd.) NG-3 | PC | CM
1+A 26.70 | 1.50 | 30.69 | 4+A 243 | 1.01 | 54.55
1+A+1 24.09 | 148 | 41.62 | 4+A+I 2435 | 1.02 | 42.73
1+A+E 2697 | 1.64 | 74.36 | 4+A+E 26.61 | 1.03 | 82.07
1+A+I4+E | 24.56 | 1.63 | 77.54 | 4+A+I+E | 25.18 | 1.05 | 78.56
2+A 26.04 | 1.08 | 63.07 | 5+A 30.04 | 1.40 | 25.95
2+A+1 26.11 | 1.11 | 91.30 | 5+A+I 27.02 | 1.56 | 30.74
2+A+E 23.74 | 1.11 | 82.87 | 5+A+E 28.42 | 1.58 | 76.99
2+A+I4+E | 2452 | 1.15 | 89.71 | 5S+A+I4+E | 2645 | 1.77 | 76.20
3+A 2537 | 1.31 | 37.56 | 6+A 23.55 | 1.01 | 92.55
3+A+] 25.54 | 1.32 | 28.42 | 6+A+] 26.81 | 1.07 | 85.90
3+A+E 27.33 | 1.48 | 76.25 | 6+A+E 24.88 | 1.07 | 95.34
3+A+I4+E | 2693 | 1.47 | 75.52 | 6+A+I4+E | 27.24 | 1.10 | 95.77

Table 2: Surface measurements. #Instruction + Abstract
+ Intent + Example. NG-3: averaged 3-gram overlap
(%); PC: paragraph count, CM: citation mark usage (%).

5 Results

We use the following notation to discuss experi-
mental configurations: #(+A) (+I) (+E), where #
is the instruction identifier, +A denotes source and
target paper abstracts , +I denotes the intent sen-
tence, +E denotes an example citation sentence that
cites the given cited paper. Note that the instruc-
tions are adjusted to reflect the input components
present in a given configuration. The example in-
put in Figure 2 corresponds to the configuration
1+A+I. Table 4 and Figure 3 present our measure-
ments across different configurations; full results
are given in Appendix B. The measurements allow
us to explore a range of questions about the role
of task definition in citation text generation in the
context of modern LLMs.

RQ1: What are the characteristics of the gen-
erated citation texts? By construction our ref-
erence texts consist of a single paragraph with a
single citation marker. Yet, the generated texts
often violate this constraint (Table 2). Some config-
urations like 5+A+I+E systematically over-generate
text with an average of 1.77 paragraphs per output,
others like 5+A under-generate citation markers.
We note that for five out of six instructions, explic-
itly introducing an example sentence with a citation
marker makes the model generate it more consis-
tently — yet, in other cases like 6+A the instruction
itself suffices for the model to reliably generate the
citation mark. Similarly, in 4+A and 6+A, the model
follows the paragraph count limitation almost per-
fectly.

RQ2: What is the impact of the task defini-
tion on generated texts? We find that additional
input components in the task definition have pos-
itive influence on performance in terms of both
conventional and NLI-based measurements (Figure
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Figure 3: Conventional and NLI-based metric results. Abstract + Intent + Example, #Instruction color-coded.

3). We observe that providing the model with only
abstracts (+A) systematically yields the lowest de-
gree of correspondence between the generated text
and the reference across all task instructions and
all automatic evaluation metrics. We also observe
that providing models with intent (+I) increases the
correspondence between generated and reference
citation texts for all six instructions, while example
sentence (+E) has this effect for the four out of six
instructions. Providing intent and example jointly
shows a combined effect and yields the best corre-
spondence in 16 out of 18 (six main configuration
X three metrics) measurements in conventional met-
rics and in 10 out of 12 comparisons for NLI based
metrics. The positive impact of intent and example
replicates in our experiments on non-author human-
generated text (Section 6). We note that the ranking
of configurations remains mostly consistent across
the task instructions and measurements. This sug-
gests that the relative performance of different in-
put configurations might be estimated based on a
small number of instruction variations.

RQ3: What is the effect of the instructions?
We observe that the instruction —i.e. how the task is
described to the model — affects the correspondence
between generated and reference citation texts (Fig-
ure 3). Our results suggest that the effects of the
instructions and input components are orthogonal
and thus add up: the difference between highest-
and lowest-performing configuration are up to 2.8
(6+A+I+E vs 1+A) points ROUGE-L, 1.1 (2+A+I+E
vs 1+A) points BERTScore, 3.2 (4+A+I+E vs 1+A)
points BLEURT and 10.6 points for TRUE?. In ad-
dition, the effect of the instruction can be observed
in surface measurements: for example, there is
a substantial difference between 1+A and 6+A in
terms of the average paragraph count and the aver-

3The magnitude is within the common range reported in
related work, e.g. (Funkquist et al., 2022; Kasanishi et al.,

2023; Wu et al., 2021) for ROUGE, BERTScore and BLEURT,
and (Gao et al., 2023) for TRUE.
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Figure 4: Pearson correlation between instance-level
measurements over all configurations.

age citation mark ratio. Hence, both instruction and
input configuration are important factors in com-
paring citation text generation models, and should
be investigated jointly. In terms of absolute per-
formance, the best input configuration might be
undermined by suboptimal instruction wording. In
contrast to RQ2, this suggests that in search for
the highest absolute performance, a wide range of
instructions should be explored.

RQ4: What are the relationships between the
measurements? From Figure 4, we observe that
conventional metrics show high correlations among
themselves, but the correlations to the NLI-based
metrics are low. TRUE and SummacC are less cor-
related with each other compared to conventional
metrics. We hypothesise that since TRUE evalu-
ates the entailment relation between two sequences
in binary manner, i.e. "entailment” or "contradic-
tion", it might be sensitive to the changes in outputs.
SummaC, on the other hand, processes paragraphs
at the sentence level and produces an overall score
by convolution — decreasing its sensitivity, but also
leading to smaller differences between prompt con-
figurations. These observations highlight the im-
portance of multiple complimentary measurements
for the citation text generation as opposed to the
standard single-metric ROUGE-based evaluation.




Configuration ROUGE-L BERTScore BLEURT | TRUE SummaC || Best-Worst Scaling
[LLM] 6+A 15.52 85.27 41.93 13.33 20.53 -0.33
[LLM] 6+A+I+E 17.49 85.87 43.96 20.00 20.77 -0.23
[H] 6+A 14.16 85.69 37.37 10.00 21.33 -0.03
[H] 6+A+I+E 16.25 85.88 38.56 13.33 22.00 0.52

Table 3: Human study results on a subsample of instances. H — human-generated, LLM — machine-generated.

6 Human evaluation

To get further insights into citation text generation
with LLMs and the impact of task definition on this
process, we have conducted a human generation
study and a human evaluation study (Appendix E).

Human vs machine-generated citation texts.
For generation, we sampled 30 instances from the
single-paragraph reference data used in our main
experiment. Three human annotators with back-
ground in NLP composed related work paragraphs
for these instances given two prompts: 6+A (ab-
stracts only) and 6+A+I+E (abstracts, intents and
example). We then compared human-generated
texts to the ones generated by the LLLM using our
measurement kit (Table 3). We observe that con-
ventional NLG evaluation metrics and TRUE favor
LLM outputs, while SummaC shows preference
for human-generated texts.

Human ratings. Same annotators carried out
human evaluation comparing LLM-generated and
human-generated paragraphs*. We used Best-Worst
Scaling (Louviere et al., 2015), which is more de-
pendable than pairwise comparisons while requir-
ing less annotation effort (Kiritchenko and Moham-
mad, 2017). Given the gold reference and four out-
puts (two LLM-generated, two human-generated),
the annotators selected the best and worst outputs
in terms of their correspondence with the gold ref-
erence. The score was calculated as the difference
between the percentage of times the configuration
was selected as the best or worst, from -1 (always
the worst) to 1 (always the best). Table 3 presents
the results and allows two observations. First, con-
trary to the conventional metric results, humans
preferred human-written citation texts to the LLM
generations. Second, the positive effect of provid-
ing intent and example from the main experiment
holds in the case when the citation texts are gener-
ated by human annotators. This implies that both
components are important input for the citation text
generation task in real-world scenarios and should
be integrated into future research.

“The instances were distributed such that no annotator
would rate their own generated instance to avoid bias.

Qualitative observations. Our evaluation
yielded few informal insights which we deem use-
ful for follow-up research. Despite the conditions
being hidden, we were often able to distinguish
LLM-generated texts from human-generated ones:
LLM generations were typically less brief and less
specific. We observed that the wording of the in-
struction affects the style of the generated para-
graph: for some instructions, the model tended to
generate a text comparing two papers, instead of
discussing one paper in context of the other. As this
is not reflected in the metric performance scores,
we hypothesize that pragmatic mismatch might not
be captured by the automatic evaluation metrics.
We found that the success of generations depended
on the content of the gold reference: while high-
level discussion of related work can be generated
from the abstracts, going into specifics of a paper
requires the information not available in the input.
The content of the abstracts affected the genera-
tions as well: uninformative abstracts were hard to
generate from, both for humans (who wrote short
and uninformative citation texts in response) and
for LLMs (that were forced to hallucinate text).
Since the setting of our human study is insufficient
to investigate these observations empirically, we
leave this exploration for future research.

7 Conclusion

To solve a task, one needs to define the task. As
NLP tasks become increasingly complex, creative
and applied, the space of possible inputs and ac-
ceptable outputs grows as well, motivating the need
for approaches to systematically compare task defi-
nitions. We have proposed a framework for com-
paring task definitions for a popular scholarly NLP
task — citation text generation. We used our frame-
work to study the impact of task definition and task
instruction on the task performance, both by LLMs
and by human annotators. Our insights contribute
to a better understanding of the role of task def-
initions and instructions in LLM-based language
processing, and our framework facilitates the study
of citation text generation in the age of LLMs.



8 Limitations

We now turn to the limitations of our study to be
addressed by future work.

Comparison to state of the art. We do not com-
pare the performance of our citation text generation
system to prior models, since the goal of our work
is to study the effect of task definition and instruc-
tions, and not to produce a top-performing model
instance. Besides, given the capabilities of mod-
ern LLMs, side-by-side comparison to prior work
would likely put earlier models at unfair disadvan-
tage and conflate a wide range of potential sources
of improvement.

Modeling human preference. Task definition
encompasses input components and the output
which are both variable. In this work, we focused
on systematically varying the input space, while
resorting to a wide range of metrics and human
evaluation to characterize the output space. The
results of our human evaluation suggest that there
is still a gap between automatic measurements and
human preference. We claim that more accurate
models of human preference are urgently needed
for the citation text generation task. Our qualitative
insights can serve as a basis for constructing such
models in the future.

Limitations of the setup. To keep our study
tractable, we had to impose limitations on our setup.
Considering only related work paragraphs that con-
tain a single citation is a technical limitation, which
can be revisited once open LLMs that can effi-
ciently handle long inputs become available. We
expect additional effects due the varying model’s
capability to discuss multiple cited papers in one
paragraph at once. While we put effort into val-
idating our findings using a range of instructions
instead of a single prompt, adding more instruc-
tions would allow to further verify our findings and
to get better estimates of the absolute performance.
We thus recommend expanding the instruction pool
for the follow-up work interested in producing a
best-performing system. In our experiments we
considered three groups of input components: ab-
stracts, intents, and example sentence. This set
can be easily extended based on our reference data,
which contains both rich metadata and pointers to
the dataset with the parsed full papers for both cit-
ing and cited works, with one and multiple citations
per paragraph.

Language and domain Our experiments are lim-
ited to English and to the papers from the ACL
Anthology. This is a common feature of scholarly
NLP, due to English being the standard language of
communication in many research fields and due to
availability and open licensing of the ACL Anthol-
ogy. Applying our approach in a cross-lingual and
multi-lingual setting and in novel domains is an en-
gaging future work direction which can be pursued
once the research infrastructure is available.

Machine-generated intents We experiment with
free-form, unstructured citation intents to guide the
generation. Since manually creating a citation in-
tent for each dataset instance is not feasible, we
have generated them from the gold reference para-
graphs using a separate model (Flan-T5 vs Llama 2
in the main experiment). The drawback of this ap-
proach is that these sentences might arguably leak
some keywords and subsequences from the gold
reference paragraphs, inflating the performance
measurements. We point out that intent sentences
normally do not contain enough information to gen-
erate a whole paragraph (Appendix C.6), which is
verified through our human generation study. Fur-
thermore, encountering some sequences from the
given unstructured intent in the resulting generated
citation text would be acceptable in a real-world
application scenario. As alternative, future work
can explore citation text generation with manually
curated intent sentences on a smaller subset of our
data. We note that we do not compare unstructured
vs categorical intents in this work, as claiming su-
periority of one or the other approach lies beyond
our scope. We leave this investigation to the future.

Ethics Statement

We believe that a systematic study of task defini-
tions is an important basic research direction for
NLP without ethical implications. While the mis-
use of citation text generation could lead to reduced
engagement with the scientific literature, we be-
lieve that such systems — used as an aid, not as
replacement for paper reading — could facilitate
exploration of vast scientific literature, and that
the benefits of such systems outweigh the risks.
Our data is constructed based on publicly avail-
able, openly licensed sources, and our experiments
are conducted with an open large language model,
facilitating long-term reproducibility of our experi-
ments, and allowing the community to build upon
the artifacts of our study.
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greedy decoding. Within this setting, we were
able to ensure exact reproduction of the experi-
mental results across different runs. Generating
paragraphs for one configuration (e.g., 3+A+I, see
below) takes 75 minutes with greedy decoding, to-
talling 30 hours on a single GPU for generating ci-
tation texts for all configurations in this paper. For
NLI-based measurements, we use TRUE model
based on T5-XXL° and the best reported model for
SummaC’.

B Full results table

For the sake of detail and reproducibility, Table 4
lists all measurements obtained in the main experi-
ment.

C Dataset
C.1 Title List

List of related work titles used in dataset creation
is as follows.

{"related work", 'related works", "previous
work", "background", "introduction and related
works", "introduction and related work", "back-
ground and related work", "background and re-
lated works", "previous related work", "previous
related works", "backgrounds", "previous and re-

lated work", "previous and related works"}

C.2 Cleaning and Post-processing

We performed several additional cleanup opera-
tions on the data. We removed instances with cor-
rupted components e.g., abstract, metadata, cita-
tion mark, PDF parsing. We encountered papers
that were published in different venues with the
same title and abstract. To avoid ambiguity, such
duplicates were removed. A small number of non-
English papers were removed. We determine the
length threshold as 40 tokens separated by whites-
pace for extracted paragraphs and 10 for citation
sentences. Since the related work paragraph dataset
and the example citation sentence dataset are con-
nected, cleaning process was run in parallel for
these datasets. For example, if there were no in-
stances left for a cited paper after the cleanup, ci-
tation sentences for that paper were also removed
from the example sentence pool.

Some cited paper’s citation sentences are not in-
cluded in the example sentence dataset. The main

6https://huggingface.co/google/tS_xxl_true_

nli_mixture
7https://github.com/tingofurr‘o/summac
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reason of this situation is cleaning procedure that
we follow. For instance, corresponding sentences
may not be segmented well or their length may be
below the token threshold. To extract sentences
from the paragraphs, the scispacy® module is em-
ployed. While determining the most similar exam-
ple citation sentence, all-MiniLM-L6-v2° version
of SBERT is utilized.

C.3 Column Descriptions

Column names along with their descriptions for the
related work paragraph and the citation sentence
datasets are given in Tables 7 and 8, respectively.

C.4 Dataset Staticstics

Tables 5 and 6 show core statistics for the result-
ing self-contained collection of related work para-
graphs along with the respective papers that they
cite and example citation sentences.

103 4
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Figure 5: Citation count distribution in logarithmic scale

We also present distribution of the citation
counts in the paragraphs in Figure 5. The num-
ber of paragraphs with larger number of citations
decreases exponentially. Around 2,700 paragraphs
include only one citation and the most crowded
paragraph includes 18 citations. In the main paper
experiment, we focus on the subset of paragraphs
that include only one citation.

C.5 Intent Generation

While piloting the study, for intent generation
we experimented with a range of LLMs such as
LLaMA (7B) (Touvron et al., 2023a), Alpaca (7B)
(Taori et al., 2023) and BLOOMZ (7.1B) (Muen-
nighoff et al., 2023). The performance of FLAN-TS

8https://allenai.github.io/scispacy/
https://huggingface.co/sentence-transformers/
all-MinilLM-L6-v2
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Configuration Surface Conventional NLI
NG-1 | NG-2 | NG-3 | PC | CM | ROUGE-L | BERTScore | BLEURT | TRUE | SummaC

1+A 61.48 | 37.38 | 26.70 | 1.50 | 30.69 14.63 84.77 38.92 10.98 20.77
1+A+I 59.81 | 34.88 | 24.09 | 1.48 | 41.62 15.98 85.19 40.58 14.09 20.87
1+A+E 63.07 | 37.94 | 26.97 | 1.64 | 74.36 15.13 84.97 39.13 13.45 20.83
1+A+1+E 61.29 | 35.57 | 2456 | 1.63 | 77.54 16.53 85.41 40.78 17.46 20.95
2+A 64.78 | 37.02 | 26.04 | 1.08 | 63.07 15.56 85.32 40.19 12.33 20.77
2+A+] 64.94 | 37.21 | 26.11 | 1.11 | 91.30 17.38 85.81 41.66 17.33 20.99
2+A+E 64.52 | 3494 | 23.74 | 1.11 | 82.87 15.99 85.52 40.66 12.02 20.82
2+A+I+E 64.79 | 35.89 | 24.52 | 1.15 | 89.71 17.36 85.89 41.82 16.91 21.00
3+A 61.52 | 36.09 | 25.37 | 1.31 | 37.56 14.81 84.93 39.66 6.86 20.71
3+A+1 61.24 | 36.29 | 2554 | 1.32 | 28.42 16.61 85.39 40.55 11.97 20.88
3+A+E 64.01 | 38.30 | 27.33 | 1.48 | 76.25 15.23 85.06 39.69 8.42 20.80
3+A+I+E 63.28 | 37.91 | 26.93 | 1.47 | 75.52 16.90 85.51 40.82 15.13 20.98
4+A 62.03 | 35.18 | 24.30 | 1.01 | 54.55 15.88 85.26 40.88 10.68 20.70
4+A+1 61.58 | 35.36 | 24.35 | 1.02 | 42.73 17.07 85.52 42.13 10.98 20.83
4+A+E 64.61 | 37.85 | 26.61 | 1.03 | 82.07 16.03 85.33 40.88 10.51 20.76
4+A+1+E 63.31 | 36.48 | 25.18 | 1.05 | 78.56 17.32 85.69 42.10 13.35 20.86
5+A 63.41 | 40.21 | 30.04 | 1.40 | 25.95 15.38 84.94 39.70 10.02 20.80
S+A+] 61.17 | 37.29 | 27.02 | 1.56 | 30.74 16.56 85.18 40.47 12.93 20.89
5+A+E 63.85 | 38.96 | 28.42 | 1.58 | 76.99 15.94 85.20 39.93 10.96 20.88
5+A+I+E 61.73 | 36.92 | 26.45 | 1.77 | 76.20 17.02 85.38 40.83 12.80 20.97
6+A 62.98 | 34.84 | 23.55 | 1.01 | 92.55 15.88 85.28 40.69 7.23 20.68
6+A+] 64.60 | 38.19 | 26.81 | 1.07 | 85.90 17.03 85.56 41.12 10.10 20.83
6+A+E 64.79 | 36.37 | 24.88 | 1.07 | 95.34 16.06 85.35 40.85 9.33 20.75
6+A+I+E 65.99 | 38.83 | 27.24 | 1.10 | 95.77 17.39 85.70 41.52 10.18 20.81

Table 4: Main results. #Instruction + Abstract + Intent + Example. NG, PC, CM represent averaged n-gram
overlap ratio, paragraph count and citation mark usage ratio. All values apart from PC given in percent (0-100) for

readability.
Paragraphs 5,971
Total citation 12,950
Unique citing papers 4,605
Unique cited papers 6,620
Avg. occur. of a cited paper 1.96
Sentence count per paragraph 4.22
Word count per paragraph 98.67

Table 5: Related work paragraph dataset statistics

Sentences 73,139
Unique citing papers 16,338
Unique cited papers 6,594
Sentence per cited paper 11.05
Word count per sentence | 35.30

Table 6: Example sentence dataset statistics

was deemed most acceptable and consistent among
the models..

We conducted preliminary experiments for intent
generation on a subsample of our dataset, exploring
both zero-shot and few-shot configurations. In the
zero-shot setting, we instructed the models to gen-
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erate intent of the given target paragraph without
showing any examples. In few-shot setting, we pro-
vided two-three paragraphs and their correspond-
ing intents. To generate example paragraph-intent
pairs, we conducted 100 zero-shot generations and
manually selected six examples that successfully
reflect the intent of the paragraph. We observed
that in the few-shot setting the models tended to
copy the examples into the output. Therefore, we
decided to use the zero-shot setting as our final con-
figuration. We use the following Flan-T5 prompt:
What is intention of the following paragraph?
{Target paragraph/}

We investigated several decoding strategies to
optimize generations such as greedy search, beam
search, multinomial sampling, multinomial sam-
pling with beam search and contrastive search with
different hyperparameters. In the final setting, we
opted for greedy decoding due to its output quality
and reproducibility of the outputs.

C.6 Example intents

Below we provide a random sample of 20 machine-
generated intents used in our study:



Column name

Description

acl_id

abstract
corpus_paper_id
pdf_hash
numcitedby
url

publisher
address

year

month
booktitle
author

title

pages

doi

number
volume
journal
editor

isbn
paragraph_xml

paragraph
cited_paper_marks

cited_paper_titles
cited_papers_acl_ids
cited_papers_abstracts

Unique ACL ID of the citing paper. Since a paper can have different related work
paragraphs that satisfy conditions, there can be instances with the same acl_id. Although
it is a unique identifier for distinguishing papers in ACL Anthology, this is not a unique
identifier for this dataset. This rule is also valid for other citing paper meta features.

Abstract of the citing paper.

Semantic Scholar ID of the citing paper.

shal hash of the PDF.

The citing paper’s citation count based on Semantic Scholar.
URL of the citing paper.

Publisher of the citing paper.

Address of the conference or venue.

The citing paper’s publication year.

The citing paper’s publication month.

The name of the proceedings if it is a conference paper.
Authors of the citing paper.

Title of the citing paper.

Page information of citing paper.

DOI identifier of the citing paper.

Article number of the citing paper if it is a journal paper.
Volume number of the citing paper if it is a journal paper.
Journal name of the citing paper if it is a journal paper.
Name of the editors if it is a journal paper.

ISBN number of the citing paper.

Citation paragraph with XML tags. It also includes other information about the citations
relative to citing paper.

Citation paragraph without XML tags. Like normal text in an article.

This includes XML tags of target cited papers relative to citing papers. Identifiers are not
absolute but relative. These tags also exist in paragraph_xml column. Since there can
be multiple cited papers in the paragraph each mark is separated by " %%% " (space + 3
consecutive % + another space) .

Titles of the cited papers separated by " %%% ".
acl_ids of the cited papers separated by " %%% ".
Abstracts of the cited papers separated by " %%% ".

Table 7: Column names and descriptions for the related work paragraph dataset.

Column name Description

example_id Unique id of the example sentence instances. Its construction formula is acl_id of cited paper + "%" +

extraction order number

sentence Example sentence citing target cited paper.
paragraph_xml | XML version of the paragraph which example sentence belongs to. (From the related work section of

the citing paper)

paragraph Textual version of the paragraph which example sentence belongs to. (From the related work section of

the citing paper)

citation_mark | This includes XML tags of target cited paper’s citation marks.

Table 8: Column names and descriptions for the example citation sentence dataset. The dataset also includes
metadata of the citing and the cited papers as given in Table 7.
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* To describe the state of the art in WSD systems.

* To describe the Universal Dependency project.

* To provide a comparison of the pruning distances
for dependency-based relation extraction models.

* To describe the work

* To describe the problem and the solution.

* To describe the crowdsourcing approach used to
bootstrap YARN.

* Toxicity is a common problem in natural lan-
guage generation, and a common source of model
misbehavior.

* To describe the relation between Nominal SRL
and SemEval.

* To provide a brief overview of the state-of-the-art
in unsupervised structured prediction.

* To compare the performance of our approach
with Yarowsky et al. (2001) and other related
work.

* To introduce naive, linguistically motivated regu-
larization methods such as sentence length, punc-
tuation and word frequency.

* To provide a comparison of UDon2 and Udapi.

* To present a new technique for combining NMT
models that is capable of addressing i and ii.

* To describe the work

* To describe a study.

* To provide a brief overview of the state of the art
in multilingual representation learning.

* To describe the problem of query expansion

* To provide a brief review of the related works.

* To describe the state of the art in multilingual
model evaluation.

* To describe an email thread summarization ap-
proach.

D Task instruction templates

Llama 2-Chat model takes prompts in two seg-
ments: system prompt and user message. System
prompt is a fixed instruction for each session to
guide the model how to react to user messages.
User message contains additional information re-
lated to the instance at hand. In most cases we use
system prompt to provide the task instruction, and
use the user message to provide instance-specific
data — Template 2 is an exception in that there input
components are embedded into the user message,
and system prompt remains empty. The following
subsections exemplify the system inputs used in
our work for the case where all input components
are included into the instruction.
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D.1 Template 1

System prompt: Your aim is to generate an
exactly single paragraph to be used in related
work section in a main paper. You will be
given the main paper’s abstract and a rele-
vant paper’s abstract. The paragraph should
reflect the intent and you need to refer the rel-
evant paper in the same paragraph by using
citation mark [REF#1]. You can inspire from
the given example.

Custom instance prompt: Main paper ab-
stract: {Citing paper abstract}

Relevant paper abstract: {Cited paper ab-
stract}

Intent: {Intent of the paragraph}

Example: { Example citation sentence}

D.2 Template 2

System prompt: -

Custom instance prompt: Assume that you
are the author of a paper whose abstract is as
Sfollows:

{Citing paper abstract}

In your paper’s related work paragraph, you
want to cite a paper whose abstract is as fol-
lows:

{Cited paper abstract}

Intent of the related work paragraph should
be as follows:

{Intent of the paragraph}

You can inspire from the given example:
{Example citation sentence}

How would you write an exactly one related
work paragraph for this purpose? While cit-
ing use the citation mark [REF#1]. Your out-
put must strictly consist of the related work
paragraph only, nothing else.

D.3 Template 3

System prompt: Follow given instructions:
1-) You will be given main paper’s abstract,
a relevant paper’s abstract, an intent and an
example sentence.

2-) Write a related work paragraph that is
belonging to main paper and citing relevant
paper.

3-) The goal of your paragraph should be the
given intent.

4-) You can utilize example sentence as how
the relevant paper is cited before.



D4

D.5

5-) Start your paragraph without any other
explanations.

6-) Use [REF#1] as citation mark.

7-) Your output should consist of exactly single
paragraph.

Custom instance prompt: Main paper ab-
stract: {Citing paper abstract}

Relevant paper abstract: {Cited paper ab-
stract}

Intent: {Intent of the paragraph}

Example: {Example citation sentence}

Template 4

System prompt: You are writing a research
paper and want to discuss another, related pa-
per, with a certain intent — the purpose of the
discussion. Generate exactly one paragraph
of text that discusses the related paper in con-
text of the main paper and follows the intent.
You will be given the main paper abstract, the
related paper’s abstract, and the intent sen-
tence. You can also utilize the given example
sentence. Refer to the related paper by using a
citation mark [REF#1]. You should generate
exactly one paragraph of text, nothing else.

Custom instance prompt: Main paper ab-
stract: {Citing paper abstract}

Relevant paper abstract: {Cited paper ab-
stract}

Intent: {Intent of the paragraph}

Example: { Example citation sentence}

Template 5

System prompt: Imagine that you are a sci-
entist writing a research paper. Your goal is
to write a related work paragraph that dis-
cusses the related paper in context of your
main paper. The related paper should be men-
tioned in the paragraph by using a citation
mark [REF#1]. You will be given the main pa-
per abstract, the related paper abstract, and
the intent — the reason why you are citing the
paper. An example sentence is also given to
show how the related paper has been cited
before. Your output should consist of exactly
one paragraph of text and include the citation
mark.

Custom instance prompt: Main paper ab-
stract: {Citing paper abstract}
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Relevant paper abstract: {Cited paper ab-
stract}

Intent: {Intent of the paragraph}

Example: { Example citation sentence}

D.6 Template 6

System prompt: You are given two research
papers: main paper and related paper. Gen-
erate one paragraph of text that discusses the
related paper in the context of the main paper,
given the intent — the reason why the main
paper discusses the related paper. A citation
sentence is also given to be taken as example.
Use a citation mark [REF#1] to refer to the
related paper. Your output should consist of
exactly one paragraph of text and include the
citation mark.

Custom instance prompt: Main paper ab-
stract: {Citing paper abstract}

Relevant paper abstract: {Cited paper ab-
stract}

Intent: {Intent of the paragraph}

Example: { Example citation sentence)

E Human Evaluation

Table 9 shows an example of the human generation
task for the configuration A+I+E. Table 10 shows an
example of the human evaluation input: annotators
first manually generated citation text paragraphs
based on the prompt, and later manually ranked
human and LLM generations in different settings
using best-worst scaling. The citation texts were
written in bulk first for a less informative prompt
(abstract-only), then for a more informative prompt
(abstract, intent and example). During ranking,
the annotators would not rank their own generated
outputs, and the configuration and the source of the
text (human vs machine) were not known to the
annotators.



Main paper abstract: The ACL shared task of DravidianLangTech-2022 for Troll Meme classification is a binary
classification task that involves identifying Tamil memes as troll or not-troll. Classification of memes is a challenging task
since memes express humour and sarcasm in an implicit way. Team SSN_MLRGTI tested and compared results obtained by
using three models namely BERT, ALBERT and XLNet. The XL-Net model outperformed the other two models in terms
of various performance metrics. The proposed XLNet model obtained the 3rd rank in the shared task with a weighted
F1-score of 0.558.

Relevant paper abstract: This paper describes the work of identifying the presence of offensive language in social
media posts and categorizing a post as targeted to a particular person or not. The work developed by team TECHSSN
for solving the Multilingual Offensive Language Identification in Social Media (Task 12) in SemEval-2020 involves the
use of deep learning models with BERT embeddings. The dataset is preprocessed and given to a Bidirectional Encoder
Representations from Transformers (BERT) model with pretrained weight vectors. The model is retrained and the weights
are learned for the offensive language dataset. We have developed a system with the English language dataset. The results
are better when compared to the model we developed in SemEval-2019 Task6.

Intent: To describe the work done to identify the presence of offensive language in social media posts using BERT.

Example sentence: We have used CNN, RNN, LSTM, BERT and COLBERT models for offensive language detection in
earlier SemEval workshop tasks [OTH], [REF#11,[0TH] in which BERT models provides better results than other machine
learning and deep learning models.",

Table 9: Human generation task. Abstracts belong to papers (Hariprasad et al., 2022; Sivanaiah et al., 2020),
respectively. The humans are tasked with writing one paragraph of citation text based on the inputs. The inputs vary
depending on the condition — the example here is for the condition A+I+E, i.e. full information available. [OTH]
used to denote citations to other papers than the cited paper in question.

Gold: In [REF#1], we worked to identify the presence of offensive language in social media posts using BERT. Deep
network model with BERT embeddings was found to achieve better F1 score when compared to 1D-CNN model trained
with GloVe pretrained embeddings, 2D-CNN and BiLSTM models with Word2Vec embeddings.

a: The related paper by team TECHSSN for solving the Multilingual Offensive Language Identification in Social Media
(Task 12) in SemEval-2020 [REF#1] is relevant to the main paper’s discussion of Troll Meme classification. Both papers
involve the use of deep learning models with BERT embeddings for identifying offensive language in social media posts.
The related paper describes the development of a system for identifying the presence of offensive language in social media
posts using BERT, and the results show that the BERT model outperforms other machine learning and deep learning
models. This is similar to the main paper’s finding that the XL Net model outperformed BERT and ALBERT in terms of
various performance metrics for Troll Meme classification. The related paper also discusses the challenges involved in
identifying offensive language in social media posts, such as the difference between profanity and hate speech, and the
need for a system that can accurately detect and categorize offensive language.

b: Our work is related to the line of work in offensive language detection in social media. [REF#1] proposes a method for
detecting offensive language and determining whether a post targets a particular person, based on fine-tuning a pre-trained
BERT model. Unlike this work, our paper focuses on the task of troll meme classification, and experiments with other
models: BERT, ALBERT and XL Net.

c: The related paper by team TECHSSN (2020) provides a relevant framework for identifying offensive language in social
media posts, which is closely related to the task of troll meme detection in the main paper [REF#1]. Both papers employ
deep learning models with BERT embeddings to classify text as offensive or not. However, while the main paper focuses
on the binary classification of memes as troll or not-troll, the related paper targets the more general task of identifying
offensive language in social media posts. The related paper also highlights the challenges of differentiating between
profanity and hate speech, and discusses the differences between these two concepts. Overall, the related paper provides
valuable insights into the use of BERT embeddings for text classification tasks, and demonstrates the effectiveness of this
approach in the context of offensive language detection.

d: Prior work has shown that BERT can be successfully used to detect offensive language in social media posts, for
example, [REF#1] fine-tune a pre-trained BERT model on an offensive language dataset, leading to improved performance.
Following this insight, we experiment with three state of the art pre-trained models — BERT, ALBERT and XLNet — for
the related task of troll meme classification.

Table 10: Human evaluation task. Masked settings are follows a: LLM-generated 6+A+I+E, b: Human-generated
6+A, c: LLM-generated 6+A, d: Human-generated 6+A+I+E. Humans are requested to select the best and the worst
generation in terms of correspondence with the gold reference.
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