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Abstract

Large language models (LLMs) can perform001
a wide range of tasks in a zero-shot fashion.002
Yet, defining the task and communicating it to003
the model remains a challenge. While prior004
work focuses on prompting strategies taking005
the task definition as a given, we explore the006
novel use of LLMs for arriving at an optimal007
task definition in the first place. We propose an008
experimental framework consisting of a prompt009
manipulation module, reference data and a mea-010
surement kit, and use it to study citation text011
generation – a popular natural language pro-012
cessing task without clear consensus on the013
task definition. Our results highlight the impor-014
tance of both task definition and task instruc-015
tion for prompting LLMs, and reveal non-trivial016
relationships between different evaluation met-017
rics used for the citation text generation task.018
Our human study illustrates the impact of task019
definition on non-author human-generated out-020
put and reveals the discrepancies between auto-021
matic and manual NLG evaluation. Our work022
contributes to the study of citation text gener-023
ation in NLP and paves the path towards the024
systematic study of task definitions in the age025
of LLMs. Our code is publicly available.1026

1 Introduction027

Conventional empirical studies in natural language028

processing (NLP) mostly follow an established029

methodology: a task is defined, a model is con-030

structed, and a performance metric is used to eval-031

uate the model. Through a combination of large-032

scale pre-training and instruction-tuning followed033

by fine-tuning with human feedback, modern large034

language models (LLMs) learn to perform many035

tasks in a zero-shot fashion following a natural036

language prompt. This allows for unprecedented037

flexibility and speed with which new tasks can038

be specified, while removing the need for costly039
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approach [...]
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paper in the same paragraph by using citation mark [REF#1]. Your output must strictly consist of the 
related work paragraph only, nothing else. <</SYS>>
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Figure 1: Citation text generation with LLMs. The task
is to generate a paragraph of related work from the cit-
ing paper (A) about a cited paper (B). This task can be
formalized in many different ways. We use the Llama
2-Chat LLM to explore the relationship between task
definition and model outputs by manipulating the avail-
able inputs and the task instruction (left) and evaluating
the output using a range of measurements (right) on a
reference collection (top).

task-specific architecture design and model train- 040

ing (Touvron et al., 2023a,b; Taori et al., 2023; 041

Ouyang et al., 2022; OpenAI, 2023; Chung et al., 042

2022). Yet, it remains unclear how to effectively 043

leverage LLMs to formally define complex NLP 044

tasks. Furthermore, accurately conveying these 045

tasks to LLMs in natural language poses a novel 046

and ongoing challenge. 047

We highlight the conceptual difference between 048

the task definition and the task instruction. Task 049

definition is a set of input components considered 050

sufficient to solve the problem at hand, and the 051

expected output. For example, sentiment analy- 052

sis can be defined as predicting a label l ∈ L : 053

{positive|netural|negative} given an input sen- 054

tence si. Task instruction is a free-form natural 055
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language description of the task based on the task056

definition. Coupled with the instance-specific data057

inputs, it forms a prompt. An example task in-058

struction would be "Given a sentence, predict its059

sentiment from the following options:...". Both task060

definitions and task instructions are variable. The061

input for sentiment analysis can be enriched with062

context, and the output can use a different senti-063

ment scale. The task definition can be verbalized064

into an instruction in many ways, as well.065

Task definitions and instructions have been066

around throughout the history of NLP. While in-067

structions are commonplace in annotation studies,068

their direct use during inference is a novel feature069

introduced by LLMs. Prompting study searches070

for optimal strategies to arrive at good task instruc-071

tions for LLMs (Section 2.1). Strategies to explore072

task definitions, on the other hand, are less studied.073

While this has historically required modifications074

to the model architecture and fine-tuning of the075

model, due to their zero-shot capabilities and flex-076

ibility with respect to the input, LLMs provide a077

new and exciting opportunity for such exploration.078

In this work, we use LLMs to systematically079

study the task of citation text generation – a080

widely studied scholarly text generation task (Li081

and Ouyang, 2022; Funkquist et al., 2022). This082

task is particularly well-suited for our work since083

it lacks consensus on the precise task definition,084

features a complex input space combined with mul-085

tiple plausible outputs, and has not yet been tackled086

in a zero-shot setting with instruction-tuned LLMs.087

While Funkquist et al. (2022) unify multiple cita-088

tion text generation datasets to enable systematic089

comparison of NLP models, they leave open the090

exact definition of the task and focus on the su-091

pervised learning scenario, while leaving zero-shot092

citation generation under-investigated.093

To address this gap, we design a framework to094

systematically investigate the impact of task defini-095

tion and task instruction on citation text generation096

(Figure 1). It consists of three parts: the (1) prompt097

manipulation module systematically varies the task098

instruction and the input components available to099

the model; (2) reference data serves as a source of100

examples and reference for evaluation; (3) measure-101

ment kit allows characterizing the model outputs102

in response to the prompts. Through extensive ex-103

periments, we study the interactions between the104

instruction, input components and measurable prop-105

erties of the outputs for citation text generation. In106

summary, this work contributes the following: 107

• We outline a framework for studying task defi- 108

nitions for citation text generation using LLMs, 109

featuring a novel use of unstructured intents as an 110

input component to guide the generation process; 111

• We introduce a measurement kit to characterize 112

the generated citation texts from multiple per- 113

spectives, along with a novel reference corpus 114

of citation texts based on the ACL Anthology 115

enriched with unstructured citation intents; 116

• We use our framework to study the impact of 117

task definition on the model outputs, and exam- 118

ine the relationships between the metrics in the 119

measurement kit; 120

• We refine our findings in a human evaluation 121

study, where we compare human- and machine- 122

generated citation texts in terms of both auto- 123

matic measurements and human rankings. 124

Summary of findings. We find (Section 5) that 125

LLM generations do not always obey the formal re- 126

quirements stated in the task instruction and tend to 127

over-generate text. Task definition and task instruc- 128

tion both impact the generations, and their effects 129

add up. The results suggest that while the relative 130

performance of different task definitions might be 131

estimated using a small set of instructions, the best 132

absolute performance requires experimenting with 133

a wide array of instruction wordings. Through cor- 134

relation analysis we observe that the NLG metrics 135

used in our measurement kit are complementary, 136

motivating the use of wide-spanning measurement 137

sets for NLG tasks that feature several equally ac- 138

ceptable answers. Our human studies (Section 6) 139

reveal that – contrary to the automatic measure- 140

ments – humans still prefer human-generated ci- 141

tation texts, and that the effects of task definition 142

on LLM generation quality can be replicated in a 143

setting where humans generate citation texts man- 144

ually. Our qualitative analysis provides additional 145

hypotheses and insights to guide future work in 146

LLM-based citation text generation. 147

2 Background 148

2.1 LLMs and Prompting 149

Instruction-tuned large language models (LLMs) 150

demonstrate competitive performance across a 151

wide range of NLP tasks (Touvron et al., 2023a,b; 152

Taori et al., 2023; Ouyang et al., 2022; OpenAI, 153

2023; Chung et al., 2022). Unlike traditional mod- 154

els, LLMs can be prompted with free-form textual 155

queries. Prompts can be manipulated through sim- 156
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Study Level Abstract Intent Example Model Evaluation
(AbuRa’ed et al., 2020) sent Tgt - - PG ROUGE
(Xing et al., 2020) sent Tgt - - PG ROUGE, Human
(Ge et al., 2021) sent Tgt C - Enc. + LSTM ROUGE, Human
(Kasanishi et al., 2023) para Tgt - - FiD ROUGE, Human
(Chen et al., 2021) para Tgt - - Hier. Enc. ROUGE, Human
(Luu et al., 2021) sent Src/Tgt - - GPT-2 ROUGE, BLEU, Human
(Lu et al., 2020) para Src/Tgt - - PG ROUGE, Human
(Arita et al., 2022) sent Src/Tgt C - T5 ROUGE

(Jung et al., 2022) sent Src/Tgt C - T5, BART ROUGE, SciBERTScore
Human

(Wu et al., 2021) para Src/Tgt C - FiD ROUGE, BLEU, BLEURT,
Meteor

Ours para Src/Tgt F ✓ Llama 2-Chat
ROUGE, BERTScore,
BLEURT, TRUE, SummaC,
Surface measurements, Human

Table 1: Our work in the context of prior work on citation text generation. We explore alternative task definitions
for citation text generation in the context of state-of-the-art instruction-following LLMs, using a comprehensive
measurement kit and two novel input components: free-form citation intent and example sentence. sent – sentence,
para – paragraph, PG – pointer-generator network, FiD – fusion-in-decoder network, C – categorical intents, F -
free-form intents, Src - source (citing) paper, Tgt - target (cited) paper.

ple textual adjustments, allowing the user to guide157

model behavior at inference time without the need158

to update the model.159

The search for efficient prompting strategies is160

a trending research topic. The initial enthusiasm161

about zero-shot capabilities of LLMs (Brown et al.,162

2020; Kojima et al., 2022; Sanh et al., 2022) has163

been countered by evidence that LLMs are sensi-164

tive to minor changes in prompt formulation (Lu165

et al., 2022; Mishra et al., 2022; Wang et al., 2023a;166

Zhu et al., 2023). Several techniques for arriving at167

an optimal task wording have been proposed, e.g.168

choosing lowest-perplexity prompts (Gonen et al.,169

2022; Yin et al., 2023; Gu et al., 2023; Lou et al.,170

2023). In-context learning (ICL) based on task171

demonstrations has shown promise (Ouyang et al.,172

2022; Wang et al., 2022b, 2023b; Chung et al.,173

2022), yet Min et al. (2022) suggest that the main174

source of performance improvements in ICL is not175

the task demonstration, but the information it pro-176

vides about the label space, input distribution and177

output format. All in all, findings to date emphasize178

the importance and complexity of communicating179

the task at hand to an LLM. While prior work fo-180

cuses on arriving at an optimal task instruction, we181

investigate the impact of alternative task definitions182

on LLM behavior for citation text generation.183

2.2 Citation Text Generation184

Citation text generation is a widely studied task185

aiming to increase the efficiency of scientific work.186

It has been cast as a sentence-level (AbuRa’ed et al., 187

2020; Ge et al., 2021; Li et al., 2022b, 2023) and 188

paragraph-level task (Lu et al., 2020; Chen et al., 189

2021, 2022; Wu et al., 2021; Kasanishi et al., 2023), 190

as extractive (Hoang and Kan, 2010; Hu and Wan, 191

2014; Chen and Zhuge, 2019; Wang et al., 2020) 192

and abstractive summarization (AbuRa’ed et al., 193

2020; Li et al., 2022a; Lu et al., 2020; Chen et al., 194

2021; Luu et al., 2021; Kasanishi et al., 2023). Dif- 195

ferent input components such as categorical cita- 196

tion intents and citation network information have 197

been explored (Wu et al., 2021; Arita et al., 2022; 198

Gu and Hahnloser, 2022; Jung et al., 2022; Ge et al., 199

2021; Wang et al., 2021, 2022a; Chen et al., 2022; 200

Gu and Hahnloser, 2023). Table 1 summarizes task 201

definitions and modeling approaches from prior 202

work: we are the first to systematically assess the 203

impact of different task definitions for citation text 204

generation using a modern instruction-tuned LLM. 205

The differences in task definitions prevent sys- 206

tematic comparison of citation text generation ap- 207

proaches. To address this, Funkquist et al. (2022) 208

propose a benchmark that incorporates multiple 209

prior datasets under a general task definition frame- 210

work and casts the task as text-to-text generation. 211

Our paper builds upon this work and differs from it 212

in two major regards. First, Funkquist et al. (2022) 213

unify a range of prior datasets adhering to differ- 214

ent task definitions, yet they do not systematically 215

compare different task definitions and leaves the 216

question of "what information is in fact required 217
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to produce accurate citation texts" open for future218

investigation. Our work addresses this question.219

Second, while Funkquist et al. (2022) assume the220

supervised learning scenario, we – for the first time221

– explore citation text generation in a zero-shot set-222

ting using instruction-tuned LLMs, in the broader223

context of state-of-the-art LLM research.224

In addition, we explore the impact of citation225

intents on citation text generation. Citation intent226

prediction and the use of intent in citation text gen-227

eration have been previously investigated (Teufel228

et al., 2006; Abu-Jbara et al., 2013; Jurgens et al.,229

2018; Cohan et al., 2019; Lauscher et al., 2022). Ci-230

tation intent is commonly modeled via categorical231

labels, e.g., "Background" or "Method" (Wu et al.,232

2021; Arita et al., 2022; Gu and Hahnloser, 2022;233

Jung et al., 2022). Directly integrating categori-234

cal intents into generation has potential limitations:235

information loss due to coarse labeling will lead236

to difficulties in generating a paragraph-level cita-237

tion text based on a single intent label. Motivated238

by this, we for the first time experiment with al-239

ternative machine-generated unstructured intents240

derived for each citation text paragraph, discussed241

in Section 3.2 and exemplified in Figure 2.242

2.3 NLG Evaluation243

Natural language generation (NLG) is notoriously244

hard to evaluate automatically, and human evalu-245

ation is often associated with high cost and low246

reproducibility (Belz et al., 2023). Conventional247

automatic evaluation metrics based on token or to-248

ken embedding similarity like ROUGE (Lin, 2004),249

BERTScore (Zhang et al., 2020), BLEURT (Sellam250

et al., 2020) are widely used in NLG. Yet, these251

metrics cannot detect factual errors in the model252

output. Furthermore, they are not well suited for253

evaluating whether the model output meets the for-254

mal criteria set by the task definition.255

The former challenge can be partially addressed256

by natural language inference-based metrics. In257

particular, TRUE (Honovich et al., 2022) and Sum-258

maC (Laban et al., 2022) aim to detect compatibil-259

ity between the generated output and the reference.260

The latter challenge – lack of formal evaluation261

of the outputs – can be mitigated by using sim-262

ple surface-level metrics to check whether task263

instructions are followed. Yet this type of anal-264

ysis is often omitted (Jang et al., 2022). While265

most prior work in citation text generation relies266

on a small number conventional evaluation metrics267

(Table 1), our measurement kit encompasses con- 268

ventional, surface-level and NLI-based metrics and 269

enables comprehensive analysis of the generated 270

texts. We complement this by a human evalua- 271

tion study where we manually rank citation texts, 272

detailed in Section 6. 273

3 Method 274

The goal of our study is to explore the impact of 275

task definition on citation text generation outputs 276

in the context of state-of-the-art LLMs. We fo- 277

cus on paragraph-level citation text generation for 278

the paragraphs that cite a single paper, as it rep- 279

resents the most dominant use case and provides 280

an ideal, straightforward setup to explore the task 281

definition space for citation text generation. The 282

key components of our experimental framework 283

are the prompt manipulation module, the reference 284

data, and the measurement kit, detailed below. 285

3.1 Prompt Manipulation 286

The prompt manipulation module enables system- 287

atic variation of task definitions and the subse- 288

quent task instructions. For the task definition, we 289

experiment with four types of input components, 290

combined with six distinct dynamically-adjusted 291

human-written task instructions. The four task def- 292

inition input components are as follows: 293

• Target (cited) paper abstract: Contains the ab- 294

stract of the cited paper, which is expected to 295

contain core information about the cited work. 296

• Source (citing) paper abstract: Contains the 297

abstract of the citing paper, which is expected to 298

provide additional context to guide generation. 299

Cited and citing paper abstracts are commonly 300

used input components in citation text generation 301

literature (see Table 1). 302

• Citation intent: A single natural-language sen- 303

tence describing the intent of the citation para- 304

graph automatically derived from the reference 305

paragarph (Section 3.2). 306

• Example sentence: An example sentence that 307

refers to the cited paper but does not belong to the 308

currently considered citing paper (Section 3.2). 309

The instructions generally ask the model to write 310

a single related work paragraph based on the in- 311

put components from the citing and cited paper, 312

while using [REF#1] to refer to the cited paper 313

(Figure 2). The specific wording of the instructions 314

varies. The full list of instructions is given in the 315

Appendix D. The prompt is constructed by adjust- 316
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Citation Text Generation

Main paper abstract: We address relation extraction as an analogy problem by <...>
Relevant paper abstract: We show that relation extraction can be reduced to <...>
Intent: To describe a method to extract schemas from knowledge bases via distant supervision.

Your aim is to generate an exactly single paragraph to be used in related work section in a 
main paper. You will be given main paper's abstract, a relevant paper's abstract and the 
intent of the paragraph. The paragraph should reflect the intent and you need to refer the 
relevant paper in the same paragraph by using citation mark [REF#1]. Your output must 
strictly consist of the related work paragraph only, nothing else.Input components
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Figure 2: Prompt manipulation module constructs the prompt by combining the instruction (top) with selected input
components (left) and the corresponding instance data (bottom), incl. machine-generated citation intent sentence.
The result serves as input to the LLM.

ing the instruction depending on the chosen input317

component combination, and concatenating the in-318

struction with the input data for a given instance.319

The result is passed to the model for inference.320

3.2 Reference Data321

The range of possible task definition depends on322

the available data. Thus, our study requires rich323

input data representation. For paragraph-level gen-324

eration, the data must contain full paragraphs. We325

further focus on paragraphs that belong to related326

work sections, where the authors are most likely to327

discuss cited work rather than their own contribu-328

tions, compared to other sections. This requires the329

papers to be structured at least on the section level.330

The cited papers’ data should be readily accessible331

based on the citation. Both citing and cited papers332

should be complemented with metadata, includ-333

ing at least their abstracts, since this information is334

commonly used to generate citation texts.335

Among public datasets, Kasanishi et al. (2023)336

and Lu et al. (2020) come closest to our require-337

ments. Yet, Kasanishi et al. (2023) is limited to338

literature review and survey papers, and our prelim-339

inary investigation of Lu et al. (2020) has shown340

that some abstracts and citations were missing from341

the data. To address these limitations, we com-342

piled a new reference dataset based on the parsed343

ACL Anthology by Rohatgi (2022). The dataset344

construction details and statistics are provided in345

Appendix C. We have used the above parsed cor-346

pus to extract citation text paragraphs, limiting our347

paragraph selection such that the cited papers also348

belong to our reference data, ensuring that full pa-349

per content and metadata are readily available for350

both citing and cited papers. Using the structured351

parses from the data and a set of rule-based heuris-352

tics we selected 5, 971 related work paragraphs –353

comparable in size to the test set of Lu et al. (2020).354

For the experiment (Section 4), the data was fur-355

ther filtered to paragraphs that contain a citation 356

to a single paper, resulting in 2, 729 related work 357

paragraphs. 358

We also use this related work paragraph collec- 359

tion to extract example sentences that exemplify 360

how a certain paper can be cited independently 361

from the current citing paper. During experiments, 362

we use this pool to select example sentences most 363

similar to the gold reference paragraph via the 364

SBERT model (Reimers and Gurevych, 2019). Ad- 365

ditionally, to steer generation, we enrich the refer- 366

ence paragraphs with free-form intent sentences 367

defined as a single sentence describing the reason 368

a particular paper is cited in a given paragraph. 369

Intuitively, intents serve as a "hint" to reduce the 370

possible space of generations and steer the LLM 371

output towards the golden reference.2 In this work, 372

we used FlanT5-XXL (11B) model to generate the 373

intents: an example generated intent sentence can 374

be found in Figure 2. We discuss the advantages 375

and limitations of this approach in Section 8, and 376

provide details on intent generation along with ex- 377

amples in Appendix C.5. 378

3.3 Measurement Kit 379

We characterise the generated paragraphs with mul- 380

tiple groups of measurements: surface metrics, con- 381

ventional NLG metrics, and NLI-based metrics. As 382

we show later, these groups provide complemen- 383

tary insights about the model outputs in response 384

to the varying task definition and instruction. 385

Surface metrics. All of our task instructions 386

request the model to generate one paragraph of 387

citation text. However, the model might not follow 388

this requirement precisely. To evaluate, we measure 389

the average paragraph count in generated citation 390

2This is in line with the expert recommendations for writ-
ing literature reviews: for instance, Ridley (2012) suggests to
use informal writing to form the basis for the actual literature
review, such as “What are the methodological flaws of the
previous methods?”
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texts. Similarly, our instructions request the model391

to use a citation mark to refer to the cited paper392

in the generated text, e.g. [REF#1]. We check393

whether the model has used this token at least once394

during generation. Lastly, we calculate n-gram395

overlap between the input and the model output to396

check whether the model copies from the prompt.397

Conventional metrics. To compare the gen-398

erated text to the reference, we compute several399

conventional NLG metrics: ROUGE-L (Lin, 2004),400

BERTScore (Zhang et al., 2020) and BLEURT (Sel-401

lam et al., 2020). ROUGE is the most commonly402

used metric in prior work on citation text genera-403

tion – yet it operates on the surface level and lacks404

the capacity to evaluate semantic correspondence405

between the two sequences. This is addressed by406

the two more recent metrics – BERTScore and407

BLEURT – that use BERT-based (Devlin et al.,408

2019) representations to compare the generated409

text to the reference on semantic level, showing410

greater robustness to paraphrases and better align-411

ment with human assessments.412

NLI-based metrics. To measure factual consis-413

tency between the gold reference and the model out-414

put, we use two NLI models (TRUE and SummaC)415

trained on curated fact-checking datasets. Note that416

we use {gold reference, model output} instead of417

{abstracts, model output} as the input to the NLI418

models because we focus on exploring the task419

definition space for related work generation and420

identifying the key input components needed to re-421

construct the gold reference. TRUE makes binary422

decisions regarding entailment for a given textual423

pair (Honovich et al., 2022). SummaC (Laban et al.,424

2022) generates NLI scores from the sentences of425

compared texts and calculates an overall score.426

4 Experiments427

For all experiments we use Llama 2-Chat (13B)428

(Touvron et al., 2023b) – a state-of-the-art, open429

instruction-tuned LLM. We use the prompt manip-430

ulation module to generate prompts consisting of431

instructions and data inputs, according to the cho-432

sen configuration. It is passed to the model for433

inference, for each data instance. We analyze the434

outputs using our measurement kit. Generating435

citation texts for all instances and all configura-436

tions discussed below takes ∼30 hours on a single437

NVIDIA A100 GPU with 80GB memory. Further438

details are specified in Appendix A.439

Conf. NG-3 PC CM (ctd.) NG-3 PC CM
1+A 26.70 1.50 30.69 4+A 24.3 1.01 54.55
1+A+I 24.09 1.48 41.62 4+A+I 24.35 1.02 42.73
1+A+E 26.97 1.64 74.36 4+A+E 26.61 1.03 82.07
1+A+I+E 24.56 1.63 77.54 4+A+I+E 25.18 1.05 78.56
2+A 26.04 1.08 63.07 5+A 30.04 1.40 25.95
2+A+I 26.11 1.11 91.30 5+A+I 27.02 1.56 30.74
2+A+E 23.74 1.11 82.87 5+A+E 28.42 1.58 76.99
2+A+I+E 24.52 1.15 89.71 5+A+I+E 26.45 1.77 76.20
3+A 25.37 1.31 37.56 6+A 23.55 1.01 92.55
3+A+I 25.54 1.32 28.42 6+A+I 26.81 1.07 85.90
3+A+E 27.33 1.48 76.25 6+A+E 24.88 1.07 95.34
3+A+I+E 26.93 1.47 75.52 6+A+I+E 27.24 1.10 95.77

Table 2: Surface measurements. #Instruction + Abstract
+ Intent + Example. NG-3: averaged 3-gram overlap
(%); PC: paragraph count, CM: citation mark usage (%).

5 Results 440

We use the following notation to discuss experi- 441

mental configurations: #(+A)(+I)(+E), where # 442

is the instruction identifier, +A denotes source and 443

target paper abstracts , +I denotes the intent sen- 444

tence, +E denotes an example citation sentence that 445

cites the given cited paper. Note that the instruc- 446

tions are adjusted to reflect the input components 447

present in a given configuration. The example in- 448

put in Figure 2 corresponds to the configuration 449

1+A+I. Table 4 and Figure 3 present our measure- 450

ments across different configurations; full results 451

are given in Appendix B. The measurements allow 452

us to explore a range of questions about the role 453

of task definition in citation text generation in the 454

context of modern LLMs. 455

RQ1: What are the characteristics of the gen- 456

erated citation texts? By construction our ref- 457

erence texts consist of a single paragraph with a 458

single citation marker. Yet, the generated texts 459

often violate this constraint (Table 2). Some config- 460

urations like 5+A+I+E systematically over-generate 461

text with an average of 1.77 paragraphs per output, 462

others like 5+A under-generate citation markers. 463

We note that for five out of six instructions, explic- 464

itly introducing an example sentence with a citation 465

marker makes the model generate it more consis- 466

tently – yet, in other cases like 6+A the instruction 467

itself suffices for the model to reliably generate the 468

citation mark. Similarly, in 4+A and 6+A, the model 469

follows the paragraph count limitation almost per- 470

fectly. 471

RQ2: What is the impact of the task defini- 472

tion on generated texts? We find that additional 473

input components in the task definition have pos- 474

itive influence on performance in terms of both 475

conventional and NLI-based measurements (Figure 476
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Figure 3: Conventional and NLI-based metric results. Abstract + Intent + Example, #Instruction color-coded.

3). We observe that providing the model with only477

abstracts (+A) systematically yields the lowest de-478

gree of correspondence between the generated text479

and the reference across all task instructions and480

all automatic evaluation metrics. We also observe481

that providing models with intent (+I) increases the482

correspondence between generated and reference483

citation texts for all six instructions, while example484

sentence (+E) has this effect for the four out of six485

instructions. Providing intent and example jointly486

shows a combined effect and yields the best corre-487

spondence in 16 out of 18 (six main configuration488

x three metrics) measurements in conventional met-489

rics and in 10 out of 12 comparisons for NLI based490

metrics. The positive impact of intent and example491

replicates in our experiments on non-author human-492

generated text (Section 6). We note that the ranking493

of configurations remains mostly consistent across494

the task instructions and measurements. This sug-495

gests that the relative performance of different in-496

put configurations might be estimated based on a497

small number of instruction variations.498

RQ3: What is the effect of the instructions?499

We observe that the instruction – i.e. how the task is500

described to the model – affects the correspondence501

between generated and reference citation texts (Fig-502

ure 3). Our results suggest that the effects of the503

instructions and input components are orthogonal504

and thus add up: the difference between highest-505

and lowest-performing configuration are up to 2.8506

(6+A+I+E vs 1+A) points ROUGE-L, 1.1 (2+A+I+E507

vs 1+A) points BERTScore, 3.2 (4+A+I+E vs 1+A)508

points BLEURT and 10.6 points for TRUE3. In ad-509

dition, the effect of the instruction can be observed510

in surface measurements: for example, there is511

a substantial difference between 1+A and 6+A in512

terms of the average paragraph count and the aver-513

3The magnitude is within the common range reported in
related work, e.g. (Funkquist et al., 2022; Kasanishi et al.,
2023; Wu et al., 2021) for ROUGE, BERTScore and BLEURT,
and (Gao et al., 2023) for TRUE.

ROU BER BLE TRU Sum
RO

U
BE

R
BL

E
TR

U
Su

m

1 0.62 0.39 0.17 0.24

0.62 1 0.6 0.19 0.09

0.39 0.6 1 0.11 0.04

0.17 0.19 0.11 1 0.15

0.24 0.09 0.04 0.15 1
0.2

0.4

0.6

0.8

1.0

Figure 4: Pearson correlation between instance-level
measurements over all configurations.

age citation mark ratio. Hence, both instruction and 514

input configuration are important factors in com- 515

paring citation text generation models, and should 516

be investigated jointly. In terms of absolute per- 517

formance, the best input configuration might be 518

undermined by suboptimal instruction wording. In 519

contrast to RQ2, this suggests that in search for 520

the highest absolute performance, a wide range of 521

instructions should be explored. 522

RQ4: What are the relationships between the 523

measurements? From Figure 4, we observe that 524

conventional metrics show high correlations among 525

themselves, but the correlations to the NLI-based 526

metrics are low. TRUE and SummaC are less cor- 527

related with each other compared to conventional 528

metrics. We hypothesise that since TRUE evalu- 529

ates the entailment relation between two sequences 530

in binary manner, i.e. "entailment" or "contradic- 531

tion", it might be sensitive to the changes in outputs. 532

SummaC, on the other hand, processes paragraphs 533

at the sentence level and produces an overall score 534

by convolution – decreasing its sensitivity, but also 535

leading to smaller differences between prompt con- 536

figurations. These observations highlight the im- 537

portance of multiple complimentary measurements 538

for the citation text generation as opposed to the 539

standard single-metric ROUGE-based evaluation. 540
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Configuration ROUGE-L BERTScore BLEURT TRUE SummaC Best-Worst Scaling
[LLM] 6+A 15.52 85.27 41.93 13.33 20.53 -0.33
[LLM] 6+A+I+E 17.49 85.87 43.96 20.00 20.77 -0.23
[H] 6+A 14.16 85.69 37.37 10.00 21.33 -0.03
[H] 6+A+I+E 16.25 85.88 38.56 13.33 22.00 0.52

Table 3: Human study results on a subsample of instances. H – human-generated, LLM – machine-generated.

6 Human evaluation541

To get further insights into citation text generation542

with LLMs and the impact of task definition on this543

process, we have conducted a human generation544

study and a human evaluation study (Appendix E).545

Human vs machine-generated citation texts.546

For generation, we sampled 30 instances from the547

single-paragraph reference data used in our main548

experiment. Three human annotators with back-549

ground in NLP composed related work paragraphs550

for these instances given two prompts: 6+A (ab-551

stracts only) and 6+A+I+E (abstracts, intents and552

example). We then compared human-generated553

texts to the ones generated by the LLM using our554

measurement kit (Table 3). We observe that con-555

ventional NLG evaluation metrics and TRUE favor556

LLM outputs, while SummaC shows preference557

for human-generated texts.558

Human ratings. Same annotators carried out559

human evaluation comparing LLM-generated and560

human-generated paragraphs4. We used Best-Worst561

Scaling (Louviere et al., 2015), which is more de-562

pendable than pairwise comparisons while requir-563

ing less annotation effort (Kiritchenko and Moham-564

mad, 2017). Given the gold reference and four out-565

puts (two LLM-generated, two human-generated),566

the annotators selected the best and worst outputs567

in terms of their correspondence with the gold ref-568

erence. The score was calculated as the difference569

between the percentage of times the configuration570

was selected as the best or worst, from -1 (always571

the worst) to 1 (always the best). Table 3 presents572

the results and allows two observations. First, con-573

trary to the conventional metric results, humans574

preferred human-written citation texts to the LLM575

generations. Second, the positive effect of provid-576

ing intent and example from the main experiment577

holds in the case when the citation texts are gener-578

ated by human annotators. This implies that both579

components are important input for the citation text580

generation task in real-world scenarios and should581

be integrated into future research.582

4The instances were distributed such that no annotator
would rate their own generated instance to avoid bias.

Qualitative observations. Our evaluation 583

yielded few informal insights which we deem use- 584

ful for follow-up research. Despite the conditions 585

being hidden, we were often able to distinguish 586

LLM-generated texts from human-generated ones: 587

LLM generations were typically less brief and less 588

specific. We observed that the wording of the in- 589

struction affects the style of the generated para- 590

graph: for some instructions, the model tended to 591

generate a text comparing two papers, instead of 592

discussing one paper in context of the other. As this 593

is not reflected in the metric performance scores, 594

we hypothesize that pragmatic mismatch might not 595

be captured by the automatic evaluation metrics. 596

We found that the success of generations depended 597

on the content of the gold reference: while high- 598

level discussion of related work can be generated 599

from the abstracts, going into specifics of a paper 600

requires the information not available in the input. 601

The content of the abstracts affected the genera- 602

tions as well: uninformative abstracts were hard to 603

generate from, both for humans (who wrote short 604

and uninformative citation texts in response) and 605

for LLMs (that were forced to hallucinate text). 606

Since the setting of our human study is insufficient 607

to investigate these observations empirically, we 608

leave this exploration for future research. 609

7 Conclusion 610

To solve a task, one needs to define the task. As 611

NLP tasks become increasingly complex, creative 612

and applied, the space of possible inputs and ac- 613

ceptable outputs grows as well, motivating the need 614

for approaches to systematically compare task defi- 615

nitions. We have proposed a framework for com- 616

paring task definitions for a popular scholarly NLP 617

task – citation text generation. We used our frame- 618

work to study the impact of task definition and task 619

instruction on the task performance, both by LLMs 620

and by human annotators. Our insights contribute 621

to a better understanding of the role of task def- 622

initions and instructions in LLM-based language 623

processing, and our framework facilitates the study 624

of citation text generation in the age of LLMs. 625
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8 Limitations626

We now turn to the limitations of our study to be627

addressed by future work.628

Comparison to state of the art. We do not com-629

pare the performance of our citation text generation630

system to prior models, since the goal of our work631

is to study the effect of task definition and instruc-632

tions, and not to produce a top-performing model633

instance. Besides, given the capabilities of mod-634

ern LLMs, side-by-side comparison to prior work635

would likely put earlier models at unfair disadvan-636

tage and conflate a wide range of potential sources637

of improvement.638

Modeling human preference. Task definition639

encompasses input components and the output640

which are both variable. In this work, we focused641

on systematically varying the input space, while642

resorting to a wide range of metrics and human643

evaluation to characterize the output space. The644

results of our human evaluation suggest that there645

is still a gap between automatic measurements and646

human preference. We claim that more accurate647

models of human preference are urgently needed648

for the citation text generation task. Our qualitative649

insights can serve as a basis for constructing such650

models in the future.651

Limitations of the setup. To keep our study652

tractable, we had to impose limitations on our setup.653

Considering only related work paragraphs that con-654

tain a single citation is a technical limitation, which655

can be revisited once open LLMs that can effi-656

ciently handle long inputs become available. We657

expect additional effects due the varying model’s658

capability to discuss multiple cited papers in one659

paragraph at once. While we put effort into val-660

idating our findings using a range of instructions661

instead of a single prompt, adding more instruc-662

tions would allow to further verify our findings and663

to get better estimates of the absolute performance.664

We thus recommend expanding the instruction pool665

for the follow-up work interested in producing a666

best-performing system. In our experiments we667

considered three groups of input components: ab-668

stracts, intents, and example sentence. This set669

can be easily extended based on our reference data,670

which contains both rich metadata and pointers to671

the dataset with the parsed full papers for both cit-672

ing and cited works, with one and multiple citations673

per paragraph.674

Language and domain Our experiments are lim- 675

ited to English and to the papers from the ACL 676

Anthology. This is a common feature of scholarly 677

NLP, due to English being the standard language of 678

communication in many research fields and due to 679

availability and open licensing of the ACL Anthol- 680

ogy. Applying our approach in a cross-lingual and 681

multi-lingual setting and in novel domains is an en- 682

gaging future work direction which can be pursued 683

once the research infrastructure is available. 684

Machine-generated intents We experiment with 685

free-form, unstructured citation intents to guide the 686

generation. Since manually creating a citation in- 687

tent for each dataset instance is not feasible, we 688

have generated them from the gold reference para- 689

graphs using a separate model (Flan-T5 vs Llama 2 690

in the main experiment). The drawback of this ap- 691

proach is that these sentences might arguably leak 692

some keywords and subsequences from the gold 693

reference paragraphs, inflating the performance 694

measurements. We point out that intent sentences 695

normally do not contain enough information to gen- 696

erate a whole paragraph (Appendix C.6), which is 697

verified through our human generation study. Fur- 698

thermore, encountering some sequences from the 699

given unstructured intent in the resulting generated 700

citation text would be acceptable in a real-world 701

application scenario. As alternative, future work 702

can explore citation text generation with manually 703

curated intent sentences on a smaller subset of our 704

data. We note that we do not compare unstructured 705

vs categorical intents in this work, as claiming su- 706

periority of one or the other approach lies beyond 707

our scope. We leave this investigation to the future. 708

Ethics Statement 709

We believe that a systematic study of task defini- 710

tions is an important basic research direction for 711

NLP without ethical implications. While the mis- 712

use of citation text generation could lead to reduced 713

engagement with the scientific literature, we be- 714

lieve that such systems – used as an aid, not as 715

replacement for paper reading – could facilitate 716

exploration of vast scientific literature, and that 717

the benefits of such systems outweigh the risks. 718

Our data is constructed based on publicly avail- 719

able, openly licensed sources, and our experiments 720

are conducted with an open large language model, 721

facilitating long-term reproducibility of our experi- 722

ments, and allowing the community to build upon 723

the artifacts of our study. 724
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greedy decoding. Within this setting, we were1173

able to ensure exact reproduction of the experi-1174

mental results across different runs. Generating1175

paragraphs for one configuration (e.g., 3+A+I, see1176

below) takes 75 minutes with greedy decoding, to-1177

talling 30 hours on a single GPU for generating ci-1178

tation texts for all configurations in this paper. For1179

NLI-based measurements, we use TRUE model1180

based on T5-XXL6 and the best reported model for1181

SummaC7.1182

B Full results table1183

For the sake of detail and reproducibility, Table 41184

lists all measurements obtained in the main experi-1185

ment.1186

C Dataset1187

C.1 Title List1188

List of related work titles used in dataset creation1189

is as follows.1190

{"related work", "related works", "previous1191

work", "background", "introduction and related1192

works", "introduction and related work", "back-1193

ground and related work", "background and re-1194

lated works", "previous related work", "previous1195

related works", "backgrounds", "previous and re-1196

lated work", "previous and related works"}1197

C.2 Cleaning and Post-processing1198

We performed several additional cleanup opera-1199

tions on the data. We removed instances with cor-1200

rupted components e.g., abstract, metadata, cita-1201

tion mark, PDF parsing. We encountered papers1202

that were published in different venues with the1203

same title and abstract. To avoid ambiguity, such1204

duplicates were removed. A small number of non-1205

English papers were removed. We determine the1206

length threshold as 40 tokens separated by whites-1207

pace for extracted paragraphs and 10 for citation1208

sentences. Since the related work paragraph dataset1209

and the example citation sentence dataset are con-1210

nected, cleaning process was run in parallel for1211

these datasets. For example, if there were no in-1212

stances left for a cited paper after the cleanup, ci-1213

tation sentences for that paper were also removed1214

from the example sentence pool.1215

Some cited paper’s citation sentences are not in-1216

cluded in the example sentence dataset. The main1217

6https://huggingface.co/google/t5_xxl_true_
nli_mixture

7https://github.com/tingofurro/summac

reason of this situation is cleaning procedure that 1218

we follow. For instance, corresponding sentences 1219

may not be segmented well or their length may be 1220

below the token threshold. To extract sentences 1221

from the paragraphs, the scispacy8 module is em- 1222

ployed. While determining the most similar exam- 1223

ple citation sentence, all-MiniLM-L6-v29 version 1224

of SBERT is utilized. 1225

C.3 Column Descriptions 1226

Column names along with their descriptions for the 1227

related work paragraph and the citation sentence 1228

datasets are given in Tables 7 and 8, respectively. 1229

C.4 Dataset Staticstics 1230

Tables 5 and 6 show core statistics for the result- 1231

ing self-contained collection of related work para- 1232

graphs along with the respective papers that they 1233

cite and example citation sentences. 1234
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Citation counts

100

101

102
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Figure 5: Citation count distribution in logarithmic scale

We also present distribution of the citation 1235

counts in the paragraphs in Figure 5. The num- 1236

ber of paragraphs with larger number of citations 1237

decreases exponentially. Around 2,700 paragraphs 1238

include only one citation and the most crowded 1239

paragraph includes 18 citations. In the main paper 1240

experiment, we focus on the subset of paragraphs 1241

that include only one citation. 1242

C.5 Intent Generation 1243

While piloting the study, for intent generation 1244

we experimented with a range of LLMs such as 1245

LLaMA (7B) (Touvron et al., 2023a), Alpaca (7B) 1246

(Taori et al., 2023) and BLOOMZ (7.1B) (Muen- 1247

nighoff et al., 2023). The performance of FLAN-T5 1248

8https://allenai.github.io/scispacy/
9https://huggingface.co/sentence-transformers/

all-MiniLM-L6-v2
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Configuration
Surface Conventional NLI

NG-1 NG-2 NG-3 PC CM ROUGE-L BERTScore BLEURT TRUE SummaC
1+A 61.48 37.38 26.70 1.50 30.69 14.63 84.77 38.92 10.98 20.77
1+A+I 59.81 34.88 24.09 1.48 41.62 15.98 85.19 40.58 14.09 20.87
1+A+E 63.07 37.94 26.97 1.64 74.36 15.13 84.97 39.13 13.45 20.83
1+A+I+E 61.29 35.57 24.56 1.63 77.54 16.53 85.41 40.78 17.46 20.95
2+A 64.78 37.02 26.04 1.08 63.07 15.56 85.32 40.19 12.33 20.77
2+A+I 64.94 37.21 26.11 1.11 91.30 17.38 85.81 41.66 17.33 20.99
2+A+E 64.52 34.94 23.74 1.11 82.87 15.99 85.52 40.66 12.02 20.82
2+A+I+E 64.79 35.89 24.52 1.15 89.71 17.36 85.89 41.82 16.91 21.00
3+A 61.52 36.09 25.37 1.31 37.56 14.81 84.93 39.66 6.86 20.71
3+A+I 61.24 36.29 25.54 1.32 28.42 16.61 85.39 40.55 11.97 20.88
3+A+E 64.01 38.30 27.33 1.48 76.25 15.23 85.06 39.69 8.42 20.80
3+A+I+E 63.28 37.91 26.93 1.47 75.52 16.90 85.51 40.82 15.13 20.98
4+A 62.03 35.18 24.30 1.01 54.55 15.88 85.26 40.88 10.68 20.70
4+A+I 61.58 35.36 24.35 1.02 42.73 17.07 85.52 42.13 10.98 20.83
4+A+E 64.61 37.85 26.61 1.03 82.07 16.03 85.33 40.88 10.51 20.76
4+A+I+E 63.31 36.48 25.18 1.05 78.56 17.32 85.69 42.10 13.35 20.86
5+A 63.41 40.21 30.04 1.40 25.95 15.38 84.94 39.70 10.02 20.80
5+A+I 61.17 37.29 27.02 1.56 30.74 16.56 85.18 40.47 12.93 20.89
5+A+E 63.85 38.96 28.42 1.58 76.99 15.94 85.20 39.93 10.96 20.88
5+A+I+E 61.73 36.92 26.45 1.77 76.20 17.02 85.38 40.83 12.80 20.97
6+A 62.98 34.84 23.55 1.01 92.55 15.88 85.28 40.69 7.23 20.68
6+A+I 64.60 38.19 26.81 1.07 85.90 17.03 85.56 41.12 10.10 20.83
6+A+E 64.79 36.37 24.88 1.07 95.34 16.06 85.35 40.85 9.33 20.75
6+A+I+E 65.99 38.83 27.24 1.10 95.77 17.39 85.70 41.52 10.18 20.81

Table 4: Main results. #Instruction + Abstract + Intent + Example. NG, PC, CM represent averaged n-gram
overlap ratio, paragraph count and citation mark usage ratio. All values apart from PC given in percent (0-100) for
readability.

Paragraphs 5,971
Total citation 12,950
Unique citing papers 4,605
Unique cited papers 6,620
Avg. occur. of a cited paper 1.96
Sentence count per paragraph 4.22
Word count per paragraph 98.67

Table 5: Related work paragraph dataset statistics

Sentences 73,139
Unique citing papers 16,338
Unique cited papers 6,594
Sentence per cited paper 11.05
Word count per sentence 35.30

Table 6: Example sentence dataset statistics

was deemed most acceptable and consistent among1249

the models..1250

We conducted preliminary experiments for intent1251

generation on a subsample of our dataset, exploring1252

both zero-shot and few-shot configurations. In the1253

zero-shot setting, we instructed the models to gen-1254

erate intent of the given target paragraph without 1255

showing any examples. In few-shot setting, we pro- 1256

vided two-three paragraphs and their correspond- 1257

ing intents. To generate example paragraph-intent 1258

pairs, we conducted 100 zero-shot generations and 1259

manually selected six examples that successfully 1260

reflect the intent of the paragraph. We observed 1261

that in the few-shot setting the models tended to 1262

copy the examples into the output. Therefore, we 1263

decided to use the zero-shot setting as our final con- 1264

figuration. We use the following Flan-T5 prompt: 1265

What is intention of the following paragraph? 1266

{Target paragraph} 1267

We investigated several decoding strategies to 1268

optimize generations such as greedy search, beam 1269

search, multinomial sampling, multinomial sam- 1270

pling with beam search and contrastive search wıth 1271

different hyperparameters. In the final setting, we 1272

opted for greedy decoding due to its output quality 1273

and reproducibility of the outputs. 1274

C.6 Example intents 1275

Below we provide a random sample of 20 machine- 1276

generated intents used in our study: 1277

15



Column name Description
acl_id Unique ACL ID of the citing paper. Since a paper can have different related work

paragraphs that satisfy conditions, there can be instances with the same acl_id. Although
it is a unique identifier for distinguishing papers in ACL Anthology, this is not a unique
identifier for this dataset. This rule is also valid for other citing paper meta features.

abstract Abstract of the citing paper.
corpus_paper_id Semantic Scholar ID of the citing paper.
pdf_hash sha1 hash of the PDF.
numcitedby The citing paper’s citation count based on Semantic Scholar.
url URL of the citing paper.
publisher Publisher of the citing paper.
address Address of the conference or venue.
year The citing paper’s publication year.
month The citing paper’s publication month.
booktitle The name of the proceedings if it is a conference paper.
author Authors of the citing paper.
title Title of the citing paper.
pages Page information of citing paper.
doi DOI identifier of the citing paper.
number Article number of the citing paper if it is a journal paper.
volume Volume number of the citing paper if it is a journal paper.
journal Journal name of the citing paper if it is a journal paper.
editor Name of the editors if it is a journal paper.
isbn ISBN number of the citing paper.
paragraph_xml Citation paragraph with XML tags. It also includes other information about the citations

relative to citing paper.
paragraph Citation paragraph without XML tags. Like normal text in an article.
cited_paper_marks This includes XML tags of target cited papers relative to citing papers. Identifiers are not

absolute but relative. These tags also exist in paragraph_xml column. Since there can
be multiple cited papers in the paragraph each mark is separated by " %%% " (space + 3
consecutive % + another space) .

cited_paper_titles Titles of the cited papers separated by " %%% ".
cited_papers_acl_ids acl_ids of the cited papers separated by " %%% ".
cited_papers_abstracts Abstracts of the cited papers separated by " %%% ".

Table 7: Column names and descriptions for the related work paragraph dataset.

Column name Description
example_id Unique id of the example sentence instances. Its construction formula is acl_id of cited paper + "%" +

extraction order number
sentence Example sentence citing target cited paper.
paragraph_xml XML version of the paragraph which example sentence belongs to. (From the related work section of

the citing paper)
paragraph Textual version of the paragraph which example sentence belongs to. (From the related work section of

the citing paper)
citation_mark This includes XML tags of target cited paper’s citation marks.

Table 8: Column names and descriptions for the example citation sentence dataset. The dataset also includes
metadata of the citing and the cited papers as given in Table 7.
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• To describe the state of the art in WSD systems.1278

• To describe the Universal Dependency project.1279

• To provide a comparison of the pruning distances1280

for dependency-based relation extraction models.1281

• To describe the work1282

• To describe the problem and the solution.1283

• To describe the crowdsourcing approach used to1284

bootstrap YARN.1285

• Toxicity is a common problem in natural lan-1286

guage generation, and a common source of model1287

misbehavior.1288

• To describe the relation between Nominal SRL1289

and SemEval.1290

• To provide a brief overview of the state-of-the-art1291

in unsupervised structured prediction.1292

• To compare the performance of our approach1293

with Yarowsky et al. (2001) and other related1294

work.1295

• To introduce naive, linguistically motivated regu-1296

larization methods such as sentence length, punc-1297

tuation and word frequency.1298

• To provide a comparison of UDon2 and Udapi.1299

• To present a new technique for combining NMT1300

models that is capable of addressing i and ii.1301

• To describe the work1302

• To describe a study.1303

• To provide a brief overview of the state of the art1304

in multilingual representation learning.1305

• To describe the problem of query expansion1306

• To provide a brief review of the related works.1307

• To describe the state of the art in multilingual1308

model evaluation.1309

• To describe an email thread summarization ap-1310

proach.1311

D Task instruction templates1312

Llama 2-Chat model takes prompts in two seg-1313

ments: system prompt and user message. System1314

prompt is a fixed instruction for each session to1315

guide the model how to react to user messages.1316

User message contains additional information re-1317

lated to the instance at hand. In most cases we use1318

system prompt to provide the task instruction, and1319

use the user message to provide instance-specific1320

data – Template 2 is an exception in that there input1321

components are embedded into the user message,1322

and system prompt remains empty. The following1323

subsections exemplify the system inputs used in1324

our work for the case where all input components1325

are included into the instruction.1326

D.1 Template 1 1327

System prompt: Your aim is to generate an 1328

exactly single paragraph to be used in related 1329

work section in a main paper. You will be 1330

given the main paper’s abstract and a rele- 1331

vant paper’s abstract. The paragraph should 1332

reflect the intent and you need to refer the rel- 1333

evant paper in the same paragraph by using 1334

citation mark [REF#1]. You can inspire from 1335

the given example. 1336

Custom instance prompt: Main paper ab- 1337

stract: {Citing paper abstract} 1338

Relevant paper abstract: {Cited paper ab- 1339

stract} 1340

Intent: {Intent of the paragraph} 1341

Example: {Example citation sentence} 1342

D.2 Template 2 1343

System prompt: - 1344

Custom instance prompt: Assume that you 1345

are the author of a paper whose abstract is as 1346

follows: 1347

{Citing paper abstract} 1348

In your paper’s related work paragraph, you 1349

want to cite a paper whose abstract is as fol- 1350

lows: 1351

{Cited paper abstract} 1352

Intent of the related work paragraph should 1353

be as follows: 1354

{Intent of the paragraph} 1355

You can inspire from the given example: 1356

{Example citation sentence} 1357

How would you write an exactly one related 1358

work paragraph for this purpose? While cit- 1359

ing use the citation mark [REF#1]. Your out- 1360

put must strictly consist of the related work 1361

paragraph only, nothing else. 1362

D.3 Template 3 1363

System prompt: Follow given instructions: 1364

1-) You will be given main paper’s abstract, 1365

a relevant paper’s abstract, an intent and an 1366

example sentence. 1367

2-) Write a related work paragraph that is 1368

belonging to main paper and citing relevant 1369

paper. 1370

3-) The goal of your paragraph should be the 1371

given intent. 1372

4-) You can utilize example sentence as how 1373

the relevant paper is cited before. 1374
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5-) Start your paragraph without any other1375

explanations.1376

6-) Use [REF#1] as citation mark.1377

7-) Your output should consist of exactly single1378

paragraph.1379

Custom instance prompt: Main paper ab-1380

stract: {Citing paper abstract}1381

Relevant paper abstract: {Cited paper ab-1382

stract}1383

Intent: {Intent of the paragraph}1384

Example: {Example citation sentence}1385

D.4 Template 41386

System prompt: You are writing a research1387

paper and want to discuss another, related pa-1388

per, with a certain intent – the purpose of the1389

discussion. Generate exactly one paragraph1390

of text that discusses the related paper in con-1391

text of the main paper and follows the intent.1392

You will be given the main paper abstract, the1393

related paper’s abstract, and the intent sen-1394

tence. You can also utilize the given example1395

sentence. Refer to the related paper by using a1396

citation mark [REF#1]. You should generate1397

exactly one paragraph of text, nothing else.1398

Custom instance prompt: Main paper ab-1399

stract: {Citing paper abstract}1400

Relevant paper abstract: {Cited paper ab-1401

stract}1402

Intent: {Intent of the paragraph}1403

Example: {Example citation sentence}1404

D.5 Template 51405

System prompt: Imagine that you are a sci-1406

entist writing a research paper. Your goal is1407

to write a related work paragraph that dis-1408

cusses the related paper in context of your1409

main paper. The related paper should be men-1410

tioned in the paragraph by using a citation1411

mark [REF#1]. You will be given the main pa-1412

per abstract, the related paper abstract, and1413

the intent – the reason why you are citing the1414

paper. An example sentence is also given to1415

show how the related paper has been cited1416

before. Your output should consist of exactly1417

one paragraph of text and include the citation1418

mark.1419

Custom instance prompt: Main paper ab-1420

stract: {Citing paper abstract}1421

Relevant paper abstract: {Cited paper ab- 1422

stract} 1423

Intent: {Intent of the paragraph} 1424

Example: {Example citation sentence} 1425

D.6 Template 6 1426

System prompt: You are given two research 1427

papers: main paper and related paper. Gen- 1428

erate one paragraph of text that discusses the 1429

related paper in the context of the main paper, 1430

given the intent – the reason why the main 1431

paper discusses the related paper. A citation 1432

sentence is also given to be taken as example. 1433

Use a citation mark [REF#1] to refer to the 1434

related paper. Your output should consist of 1435

exactly one paragraph of text and include the 1436

citation mark. 1437

Custom instance prompt: Main paper ab- 1438

stract: {Citing paper abstract} 1439

Relevant paper abstract: {Cited paper ab- 1440

stract} 1441

Intent: {Intent of the paragraph} 1442

Example: {Example citation sentence} 1443

E Human Evaluation 1444

Table 9 shows an example of the human generation 1445

task for the configuration A+I+E. Table 10 shows an 1446

example of the human evaluation input: annotators 1447

first manually generated citation text paragraphs 1448

based on the prompt, and later manually ranked 1449

human and LLM generations in different settings 1450

using best-worst scaling. The citation texts were 1451

written in bulk first for a less informative prompt 1452

(abstract-only), then for a more informative prompt 1453

(abstract, intent and example). During ranking, 1454

the annotators would not rank their own generated 1455

outputs, and the configuration and the source of the 1456

text (human vs machine) were not known to the 1457

annotators. 1458
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Main paper abstract: The ACL shared task of DravidianLangTech-2022 for Troll Meme classification is a binary
classification task that involves identifying Tamil memes as troll or not-troll. Classification of memes is a challenging task
since memes express humour and sarcasm in an implicit way. Team SSN_MLRG1 tested and compared results obtained by
using three models namely BERT, ALBERT and XLNet. The XL-Net model outperformed the other two models in terms
of various performance metrics. The proposed XLNet model obtained the 3rd rank in the shared task with a weighted
F1-score of 0.558.

Relevant paper abstract: This paper describes the work of identifying the presence of offensive language in social
media posts and categorizing a post as targeted to a particular person or not. The work developed by team TECHSSN
for solving the Multilingual Offensive Language Identification in Social Media (Task 12) in SemEval-2020 involves the
use of deep learning models with BERT embeddings. The dataset is preprocessed and given to a Bidirectional Encoder
Representations from Transformers (BERT) model with pretrained weight vectors. The model is retrained and the weights
are learned for the offensive language dataset. We have developed a system with the English language dataset. The results
are better when compared to the model we developed in SemEval-2019 Task6.

Intent: To describe the work done to identify the presence of offensive language in social media posts using BERT.

Example sentence: We have used CNN, RNN, LSTM, BERT and COLBERT models for offensive language detection in
earlier SemEval workshop tasks [OTH], [REF#1],[OTH] in which BERT models provides better results than other machine
learning and deep learning models.",

Table 9: Human generation task. Abstracts belong to papers (Hariprasad et al., 2022; Sivanaiah et al., 2020),
respectively. The humans are tasked with writing one paragraph of citation text based on the inputs. The inputs vary
depending on the condition – the example here is for the condition A+I+E, i.e. full information available. [OTH]
used to denote citations to other papers than the cited paper in question.

Gold: In [REF#1], we worked to identify the presence of offensive language in social media posts using BERT. Deep
network model with BERT embeddings was found to achieve better F1 score when compared to 1D-CNN model trained
with GloVe pretrained embeddings, 2D-CNN and BiLSTM models with Word2Vec embeddings.

a: The related paper by team TECHSSN for solving the Multilingual Offensive Language Identification in Social Media
(Task 12) in SemEval-2020 [REF#1] is relevant to the main paper’s discussion of Troll Meme classification. Both papers
involve the use of deep learning models with BERT embeddings for identifying offensive language in social media posts.
The related paper describes the development of a system for identifying the presence of offensive language in social media
posts using BERT, and the results show that the BERT model outperforms other machine learning and deep learning
models. This is similar to the main paper’s finding that the XLNet model outperformed BERT and ALBERT in terms of
various performance metrics for Troll Meme classification. The related paper also discusses the challenges involved in
identifying offensive language in social media posts, such as the difference between profanity and hate speech, and the
need for a system that can accurately detect and categorize offensive language.

b: Our work is related to the line of work in offensive language detection in social media. [REF#1] proposes a method for
detecting offensive language and determining whether a post targets a particular person, based on fine-tuning a pre-trained
BERT model. Unlike this work, our paper focuses on the task of troll meme classification, and experiments with other
models: BERT, ALBERT and XLNet.

c: The related paper by team TECHSSN (2020) provides a relevant framework for identifying offensive language in social
media posts, which is closely related to the task of troll meme detection in the main paper [REF#1]. Both papers employ
deep learning models with BERT embeddings to classify text as offensive or not. However, while the main paper focuses
on the binary classification of memes as troll or not-troll, the related paper targets the more general task of identifying
offensive language in social media posts. The related paper also highlights the challenges of differentiating between
profanity and hate speech, and discusses the differences between these two concepts. Overall, the related paper provides
valuable insights into the use of BERT embeddings for text classification tasks, and demonstrates the effectiveness of this
approach in the context of offensive language detection.

d: Prior work has shown that BERT can be successfully used to detect offensive language in social media posts, for
example, [REF#1] fine-tune a pre-trained BERT model on an offensive language dataset, leading to improved performance.
Following this insight, we experiment with three state of the art pre-trained models – BERT, ALBERT and XLNet – for
the related task of troll meme classification.

Table 10: Human evaluation task. Masked settings are follows a: LLM-generated 6+A+I+E, b: Human-generated
6+A, c: LLM-generated 6+A, d: Human-generated 6+A+I+E. Humans are requested to select the best and the worst
generation in terms of correspondence with the gold reference.
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