
IVF2 Index: Fusing Classic and Spatial Inverted Indices for
Fast Filtered ANNS

Ben Landrum 1 2 Magdalen Dobson Manohar 3 Mazin Karjikar 2 Laxman Dhulipala 2

Abstract

The rise of vector embeddings as a crucial tool
in search, recommendation, and large language
model applications has created significant inter-
est in complex search queries over vectors, such
as restricted vector search based on per-vector
metadata (“filtered ANNS”).

The NeurIPS’23 BigANN competition’s Filter
track evaluated submissions based on query
throughput above a target level of recall on a
10M vector dataset, with binary per-vector meta-
data (labels), and with query predicates requiring
equality on either one or two specified labels for
all vectors returned. Existing state of the art ap-
proaches for filtered ANNS struggle to perform
such ‘AND’ queries, which require all returned
vectors to have a set of specified binary labels.

Perhaps surprisingly, we find that a more combina-
torial view of the problem leads to highly efficient
solutions, approaching and sometimes even ex-
ceeding the throughput of unfiltered search on
the full dataset. We present the IVF2 index, a
novel approach to indexing vectors to serve fil-
tered queries which leverages classical and in-
verted file indices in tandem to dramatically re-
duce the number of vectors needing to be consid-
ered before comparing any of them to the query
vector. We demonstrate empirically strong re-
sults on the competition dataset, exceeding the
throughput of the runner-up submission by a fac-
tor of 1.97x and the organizer provided baseline
by a factor of 11.58x.

1Department of Computer Science, Cornell University, Ithaca,
NY, USA 2Department of Computer Science, University of Mary-
land, MD, College Park, USA 3Carnegie Mellon University,
Pittsburgh, PA, USA. Correspondence to: Ben Landrum <blan-
drum@cs.cornell.edu>.

Proceedings of the 1 st Workshop on Vector Databases at Interna-
tional Conference on Machine Learning, 2025. Copyright 2025 by
the author(s).

Figure 1. The results from the Filter track of the NeurIPS 2023 Big
ANN Benchmarks competition, taken from (Simhadri et al., 2024).
IVF2 is represented here by the ‘parlayivf’ entry.

1. Introduction
Approximate Nearest Neighbor Search (ANNS) has re-
cently emerged as a fundamental primitive in modern
databases, information-retrieval systems, and machine learn-
ing. ANNS has numerous applications today due to the
development of high-dimensional and high-quality “seman-
tic” learned representations of complex objects such as
text (Greene et al., 2022), images (Dosovitskiy et al., 2020),
and graphs (Narayanan et al., 2017). State-of-the-art ANNS
systems can index billions of vectors while enabling fast ap-
proximate nearest-neighbor queries over those vectors (Sub-
ramanya et al., 2019; Malkov & Yashunin, 2020), and have
been widely deployed in industry to power state-of-the-art
search (Jegou et al., 2023; Douze et al., 2024).

In real-world deployments of ANNS, the vectors often come
with accompanying metadata, which is typically used to con-
vey some type of categorical information. For example, in a
shopping application, the vectors may correspond to learned
embeddings of items, and have additional metadata indicat-
ing attributes such as their color, the product category, or
size. In such applications, users may wish to find objects
that are most similar to their query, but also subject to inflex-
ible constraints such as product size, using the categories to
filter the points that are returned.

This requirement for incorporating categorical information
has led to the development of the Filtered Approximate
Nearest Neighbor Search (Filtered ANNS) problem, which
is to retrieve the nearest points in the database for a query

1

IVF²: Fusing Classic and Spatial Inverted Indices for Filtered ANNS

that match a given set of filters, i.e., a predicate over the
points. In the simplest case, which already requires non-
trivial algorithmic ideas to solve (Gollapudi et al., 2023),
the predicate is to match a single (binary) filter f , i.e., to
retrieve the nearest points only among those matching f .
In practice, predicates can involve OR filters (disjunction)
and AND filters (conjunction), i.e., finding points satisfying
(f1 ∨ f2 . . . ∨ fk), or points matching (f1 ∧ f2,∧ . . . fk).
More formally, let nf be the number of filters associated
with points in the database. In Filtered ANNS each point
di ∈ D has a set of labels fi ⊆ [nf], and a predicate P for
the query specifying elements that fi must have or exclude
in order to be a valid nearest neighbor of q.

Previous work addressing the Filtered ANNS problem fo-
cuses on building a single monolithic index, such as a graph-
or partition- based index, and modifying the way the index
is built in order to answer filter queries more efficiently.
For example, in the case of graph-based indices, Filtered-
DiskANN (Gollapudi et al., 2023) takes steps to ensure that
the subgraph Gfi corresponding to points satisfying each
filter fi is connected within the overall graph; on the other
hand, CAPS (Gupta et al., 2023) adapts a partition-based in-
dex by organizing points according to their filter information
within each partition. A major issue with such monolithic
indices is that there is no straightforward way to handle
the combinatorial explosion introduced by supporting AND
(conjunction) queries between labels, as well as further arbi-
trary predicates. The most natural approach to the Filtered
ANNS problem would be to build an inverted index where
filter fi maps to a posting list of points matching this filter,
and route incoming queries to the appropriate posting list.
However, all of the prior work assumes that building a sep-
arate posting list per label would use a prohibitive amount
of memory (Gollapudi et al., 2023; Gupta et al., 2023), due
to the fact that points would have to be duplicated over la-
bels, but more catastrophically that each posting list itself
would likely require a corresponding spatial index in order
to answer queries efficiently.

In this paper, we carefully revisit the classic inverted index
solution and the assumption that its memory cost would
be prohibitive for filtered search. A key observation under-
pinning this work is that real-life filter frequencies follow
a power-law distribution: that is, only a small number of
labels fi correspond to “large” posting lists that require
memory-intensive spatial indices in order to answer queries
efficiently. The remaining filters, in the “small” case of
10-20 thousand points or fewer, can be efficiently indexed
using a flat posting list which is exhaustively searched, and
thus requires very little memory to index. Leveraging this
insight, in this paper we present the IVF2 index, a natural
and surprisingly powerful approach to solving the Filtered
ANNS problem on both AND and OR predicates. IVF2

is based on carefully combining classical inverted indices

with spatial indices, allowing spatial indices constructed on
points associated with labels to effectively accelerate filter
predicates that were not materialized explicitly at build time.

We used IVF2 in our winning submission to the NeurIPS
2023 Big ANN Benchmarks competition’s Filter track,
which exceeded the performance of the runner-up open
source submission by a factor of 1.97x . A full breakdown
of the competition and its results can be found in (Simhadri
et al., 2024). We test IVF2 against state-of-the-art existing
algorithms, and on two recently released real-world filter
datasets and one dataset with synthetically generated fil-
ters. We demonstrate strong empirical performance, with
both high throughput and high accuracy. On the SIFT-label
dataset we are 1.7x faster than the existing state-of-the-
art, CAPS (Gupta et al., 2023) at 85% recall, and on the
YFCC dataset we are more than 10x faster at 85% recall
than the FAISS baseline created for the NeurIPS 2023 Big
ANN Benchmarks competition’s Filter track (Simhadri et al.,
2024). In all cases we show significantly stronger perfor-
mance than existing baselines. We also provide ablations
showing the effects of different optimizations and perfor-
mance in different filter classes to help illustrate the reasons
for the strong performance of IVF2.

1.1. Contributions

We present the IVF2 index, a novel approach to indexing
vectors with boolean label metadata to serve filtered queries
requiring one or two labels. Our contributions include:

(1) We characterize the typical distribution of real-world
boolean labels.

(2) We describe the IVF2 index and motivate its design.
(3) We ablate components of the index and discuss the im-

pact of these ablations on its query performance, build
time, and memory consumption.

(4) We compare IVF2 to two strong open source baselines
tuned expressly for the evaluation dataset by their origi-
nal authors.

(5) We demonstrate that the IVF2 index can achieve query
performance comparable to unfiltered search with a
state-of-the-art search graph.

Limitations and Broader Impacts. While search and rank-
ing based on embeddings can be used in unethical ways,
this work studies the topic of faster algorithms for existing
problems, and does not meaningfully enhance any capacities
for unethical use that may already be present in the subject
area. The technical limitations of this work are chiefly con-
strained by available datasets, which are limited in size and
in complexity of filter predicates. Given access to larger
real-world datasets with more complicated predicates, we
could further validate the robustness and generality of our
algorithmic ideas.

2

IVF²: Fusing Classic and Spatial Inverted Indices for Filtered ANNS

1.2. Scope and Existing Algorithms

While filtered search is a core component of commercial vec-
tor databases such as Pinecone (pin, 2023), Weaviate (wea,
2023), QDrant (Qdrant, 2024), Milvus (Project, 2023), and
many more, there is little existing academic work on fil-
tered nearest neighbor search. In this section we summarize
the existing academic work based on what types of filter
predicates it is tailored to.

OR predicates. Two existing works provide algorithms
tailored for the case of a single label or an OR of two or
more labels. FilteredDiskANN (Gollapudi et al., 2023) mod-
ifies the DiskANN (Subramanya et al., 2019) graph index by
building a separate DiskANN graph index for each label and
then taking their union to merge them into one graph. They
control the degree of the final graph using a filter-aware
pruning strategy that attempts to ensure that the subgraph
corresponding to each label remains connected. Filtered-
DiskANN modifies the graph search routine to only visit
vertices that satisfy one or more of the labels being searched
for; they furthermore provide a (less performant) dynamic
version of the algorithm that builds the final index using a
filter-aware search and prune on each inserted point. Simi-
larly, the Unified Navigating Graph (UNG)(Cai et al., 2024)
constructs a DiskANN graph index over points associated
with each label, and uses an additional ‘Label Navigating
Graph’ to connect these constituent graphs to each other
based on superset relations between label sets. Since our
work is focused primarily on answering AND predicates,
we do not directly compare to either approach.

AND predicates. AnalyticDB-V (Wei et al., 2020) supports
AND queries as well as arbitrary predicates by retrieving all
candidates that satisfy the predicate from a central database
and then varying the search strategy based on the cardinality
of the set. NHQ (Wang et al., 2022) supports filter queries
by modifying the distance function to treat points with la-
bel matches as closer together, thus making them more
likely to be returned during a filtered search. CAPS (Gupta
et al., 2023) answers AND queries by building an IVF in-
dex over the dataset and then building a Huffman tree over
the filters in each bucket. They search by first selecting
buckets closer to the query point and then by using the Huff-
man trees to quickly identify points that satisfy the filter
predicate. For the NeurIPS23 Big ANN Benchmarks com-
petition (Simhadri et al., 2024), the FAISS library (Jégou
et al., 2011) provided an IVF-based implementation that
used bitmaps to identify elements satisfying the filter pred-
icates in each bucket. In our work, we directly compare
against both CAPS, the FAISS library implementation, and
one of the top entries in the competition. We do not compare
against AnalyticDB-V and NHQ due to low query perfor-
mance in the former case and lack of code availability in the
latter case.

2. Preliminaries
Graph-based ANNS. Graph-based ANNS works by build-
ing a directed graph where the vertices correspond to points
in the dataset and edges are drawn based on connecting
nearby points to each other. A search for the nearest neigh-
bor of a query point q starts at a designated start point s,
computes the distance to q from all of s’s out-neighbors
Nout(s) in the graph, and hops to the closest vertex to q in
Nout(s). The algorithm continues searching in this manner
until the distance to q ceases to improve, i.e. a local max-
ima is reached. This greedy search or beam search can be
modified to search for k-nearest neighbors by maintaining
a queue of length L of the k nearest neighbors instead of a
single nearest neighbor. Some well-known ANNS graph al-
gorithms include DiskANN, HNSW, and NSG (Subramanya
et al., 2019; Fu et al., 2019; Malkov & Yashunin, 2020), but
many more such algorithms abound in the literature (Muñoz
et al., 2019; Fu et al., 2022; Zhang et al., 2022; Lu et al.,
2022; Harwood & Drummond, 2016; Dong et al., 2011;
McInnes, 2020; Iwasaki, 2016; Iwasaki & Miyazaki, 2018;
Boytsov & Naidan, 2013; ann, 2016; Chen et al., 2018; Ren
et al., 2020; ope, 2022; n22, 2021; ves, 2022; kat, 2022).
Graph-based algorithms are widely regarded to be the state-
of-the-art data structure for achieving high recall on datasets
in the range of 10 million to 1 billion points (Dobson et al.,
2023; Wang et al., 2021).

Vamana Search Graph. Used extensively in the remainder
of this paper, the Vamana search graph construction algo-
rithm was introduced as part of DiskANN (Subramanya
et al., 2019). It approximates the Sparse Neighborhood
Graph from (Arya & Mount, 1993), differing primarily from
the construction procedure described there by the addition
of a parameter α to further promote sparsity, and restricting
candidate edges for a point to those traversed in a query to
that point over the existing graph. Given a list of candidate
neighbors for a point x sorted by distance to x, we add the
nearest candidate as a neighbor, and then remove all candi-
dates which are less than α times closer to x than they are
to the newly added neighbor. This process continues until
the candidate list is empty.

3. The IVF2 Index
3.1. Power-Law Distributed Labels

Labels which are power-law distributed or more rigorously
Zipfian, have frequencies distributed in such a way that for
any cutoff x, and multiple α, if there are y labels with at least
x occurrences, it’s expected that there are y

α labels with at
least αx occurrences. This pattern is common in real world
data, being observed most famously in English-language
word frequencies (Zipf, 1949), but also in the populations
of cities (Cottineau, 2017), citation counts of scientific pub-

3

IVF²: Fusing Classic and Spatial Inverted Indices for Filtered ANNS

Figure 2. The cumulative density functions of our two datasets
with naturally derived labels; a point (x, y) shows that the x-th
largest label in a dataset is associated with at least a fraction y of
the points.

lications (Silagadze, 1999), and nonzero entries of sparse
vector representations of text (Bruch et al., 2023).

Figure 2 shows that this pattern appears in both of our ex-
perimental datasets with natural labels, as a perfectly Zip-
fian distribution would appear linear on log-log axes. This
is unsurprising, as both have labels derived from English
text corpora, captions on photographs for YFCC-10M and
the text of English language Wikipedia articles for wiki-
paragraphs. YFCC-10M also includes labels corresponding
to administrative regions where a photograph was taken,
which also obey this pattern as a downstream effect of the
distribution of city sizes.

This distribution of label frequencies motivated the design
of the IVF2 index. Because the vast majority of labels in a
dataset can be expected to be small and therefore efficient
to search without indexing, we can afford to build more
expensive indices for the large cardinality labels.

Table 1. Summary of Notation

Symbol Description

n Size of the full dataset
d Dimensionality of the vectors in the dataset
fi A specific label in the dataset
|fi| Number of points associated with label fi
C Cutoff size between ‘large’ and ‘small’ labels
k Number of clusters in IVF index
s Target size of clusters in per-label IVF indices

Cbitvector Cutoff for constructing a bit vector for large labels
Ntarget points Target number of join candidates from a large label

Ctiny Cutoff size for using bitvector join in AND queries

3.2. Construction

We build an inverted file index over labels, where an index
representing the points associated with label fi is accessible
in constant time from a pointer at index i in an array built
for this lookup. For each fi, the index built depends on the
number of points |fi| associated with it. This allows us to
reserve the construction of memory and build-time intensive
data structures for the largest labels.

This approach of independently indexing each label in-
creases the minimal memory footprint by an amount pro-
portional to the number of point-label connections present
in the dataset, as the vectors being indexed are stored only
once. We define a hyperparameter C representing the cutoff
in size between ‘large’ and ‘small’ labels. If the memory
footprint of the index is not a concern, C would ideally be
the point at which more sophisticated indexing no longer
offers a speedup over exhaustive search; in practice C is
the lowest value allowing the resulting set of indices to
fit in memory on the machine used for querying, which is
significantly smaller on typical machines.

Small Labels The power-law distribution of label frequen-
cies means that the vast majority of labels fi will satisfy
|fi| < C (for reasonable values of C) and are associated
with few points in the dataset. The points associated with
small labels are indexed with a sorted array, which allows
both minimal memory footprint and is convenient for the
use of a linear join between the points of two labels.

Large Labels For fi with |fi| > C, we construct an index
over the points in the large label fi with three components:

(1) An IVF index
(2) A Vamana search graph
(3) A dense vector of bits bi of length n where ∀j ∈

[n], bi[j] = 1 ⇔ j ∈ fi

IVF Index. We construct an IVF index over the points of
fi with k-means clustering (MacQueen, 1967) initialized
by a hierarchical clustering splitting recursively on random
hyperplanes. We store an array of associated indices and
a centroid in Rd for each partition. A hyperparameter s is
used to determine k for a given fi, with k = ⌊ |fi|

s ⌋.

Search Graph. In addition to the IVF index used for AND
queries, we construct a Vamana search graph (Subramanya
et al., 2019) over the points in fi. We find that as |fi| in-
creases, the max degree of a Vamana graph over the points
associated with fi should increase to preserve recall. To bet-
ter fit graph construction to the size of the label in question,
we define weight classes: disjoint size regimes above the
cutoff with distinct build and search parameters optimized
for datasets in that size regime.

Bit Vector. We construct a bit vector encoding the member-

4

IVF²: Fusing Classic and Spatial Inverted Indices for Filtered ANNS

ship of points in a large fi for fast constant-time membership
lookup. The memory footprint of this bit vector is linear
in the size of the full dataset, and is the only component of
the index which has superlinear memory footprint as the
size of the full dataset n increases. As a result, to be more
adaptable to large n, we define a separate cutoff Cbitvector,
below which large labels do not construct a bit vector.

Materialized Join. Often, two large labels will have
an intersection with more than C points. In this case, we
construct a search graph on the points in the intersection to
accelerate queries constrained to the intersection of those
labels.

3.3. Querying

Query behavior of the index is determined by the form of
the query (single label vs. AND) and the size(s) of the labels
referenced by the query

3.3.1. SINGLE-LABEL FILTER

In the case where the filter on a query is only dependent on
a single label, a query reduces trivially to a k-NN query on
the index for that label.

Small Labels. For fi with |fi| < C, we only store a sorted
array of the indices of points associated with fi. A k-NN
query on such an array is simply an exhaustive search over
the points referenced by this array of indices.

Large Labels. For fi with |fi| ≥ C, we have a Vamana
search graph over the points associated with fi built when
constructing the index. When queried with beam search,
this provides a SOTA k-NN index (Dobson et al., 2023) over
the points associated with fi.

3.3.2. AND FILTER.

The AND filter case describes queries which restrict search
to points which are in the intersection of fi and fj for some
distinct i, j. With the exception of a special case where
the bit vector of the larger filter is used to accelerate the
computation of the intersection, candidates are found inde-
pendently for each filter, and we exhaustively search the
intersection of these sets.

Small Label Join Candidates. Because we only store
the indices of the points associated with small labels, the
candidates returned for a small label in this case are all
points associated with the label, as we have no datastructure
for efficiently restricting the candidates by proximity to the
query, and want to restrict the candidates by performing the
join before doing distance comparisons.

Large Label Join Candidates. To collect join candidates
from large labels, we leverage the assumption that the true
nearest neighbors matching the predicate will be relatively

close to the query vector among the points associated with
the larger label. To find candidate points close to the query
while minimizing distance comparisons, we compare the
query vector to the centroids of the IVF index constructed
over the label’s points, and add indices of points in the near-
est clusters to a sorted array until we have at least Ntarget points
candidates, a query parameter.

Bitvector Join. In the case where an AND query is between
a large label and an especially small label of size less than
Ctiny, a query parameter, the intersection is computed ex-
actly by checking the bitvector associated with the large
label for each point associated with the small label. This
has the advantages of avoiding the overhead of comparing
to the centroids of the large label’s IVF index and providing
exact results for the query.

Sorted Queries. Batched queries with filters have the
convenient property that an ordering which maximizes tem-
poral locality can be computed far more easily than would
be possible with vector-only queries. In order to leverage
this property, we lexicographically sort queries by the la-
bel(s) they constrain search to before processing them. In
the parallel setting where we perform queries, this causes
naive partitioning of queries into jobs in a work-stealing
scheduler to group together queries using the same label-
specific index in jobs which will begin in the work queue of
the same core. In a serial setting or within a set of queries
executed together on a given core, this has the advantage of
allowing frequently accessed indices associated with a large
filter to remain in L1 cache between queries.

4. Experimental Setup
We run construction and querying for experiments on a
2.10GHz 4 socket Intel Xeon machine with 96 cores and
two way hyperthreading, 132 MiB L3 cache, and 1.47 TB of
RAM. Querying is done with 8 cores to simulate the smaller
machines which would typically be used to serve such an
index in a production setting, and construction with the full
machine. Statistics on datasets can be found in Table 2.

We run our algorithm and baselines in the big-ann-
benchmark framework used for the NeurIPS’23 Practical
Vector Search Challenge benchmark competition, which
facilitates straightforward comparisons with consistent eval-
uation and provides implementations of baselines tuned by
their authors on the YFCC-10M dataset. When possible, we
modify baselines to run on our other dataset, although only
the FAISS baseline was amenable to the maximum inner
product search used for the wiki-10M dataset.

YFCC-10M. The YFCC-10M dataset consists of
CLIP(Radford et al., 2021) embeddings of a 10 million im-
age subset of the YFCC-100M dataset (Thomee et al., 2016).
It was released under a CC by 4.0 license for the NeurIPS

5

IVF²: Fusing Classic and Spatial Inverted Indices for Filtered ANNS

Figure 3. Flowchart illustrating the methods used to resolve queries.

Table 2. Dataset statistics. Num Assoc shows the number of point-label associations in the dataset. 80% Pareto is the portion of labels
responsible for 80% of all point-label associations in the dataset. nq is the number of queries, and n∩ is the number of AND queries with
a filter conditioning on two labels.

Dataset n d nf Max |fi| Mean |fi| Num. Assoc. 80% Pareto nq n∩

YFCC-10M 10M 192 200,386 3,386,745 540 108M 0.054 100,000 38,374
wiki-para 10M 768 57,388 2,194,824 4,584 263M 0.091 10,000 5,080
SIFT 1M 128 5 500,254 400,000 2M 0.60 10,000 10,000

2023 Big ANN Benchmarks competition (Simhadri et al.,
2024). Labels are derived from metadata associated with
the original images, including the year and country in
which an image was taken, and keywords associated with
the content of the image. Query vectors were generated by
embedding held out elements of the dataset, and filters are
1-2 labels which must be present in points returned by the
search. Each vector has 192 dimensions, and the values are
quantized to unsigned 8 bit integers.

wiki-paragraphs. The wiki-paragraphs dataset was con-
structed by embedding 35 million paragraphs from English
Wikipedia with the cohere.ai multilingual-22-12
embedding model (cohere.ai, 2022), which is released under
an Apache 2.0 License. Labels were generated by taking
all words which appear at least 1000 times in the full cor-
pus, removing syntactic words such as ‘the’ which appear
in virtually all paragraphs in the dataset and are not repre-
sentative of a realistic search scenario, and annotating each
paragraph with the words it contains. from the resulting
set Query vectors were generated by embedding paragraphs
from Simple English Wikipedia with the same model. For
each vector, both single-label and AND queries were gen-
erated, and chosen at random for an approximately equal
proportion of each in the dataset. Each filter was chosen at
random from the words present in the paragraph, and were
confirmed to each match at least 10 vectors from a randomly

sampled subset of 1 million data vectors. Each vector has
768 dimensions, each of which is represented with a 32 bit
float.

SIFT-label. In order to compare with CAPS (Gupta et al.,
2023), we also provide a limited evaluation of ParlayANN
on the SIFT dataset (Muja & Lowe, 2009), which is released
under a CC0 license. Following the procedure used in the
aforementioned work, we generated two random labels for
each data point.

5. Experiments
We validate the design of the IVF2 index by showing strong
query performance in each of the distinct cases we resolve
queries to, and showing comparatively that specific opti-
mizations had a measurable positive effect on the perfor-
mance of the index. We experimentally demonstrate strong
query performance on all 3 datasets we evaluate against,
with stronger QPS across different recall regimes than the
baselines. We also show that in a high-recall regime, the
IVF2 index achieves QPS closer to a state-of-the-art unfil-
tered baseline than to comparable filtered baselines, and
beyond 95.24% recall achieves higher QPS than the unfil-
tered baseline.

6

IVF²: Fusing Classic and Spatial Inverted Indices for Filtered ANNS

5.1. Optimizing the index

We implemented several practical optimizations to improve
index performance and address weaknesses. For each such
optimization, we recall a short description of its function
and justify its effectiveness experimentally.

Weight classes. As discussed in 3.2, we use different graph
construction parameters depending on the size of the label
being indexed. This is primarily an extension of the broader
ethos of the index: smaller sets require less indexing because
they are easier to search. Because many labels fall under the
smaller weight classes, reducing the size of these graphs by
decreasing the maximum degree significantly reduces the
memory consumption of the index.

To validate the effectiveness of this choice, we compared
the query performance of an index that builds all graphs
with the parameters of the largest weight class to a modifi-
cation of the full IVF2 index which uses 2.5% less memory
and builds 2.1% faster on YFCC-10M. For all Pareto op-
timal configurations of the index without weight classes,
there exists a configuration of the high memory index which
achieves a QPS and recall which are both strictly greater.

Bitvector. As described in 3.2, we accelerate joins be-
tween our smallest labels and large labels with a bitvector
associated with each large label storing the membership of
each point from the full dataset therein. While the memory
consumed by this optimization is asymptotically worse than
other components of the index,

Sorted Queries. Applying the sorted queries optimization
discussed in paragraph 3.3.2 significantly improves perfor-
mance by improving the temporal locality of the queries, as
can be seen in Figure 4. We note that we observed similar
improvements on the wiki-10M dataset.

Materialized Joins. The materialized joins described in 3.2
strengthen what would otherwise be a comparatively low-
recall regime, and justify their increased memory footprint.
In Figure 11, we show the effect of including materialized-
joins, and find that they provide several orders of magnitude
higher QPS at the same level of recall.

Construction. The index takes 19.05 minutes to build on
YFCC-10M, and has a memory footprint of 18.046 GB,
including 2.866 GB for the dataset. On wiki-paragraphs,
the index takes 196.4 minutes to build and has a footprint of
154.361 GB, including 32.13 GB for the dataset.

5.2. QPS vs Recall in Different Query Regimes

We validate the design of our index by demonstrating that
it is competitive in virtually every case to which a query
can be resolved. Fig. 10 shows that of the distinct query
regimes, only large × large has lower QPS at a given recall
than any of the filtered baselines on YFCC-10M, and all

Figure 4. Effect on the QPS vs. recall curves for the IVF2 index
when using the sorting queries optimization to improve temporal
locality on the YFCC-10M dataset.

Figure 5. QPS vs. recall for IVF2 and filtered baselines compared
to a Vamana graph serving unfiltered queries.

but the small × large queries in the ‘bitvector’ regime are
also similarly higher performing than the unfiltered Vamana
baseline.

5.3. Comparisons against other algorithms

We compare against a FAISS baseline (released under an
MIT license) (Jegou et al., 2023) tuned for our setting
by the organizers of the big-ann-benchmarks competition
(Simhadri et al., 2024), and HWTL-SDU (accessed through
its submission to the NeurIPS 2023 Big ANN Benchmarks
Competition (Simhadri et al., 2024), which is MIT licensed),
a top open source submission to the big-ann-benchmarks
competition. For comparisons to unfiltered search, we use
the implementation of DiskANN from ParlayANN (Dobson
et al., 2023), which is MIT licensed.

7

IVF²: Fusing Classic and Spatial Inverted Indices for Filtered ANNS

Figure 6. QPS vs. recall for IVF2 on queries falling in each in-
dependently handled regime of queries. See Fig. 8 for the same
analysis on the Wikipedia dataset.

A good-faith effort was made to compare against published
baselines. We do not compare to NHQ (Wang et al., 2022),
as the GitHub repo containing their code is no longer pub-
lic, and a request for code to compare against was not an-
swered. We attempted to compare to CAPS(Gupta et al.,
2023), which is released under an Apache 2.0 license, on
our datasets, but their codebase is configured for Euclidean
distances only, so we were unable to use it on the wiki-
paragraphs dataset, and we were not able to run CAPS on
YFCC-10M, due to the codebase not supporting points with
variable numbers of labels. We thus provide comparisons
with CAPS only on the SIFT-label dataset, which can be
seen in Fig. 7. We achieve uniformly higher QPS and re-
call, with 78.32% higher QPS at 85% recall. We attribute
the higher performance of IVF2 as compared to CAPS to
a few chief attributes of our design: first, by creating an
inverted index over the filter labels, IVF2 prunes the search
space and thus the number of required distance compar-
isons before the search begins. CAPS, on the other hand,
identifies candidates via spatial search before searching for
appropriate filter membership, which can lead to a need to
evaluate a larger number of candidates. Secondly, while
CAPS treats each filter label uniformly, we vary the algo-
rithm used based on the size of the filter, allowing us to save
compute on smaller labels and reserve it for larger labels.

5.4. Comparison to unfiltered search

In principle, because the filters provide a powerful way to
select vectors relevant to a query, it is reasonable to imag-
ine that there must exist a regime where using an inverted
index to answer filtered queries is faster than answering
unfiltered queries on the same dataset. A comparison of
our algorithm and the filtered baselines to a Vamana search

Figure 7. QPS vs. recall of IVF2 and CAPS on the SIFT dataset.

graph1 performing unfiltered search on the same dataset and
query vectors can be seen in Fig. 5. While the other filtered
methods are not competitive with the unfiltered search, IVF2

has comparable QPS for recall above 0.75, and exceeds the
QPS of the Vamana graph for recall above 95.24%

Further plots comparing our method with unfiltered search
are presented in the supplemental material.

6. Conclusion
We present IVF2, a novel and highly competitive index for
filtered ANNS based on an “IVF”-style approach that builds
a carefully chosen index on each label. Perhaps surprisingly,
our evaluation showed that filtered search can be as fast, or
even faster than state-of-the-art unfiltered search on the same
dataset, and suggests that the restrictions imposed by filtered
ANNS can actually improve the efficiency of retrieval in
practice. Compared to CAPS, a state-of-the-art existing
filtered ANNS baseline, IVF2 achieves 78% higher QPS
at a high recall level of 85%. Compared with an existing
baseline for filtered ANNS from FAISS, IVF2 obtains 6.63×
higher throughput at 90% recall. An interesting direction
for future work is to study how to support arbitrary boolean
predicates in a filtered ANNS solution; we believe that ideas
from the design of IVF2 will be relevant in such systems.

References
Kgraph: A library for approximate nearest neighbor

search. Webpage, 2016. URL https://github.
com/aaalgo/kgraph.

N2. Webpage, 2021. URL https://github.com/
kakao/n2.
1R = 64, L = 128, α = 1.15

8

https://github.com/aaalgo/kgraph
https://github.com/aaalgo/kgraph
https://github.com/kakao/n2
https://github.com/kakao/n2

IVF²: Fusing Classic and Spatial Inverted Indices for Filtered ANNS

Vald: A highly scalable distributed vector search en-
gine. Webpage, 2022. URL https://github.com/
vdaas/vald.

Opensearch k-nn. Webpage, 2022. URL https://
github.com/opensearch-project/k-NN.

vespa. Webpage, 2022. URL https://github.com/
vespa-engine/vespa.

Pinecone: Vector database for vector search, 2023. URL
https://www.pinecone.io/.

Weaviate: The ai native vector database, 2023. URL
https://weaviate.io/.

Arya, S. and Mount, D. M. Approximate nearest neigh-
bor queries in fixed dimensions. In ACM/SIGACT-SIAM
Symposium on Discrete Algorithms (SODA), pp. 271–280.
ACM/SIAM, 1993.

Boytsov, L. and Naidan, B. Engineering efficient and effec-
tive non-metric space library. In Similarity Search and
Applications (SISAP), volume 8199 of Lecture Notes in
Computer Science, pp. 280–293. Springer, 2013.

Bruch, S., Nardini, F. M., Ingber, A., and Liberty, E. Bridg-
ing dense and sparse maximum inner product search.
arXiv preprint arXiv:2309.09013, 2023.

Cai, Y., Shi, J., Chen, Y., and Zheng, W. Navigating Labels
and Vectors: A Unified Approach to Filtered Approxi-
mate Nearest Neighbor Search. Proceedings of the ACM
on Management of Data, 2(6):1–27, December 2024.
ISSN 2836-6573. doi: 10.1145/3698822. URL https:
//dl.acm.org/doi/10.1145/3698822.

Chen, Q., Wang, H., Li, M., Ren, G., Li, S., Zhu, J., Li, J.,
Liu, C., Zhang, L., and Wang, J. SPTAG: A library for
fast approximate nearest neighbor search, 2018. URL
https://github.com/Microsoft/SPTAG.

cohere.ai. Cohere wikipedia-22-12-en embeddings.
https://huggingface.co/datasets/
Cohere/wikipedia-22-12-en-embeddings,
2022. Accessed: 2024-03-30.

Cottineau, C. Metazipf. a dynamic meta-analysis of city
size distributions. PLOS ONE, 12(8):1–22, 08 2017. doi:
10.1371/journal.pone.0183919. URL https://doi.
org/10.1371/journal.pone.0183919.

Dobson, M., Shen, Z., Blelloch, G. E., Dhulipala, L., Gu,
Y., Simhadri, H. V., and Sun, Y. Scaling graph-based
ANNS algorithms to billion-size datasets: A comparative
analysis. CoRR, abs/2305.04359, 2023. doi: 10.48550/
ARXIV.2305.04359. URL https://doi.org/10.
48550/arXiv.2305.04359.

Dong, W., Charikar, M., and Li, K. Efficient k-nearest neigh-
bor graph construction for generic similarity measures. In
Srinivasan, S., Ramamritham, K., Kumar, A., Ravindra,
M. P., Bertino, E., and Kumar, R. (eds.), Proceedings of
the 20th International Conference on World Wide Web
(WWW), pp. 577–586. ACM, 2011.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,
Heigold, G., Gelly, S., et al. An image is worth 16x16
words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929, 2020.

Douze, M., Guzhva, A., Deng, C., Johnson, J., Szilvasy, G.,
Mazaré, P.-E., Lomeli, M., Hosseini, L., and Jégou, H.
The faiss library, 2024.

Fu, C., Xiang, C., Wang, C., and Cai, D. Fast approximate
nearest neighbor search with the navigating spreading-out
graph. Proc. VLDB Endow., 12(5):461–474, 2019.

Fu, C., Wang, C., and Cai, D. High dimensional similarity
search with satellite system graph: Efficiency, scalability,
and unindexed query compatibility. IEEE Trans. Pattern
Anal. Mach. Intell., 44(8):4139–4150, 2022.

Gollapudi, S., Karia, N., Sivashankar, V., Krishnaswamy,
R., Begwani, N., Raz, S., Lin, Y., Zhang, Y., Mahapa-
tro, N., Srinivasan, P., Singh, A., and Simhadri, H. V.
Filtered-diskann: Graph algorithms for approximate near-
est neighbor search with filters. In Ding, Y., Tang, J.,
Sequeda, J. F., Aroyo, L., Castillo, C., and Houben, G.
(eds.), Proceedings of the ACM Web Conference 2023,
WWW 2023, Austin, TX, USA, 30 April 2023 - 4 May
2023, pp. 3406–3416. ACM, 2023.

Greene, R., Sanders, T., Weng, L., and Neelakantan,
A. New and improved embedding model. Web-
page, 2022. URL https://openai.com/blog/
new-and-improved-embedding-model.

Gupta, G., Yi, J., Coleman, B., Luo, C., Lakshman, V.,
and Shrivastava, A. CAPS: A practical partition index
for filtered similarity search. CoRR, abs/2308.15014,
2023. doi: 10.48550/ARXIV.2308.15014. URL https:
//doi.org/10.48550/arXiv.2308.15014.

Harwood, B. and Drummond, T. Fanng: Fast approximate
nearest neighbour graphs. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pp. 5713–5722, 2016.

Iwasaki, M. Pruned bi-directed k-nearest neighbor graph
for proximity search. In Similarity Search and Applica-
tions (SISAP), volume 9939 of Lecture Notes in Computer
Science, pp. 20–33, 2016.

9

https://github.com/vdaas/vald
https://github.com/vdaas/vald
https://github.com/opensearch-project/k-NN
https://github.com/opensearch-project/k-NN
https://github.com/vespa-engine/vespa
https://github.com/vespa-engine/vespa
https://www.pinecone.io/
https://weaviate.io/
https://dl.acm.org/doi/10.1145/3698822
https://dl.acm.org/doi/10.1145/3698822
https://github.com/Microsoft/SPTAG
https://huggingface.co/datasets/Cohere/wikipedia-22-12-en-embeddings
https://huggingface.co/datasets/Cohere/wikipedia-22-12-en-embeddings
https://doi.org/10.1371/journal.pone.0183919
https://doi.org/10.1371/journal.pone.0183919
https://doi.org/10.48550/arXiv.2305.04359
https://doi.org/10.48550/arXiv.2305.04359
https://openai.com/blog/new-and-improved-embedding-model
https://openai.com/blog/new-and-improved-embedding-model
https://doi.org/10.48550/arXiv.2308.15014
https://doi.org/10.48550/arXiv.2308.15014

IVF²: Fusing Classic and Spatial Inverted Indices for Filtered ANNS

Iwasaki, M. and Miyazaki, D. Optimization of indexing
based on k-nearest neighbor graph for proximity search
in high-dimensional data. CoRR, abs/1810.07355, 2018.
URL http://arxiv.org/abs/1810.07355.

Jégou, H., Douze, M., and Schmid, C. Product quantization
for nearest neighbor search. IEEE Trans. Pattern Anal.
Mach. Intell., 33(1):117–128, 2011.

Jegou, H., Douze, M., Johnson, J., Hosseini, L., Deng,
C., and Guzhva, A. Faiss wiki. Webpage, 2023. URL
https://github.com/facebookresearch/
faiss/wiki.

Lu, K., Kudo, M., Xiao, C., and Ishikawa, Y. Hvs: Hi-
erarchical graph structure based on voronoi diagrams
for solving approximate nearest neighbor search. Proc.
VLDB Endow., 15(2):246–258, 2022.

MacQueen, J. Some methods for classification and analy-
sis of multivariate observations. In Cam, L. M. L. and
Neyman, J. (eds.), Berkeley Symposium on Mathematical
Statistics and Probability, 1967, volume 5.1, pp. 281–297,
1967. URL https://api.semanticscholar.
org/CorpusID:6278891.

Malkov, Y. A. and Yashunin, D. A. Efficient and robust
approximate nearest neighbor search using hierarchical
navigable small world graphs. IEEE Trans. Pattern Anal.
Mach. Intell., 42(4):824–836, 2020.

McInnes, L. Pynndescent for fast approximate nearest neigh-
bors. Webpage, 2020. URL https://pynndescent.
readthedocs.io/en/latest/.

Muja, M. and Lowe, D. G. Fast approximate nearest neigh-
bors with automatic algorithm configuration. In Proceed-
ings of the Fourth International Conference on Computer
Vision Theory and Applications (VISAPP), pp. 331–340.
INSTICC Press, 2009.

Muñoz, J. A. V., Gonçalves, M. A., Dias, Z., and
da Silva Torres, R. Hierarchical clustering-based graphs
for large scale approximate nearest neighbor search. Pat-
tern Recognit., 96, 2019.

Narayanan, A., Chandramohan, M., Venkatesan, R., Chen,
L., Liu, Y., and Jaiswal, S. graph2vec: Learning
distributed representations of graphs. arXiv preprint
arXiv:1707.05005, 2017.

Project, T. M. Milvus: open source vector database built
for scalable similarity search, 2023. URL https://
milvus.io/.

Qdrant. Qdrant: High-performance, massive-scale vector
database for ai. https://github.com/qdrant/
qdrant, 2024. Accessed: 2024-04-29.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G.,
Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark,
J., Krueger, G., and Sutskever, I. Learning transferable
visual models from natural language supervision, 2021.

Ren, J., Zhang, M., and Li, D. HM-ANN: efficient billion-
point nearest neighbor search on heterogeneous memory.
In Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.,
and Lin, H. (eds.), Annual Conference on Neural Infor-
mation Processing Systems (NeurIPS), 2020.

Silagadze, Z. K. Citations and the zipf-mandelbrot’s law,
1999.

Simhadri, H. V., Aumüller, M., Ingber, A., Douze, M.,
Williams, G., Manohar, M. D., Baranchuk, D., Liberty,
E., Liu, F., Landrum, B., Karjikar, M., Dhulipala, L.,
Chen, M., Chen, Y., Ma, R., Zhang, K., Cai, Y., Shi,
J., Chen, Y., Zheng, W., Wan, Z., Yin, J., and Huang,
B. Results of the Big ANN: NeurIPS’23 competition,
September 2024. URL http://arxiv.org/abs/
2409.17424. arXiv:2409.17424 [cs].

Subramanya, S. J., Devvrit, F., Simhadri, H. V., Krish-
naswamy, R., and Kadekodi, R. Diskann: Fast accurate
billion-point nearest neighbor search on a single node.
In Annual Conference on Neural Information Processing
Systems (NeurIPS), pp. 13748–13758, 2019.

Thomee, B., Shamma, D. A., Friedland, G., Elizalde, B.,
Ni, K., Poland, D., Borth, D., and Li, L.-J. Yfcc100m:
the new data in multimedia research. Communications of
the ACM, 59(2):64–73, January 2016. ISSN 1557-7317.
doi: 10.1145/2812802. URL http://dx.doi.org/
10.1145/2812802.

Wang, M., Xu, X., Yue, Q., and Wang, Y. A comprehensive
survey and experimental comparison of graph-based ap-
proximate nearest neighbor search. Proc. VLDB Endow.,
14(11):1964–1978, 2021.

Wang, M., Lv, L., Xu, X., Wang, Y., Yue, Q., and
Ni, J. Navigable proximity graph-driven native hy-
brid queries with structured and unstructured constraints.
CoRR, abs/2203.13601, 2022. doi: 10.48550/ARXIV.
2203.13601. URL https://doi.org/10.48550/
arXiv.2203.13601.

Wei, C., Wu, B., Wang, S., Lou, R., Zhan, C., Li, F., and
Cai, Y. Analyticdb-v: A hybrid analytical engine towards
query fusion for structured and unstructured data. Proc.
VLDB Endow., 13(12):3152–3165, 2020. doi: 10.14778/
3415478.3415541. URL http://www.vldb.org/
pvldb/vol13/p3152-wei.pdf.

10

http://arxiv.org/abs/1810.07355
https://github.com/facebookresearch/faiss/wiki
https://github.com/facebookresearch/faiss/wiki
https://api.semanticscholar.org/CorpusID:6278891
https://api.semanticscholar.org/CorpusID:6278891
https://pynndescent.readthedocs.io/en/latest/
https://pynndescent.readthedocs.io/en/latest/
https://milvus.io/
https://milvus.io/
https://github.com/qdrant/qdrant
https://github.com/qdrant/qdrant
http://arxiv.org/abs/2409.17424
http://arxiv.org/abs/2409.17424
http://dx.doi.org/10.1145/2812802
http://dx.doi.org/10.1145/2812802
https://doi.org/10.48550/arXiv.2203.13601
https://doi.org/10.48550/arXiv.2203.13601
http://www.vldb.org/pvldb/vol13/p3152-wei.pdf
http://www.vldb.org/pvldb/vol13/p3152-wei.pdf

IVF²: Fusing Classic and Spatial Inverted Indices for Filtered ANNS

Zhang, J., Ma, R., Song, T., Hua, Y., Xue, Z., Guan, C.,
and Guan, H. Hierarchical satellite system graph for ap-
proximate nearest neighbor search on big data. ACM/IMS
Trans. Data Sci., 2(4), 2022.

Zipf, G. K. Human Behaviour and the Principle of Least
Effort. Addison-Wesley, 1949.

11

IVF²: Fusing Classic and Spatial Inverted Indices for Filtered ANNS

A. Additional QPS vs. Recall Plots

Figure 8. QPS vs. recall for IVF2 on queries falling in each independently handled regime of queries.

12

IVF²: Fusing Classic and Spatial Inverted Indices for Filtered ANNS

(a) YFCC dataset (b) Wikipedia dataset

Figure 9. QPS vs. recall of the Faiss baseline on the query cases IVF2 differentiates, provided to show that differences in performance
across query cases are primarily caused by the design of the index instead of variable query difficulty.

Figure 10. Comparison of IVF2 on distinct query regimes of YFCC-10M to filtered and unfiltered baselines.

13

IVF²: Fusing Classic and Spatial Inverted Indices for Filtered ANNS

Figure 11. QPS vs. recall of the full IVF2 index vs an ablation with no materialized joins on the query regime of the wiki-10M dataset
which is handled by materialized joins. There is no equivalent plot for the YFCC-10M dataset, as none of the provided queries fall within
the materialized join regime.

14

