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Abstract—The field of Learning from Demonstration enables
end-users, who are not robotics experts, to shape robot behavior.
However, using human demonstrations to teach robots to solve
long-horizon problems by leveraging the hierarchical structure
of the task is still an unsolved problem. Prior work has yet to
show that human users can provide sufficient demonstrations
in novel domains without showing the demonstrators explicit
teaching strategies for each domain. In this work, we investigate
whether non-expert demonstrators can generalize robot teaching
strategies to provide necessary and sufficient demonstrations
to robots zero-shot in novel domains. We find that increasing
participant experience with providing demonstrations improves
their demonstration’s degree of sub-task abstraction (p < .001),
teaching efficiency (p < .001), and sub-task redundancy (p < .05)
in novel domains, allowing generalization in robot teaching.
Our findings demonstrate for the first time that non-expert
demonstrators can transfer knowledge from a series of training
experiences to novel domains without the need for explicit
instruction, such that they can provide necessary and sufficient
demonstrations when programming robots to complete task and
motion planning problems.

I. INTRODUCTION

Due to the diversity of end users and deployment settings,
it is intractable for a robot to be pre-programmed to do
any task in any environment One solution is to allow robots
to learn new skills in situ, from end-users. Prior work in
Learning from Demonstration (LfD) has investigated how to
allow non-roboticist end-users to operate in the role of the
robot teacher [8, 15, 46, 47, 49] in order to communicate
personal preferences and leverage their domain knowledge
[37, 44, 56]. However, many previous approaches require
human demonstrators to learn how to teach the robot tasks
in each domain, using videos or demonstrations from robot
experts [3, 22, 40]. This approach does not scale up in
enabling human users to teach a variety of tasks to a robot,
as demonstrator training is domain-dependent, and an expert
is still required to be in the training loop. In this work,
we develop a series of demonstrator training tasks through
which participants obtain knowledge about providing sufficient

and necessary demonstrations that can generalize to novel
domains.

Substantial emphasis in LfD has been placed on teaching
robots single, short-horizon skills, such as picking up or mak-
ing contact with an object [23, 29, 34, 38]. However, there is a
lack of work enabling robots to learn long-horizon tasks, such
as learning in-home assistive tasks or manufacturing process
assembly operations, from human demonstrations. Such tasks
can be considered multi-task problems. For example, setting
a dinner table would require a robot to set multiple place
settings, dependent on the number of guests, where each
table setting consists of multiple objects that each require a
different manipulation procedure. A demonstrator cannot be
expected to provide demonstrations for each task specification
of these multi-tasks, such as for each possible number of
plate settings. Since long-horizon tasks require a robot to
solve repetitive multi-task problems, demonstrators need to
break up their demonstrations into shorter abstractions that
a robot can reuse. Prior work has shown that demonstrators
are capable of teaching abstractions when explicitly instructed
on how to do so. Akgun et al., for instance, demonstrated
that users can teach Keyframe-based abstractions for robot
movement [3]. Likewise, Mohseni-Kabir et al., demonstrated
that, for hierarchical tasks, novel sub-tasks can be taught to a
robot using combinations of previously taught sub-tasks [40].
However, if not prescribed how to teach the robot, prior work
has found that participants struggle to provide demonstrations
that exhibit abstractions sufficient for a hierarchical task [32].
Gopalan et al. similarly find that the majority of participants
did not naturally teach the robot tasks using abstractions [22].
The authors compare various modes of demonstrator training
and find that only videos where the experimenter demonstrates
how to provide demonstrations using sub-task abstractions in
the current domain enabled participants to use abstractions
(in the same domain) that would be robust to novel task
specifications [22]. In this work, we investigate whether, given
enough practice in previous domains, participants can use



Fig. 1: Via the interface and kinesthestic teaching, participants record three demonstrations to save a sub-task. Saved sub-tasks
are then available in the interface library. To execute a task, participants assemble a recipe from the set of recorded sub-tasks.

sub-task abstractions to provide sufficient demonstrations in
a novel domain without being told how to do so.

Instead of training demonstrators from scratch in each
domain they encounter, we want the knowledge the demon-
strator learns about providing demonstrations in one domain
to be transferable to novel domains. We develop a three-hour
training procedure with five domains and corresponding unper-
sonalized expert videos. This procedure enables demonstrators
to transfer acquired knowledge about providing sufficient and
necessary demonstrations – gained through trial, error, and
expert feedback – to novel domains where no expert feedback
is available. In this work, we study the impact of domain
experience on users’ ability to provide demonstrations when
teaching a robot. Here, we define domain experience as the
number of training domains for which (i) the participant has
taught the robot a task via demonstration and (ii) the demon-
strator has subsequently watched a training video showing a
robotics expert providing the optimal teaching strategy. We
employ a standard way to formulate multi-modal, multi-task
problems in robotics [20], namely Task and Motion Planning
(TAMP), for our sub-task representations.

To the best of our knowledge, our findings show for the first
time that humans can transfer knowledge from a few training
experiences to provide sufficient TAMP demonstrations in a
novel domain. In this work, we contribute the following.

1) We design a novel user study and set of training domains
to investigate whether participants improve their ability
to teach the robot via demonstrations over time, without
the use of a curriculum.

2) Our results demonstrate that participants are able to
generalize knowledge about task abstraction (p < .001),

teaching efficiency (p < .001), and redundancy (p <
.05) zero shot to novel domains.

3) We additionally find that prior teaching experience im-
pacts sub-task count (p = .011), that sub-task count
impacts perceived workload (p = .005) as well as robot
likeability (p = .007), and that participant agreeableness
impacts teaching duration (p = .006).

II. METHODS

A. Study Design
We conducted a 1 × 4 within-subjects experiment with

twenty-eight participants, seven per ordering condition (see
Appendix for the domain ordering of each condition). Partici-
pants experience five domains in this study, a practice domain
that all participants experience first, and the four ordered
domains. We control for the ordering of the remaining four
domains using a Latin square, ensuring that the participant
count per condition is balanced. The independent variable in
this study is the number of domains encountered thus far. The
robot employed in this study is the JACO arm [12] attached
to a hand-crafted base located next to the experiment’s table.
We additionally designed a user interface that allows users
to record and save sub-tasks they demonstrate to the robot.
Participants can then use the interface to combine different
sub-tasks to accomplish a task. We require the participant
to record three demonstrations for each sub-task in order to
capture variability in the way the participant moves the robot
for robustness to noise.

Research Questions
RQ1: What is the impact of domain experience on the qual-

ity of demonstrations? We investigate whether participants can



perform zero-shot transfer to novel domains of any acquired
knowledge as measured by sub-task abstraction score, teaching
efficiency, and sub-task redundancy.

RQ2: What is the effect of demonstration abstraction on
participants’ perceived workload? We hypothesize that higher
abstraction scores will reduce the repetitiveness of participant
demonstrations, thereby reducing perceived workload.

RQ3: Do participant demographics impact the quality of
demonstrations? We investigate whether participant demo-
graphics, such as prior robotics experience and prior teaching
experience, impact the quality of their demonstrations. We
posit that participants with robotics or teaching experience
will teach the robot, via demonstration, more effectively and
efficiently.

RQ4: Does domain type impact the quality of demonstra-
tions? We hypothesize that the domain type will impact the
sub-task count and redundancy, abstraction score, and teaching
duration.

B. Metrics

The objective metrics we collect in our user study are as
follows. These metrics are collected per domain, for each
participant. We employ the abstraction scoring method vali-
dated in [22]. In this scoring method, one point is allotted for
each instance of a sufficient sub-task employed to accomplish
a task, and one point is awarded for sufficient sub-tasks
that could be constructed by composing other sufficient sub-
tasks. The latter ensures that finer-grain abstractions are scored
higher than coarser-grain abstractions, within reason (no points
are awarded for gratuitously low-level abstractions such as
move left). The abstraction scoring rubrics employed in each
domain can be found in the Appendix. This abstraction score
metric allows us to evaluate the sufficiency of demonstration
sub-tasks. We additionally count the number of redundant sub-
tasks taught, i.e., sub-tasks whose function can be fulfilled
by another existing sub-task or a combination of existing
sub-tasks. This metric allows us to evaluate the necessity,
independently from the sufficiency, of demonstration sub-
tasks. Furthermore, we count the total number of sub-tasks
taught to the robot and the total time the participant taught
the robot, including time using the interface and time spent
providing the kinesthetic demonstrations.

The subjective metrics in our user study are as follows
(the details of hand-crafted surveys, Cronbach’s alpha, qual-
itative results, and quotes from interview questions are in
the Appendix). In the pre-study questionnaire, we collect
participants’ age, gender, education, and race/ethnicity. We
additionally administer the Big Five Personality survey [21],
the Negative Attitudes Towards Robotics (NARS) Scale [51],
and hand-crafted prior robotics experience and prior teaching
experience surveys. In the post-domain questionnaire, we
ask participants to “please explain your strategy and thought
process when teaching the robot in this domain.” Finally, in
the post-study questionnaire, we administer the NASA Task
Load Index (NASA TLX) [24] and the Perceived Intelligence
and Likeability sub-scales of the Godspeed Questionnaire

Series [7]. We additionally ask participants five post-interview
questions.

Procedure

This study was approved by our university’s Institutional
Review Board (IRB), protocol #H22450. We recruited all
participants through advertisements on campus. The study took
three hours, and participants were compensated with a $50
Amazon gift card. The procedure of the study is as follows.
Participants first take the pre-study questionnaire. After the
pre-study questionnaire, participants observe the introduction
video (link and description in Appendix). Next, participants
teach the robot to complete the block-touching tasks in the
demo (i.e., practice) domain. After this demo domain, the
participant explains their teaching strategy, recorded via a
voice recording. This block-touching demo domain serves to
familiarize the participant with moving the robot and using
the interface.

Then, for the testing portion of the study, participants teach
the robot how to accomplish tasks in four different domains:
box packing, table setting, soil mixing, and medicine dis-
pensing. Each participant experiences one ordering condition,
which defines the order in which the domains are encountered.
All participants experience each of these domains (within
subjects). For each of these four domains, participants are
introduced to the domain verbally, then asked to teach the
robot how to do three tasks in that domain using the interface,
as seen in Figure 1. To teach the sub-tasks, participants provide
kinesthetic demonstrations in which participants physically
manipulate the robot. After teaching the robot, the participants
answer the post-domain interview question and then observe
a video showing the optimal way of teaching the robot in that
domain (communicating the proper sub-task breakdown) prior
to experiencing the next novel domain. The optimal teaching
strategy video for each domain was designed to communicate
how to optimally teach the robot, listing the optimal sub-
tasks, along with how to teach and record those sub-tasks
on the robot using the interface. Next, the videos show how
to use the sub-tasks to build the recipe for one task in the
domain. After experiencing all four domains, participants take
the post-survey questionnaire. Finally, participants answer the
post-interview questions.

For each demonstration saved via the interface, we record
the robot trajectories along with a third-person perspective
video of the participant moving the robot, collected using
a Kinect camera. While participants record their sub-tasks,
the experimenter takes detailed notes on participant behavior,
recording which sub-tasks they record. Using notes, three
coders scored participant abstraction and redundancy scores,
resulting in an intra-class correlation coefficient of 0.998 for
abstraction scores and 0.755 for redundancy scores.

III. RESULTS AND DISCUSSION

We conducted our study with 28 participants (39.26%
female, mean age = 22.89, standard deviation = 1.63). Before
running statistical tests, we first checked that our data met



parametric assumptions via Shapiro-Wilk’s test and Levene’s
test. Due to our statistical models not passing tests for normal-
ity, we employ non-parametric tests throughout our analysis.
We employ Bonferroni correction when applying multiple tests
for the same hypothesis to reduce the risk of Type I errors
[48]. To test RQ1 and RQ4 we employ the Friedman rank
sum test. For follow-up pairwise comparisons, we employ the
Nemenyi Wilcoxon-Wilcox all-pairs test, for which we report
the p-value. To test RQ2 and RQ3 we employ Spearman’s rank
correlation test.

Impact of domain experience on the demonstration sufficiency,
necessity, and efficiency (RQ1).

We find that participant abstraction score is positively
impacted by the number of domains experienced (p < .001),
meaning that over time participants provide demonstrations
that manifest higher levels of abstraction. We further find that
teaching duration is negatively impacted by the number of
domains experienced (p < .001), and that redundancy score is
negatively impacted by the number of domains experienced
(p = .046). These findings indicate that participants can
generalize knowledge gained about providing demonstrations
efficiently, using more sub-task abstraction from previously
experienced domains to a novel domain. These findings indi-
cate that demonstrators can be trained via demonstration
training to efficiently provide sufficient and necessary
demonstrations to new domains, zero-shot.

Impact of prior teaching experience on sub-task count (RQ3).

We find that prior teaching experience is negatively cor-
related with sub-task count (p = .011), indicating that par-
ticipants with more teaching experience record fewer sub-
tasks. We note that we don’t find significance between prior
teaching experience and abstraction score or redundancy score.
This finding indicates that increasing teaching experience
will increase sub-task efficiency, decreasing sub-task count,
though not at the expense of sub-task sufficiency. Since
general teaching experience does not appear to translate to
demonstration quality, our findings highlight the need for a
way to teach demonstrators how to provide sufficient and nec-
essary sub-tasks. Our results show that we contribute a scalable
and generalizable method for training LfD demonstrators, by
exposing demonstrators to multiple domains in which they
practice and observe the optimal teaching method.

Impact of sub-task count on perceived workload (RQ2).

We find that participant workload is negatively correlated
with their sub-task count (p = .005). This indicates that
a lower sub-task count correlated with a higher perceived
workload. We hypothesize that this is due to the lengthier
process of demonstrating and recording under-abstracted sub-
tasks. In addition to abstractions being useful for robust
robot learning, this finding suggests that participants find
correct abstractions less effort to teach, as observed via
decreased perceived workload.

Impact of robot likeability, participant agreeableness, and
negative attitudes on demonstrations (RQ3).

We find that robot likeability is negatively correlated with
sub-task count (p = .007). This suggests that people
rated the robot as more likeable when the teaching was
less involved. On the other hand, we find that participant
agreeableness is positively correlated with teaching duration
(p = .006). This finding suggests that demonstrators with
higher agreeableness take longer when providing demonstra-
tions, though not at the expense of sub-task count, abstraction
score, or redundancy. This finding indicates that more
agreeable demonstrators take their time when recording
demonstrations. We posit this is because these participants
either wanted to please the experimenter or because they
wanted to be thorough in order to be helpful.

Participants that perceived robots as more socially negative
additionally took longer to teach the robot (p = .001).
Participants that are warier of robots take more time to
provide demonstrations, therefore we posit that addressing
negative robot perceptions will reduce the time people take to
teach robots.

Limitations and Future Work

A limitation of our work is that participants do not observe
the learned robot behavior (resulting from their demonstra-
tions). This absence of observing the subsequent consequences
on the environment of their demonstrations may have reduced
participant urgency and desire to improve. Additionally, as our
abstraction scoring method is taken from prior work which
validates it on a real robot system [22], we do not validate
the scoring method again in this study. In future work, we
propose to further validate our abstraction score and original
subjective surveys.

IV. CONCLUSION

Learning from demonstration enables non-expert end-users
to be involved in robot learning. However, providing usable
demonstrations is not intuitive to most demonstrators. Demon-
strators have to be trained in order to provide demonstrations
that would be usable, and this training is often domain-
specific. Instead of teaching demonstrators how to provide
sufficient demonstrations in all possible domains, we propose
to teach demonstrators such that what they learn can generalize
to novel domains. In this work, we study the impact of
experience providing demonstrations across multiple domains
on the quality of demonstrations for LfD. We find that as
participants gain domain experience they are able to generalize
knowledge about sub-task abstraction (p < .001), teaching
efficiency (p < .001), and sub-task redundancy (p < .05) zero
shot, to novel task domains. We show that with a few hours
of training, we can teach human demonstrators to provide
sufficient, necessary, and efficient demonstrations in novel
domains.



APPENDIX A
PRELIMINARIES

In this section, we define terms pertaining to our work.
We include a separate related works section preceding our
discussion to contextualize our findings.

Multi-task problems – In multi-task problems, the objects
that the robot interacts with remain the same. However, the
number of objects, their locations, or the order in which the
robot interacts with the objects changes between sub-tasks
[13]. This is often accomplished by leveraging similarities
between the sub-tasks [55].

Multi-modal tasks – A mode is a sub-manifold of robot
motion within which the robot’s contact specification, with
respect to different objects in the world, remains constant [4, 5,
26, 27]. A multi-modal task is one where the robot transitions
between at least two modes to solve a task. For example,
to pick up a block, the robot first is restricted to a mode
where all its motion is confined to a sub-manifold within
which the robot’s gripper is not in contact with any object.
After picking up the block, the mode of the robot is the sub-
manifold within which it is in continuous contact with the
block. Similarly, a Long Horizon Task is a task where the
robot needs to perform multiple mode switches to solve the
task. Thus, per our definition, multi-modal tasks have at least
one mode switch (≥ 1), and long horizon tasks have several
(> 2) mode switches. In our work, the robot is solving multi-
modal tasks.

Task and Motion Planning (TAMP) – Robotics prob-
lems require an interplay between symbolic and continuous
domains. For example, to pass medicines to a patient, the robot
needs to make a high-level symbolic plan to know which boxes
of medicines to pick up and pass to a patient. This plan and
its corresponding state are symbolic and discrete over the type
and quantities of medicine box objects required. However, to
pick up a box the robot needs to create a continuous motion
plan without collisions such that the box is in the robot’s hand.
This motion planning problem occurs over the continuous state
of the robot’s joints. Such problems, that exhibit an interplay
between symbolic and continuous plans, are TAMP problems.
We choose to define our domains as TAMP problems, as
they require an interplay between symbolic goal states and
continuous motion from the robot.

Sub-task based abstraction – Transitions between the
symbolic states of a TAMP problem are called sub-tasks1 [20].
For example, when a robot moves to pick up a cup, the state
of the world transitions symbolically, such that the cup is in
the robot’s hand. In TAMP formulations, the sub-tasks are
described by preconditions (pre) and effects (eff), as well
as constraints (con) that must hold for all continuous actions
for the duration of time the action is being taken. We provide
a sample mathematical TAMP formulation for the sub-tasks
of the medicine dispensing domain in the Appendix.

1Sub-tasks are referred to as actions in [20]; however, we refer to these
actions as sub-tasks to prevent confusion between low-level robot actions and
TAMP level actions.

Sufficient sub-tasks – In our domains, a sub-task is deemed
sufficient if the sub-task changes the symbolic state of the
world and results in at most one mode change. For a sub-task
to change the symbolic state of the world, the change must
go beyond a negligible change in the robot’s pose. Moreover,
limiting the sub-task to at most one mode change ensures
that the robot can change its interaction with only one object
within the sub-task. Such design of sub-tasks ensures that a
sub-task transition affects only a small set of symbolic state
variables at a time. These sub-tasks can then be sequenced
by a task planner to reach a larger set of the symbolic state
space, allowing maximal generalizability in the tasks that can
be solved within the domain.

Redundant sub-tasks – A sub-task is deemed redundant
if its goal can be met by another sufficient sub-task or a
combination of sufficient sub-tasks previously taught. Sub-
task redundancy is defined with respect to a given set of
demonstrations being taught.

Necessary sub-tasks – Similarly, a sub-task is deemed
necessary if its goal can not be met by another sufficient sub-
task or a combination of sufficient sub-tasks previously taught.
Sub-task necessity is defined with respect to a given set of
demonstrations being taught. A sub-task is deemed necessary
if it is a not a redundant sub-task.

Domain experience – We define domain experience, a
metric for demonstrator training, as the number of domains
experienced thus far in the user study. Note that for each
domain, this experience entails participants first providing
demonstrations to the robot, then observing the optimal teach-
ing sub-task breakdown in the form of a video.

APPENDIX B
RELATED WORKS

In this section, we discuss relevant prior work in robot
learning from human demonstrators and hierarchical task rep-
resentations to further contextualize and motivate our results
prior to the discussion.

Learning from Human Demonstrators

The field of LfD explores how human demonstrations can
be used to teach robots new skills [15, 46, 8, 43, 14, 28].
LfD enables the agent to learn from a small set of exam-
ples, i.e., demonstrations provided by a teacher rather than
learning from lengthy exploration, i.e., experience collected
in an environment [6]. The mode of demonstration collection
depends on whether the LfD algorithm aims to model the
human feedback [33], latent reward function [1, 19, 57], or
unknown robot policy directly [28]. Additional LfD design
decisions include accounting for prior robotics experience,
demonstrator sub-optimality, and demonstration heterogeneity
[50, 49, 14, 10, 41]. In this paper, we evaluate how well non-
experts can teach robots kinesthetically without explicitly
being taught by domain experts.

Much prior work in LfD has focused on enabling robots to
perform short-horizon skills [29, 34, 23, 38]. There has been a



lack of approaches using LfD to train robots to perform long-
horizon tasks and multi-tasks, which would require the robot
to accomplish a series of shorter sub-tasks. LfD approaches
to multi-task learning are often expensive since demonstrators
need to be taught how to provide demonstrations for each
of the tasks required [17]. We show that demonstrators can
generalize knowledge about providing sufficient and necessary
demonstrations to novel tasks. These findings suggest that
demonstrators do not need to be taught how to teach in
each domain explicitly, making long-horizon, multi-task
LfD more tractable.

Hierarchical Task Representations

Prior work has investigated how the hierarchical nature of
a task can facilitate long-horizon task completion [2, 36, 39].
Breaking up a long-horizon task hierarchically and abstract-
ing the task components into repurposable sub-tasks reduces
planning depth and allows for faster planning [25, 30]. This
representation of the task affords the agent the ability to adapt
to novel environments that share features with the distribution
of environments previously experienced [18].

Currently, LfD demonstration collection requires multiple
demonstrations for each possible configuration of a multi-
task setup. One way to make this process more tractable
is for demonstrators to break up the task into a series of
shorter abstractions that the robot could reuse for multiple
configurations within the same domain. Prior work has shown
that users can teach robots using task abstractions [3, 40].
Akgun et al. found that demonstrators can teach abstractions
for robot end-effector movement [3], and Mohseni-Kabir et
al. found that participants could teach the robot novel sub-
tasks using previously taught sub-tasks as building blocks
[40]. However, in most prior work establishing a human
demonstrator’s ability to provide usable demonstrations that
contain abstractions, the participants are shown precisely how
to teach the robot. They are then asked to reproduce the
method of robot teaching that was prescribed. Cakmak et al.
compare written and video demonstrator instruction, and find
that trial and error plays a large role in the learning process
[11]; we note that these demonstrators learn and are evaluated
on the same task. Teaching a robot using abstractions without
this guidance is not intuitive to non-experts [32]. Gopalan et
al. find that the majority of participants are unable to provide
sufficiently abstracted demonstrations naturally, and find that,
even when told to employ abstractions, demonstrators struggle
to provide demonstrations robust to minor changes in the task
specification, such as item multiplicity or item location [22].
In this work, we investigate whether demonstrators’ ability to
provide sufficient sub-task abstractions improves over time, as
they practice providing demonstrations in multiple different
domains. Our findings support participants’ ability to
learn to provide sufficient sub-task abstractions in novel
domains, with enough practice.

There have been algorithmic approaches to learning tasks
from user demonstrations without requiring the demonstrations
to specify task abstractions [35, 31, 16]. However, these

Fig. 2: Depicted is a summary of our significant results.

approaches require the collection of demonstration datasets
that would not be scalable for multi-task settings. In order to
investigate the scalability of training non-expert demonstrators,
we additionally investigate whether participants can generalize
knowledge about providing demonstrations zero-shot, to novel
domains. Our findings support that, rather than training
demonstrators in each domain they encounter, experi-
menters could train demonstrators in a handful of training
domains, for demonstrators to generalize this training to
novel domains.

APPENDIX C
RESULTS

We conducted our study with 28 participants (39.26%
female, mean age = 22.89, standard deviation = 1.63). Before
running statistical tests, we first checked that our data met
parametric assumptions via Shapiro-Wilk’s test and Levene’s
test. Due to our statistical models not passing tests for normal-
ity, we employ non-parametric tests throughout our analysis.
We employ Bonferroni correction when applying multiple tests
for the same hypothesis to reduce the risk of Type I errors
[48]. To test RQ1 and RQ4 we employ the Friedman rank
sum test, where we report χ2(degree of freedom) and p-value.
For follow-up pairwise comparisons, we employ the Nemenyi
Wilcoxon-Wilcox all-pairs test, for which we report the p-
value. To test RQ2 and RQ3 we employ Spearman’s rank
correlation test, where we report ρ and p-value.

Research Question 1

We first study the impact of domain experience on the qual-
ity of demonstrations. This hypothesis investigates whether
participants can perform zero-shot transfer of knowledge re-
garding sub-task abstraction, teaching efficiency, and sub-task
redundancy to novel domains.

We note that the block touching domain was the demo
task, intended to familiarize the participant with the robot and
the interface, to isolate the effect of learning in the actual
test rounds. As the participants do not observe the optimal
demonstration after this demo task, we do not include the
block-touching domain in our domain experience.



(a) Abstraction score does not signifi-
cantly differ across domains.

(b) Teaching duration differs across the
different domains.

(c) Redundancy score differs across the
different domains.

(d) Abstraction score increases with more
domain experience.

(e) Teaching duration decreases with
more domain experience.

(f) Redundancy score decreases overall
with more domain experience.

Fig. 3: We depict results with respect to domain type (top row) and domain experience (bottom row).

Abstraction Score – Through a Friedman test, we find
a main effect of the participant’s domain experience on the
participant’s domain abstraction score (χ2(3) = 28.056, p <
.001). We conduct pairwise comparisons using a Nemenyi
Wilcoxon-Wilcox all-pairs test, visualized in Figure 3d, and
find significance between the first and second domain (p =
.006), the first and third domain (p = .001), and the first and
fourth domain experienced (p < .001).

We first observe in Figure 3d that abstraction scores improve
between the first and second domains. This finding points
to participants’ ability to transfer knowledge about sub-task
abstraction zero-shot to a novel domain. We further observe
that abstraction scores improve between the first domain and
all subsequent domains. This finding supports our hypothesis
that participants improve the level of abstraction of their
demonstrations as they gain domain experience.

Our results show that abstraction scores, on average, are
monotonically increasing. While the statistically significant
improvement in abstraction score occurs after the first domain,
the results show a positive trend in subsequent rounds. The
diminishing but positive improvement is consistent with prior
work finding that human task performance improves logarith-
mically with practice [45].

Teaching Duration – We find significance with respect
to teaching duration and domain experience (χ2(3) =
41.796, p < .001). We find the significant pairs (Figure 3e)
to be between the first and second domain (p = .014), the
first and third domain (p < .001), and the first and fourth

domain (p < .001), as well as between the second and fourth
domain (p = .041). This finding indicates that participants
provide demonstrations more efficiently over time.

Sub-task Redundancy– We find a main effect with respect
to learning experience and sub-task redundancy (χ2(3) =
8.018, p = .046), but find no pairwise significance, (Figure
3f). This finding suggests that there may be a trend between
domain experience and sub-task redundancy, but more data are
needed.

Research Question 2

We investigate the effect of demonstration sub-task abstrac-
tion on participants’ perceived workload.

Sub-task Count – We perform a Spearman’s correlation test
and find significance between sub-task count and perceived
workload (ρ = −.519, p = .005). These findings imply
that sub-task count is negatively correlated with perceived
workload. High sub-task count means breaking up the task
into many smaller sub-tasks, each of which can be reused to
avoid redundant demonstrations. One possible explanation of
this finding is that fewer sub-tasks for a task indicate more
repetitive demonstrations.

Research Question 3

We investigate whether participant demographics impact the
quality of demonstrations.

Teaching Experience – We find significance between prior
teaching experience and sub-task count (ρ = −.473, p =
.011). This finding is evidence that increased prior teaching



experience is negatively correlated with sub-task count. This
gained understanding of the impact of prior teaching experi-
ence on sub-task count could be used to improve the existing
curriculum designed to teach demonstrators how to provide
sufficient demonstrations.

Likeability – We find significance between sub-task count
and robot likeability (ρ = −.501, p = .007). This finding is
evidence that increased robot likeability is negatively corre-
lated with sub-task count.

Agreeableness – Next, we find significance between teach-
ing duration and the agreeableness sub-scale of the Big Five
Personality survey (ρ = .503, p = .006). This finding is
evidence that participant agreeableness is negatively correlated
with the efficiency with which they provide demonstrations,
namely that more agreeable participants utilize more time to
provide demonstrations.

Negative Social Influence – Finally, we find significance
between teaching duration and the negative social influence
sub-scale of the Negative Attitude towards Robotics survey
(ρ = .577, p = .001). This finding is evidence that higher
teaching duration is correlated to perceptions of negative robot
social influence, i.e., participants that are warier of robots take
more time to provide demonstrations.

Research Question 4

We now investigate whether domain type impacts the quality
of demonstrations.

Teaching Duration – Through a Friedman rank sum test,
we find significance in the teaching duration among domains
(χ2(3) = 8.656, p = .034). We find one significant pair
between table setting and box packing domains (p = .036).
We plot domain type against teaching time, as seen in Figure
3b.

Sub-task Redundancy – Through a Friedman rank sum
test, we find significance in the redundancy score among
domains (χ2(3) = 33.836, p < .001). We find the significant
pairs to be between table setting and medicine dispensing
(p = .006), table setting and soil mixing (p < .001), and
box packing and soil mixing (p = .023) (Figure 3c).

Sub-task Count – Through a Friedman rank sum test, we
find significance in the unique sub-task count among domains
(χ(3)2 = 45.87, p < .001). A Nemenyi-Wilcoxon-Wilcox all-
pairs test yields significant pairs for table setting and box
packing (p < .001), table setting and medicine dispensing
(p = .006), and table setting and soil mixing (p < .001).

Abstraction Score – Finally, we note that we find no
significance between the abstraction score and domain, as seen
in Figure 3a.

APPENDIX D
SURVEYS

First, we provide Cronbach’s alpha scores for the surveys
we employ to test for internal reliability.

We next provide details regarding the interview questions
and hand-crafted questionnaires we administer.

Scale α
Agreeableness .787

Likeability .928
Negative Situation .749

Negative Social .654
Negative Emotions .766

TABLE I: Cronbach’s alpha.

A. Post-Interview Questions

We ask participants five post-interview questions.
1) “Describe your experience using the interface.”
2) “Did you feel any information was missing from the

explanations provided to you in this study?”
3) “What did you think about the videos you watched in

this study?”
4) “Do you think you were able to teach the robot better

as the experiment progressed?”
5) “Do you have any other comments or suggestions?”

B. Additional Subjective Metrics

We collect the following subjective metrics in the post-
survey questionnaire, but find no significance, and therefore
did not describe them in the paper.

• System Usability: We use the System Usability Scale
(SUS), 10 questions rated on a seven-point scale
(Strongly Disagree=1 to Strongly Agree=7) to measure
robot and system usability [9].

• Anthropomorphism: We use the Anthropomorphism
sub-scale of the Godspeed Questionnaire Series, consist-
ing of five questions rated on a five-point scale [7].

• Methods of Teaching the Robot: We employ a hand-
crafted questionnaire consisting of 17 questions rated
on a seven-point scale (Strongly Disagree=1 to Strongly
Agree=7) that measured the perceived usefulness and
effectiveness of the method of teaching (see Appendix).

• Trust: We employ the Multi-Dimensional Measure of
Trust (MDMT) questionnaire [52] consisting of 16 ques-
tions rated on an eight-point scale (Not at all=0 to Very=7,
with an option for Does Not Fit). We measure the overall
scale score, as well as participants’ score on the Capacity
Trust (with Reliable and Capable sub-scales) and Moral
Trust (with Ethical and Sincere sub-scales).

C. Hand-Crafted Questionnaires

1) Robotics Prior Experience Survey: Please provide your
years of experience with robots (0 to 10+). You must make a
selection, even if it is to keep the slider at 0.

Fig. 4: Depicted is the single item robotics prior experience
question.



2) Teacher Prior Experience Survey: This section of the
survey is a 7-point Likert scale ranging from strongly disagree
to strongly agree.

• I have experience teaching.
• I have experience mentoring.
• I have experience tutoring.
• I have experience coaching.
• I have experience training others.
3) Methods of Teaching the Robot: This section of the

survey is a 7-point Likert scale (Strongly Disagree to Strongly
Agree).

1) Using this method of teaching robots is useful for me
2) Using this method of teaching robots will improve my

effectiveness
3) Using this method of teaching robots will improve my

performance
4) This method of teaching robots would make it be easy

to teach robots behaviors I need
5) Learning this method of teaching robots would be easy
6) This method of teaching robots would be easy to use
7) Using this method to train agents is an idea I like
8) Using this method to train agents would be a pleasant

experience
9) Using this method to train agents is a good idea

10) Using this method to train agents is a wise idea
11) I trust this method to teach robots effectively
12) This method to teach robots is reliable
13) This method to teach robots is trustworthy
14) I am concerned about how I use my time to train agents
15) When I will need it I would like to use this method to

train robots
16) When I will need it I will intend to use this method to

train robots
17) When I will need it I predict I would use this method

to train robots

APPENDIX E
METHODS

A. Videos

Introduction Video and Optimal Teaching Strategy Videos
can be found at the following website.

https://sites.google.com/view/moormanetal-rss2023
The introduction video introduces the study, the robot, and

the interface used to teach the robot sub-tasks. The video then
consists of a conceptual description of how to optimally teach
the robot to make an omelet. The optimal sub-tasks described
for this example included (1) going to the egg carton, (2)
picking up an egg, (3) going to the pan, and (4) breaking an
egg into the pan. This portion of the video motivates breaking
up the task into sub-tasks that can be called many times, to
generalize to an omelet of any quantity of eggs. It also suggests
recording the “go to the egg container” sub-task separately
from the “pick up the egg” sub-task, allowing the robot to
generalize going to an egg carton whose location has been
moved. Finally, this video communicates that the sub-tasks

can be called from generalized starting positions so multiple
sub-tasks can be chained together without going back to a
home position first. We note that this initial omelet domain
is experienced entirely virtually, and we do not show the
participant how it would be taught on the physical robot.

B. Interface Design

The interface for this study relied on usability heuristics
and user experience principles. In order to understand what
improvements are needed, we analyzed an existing robot
manipulation interface [22] against Nielsen Norman’s 10
heuristics principles to determine which design elements could
be improved [42].

The design entails a recording screen (Figure 5a) and an
“assemble” screen (Figure 5b). The recording screen allows
users to facilitate robot teaching and learning on demand,
record their actions three times (to optimize robot learning),
and save learned tasks into a library. System status is visible
via the recording progress bar, which helps notify users of a
robot’s overall learning progress. In the assemble screen, the
library concept allows users to save, categorize, and visualize
all of the robot’s learned behavior; it is created to match the
user’s mental model of a knowledge repository and allows
users to quickly navigate to learned robot commands and be
able to call to action quickly. The queue concept allows users
to pick existing learned tasks from the library, arrange them
in a logical sequence, and form coherent, continuous, longer
tasks; it is created to maximize personalization for users while
accounting for a robot’s technical capabilities.

The design also incorporated a stop button that will halt
all robot movement immediately. This feature aligns with
the Nielsen Norman Group’s heuristics principles [42] in
ensuring enough user freedom and control in an interactive
environment. Though the experiment is designed to be in a
controlled setting, this design added another user exit option
to increase both confidence in robot teaching as well as user
safety.

APPENDIX F
STUDY DESIGN

A. Domains and Tasks

• Block Touching: A blue, green, and red block are placed
in front of the robot. Participants are asked to teach the
robot to touch the blocks in a particular order using the
gripper of the robot. The tasks for the block touching
domain are as follows.

1) Touch the red block, then touch the blue block.
2) Touch the blue block, then touch the green block.
3) Touch the green block, then touch the blue block,

then touch the red block.
• Box Packing: Two plastic bananas, two Jell-O boxes,

and two SPAM cans, along with a cardboard box are laid
out in front of the robot (these food items are chosen to
be in compliance with items commonly used in robotics
benchmarking, such as the YCB dataset [53]). Partici-
pants are asked to teach the robot to pick up and place a

https://sites.google.com/view/moormanetal-rss2023
https://sites.google.com/view/moormanetal-rss2023


(a) Depicted is an image of the interface’s recording screen.

(b) Depicted is an image of the interface’s assemble screen.

Fig. 5: This figure illustrates the screens of the interface.



Fig. 6: Depicted is a flow chart of the record interface tab.

Fig. 7: This figure depicts the five domains in which participants taught the robot.

combination of these food items into the cardboard box.
In this domain, bananas served as distractor items, and
are not relevant to the tasks the participant must teach
the robot to accomplish. The tasks for the box packing
domain were as follows.

1) Pack 2 SPAM cans and 1 jello box in the box.
2) Pack 1 SPAM can in the box.
3) Pack 2 jello boxes in the box.

• Table Setting: Two forks, two knives, and two plates
are placed in front of the robot. Participants are asked to
teach the robot to pick up the utensils and place them
in designated locations around the two plate settings.
Duct tape has been wrapped around the utensils in order
to facilitate manipulation of the utensils by the robot’s
gripper. The tasks for the table setting domain were as
follows.

1) Place a fork and knife for plate setting 2 and a knife
for plate setting 1.

2) Place a fork for plate setting 1.
3) Place a fork and knife for plate setting 1.

• Soil Mixing: A bucket of manure, a bucket of sand, and
a bucket of lime are placed in front of the robot, along
with a mixing bowl into which scoops of each of these
materials are to be poured. Participants are asked to teach
the robot to create different soil mixtures for different
plants using the scoop, which has been placed in the
robot’s gripper. The tasks for the soil mixing domain were

as follows.
1) Assemble 2 scoops of sand and 1 scoop of lime.
2) Assemble 1 scoop of manure and 1 scoop of lime.
3) Assemble 1 scoop of sand and 1 scoop of manure.

• Medicine Dispensing: Four kinds of medicine (red pill
cup, green pill cup, yellow pill cup, and TUMS pill cup)
along with three trays labeled persons 1, 2, and 3 are
placed in front of the robot. Participants are asked to
pick and place these medicine cups into the appropriate
person’s tray to dispense the proper medication to each
person. Note that here the TUMS pill cup and person 3
tray both serve as distractor items, and are not relevant
to the tasks the participant must teach the robot in this
domain. The tasks for the medicine dispensing domain
were as follows.

1) Serve the red pills to person 1, and the yellow pills
to person 2.

2) Serve the green pills to person 1.
3) Serve the yellow pills to person 1 and the red pills

to person 2.

B. Orderings

We ordered the conditions based on a Latin square design
to ensure that the ordering is balanced. Each participant
experienced one of the conditions.

Condition 1: Table Setting, Soil Mixture, Box Packing,
Medicine Dispensing



TABLE II: This table shows the domain orders for each of the
four conditions.

Table Ordering Soil Ordering Box Ordering Medicine Ordering
1 2 3 4
3 1 4 2
4 3 2 1
2 4 1 3

Condition 2: Soil Mixture, Medicine Dispensing, Table
Setting, Box Packing

Condition 3: Medicine Dispensing, Box Packing, Soil Mix-
ture, Table Setting

Condition 4: Box Packing, Table Setting, Medicine Dis-
pensing, Soil Mixture

Fig. 8: Sample formulation in the medicine domain.

APPENDIX G
TAMP SUB-TASK FORMULATION

Task and Motion Planning

Task and motion planning (TAMP) problems integrate
multi-modal motion planning with representational strategies
originating in long horizon task planning [20, 54]. TAMP
is a framework that allows for an agent to break down
and complete long-horizon tasks while taking into account
multi-faceted constraints in a similar manner to Multi-Modal
Motion Planning. As such, each sub-task is described by its
preconditions, pre, that need to be set in order for a sub-
task to take place, constraints con that is the set of constraint
functions that must hold for all continuous actions during the
duration of the sub-task, and effects (or transition), eff, the
changes made to the robot, objects and environments after a
sub-task has been executed.

Sample Formulation

Next, we provide a sample formulation for the Medicine
Dispensing domain, shown in Figure 8. Each task takes in an
initial state si, a trajectory provided by a demonstration τ , the
final state the robot should reach at the end of the task sx (x
varies depending on the task), and a collection of poses of all
objects in the environment.

Variable τ represents a single trajectory. There are few
different types of constraints included in this formulation.
Move(si, τ, sj) ∀si, sj ∈ S is a constraint over trajectories
where the robot moves from si to sj . The constraints for
CloseGripper(si, τ, sj) and OpenGripper(si, τ, sj) are
similar, they represent trajectories that allow the robot to grasp
and release the cup respectively. There are also collision-free
constraints, such as CFreeE and CFreeTUMS that tell the
robot not to collide with the environment or any of the objects
in the environment. The go to person sub-tasks also include an
Upright constraint telling the robot to keep the cup upright
when holding it.

In the go to pills sub-tasks the robot is not holding any-
thing in its gripper, i.e., holdingCup=False. As explained
above, this means that its range of motion is not nearly as
limited as the robot does not have to worry about any object
that it may be manipulating. The go to person sub-tasks are
transfer mode subtasks [20], as holdingCup=True, and so
the robot’s range of motion is limited as it has to worry about
not spilling the pills while moving the cup; hence Upright
is included in con. grasp performs a kinematic switch
when grasping a cup; this switch can be seen in the sub-task
formulation as holdingCup=False in pre being switched
to holdingCup=True in eff. The reverse can be seen in
release.

APPENDIX H
QUOTES

Getting better over time

We first wanted to study how domain experience impacts the
quality of demonstrations. In our post-interview, we found that



the majority of participants agreed that they were able to teach
the robot better as the experiment progressed. Two sample
quotes supporting this qualitative finding are as follows.

“I learned from both my experience teaching the
robot, and watching the videos and seeing you teach
the robot how to do things.”
“After watching the video of how you accomplished
the overall work, then I understood what I should
do.”

Zero-shot transfer

We found that participants can perform zero-shot transfer of
knowledge regarding sub-task abstraction, teaching efficiency,
and sub-task redundancy to novel domains. One participant in
particular commented on this in the transition between the box
packing and table setting domains. They describe their gained
understanding about abstracting sub-tasks to account for item
multiplicity.

“I followed again the example of the [table setting
domain] video so I knew that the two cans of SPAM
and two cans of Jell-O were basically equivalent so I
only trained it to go to the space and then separately
trained it to close the gripper to pick up an item
separately...”

Hierarchical Task Planning

In our interviews, we found that participants spoke about
low-level motion control in the first couple domains. One
participant, when asked whether they thought they taught the
robot better as the experiment progressed, stated the following.

“Earlier, there was a lot of joints and the ways the
robot could move that I didn’t know of. Or many
things that I felt it couldn’t do but it could have that
I got to learn while watching the videos. So yeah, as
the experiment progressed, I felt pretty comfortable
and easier to control the robot.”

In the latter domains, however, participants shifted to dis-
cussing higher-level strategies and task planning. One partic-
ipant, when initially asked about their experience after block
touching (the first domain), describes low-level strategies for
manipulating the robot.

“I just noticed that it had some joints that could be
moved to make it to teach it to do what I wanted so
I just moved those and like pointed to the different
blocks and then saved as I went.”

The same participant, after their final domain in the Box
packing domain, describes their high-level task planning.

“So for this tasks I simply act out the robot how
to grab either Jell-O, bananas, or SPAM and then I
taught it how to go to the box and then I taught it
how to grab and drop so that you would grab either
banana, Jell-O, and SPAM and then go to the box
and then drop it there.”

The contrast between thinking about the low-level movement
in the first demo domain and the higher-level abstractions in

the last domain encountered is especially apparent with these
answers.

Workload

We also investigate the effect of demonstration abstraction
on participants’ perceived workload. Our findings indicated
an inverse correlation between sub-task count and perceived
workload. One participant noted fatigue and a high perceived
workload at the end of the study.

“Overall, it was very time-consuming, repeating the
motions over and over again. I found myself getting
really tired near the end, like the last [domain].”

APPENDIX I
CODER INSTRUCTIONS

Following are the coder instructions from which we obtain
our abstraction and redundancy scores, cited as [22] in our
work.



Coder Instructions 

Context 

Learning from Demonstration enables end-users, who are not robotics experts, to shape robot behavior. 

In our work, we are interested in how the quality of demonstrations changes over time, after trial and 

error teaching the robot in different domains.   

Domains 

 

Block Touching: A blue, green, and red block are placed in front of the robot. Participants are asked to 

teach the robot to touch the blocks in a particular order using the robot gripper.  

Box Packing: Two plastic bananas, two Jell-O boxes, and two Spam cans, along with a cardboard box are 

laid out in front of the robot. Participants are asked to teach the robot to pack (pick up and place) a 

combination of these food items into the cardboard box. 

Table Setting: Two forks, two knives, and two plates are placed in front of the robot. Participants are 

asked to teach the robot to set the table by picking up the utensils and placing them in designated 

locations around the two plate settings.  

Soil Mixing: A bucket of manure, a bucket of sand, and a bucket of lime are placed in front of the robot, 

along with a mixing bowl into which scoops of each of these materials are to be poured. Participants are 

asked to teach the robot to create different soil mixtures for different plants. In this domain, the scoop 

is placed in the robot's gripper by the experimenter.  

Medicine Dispensing: Four kinds of medicine (red pill cup, green pill cup, yellow pill cup, and TUMS pill 

cup) along with three trays labeled persons 1, 2, and 3 are placed in front of the robot. Participants are 

asked to dispense the proper medication to each person by picking and placing medicine cups into the 

appropriate person's tray. 

  



Definitions 

Domain: The participant will work with the robot in 5 domains, as listed above. 

Task: In each domain, the participant must teach the robot 3 tasks (like assemble exactly two scoops of 

sand and one scoop of lime). 

Subtask: The participant teaches the robot sub-tasks (like go to sand) that can be used to accomplish 

tasks. 

Demonstration: The participant physically moved the robot, demonstrating to record how to accomplish 

a subtask.  

What data do we have? 

In each domain, participants would provide a series of demonstrations to teach subtasks that can be 

reused to accomplish tasks. They then used these subtasks to accomplish 3 tasks in each domain. We 

have notes that describe the subtasks provided, and we also have the list of subtasks names assigned for 

each task. For instance, in the soil mixing domain, a participant could record the following subtasks: 

- Go to sand bin 

- Go to manure bin 

- Go to lime bin 

- Scoop  

- Go to mixing bucket 

- Drop  

Then, they would assign these subtasks to the following tasks: 

Soil Mixing Domain Task 1 Task 2 Task 3 

Task description Assemble exactly two 

scoops of sand and 

one scoop of lime. 

Assemble exactly one 

scoop of manure and 

one scoop of lime. 

Assemble exactly one 

scoop of sand and one 

scoop of manure 

Subtasks assigned to 

task  

∗ Go to sand bin 

∗ Scoop 

∗ Go to mixture bin 

∗ Dump 

∗ Go to sand bin 

∗ Scoop 

∗ Go to mixture bin 

∗ Dump 

∗ Go to lime bin 

∗ scoop 

∗ Go to mixture bin 

∗ Dump 

∗ Go to manure bin 

∗ Scoop 

∗ Go to mixture bin 

∗ Dump 

∗ Go to lime bin 

∗ Scoop 

∗ Go to mixture bin 

∗ Dump 

∗ Go to sand bin 

∗ Scoop 

∗ Go to mixture bin 

∗ Dump 

∗ Go to manure bin 

∗ Scoop 

∗ Go to mixture bin 

∗ Dump 

 

  



Types of scoring 

Given the notes of each subtask recorded by participants, how do we evaluate the quality of the 

demonstrations used for each task? We look at two metrics: abstraction score and redundancy score.  

Abstraction Score 

The abstraction score describes how well the subtasks were abstracted, to maximize the usability of the 

subtasks. Recall the goal in the soil mixing domain of making soil mixtures for plants. If, for instance, the 

goal was 2 scoops of lime and 1 scoop of sand.  

Insufficiently Abstracted Optimal Abstraction Overly Abstracted 

− Go to lime, scoop, go to 

bucket, drop, go to 

lime, scoop, go to 

bucket, drop, go to 

sand, scoop, go to 

bucket, drop 

− Go to sand 

− Go to lime 

− Scoop 

− Go to bucket 

− Drop scoop 

− Move left 

− Move right 

− Move up 

− Move down 

The problem here is that we can 

only reuse this subtask in the 

exact same scenario (this 

subtask cannot be used to 

scoop 1 scoop of lime and 2 

scoops of sand). 

This optimally abstracted set of 

tasks will generalize to any 

number of scoops of lime and 

sand required.  

The problem here is that it is 

unclear how to combine these 

tasks to accomplish the goal, 

since they are too abstracted.   

 

To calculate abstraction score, one point is awarded for each subtask that can be used towards the task 

when using the sub-tasks to accomplish the task. For example, the insufficiently abstracted example 

above would receive 1 point as their abstraction score as they only recorded one subtask that could be 

applied to the task. If they had instead recorded two subtasks: 

− Go to lime, scoop, go to bucket, drop, go to lime, scoop, go to bucket, drop 

− Go to sand, scoop, go to bucket, drop 

Then they would receive an abstraction score of 2.  

  



The optimal abstraction score example above would be used as follows to accomplish the task: 

− Go to lime 

− Scoop 

− Go to bucket 

− Drop scoop 

− Go to lime 

− Scoop 

− Go to bucket 

− Drop scoop 

− Go to sand 

− Scoop 

− Go to bucket 

− Drop scoop 

Resulting in an abstraction score of 12. 

Redundancy Score 

The redundancy score describes how (un)necessary tasks are. A sub-task is deemed redundant if its goal 

can be met by another sub-task or a combination of sub-tasks previously taught. Sub-task redundancy is 

defined with respect to a given set of subtasks being taught. For instance, for the same context, where 

the goal is 2 scoops of lime and 1 scoop of sand, the following table describes two levels of redundancy.  

Redundant  Optimal  

Go to sand. Scoop sand. Go to lime. Scoop lime. 

Go to bucket. Drop lime. Drop Sand. 

Go to sand. Go to lime. Scoop. Go to bucket. Drop 

scoop.  

The problem here is that we can only reuse drop 

sand for drop lime (simply drop), so drop lime is 

unnecessary, and redundant. Similarly, we can 

use scoop sand for scoop lime (simply scoop), so 

scoop lime is unnecessary and redundant.  

This is the proper subtask breakdown, where the 

demonstrator recognizes that drop can work for 

sand, lime, and manure, and scoop similarly can 

work for sand, lime and manure. 

 

To calculate redundancy score, one point is given for each subtask that can be done using other sub-

tasks recorded in the domain. For instance, the redundant example above receives a redundancy score 

of 2 (one for the redundant drop subtask and one for the redundant scoop subtask). However,  the 

optimal example above receives a redundant score of 0 as no redundant subtasks were taught.  

Note that the redundancy score is computed based upon the subtasks taught by that participant, not 

the optimal subtask list.  

 

  



Key for each domain 

Soil Mixing Domain Task 1 Task 2 Task 3 

Task description Assemble exactly two 

scoops of sand and 

one scoop of lime. 

Assemble exactly one 

scoop of manure and 

one scoop of lime. 

Assemble exactly one 

scoop of sand and one 

scoop of manure 

Optimal Subtask List ∗ Go to sand bin 

∗ Go to manure bin 

∗ Go to lime bin 

∗ Scoop 

∗ Go to mixture bin 

∗ Dump 

Optimal Subtask 

Assignment 

∗ Go to sand bin 

∗ Scoop 

∗ Go to mixture bin 

∗ Dump 

∗ Go to sand bin 

∗ Scoop 

∗ Go to mixture bin 

∗ Dump 

∗ Go to lime bin 

∗ scoop 

∗ Go to mixture bin 

∗ Dump 

∗ Go to manure bin 

∗ Scoop 

∗ Go to mixture bin 

∗ Dump 

∗ Go to lime bin 

∗ Scoop 

∗ Go to mixture bin 

∗ Dump 

∗ Go to sand bin 

∗ Scoop 

∗ Go to mixture bin 

∗ Dump 

∗ Go to manure bin 

∗ Scoop 

∗ Go to mixture bin 

∗ Dump 

Max Abstraction Score 12 8 8 

  



 

Block Touching (Demo) 

Domain 

Task 1 Task 2 Task 3 

Task description Touch the red block 

then touch the blue 

block 

Touch the blue block 

then touch the green 

block 

Touch the green block 

then touch the blue 

block then touch the 

red block 

Optimal Subtask List ∗ Go to and touch the green block 

∗ Go to and touch the blue block 

∗ Go to and touch the red block 

Optimal Subtask 

Assignment 

∗ Go to and touch the 

red block 

∗ Go to and touch the 

blue block 

∗ Go to and touch the 

blue block 

∗ Go to and touch the 

green block 

 

∗ Go to and touch the 

green block 

∗ Go to and touch the 

blue block 

∗ Go to and touch the 

red block 

 

Max Abstraction Score 2 2 3 

  



 

Box Packing Domain Task 1 Task 2 Task 3 

Task description Pack exactly two SPAM 

cans and exactly 

one jello box in the box 

Pack exactly one SPAM 

can in the box 

Pack exactly two jello 

boxes in the box 

Optimal Subtask List ∗ Go to SPAM 

∗ Go to jello box 

∗ Close gripper 

∗ Go to box 

∗ Open gripper 

Optimal Subtask 

Assignment 

∗ Go to SPAM 

∗ Close gripper 

∗ Go to box 

∗ Open gripper 

∗ Go to SPAM 

∗ Close gripper 

∗ Go to box 

∗ Open gripper 

∗ Go to jello box 

∗ Close gripper 

∗ Go to box 

∗ Open gripper 

∗ Go to SPAM 

∗ Close gripper 

∗ Go to box 

∗ Open gripper 

∗ Go to jello box 

∗ Close gripper 

∗ Go to box 

∗ Open gripper 

∗ Go to jello box 

∗ Close gripper 

∗ Go to box 

∗ Open gripper 

Max Abstraction Score 12 4 8 

  



 

Table Setting Domain Task 1 Task 2 Task 3 

Task description Place the fork and knife 

for plate setting 2 

and knife for plate 

setting 1 

Place fork for plate 

setting 1 

Place knife and fork for 

plate setting 1 

Optimal Subtask List ∗ Go to fork container 

∗ Go to knife container 

∗ Close gripper 

∗ Go to plate setting 1 

∗ Go to plate setting 2 

∗ Go to plate’s fork loc 

∗ Go to plate’s knife loc 

∗ Open gripper 

Optimal Subtask 

Assignment 

∗ Go to fork container 

∗ Close gripper 

∗ Go to plate setting 2 

∗ Go to plate’s fork loc 

∗ Open gripper 

∗ Go to knife container 

∗ Close gripper  

∗ Go to plate setting 2 

∗ Go to plate’s knife loc 

∗ Open gripper 

∗ Go to knife container 

∗ Close gripper 

∗ Go to plate setting 1 

∗ Go to plate’s knife loc 

∗ Open gripper 

∗ Go to fork container 

∗ Close gripper 

∗ Go to plate setting 1 

∗ Go to plate’s fork loc 

∗ Open gripper 

∗ Go to fork container 

∗ Close gripper 

∗ Go to plate setting 1 

∗ Go to plate’s fork loc 

∗ Open gripper 

∗ Go to knife container 

∗ Close gripper 

∗ Go to plate setting 1 

∗ Go to plate’s knife loc 

∗ Open gripper 

Max Abstraction Score 15 5 10 

  



 

Medicine Dispensing 

Domain 

Task 1 Task 2 Task 3 

Task description Serve red pills to 

person 1, and yellow 

pills to person 2 

Serve green pills to 

person 1 

Serve yellow pills to 

person 1 and red pills 

to person 2 

Optimal Subtask List ∗ Go to yellow pill cup 

∗ Go to red pill cup 

∗ Go to green pill cup 

∗ Close gripper 

∗ Go to person 1 location 

∗ Go to person 2 location 

∗ Open gripper 

Optimal Subtask 

Assignment 

∗ Go to red pill cup 

∗ Close gripper 

∗ Go to person 1 

location 

∗ Open gripper 

∗ Go to yellow pill cup 

∗ Close gripper 

∗ Go to person 2 

location 

∗ Open gripper 

∗ Go to green pills cup 

∗ Close gripper 

∗ Go to person 1 

location 

∗ Open gripper 

 

∗ Go to yellow pill cup 

∗ Close gripper 

∗ Go to person 1 

location 

∗ Open gripper 

∗ Go to red pill cup 

∗ Close gripper 

∗ Go to person 2 

location 

∗ Open gripper 

Max Abstraction Score 8  4  8  

 

  



How is the data organized? 

Available is a list describing each of the subtasks recorded for that domain. These are notes taken by the 

experimenter. Available is also the recipe constructed by the participant for each task (task 1 – 3) in that 

domain. This uses the names the participant called each of their subtasks (the naming scheme may 

differ between people). 

For each person, the coder must read the tasks recorded, understand how they differ from the optimal 

key provided, and look at how the participant used these subtasks for each task in the domain. Then, 

they score the abstraction score and redundancy of that domain, by summing the abstraction score 

across tasks of the domain, and summing redundancy score across tasks of the domain.  

The written notes are to provide context into the observed behavior of the recording of subtasks. 

However, it is possible that participants recorded subtasks that they never used, i.e. in the recipe for the 

task (if they for instance change their strategy half way through). Therefore, when calculating score 

please verify that the subtask was used in the recipe saved. 

More Information 

This section details background in Task and Motion Planning (TAMP) to enable us to answer the 

question: How to tell if a subtask is valid/ can be applied to the task? 

Pre-requisits  

1) an understanding of TAMP (https://arxiv.org/abs/2010.01083)  

2) familiarity with the domain that you are rating. This familiarity can be gained by actually solving 

the domain and understanding the possible abstractions within the domain to solve the given 

tasks.  

Concepts needed to score –  

There are two concepts that a rater of TAMP abstractions needs to understand: Mode Changes and 

Bottleneck states.  

Mode changes: When we interact with objects, we change the mode of contact with them. Consider 

picking up a fork. When we have no fork in the gripper the gripper is bound by fewer constraints of 

movement. When the fork is in the gripper the gripper is bound by additional constraints such as the 

fork not colliding with anything else in the world. This change in constraints of movement lead to 

obvious points of sub-task creation. Pick up fork needs to be a different sub-task from move fork to the 

plate.  

Bottleneck States: Bottle neck states are states that an agent needs to reach to solve a larger family of 

sub-tasks. A classic example of a bottleneck state is a door. To access the gas stove or the kitchen 

cabinet or to cook, you first need to cross the bottleneck state of the kitchen door. Across these 

bottlenecks the agent has access to a greater number of sub-tasks. In pick and place domains a classic 

bottle neck is the “pre-grasp” position. Consider the location just above the fork, this allows the robot to 

pick up the fork in different orientations. Hence, this location just above the fork is considered a pre -

grasp position. The robot does not have to constrain its gripper pose when moving to the pre-grasp 

position, but when initiating the “grasp” sub-task the robot’s gripper needs to be strictly oriented to pick 



the object correctly. A similar situation occurs when the robot needs to place knives and forks next to a 

plate. The move to plate is a good sub-task to teach as all utensils would require the robot to move to 

the plate. After which the robot can move to the knife’s location and place the knife or move to the 

fork’s position to place the fork. Notice that for a different plate we would need to teach a novel reach 

plate task as the plates are at different locations, however the knives and forks are at the same relative 

position when compared to the plate’s position, making the move to fork or knife position sub -tasks 

repeatable when taught once. Without teaching this bottleneck abstraction of move to plate, the user 

would have to teach place knife next to plate 1 and place knife next to plate 2 as different tasks, and 

repeat these sub-tasks for the forks, the napkins, the spoons, etc, for each plate. Now they just have to 

teach how to reach the bottleneck state of reaching a plate, and then the robot can just repeat the 

placement of the knives and forks from previous relative sub-tasks.   

 

How to award points –  

Abstraction score - We give points for each sub-task the user taught that is necessary in solving the task. 

The sub-tasks are necessary if without them the overall task could not have been solved. For example, 

to place a fork from the fork location next to plate 1 we can break down subtasks in many ways. A user 

might just pick the fork and place it next to plate 1 in one task. This is a necessary sub-task to solve this 

problem, hence the user gets one point. Or the user might decide to move to the fork location (pre-

grasp), pick up the fork (grasp), move to the plate 1 (bottleneck), move to fork location (pre -place), place 

fork (place). These provide 5 sub-tasks all necessary and repeatable hence the user gets 5 points. The 

users might not distinguish between a pre-grasp and a grasp or a pre-place and place and they might 

only get 3 points (for pick, move to bottleneck and place).   

Redundancy score - Sometimes users teach sub-tasks but do not use them, or use them but they were 

unnecessary to begin with. For example, a lot of users teach a sub-task to move the robot back to a 

home position before the robot does the next sub-task. This is not necessary. The users do it because of 

a poor understanding of how the robot works and this is penalized when measuring the redundancy 

score.   

What about over-abstracting? Are we providing too many points for users to create too many sub-tasks? 

Does moving 1 cm to the left a sub-task – no, there is no mode change or reaching of a bottleneck state 

because of this sub-task, hence it is not necessary in solving the task. However, you can teach two ways 

of getting to the fork, is that important? What if I make a different sub-task to pick every fork in the fork 

location, now I have tons of sub-tasks. Well picking up one fork from a fork basket is no different from 

picking another so just wasted your time, and this is a redundant sub-task!  

 

How the scoring strategy applies to each domain – 

Now for each domain we will provide our scoring key and list of bottleneck and mode changes. These 

should be sufficient to score both the abstraction scores and redundancy scores.  

Soil domain -  



The mode changes here happen when contacting the objects being picked with the scoop. The 

bottleneck states are the pre-grasp positions over the positions of the objects and the mixing bowl. The 

optimal abstraction moves over objects (bottleneck state / pre-grasp), scoops them (grasp), moves to 

the mixing bowl (bottleneck state /pre-place), dumps contents (place).  

Table setting domain -  

The mode changes happen when forks or knives are picked up (grasp) or placed (released). The bottle 

neck states are the pre-pick and pre-place over the knife and fork locations and the move to plate, move 

to fork pick location (which is a fork dispenser like a drawer partition with forks alone) and a move to 

knife pick location (again a knife dispenser).  

Medicine delivery domain -  

The mode changes here are pick and place of the medicine boxes.  The bottle neck states are to get to 

the position of each of the colored medicine pill boxes and person’s location for delivery of the 

medicines as pre-grasp and pre-place positions.  

Box packing domain -  

The mode changes are in the pick and place of the items and are taught as close gripper and open 

gripper. The bottle-neck abstractions are to reach the location of the spam containers, and jello-box 

containers storage locations, and reach the location of the box being packed. Again, the spam and jello 

boxes are present at the same location (like a shelf) and do not need the robot to be taught different 

tasks to reach them.  

Block touching -  

Here the only mode change is when the blocks are touched. There is no need of a bottleneck state as 

there are no constraints over the pose of the arm when touching the blocks.  
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