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Abstract

Image geo-localization is the task of predict-001
ing the specific location of an image and re-002
quires complex reasoning across visual, geo-003
graphical, and cultural contexts. While prior004
Vision Language Models (VLMs) have the best005
accuracy at this task, there is a dearth of high-006
quality datasets and models for analytical rea-007
soning. We first create NAVICLUES, a high-008
quality dataset derived from GeoGuessr, a pop-009
ular geography game, to supply examples of010
expert reasoning from language. Using this011
dataset, we present NAVIG, a comprehensive012
image geo-localization framework integrating013
global and fine-grained image information. By014
reasoning with language, NAVIG reduces the015
average distance error by 14% compared to pre-016
vious state-of-the-art models while requiring017
fewer than 1000 training samples. Our dataset018
and code are available at https://anonymou019
s.4open.science/r/Navig-8788.020

1 Introduction021

Image geo-localization—the task of predicting the022

location where an image was taken (Hays and023

Efros, 2008)—remains a challenging multimodal024

problem. For example, to say that Figure 1 is a pic-025

ture from Darlington (in England) requires reading026

the name of the hotel to determine possible candi-027

dates and excluding—for instance—the Croft hotel028

in Ontario based on the architecture. Directly pre-029

dicting the exact location or coordinates of an im-030

age (Weyand et al., 2016; Haas et al., 2023; Cepeda031

et al., 2023) is difficult for computer vision models032

and requires extensive training on large datasets of033

image-location pairs.034

In contrast, human experts infer locations by035

reasoning. For example, in a GeoGuessr1 game036

video, an expert player, zi8gzag, explained how037

he identified a location in Korea: the presence of038

single yellow road lines and the language on the039

1http://www.geoguessr.com

     Darlington, United Kingdom

The climate appears temperate with lush greenery suggesting a
region with moderate rainfall, the architecture includes brick
buildings and stone structures typical of Northern European
styles. The overall environment is peaceful and rural, typical of
the countryside in the UK, the specific style of the buildings and
road infrastructure aligns with those in the Yorkshire region.

The Croft Hotel, Northallerton Road,
Darlington, North Yorkshire, England,
United Kingdom",
"lat": "54.4824", "lon": "-1.5561"

Location Prediction: 
(54.4824, -1.5561). Darlington, U.K.

Reasoning

Map Search

The chevrons are
black with white
arrows in the United
Kingdom.

Guidebook

Figure 1: In image geo-localization, models need to
find both cultural and geographical clues to infer correct
locations. External tools like maps and guidebooks can
also be helpful by providing extra knowledge.

road signs suggest an Asian region; the large spikes 040

atop concrete poles help narrow it down to Japan 041

and Korea, and the black and yellow guardrails rule 042

out Japan. While recent research has integrated 043

textual knowledge (Luo et al., 2022) and explicit 044

clues (Zhang et al., 2024; Mendes et al., 2024; Li 045

et al., 2024) with Vision Language Models (VLMs) 046

to enhance their accuracy, the reasoning in these 047

models is often limited to a few words related to 048

landmarks and does not provide a concrete analysis, 049

as human experts would. 050

To date, these models’ reasoning remains more 051

superficial than humans’ for two reasons: (1) Lack 052

of high-quality reasoning datasets: Existing geo- 053
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tagged datasets lack linguistic reasoning elements,054

while constructing a dataset that involves reason-055

ing based on image details is resource-intensive.056

(2) Complexity of diverse information retrieval:057

Images often contain rich details, such as road058

signs, texts, and building styles, requiring addi-059

tional tools for accurate retrieval and interpretation.060

To address these questions, we introduce NAVI-061

CLUES, a detailed and high-quality reasoning062

dataset for image geo-localization, and NAVIG, a063

framework that combines both visual analysis and064

external knowledge to perform analytical reason-065

ing. Inspired by the popular geographical game066

GeoGuessr, we construct NAVICLUES with over067

2000 instances from five experienced YouTubers,068

recording their process of analyzing image details069

to infer locations, which trains VLMs to generate an-070

alytical reasoning that mimics professional human071

players. With tools like public maps and expert-072

written guidebooks, we design a pipeline that dives073

into fine-grained details and retrieves relevant infor-074

mation, enhancing the accuracy of geo-localization.075

We evaluate NAVIG against state-of-the-art models076

on two open benchmark datasets using five levels of077

prediction, and conduct ablation studies to investi-078

gate the contribution of each component of NAVIG.079

NAVIG outperforms previous state-of-the-art mod-080

els by a 14% reduction in average distance error081

while using less than 1, 000 training samples. We082

further illustrate the analyzing process of NAVIG083

by providing examples of both successful and chal-084

lenging cases. We release our dataset and frame-085

work to advance the use of reasoning in the field of086

image geo-localization.087

2 Collecting NAVICLUES: Linking Places088

to Images089

This section explains how we process the reasoning090

of GeoGuessr players to construct NAVICLUES. In091

addition, we analyze their reasoning and identify092

fifteen key clues humans use in geo-localization.093

2.1 Data Collection094

Despite previous efforts to create datasets contain-095

ing image-location pairs and reasoning insights096

from guidebooks (Hays and Efros, 2008; Vo et al.,097

2017; Astruc et al., 2024; Luo et al., 2022; Li et al.,098

2024), there is still a lack of datasets that capture099

the analytical reasoning process used to deduce100

locations from image details. To train NAVIG to101

generate reasoning (Section 3.1), we use the data102

from GeoGuessr, a popular game where players 103

infer locations from street views, which preserve 104

experts’ knowledge and strategies for image geo- 105

localization. We mine game data from “play along” 106

videos of five popular YouTubers, along with tran- 107

scripts of their reasoning during gameplay. 108

Data Mining. In a typical GeoGuessr game, 109

there are multiple rounds of guessing the location 110

from a new image. To segment the video tran- 111

script, we identify the timestamps of each round’s 112

result pages by using Qwen-VL (Bai et al., 2023) 113

to match the buttons and extract the correspond- 114

ing scores. For images, we retrieve images from 115

Google SteetView (GSV) API based on the coor- 116

dinates of each round, omitting any unavailable 117

ones.2 Following Haas et al. (2024), we capture 118

images from four different directions and combine 119

them to create 360-degree panoramic views (Ta- 120

ble 1), which contain the same details as in the 121

games. For reasoning data, we split the transcripts 122

by round timestamps. The raw dataset contains 123

2637 images and respective locations. 124

Data Processing. To ensure data quality, we 125

apply several processing steps: (1) we manually 126

review and remove games where the visual con- 127

tent differs between the players’ view and the GSV 128

data, such as games that allow movement or feature 129

satellite view; (2) we exclude games with poor rea- 130

soning quality, including those with a time limit of 131

less than 30 seconds, transcripts shorter than 100 132

words, or incorrect answers (where the GeoGuessr 133

Score is lower than 3400, approximately 575 km); 134

(3) answer-guided reasoning (Mendes et al., 2024) 135

generates the step-by-step reasoning process from 136

both the transcripts and images, guided by the cor- 137

rect locations and details mentioned by humans. 138

After processing, our final dataset, NAVICLUES, 139

consists of 1120 panorama images, each asso- 140

ciated with a corresponding location (continent, 141

country, and coordinates), reasoning process, and 142

scores. This dataset is useful for analyzing human 143

geo-localization strategies and training models for 144

image-based tasks. Prompts, example data, and 145

other details are in the Appendix B. 146

Guidebook Data. For SEARCHER (Section 3.2), 147

we collect guidebook data from two popular Ge- 148

oGuessr community sources,3 which include tips 149

2As GSV updates the images from time to time, some
coordinates are deleted.

3https://somerandomstuff1.wordpress.com/2019/
02/08/geoguessr-the-top-tips-tricks-and-techniq
ues and https://www.plonkit.net
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Figure 2: Top clues in human reasoning. Humans iden-
tify roads, cars, poles, and linguistic clues—specifically
the languages on plates, signs and houses.

from top players of GeoGuessr. Following Luo150

et al. (2022) and Li et al. (2024), each instance in151

our dataset contains a clue (e.g., The chevrons are152

black with white arrows in the U.K.) paired with153

an image. The final dataset contains 6227 image-154

clue pairs that have distinguishable geographical155

features, which could be further integrated into geo-156

localization frameworks as additional knowledge157

(Examples are in Appendix B).158

2.2 Data Analysis159

We further analyze the reasoning of human players160

and investigate common patterns among human ex-161

perts in geo-localization tasks. We use spaCy (Hon-162

nibal and Johnson, 2015) for noun extraction, al-163

lowing us to explore the specific information these164

experts focus on. We manually filter out irrelevant165

words and phrases, retaining only content pertinent166

to geographic reasoning.167

Through this process, we identify fifteen core168

clues frequently mentioned by experts highly as-169

sociated with geo-localization. These clues reflect170

common analytical patterns and reasoning strate-171

gies (Figure 2). The keywords cover cultural clues172

(e.g., language, flag, road, house) and natural ge-173

ographical features (e.g., mountain, island, tree).174

This distribution conforms to categories in the175

guidebooks and further guides the implementation176

of our framework in Section 3.177

3 NAVIG: Localizing Images with178

Reasoning and Tools179

This section presents NAVIG: image geo-180

localization with reasoning about cultural and ge-181

ographical clues and using external tools. NAVIG182

Image

Location
Australia, Benalla. -36.5510941, 145.9863798

Query
<image> Given an image, craft a brief and cohesive rea-
soning path that deduces this location based on the visual
clues present in the image. Using a tone of exploration ...

Response
The scene displays a bright, sunny day, indicating a tem-
perate climate, the trees lining the streets suggest a region
with sufficient rainfall, the architecture shows low-rise
buildings, typical of smaller towns rather than large urban
centers, there are bilingual (or unilingual) English signs,
helping to narrow down the location to an English-speaking
country, road markings and signs indicate that driving
is on the left, pointing towards countries like Australia or
New Zealand, ... the specific layout and style are consistent
with towns in Victoria, Australia, further narrowing down
the location to Benalla in Victoria, given the visual and
cultural context presented.

Table 1: Fine-tuning data format. The reasoning process
leverages visual information in the images to deduce the
correct location, such as weather, vegetation, signage,
and driving orientation. The complete prompts and
response is shown in the Appendix.

(Figure 3) has three components: (1) REASONER, 183

which focuses on generating a reasoning process 184

that analyzes the general information present in the 185

image (Section 3.1); (2) SEARCHER, which uses 186

additional knowledge sources and tools to explore 187

the details (Section 3.2); and (3) GUESSER, which 188

takes the concatenated outputs from both analyzers 189

to determine the final location, which can be config- 190

ured to any granularity of locations (Section 3.3). 191

3.1 Training VLMs to REASON about Image 192

Locations 193

Recent VLMs can—sometimes—reason about the 194

location of an image. (Li et al., 2024). However, 195

the reasoning is limited to only a few words and 196

does not help localization (Zhang et al., 2024). To 197

enhance VLMs to reason location-relevant informa- 198

tion in images, we create NAVICLUES and fine- 199

tune VLMs using it to build REASONER. The rea- 200

soning includes geographical information such as 201

climate, vegetation, language, and driving orien- 202

tations (Table 1). This approach enables models 203

to deduce locations from geographically pertinent 204

details, expanding the depth and applicability. 205

After training, REASONER can generate a ra- 206
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Reasoner

Image Details

Tools

External Knowledge

House

Road
Sign

...
Building Sign: ''TOCO'' could be referring

to a village on the coast of Trinidad.

House: Caribbean, Central America, and
South America frequently use vibrant

 colors like bright red for buildings, to ...

...

Guidebook

Map VLM
...

Vision Language
Model

LoRA

The climate appears tropical, given the lush
greenery and palm trees, the scene is
brightly lit by the sun which suggests a
location near the equator; the signs

feature English text, driving appears to be
on the left side, typical in former British

colonies, ... this place resembles regions in
the Caribbean, specifically Trinidad and

Tobago.

Input Image VLM
Reasoning

SearcherGrounding

Query

R

K1

K2

Kn

...

Concat

Guesser

Country:
Trinidad and Tobago
CIty: Toco
Latitude: 10.838
Longitude: -60.938

Vision Language
Model

Query: <image>
Suppose you are
an expert in image
geo-localization, ...
Here are some
analysis for your
reference: 

Building
Sign

Road Sign: search with OSM and find
  ''Paria Main Road'' in Toco, Sangre

Grande, Trinidad and Tobago

Figure 3: The framework of NAVIG. It comprises three main components: the REASONER, which handles general
reasoning; the SEARCHER, which leverage external knowledge for detail-specific analysis, and the GUESSER, which
combines outputs from both analyzers to generate predictions.

tionale for images, where given an image I , the207

fine-tuned VLM produces a reasoning R. However,208

as the reasoning relies solely on VLMs constrained209

by their parameterized knowledge, it lacks the in-210

formation to understand specific details. For in-211

stance, human experts can search maps for texts212

on building or road signs and consult guidebooks213

to identify the house style of a particular country,214

which goes beyond the intrinsic knowledge within215

VLMs. To emulate this process, an additional mod-216

ule, SEARCHER, integrates external tools, enabling217

more accurate interpretation of nuanced details218

within the reasoning.219

3.2 SEARCHING Image Details220

The SEARCHER module extracts fine-grained de-221

tails from images to enhance the reasoning by in-222

tegrating relevant knowledge. It initially crops the223

image using grounding models, generates queries,224

and uses tools to retrieve external knowledge.225

Grounding Image Details. As highlighted226

in Section 2.2, human experts often concen-227

trate on specific elements in images, such as228

signs, houses, and roads, which provide crucial229

location-based clues. To emulate this process,230

given an image I and a predefined set of ele-231

ments E = {e1, e2, . . . , en}, SEARCHER uses232

GroundingDino (Liu et al., 2023) to crop the im-233

age according to these elements. Since each im- 234

age may contain multiple instances of a certain 235

element, the resulting set of cropped images is 236

defined as C = {ci,j | ei ∈ E, j ∈ [1,mi]}, 237

where mi represents the number of element ei in I . 238

Specifically, we select road sign, building sign, and 239

house from Figure 2 as elements, which align well 240

with GroundingDino, since alternatives could yield 241

overly large figures or uninformative results. Each 242

cropped image ci,j is used as a query for specific 243

tools. Additionally, if ci,j is a sign that contains 244

rich text information, text-based queries are gen- 245

erated with Optical Character Recognition (OCR) 246

using Qwen2-VL (Wang et al., 2024). Therefore, 247

the query set Q is defined as: 248

Q =
⋃︂
i,j

{ci,j ,OCR(ci,j) if ci,j ∈ signs} 249

Tools. The query set Q is then fed into a Tool 250

Set T , which retrieves relevant knowledge. We 251

use three tools for information retrieval. (1) The 252

GeoGuessr Guidebook contains rich information 253

for locating images (Section 2.1). Following prior 254

research (Luo et al., 2022; Zhou et al., 2024), we 255

frame Guidebook using as a Retrieval-Augmented 256

Generation problem. Given an input image (e.g., 257

a house as in Figure 3), we retrieve the most sim- 258

ilar images. (2) Map. The map is a critical tool 259
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in image geo-localization, where textual informa-260

tion in images, such as names on signs, can di-261

rectly pinpoint a location. With text-based queries,262

we use the OpenStreetMap4 API for location re-263

trieval, providing the top three search results, each264

with the place name and multi-level location de-265

tails. (3) VLM. We use an additional VLM as a tool266

by prompting it to identify details that might be267

overlooked in the REASONER, adding further ana-268

lytical insights. The VLM can generate descriptions269

for details to narrow down the potential locations270

(Figure 3). Each tool t in the Tool Set T contributes271

to the retrieval of additional knowledge K:272

K =
⋃︂
t∈T

t(Q)273

Further implementation details about tool parame-274

ters are available in the Appendix A.275

3.3 GUESSING the Final Location276

The GUESSER uses all prior information to gen-277

erate the final prediction. It concatenates the rea-278

soning R from the REASONER with the external279

knowledge K retrieved by the SEARCHER, forms280

them into a prompt template p along with the image281

i, and makes the location prediction with a VLM:282

ŷloc = VLMp

(︁
I, concat(R,K)

)︁
283

where ŷloc is the model’s generated location. Note284

that p is configurable, allowing for flexible adjust-285

ments to the output format based on specific re-286

quirements, such as predicting locations at various287

levels (e.g., country, city, and coordinates).288

4 How Well Does NAVIG Reason Image289

Locations?290

This section demonstrates the effectiveness of291

NAVIG through a series of experiments. We com-292

pare it against prior state-of-the-art image geo-293

localization models and other baseline approaches294

(Section 4.2), conduct ablation experiments to eval-295

uate the contributions of each module in NAVIG296

(Section 4.3), and provide qualitative examples to297

highlight successful and challenging cases for fur-298

ther discussion (Section 4.4).299

4.1 Experimental Setup300

Implementation. We use three open-source301

models in NAVIG, MiniCPM-V (Yao et al., 2024),302

LLaVA (Liu et al., 2024), and Qwen2-VL (Wang303

4https://www.openstreetmap.org/

et al., 2024). These models serve as VLMs for 304

REASONER, SEARCHER, and the GUESSER com- 305

ponents within the NAVIG framework. (1) For 306

REASONER, Low-Rank Adaptation (LoRA) (Hu 307

et al., 2022) fine-tunes models using the 308

NAVICLUES dataset. We use minicpm-v-2.6, 309

llava-1.6-vicuna-7b, and qwen2-vl-7b due to their 310

advanced performance and mid-range size for train- 311

ing costs. (2) For SEARCHER, we select the top 312

three cropped clues as the basis for generation (e.g., 313

if multiple houses are cropped, only the three with 314

the highest similarity scores will be analyzed). We 315

use CLIP (Radford et al., 2021) to encode both 316

guidebook images and query images, construct a 317

database using FAISS (Johnson et al., 2019), and 318

retrieve guidebook data by the Euclidean distance d 319

between image embeddings, returning associated 320

text if d is below a threshold dt (set to 30). We 321

prompt the GUESSER to predict locations at the co- 322

ordinates level. Training hyperparameters, model 323

configurations, and prompts are in Appendix A. 324

Baselines. We compare NAVIG with two types 325

of baselines: (1) Geo-localization Models: we 326

select top-performing open-source models from 327

prior research in image geo-localization, includ- 328

ing G3 (Luo et al., 2022), GeoCLIP (Cepeda 329

et al., 2023), and StreetCLIP (Haas et al., 2023). 330

(2) Vision Language Models: we select vanilla 331

MiniCPM-V, LLaVA, Qwen2-VL as baselines, con- 332

sistent with the backbone models used in NAVIG. 333

The prompts for these VLM baselines are identical 334

to those in NAVIG, with only the analyses removed. 335

We do not include commercial closed-source mod- 336

els, as training on these models is not feasible for a 337

fair comparison. 338

Dataset and Metrics. Following previous 339

work (Hays and Efros, 2008; Astruc et al., 2024; 340

Haas et al., 2024), we evaluate our framework on 341

two public datasets, including GWS5K sampled 342

from GWS15K (Clark et al., 2023) due to cost con- 343

straints, and Im2GPS3k (Hays and Efros, 2008). 344

First, we computed the haversine distance between 345

the predicted and ground truth coordinates. For 346

models limited to city level outputs, we use the co- 347

ordinates of the predicted city as their predictions. 348

Next, we evaluated the prediction accuracy—the 349

percentage of guesses that fall within a distance 350

threshold from the correct location—at five geo- 351

graphic levels: Street (1 km), City (25 km), Region 352

(200 km), Country (750 km), and Continent (2, 500 353

km). In addition, we calculated the average error 354

distance and GeoGuessr Score, a metric from the 355

5
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Model Continent
2, 500 km

Country
750 km

Region
200 km

City
25 km

Street
1 km Distance↓ Score↑

G3 50.9 14.6 2.3 0.1 0.0 4,341 1,304
GeoCLIP 78.2 46.5 17.1 3.5 0.4 2,099 2,613
StreetCLIP 79.4 43.4 13.4 1.7 0.3 2,060 2,543

MiniCPM-V 27.1 15.9 6.7 1.6 0.1 7,320 909
LLaVA 43.9 23.1 7.0 1.2 0.0 5,096 1,418
Qwen2-VL 89.4 66.7 31.8 6.1 0.1 1,124 3,344

NAVIG
- MiniCPM-V 71.5 44.1 16.9 3.5 0.3 2,956 2,413
- LLaVA 74.7 39.4 12.0 1.9 0.3 2,243 2,354
- Qwen2-VL 91.1 66.9 31.9 6.7 0.7 965 3,389

Table 2: Accuracy and scores on GWS5k. The data from Continent to Street represents the accuracy (%) at each
level. The three sections are geo-localization models, VLMs, and NAVIG. Bold font indicates the best performance.
NAVIG (Qwen2-VL) achieves the highest accuracy across all metrics.

Model ROUGE F1
R1 R2 RL

REASONER (MiniCPM-V) 51.0 14.8 24.6
MiniCPM-V 46.4 12.6 22.1
REASONER (LLaVA) 49.8 13.9 24.0
LLaVA 44.7 10.8 21.8
REASONER (Qwen2-VL) 51.4 14.6 24.3
Qwen2-VL 45.2 12.3 22.1

Table 3: ROUGE F1 scores for reasoning generated by
models and humans (%). REASONER models reason
more similarly to humans.

original GeoGuessr game that quantifies guess ac-356

curacy, with a scoring range of 0 to 5000. Details357

about metric computation are in Appendix C.358

4.2 Main Experiments359

Accuracy. We compare NAVIG with state-of-360

the-art image geo-localization models and Vision361

Language Models (GWS5k results in Table 2).362

(1) Generally, within the framework of NAVIG,363

Qwen2-VL achieved the highest accuracy across all364

metrics, beating specialized geo-localization mod-365

els trained on domain-specific datasets, despite its366

relatively compact size of only 7 billion parameters.367

(2) All VLMs generate effective analytical reason-368

ing, which is trained with only around 1,000 sam-369

ples. These findings underscore the quality of train-370

ing data and the efficacy of the NAVIG framework.371

Similar results on Im2GPS3k are in Appendix D.372

Reasoning. We evaluate the quality of the lin-373

guistic reasoning generated by the model on a re-374

served test set of 50 human games. To measure the375

alignment between model-generated and human376

reasoning, we compute their ROUGE scores (Lin,377

2004), which illustrate whether the model sim-378

Model Country City Street Score↑

NAVIG
- MiniCPM-V 56.0 18.0 0.0 2,863
- LLaVA 48.0 14.0 0.0 2,690
- Qwen2-VL 86.0 32.0 4.0 4,202

Human Players 76.0 48.0 42.0 3,757

Table 4: Performance between humans and NAVIG. The
data from City to Street represents accuracy (%). Our
best model beats humans with a higher overall score but
still struggles to achieve fine-grained accuracy.

ulates human reasoning. REASONER achieves 379

higher ROUGE scores across all models and metrics 380

after training (Table 3). We further examine the 381

effectiveness of reasoning through ablation. 382

Comparison with Humans. We also compare 383

NAVIG’s performance against human players in 50 384

randomly sampled GeoGuessr games, focusing on 385

common metrics for country, city and street level 386

predictions. NAVIG outperforms humans in overall 387

scores (Table 4), although humans excel at finer- 388

grained predictions by iteratively cross-referencing 389

maps and comparing terrain and features within 390

the game. This highlights a future direction to use 391

non-textual features to refine map-based searches. 392

4.3 Ablation Study 393

To illustrate the contributions of each component 394

in NAVIG, we ablate the reasoning training, the 395

impact of REASONER, and SEARCHER. Table 5 396

presents the three VLMs’ accuracy on GWS5k. In 397

this setup, NAVIG represents our framework, “w/o 398

training” denotes results with the same prompt but 399

without training on NAVICLUES, “w/o Macro” and 400

“w/o Micro” refer to the results without the REA- 401

SONER and SEARCHER modules, respectively. 402
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Model Country City Street

NAVIG (MiniCPM-V) 44.1 3.5 0.3
- w/o training - 3.3 - 0.4 - 0.2
- w/o REASONER - 10.2 - 0.7 - 0.0
- w/o SEARCHER - 0.3 - 0.3 - 0.2
- MiniCPM-V - 14.9 - 0.5 - 0.2

NAVIG (LLaVA) 39.4 1.9 0.3
- w/o training - 25.8 - 1.2 - 0.3
- w/o REASONER - 20.2 - 0.8 - 0.0
- w/o SEARCHER + 0.4 - 0.2 - 0.2
- LLaVA - 16.3 - 0.7 - 0.3

NAVIG (Qwen2-VL) 66.9 6.7 0.7
- w/o training - 6.0 - 0.9 - 0.5
- w/o REASONER - 4.0 - 0.6 - 0.2
- w/o SEARCHER + 0.1 - 0.9 - 0.5
- Qwen2-VL - 0.2 - 0.6 - 0.6

Table 5: Ablation results of NAVIG on the GWS5k
dataset. Each component contributes to model accuracy,
with their removal leading to notable declines across
Country, City, and Street levels.

Results. (1) Each module contributes to im-403

proving the model’s accuracy. (2) Surprisingly,404

when the model is prompted to generate reason-405

ing processes in a zero-shot setting, the reasoning406

can be misleading, resulting in decreased final pre-407

diction accuracy. This highlights the necessity of408

training the model with NAVICLUES. (3) REA-409

SONER plays a critical role in coarse-grained local-410

ization, with improvements at the country level and411

decrease without it, as the reasoning in the train-412

ing dataset is limited to the country and city level.413

(4) SEARCHER substantially enhances fine-grained414

reasoning. Achieving precise street-level localiza-415

tion on the GWS dataset is highly challenging, but416

the SEARCHER narrows the scope within 1 km417

for images containing textual information by using418

map searches (Table 2). Results on Im2GPS3k are419

in Appendix D, which is consistent with GWS.420

4.4 Qualitative Analysis421

This section examines how the analytical reasoning422

derived from images contributes to NAVIG ’s infer-423

ence process. As shown in Figure 4 (top), NAVIG424

closely examines details within the image, such425

as the temperate climate, orientation of driving426

cars, and “Lower Mill” to determine the location.427

This detailed reasoning narrows down the possi-428

ble range, while integration with OpenStreetMap429

data further aids the model in finding the restaurant,430

with an error distance of under 1 meter, improving431

its estimate by 144 km.432

However, image elements can also mislead the433

model. In Figure 4 (middle), the model fixates on 434

a shop name in the image, “KLICK”, which can 435

be interpreted as a German word. This leads the 436

reasoning process astray, resulting in an incorrect 437

localization. OpenStreetMap can also lead to false 438

predictions when there are places with the same 439

name, such as “Bradesco”, a well-known Brazilian 440

bank (Figure 4 (bottom)). The reasoning makes im- 441

age geo-localization models more interpretable by 442

revealing how image elements influence decisions. 443

5 Related Work 444

Image geo-localization Image geo-localization 445

falls into three methods: (1) Retrieval-based meth- 446

ods retrieves the most similar images (Hays and 447

Efros, 2008; Zhu et al., 2023). Various retriev- 448

ers (Vo et al., 2017; Pramanick et al., 2022; Haas 449

et al., 2023) and gallery types (Cepeda et al., 2023) 450

have been proposed. (2) Classification-based meth- 451

ods divide geographical maps into distinct classes— 452

such as countries, cities, or geographical cells— 453

and train models to classify the location of images 454

into these categories. Researchers have proposed 455

different model structures (Radford et al., 2021; 456

Wu and Huang, 2022) and map division strate- 457

gies (Weyand et al., 2016; Theiner et al., 2022; 458

Haas et al., 2024) to improve accuracy. Despite 459

this, these methods are limited by the size and scale 460

of the defined granularity. (3) Generation-based 461

methods use visual understanding and generation in 462

Vision Language Models (VLMs) to directly gener- 463

ate the location or coordinates for geo-localization. 464

By aligning visual content with rich text descrip- 465

tions and reasoning (Jia et al., 2024; Li et al., 2024; 466

Zhang et al., 2024), along with incorporating ex- 467

ternal knowledge through Retrieval-Augmented 468

Generation (Luo et al., 2022; Zhou et al., 2024), 469

these methods have achieved state-of-the-art perfor- 470

mance. However, challenges persist in effectively 471

using VLMs, including limited reasoning data for 472

model training, a reliance on constrained external 473

knowledge sources, such as image galleries. 474

Visual Reasoning In Visual Reasoning, mod- 475

els need to derive solutions from image details 476

to answer questions, which requires both visual 477

understanding and reasoning capabilities (Hud- 478

son and Manning, 2019; Gupta and Kembhavi, 479

2023). Recently, with relevant techniques like In- 480

context Learning, Chain of Thought, and tool us- 481

ing, Vision Language Models (VLMs) have demon- 482

strated exceptional performance in visual reasoning 483
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Reasoning: The area appears to be in a temperate climate, ... the road signs and vehicles suggest driving on the right side, ..., 
the overall setting feels quaint and peaceful, typical of a small town in the northeastern United States, ... the specific name
'Lower Mill' is associated with a town in New York, USA, known for its historical and cultural significance.

Search ("The Lower Mill Restaurant") →  {"place_name": "The Lower Mill", "location":
"The Lower Mill, New York, United States", "lat": "42.9560001", "lon": "-77.5887408"}

Prediction: (42.9560, -77.5887)
Distance: 0.0009km

Reasoning: The location is in Europe, ... the language on signs suggests a Germanic influence, the presence of a shopping
mall indicates a commercial area, the name on one of the signs is 'Klick', which is a German word, the presence of a 'Silver
Dream' sign suggests ... the overall setting and language suggest a city in Germany, possibly Berlin.

Prediction: (52.52, 13.405)
Distance: 1190.79km

City:
   New York,
Country:
   United States, 
Lat:
   42.9559925
Lon:
   -77.588744

City:
   Russia,
Country:
   Ivangorod, 
Lat:
   59.3797404
Lon:
   28.1873023

VLM (House) → The image depicts a shopping mall interior with ... This type of setting
is commonly found in urban areas, particularly in Europe or North America, where ...

City:
   Brazil,
Country:
  Campos Belos, 
Lat:
   -13.9364983
Lon:
   -46.7731332

Reasoning: The image shows a small town with distinct features that suggest a South American setting. The presence of
Portuguese signage, such as "Bradesco," a well-known Brazilian bank, strongly indicates Brazil. The architecture ... The road
infrastructure and vehicles ... The combination of these elements points confidently to Brazil as the location.

Prediction: (-3.5893, -47.4905)
Distance: 1053.43km

Search ("Bradesco") →  {"place_name": "Bradesco", "location": "Bradesco,
Ulianópolis, Pará, Região Norte, Brasil", "lat": "-3.5893533", "lon": "-47.4905467"}

THE LOWER MILL 
RESTAURANGT & GALLERIES

KLICK

Bradesco

Figure 4: Top: The model uses visual details and OpenStreetMap to accurately determine the location. Middle:
The model is misled by linguistic elements—the shop name, resulting in an incorrect inference. Bottom: The model
found a namesake when using OpenStreetMap.

tasks (Alayrac et al., 2022; Lu et al., 2023).484

Generally, key directions for enhancing the vi-485

sual reasoning of VLMs in specific tasks include:486

(1) High-quality complex reasoning data, which487

researchers have shown to be particularly effective488

in improving the performance of VLMs (Du et al.,489

2023; Chen et al., 2023); (2) Vision grounding,490

which enables models to ground in the details of491

the image and perform step-by-step reasoning (Qi492

et al., 2024; Wu and Xie, 2023; Zhang et al., 2024);493

and (3) Tool using, which aid the model by lever-494

aging tools to retrieve additional knowledge (Yang495

et al., 2023; Marino et al., 2021; Chen et al., 2022).496

Unlike traditional end-to-end methods that map im-497

ages directly to locations, we treat geo-localization498

as a complex reasoning task that deduces the loca- 499

tion with language in a pipeline. 500

6 Conclusion 501

We introduce a novel framework NAVIG and a 502

reasoning dataset NAVICLUES, designed to per- 503

form image geo-localization through detailed vi- 504

sual reasoning and supplementary knowledge re- 505

trieval. We demonstrate the effectiveness of our ap- 506

proach through comprehensive comparisons with 507

state-of-the-art models and ablation studies. Fu- 508

ture developments could include expanding more 509

tools and using these tools to improve results for 510

finer-grained predictions. 511
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Limitations512

Datasets. In this work, we utilize data from hu-513

man players in the GeoGuessr game to train Vision514

Language Models for performing geographic rea-515

soning on images. The copyright and usage rights516

of the images are subject to that of Google Street517

View. However, the dataset size of NAVICLUES518

is limited due to the scarcity of available data on519

YouTube and the noise in the collected data. To sim-520

ulate the perspective of players in the GeoGuessr521

game, we use stitched panoramic images as the522

input to the model. Furthermore, nearly all im-523

ages in the data from GeoGuessr are street views,524

despite our efforts to ensure a geographically bal-525

anced distribution of data across countries. Conse-526

quently, the training data is limited to certain sizes527

and types, which might constrain its performance.528

Future work could consider expanding the training529

dataset by incorporating images of different sizes,530

and types to further enhance the performance of531

image geo-localization tasks with better reasoning.532

Models. Due to cost constraints, we conducted533

our experiments using a limited number of medium-534

sized open-source models (around 7B parameters).535

This choice may result in performance that is not536

as competitive as larger models. Additionally, we537

evaluated only a limited set of tools and grounding538

words. Identifying more geographic features such539

as cars, road markings, and poles would require540

more precise recognition methods and more so-541

phisticated model designs, which could potentially542

improve performance. We employed a pipeline543

approach to construct our model, aiming to maxi-544

mize the performance of each component at every545

stage. Future work could also explore building546

finer-grained datasets to train end-to-end model547

training for better performance.548

Experiments. Due to the limitations of NAVI-549

CLUES, the reasoning process is constrained to550

the country or city level. In practice, the level551

of reasoning could significantly impact the final552

results. Adding additional experiments, such as553

training with data constructed at the coordinates554

level, could potentially improve overall accuracy555

and help address more research questions.556

Ethical Considerations557

In this work, we use the data from GeoGuessr play-558

ers on YouTube to train our models. We carefully559

process the data and remove the personal informa-560

tion of the players, and all the data are only used561

for academic purposes. While the task of image 562

geo-localization has the potential to enable innova- 563

tive applications in fields such as navigation and 564

tourism, the misuse of these models could also lead 565

to risks such as privacy breaches and surveillance. 566

In our work, we ensured that all training and testing 567

data came from publicly available sources, with no 568

involvement of private or personal images or loca- 569

tion data. Currently, as shown in our experiments, 570

these models have not yet reached a level of pre- 571

cision to accurately predict coordinates-level loca- 572

tions. For the future development of this field, it is 573

crucial for researchers to ensure that these models 574

are used within appropriate boundaries to prevent 575

the leakage of private information. 576
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A Implementation Details812

A.1 Training Parameters813

We trained the REASONER on Nvidia RTX 6000814

Ada (48G), with CUDA 12.4, Transformers 4.45.1,815

and Pytorch 2.1.2.816

Parameters Value

Max Length 2048
LoRA Rank 8
LoRA Alpha 32
Optimizer AdamW
Adam Beta1 0.9
Adam Beta2 0.95
Learning Rate 1e-4
Warmup Ratio 0.05
LR Scheduler Type cosine
Batch Size 1
Weight Decay 0.1

Table 6: Training parameters for REASONER.

A.2 Other Parameters.817

For reproducibility, we also provide the parame-818

ters used in other modules and VLMs within our819

framework.820

GroundingDino. We utilize GroundingDino to821

crop detailed information from the images, such822

as signs and houses. We observe variation in the823

features of images across different datasets. For in-824

stance, the GWS5k dataset focuses on street scenes,825

and other datasets contain considerable noise (e.g.,826

animals). Consequently, to reduce noise that could827

potentially affect model performance, we empiri-828

cally set the thresholds as follows: Box-Threshold829

= 0.5 and Text-Threshold = 0.5 for GWS5K, and830

Box-Threshold = 0.8 and Text-Threshold = 0.6 for831

Im2GPS3k.832

Retrieval-Augmented Generation. We employ833

CLIP as the image encoder for guidebook clues, us-834

ing ViT-B-32 as the vision encoder. The guidebook835

database is deployed with FAISS, and similarity is836

calculated using Euclidean Distance. The number837

of most relevant retrieved images, k, is set to 3,838

with a similarity threshold of 30.839

OpenStreetMap. We use the Nominatim Search840

API to process map searches, which takes text841

queries, and return the most relevant results along842

with the place name, address, and coordinates.843

Vision Language Models. We use Vision-844

Language Models in our framework for reason-845

ing and location inference. The three mod-846

els are minicpm-v-2.6, llava-1.6-vicuna-7b, and847

qwen2-vl-7b. Each model is configured with a tem- 848

perature of 0 and an output length of 2048. 849

A.3 Prompts for VLMs. 850

In Table 7 and Table 8, we present the prompts 851

used in NAVIG for Vision Language Models. Four 852

distinct prompts are employed: (1) the Data Pro- 853

cessing Prompt, which employed an answer guided 854

reasoning generation method to prompt VLMs in 855

extracting step-by-step reasoning from YouTube 856

transcripts; (2) the REASONER Prompt, which is 857

the same as the query in the training data, prompt- 858

ing VLMs to generate a coherent reasoning pro- 859

cess to infer the location within an image; (3) 860

the SEARCHER Prompt, which generates addi- 861

tional knowledge from image details, and (4) the 862

GUESSER Prompt, which synthesizes all prior in- 863

formation to make a final prediction. 864

Data Processing Prompt
<image> Given an image and the known location details
(Country: country, Latitude: lat, Longitude: lon), and an
expert’s analysis of the location (transcript), craft a brief
and cohesive reasoning path that deduces this location
based on the visual clues present in the image. Begin your
reasoning without revealing that you know the exact loca-
tion, using a tone of exploration and inference. Carefully
analyze and link observations of natural features (climate,
vegetation, terrain), man-made structures (roads, buildings,
signage), and distinct landmarks. Allow these observations
to naturally lead you to the correct country, enhancing the
accuracy of your deductions. Ensure that while the narra-
tive seems to be guessing, it aligns with the known country,
confirming the reliability of your reasoning without stating
the specific coordinates. Start the reasoning without any
intro, and make sure to make it brief.

Table 7: The prompts used in NAVIG.

B Data. 865

In this section, we present the data processing work- 866

flows and provide more detailed information on the 867

various types of data used in the system. 868

B.1 Data Processing. 869

YouTubers. We utilized the scripts of five pro- 870

fessional GeoGuessr players’ YouTube videos as 871

the starting data for our reasoning generation. We 872

thank these five players for their contributions to 873

knowledge dissemination and promotion of image 874

geo-localization: zi8gzag, GeoWizard, GeoPeter, 875

Geogasm, and RAINBOLT TWO. 876

Data Processing. We used the Google Street 877

View5 API to retrieve images for our dataset. We 878

5https://www.google.com/streetview/
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selected a resolution of 640×640 pixels (the maxi-879

mum resolution accepted by GSV), a field of view880

(FOV) of 90, and headings of 0, 90, 180, and 270881

degrees to obtain four images. Stitching them to-882

gether produces a complete street view image, pro-883

viding the same amount of information that a Ge-884

oGuessr player would see.885

Next, we split the videos for retrieving the tran-886

scripts or each round. After a player submits their887

final guess, the game reveals the distance between888

their guessed location and the actual coordinates,889

where the player can choose to either proceed to890

the next round or end the challenge. We use precise891

pixel coordinates in conjunction with OCR technol-892

ogy to detect the presence of the “Next” or “End”893

buttons and split the videos. We sample frames894

at a rate of 1/6 per second to ensure no scene is895

missed. Simultaneously, we extract the GeoGuessr896

Score displayed beside the button. Next, due to897

the noise in the data (with many informal language898

from players), we provide GPT-4o with the correct899

locations for paraphrasing and generating higher900

quality and more coherent data.901

REASONER Prompt
<image> Given an image, craft a brief and cohesive rea-
soning path that deduces this location based on the visual
clues present in the image. Using a tone of exploration
and inference. Carefully analyze and link observations of
natural features (climate, vegetation, terrain), man-made
structures (roads, buildings, signage), and distinct land-
marks. Allow these observations to naturally lead you to
the correct country, enhancing the accuracy of your deduc-
tions. Start the reasoning without any intro, and make sure
to make it brief.

SEARCHER Prompt
<image> Analyze the {item} images to determine the re-
gion with the highest likelihood of finding this type of
{item}. For each image, provide only the core reasoning in
one sentence. Don’t say you can’t determine, try your best
as it’s a geo-localization game

GUESSER Prompt
<image> <information> Using the provided information
as a reference, estimate the location depicted in the image
with as much accuracy and precision as possible. Gen-
erally, you might use the reasoning to roughly locate the
coarse-grained location, and use other information to help
you decide more precisely. Use your own knowledge as
well. Aim to deduce the exact coordinates whenever fea-
sible. Format your response strictly as JSON in the fol-
lowing structure:{“country”: “<country_name>”, “city”:
“<city_name>”, “latitude”: <Latitude Coordinate>, “longi-
tude”: <Longitude Coordinate>} Ensure the JSON output
is correctly formatted. Provide a well-informed estimate
for each value, avoiding any empty fields. Do not include
additional information or commentary.

Table 8: The prompts used in NAVIG.

B.2 Data Demonstration. 902

In this section, we present examples and key statis- 903

tics for both NAVICLUES and guidebook datasets. 904

NAVICLUES. As shown in Figure 9, the data 905

includes a panoramic image, the corresponding lo- 906

cation, and a high-quality reasoning process that 907

shows how geographical and cultural information, 908

such as vegetation, landmarks, and text on signage, 909

is used to infer the location. We do not require 910

the model to generate specific street-level locations 911

or coordinates directly, as these details could intro- 912

duce excessive hallucination. As shown in Figure 5, 913

the dataset is geographically well-distributed, cov- 914

ering various countries across the globe. 915

Figure 5: Location distribution of NAVICLUES, cover-
ing a wide range of countries around the world.

Guidebooks. As shown in Table 10, each guide- 916

book entry consists of an image-text pair, where 917

the text describes the location and features depicted 918

in the image. We utilize RAG in NAVIG to identify 919

the most similar image and use the accompanying 920

text to support the reasoning process. 921

Statistical Results. We present the statistical 922

results of NAVICLUES in Figure 6. Most distances 923

are relatively small, indicating that players are often 924

successful in deducing the correct location. The 925

reasoning process averages 842 words in length, 926

demonstrating high quality with extensive details. 927

C Metrics Definition 928

C.1 GeoGuessr Score 929

The GeoGuessr Score is a metrics introduced in 930

the GeoGuessr game to quantify the accuracy of a 931

guess. It is defined as: 932

GeoGuessr Score = 5000× e−
d

1492.7 (1) 933

where d represents the distance between the 934

guessed coordinates and the actual coordinates in 935

kilometers. Therefore, a more accurate guess yields 936

a GeoGuessr Score closer to 5,000. 937
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Image

Location
Chile. -27.1265479, -109.2876917

Reasoning
These imposing stone figures are situated on a grassy hillside overlooking the ocean, suggesting a coastal location. The sparse
vegetation and the presence of unique megalithic structures indicate a historical and possibly isolated environment. The
statues, known as Moai, are characteristic of an island rich in archaeological history. Such a distinct culture is associated with
an island famous for these figures, which is set far away from mainland destinations. This points toward the Polynesian island
in the southeastern Pacific known for these world-renowned statues, aligning closely with a location associated with Chile.

Image

Location
China. 22.27992557066081, 114.1648415981852

Reasoning
Tall, sleek skyscrapers dominate the cityscape, suggesting a prominent urban environment. The distinct yellow license
plates on vehicles are a key hint, typically associated with regions influenced by British rule. The street signs feature both
English and Chinese characters, which points to a bilingual city. The presence of a distinctive red double-decker bus is highly
characteristic of a city with British influence. All these clues, combined with the modern architecture and dense urban vibes,
strongly suggest this is Hong Kong, likely within its central business district.

Image

Location
Italy. 42.71658113303754, 13.01051150781922

Reasoning
The landscape features rolling hills and a dense cover of greenery, indicative of a temperate climate typically found in parts of
Southern Europe. The road layout with its narrow curve and the types of vehicles suggest a European setting. The presence
of Italian-language signage such as Cascia and recognizable Italian road markers, like narrow front plates, strongly points to
Italy. The architecture, with its rustic and modest buildings in the distance, complements the rural Italian countryside vibe.
Hence, these visual cues collectively affirm the location as Italy, likely in a more central to southern region given the sign for
Cascia.

Table 9: Demonstration of NAVICLUES.

14



0 100 200 300 400 500 600
Distance (kilometers)

0

50

100

150

200

250

300

Fr
eq

ue
nc

y

Mean: 159.41 km

400 600 800 1000 1200 1400
Length of Reasoning (characters)

0

10

20

30

40

50

60

70

80

Fr
eq

ue
nc

y

Mean: 842.23 characters

Figure 6: Distribution of Distance (left) and Length of Reasoning (right) in NAVICLUES.

Image

Text
(Toptips) Houses in Brittany, a western region of France,
are coloured white with dark roofs.

Image

Text
(Plonkit) Tunisia has a fairly unique stop sign with Arabic
and Latin script.

Table 10: Examples of clues in the two guidebooks,
Toptips and Plonkit. The data is constructed as image-
text pairs in the guidebooks.

Image

Location
Australia, Benalla. -36.5510941, 145.9863798

Query
<image> Given an image, craft a brief and cohesive rea-
soning path that deduces this location based on the visual
clues present in the image. Using a tone of exploration
and inference. Carefully analyze and link observations of
natural features (climate, vegetation, terrain), man-made
structures (roads, buildings, signage), and distinct land-
marks. Allow these observations to naturally lead you to
the correct country, enhancing the accuracy of your deduc-
tions. Start the reasoning without any intro, and make sure
to make it brief.

Response
The scene displays a bright, sunny day, indicating a tem-
perate climate, the trees lining the streets suggest a region
with sufficient rainfall, the architecture shows low-rise
buildings, typical of smaller towns rather than large urban
centers, there are bilingual (or unilingual) English signs,
helping to narrow down the location to an English-speaking
country, road markings and signs indicate that driving
is on the left, pointing towards countries like Australia
or New Zealand, the presence of both cars and greenery
suggests a suburban or rural setting, notable artwork on a
building wall adds a cultural touch, indicating community
engagement with public art, the overall scene feels relaxed,
supporting the idea of a smaller, laid-back town such as
those found in regional Australia, the specific layout and
style are consistent with towns in Victoria, Australia, fur-
ther narrowing down the location to Benalla in Victoria,
given the visual and cultural context presented.

Table 11: Fine-tuning data format. Note how the reason-
ing process leverages visual information in the images
to deduce the correct location, such as weather, vegeta-
tion, signage, and driving orientation.
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Model Continent
2, 500 km

Country
750 km

Region
200 km

City
25 km

Street
1 km Distance↓ Score↑

G3 47.3 23.9 6.0 1.6 0.0 4,938 1,451
GeoCLIP 82.3 66.5 48.0 32.2 13.0 1,762 3,402
StreetCLIP 68.2 51.2 29.6 19.0 4.2 3,161 2,640

MiniCPM-V 33.2 27.8 22.4 15.9 2.3 6,624 1,433
LLaVA 61.2 43.2 25.9 16.5 2.6 3,387 2,338
Qwen2-VL 75.0 65.0 48.9 29.9 5.3 2,483 3,237

NAVIG
- MiniCPM-V 68.5 51.7 36.5 23.1 3.0 3,149 2,726
- LLaVA 70.4 47.8 26.8 16.7 2.8 2,851 2,592
- Qwen2-VL 84.0 68.3 49.1 28.9 5.5 1,631 3,482

Table 12: Performance on Im2GPS3k.

C.2 Haversine Distance938

We calculate the Haversine Distance of the models939

with the following formulas:940

∆ =

√︄
sin2

(︃
δlat

2

)︃
+ cos(latcor) cos(latpred) sin

2

(︃
δlon

2

)︃
(2)941

d = 2r · arcsin(∆) (3)942

where:943

• r is the Earth’s radius, which we set as 6,371,944

• δlat is the difference in latitude between the945

true and predicted coordinates,946

• δlon is the difference in longitude between the947

true and predicted coordinates,948

• latcor and loncor are the correct coordinates,949

• latpred and lonpred are the predicted coordi-950

nates.951

D Supplementary Experiments952

In this section, we present supplementary experi-953

ments, including results from the experiments on954

Im2GPS3k, and SEARCHER details.955

As shown in Table 12, NAVIG outperforms prior956

models on Im2GPS3k in terms of Average Dis-957

tance and GeoGuessr Score. However, GeoCLIP958

achieves better performance at the City and Street959

level, likely due to its training on coordinates960

datasets. The ablation results demonstrated in Ta-961

ble 13 are consistent with those in Table 5.962

We also analyze the usage of each tool across the963

datasets and the number of grounding images. This964

analysis illustrates how frequently NAVIG lever-965

ages each tool and image detail to deduce locations.966

Model Country City Street

NAVIG (MiniCPM-V) 51.7 23.1 3.0
- w/o training - 1.6 - 1.8 - 0.1
- w/o REASONER - 10.6 - 3.5 - 0.2
- w/o SEARCHER - 0.3 - 0.2 - 0.0
- MiniCPM-V - 23.9 - 7.2 - 0.7

NAVIG (LLaVA) 47.8 16.7 2.8
- w/o training - 15.3 - 4.7 - 0.8
- w/o REASONER - 8.1 - 1.3 - 0.1
- w/o SEARCHER + 0.1 - 0.2 - 0.2
- LLaVA - 4.5 - 0.2 - 0.1

NAVIG (Qwen2-VL) 68.3 28.9 5.5
- w/o training - 4.3 - 1.2 - 0.3
- w/o REASONER - 2.9 + 0.5 - 0.1
- w/o SEARCHER + 0.1 - 0.0 - 0.2
- Qwen2-VL - 3.3 + 1.0 - 0.2

Table 13: Ablation results on Im2GPS3k.

As shown in Table 14 and Table 15, houses are 967

the most frequently identified items in the testing 968

dataset, as images often contain multiple houses. In 969

contrast, signs, though less common, play a critical 970

role by generating queries for OSM. The distribu- 971

tion of items directly influences the frequency of 972

tool usage for knowledge retrieval. 973

Dataset house road
sign

building
sign

GWS5k 3,451 20 104
Im2GPS3k 465 52 24

Table 14: The frequency of how each item is grounded.

Dataset N RAG MAP VLM

GWS5k 5,000 128 70 1,978
Im2GPS3k 2,997 213 21 493

Table 15: The usage of each tool in each dataset, where
N denotes the size of the dataset.
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