Under review as a conference paper at ICLR 2026

LEANGEO: FORMALIZING COMPETITIONAL GEOME-
TRY PROBLEMS IN LEAN

Anonymous authors
Paper under double-blind review

ABSTRACT

Geometry problems are a crucial testbed for Al reasoning capabilities. Most ex-
isting geometry solving systems cannot express problems within a unified frame-
work, thus are difficult to integrate with other mathematical fields. Besides,
since most geometric proofs rely on intuitive diagrams, verifying geometry prob-
lems is particularly challenging. To address these gaps, we introduce Lean-
Geo, a unified formal system for formalizing and solving competition-level ge-
ometry problems within the Lean 4 theorem prover. LeanGeo features a com-
prehensive library of high-level geometric theorems with Lean’s foundational
logic, enabling rigorous proof verification and seamless integration with Math-
lib. We also present LeanGeo-Bench, a formal geometry benchmark in Lean-
Geo, comprising problems from the International Mathematical Olympiad (IMO)
and other advanced sources. Our evaluation demonstrates the capabilities and
limitations of state-of-the-art Large Language Models on this benchmark, high-
lighting the need for further advancements in automated geometric reasoning.
To further improve prover performance, we introduce a synthetic data genera-
tion pipeline together with a reinforcement learning training framework built on
LeanGeo. We open source the theorem library and the benchmark of LeanGeo at
https://anonymous.4open.science/r/LeanGeo—9CE9

1 INTRODUCTION

In recent years, Large Language Models (LLMs) have made significant progress in mathematical
reasoning, particularly in automated theorem proving (Bibel, 2013). Formal theorem proving is a
crucial domain for ensuring the correctness of hard-to-verify proofs within theorem proving. Lean
4 (Moura & Ullrich}, 2021), as a prominent proof assistant, provides a solid foundation for algebra
and number theory through its extensive Mathlib library (mathlib community} 2020). It has been
widely used in the formal verification of theorems within LLM:s.

However, Euclidean geometry, an essential component of mathematical reasoning and a frequent fo-
cus of competitions, remains relatively underexplored in Lean 4 community, Mathlib and automated
theorem provers. This stems from the inherent difficulty of geometric problems, which demand
graphic intuition; human reasoning in such cases inevitably relies on geometric insight, making
absolute formalization of geometry problem extremely challenging.

Currently, advanced geometric systems like AlphaGeometry (Trinh et al.l [2024), TongGeome-
try (Zhang et al., [2024a) and SeedGeometry (Chen et al. 2025)), while achieving impressive re-
sults on IMO-level geometry problems, typically rely on specialized models and operate within
geometry-specific formal systems independent of Lean. This isolation prevents integration with
other mathematical domains in mathlib, making it impossible to express geometric inequality posi-
tional relations. Additionally, their reliance on graphical verification and unordered formal systems
can lead to logical unsoundness and inability to perform rigorous verification.(See detailed compar-
ison in Table[3]and Appendix [E]

Even in Lean 4, geometric results remain scarce: Mathlib’s formalized geometry remains largely
algebraic and provides little support for synthetic reasoning. Myers (Zhang et al., [2022)) has for-
malized a single IMO geometry problem in Lean—an impressive isolated result—but the proof is
written in a highly technical Mathlib-specific style and does not develop any structured or reusable
geometric library, leaving the broader landscape of synthetic geometry in Lean essentially empty.

https://anonymous.4open.science/r/LeanGeo-9CE9

Under review as a conference paper at ICLR 2026

While developing a robust formal system is a vital step toward rigorous geometric reasoning, equally
important is the establishment of suitable benchmarks to rigorously evaluate the geometric reason-
ing capability of LLMs. However, since most geometric proofs rely on intuitive diagrams, verify-
ing geometry problems is particularly challenging. Existing geometry benchmarks, such as Geoe-
val (Zhang et al., 2024b), GeoQA (Chen et al., [2021) Geometry3K (Hiyouga, [2025) and Formal-
Math (Yu et al, |2025), primarily emphasize numerical computations of geometry object, focusing
on models’ computational ability rather than their true geometric reasoning skills. Currently, LLMs
exhibit unsatisfactory performance on Lean4 geometry benchmark such as MATP-bench (He et al.,
2025) due to the absence of a geometry theorem library as tools to prove theorems. This highlights
the necessity of developing a complete formal system and an extensive theorem library to serve as
reliable tools for LLMs.

To handle these critical gaps, we introduce LeanGeo, a framework designed to formalize and solve
geometric problems in Lean 4. Building upon LeanEuclid (Murphy et all [2024), LeanGeo es-
tablishes a comprehensive library of geometric theorems specifically curated for competition-level
challenges and seamlessly integrates with Mathlib. Compared to other formal systems like Alpha-
Geometry, LeanGeo exhibits significant differences, as detailed in Table E}

Table 1: Comparison of problem with AlphaGeometry and LeanGeo

In a triangle ABC, side AB = AC, prove that ZACB = LZABC.

Natural Language Solution. Choose D as the midpoint of side BC. Then AABD and AACD
are congruent. Therefore, ZACB = LZACD = ZABD = ZABC

ab=segmentab;c=oncirclecab?eqanglebabcbcca

Solution. * From theorem premises:

A B C : Points

AlphaGeometry cong A C A B [00]

* Auxiliary Constructions:

: Points

* Proof steps:

001. cong AC A B [00] = eqangle ACBCBCAB

theorem isoTriangle_imp_eq_angles : V (A B C : Point),
IsoTriangle AB C — £ A:B:C=Z A:C:B :=by
euclid_intros
euclid_apply exists_midpoint B C as D
LeanGeo euclid_apply line_from_points B C as BC
euclid_apply coll_angles_eq
euclid_apply congruentTriangles SSSDBAD CA
euclid_apply coll_angles_eq
euclid_finish

Based on this theorem library, we propose LeanGeo-Bench, the first formalized geometric problem
benchmark in Lean 4. It comprises 122 geometry problems, including all International Mathematical
Olympiad (IMO) geometry problems since 2000. Furthermore, we present a training methodology
that uses the theorem library to construct supervised fine-tuning (SFT) data. This data is then used in
reinforcement learning (RL) experiments upon the Kimi k1.5 reinforcement learning (RL) pipeline
(Team et al.| 2025)), yielding promising initial results.

The primary contributions of this work are as follows:

* We present the first framework in the Lean theorem prover capable of expressing and rea-
soning about competition-level geometry problems in a human-like manner. The frame-
work features an extensive library of high-level definitions and tactics based on theorems
commonly used by IMO competitors, making formal proofs more intuitive and understand-
able. Its integration within Lean facilitates the formalization of problems at the intersection
of geometry and other domains like combinatorics.

* We introduce a comprehensive geometry benchmark formalized in Lean 4 and LeanGeo,
capable of representing most of the geometry problems from the International Mathemati-

Under review as a conference paper at ICLR 2026

cal Olympiad (IMO). This benchmark provides a standardized and challenging testbed for
evaluating future formal mathematics systems. We also provide baseline results on this
benchmark using several state-of-the-art large language models.

* We develop a novel method to generate synthetic data for competitional geometry problems
and a Reinforcemnet Learning pipeline to instill unseen knowledge for LLMs.

2 RELATED WORK

2.1 AUTOMATED THEOREM PROVING

Interactive theorem provers span a spectrum of foundational languages: HOL4 (Slind & Norrish}
2008) and Isabelle/HOL (Paulson, 1994) rely on simply-typed higher-order logic, Coq (Barras et al.,
1999) and Lean (De Moura et al.| 2015) on dependent type theory.

In parallel, a series of search-based theorem provers have been developed to enhance automated rea-
soning capabilities. LEGO-Prover (Wang et al., 2023a)) employs a modular formal proof framework
to construct a reusable skill library, enabling LLMs to retrieve existing skills and synthesise new
ones during the proof process. DT-Solver (Wang et al.| 2023b)) introduces a dynamic-tree Monte
Carlo search algorithm, whereas BFS-Prover (Xin et al.,|2025)), based on a best-first search strategy,
achieves state-of-the-art performance among search-based theorem provers.

More recent developments have shifted towards an alternative whole-proof generation approach,
where a language model generates the entire proof in a single pass. Notable examples following
this paradigm include DeepSeek-Prover (Ren et all [2025), Goedel-Prover (Lin et al) 2025), and
Kimina-Prover Preview (Wang et al., [2025). Agentic methods such as Delta Prover(Zhou et al.,
2025) integrate reflective decomposition and iterative repair, allowing a general-purpose LLM to
interactively construct formal proofs. Seed-Prover (Chen et al.| [2025)) combines multi-stage rein-
forcement learning, agent-based strategies and test-time scaling, achieving impressive results by
fully solving 4 out of 6 problems in IMO 2025.

2.2 LEANEUCLID

LeanFuclid (Murphy et al.l [2024) represents a pioneering effort in formalizing plane geometry
within Lean by integrating SMT (Barrett & Tinelli,[2018)) solving techniques with SystemE (Avigad
et al.;,2009) to construct a rigorous axiomatic framework. It introduces an autoformalization bench-
mark that covers the first chapter of Euclid’s Elements along with 125 relatively simple problems
drawn from the UniGeo corpus.

Table 2: Comparison between LeanEuclid and LeanGeo

LEANEUCLID LEANGEO
Axiom Number 107 116
Theorem Number 106 260
Geometry Structure Number 12 50
Average Proof Length 20.27 16.20
Average number of quote lemma 3.80 3.43
SMT Method Hard-coded rules LeanSMT
Level Euclid’s Element Competitional Geometry

Our framework LeanGeo is a substantial expansion of LeanEuclid’s theorem library and geometric
structures. LeanEuclid formalizes only the 49 propositions in Elements I; as a result, its expres-
sive power is far from adequate for solving standard middle- and high-school geometry problems.
LeanGeo builds on the same axiomatic foundation but provides a significantly richer collection of
theorems, definitions, and geometric structures while improving SMT method. A summary compar-
ison is shown in Table 2]

Under review as a conference paper at ICLR 2026

2.3 GEOMETRY PROBLEM SOLVING

Automatic geometry solvers have a rich history. Classical algebraic methods—Wu’s characteristic
set (Wu, | 1986) and Grobner bases (Bose, |[1995)—reduce geometry to polynomial ideal membership,
achieving impressive coverage of textbook theorems.

A recent milestone in automated geometry reasoning is AlphaGeometry (Trinh et al., [2024), which
integrates a neural language model trained on 100 million synthetic theorems with a symbolic de-
duction engine to solve 25 out of 30 IMO-level problems. Building on the framework proposed
in |Chou et al.| (2000), its formal system is unordered and point-centered, enabling fast symbolic
deduction within this setting. However, this formal system also has several notable limitations that
restrict its broader applicability.

In essence, AlphaGeometry functions as a task-specialized solving system tailored for IMO-style
geometry problems: it is extremely powerful in problem solving, but this comes at the cost of
sacrificing internal axiomatic rigor and omitting several components we believe are equally essential
for geometry learners and researchers—such as geometric inequalities, trigonometric reasoning, and
positional or incidence relations. Furthermore, its unsound formal system makes it impossible to
formally verify any proofs. While its simplified formal system accelerates search and inference, it
loses part of the rigor and human interpretability. In contrast, our system aims to be more complete,
rigorous, and structurally expressive, though this naturally results in more intricate and elaborate
reasoning processes.

The comparison between LeanGeo and AlphaGeometry are shown in Table [3] Appendix [E] Gives
more example to illustrate the comparison in the table.

Table 3: Comparison between AlphaGeometry and LeanGeo

Category Feature AlphaGeometry LeanGeo

Geometric Inequality & Trigonometric Functions X v
Metric Relation (Perpendicular, Parallel, Equal) v v
Expressivity Positional Relation (Inside, Between, Sameside) X v
Existential Proposition X v
Linear Computation v v
Non-linear Computation X v
Verifiability Verifiability of Proof X v
Axiom System Soundness a v
Extensibility X v

2.4 GEOMETRY AND LEAN BENCHMARKS

Advances in automated theorem proving have spurred the development of various Lean-based math-
ematical benchmarks in recent years. MiniF2F, for instance, is a benchmark designed to evaluate
automated theorem-proving systems on high-school-level algebra and number theory problems.

In parallel, several geometry benchmarks have been established to assess the multi-modal reasoning
capabilities of large language models (LLMs). Benchmarks such as Geoeval (Zhang et al., 2024b),
GeoQA (Chen et al.[2021)), Geometry3K (Hiyougal 2025)), and FormalMath (Yu et al., 2025)) offer
comprehensive evaluations of computational and quantitative reasoning. However, classical geo-
metric proof—rooted in Euclidean tradition—remains an essential aspect of geometric reasoning
that is currently underrepresented in existing benchmarks, largely due to the difficulty of formal
verification. LeanEuclid, built upon Book I of Euclid’s Elements, provides a benchmark for auto-
formalization, yet its problem set is limited in scope and primarily consists of elementary exercises.
The AlphaGeometry framework introduced two benchmarks, IMO-30 and JGEX-231, but these
emphasize problem-solving without supporting verifiable formal proofs due to limitations in their
underlying reasoning systems. MATP aggregates a large set of geometry problems written in Lean4,
yet current LLMs perform unsatisfactorily on this benchmark. Moreover, the lack of a comprehen-
sive geometry theorem library in Lean4 hinders the effective application of geometric tools by LLMs
in this formal environment. A detailed comparison of these benchmarks is provided in Table

Under review as a conference paper at ICLR 2026

Table 4: Comparison of Geometry and Lean Benchmarks

Benchmark Size Verifiable Geor.netrlc Formal Lean Tl}eorem Level
Proving Percentage Library
miniF2F 488 v 0% v Mathlib ~ Middle School
Geometry3K-test 601 v 0% X X Middle School
LeanEuclid 173 v 0% v SystemE Elementary
AG-IMO-30 30 X 100% X DD rules Olympiad
MATP-Bench 1056 v About 20% v X Synthetic
LeanGeo-Bench 123 v 100% v LeanGeo Synthetic

3 LEANGEO

LeanGeo is a manually formalized system of plane geometry theorems and their proofs in the Lean
4 proof assistant. It builds upon the axiomatic framework of SystemE (Avigad et al., 2009), while
its implementation inherits most foundational geometric objects, relations from LeanEuclid (Mur-
phy et al [2024), with slight modifications (see Appendix [C). Additionally, LeanGeo leverages
LeanSMT (Mohamed et al.| 2025)) at its core, which effectively hides many of the underlying proof
details in Lean 4.

LeanGeo

Basic (61) Metrics (17) Triangle (51) Circle (118) Quadrilateral (13)

Angle Area Basic Basic | Basic
Distance Trigonometry IsoTriangle Cyclic

Construction Circumcentre Position

Position Othocentre Relation

Parallel Incentre Radical Axis

Perpendicular Miquel

PerpBisector

Figure 1: Structure of LeanGeo Theorem Library

3.1 THEOREM LIBRARY

To enhance the expressive power of the theorem library and align it with common geometric ter-
minology, we firstly introduced 52 new definitions for geometric structures — such as Midpoint,
Circumcenter, and RadicalAxis using abbrev as shown in[I] These additions make problem state-
ments more concise and proofs more streamlined, while not increasing the length of the correspond-
ing SMT process.

abbrev Cyclic (A B C D: Point) : Prop :=
3 (0: Circle), A.onCircle O A B.onCircle O A C.onCircle O A D.onCircle O

Listing 1: Example of abbreviation

With the assistance of these newly defined structures, we established LeanGeo, a theorem library
comprising 260 geometric theorems as shown in[I} All theorems in the library are manually written,
formally proved and auto-verified by Lean4 and LeanSMT.

These theorems systematically cover topics ranging from foundational middle-school geometry to
challenging International Mathematical Olympiad (IMO) level theorem, such as Menelaus’s theorem
and Miquel’s theorem. Besides, the library covers a wide range of geometry theorem, including
fundamental properties of triangles (e.g., congruence, similarity), circles (e.g., inscribed angles,
power of a point, radical axis), and quadrilaterals, as well as theorems related to key geometric
points like the circumcenter and orthocenter.

A key feature of LeanGeo is that most proofs in the library are constructed by referencing previously
established theorems through the euclid_apply tactic. Consequently, the development of the
library parallels the human process of building geometric theory—progressing from axoims and
simple foundations to increasingly complex structures (see Listing[6)). As the library grows, these
reusable lemmas substantially enhance deductive efficiency and shorten higher-level proofs.

Under review as a conference paper at ICLR 2026

Our experiments (See details in Appendix [A-Z) why this modular structure matters: integrating
lemmas directly back into a theorem increases compilation time, and the effect becomes severe
when lemma granularity is too coarse, as the system is forced to repeatedly recompile the same
reasoning steps. In contrast, keeping lemmas separate allows shared arguments to be compiled once
and reused, significantly improving overall efficiency.

Besides, LeanGeo is designed for seamless integration with Mathlib, enabling it to leverage powerful
tools from other areas of mathematics. For example, it can employ trigonometric identities and ad-
vanced inequalities to tackle problems that are often beyond the reach of purely axiomatic geometry
systems. As shown in[D.2] trigonometric theorems in Mathlib are applied to prove IMO_2001_P1, a
geometry inequality problem that is difficult to express within most geometric formal systems.

One of the most challenging issues in theorem annotation is describing positional relationships in
geometry without visual aids. For problem illustrated in Figure [2] natural language proofs, as well
as most geometry formal systems such as AlphaGeometry, consider only a single case. Owing to
Lean’s stringent requirements for rigor, a LeanGeo-proof must explicitly account for all possible
cases. While this often results in more intricate proofs, it also ensures a higher level of rigor.

(\
Natural Language:
The Circle O1 and O2 intersects at K and B, A line through B intersects the circle Ol at A
. and circle O2 at C. Prove that triangle KO102 and KAC are similar.

\.

/ N\
Formal Statement in LeanGeo:
theorem intersectCircles_similarTriangles_of one_secant : ¥ (O: O: A B C K : Point) (Q: Q: Circle), Qi
Q2 A Ou.isCentre Qi A O2.isCentre Q2 A CirclesIntersectAtTwoPoints Qi Q2 B K A A.onCircle Qi A

| C.onCircle Q2 A Coll ABCAA#BAB#CAA#KAC#K — SimilarTriangles 01 0: KACK :=by |

N N

[Possible Graph 1: N /Possible Graph 2: \ / Possible Graph 3:

"

Figure 2: Different graphs with a same formal statement

To avoid overly cumbersome case analyses, we make extensive use of SMT solvers in our formal
proofs to simplify the classification process and trivial results.

3.2 LEANSMT 4.15

To efficiently discharge goals deemed trivial in natural language proofs, LeanGeo invokes the
CVC5 (Barbosa et al., [2022) SMT solver. In LeanEuclid (Murphy et al.l [2024), the SystemE ax-
ioms are embedded as hardcoded SMT commands. By contrast, LeanGeo employs the e smt tactic,
which directly passes all local hypotheses from the current tactic state—together with SystemE’s
inference axioms and the negated goal—to CVCS5 for an unsatisfiability check. If CVCS5 returns
unsat, the entailment is confirmed.

For performance optimization, raw axiom expressions are not repeatedly translated into SMT com-
mands. Instead, parsed axiom expressions are cached, and a global metavariable (mvar) dependency
graph is maintained. This graph is dynamically updated whenever a definition or axiom annotated
with @ [euclid] is encountered as shown in Listing[2} The core logic for updating this dependency
graph is presented in the Appendix

Q[euclid]
axiom zero_segment_if
V (a b : Point), |(a - b)] =0 —= a=»>b

Under review as a conference paper at ICLR 2026

Listing 2: tactic usage]Example of @[euclid] tactic usage

The @[euclid] tactic makes our system more extensible. In LeanEuclid, the translator does
not natively handle new definitions, meaning it would require manual modification to work with
non-SystemE definitions such as sin and cos. Our system is designed to seamlessly incorporate
such new definitions, making it more adaptable to a wider range of geometric problems. In addi-
tion, our theorem library inherits the expression styles of other tactics from LeanEuclid, such as
euclid_intros, euclid_apply, and euclid_finish. When these tactics are executed,
the system automatically invokes LeanSMT to return the results. The specific usage and examples
of these tactics can be found in Appendix

Moreover, we analyze the scalability of LeanGeo based on four controlled experiments that vary
the number of geometry elements, assumptions, proof length, and uses of euclid tactics (see Ap-
pendix for detailed graphs). Across all settings, both heartbeats and compilation time exhibit
nearly linear growth with respect to the problem size, and the two metrics remain strongly positively
correlated. increases mildly, but without causing instability. The four scaling curves demonstrate
that LeanGeo’s performance is dominated by the expected linear relationship between proof work-
load and compilation effort, with no pathological slowdowns observed.

4 LEANGEO-BENCH

4.1 BENCHMARK

LeanGeo-Bench is a formal benchmark tailored for formalizing and proving contest-level plane
geometry theorems in Lean 4 and LeanGeo. As shown in Table [5] the benchmark consists of 122
problems drawn from diverse sources, including existing theorem libraries, textbooks, synthetically
generated problems, contest problems.

Table 5: Composition of LeanGeo-Bench

SECTION N SOURCE METHOD
UniGeo(UG) 10 LeanEuclid Manually Written
Library(LB) 10 LeanGeo Library Manually Written
Synthetic Problem(SP) 20 LeanGeo Library Generated by gemini
High Shool Competition(HSC) 20 NuminaMath Autoformalized + double check
Olympic Problem(OP) 19 Evan Chen’s textbook Autoformalized + double check
IMO 43 AoPS Autoformalized + double check

The benchmark’s difficulty ranges from foundational to competition-level. It includes 20 introduc-
tory problems: 10 from UniGeo(Chen et al. 2022) and 10 from LeanGeo theorem library. An-
other 20 problems (‘Gemini_synthetic’) are synthetically generated by an gemini-2.5 via our Prob-
lem Generation Pipeline. The majority of the benchmark consists of 83 more advanced problems
sourced from high-school curricula, NuminaMath(Li et al., [2024), Evan Chen’s Geometry textbook
Chen| (2021)), and all the International Mathematical Olympiad (IMO) geometry problems since
2000 from AoPS(Art of Problem Solving). These problems were developed using a human-in-the-
loop methodology: For each problem, it is first autoformalized by a large language model through
prompt engineering, and then rigorously reviewed and corrected by two human experts.

The benchmark covers a broad range of topics commonly encountered in competitive geometry,
including triangles, circles, quadrilaterals, and notably triangle centers (e.g., incenter, circumcen-
ter), as shown in Figure 3| It also contains comprehensive problems involving multiple geometric
configurations. Moreover, the problem types are diverse: in addition to traditional plane geome-
try proofs, many problems require calculating or deriving angles and side lengths. The benchmark
further includes three geometry inequality problems and two problems involving moving points.

As part of this work, we present 43 formally verified solutions to problems in the benchmark, includ-
ing two from the International Mathematical Olympiad (IMO), all of which are machine-checked
in Lean. The formal proofs ensure the correctness of these problems. For problems without formal

Under review as a conference paper at ICLR 2026

34 (27.9%)

14 (11.5%)

12 (9.8%)

10 (8.2%)

Figure 3: Category Distribution of LeanGeo-Bench

proofs, we validate correctness using a negation-based method combined with independent reviews
by two geometry experts.

4.2 EVALUATION METHOD

To guide the LLM in generating formal proofs, we design a comprehensive prompt that carefully
structures the task environment. The prompt comprises a custom declarative Domain-Specific Lan-
guage of LeanGeo, “Error-and-correction” examples, construction rules for geometric definitions,
the full set of theorems from the LeanGeo theorem library, together with few-shot learning examples.
The complete prompt is provided in the Appendix [F}

To evaluate the result generated by LLM, we apply the online_one_stage Fine-Eval method
introduced in CombiBench (Liu et al.,|2025) - This evaluation followed a two-step procedure. First,
we checked that the LLM’s result was consistent with the initial formal problem statement. Then,
we fed the result into a Lean server containing a pre-built theorem library to formally verify the
proof.

4.3 BASELINE RESULT

To comprehensively evaluate the model’s performance on the benchmark, we conducted extensive
testing across Gemini 2.5 Pro (DeepMind, [2025)), 04-mini (OpenAll 2025), Grok 4 (xAl, 2025) ,
Kimi K2 (MoonshotAl [2025) , Claude 4 (Anthropicl [2025) and Qwen3-235B-A22B (Yang et al.,
2025) and collected their overall success rates at different sample budgets and their performance in
different section. The results are shown in Table [0l

Table 6: Evaluation on LeanGeo-Bench

MODEL OVERALL SUCCESS RATE (%) SUCCESS NUMBER(pass @4)
pass@1 pass@2 pass@4 UG LB SP HSC OP IMO

Gemini 2.5 Pro 17.21 22.95 27.05 10 4 13 6 0 0
04-mini 19.67 21.31 22.13 7 9 8 3 0
Grok 4 16.39 21.31 24.59 10 6 11 3 0 0
Kimi K2 9.02 9.02 9.84 1 9 2 0 0 0
Claude 4 4.92 9.02 10.66 1 5 7 0 0 0
Qwen3-235B-A22B 3.28 4.10 5.74 0 6 1 0 0 0

Total 10 10 20 20 19 43

The LeanGeo-Bench results reveal substantial differences in geometric theorem-proving perfor-
mance across state-of-the-art LLMs. o04-mini (OpenAl, [2025) attains the highest pass@1 score
(19.67%), while Gemini 2.5 Pro (DeepMind, 2025) leads at pass@4 (27.05%).

A breakdown by category at pass@4 reveals complementary strength of LLMs in different area:
Gemini-2.5-Pro excels in novel-problem settings such as Synthetic Proof (SP) and High School
Competition (HSC), indicating stronger adaptability to unseen reasoning patterns, while GPT-04-
mini demonstrates greater proficiency in Library(LB), suggesting a more understanding and appli-
cation of the theorem library in prompt.

Under review as a conference paper at ICLR 2026

While most models achieve partial success on the benchmark, their performance plateaus below
30%, and notably none of the evaluated models could solve any of the 62 Olympic-level problems,
indicating fundamental limitations in handling complex geometric proofs that require sophisticated
logical reasoning, advanced diagram interpretation, and formal verification capabilities.

5 REINFORCEMENT LEARNING EXPERIMENTS

5.1 GENERATING DATA BY LLM

A significant challenge in applying Reinforcement Learning training on LeanGeo is the absence of
pre-existing cold start data, as LeanGeo establishes a novel framework for formal geometry. To
address this, we developed a synthetic data generation pipeline. This process begins by creating
a specialized prompt for Gemini 2.5 Pro (DeepMind, 2025)), featuring carefully crafted guidelines
and few-shot examples of theorem generation. Instead of tasking the LLM with solving a predefined
problem, we prompt it with five randomly sampled theorems from our existing LeanGeo library. The
LLM is then instructed to synthesize a new theorem and a corresponding proof, using the sampled
theorems as inspiration. We repeated this process 5,000 times, each time conditioning the model on
a different random subset of our library, to ensure a broad and diverse distribution of new problems.

The generated theorem-proof pairs are then automatically verified using the Lean prover. This ver-
ification reveals that 89% of the generated formal statements are syntactically valid, and 14% of
the full submissions (statement and proof) pass the verification. Based on this outcome, we cat-
egorize the generated data: the activation dataset consists of problems with a valid statement and
correct proof. This dataset is used for supervised fine-tuning as the initialization phase for reinforce-
ment learning, while problems with valid statement but invalid proof are used for the prompt set in
reinforced learning. The whole process is illustrated in Figure[d]

4@

sample 5 theorems

'

verify statements. verify proofs.

Theorems with
correct proofs

Theorems with
correct statements

New theorems

Theorem Library with proofs

Activation
Data

Figure 4: Data Generation Pipeline

5.2 INSTILLING KNOWLEDGE IN RL

Another challenge arises from the size of our theorem library. To prove a new theorem, the model
must select and apply relevant theorems from this library. Incorporating the entire library into the
prompt may present practical limitations, as it risks surpassing the model’s context window, which
could adversely impact training efficiency and model performance. To overcome this, we propose
an “instilling method” that structures the prompt to manage the context effectively. Specifically, we
use the following data format:

You are an expert in Lean 4 and geometric problem-solving.
You may apply the following theorems to solve the problem:
<theorem_1>
<theorem_2>

<theorem_10>
Now, let’s solve the following problem step-by-step.
<formal_statement>

During reinforcement learning, we retain the same prompt structure; however, the 10 provided the-
orems are selected entirely at random from the library, regardless of their relevance to the target

Under review as a conference paper at ICLR 2026

formal statement. This approach encourages the model to discern and apply theorems that are truly
pertinent within a noisy context, fostering a critical skill necessary for effective problem-solving.

5.3 RL TRAINING

We employ the RL framework of the Kimina-Prover (Wang et al., |2025) to train our model. Our
RL training procedure consists of two stages. Initially, the agent is trained on the activation dataset,
during which the model’s proof success rate improves from a post-SFT baseline of 37% to 60%.
Subsequently, training proceeds on the prompt set, where the success rate increases from 12.5% to
40%. This training regimen also yields enhanced performance on our evaluation benchmark, with
the pass@1 rate rising from 2.52 % to 10.92%.

6 DISCUSSION AND FUTURE WORK

While LeanGeo successfully demonstrates the viability of a declarative, human-readable approach
for competition-level geometry, several key challenges and opportunities for future work remain.
These are centered on strengthening the system’s foundational soundness, enhancing its automation
capabilities, and Instilling domain-specific knowledge to LLMs.

6.1 AUTOMATION CAPABILITIES

While the integration with SMT solvers is powerful, a limitation of general-purpose SMT solvers
is their lack of geometry-specific heuristics. Therefore, the solving speed of SMT significantly
decreases as the number of points in the problem increases. One way to scale LeanGeo for more
complex problems is by embedding domain-specific proof automation, like the Area Method(Janicic
et al.,[2012)) or algebraic geometry techniques, into the tactic framework.

6.2 INSTILLING DOMAIN-SPECIFIC KNOWLEDGE TO LLMS

In the current benchmark, to ensure the model correctly cites theorems, we input the entire theorem
library’s statements as prompts to the model. However, long prompts may negatively impact the
model’s performance.

To address this issue, our RL framework takes first steps in reducing prompt length and instilling
knowledge into LLMs. However, our method is still rather rudimentary and needs more sophisti-
cated development.

7 CONCLUSION

In this paper, we present LeanGeo, the first Lean-based framework capable of formalizing and solv-
ing competition-level geometry problems, together with LeanGeo-Bench, a 122-problem benchmark
spanning from foundational theorems to IMO challenges. LeanGeo’s declarative, human-readable
proofs, deep Mathlib integration, and extensible library enable rigorous cross-domain reasoning be-
yond the reach of existing geometry systems.

Our baseline evaluations reveal that while current LLMs can solve some problems, they fall far
short on the hardest tasks, underscoring the need for stronger geometric reasoning and proof search
capabilities. By combining a rich formal library, a challenging benchmark, and initial reinforcement
learning experiments, LeanGeo establishes a scalable testbed for advancing automated geometry
theorem proving and neuro-symbolic reasoning.

8 REPRODUCIBILITY STATEMENT

To reproduce the LeanGeo experiments or run the benchmark evaluation reported in this pa-
per, please clone the anonymized repository at https://anonymous.4open.science/r/
LeanGeo—9CE9|and follow the step-by-step instructions given in the README.md. Our evalua-
tion toolkit offers a clean, end-to-end benchmark harness: one command clones the repo, downloads
frozen artifacts, and prints the identical numbers reported in the paper—no manual tuning or secret
flags—thereby maximizing reproducibility. The RL-training pipeline relies on Moonshot Al internal
infrastructure that cannot be released.

10

https://anonymous.4open.science/r/LeanGeo-9CE9
https://anonymous.4open.science/r/LeanGeo-9CE9

Under review as a conference paper at ICLR 2026

REFERENCES

Anthropic. Introducing claude 4. https://www.anthropic.com/news/claude-4, July
2025. Accessed on 2025-07-25.

Art of Problem Solving. Art of problem solving. Website. URL https://
artofproblemsolving.com. Accessed: 2025-08-12.

Jeremy Avigad, Edward Dean, and John Mumma. A formal system for euclid’s elements. The
Review of Symbolic Logic, 2(4):700-768, 2009.

Haniel Barbosa, Clark Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt, Makai Mann, Ab-
dalrhman Mohamed, Mudathir Mohamed, Aina Niemetz, Andres Notzli, et al. cveS: A versatile
and industrial-strength smt solver. In International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, pp. 415-442. Springer, 2022.

Bruno Barras, Samuel Boutin, Cristina Cornes, Judica€l Courant, Yann Coscoy, David Delahaye,
Daniel de Rauglaudre, Jean-Christophe Fillidtre, Eduardo Giménez, Hugo Herbelin, et al. The
coq proof assistant reference manual. INRIA, version, 6(11):17-21, 1999.

Clark Barrett and Cesare Tinelli. Satisfiability modulo theories. In Handbook of model checking,
pp- 305-343. Springer, 2018.

Wolfgang Bibel. Automated theorem proving. Springer Science & Business Media, 2013.

NK Bose. Grobner bases: An algorithmic method in polynomial ideal theory. In Multidimensional
systems theory and applications, pp. 89—127. Springer, 1995.

Evan Chen. Euclidean geometry in mathematical olympiads, volume 27. American Mathematical
Soc., 2021.

Jiaqi Chen, Jianheng Tang, Jinghui Qin, Xiaodan Liang, Lingbo Liu, Eric P Xing, and Liang Lin.
Geoga: A geometric question answering benchmark towards multimodal numerical reasoning.
arXiv preprint arXiv:2105.14517, 2021.

Jiaqi Chen, Tong Li, Jinghui Qin, Pan Lu, Liang Lin, Chongyu Chen, and Xiaodan Liang. Unigeo:
Unifying geometry logical reasoning via reformulating mathematical expression. arXiv preprint
arXiv:2212.02746, 2022.

Luoxin Chen, Jinming Gu, Liankai Huang, Wenhao Huang, Zhicheng Jiang, Allan Jie, Xiaoran Jin,
Xing Jin, Chenggang Li, Kaijing Ma, Cheng Ren, Jiawei Shen, Wenlei Shi, Tong Sun, He Sun,
Jiahui Wang, Siran Wang, Zhihong Wang, Chenrui Wei, Shufa Wei, Yonghui Wu, Yuchen Wu,
Yihang Xia, Huajian Xin, Fan Yang, Huaiyuan Ying, Hongyi Yuan, Zheng Yuan, Tianyang Zhan,
Chi Zhang, Yue Zhang, Ge Zhang, Tianyun Zhao, Jianqiu Zhao, Yichi Zhou, and Thomas Han-
wen Zhu. Seed-prover: Deep and broad reasoning for automated theorem proving, 2025. URL
https://arxiv.org/abs/2507.23726.

Shang-Ching Chou, Xiao-Shan Gao, and Jing-Zhong Zhang. A deductive database approach to
automated geometry theorem proving and discovering. Journal of Automated Reasoning, 25(3):
219-246, 2000.

Leonardo De Moura, Soonho Kong, Jeremy Avigad, Floris Van Doorn, and Jakob von Raumer. The
lean theorem prover (system description). In International Conference on Automated Deduction,
pp- 378-388. Springer, 2015.

DeepMind. Gemini 2.5 pro. https://deepmind.google/models/gemini/pro/, July
2025. Accessed on 2025-07-25.

Zhitao He, Zongwei Lyu, Dazhong Chen, Dadi Guo, and Yi R Fung. Matp-bench: Can mllm be
a good automated theorem prover for multimodal problems? arXiv preprint arXiv:2506.06034,
2025.

Hiyouga. Geometry3k dataset, 2025. URL https://huggingface.co/datasets/
hiyouga/geometry3k.

11

https://www.anthropic.com/news/claude-4
https://artofproblemsolving.com
https://artofproblemsolving.com
https://arxiv.org/abs/2507.23726
https://deepmind.google/models/gemini/pro/
https://huggingface.co/datasets/hiyouga/geometry3k
https://huggingface.co/datasets/hiyouga/geometry3k

Under review as a conference paper at ICLR 2026

Predrag Janicic, Julien Narboux, and Pedro Quaresma. The Area Method : a Recapitulation. Journal
of Automated Reasoning, 48(4):489-532,2012. doi: 10.1007/s10817-010-9209-7. URL https:
//hal.science/hal-00426563!.

Jia Li, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Huang, Kashif
Rasul, Longhui Yu, Albert Q Jiang, Ziju Shen, et al. Numinamath: The largest public dataset in
aidmaths with 860k pairs of competition math problems and solutions. Hugging Face repository,
13(9):9, 2024.

Yong Lin, Shange Tang, Bohan Lyu, Ziran Yang, Jui-Hui Chung, Haoyu Zhao, Lai Jiang, Yihan
Geng, Jiawei Ge, Jingruo Sun, et al. Goedel-prover-v2: Scaling formal theorem proving with
scaffolded data synthesis and self-correction. arXiv preprint arXiv:2508.03613, 2025.

Jungqi Liu, Xiaohan Lin, Jonas Bayer, Yael Dillies, Weijie Jiang, Xiaodan Liang, Roman Soletskyi,
Haiming Wang, Yunzhou Xie, Beibei Xiong, et al. Combibench: Benchmarking 1lm capability
for combinatorial mathematics. arXiv preprint arXiv:2505.03171, 2025.

The mathlib community. The lean mathematical library. In Proceedings of the 9th ACM SIGPLAN
International Conference on Certified Programs and Proofs, CPP 2020, pp. 367-381. ACM,
2020. doi: 10.1145/3372885.3373824.

Abdalrhman Mohamed, Tomaz Mascarenhas, Harun Khan, Haniel Barbosa, Andrew Reynolds,
Yicheng Qian, Cesare Tinelli, and Clark Barrett. Lean-smt: An smt tactic for discharging proof
goals in lean. In International Conference on Computer Aided Verification, pp. 197-212. Springer,
2025.

MoonshotAl. Kimi k2: Open agentic intelligence. https://moonshotai.github.io/
Kimi-K2 /) July 2025. Accessed on 2025-07-25.

Leonardo de Moura and Sebastian Ullrich. The lean 4 theorem prover and programming language.
In International Conference on Automated Deduction, pp. 625-635. Springer, 2021.

Logan Murphy, Kaiyu Yang, Jialiang Sun, Zhaoyu Li, Anima Anandkumar, and Xujie Si. Autofor-
malizing euclidean geometry. arXiv preprint arXiv:2405.17216, 2024.

OpenAl Announcing openai 03 and o4-mini. https://openai.com/index/
introducing-o3—and-o4-mini/, July 2025. Accessed on 2025-07-25.

Lawrence C Paulson. Isabelle: A generic theorem prover. Springer, 1994.

77 Ren, Zhihong Shao, Junxiao Song, Huajian Xin, Haocheng Wang, Wanjia Zhao, Liyue Zhang,
Zhe Fu, Qihao Zhu, Dejian Yang, et al. Deepseek-prover-v2: Advancing formal mathematical rea-
soning via reinforcement learning for subgoal decomposition. arXiv preprint arXiv:2504.21801,
2025.

Konrad Slind and Michael Norrish. A brief overview of hol4. In International Conference on
Theorem Proving in Higher Order Logics, pp. 28-32. Springer, 2008.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with
IIms. arXiv preprint arXiv:2501.12599, 2025.

Trieu H Trinh, Yuhuai Wu, Quoc V Le, He He, and Thang Luong. Solving olympiad geometry
without human demonstrations. Nature, 625(7995):476-482, 2024.

Haiming Wang, Huajian Xin, Chuanyang Zheng, Lin Li, Zhengying Liu, Qingxing Cao, Yinya
Huang, Jing Xiong, Han Shi, Enze Xie, et al. Lego-prover: Neural theorem proving with growing
libraries. arXiv preprint arXiv:2310.00656, 2023a.

Haiming Wang, Ye Yuan, Zhengying Liu, Jianhao Shen, Yichun Yin, Jing Xiong, Enze Xie, Han Shi,
Yujun Li, Lin Li, et al. Dt-solver: Automated theorem proving with dynamic-tree sampling guided
by proof-level value function. In Proceedings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 12632-12646, 2023b.

12

https://hal.science/hal-00426563
https://hal.science/hal-00426563
https://moonshotai.github.io/Kimi-K2/
https://moonshotai.github.io/Kimi-K2/
https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/introducing-o3-and-o4-mini/

Under review as a conference paper at ICLR 2026

Haiming Wang, Mert Unsal, Xiaohan Lin, Mantas Baksys, Junqgi Liu, Marco Dos Santos, Flood
Sung, Marina Vinyes, Zhenzhe Ying, Zekai Zhu, et al. Kimina-prover preview: Towards large
formal reasoning models with reinforcement learning. arXiv preprint arXiv:2504.11354, 2025.

Wen-Tsun Wu. Basic principles of mechanical theorem proving in elementary geometries. Journal
of automated Reasoning, 2(3):221-252, 1986.

XAl Grok 4 — xai. https://x.ai/news/grok—4, July 2025. Accessed on 2025-07-25.

Ran Xin, Chenguang Xi, Jie Yang, Feng Chen, Hang Wu, Xia Xiao, Yifan Sun, Shen Zheng, and
Kai Shen. Bfs-prover: Scalable best-first tree search for llm-based automatic theorem proving.
arXiv preprint arXiv:2502.03438, 2025.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Zhouliang Yu, Ruotian Peng, Keyi Ding, Yizhe Li, Zhongyuan Peng, Minghao Liu, Yifan Zhang,
Zheng Yuan, Huajian Xin, Wenhao Huang, et al. Formalmath: Benchmarking formal mathemati-
cal reasoning of large language models. arXiv preprint arXiv:2505.02735, 2025.

Chi Zhang, Jiajun Song, Siyu Li, Yitao Liang, Yuxi Ma, Wei Wang, Yixin Zhu, and Song-
Chun Zhu. Proposing and solving olympiad geometry with guided tree search. arXiv preprint
arXiv:2412.10673, 2024a.

Hanting Zhang, Daniel Selsam, and Joseph Myers. imo geometryfopic in the lean zulip
chat archive. https://leanprover—-community.github.io/archive/
stream/219941-Machine-Learning—-for-Theorem-Proving/topic/IMO.
20Geometry.html, 2022. LeanProver Community Chat, Apr 2022.

Jiaxin Zhang, Zhongzhi Li, Mingliang Zhang, Fei Yin, Chenglin Liu, and Yashar Moshfeghi. Geoe-
val: benchmark for evaluating llms and multi-modal models on geometry problem-solving. arXiv
preprint arXiv:2402.10104, 2024b.

Yichi Zhou, Jianqiu Zhao, Yongxin Zhang, Bohan Wang, Siran Wang, Luoxin Chen, Jiahui Wang,
Haowei Chen, Allan Jie, Xinbo Zhang, Haocheng Wang, Luong Trung, Rong Ye, Phan Nhat
Hoang, Huishuai Zhang, Peng Sun, and Hang Li. Solving formal math problems by decomposi-
tion and iterative reflection. 2025. URL https://arxiv.org/abs/2507.15225.

13

https://x.ai/news/grok-4
https://leanprover-community.github.io/archive/stream/219941-Machine-Learning-for-Theorem-Proving/topic/IMO.20Geometry.html
https://leanprover-community.github.io/archive/stream/219941-Machine-Learning-for-Theorem-Proving/topic/IMO.20Geometry.html
https://leanprover-community.github.io/archive/stream/219941-Machine-Learning-for-Theorem-Proving/topic/IMO.20Geometry.html
https://arxiv.org/abs/2507.15225

Under review as a conference paper at ICLR 2026

A ANALYSIS OF SCALABILITY

A.1 SCALABILITY OF SMT

We conduct a series of supplementary experiments to evaluate the scalability of LeanGeo, examining
how four key factors influence both compilation time and the number of heartbeats required for proof
execution:

* [(1)] The number of basic geometric elements (points, lines, and circles),

* [(2)] The number of given conditions,

* [(3)] The length of the proof, and

* [(4)] The number of applications of the euclid tactics.

The scaling curves are shown in Figure 3]

25000] —— compilation time 25000 | —— compilation time
heartbeats —— heartbeats 175000

120000

150000

20000 100000 20000

125000
80000
15000

15000
100000

8

E

60000 £
8

E-

Heartbeats

75000

. 10000 10000

Compilation Time (ms)
Compilation Time (ms)

40000
50000

5000 5000

20000 25000

o

o o

N2 13 14 15 1 17 18

L Y 1 2 3 3 5 & 7 8 5 10
Number of Conditions

4 6 7
Number of Fundamental Conditions

(a) Experiment 1 (b) Experiment 2

35000 1 —— compilation time 175000 35000 1 —— compilation time 175000
—— heartbeats —— heartbeats

30000 150000 30000 150000
25000 125000 25000 125000

20000 100000 20000 100000

artbeal

15000 15000 75000 £

Compilation Time (ms)
Compilation Time (ms)

10000 S0000 10000 50000

5000 25000 5000 25000

o o

3 3
12545678 9DNBBLLLTB02021222321252272200%255 1735435678 9NNEBLLbTB0021222202522722030 %255
Length of Proof (lines) Length of Proof (lines)

(c) Experiment 3 (d) Experiment 4
Figure 5: Scaling behavior of heartbeats and compilation time across four experimental settings.

Across all four experiments, LeanGeo exhibits approximately linear scaling: as we increase assump-
tions, conditions, proof length, or the number of Euclid tactics, both heartbeats and compilation time
grow in a strongly correlated, near-linear manner. The only noticeable rises occur when the logical
structure becomes denser (e.g., deeper lemma dependencies), which naturally increases the amount
of proof search. Overall, the results show that LeanGeo is practically scalable, with performance
determined primarily by the expected positive correlation between heartbeats and compilation effort
rather than by any pathological geometric cases.

A.2 COMPLEXITY VERSUS LEMMA GRANULARITY

Our experiments demonstrate that coarse lemma granularity leads to severe blow-ups in both compi-
lation time and heartbeats. When large “all-in-one” lemmas are inlined directly into a theorem, many
nearly identical reasoning steps must be recompiled repeatedly, causing exponential-like scaling.

In contrast, extracting commonly reused intermediate results into separate lemmas keeps the compi-
lation cost close to linear in the dependency depth, because each lemma is compiled once and then
reused. This is precisely why Lean’s modular proof structure is essential for scalability.

14

Under review as a conference paper at ICLR 2026

The Table[7]illustrates this effect using Miquel’s Theorem at different lemma-dependency depths:

Compiled One Time Compiled Multiple Times
Heartbeats Time(ms) | Heartbeats Time(ms)
0 1.7 x 10> 2.1 x 10% 1.7 x 10° 2.1 x 10%
6.3 x10° 88x10* | 7.6x 10° 1.0 x 10°
1.4x10% 2.1 x10% | 2.7 x 108 4.0 x 10°
25x 105 3.6x10° | 8.9x 108 1.3 x 109
4.6 x 105 7.5 x10° 1.0 x 108 1.8 x 107
7.5x 10 1.3 x 106 1.4 x 10° 2.2 x 108

Lemma Depth

oo L W N —

Table 7: Scaling behavior of heartbeats and compilation time under different lemma depths.

In the table, "lemma depth” refers to the depth of dependencies referenced back from the current
theorem, where a “lemma depth” of 0 indicates the current theorem itself. The right side repre-
sents the total compilation resource consumption at that lemma depth. If intermediate theorems are
not extracted, a single theorem may need to be written and compiled multiple times. Conversely,
extracting them ensures that the intermediate result is compiled only once.

B CoMMAND CACHING

/——
Adds a command for a new constant to the SMT command cache and updates
the dependency graph.

* ‘oldAxiomExprs‘: the expressions corresponding to the types of all
currently cached axioms.
* ‘cName‘: the name of the axiom to be added to the cache.
* ‘initialState‘: the current state of the global dependency graph.
Returns a tuple of the form '
cached axioms, list of SMT commands for all of the axioms)
-/
def addCommandForConstant
(0ldAxiomExprs : List Expr)
(cName : Name)
(initialState : QueryBuilderM.State)

(new global dependency graph, new list of

\

MetaM (QueryBuilderM.State X List Expr X List Command) := do
let constInfo < getConstInfo cName
let constExpr := mkConst cName (constInfo.levelParams.map Level.param)

let ((_, st), r) <«
QueryBuilderM.buildDependencyGraph (mkConst ‘True)
|>.run { toDefine := oldAxiomExprs ++ [constExpr]
QueryBuilderM.Config }
|>.run initialstate

|>.run { uniqueFVarNames := {} : TranslationM.State }
let (_, cmds) 4 StateT.run (st.graph.orderedDfs (oldAxiomExprs ++
[constExpr]) (emitVertex st.commands)) []

return (st, oldAxiomExprs ++ [constExpr], cmds)

Figure 6: Command caching code for SystemE axioms.

C CHANGES TO SYSTEME FORMALISM

There are some descrepencies between how SystemE axioms are described in the LeanEuclid lean
theory vs how they are passed into the SMT solver. In particular degree and length and area
are defined directly as functions from Points to a real number. That is the types Angle and

15

Under review as a conference paper at ICLR 2026

Segment do not exist in the SMT query. If a rule involves substituting a function into applica-
tion into a forall statement it will double the search depth required to obtain that proof. For example
if angle degree is defined as Angle.degree (Angle.ofPoints a b c¢) the smt’s search
procedure would have to first apply Angle.ofPoints to points a, b, c and then apply Angle.degree to
that resultant angle. By contrast, if degree is defined as the measure of three points only a single
application is required to obtain the term degree a b c. By changing the definition of degree to
be a function on three points it halves the search depth required to acheive the same term. Since we
generally never reason about segments or angles outside of their measures this simplification is ac-
ceptable and segment congruence is defined uniquely by length. For Triangles it is not possible to get
rid of the type entirely since Triangle congruence. We can however define a function area’ which
behaves as an area function on points. When then define Triangle.area (Triangle.ofPoints a b
c) =area’ abc. And tag it as a simp lemma. Thus, since simplification is applied before passing
into the smt solver, the Triangle type will dissappear by the time the smt solver is invoked. A similar
trick can be done Triangle.congruence.

opaque Angle : Point — Point — Point — R

notation:71 "Z" a ":" b ":" ¢:72 => Angle a b c

Listing 3: Angle Definition

opaque area’ : Point — Point — Point — R

inductive Triangle
| ofPoints (a b ¢ : Point)

@[simp]
abbrev Triangle.area : Triangle — R :=
fun x =>
match x with
| ofPoints a b ¢ => area’ a b ¢

notation:max "A" a ":" b ":" c:66 => Triangle.ofPoints a b c

instance : Coe Triangle R :=
(Triangle.area)

Listing 4: Triangle Definition

Besides, to broaden SystemE’s applicability to the wider field of geometry, we add nine axioms to
LeanGeo covering circles, triangles, similar triangles, and triangle areas, which cannot be derived
within the original SystemE.

axiom triangle_area_foot :V (a b ¢ d: Point) (BC: Line),b.onLine BC A
c.onLine BC A (Triangle a b c) A Foot a d BC — (A a:b:c).area =
(a=d)| * |(b-c)|/2

axiom threePoints_existCircle : V (A B C : Point),
Triangle A B C —
3 (Q : Circle),
(A.onCircle Q A B.onCircle Q A C.onCircle)
axiom exists_centre : V (0O: Circle), 3 (C : Point), C.isCentre O

axiom rightAngle_eq pi_div_two : L = Real.pi / 2

axiom rightTriangle_sin : V (A B C : Point), RightTriangle A B C —
Real.sin (ZA:B:C) = |(A-C)| / |[(B-O)]|

axiom rightTriangle_cos : V (A B C : Point), RightTriangle A B C —
Real.cos (LA:B:C) = |(A-B)| / [(B-C)|

16

Under review as a conference paper at ICLR 2026

Triangle A B C A Triangle D

axiom similar_ AA : V (A B C F : P ,
= / D:E:F AN /Z B:A:C = / E:D:F — SimilarTriangles A B

EF A 4 A:B:C

CDEF

axiom similar_SAS : V (A B CDE F : Point), Triangle A B C A Triangle D
EF A £ A:B:C = Z D:E:F A |(A-B)| = [(E-F)| = |(B-C)| » |(D-E)| —
SimilarTriangles A B C D E F

axiom similar_SSS : V (A B CDE F : Point), Triangle A B C A Triangle D
EF A |(A-B)| = [(E-F)| = |[(B-C)| |(D-E)| A |(B-C)| * |[(F-D)| = |(C-R)| * |
(E-F)| — SimilarTriangles A B C D E F

Listing 5: Additional Axioms in LeanGeo

D EXAMPLES OF FORMALIZATION

D.1 EXAMPLES IN THEOREM LIBRARY

Here is a proof example from the LeanGeo theorem library.

theorem angle_lt_outsideCircle: V (A B C D : Point) (AB : Line) (2
Circle), A.onCircle Q A B.onCircle A distinctPointsOnLine A B AB A
C.onCircle Q A C # A A C # B A D.sameSide C AB A LA:D:B < Z A:C:B
— D.outsideCircle Q := by

euclid_intros
have hl : = (D.onCircle) := by
by_contra
euclid_apply cyclic_egAngle A B C D AB
euclid_finish
have h2: — (D.insideCircle) := by
by_contra
euclid_apply line_from_points A D as AD
euclid_apply intersection_circle_line_extending_points € AD D A as E
have h3: Z B:C:A = £ B:E:A := by
euclid_apply cyclic_egAngle A B C E AB
euclid_finish
euclid_apply triangle_exteriorAngle E D B A
have h4: Z A:E:B = £ D:E:B := by
euclid_apply angle_between_transfer A D E B
euclid_finish
euclid_finish
euclid_finish

Listing 6: Example of Theorem Library

LeanGeo proofs are structured to mirror the step-by-step, declarative style of traditional, natural-
language geometry proofs. This design choice results in simple, readable proof scripts that are
particularly amenable to machine learning techniques. The proof development relies on a small set
of core tactics:

* euclid_intros
This is an initialization tactic that begins the proof. It processes the theorem’s statement,
automatically introducing all universally quantified variables (e.g., ‘A’, ‘B’, ‘C’, ‘D’, ‘Q?*)
and hypotheses (e.g., ‘A.onCircle 2’, ‘D.sameSide C AB’) into the local proof context.

e euclid_apply <rule> <args>
Given a rule <rule> with type of the form V (<args> : Types) ... P -> Q,
this tactic attempts to prove premise P from the local proof and attempts to prove premise
P from the local proof context using an SMT solver. If successful, propsition Q is added to
the proof context.
In this example, euclid_apply cyclic_egAngle A B C D AB refers to the for-
mer theorem in the library(in Circle.lean)

17

Under review as a conference paper at ICLR 2026

theorem cyclic_egAngle: V (A B C D: Point) (AB:Line) (2
Circle), distinctPointsOnLine A B AB A C# A A D # A AC # B A
D # B A A.onCircle Q A B.onCircle Q@ A C.onCircle Q A
D.onCircle 2 A C.sameSide D AB — / B:C:A = / B:D:A := by ...

LeanGeo automatically checks whether all of the premises of cyclic_egAngle, i.e.
distinctPointsOnLine A B AB, C # A, D # A ... are satisfied. If yes,
then its result,/ B:C:A = / B:D:A will be added in the proof context.

e euclid.apply <rule> with <args> as <x, h>

A forward-reasoning tactic designed to apply theorems and construction rules. Given a
rule, typically of the formV..., P = 3 x, Q(x)

This tactic instantiates it with the provided arguments <args>. It then employs an SMT
solver to automatically prove the premise ‘P‘ using hypotheses from the local context. If
successful, the tactic introduces the newly constructed object ’x’ and its property *Q(x)’
(named ’h’) into the context. This command streamlines geometric constructions and de-
ductions by combining the application of a rule with the automated verification of its pre-
conditions, making the proof script more declarative and readable.

* euclid_-finish
A terminal tactic that invokes an SMT solver to automatically prove the current goal using
the set of available hypotheses in the local context. This tactic is effective for discharg-
ing goals that are either direct assumptions or straightforward logical consequences of the
premises, requiring minimal search from the solver.

* have hP : P := by
A construct for structuring proofs by introducing an intermediate lemma ‘P‘ (named ‘hP°).
This allows a complex proof to be decomposed into a sequence of smaller, more manage-
able sub-proofs. This methodology not only enhances the readability and maintainability
of the proof script but also improves the SMT solver’s performance by reducing its search
space. The solver can tackle the smaller lemma in isolation and then utilize the proven
result *hP* in the main proof.

D.2 FORMALIZATION OF IMO 2001 P1

Problem statement:

Let ABC be an acute-angled triangle with O as its circumcenter. Let P
on line BC be the foot of the altitude from A. Assume that
/BCA > /ABC +30°. Prove that ZCAB+ ZCOP < 90°.

Proof of LeanGeo:

import Mathlib

import SystemE

import LeanGeo

open LeanGeo Real

-—Consider an acute—angled Triangle ABC. Let P be the Foot of the
altitude of Triangle ABC issuing from the vertex A, and let O be
the circumcenter of Triangle ABC. Assume that ZC > /B +30°. Prove
that ZA+ ZCOP < 90°.

—--To Trigonometry.lean

--To Triangle.lean

set_option maxHeartbeats 0

theorem sin_inequality (B C : R)
(hB : 0O < BAB<m (hC : 0 <CACK<m
(hCl : C 2 B + 7m/6) : 4 x sin B » cos C < 1 := by
rcases hB with (hB1l, hB2)
rcases hC with (hCll, hC22)

have hl : cos C < cos (B + m / 6) := by
have h2 : C > B + ™ / 6 := hCl
have h3 : C < 7 := by linarith [hC22]

18

Under review as a conference paper at ICLR 2026

have hd : 0 < B + ™ / 6 := by

linarith [hB1l, Real.pi_pos]
have hS5 : B+ m / 6 < 7m := by

nlinarith [hB2, hC1l1l, hC22, Real.pi_pos]
have h6 : cos C < cos (B + ™/ 6) := by

apply Real.cos_le_cos_of_nonneg_of_le_pi

all goals

nlinarith [Real.pi_pos, hB1l, hB2, hCll, hC22, Real.pi_pos]
linarith
have h2 : sin B x cos (B + 7 / 6) <1 / 4 := Dby

have h21 : cos (B + ™/ 6) = cos B x cos (m / 6) — sin B % sin (w /
6) := by

rw [Real.cos_add]
have h22 : cos (w / 6) = Real.sqrt 3 / 2 := by

rw [cos_pi_div_six]

have h23 : sin (w / 6) =1 / 2 := by

rw [sin_pi_div_six]
have h24 : sin B = cos (B + ™ / 6) = (Real.sqrt 3 / 2) % sin B x cos
B~-(1/2) » sin B " 2 := by

rw [h21, h22, h23]

ring_nf
have h25 : (Real.sqrt 3 / 2) % sin B * cos B - (1 / 2) * sin B ~ 2 <
1/ 4 := by

nlinarith [sg_nonneg (sin B - 1 / 2), sg_nonneg (cos B — Real.sqrt
3/ 2),

sgq_nonneg (sin B ~ 2 - 1 / 4), sg_nonneg (sin B - Real.sqgrt 3

/ 2),

sg_nonneg (cos B ~ 2 - 1 / 4), sg nonneg (cos B -1/ 2),
Real.sqgrt_pos.mpr (by linarith : (0 : R) < (3 : R)),
Real.sgrt_nonneg 3, Real.sq_sqgrt (show (0 : R) < (3 : R) by
linarith),
Real.sin_sqg add_cos_sqg B, mul_nonneg (show 0 < (0 : R) by
linarith) (show 0 < (0 : R) by linarith),
Real.sin_pos_of_pos_of_lt_pi hBl (by linarith : B < Real.pi)]
linarith [h24, h25]
have h3 : 0 < sin B := by
apply sin_pos_of_pos_of_1t_pi
all_goals linarith [hB1, hB2, Real.pi_pos]
nlinarith [hl, h2, h3, Real.sin_sqg_add_cos_sq B,
Real.sin_sqg add_cos_sg C, Real.pi_pos]

theorem sin_range (A : R) (hA : 0 < A AA < 7w/2) : sin A < 1 A sin A > 0

:= by

have hl 0 <A := hA.1

have h2 : A <7 / 2 := hA.2

have h3 sin A < 1 := by
have h4 : sin (m / 2) =1 := by

rw [sin_pi_div_two]

have h5 : sin A < sin (w / 2) := by

apply sin_lt_sin_of_1t_of_ le_pi_div_two
all_goals linarith [Real.pi_pos, Real.pi_gt_three, hl, h2]
linarith [h4, hb5]

have h6 : sin A > 0 := by
have h7 : sin (0 : R) = 0 := by
simp [Real.sin_zero]
have h8 : sin (0 : R) < sin A := by

apply sin_lt_sin_of_ 1t_of_le_pi_div_two
all _goals linarith [Real.pi_pos, Real.pi_gt_three, hl, h2]
linarith [h7, h8]
constructor
linarith [h3]
- linarith [h6]
—-—-To Triangle, Generated b

19

Under review as a conference paper at ICLR 2026

theorem IMO_2001_P1
YV (A B CP O : Point) (AB BC CA : Line),
formAcuteTriangle A B C AB BC CA A
Foot A P BC A

Circumcentre O A B C A
/ A:C:B > / C:B:A + L/3 —
/ B:A:C + /£ C:0:P <L := by

euclid_intros
euclid_apply rightAngle_eq pi_div_two
euclid_apply acuteTriangle_circumcentre_insideTriangle A B C O AB BC CA
euclid_apply circle_from_points O B as
euclid_apply circumcentre_inscribedAngle_comp B C A O BC
have hO: 4 % sin (£ B:A:C) * sin (ZA:B:C) % cos (ZA:C:B) < 1 := by
have hl: 0 < £ A:B:C A £ A:B:C < 7w := by
euclid_finish
have h2: 0 < £ A:C:B A £ A:C:B < 7w := by
euclid_finish
have h3: (sin (£ B:A:C) < 1) A (sin (£ B:A:C) > 0) := by
euclid_apply sin_range (/B:A:C)
euclid_finish

have h4: £ A:C:B > / C:B:A + w/6 := by
euclid_finish
have h5: 4 x sin (ZA:B:C) % cos (ZA:C:B) < 1 := by

euclid_apply sin_inequality (ZA:B:C) (Z£A:C:B)
euclid_finish
nlinarith

have hl: between B P C := by
euclid_apply acuteTriangle_foot_between A B C P BC
euclid_finish

have h2: |[(P-C)| < |(P-0)| := by
have h3: |(P-C)| * |[(P-C)| < |(P-0)| » |(P-0)| := by
have h4: |[(0-C)| * |(0-C)| = |(0-P)| % |(0-P)| = |(P-B)| * |(P-C)|:= by

euclid_apply ApolloniusTheorem_to_isoTriangle O B C P BC
euclid_finish

have h5: |(P-C)| = |(A-C)| * cos (£ A:C:P) := by
euclid_apply rightTriangle_cos P C A
euclid_finish

have hé6: |(A-C)| = 2 = [(0-C)| * sin (Z£A:B:C)
euclid_apply LawOfSines_radius B A C O
euclid_finish

have h7: |(B-C)| = 2 » [(0-C)| * sin (£B:A:C) := by
euclid_apply LawOfSines_radius A B C O
euclid_finish

have h8: ZA:C:P = /A:C:B := by
euclid_apply coll_angles_eq B P C A
euclid_finish

by

have h9: |(P-C)| » |(B-C)| < |(0-C)| * |(0-C)| := by
rw [h5, hé6, h7,h8]
have h10: (|(0-C)| * |(0-C)|) > 0 := by euclid_finish
calc
_ = (4 % sin (£ B:A:C) * sin (ZA:B:C) *x cos (ZA:C:B)) =
(J](o-Cc)| = |(0-C)|) := by linarith
_ <1 % (J[(0-C)| % [(0-C)]) := by euclid_finish

_ _ = by euclid_finish
euclid_finish
euclid_assert |(P-C)
euclid_assert |(P-0)
nlinarith
euclid_assert Triangle O C P
euclid_apply triangle_gt_side_gt_angle P C O
have h_final: Z P:C:0 = Z B:C:0 := by
euclid_apply coll_angles_eq B P C O
euclid_finish

> 0
> 0

20

Under review as a conference paper at ICLR 2026

L euclid_finish

Listing 7: Proof of LeanGeo for IMO 2001 P1

A significant advantage of LeanGeo is its seamless integration with Mathlib’s extensive mathemati-
cal library, enabling it to tackle a broader class of problems . This is particularly evident in its ability
to formalize geometric inequalities, a domain where systems like AlphaGeometry face challenges
due to their reliance on converting geometry into polynomial equations. The formalization of IMO
2001 P1, shown above, serves as a prime example. The proof strategy involves reducing the geo-
metric inequality ZCAB + ZCOP < 7 to a trigonometric one: 4sin(£ZABC) cos(£BCA) < 1,
derived from the condition /BCA > ZABC + %

This trigonometric lemma, ‘sin_inequality’, is proven not by geometric tactics. Annotators could
obtain the proof from a open-sourced formal prover, Kimina-Prover Wang et al.| (2025). The main
geometric proof, orchestrated by LeanGeo’s ‘euclid....‘ tactics, then imports and applies this ana-
lytical result to complete the formalization. This hybrid approach, combining high-level geometric
reasoning with deep analytical capabilities from Mathlib, demonstrates LeanGeo’s power in unify-
ing different mathematical domains to expand the scope of automated geometric theorem proving.

E COMPARISON WITH ALPHAGEOMETRY

E.1 EXPRESSIVITY

Compared with LeanGeo, AlphaGeometry(Irinh et al.| [2024) is built upon a significantly weaker
axiomatic foundation. Its formal language cannot express many essential geometric notions, includ-
ing:

. inequality and quantitative relations,
. positional relations (inside, outside, between, same side),

1

2

3. existential quantifiers and locus-type assertions,

4. trigonometric functions and general real-number computation,
5

. ordered-angle semantics required for precise angular reasoning.

To quantify this gap, we analyzed all 260 theorems in the LeanGeo library and found that 56.%
(148 theorems) are completely inexpressible in AlphaGeometry, 21.2% (55 theorems) are partially
expressible but not semantically equivalent. Only 21.9% (57 theorems) theorems in LeanGeo can
be completely translated in Alphageometry’s pattern. On the other hand, 100% of AlphaGeometry-
expressible statements are expressible in LeanGeo.

Below are representative theorems from LeanGeo whose statements cannot be expressed in Alpha-
Geometry due to limitations of its formal system.

Example 1: Diameter is the longest chord.

theorem diameter_longest
V (a b cdo : Point) (C : Circle),
(Diameter a b o C) A (c.onCircle C) A (d.onCircle C)
— |(a-b)| > |(c-d)| := by

AlphaGeometry does not support inequalities, so relations such as |[AB| > |C'D| cannot be ex-
pressed at all.

Example 2: Orthocenter of an acute triangle lies inside the triangle.

theorem orthocentre_of_acuteTriangle_insideTriangle
YV (A BCHDETF : Point) (AB BC CA : Line),
(formAcuteTriangle A B C AB BC CA) A
(Orthocentre H A B C D E F AB BC CA)
— InsideTriangle H A B C AB BC CA := by

21

Under review as a conference paper at ICLR 2026

AlphaGeometry cannot express “inside/outside” relations or “acute/obtuse” distinctions, making
this theorem inexpressible.

Example 3: Existence of a circumcenter

theorem exists_circumcentre
V (A B C : Point), Triangle A B C —
3d (O : Point), Circumcentre O A B C := by

AlphaGeometry lacks existential quantifiers such as “there exists”, so existence theorems cannot be
stated.

Example 4: Law of sines (radius form)

theorem LawOfSines_radius
¥V (A B C O: Point),
Triangle A B C A Circumcentre O A B C
— |(B-C)| = 2 = Real.sin (\angle B:A:C) * |(A-0)| := by

AlphaGeometry does not include trigonometric functions and therefore cannot express any theorem
involving sin, cos, or angle measure.

Example 5: Cyclic quadrilateral angle relations.

theorem cyclic_eqg_angles’
YV (A B C D: Point) (AB : Line) (2 : Circle),
distinctPointsOnLine A B AB A
C.sameSide D AB A
A.onCircle Q A B.onCircle Q A
C.onCircle € A D.onCircle Q
— \angle C:A:D = \angle C:B:D := by

AlphaGeometry uses unordered “full-angle” equality, which cannot distinguish positional relations
or angle orientation, making this theorem not exactly expressible. In AlphaGeometry’s framework,
this statement is expressed as “cyclic A B P Q =; eqangle P AP B Q A Q B”. This formulation does
not account for changes in the relative positions of A, B, P, Q that may cause ZAPB = ZAQB or
LAPB + ZAQB = .

To further illustrate the differences between our formal system and that of AlphaGeometry in the
shared subset of representation, we present the followiing two examples.

Example 6: Prove that the mid-segment of an isosceles trapezoid ABC D is parallel to AB.

LeanGeo proof:

theorem trapezoid_midsegment_parallel_base
¥V (A BCDE F: Point) (AB BC CD DA EF: Line),
formQuadrilateral A B C D AB BC CD DA A
(— AB.intersectsLine CD) A distinctPointsOnLine E F EF A
MidPoint B E C A MidPoint A F D —
(— EF.intersectsLine CD) := by
euclid_intros
euclid_apply line_from_points A E as AE
euclid_apply intersection_lines CD AE as G

have hl: |(A-E)| = |(E-G)| := by

euclid_apply trapezoid_imp_similarTriangles_interior B A C G E AB
CD

euclid_apply similar AA B A E C G E

euclid_assert |[(B-E)| = |(C-E)]

euclid_apply congruentTriangles_ASA B E A C E G
euclid_finish
have h2: — EF.intersectsLine CD := by
euclid_apply triangleMidsegment_parallel_base A D G F E DA CD AE
euclid_finish
euclid_finish

22

Under review as a conference paper at ICLR 2026

Alphageometry Proof:

* From theorem premises:
A BCDETF : Points
DC // AB [00]
A,E,C are collinear [01]
EA = EC [02]
F,B,D are collinear [03]
FB = FD [04]

* Auxiliary Constructions:
Points

* Proof steps:
00l1. EA = EC [02] & FB = FD [04] = EA:EC = FB:FD [05]
002. ¢cDb // AB [00] & A,E,C are collinear [01] &
F,B,D are collinear [03] & EA:EC = FB:FD [05]
= EF // CD

The reason AlphaGeometry produces such a short proof is that its deductive database contains many
relatively high-level secondary rules (as shown in step 002). These rules are treated as “axioms”
inside AlphaGeometry. In contrast, within the LeanGeo framework, we do not freely introduce such
axioms. Instead, all basic theorems must be proved from more primitive axioms and inference tools.
For instance, in this problem we introduce an auxiliary intersection point of C' D and AFE, and then
complete the proof via congruence and similarity of triangles. As a consequence, our proof is longer
but conceptually more instructive.

Example 7: IMO 2000 P1

Two circles (Gi1 and (G2 intersect at two points M and N. Let AB be the
line tangent to these circles at A and B, respectively, so that M
lies closer to AB than N. Let CD be the line parallel to AB and
passing through the point M, with C on Gi and D on G2. Lines AC
and BD meet at E; lines AN and CD meet at P; lines BN and CD
meet at Q. Show that EP = EQ.

Listing 8: IMO 2000 Problem 1

LeanGeo proof:

import Mathlib

import SystemE

import LeanGeo

namespace LeanGeo

set_option maxHeartbeats 0

--To circle

-—Two circles Gi and G2 intersect at two points M and N. Let AB be the
line tangent to these circles at A and B, respectively, so that M
lies closer to AB than N. Let CD be the line parallel to AB and
passing through the point M, with C on Gi and D on Gz. Lines AC
and BD meet at E; lines AN and CD meet at P; lines BN and CD
meet at . Show that EP = EQ.

theorem IMO_2000_P1

YV MNABCDETPOQOL 02 : Point) (Gl G2 : Circle) (AB CD AC BD AN

BN : Line),
CirclesIntersectAtTwoPoints Gl G2 M N A
distinctPointsOnLine A B AB A
TangentLineCircleAtPoint A O1 AB Gl A
TangentLineCircleAtPoint B 02 AB G2 A
— AB.intersectsLine CD A
distinctPointsOnLine M C CD A
C.onCircle GI1 A C # M A C # N A

23

Under review as a conference paper at ICLR 2026

D.onCircle G2 A between C M
distinctPointsOnLine A C AC
distinctPointsOnLine B D BD
between E A C A between E B

D A
A
A
D
distinctPointsOnLine A N AN A
CD
A

A

TwoLinesIntersectAtPoint AN
distinctPointsOnLine B N BN
TwoLinesIntersectAtPoint BN CD Q —
|(E-P)| = [(E-Q)| := by
euclid_intros
euclid_apply line_from_points M N as MN
euclid_apply intersection_lines MN AB as T
have midP_ATB: MidPoint A T B := by
have hl: [(T-A)| [(T-A)| = |[(T-M)| = |[(T-N)| := by
euclid_apply TangentSecantTheorem T A M N Ol Gl AB
euclid_finish
have h2: |(T-B)| » |[(T-B)| = |(T-M)| * [(T-N)| := by
euclid_apply TangentSecantTheorem T B M N 02 G2 AB
euclid_finish

P A

have h3: [(T-A)| » |[(T-A)| = |(T-B)| * |(T-B)| := by
rw[hl, h2]
euclid_assert |[(T-A)| > 0
euclid_assert [(T-B)| > 0
have h4: [(T-A)| = |[(T-B)| := by
nlinarith
euclid_finish
have midP_PMQ : MidPoint P M Q := by
have hl : [(M-Q)| = |(M-P)| := by
have h4: |(T-A)| = |(T-B)| := by euclid_finish
have h5: |(M-Q)| * |[(T-A)| = |(M-P)| * |(T-B)| := by
euclid_apply triangle_parallel_bases_eq ratio N T A M P B Q AB
CD
euclid_finish
rw [h4] at h5
have hé6: [(T-B)| > 0 := by euclid_finish
euclid_finish
have h2: between P M Q := by

euclid_finish
euclid_finish
euclid_apply line_from_points E M as EM

have h_congr: CongruentTriangles A B E A B M := by
have hl: ZE:A:B = ZAM:A:B := by
have h2: ZE:A:B = /E:C:D := by
euclid_apply parallel _imp_eq _alternateExteriorAngles B A D C E
AB CD AC

euclid_finish
have h3: /ZM:A:B = /M:C:A := by
euclid_apply line_from_points A M as AM
have h4: M.sameSide B AC := by
euclid_finish
euclid_apply AlternateSegmentTheorem A M C B 01 G1 AM CD AC AB
euclid_finish
euclid_finish

have h5: ZE:B:A = /M:B:A := by

have h6: ZE:B:A = /E:D:C := by

euclid_apply parallel _imp_eq_alternateExteriorAngles A B C D E
AB CD BD

euclid_finish

have h7: /ZM:B:A = /M:D:B := by
euclid_apply line_from_points B M as BM
have h8: M.sameSide A BD := by

euclid_finish
euclid_apply AlternateSegmentTheorem B M D A 02 G2 BM CD BD AB
euclid_finish
euclid_finish

24

Under review as a conference paper at ICLR 2026

euclid_apply congruentTriangles_ASA A B E A B M
euclid_finish
have perp_EM _CD: Perpline EM CD := by
have hl: PerpBisector E M AB := by
euclid_apply perpBisector_if eq dist E M A B AB
euclid_finish
euclid_apply perpBisector_imp_perpline E M EM AB
euclid_apply perp_parallel_ imp_perp AB EM CD
euclid_finish
have perpB: PerpBisector P Q EM := by
euclid_apply (perpBisector_iff P Q EM) .mpr
euclid_finish
euclid_finish

Listing 9: Proof of LeanGeo for IMO_2000_P1

Alphageometry Proof:

* Formal statement:

a b = segment a b; ¢ = on_tline ¢c a a b; d = on_tline d b b a; e =
on_circle e ¢ a, on_circle e d b; £ = on_circle f ¢ a, on_circle £ d
b; g = on_pline g e a b, on_circle g ¢ a; h = on_pline h e a b,
on_circle h d b; i = on_line 1 a g, on_line i b h; j = on_line j a
f, on_line j g h; k = on_line k b £, on_line k g h ? cong 1 j i k

* From theorem premises:
ABCDETFGHTIJK : Points
AC 1L AB [00]

BA L DB [01]

DE = DB [02]

CE = CA [03]

DF = DB [04]

CF = CA [05]
/FAE = /FAE [06]
GE // AB [07]

CG = CA [08]
/GAF = /GAF [09]
HE // AB [10]

DH = DB [11]
/FBH = /FBH [12]

I,G,A are collinear [13]
I,B,H are collinear [14]
J,F,A are collinear [15]
J,G,H are collinear [16]
BF:BK = BF:BK [17]

G,K,H are collinear [18]
B,F,K are collinear [19]

* Auxiliary Constructions:
Points

* Proof steps:
001. EG // AB [07] & EH // AB [10] = EH // EG [20]
002. EH // EG [20] = E,G,H are collinear [21]
003. DH = DB [11] & DF = DB [04] = D is the circumcenter of \Delta BHF

[22]

004. D is the circumcenter of \Delta BHF [22] & DB L BA [01] = /ABH =
BFH [23]

005. D is the circumcenter of \Delta BHF [22] & DB L BA [01] = J/ABF =
BHE [24]

006. E,G,H are collinear [21] & G,K,H are collinear [18] & /BFH = ZABH
[23] & AB // EG [07] = /BFH = /KHB [25]

25

Under review as a conference paper at ICLR 2026

007.

008.

009.

010.

011.

012.

013.
014.

015.

0l6.

017.

018.

019.

020.

021.

022.

023.

024.

025.
026.

027.
028.

029.
030.
031.
032.
033.
034.
035.

036.
037.

038.
039.

040.

041.

E,G,H are collinear [21] & G,K,H are collinear [18] & B,F,K are
collinear [19] & /BHF = /ABF [24] & AB // EG [07] = /BHF = /HKB
[26]

/BFH = /KHB [25] & /BHF = /HKB [26] (Similar Triangles)= BF:BH =
BH:BK [27]

DF = DB [04] & DH = DB [11] & DE = DB [02] = E,B,F,H are
concyclic [28]

DF = DB [04] & DE = DB [02] = D is the circumcenter of \Delta BFE
[29]

D is the circumcenter of \Delta BFE [29] & DB L BA [01] = /EBA =
EFB [30]

E,G,H are collinear [21] & ZEFB = /ZEBA [30] & AB // EG [07] = [/
EFB = /BEH [31]

E,B,F,H are concyclic [28] & ZEFB = /BEH [31] = EB = BH [32]

CE = CA [03] & CG = CA [08] = C is the circumcenter of \Delta AEG
[33]

C is the circumcenter of \Delta AEG [33] & AC L AB [00] = /BAE =
AGE [34]

I,G,A are collinear [13] & /BAE = /AGE [34] & EG // AB [07] = [/
IAB = /BAE [35]

DH = DB [11] & DE = DB [02] = D is the circumcenter of \Delta BHE
[36]

D is the circumcenter of \Delta BHE [36] & DB L BA [01] = /ABH =
BEH [37]

I,B,H are collinear [14] & ZABH = /BEH [37] & EH // AB [10] = [
ABE = /IBA [38]

/IAB = /BAE [35] & ZABE = /IBA [38] (Similar Triangles)=- BI = BE
[39]

/IAB = /BAE [35] & ZABE = /IBA [38] (Similar Triangles)=- AI = AE
[40]

BF:BH = BH:BK [27] & EB = BH [32] & BI = BE [39] = IB:BF = BK:IB
[41]

B,F,K are collinear [19] & I,B,H are collinear [14] & ZFBH = /FBH
[12] = ZKBI = /FBI [42]

IB:BF = BK:IB [41] & ZKBI = /FBI [42] (Similar Triangles)= BK:IK
IB:IF [43]

E,B,F,H are concyclic [28] = JFEH = /FBH [44]

CF = CA [05] & CG = CA [08] & CE = CA [03] = E,G,F,A are
concyclic [45]

E,G,F,A are concyclic [45] = J4GEF = /ZGAF [46]

I,G,A are collinear [13] & I,B,H are collinear [14] & ZFEH = /FBH
[44] & EH // AB [10] & ZGEF = ZGAF [46] & EG // AB [07] = JIAF = [/
IBE [47]

/IAF = /IBF [47] = 1I,B,F,A are concyclic [48]

I,B,F,A are concyclic [48] = /ZIBA = ZIFA [49]

I,B,F,A are concyclic [48] = JIFB = ZIAB [50]

E,G,H are collinear [21] & G,K,H are collinear [18] & J,F,A are
collinear [15] & ZIBA = /ZIFA [49] & I,B,H are collinear [14] & ZABH
/BEH [37] & EH // AB [10] & AB // EG [07] = /BEK = /JFI [51]

CE = CA [03] & CF = CA [05] = C is the circumcenter of \Delta AEF
[52]

C is the circumcenter of \Delta AEF [52] & AC L AB [00] = /BAE =
AFE [53]

J,G,H are collinear [16] & E,G,H are collinear [21] & /BAE = /AFE
[53] & AB // EG [07] = /JEA = /AFE [54]

J,F,A are collinear [15] & ZFAE = /FAE [06] = JJAE = /FAE [55]

/JEA = /AFE [54] & /JAE = /FAE [55] (Similar Triangles)= JA:EA =
EA:FA [50]

EA:FA = JA:EA [56] & IA = EA [40] = TIA:FA = JA:IA [57]

I,G,A are collinear [13] & J,F,A are collinear [15] & ZGAF = /GAF
[09] = JIAF = /IAJ [58]

IA:FA = JA:IA [57] & ZIAF = /ZIAJ [58] (Similar Triangles)= /AIF =
ZIJA [59]

B,F,K are collinear [19] & E,G,H are collinear [21] & G,K,H are
collinear [18] & J,F,A are collinear [15] & ZAIF = ZIJA [59] & I,G,A

26

Z

Z

Z

Z

Under review as a conference paper at ICLR 2026

are collinear [13] & ZIFB = ZIAB [50] & AB // EG [07] = /BKE = /

FJI [60]

042. /BEK = ZJFI [51] & 4BKE = /FJI [60] (Similar Triangles)= BE:IF =
BK:IJ [61]

043. BK:IK = IB:IF [43] & BE:IF = BK:IJ [61] & BI = BE [39] = BK:JI =
BK:IK [62]

044. BF:BK = BF:BK [17] & BK:JI = BK:IK [62] = JI = IK

Listing 10: Proof of AlphaGeometry for IMO 2000 Problem 1

AlphaGeometry presents the proof as a flat, linear sequence of 44 atomic deductions. While logically
sound, this format obscures the underlying geometric narrative. It reads as a symbolic log where
high-level concepts, without explicitly grouping these steps into a coherent subgoal.

In contrast, the LeanGeo proof is structured more hierarchically, perfectly reflecting the problem’s
intrinsic geometric structure. The proof is organized into clear, self-contained logical blocks, such
as proving ‘midP_ATB’ (T is the midpoint of AB) or ‘perp_.EM_CD’. Each block is achieved by
invoking powerful theorems in LeanGeo library like ‘TangentSecantTheorem’ and ‘AlternateSeg-
mentTheorem’ — mirroring the exact language a mathematicia would use. Consequently, the Lean-
Geo proof is not only verifiable but also intelligible, bridging the gap between a machine-generated
proof trace and a human-authored mathematical argument. It demonstrates a system that reasons in
a manner remarkably close to natural geometric intuition.

E.2 VERIFIABILITY AND SOUNDNESS

A fundamental requirement for any formal deductive system is soundness: every statement that can
be derived within the system must be logically valid under the intended semantics. In other words,
a proof system is sound if it never proves anything false.

One important limitation of AlphaGeometry is that it can only generate correct proofs, but cannot
verify them. Each proof generated by AlphaGeometry implicitly corresponds to a specific geometric
figure, and the deductions are valid only within that configuration. For other admissible figures
satisfying the same hypotheses, the conclusion may fail.

Example 8: The internal angle bisector and the external angle bisector are perpendicular.

AlphaGeometry’s Proof:

Input:
b ¢ d = triangle b ¢ d; a = on_line a b d; e = angle_bisector e b a c;
f = angle_bisector f c a d ? perp e a a f

* From theorem premises:
B CDAEF : Points
D,A,B are collinear [00]
\angle BAE = \angle EAC [01]
\angle CAF = \angle FAD [02]

* Proof steps:

1. \angle CAF = \angle FAD [02] & D,A,B are collinear [00] = \angle
CAF = \angle FAB [03]

2. \angle BAE = \angle EAC [01] & \angle CAF = \angle FAB [03] (Angle
chase) = AE \perp AF

However, if claim that A,E.F are collinear, AlphaGeometry produces a completely contradictory
conclusion under exactly the same assumptions.

‘Input:
\b c d = triangle b ¢ d; a = on_line a b d; e = angle_bisector e b a c;
\ f = angle_bisector f ¢c a d ? coll e a f

* From theorem premises:

27

Under review as a conference paper at ICLR 2026

B CDAEF : Points

A,D,B are collinear [00]

\angle BAE = \angle EAC [01]

\angle CAF = \angle FAD [02]
* Auxiliary Constructions:
Points

* Proof steps:
001. \angle CAF = \angle FAD [02] & A,D,B are collinear [00] = \angle
CAF = \angle FAB [03]
002. \angle BAE = \angle EAC [01] & \angle CAF = \angle FAB [03] (Angle
chase) = AE // AF [04]
003. AE // AF [04] = E,F,A are collinear

The core issue is that many of AlphaGeometry’s built-in inference rules are not purely syntactic
logical consequences of axioms; instead, they depend on properties of the internal geometric dia-
gram. Since this diagram-based reasoning is not exposed or verified independently of the figure,
ambiguous or under-specified statements may lead to incorrect deductions.

LeanGeo, however, is graph-free and handles positional relations with full logical rigor. This in-
evitably makes its proofs more complex, but we believe it more faithfully reflects the intrinsic nature
of geometric reasoning.

Overall, AlphaGeometry is a *task-specialized solving system* tailored for IMO-style geometry
problems: it is extremely powerful in problem solving, but this comes at the cost of sacrificing inter-
nal axiomatic rigor and omitting several components we believe are equally essential for geometry
learners and researchers—such as geometric inequalities, trigonometric reasoning, and positional or
incidence relations. Its simplified formal system accelerates search and inference but loses part of
the rigor and human interpretability. In contrast, our system aims to be more complete, rigorous,
and structurally expressive, though this naturally results in more intricate and elaborate reasoning
processes.

F PROMPT FOR EVALUATION

You are an expert of Lean 4. Now You are using a new Lean 4 system
called LeanEuclid. The following is how you prove your theorem.
—-—— Proof DSL ———
Your proof must be a tactic proof in the LeanEuclid proof DSL. This DSL
is built from
the following tactics (arguments shown in angle-brackets <>):
+ TACTIC: euclid_intros =
Introduces universally quantified variables and premises of the current
goal into the proof context. No names required.
* TACTIC: euclid_apply <rule> <args> =*
where <rule> 1is either a construction rule, inference rule, or other
theorem.
Given a rule <rule> with type of the form V (<args> : Types) ... P —> Q,
this tactic
instantiates <rule> with <args>, and attempts to prove premise P
from the local proof
context using an SMT solver. If successful, propsition Q is added
to the proof
context.
usage examples
euclid_apply PythagoreanTheorem_point a b ¢ : SMT solver will try to
search whether the premise of theorem "PythagoreanTheorem_point"
i.e.(Triangle a b ¢c) A (£ b:a:c : R) are satisfied, if not, the
proof will fail. If all premises are found, then the conclusion of
this theorem will be added to the solving context, i.e. |(b-c)|
(b-c)| = |[(b-a)| * |(b-a)| + |(a=c)| * |(a-c)].

28

Under review as a conference paper at ICLR 2026

% TACTIC: euclid_apply <rule> <args> as X *
Given a rule <rule> with type of the form V (<args> : Types) ... P —> d x
Q(x), this
tactic instantiates <rule> with <args>, and attempts to prove
premise P from the local
proof context using an SMT solver. If successful, object x and
premise Q(x) are added
to the proof context.
usage examples:
euclid_apply line_from_points pl p2 as M this tactic will first check
whether pl and p2 are different. If they are, then a new line M is
added to the proof context and new condition, pl.onLine M and
p2.onLline M will be added to the condition.

NOTE: You can only use 'euclid_apply <rule> <args> as <X>’ if the rule
produces an
existential. You should not name any propsotions introduced using
"euclid_apply’ e,q,
"euclid_apply <rule> <args> as H1l'.
NOTE: It is very important that xall* non-propositional (i.e.,
universally quantified)
arguments are provided to the rule when invoking ’euclid_apply’.
*TACTIC: euclid_finish =
Attempts to resolve the proof goal using the current proof context
using an SMT solver.

* euclid_assert <P> «*
Attempts to prove proposition <P> from the current proof context
using an SMT solver.
Equivalent to "have : <P> := by euclid_finish"

If you are proving an existentially quantified proposition, you can use
the standard Lean tactic ’ use <X>’ to provide the witness <X> for
the quantifier. DO NOT use the tactic "use’ if you are not proving
an existentially quantified proposition.

Here is several additional tips with examples:

1. You can use standard Lean tactics such as <by_cases>, <cases>,
<split_ands> and <constructor> <by_contra> to structure your proof.
Specifically, you are encouraged to use "have hX: P := by" to divide
the whole problems to small proposition. However, you should not use
imperative Lean tactics, such as ’'rw’ or ’'simp’. You should only use
the above declarative tactics.

2. You should be careful to check the degenerate case and special cases.
For example, sometimes you want to get the intersection of two
lines. You may use"euclid_apply intersection_lines L1 L2 as O" but
before that you should guarantee that the SMT can deduce that L1 and
L2 intersects.

3. You must ensure that every step in your proof is rigorous, not only
in natural language, but in LeanEuclid. For example, in the
following proof,

<error_examplel>

theorem altitude_hypotenuse_similar:

YV (A B C D: Point) (BC : Line),
RightTriangle A B C A
distinctPointsOnLine B C BC A
foot A D BC

— SimilarTriangles D B A A B C := by
euclid_intros
have h_tri DBA : Triangle D B A := by

euclid_finish"

29

Under review as a conference paper at ICLR 2026

<correctionl>
Here if you want to claim triangle D B A, you must either prove that D
is not equal to B and A, or claim it in your premise (like adding
between A B D). Although in natural language it is trivial, but in
this formal language you must PROVE it! In this example, instead,
your method to prove h_tri_DBA should be:
have h_tri_DBA : Triangle D B A := by
have h4: between C D B := by
have h5: ZA:B:C < L:= by
euclid_apply triangle_angles_sum A B C
euclid_finish
have h6: ZA:C:B < L:= by
euclid_apply triangle_angles_sum A B C
euclid_finish
euclid_apply acuteTriangle_foot_between A B C D BC
euclid_finish
euclid_finish.
NOTE: Using recursive "have"s to split the goal and make the proof neat.

Another example is:

<error_example2>

theorem apollonius_isoceles

YV (A B CD : Point) (BC : Line),

IsoTriangle A B C A
distinctPointsOnLine B C BC A
Coll B D C A
between B D C

— |(a-B)| * |(A-B)| - |(A-D)| * |(A-D)| = |(B-D)| * |(C-D)| := by
euclid_intros
have h_A_not_on_BC : —(A.onLine BC) := by

euclid_finish
euclid_apply exists_foot A BC as H
have h_midpoint_H : MidPoint B H C := by
euclid_apply isoTriangle_three_lines_concidence_foot A B C H BC
euclid_finish
have h_tri_AHD : Triangle H A D := by
euclid_finish

<correction2>
Here h_tri_ AHD is wrong. Since you cannot assume triangle H A D,
because H may coincide with D. Instead your response shold be:

by_cases H =D

- have h_tri AHD : triangle H A D := by

-— H, D are on line BC, while A is not. So H, A, D are not
collinear.

euclid_finish

<error_example3>
theorem Numina_Geometry_1110
V (A BCHMZK : Point) (AC: Line),

(triangle A B C) A
(between A H C) A
(foot B H AC) A
(distinctPointsOnLine A C AC) A
(midpoint B M C) A
(midpoint A K B)
%
(/£ K:H:M = £ A:B:C)
euclid_intros
have h_tri_KHM: triangle K H M := by euclid_finish

30

Under review as a conference paper at ICLR 2026

3. "euclid_assert" make very few progress in the proof. Try to use less
"euclid_assert X", but use more "have h: X := by ...".

4. When using the "*" symbol for multiplication, please ensure there is
a space on both sides of the "«" symbol. For example, the correct
expression should be "[(A-M)| * |(B-M)|" instead of "|(A-M)|x|(B-M)|"

5. Sometimes when chasing angles, especially using "coll_angles_eqg" and
"coll_supp_angles" you are encouraged to use "line_from points" to
construct the between-line, for example, in the following theorem,

<error_example>

theorem median_is_half_side_implies_right_triangle:

YV (A B CM : Point),
Triangle A B C A
MidPoint B M C A

| @) | = [(B-M)|

— / B:A:C =L := by

have h_sum_BAC : /B:A:M + /M:A:C = /B:A:C := by
euclid_apply coll_supp_angles A B M C

euclid_finish

<correction>

In the example, "euclid_apply coll_supp_angles A B M C" will fail
because the SMT cannot deduce A,B,M form a triangle. So how to prove
this? actually you should add a line "euclid_apply line_from_points
B C as BC" in your proof. Remember SMT cannot construct. So you
should tell SMT there is a line BC, and SMT will automatically
deduce A B M are not collinear. So your proof should be

theorem median_is_half_side_implies_right_triangle:

YV (A B CM : Point),

Triangle A B C A
MidPoint B M C A

[(a-M)| = |(B-M) |
— / B:A:C =L := by
have h_sum_BAC : /B:A:M + /M:A:C = /B:A:C := by

euclid_apply line_from_points B C as BC.
euclid_apply coll_supp_angles A B M C
euclid_finish

6. Take care of the order of parameter. For example, if you want to
express "Right Triangle ABC with right angle ABC", you should use
"RightTriangle B A C" (First parameter is rightangle) instead of
"rightTriangle A B C". When apply lemma or writing formal statement,
always check whether the order is align with definition. Also you
should check the number of parameters. For example, "Coll" only
contains three parameters. So donn’t use "Coll A B C D" to represent
A,B,C,D are collinear. Instead, use "Coll A B C A Coll B C D"

7. At the beginning of your proof, you should firstly using
"euclid_apply line_from_points X Y as XY" To obtain all the the line
you needed in the problem, if the problem does not give these lines.
This step is benificial to the later SMT steps.

8. When using "euclid_apply", do not add additional condition to it, for
example, do not use "euclid_apply coll_supp_angles A E C B
h_between_AEC hA". Instead, use "euclid_apply coll_supp_angles A E C
B". SMT will automatically search whether the absent condition is
satisfied.

—-—— End of Proof DSL ——-

Your proofs can make use of the following abbreviation of geometry

structure:
—-—— Begin of Abbreviation —--—-

31

Under review as a conference paper at ICLR 2026

/-Relations—/

abbrev Coll (A B C : Point) : Prop :=
between A B C V between B C A V between C A BV A =BV A=CVB=C¢C

abbrev Triangle (A B C : Point) : Prop :=
- (Coll A B C)

abbrev RadicalAxis (23 Q2 : Circle) (L : Line) : Prop :=
¥V (A : Point), A.onLine L — Pow(ZA, 1) = Pow(RA, Q)
-—— End of Abbreviation ---

Also, I’'ll provide you the construction rules where you can construct
lines, points and circles by these rules using "euclid_apply
<theorem> as ...". Notice that these rules are not included in SMT.
So you should construct lines, points in your proof by yourself.

—-—— Begin of Construction Rules ——-—

axiom intersection_lines : V (L M : Line), L.intersectsLine M —
d a : Point, (a.onLine L) A (a.onLine M)
utsideCircle «

axiom exists_distinct_point_outside_circle
V (a : Circle) (b : Point), I a : Point, a # b A a.outsideCircle «

—-—— End of Construction Rules ———

Also, I’11 provide you the theorem libarary. Use "euclid_apply" to use
these theorems in theorem library.

—-—— Begin of Theorem Library —-—-—

axiom triangle_area_foot :V (a b ¢ d: Point) (BC: Line),b.onLine BC A
c.onlLine BC A (Triangle a b ¢c) A Foot a d BC — (Aa:b:c).area =
(a=d)| * |(b-c)|/2

theorem trapezoid_midsegment_parallel_base : V (A B C D E F: Point) (AB
BC CD DA EF: Line), formQuadrilateral A B C D AB BC CD DA A (-
AB.intersectsLine CD) A distinctPointsOnLine E F EF A MidPoint B E C
A MidPoint A F D — (- EF.intersectsLine CD) := by

—-—— End of Theorem Library --—-

All theorems in library are proved and you can apply them directedly.
The following are few-shot example proof of the most commonly used
theorems in library.

——— Few-shot Examples —-—-

Inputl:

import Mathlib

import SystemE

import LeanGeo

namespace LeanGeo

theorem InscribedAngleTheorem_sameSide
V (A B CO : Point) (AB: Line) (f2 : Circle), Triangle A B C A
distinctPointsOnLine A B AB A (O.sameSide C AB) A (A.onCircle Q) A
(B.onCircle €2) A (C.onCircle) A (0.isCentre)
— /£ A:0:B = £ A:C:B + £ A:C:B := by

32

Under review as a conference paper at ICLR 2026

Outputl:

import Mathlib
import SystemE
import LeanGeo
namespace LeanGeo

Outputb:

import Mathlib
import SystemE
import LeanGeo
namespace LeanGeo

theorem cyclic_supp_angles : V (A B C D: Point) (AB:Line) (2 : Circle),
distinctPointsOnLine A B AB A DistinctFourPoints A B C D A
A.onCircle Q A B.onCircle 2 A C.onCircle £ A D.onCircle Q A
C.opposingSides D AB — /B:C:A + /B:D:A =L + L := by
euclid_intros
euclid_apply exists_centre as O
by_cases O.sameSide C AB
- euclid_assert O.opposingSides D AB
euclid_apply InscribedAngleTheorem_sameSide A B C O AB
euclid_apply InscribedAngleTheorem_opposingSides A B D O AB (2
euclid_finish
- by_cases O.onLine AB
- euclid_apply ThalesTheorem
euclid_apply ThalesTheorem
euclid_finish
- euclid_apply InscribedAngleTheorem_sameSide A B D O AB ()
euclid_apply InscribedAngleTheorem_opposingSides A B C O AB
euclid_finish
—-— End of Few-shot Examples —--—-—

C
D

A B o QN
A B o QN

IMPORTANT: Your response should be started with
"import Mathlib

import SystemE

import LeanGeo

namespace LeanGeo

theorem ..." You should restate the theorem that you want to prove in
formal language, give a complete proof of the theorem.

Now, please prove the following theorem:

<formal statement>

Listing 11: Prompt for LLMs in Evaluation

G LLM ACKNOWLEDGMENTS

The authors acknowledge the use of an Al-powered language tool (e.g., ChatGPT, GPT-4) for en-
hancing the readability of this paper. We wish to clarify that all core ideas, research frameworks,
and expressed opinions are original to the authors. Furthermore, all experimental results and data
reported are authentic and based on real-world tests conducted by our team. The authors assume full
responsibility for the content and integrity of this work.

33

	Introduction
	Related Work
	Automated Theorem Proving
	LeanEuclid
	Geometry Problem Solving
	Geometry and Lean Benchmarks

	LeanGeo
	Theorem Library
	LeanSMT 4.15

	LeanGeo-Bench
	Benchmark
	Evaluation Method
	Baseline Result

	Reinforcement Learning Experiments
	Generating data by LLM
	Instilling Knowledge in RL
	RL Training

	Discussion and Future Work
	Automation Capabilities
	Instilling Domain-Specific Knowledge to LLMs

	Conclusion
	Reproducibility Statement
	Analysis of Scalability
	Scalability of SMT
	Complexity versus Lemma Granularity

	Command Caching
	Changes to SystemE formalism
	Examples of Formalization
	Examples in Theorem Library
	Formalization of IMO 2001 P1

	Comparison with AlphaGeometry
	Expressivity
	Verifiability and Soundness

	Prompt for Evaluation
	LLM Acknowledgments

