
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LEANGEO: FORMALIZING COMPETITIONAL GEOME-
TRY PROBLEMS IN LEAN

Anonymous authors
Paper under double-blind review

ABSTRACT

Geometry problems are a crucial testbed for AI reasoning capabilities. Most ex-
isting geometry solving systems cannot express problems within a unified frame-
work, thus are difficult to integrate with other mathematical fields. Besides,
since most geometric proofs rely on intuitive diagrams, verifying geometry prob-
lems is particularly challenging. To address these gaps, we introduce Lean-
Geo, a unified formal system for formalizing and solving competition-level ge-
ometry problems within the Lean 4 theorem prover. LeanGeo features a com-
prehensive library of high-level geometric theorems with Lean’s foundational
logic, enabling rigorous proof verification and seamless integration with Math-
lib. We also present LeanGeo-Bench, a formal geometry benchmark in Lean-
Geo, comprising problems from the International Mathematical Olympiad (IMO)
and other advanced sources. Our evaluation demonstrates the capabilities and
limitations of state-of-the-art Large Language Models on this benchmark, high-
lighting the need for further advancements in automated geometric reasoning.
To further improve prover performance, we introduce a synthetic data genera-
tion pipeline together with a reinforcement learning training framework built on
LeanGeo. We open source the theorem library and the benchmark of LeanGeo at
https://anonymous.4open.science/r/LeanGeo-9CE9

1 INTRODUCTION

In recent years, Large Language Models (LLMs) have made significant progress in mathematical
reasoning, particularly in automated theorem proving (Bibel, 2013). Formal theorem proving is a
crucial domain for ensuring the correctness of hard-to-verify proofs within theorem proving. Lean
4 (Moura & Ullrich, 2021), as a prominent proof assistant, provides a solid foundation for algebra
and number theory through its extensive Mathlib library (mathlib community, 2020). It has been
widely used in the formal verification of theorems within LLMs.

However, Euclidean geometry, an essential component of mathematical reasoning and a frequent fo-
cus of competitions, remains relatively underexplored in Lean 4 community, Mathlib and automated
theorem provers. This stems from the inherent difficulty of geometric problems, which demand
graphic intuition; human reasoning in such cases inevitably relies on geometric insight, making
absolute formalization of geometry problem extremely challenging.

Currently, advanced geometric systems like AlphaGeometry (Trinh et al., 2024), TongGeome-
try (Zhang et al., 2024a) and SeedGeometry (Chen et al., 2025), while achieving impressive re-
sults on IMO-level geometry problems, typically rely on specialized models and operate within
geometry-specific formal systems independent of Lean. This isolation prevents integration with
other mathematical domains in mathlib, making it impossible to express geometric inequality posi-
tional relations. Additionally, their reliance on graphical verification and unordered formal systems
can lead to logical unsoundness and inability to perform rigorous verification.(See detailed compar-
ison in Table 3 and Appendix E.

Even in Lean 4, geometric results remain scarce: Mathlib’s formalized geometry remains largely
algebraic and provides little support for synthetic reasoning. Myers (Zhang et al., 2022) has for-
malized a single IMO geometry problem in Lean—an impressive isolated result—but the proof is
written in a highly technical Mathlib-specific style and does not develop any structured or reusable
geometric library, leaving the broader landscape of synthetic geometry in Lean essentially empty.

1

https://anonymous.4open.science/r/LeanGeo-9CE9

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

While developing a robust formal system is a vital step toward rigorous geometric reasoning, equally
important is the establishment of suitable benchmarks to rigorously evaluate the geometric reason-
ing capability of LLMs. However, since most geometric proofs rely on intuitive diagrams, verify-
ing geometry problems is particularly challenging. Existing geometry benchmarks, such as Geoe-
val (Zhang et al., 2024b), GeoQA (Chen et al., 2021) Geometry3K (Hiyouga, 2025) and Formal-
Math (Yu et al., 2025), primarily emphasize numerical computations of geometry object, focusing
on models’ computational ability rather than their true geometric reasoning skills. Currently, LLMs
exhibit unsatisfactory performance on Lean4 geometry benchmark such as MATP-bench (He et al.,
2025) due to the absence of a geometry theorem library as tools to prove theorems. This highlights
the necessity of developing a complete formal system and an extensive theorem library to serve as
reliable tools for LLMs.

To handle these critical gaps, we introduce LeanGeo, a framework designed to formalize and solve
geometric problems in Lean 4. Building upon LeanEuclid (Murphy et al., 2024), LeanGeo es-
tablishes a comprehensive library of geometric theorems specifically curated for competition-level
challenges and seamlessly integrates with Mathlib. Compared to other formal systems like Alpha-
Geometry, LeanGeo exhibits significant differences, as detailed in Table 1.

Table 1: Comparison of problem with AlphaGeometry and LeanGeo

Natural Language

In a triangle ABC, side AB = AC, prove that ∠ACB = ∠ABC.

Solution. Choose D as the midpoint of side BC. Then △ABD and △ACD
are congruent. Therefore, ∠ACB = ∠ACD = ∠ABD = ∠ABC

AlphaGeometry

a b = segment a b; c = on circle c a b ? eqangle b a b c b c c a

Solution. * From theorem premises:
A B C : Points
cong A C A B [00]
* Auxiliary Constructions:
: Points
* Proof steps:
001. cong A C A B [00] ⇒ eqangle A C B C B C A B

LeanGeo

theorem isoTriangle imp eq angles : ∀ (A B C : Point),
IsoTriangle A B C → ∠ A:B:C =∠ A:C:B := by

euclid intros
euclid apply exists midpoint B C as D
euclid apply line from points B C as BC
euclid apply coll angles eq
euclid apply congruentTriangles SSS D B A D C A
euclid apply coll angles eq
euclid finish

Based on this theorem library, we propose LeanGeo-Bench, the first formalized geometric problem
benchmark in Lean 4. It comprises 122 geometry problems, including all International Mathematical
Olympiad (IMO) geometry problems since 2000. Furthermore, we present a training methodology
that uses the theorem library to construct supervised fine-tuning (SFT) data. This data is then used in
reinforcement learning (RL) experiments upon the Kimi k1.5 reinforcement learning (RL) pipeline
(Team et al., 2025), yielding promising initial results.

The primary contributions of this work are as follows:

• We present the first framework in the Lean theorem prover capable of expressing and rea-
soning about competition-level geometry problems in a human-like manner. The frame-
work features an extensive library of high-level definitions and tactics based on theorems
commonly used by IMO competitors, making formal proofs more intuitive and understand-
able. Its integration within Lean facilitates the formalization of problems at the intersection
of geometry and other domains like combinatorics.

• We introduce a comprehensive geometry benchmark formalized in Lean 4 and LeanGeo,
capable of representing most of the geometry problems from the International Mathemati-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

cal Olympiad (IMO). This benchmark provides a standardized and challenging testbed for
evaluating future formal mathematics systems. We also provide baseline results on this
benchmark using several state-of-the-art large language models.

• We develop a novel method to generate synthetic data for competitional geometry problems
and a Reinforcemnet Learning pipeline to instill unseen knowledge for LLMs.

2 RELATED WORK

2.1 AUTOMATED THEOREM PROVING

Interactive theorem provers span a spectrum of foundational languages: HOL4 (Slind & Norrish,
2008) and Isabelle/HOL (Paulson, 1994) rely on simply-typed higher-order logic, Coq (Barras et al.,
1999) and Lean (De Moura et al., 2015) on dependent type theory.

In parallel, a series of search-based theorem provers have been developed to enhance automated rea-
soning capabilities. LEGO-Prover (Wang et al., 2023a) employs a modular formal proof framework
to construct a reusable skill library, enabling LLMs to retrieve existing skills and synthesise new
ones during the proof process. DT-Solver (Wang et al., 2023b) introduces a dynamic-tree Monte
Carlo search algorithm, whereas BFS-Prover (Xin et al., 2025), based on a best-first search strategy,
achieves state-of-the-art performance among search-based theorem provers.

More recent developments have shifted towards an alternative whole-proof generation approach,
where a language model generates the entire proof in a single pass. Notable examples following
this paradigm include DeepSeek-Prover (Ren et al., 2025), Goedel-Prover (Lin et al., 2025), and
Kimina-Prover Preview (Wang et al., 2025). Agentic methods such as Delta Prover(Zhou et al.,
2025) integrate reflective decomposition and iterative repair, allowing a general-purpose LLM to
interactively construct formal proofs. Seed-Prover (Chen et al., 2025) combines multi-stage rein-
forcement learning, agent-based strategies and test-time scaling, achieving impressive results by
fully solving 4 out of 6 problems in IMO 2025.

2.2 LEANEUCLID

LeanEuclid (Murphy et al., 2024) represents a pioneering effort in formalizing plane geometry
within Lean by integrating SMT (Barrett & Tinelli, 2018) solving techniques with SystemE (Avigad
et al., 2009) to construct a rigorous axiomatic framework. It introduces an autoformalization bench-
mark that covers the first chapter of Euclid’s Elements along with 125 relatively simple problems
drawn from the UniGeo corpus.

Table 2: Comparison between LeanEuclid and LeanGeo

LEANEUCLID LEANGEO
Axiom Number 107 116
Theorem Number 106 260
Geometry Structure Number 12 50
Average Proof Length 20.27 16.20
Average number of quote lemma 3.80 3.43
SMT Method Hard-coded rules LeanSMT
Level Euclid’s Element Competitional Geometry

Our framework LeanGeo is a substantial expansion of LeanEuclid’s theorem library and geometric
structures. LeanEuclid formalizes only the 49 propositions in Elements I; as a result, its expres-
sive power is far from adequate for solving standard middle- and high-school geometry problems.
LeanGeo builds on the same axiomatic foundation but provides a significantly richer collection of
theorems, definitions, and geometric structures while improving SMT method. A summary compar-
ison is shown in Table 2.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

2.3 GEOMETRY PROBLEM SOLVING

Automatic geometry solvers have a rich history. Classical algebraic methods—Wu’s characteristic
set (Wu, 1986) and Gröbner bases (Bose, 1995)—reduce geometry to polynomial ideal membership,
achieving impressive coverage of textbook theorems.

A recent milestone in automated geometry reasoning is AlphaGeometry (Trinh et al., 2024), which
integrates a neural language model trained on 100 million synthetic theorems with a symbolic de-
duction engine to solve 25 out of 30 IMO-level problems. Building on the framework proposed
in Chou et al. (2000), its formal system is unordered and point-centered, enabling fast symbolic
deduction within this setting. However, this formal system also has several notable limitations that
restrict its broader applicability.

In essence, AlphaGeometry functions as a task-specialized solving system tailored for IMO-style
geometry problems: it is extremely powerful in problem solving, but this comes at the cost of
sacrificing internal axiomatic rigor and omitting several components we believe are equally essential
for geometry learners and researchers—such as geometric inequalities, trigonometric reasoning, and
positional or incidence relations. Furthermore, its unsound formal system makes it impossible to
formally verify any proofs. While its simplified formal system accelerates search and inference, it
loses part of the rigor and human interpretability. In contrast, our system aims to be more complete,
rigorous, and structurally expressive, though this naturally results in more intricate and elaborate
reasoning processes.

The comparison between LeanGeo and AlphaGeometry are shown in Table 3. Appendix E Gives
more example to illustrate the comparison in the table.

Table 3: Comparison between AlphaGeometry and LeanGeo

Category Feature AlphaGeometry LeanGeo

Expressivity

Geometric Inequality & Trigonometric Functions × ✓
Metric Relation (Perpendicular, Parallel, Equal) ✓ ✓
Positional Relation (Inside, Between, Sameside) × ✓
Existential Proposition × ✓
Linear Computation ✓ ✓
Non-linear Computation × ✓

Verifiability Verifiability of Proof × ✓

Axiom System Soundness × ✓
Extensibility × ✓

2.4 GEOMETRY AND LEAN BENCHMARKS

Advances in automated theorem proving have spurred the development of various Lean-based math-
ematical benchmarks in recent years. MiniF2F, for instance, is a benchmark designed to evaluate
automated theorem-proving systems on high-school-level algebra and number theory problems.

In parallel, several geometry benchmarks have been established to assess the multi-modal reasoning
capabilities of large language models (LLMs). Benchmarks such as Geoeval (Zhang et al., 2024b),
GeoQA (Chen et al., 2021), Geometry3K (Hiyouga, 2025), and FormalMath (Yu et al., 2025) offer
comprehensive evaluations of computational and quantitative reasoning. However, classical geo-
metric proof—rooted in Euclidean tradition—remains an essential aspect of geometric reasoning
that is currently underrepresented in existing benchmarks, largely due to the difficulty of formal
verification. LeanEuclid, built upon Book I of Euclid’s Elements, provides a benchmark for auto-
formalization, yet its problem set is limited in scope and primarily consists of elementary exercises.
The AlphaGeometry framework introduced two benchmarks, IMO-30 and JGEX-231, but these
emphasize problem-solving without supporting verifiable formal proofs due to limitations in their
underlying reasoning systems. MATP aggregates a large set of geometry problems written in Lean4,
yet current LLMs perform unsatisfactorily on this benchmark. Moreover, the lack of a comprehen-
sive geometry theorem library in Lean4 hinders the effective application of geometric tools by LLMs
in this formal environment. A detailed comparison of these benchmarks is provided in Table 4.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 4: Comparison of Geometry and Lean Benchmarks

Benchmark Size Verifiable Geometric Formal
Proving Percentage Lean Theorem

Library Level

miniF2F 488 ✓ 0% ✓ Mathlib Middle School
Geometry3K-test 601 ✓ 0% × × Middle School
LeanEuclid 173 ✓ 0% ✓ SystemE Elementary
AG-IMO-30 30 × 100% × DD rules Olympiad
MATP-Bench 1056 ✓ About 20% ✓ × Synthetic
LeanGeo-Bench 123 ✓ 100% ✓ LeanGeo Synthetic

3 LEANGEO

LeanGeo is a manually formalized system of plane geometry theorems and their proofs in the Lean
4 proof assistant. It builds upon the axiomatic framework of SystemE (Avigad et al., 2009), while
its implementation inherits most foundational geometric objects, relations from LeanEuclid (Mur-
phy et al., 2024), with slight modifications (see Appendix C). Additionally, LeanGeo leverages
LeanSMT (Mohamed et al., 2025) at its core, which effectively hides many of the underlying proof
details in Lean 4.

LeanGeo

Basic (61)

Angle

Distance

Construction

Position

Parallel

Perpendicular

PerpBisector

Metrics (17)

Area

Trigonometry

Triangle (51)

Basic

IsoTriangle

Circumcentre

Othocentre

Incentre

Circle (118)

Basic

Cyclic

Position

Relation

RadicalAxis

Miquel

Quadrilateral (13)

Basic

Figure 1: Structure of LeanGeo Theorem Library

3.1 THEOREM LIBRARY

To enhance the expressive power of the theorem library and align it with common geometric ter-
minology, we firstly introduced 52 new definitions for geometric structures — such as Midpoint,
Circumcenter, and RadicalAxis using abbrev as shown in 1. These additions make problem state-
ments more concise and proofs more streamlined, while not increasing the length of the correspond-
ing SMT process.

abbrev Cyclic (A B C D: Point) : Prop :=
∃ (O: Circle), A.onCircle O ∧ B.onCircle O ∧ C.onCircle O ∧ D.onCircle O

Listing 1: Example of abbreviation

With the assistance of these newly defined structures, we established LeanGeo, a theorem library
comprising 260 geometric theorems as shown in 1. All theorems in the library are manually written,
formally proved and auto-verified by Lean4 and LeanSMT.

These theorems systematically cover topics ranging from foundational middle-school geometry to
challenging International Mathematical Olympiad (IMO) level theorem, such as Menelaus’s theorem
and Miquel’s theorem. Besides, the library covers a wide range of geometry theorem, including
fundamental properties of triangles (e.g., congruence, similarity), circles (e.g., inscribed angles,
power of a point, radical axis), and quadrilaterals, as well as theorems related to key geometric
points like the circumcenter and orthocenter.

A key feature of LeanGeo is that most proofs in the library are constructed by referencing previously
established theorems through the euclid_apply tactic. Consequently, the development of the
library parallels the human process of building geometric theory—progressing from axoims and
simple foundations to increasingly complex structures (see Listing 6). As the library grows, these
reusable lemmas substantially enhance deductive efficiency and shorten higher-level proofs.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Our experiments (See details in Appendix A.2) why this modular structure matters: integrating
lemmas directly back into a theorem increases compilation time, and the effect becomes severe
when lemma granularity is too coarse, as the system is forced to repeatedly recompile the same
reasoning steps. In contrast, keeping lemmas separate allows shared arguments to be compiled once
and reused, significantly improving overall efficiency.

Besides, LeanGeo is designed for seamless integration with Mathlib, enabling it to leverage powerful
tools from other areas of mathematics. For example, it can employ trigonometric identities and ad-
vanced inequalities to tackle problems that are often beyond the reach of purely axiomatic geometry
systems. As shown in D.2, trigonometric theorems in Mathlib are applied to prove IMO 2001 P1, a
geometry inequality problem that is difficult to express within most geometric formal systems.

One of the most challenging issues in theorem annotation is describing positional relationships in
geometry without visual aids. For problem illustrated in Figure 2, natural language proofs, as well
as most geometry formal systems such as AlphaGeometry, consider only a single case. Owing to
Lean’s stringent requirements for rigor, a LeanGeo-proof must explicitly account for all possible
cases. While this often results in more intricate proofs, it also ensures a higher level of rigor.

Natural Language:

The Circle O1 and O2 intersects at K and B, Line l intersects the circle O1 at A and circle O2 at C.

Prove that triangle KO1O2 and KAC are similar.

Formal Statement in LeanGeo:

theorem intersectCircles_similarTriangles_of_one_secant : ∀ (O₁ O₂ A B C K : Point) (Ω₁ Ω₂: Circle), Ω₁

≠ Ω₂ ∧ O₁.isCentre Ω₁ ∧ O₂.isCentre Ω₂ ∧ CirclesIntersectAtTwoPoints Ω₁ Ω₂ B K ∧A.onCircle Ω₁ ∧
C.onCircle Ω₂ ∧ Coll A B C ∧A ≠ B ∧ B ≠ C ∧A ≠ K ∧ C ≠ K → SimilarTriangles O₁ O₂ K A C K := by

Possible Graph 1: Possible Graph 2: Possible Graph 3:

Figure 2: Different graphs with a same formal statement

To avoid overly cumbersome case analyses, we make extensive use of SMT solvers in our formal
proofs to simplify the classification process and trivial results.

3.2 LEANSMT 4.15

To efficiently discharge goals deemed trivial in natural language proofs, LeanGeo invokes the
CVC5 (Barbosa et al., 2022) SMT solver. In LeanEuclid (Murphy et al., 2024), the SystemE ax-
ioms are embedded as hardcoded SMT commands. By contrast, LeanGeo employs the esmt tactic,
which directly passes all local hypotheses from the current tactic state—together with SystemE’s
inference axioms and the negated goal—to CVC5 for an unsatisfiability check. If CVC5 returns
unsat, the entailment is confirmed.

For performance optimization, raw axiom expressions are not repeatedly translated into SMT com-
mands. Instead, parsed axiom expressions are cached, and a global metavariable (mvar) dependency
graph is maintained. This graph is dynamically updated whenever a definition or axiom annotated
with @[euclid] is encountered as shown in Listing 2. The core logic for updating this dependency
graph is presented in the Appendix B.

@[euclid]
axiom zero_segment_if :
∀ (a b : Point), |(a - b)| = 0 → a = b

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Listing 2: tactic usage]Example of @[euclid] tactic usage
The @[euclid] tactic makes our system more extensible. In LeanEuclid, the translator does
not natively handle new definitions, meaning it would require manual modification to work with
non-SystemE definitions such as sin and cos. Our system is designed to seamlessly incorporate
such new definitions, making it more adaptable to a wider range of geometric problems. In addi-
tion, our theorem library inherits the expression styles of other tactics from LeanEuclid, such as
euclid_intros, euclid_apply, and euclid_finish. When these tactics are executed,
the system automatically invokes LeanSMT to return the results. The specific usage and examples
of these tactics can be found in Appendix D.1.

Moreover, we analyze the scalability of LeanGeo based on four controlled experiments that vary
the number of geometry elements, assumptions, proof length, and uses of euclid tactics (see Ap-
pendix A.1 for detailed graphs). Across all settings, both heartbeats and compilation time exhibit
nearly linear growth with respect to the problem size, and the two metrics remain strongly positively
correlated. increases mildly, but without causing instability. The four scaling curves demonstrate
that LeanGeo’s performance is dominated by the expected linear relationship between proof work-
load and compilation effort, with no pathological slowdowns observed.

4 LEANGEO-BENCH

4.1 BENCHMARK

LeanGeo-Bench is a formal benchmark tailored for formalizing and proving contest-level plane
geometry theorems in Lean 4 and LeanGeo. As shown in Table 5, the benchmark consists of 122
problems drawn from diverse sources, including existing theorem libraries, textbooks, synthetically
generated problems, contest problems.

Table 5: Composition of LeanGeo-Bench

SECTION N SOURCE METHOD

UniGeo(UG) 10 LeanEuclid Manually Written
Library(LB) 10 LeanGeo Library Manually Written
Synthetic Problem(SP) 20 LeanGeo Library Generated by gemini
High Shool Competition(HSC) 20 NuminaMath Autoformalized + double check
Olympic Problem(OP) 19 Evan Chen’s textbook Autoformalized + double check
IMO 43 AoPS Autoformalized + double check

The benchmark’s difficulty ranges from foundational to competition-level. It includes 20 introduc-
tory problems: 10 from UniGeo(Chen et al., 2022) and 10 from LeanGeo theorem library. An-
other 20 problems (‘Gemini synthetic’) are synthetically generated by an gemini-2.5 via our Prob-
lem Generation Pipeline. The majority of the benchmark consists of 83 more advanced problems
sourced from high-school curricula, NuminaMath(Li et al., 2024), Evan Chen’s Geometry textbook
Chen (2021), and all the International Mathematical Olympiad (IMO) geometry problems since
2000 from AoPS(Art of Problem Solving). These problems were developed using a human-in-the-
loop methodology: For each problem, it is first autoformalized by a large language model through
prompt engineering, and then rigorously reviewed and corrected by two human experts.

The benchmark covers a broad range of topics commonly encountered in competitive geometry,
including triangles, circles, quadrilaterals, and notably triangle centers (e.g., incenter, circumcen-
ter), as shown in Figure 3. It also contains comprehensive problems involving multiple geometric
configurations. Moreover, the problem types are diverse: in addition to traditional plane geome-
try proofs, many problems require calculating or deriving angles and side lengths. The benchmark
further includes three geometry inequality problems and two problems involving moving points.

As part of this work, we present 43 formally verified solutions to problems in the benchmark, includ-
ing two from the International Mathematical Olympiad (IMO), all of which are machine-checked
in Lean. The formal proofs ensure the correctness of these problems. For problems without formal

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 3: Category Distribution of LeanGeo-Bench

proofs, we validate correctness using a negation-based method combined with independent reviews
by two geometry experts.
4.2 EVALUATION METHOD

To guide the LLM in generating formal proofs, we design a comprehensive prompt that carefully
structures the task environment. The prompt comprises a custom declarative Domain-Specific Lan-
guage of LeanGeo, “Error-and-correction” examples, construction rules for geometric definitions,
the full set of theorems from the LeanGeo theorem library, together with few-shot learning examples.
The complete prompt is provided in the Appendix F.

To evaluate the result generated by LLM, we apply the online one stage Fine-Eval method
introduced in CombiBench (Liu et al., 2025) - This evaluation followed a two-step procedure. First,
we checked that the LLM’s result was consistent with the initial formal problem statement. Then,
we fed the result into a Lean server containing a pre-built theorem library to formally verify the
proof.

4.3 BASELINE RESULT

To comprehensively evaluate the model’s performance on the benchmark, we conducted extensive
testing across Gemini 2.5 Pro (DeepMind, 2025), o4-mini (OpenAI, 2025), Grok 4 (xAI, 2025) ,
Kimi K2 (MoonshotAI, 2025) , Claude 4 (Anthropic, 2025) and Qwen3-235B-A22B (Yang et al.,
2025) and collected their overall success rates at different sample budgets and their performance in
different section. The results are shown in Table 6.

Table 6: Evaluation on LeanGeo-Bench

MODEL OVERALL SUCCESS RATE (%) SUCCESS NUMBER(pass@4)
pass@1 pass@2 pass@4 UG LB SP HSC OP IMO

Gemini 2.5 Pro 17.21 22.95 27.05 10 4 13 6 0 0
o4-mini 19.67 21.31 22.13 7 9 8 3 0 0
Grok 4 16.39 21.31 24.59 10 6 11 3 0 0
Kimi K2 9.02 9.02 9.84 1 9 2 0 0 0
Claude 4 4.92 9.02 10.66 1 5 7 0 0 0
Qwen3-235B-A22B 3.28 4.10 5.74 0 6 1 0 0 0

Total 10 10 20 20 19 43
The LeanGeo-Bench results reveal substantial differences in geometric theorem-proving perfor-
mance across state-of-the-art LLMs. o4-mini (OpenAI, 2025) attains the highest pass@1 score
(19.67%), while Gemini 2.5 Pro (DeepMind, 2025) leads at pass@4 (27.05%).

A breakdown by category at pass@4 reveals complementary strength of LLMs in different area:
Gemini-2.5-Pro excels in novel-problem settings such as Synthetic Proof (SP) and High School
Competition (HSC), indicating stronger adaptability to unseen reasoning patterns, while GPT-o4-
mini demonstrates greater proficiency in Library(LB), suggesting a more understanding and appli-
cation of the theorem library in prompt.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

While most models achieve partial success on the benchmark, their performance plateaus below
30%, and notably none of the evaluated models could solve any of the 62 Olympic-level problems,
indicating fundamental limitations in handling complex geometric proofs that require sophisticated
logical reasoning, advanced diagram interpretation, and formal verification capabilities.

5 REINFORCEMENT LEARNING EXPERIMENTS

5.1 GENERATING DATA BY LLM

A significant challenge in applying Reinforcement Learning training on LeanGeo is the absence of
pre-existing cold start data, as LeanGeo establishes a novel framework for formal geometry. To
address this, we developed a synthetic data generation pipeline. This process begins by creating
a specialized prompt for Gemini 2.5 Pro (DeepMind, 2025), featuring carefully crafted guidelines
and few-shot examples of theorem generation. Instead of tasking the LLM with solving a predefined
problem, we prompt it with five randomly sampled theorems from our existing LeanGeo library. The
LLM is then instructed to synthesize a new theorem and a corresponding proof, using the sampled
theorems as inspiration. We repeated this process 5,000 times, each time conditioning the model on
a different random subset of our library, to ensure a broad and diverse distribution of new problems.

The generated theorem-proof pairs are then automatically verified using the Lean prover. This ver-
ification reveals that 89% of the generated formal statements are syntactically valid, and 14% of
the full submissions (statement and proof) pass the verification. Based on this outcome, we cat-
egorize the generated data: the activation dataset consists of problems with a valid statement and
correct proof. This dataset is used for supervised fine-tuning as the initialization phase for reinforce-
ment learning, while problems with valid statement but invalid proof are used for the prompt set in
reinforced learning. The whole process is illustrated in Figure 4.

New theorems
with proofsTheorem Library Theorems with

correct statements
Theorems with
correct proofs

Activation
Data

Prompt Set

sample 5 theorems verify statements verify proofs

Figure 4: Data Generation Pipeline

5.2 INSTILLING KNOWLEDGE IN RL

Another challenge arises from the size of our theorem library. To prove a new theorem, the model
must select and apply relevant theorems from this library. Incorporating the entire library into the
prompt may present practical limitations, as it risks surpassing the model’s context window, which
could adversely impact training efficiency and model performance. To overcome this, we propose
an “instilling method” that structures the prompt to manage the context effectively. Specifically, we
use the following data format:

You are an expert in Lean 4 and geometric problem-solving.
You may apply the following theorems to solve the problem:
<theorem_1>
<theorem_2>
. . .
<theorem_10>
Now, let’s solve the following problem step-by-step.
<formal_statement>

During reinforcement learning, we retain the same prompt structure; however, the 10 provided the-
orems are selected entirely at random from the library, regardless of their relevance to the target

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

formal statement. This approach encourages the model to discern and apply theorems that are truly
pertinent within a noisy context, fostering a critical skill necessary for effective problem-solving.

5.3 RL TRAINING

We employ the RL framework of the Kimina-Prover (Wang et al., 2025) to train our model. Our
RL training procedure consists of two stages. Initially, the agent is trained on the activation dataset,
during which the model’s proof success rate improves from a post-SFT baseline of 37% to 60%.
Subsequently, training proceeds on the prompt set, where the success rate increases from 12.5% to
40%. This training regimen also yields enhanced performance on our evaluation benchmark, with
the pass@1 rate rising from 2.52 % to 10.92%.

6 DISCUSSION AND FUTURE WORK

While LeanGeo successfully demonstrates the viability of a declarative, human-readable approach
for competition-level geometry, several key challenges and opportunities for future work remain.
These are centered on strengthening the system’s foundational soundness, enhancing its automation
capabilities, and Instilling domain-specific knowledge to LLMs.

6.1 AUTOMATION CAPABILITIES

While the integration with SMT solvers is powerful, a limitation of general-purpose SMT solvers
is their lack of geometry-specific heuristics. Therefore, the solving speed of SMT significantly
decreases as the number of points in the problem increases. One way to scale LeanGeo for more
complex problems is by embedding domain-specific proof automation, like the Area Method(Janicic
et al., 2012) or algebraic geometry techniques, into the tactic framework.

6.2 INSTILLING DOMAIN-SPECIFIC KNOWLEDGE TO LLMS

In the current benchmark, to ensure the model correctly cites theorems, we input the entire theorem
library’s statements as prompts to the model. However, long prompts may negatively impact the
model’s performance.

To address this issue, our RL framework takes first steps in reducing prompt length and instilling
knowledge into LLMs. However, our method is still rather rudimentary and needs more sophisti-
cated development.

7 CONCLUSION

In this paper, we present LeanGeo, the first Lean-based framework capable of formalizing and solv-
ing competition-level geometry problems, together with LeanGeo-Bench, a 122-problem benchmark
spanning from foundational theorems to IMO challenges. LeanGeo’s declarative, human-readable
proofs, deep Mathlib integration, and extensible library enable rigorous cross-domain reasoning be-
yond the reach of existing geometry systems.

Our baseline evaluations reveal that while current LLMs can solve some problems, they fall far
short on the hardest tasks, underscoring the need for stronger geometric reasoning and proof search
capabilities. By combining a rich formal library, a challenging benchmark, and initial reinforcement
learning experiments, LeanGeo establishes a scalable testbed for advancing automated geometry
theorem proving and neuro-symbolic reasoning.

8 REPRODUCIBILITY STATEMENT

To reproduce the LeanGeo experiments or run the benchmark evaluation reported in this pa-
per, please clone the anonymized repository at https://anonymous.4open.science/r/
LeanGeo-9CE9 and follow the step-by-step instructions given in the README.md. Our evalua-
tion toolkit offers a clean, end-to-end benchmark harness: one command clones the repo, downloads
frozen artifacts, and prints the identical numbers reported in the paper—no manual tuning or secret
flags—thereby maximizing reproducibility. The RL-training pipeline relies on Moonshot AI internal
infrastructure that cannot be released.

10

https://anonymous.4open.science/r/LeanGeo-9CE9
https://anonymous.4open.science/r/LeanGeo-9CE9

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Anthropic. Introducing claude 4. https://www.anthropic.com/news/claude-4, July
2025. Accessed on 2025-07-25.

Art of Problem Solving. Art of problem solving. Website. URL https://
artofproblemsolving.com. Accessed: 2025-08-12.

Jeremy Avigad, Edward Dean, and John Mumma. A formal system for euclid’s elements. The
Review of Symbolic Logic, 2(4):700–768, 2009.

Haniel Barbosa, Clark Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt, Makai Mann, Ab-
dalrhman Mohamed, Mudathir Mohamed, Aina Niemetz, Andres Nötzli, et al. cvc5: A versatile
and industrial-strength smt solver. In International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, pp. 415–442. Springer, 2022.

Bruno Barras, Samuel Boutin, Cristina Cornes, Judicaël Courant, Yann Coscoy, David Delahaye,
Daniel de Rauglaudre, Jean-Christophe Filliâtre, Eduardo Giménez, Hugo Herbelin, et al. The
coq proof assistant reference manual. INRIA, version, 6(11):17–21, 1999.

Clark Barrett and Cesare Tinelli. Satisfiability modulo theories. In Handbook of model checking,
pp. 305–343. Springer, 2018.

Wolfgang Bibel. Automated theorem proving. Springer Science & Business Media, 2013.

NK Bose. Gröbner bases: An algorithmic method in polynomial ideal theory. In Multidimensional
systems theory and applications, pp. 89–127. Springer, 1995.

Evan Chen. Euclidean geometry in mathematical olympiads, volume 27. American Mathematical
Soc., 2021.

Jiaqi Chen, Jianheng Tang, Jinghui Qin, Xiaodan Liang, Lingbo Liu, Eric P Xing, and Liang Lin.
Geoqa: A geometric question answering benchmark towards multimodal numerical reasoning.
arXiv preprint arXiv:2105.14517, 2021.

Jiaqi Chen, Tong Li, Jinghui Qin, Pan Lu, Liang Lin, Chongyu Chen, and Xiaodan Liang. Unigeo:
Unifying geometry logical reasoning via reformulating mathematical expression. arXiv preprint
arXiv:2212.02746, 2022.

Luoxin Chen, Jinming Gu, Liankai Huang, Wenhao Huang, Zhicheng Jiang, Allan Jie, Xiaoran Jin,
Xing Jin, Chenggang Li, Kaijing Ma, Cheng Ren, Jiawei Shen, Wenlei Shi, Tong Sun, He Sun,
Jiahui Wang, Siran Wang, Zhihong Wang, Chenrui Wei, Shufa Wei, Yonghui Wu, Yuchen Wu,
Yihang Xia, Huajian Xin, Fan Yang, Huaiyuan Ying, Hongyi Yuan, Zheng Yuan, Tianyang Zhan,
Chi Zhang, Yue Zhang, Ge Zhang, Tianyun Zhao, Jianqiu Zhao, Yichi Zhou, and Thomas Han-
wen Zhu. Seed-prover: Deep and broad reasoning for automated theorem proving, 2025. URL
https://arxiv.org/abs/2507.23726.

Shang-Ching Chou, Xiao-Shan Gao, and Jing-Zhong Zhang. A deductive database approach to
automated geometry theorem proving and discovering. Journal of Automated Reasoning, 25(3):
219–246, 2000.

Leonardo De Moura, Soonho Kong, Jeremy Avigad, Floris Van Doorn, and Jakob von Raumer. The
lean theorem prover (system description). In International Conference on Automated Deduction,
pp. 378–388. Springer, 2015.

DeepMind. Gemini 2.5 pro. https://deepmind.google/models/gemini/pro/, July
2025. Accessed on 2025-07-25.

Zhitao He, Zongwei Lyu, Dazhong Chen, Dadi Guo, and Yi R Fung. Matp-bench: Can mllm be
a good automated theorem prover for multimodal problems? arXiv preprint arXiv:2506.06034,
2025.

Hiyouga. Geometry3k dataset, 2025. URL https://huggingface.co/datasets/
hiyouga/geometry3k.

11

https://www.anthropic.com/news/claude-4
https://artofproblemsolving.com
https://artofproblemsolving.com
https://arxiv.org/abs/2507.23726
https://deepmind.google/models/gemini/pro/
https://huggingface.co/datasets/hiyouga/geometry3k
https://huggingface.co/datasets/hiyouga/geometry3k

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Predrag Janicic, Julien Narboux, and Pedro Quaresma. The Area Method : a Recapitulation. Journal
of Automated Reasoning, 48(4):489–532, 2012. doi: 10.1007/s10817-010-9209-7. URL https:
//hal.science/hal-00426563.

Jia Li, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Huang, Kashif
Rasul, Longhui Yu, Albert Q Jiang, Ziju Shen, et al. Numinamath: The largest public dataset in
ai4maths with 860k pairs of competition math problems and solutions. Hugging Face repository,
13(9):9, 2024.

Yong Lin, Shange Tang, Bohan Lyu, Ziran Yang, Jui-Hui Chung, Haoyu Zhao, Lai Jiang, Yihan
Geng, Jiawei Ge, Jingruo Sun, et al. Goedel-prover-v2: Scaling formal theorem proving with
scaffolded data synthesis and self-correction. arXiv preprint arXiv:2508.03613, 2025.

Junqi Liu, Xiaohan Lin, Jonas Bayer, Yael Dillies, Weijie Jiang, Xiaodan Liang, Roman Soletskyi,
Haiming Wang, Yunzhou Xie, Beibei Xiong, et al. Combibench: Benchmarking llm capability
for combinatorial mathematics. arXiv preprint arXiv:2505.03171, 2025.

The mathlib community. The lean mathematical library. In Proceedings of the 9th ACM SIGPLAN
International Conference on Certified Programs and Proofs, CPP 2020, pp. 367–381. ACM,
2020. doi: 10.1145/3372885.3373824.

Abdalrhman Mohamed, Tomaz Mascarenhas, Harun Khan, Haniel Barbosa, Andrew Reynolds,
Yicheng Qian, Cesare Tinelli, and Clark Barrett. Lean-smt: An smt tactic for discharging proof
goals in lean. In International Conference on Computer Aided Verification, pp. 197–212. Springer,
2025.

MoonshotAI. Kimi k2: Open agentic intelligence. https://moonshotai.github.io/
Kimi-K2/, July 2025. Accessed on 2025-07-25.

Leonardo de Moura and Sebastian Ullrich. The lean 4 theorem prover and programming language.
In International Conference on Automated Deduction, pp. 625–635. Springer, 2021.

Logan Murphy, Kaiyu Yang, Jialiang Sun, Zhaoyu Li, Anima Anandkumar, and Xujie Si. Autofor-
malizing euclidean geometry. arXiv preprint arXiv:2405.17216, 2024.

OpenAI. Announcing openai o3 and o4-mini. https://openai.com/index/
introducing-o3-and-o4-mini/, July 2025. Accessed on 2025-07-25.

Lawrence C Paulson. Isabelle: A generic theorem prover. Springer, 1994.

ZZ Ren, Zhihong Shao, Junxiao Song, Huajian Xin, Haocheng Wang, Wanjia Zhao, Liyue Zhang,
Zhe Fu, Qihao Zhu, Dejian Yang, et al. Deepseek-prover-v2: Advancing formal mathematical rea-
soning via reinforcement learning for subgoal decomposition. arXiv preprint arXiv:2504.21801,
2025.

Konrad Slind and Michael Norrish. A brief overview of hol4. In International Conference on
Theorem Proving in Higher Order Logics, pp. 28–32. Springer, 2008.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with
llms. arXiv preprint arXiv:2501.12599, 2025.

Trieu H Trinh, Yuhuai Wu, Quoc V Le, He He, and Thang Luong. Solving olympiad geometry
without human demonstrations. Nature, 625(7995):476–482, 2024.

Haiming Wang, Huajian Xin, Chuanyang Zheng, Lin Li, Zhengying Liu, Qingxing Cao, Yinya
Huang, Jing Xiong, Han Shi, Enze Xie, et al. Lego-prover: Neural theorem proving with growing
libraries. arXiv preprint arXiv:2310.00656, 2023a.

Haiming Wang, Ye Yuan, Zhengying Liu, Jianhao Shen, Yichun Yin, Jing Xiong, Enze Xie, Han Shi,
Yujun Li, Lin Li, et al. Dt-solver: Automated theorem proving with dynamic-tree sampling guided
by proof-level value function. In Proceedings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 12632–12646, 2023b.

12

https://hal.science/hal-00426563
https://hal.science/hal-00426563
https://moonshotai.github.io/Kimi-K2/
https://moonshotai.github.io/Kimi-K2/
https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/introducing-o3-and-o4-mini/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Haiming Wang, Mert Unsal, Xiaohan Lin, Mantas Baksys, Junqi Liu, Marco Dos Santos, Flood
Sung, Marina Vinyes, Zhenzhe Ying, Zekai Zhu, et al. Kimina-prover preview: Towards large
formal reasoning models with reinforcement learning. arXiv preprint arXiv:2504.11354, 2025.

Wen-Tsun Wu. Basic principles of mechanical theorem proving in elementary geometries. Journal
of automated Reasoning, 2(3):221–252, 1986.

xAI. Grok 4 — xai. https://x.ai/news/grok-4, July 2025. Accessed on 2025-07-25.

Ran Xin, Chenguang Xi, Jie Yang, Feng Chen, Hang Wu, Xia Xiao, Yifan Sun, Shen Zheng, and
Kai Shen. Bfs-prover: Scalable best-first tree search for llm-based automatic theorem proving.
arXiv preprint arXiv:2502.03438, 2025.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Zhouliang Yu, Ruotian Peng, Keyi Ding, Yizhe Li, Zhongyuan Peng, Minghao Liu, Yifan Zhang,
Zheng Yuan, Huajian Xin, Wenhao Huang, et al. Formalmath: Benchmarking formal mathemati-
cal reasoning of large language models. arXiv preprint arXiv:2505.02735, 2025.

Chi Zhang, Jiajun Song, Siyu Li, Yitao Liang, Yuxi Ma, Wei Wang, Yixin Zhu, and Song-
Chun Zhu. Proposing and solving olympiad geometry with guided tree search. arXiv preprint
arXiv:2412.10673, 2024a.

Hanting Zhang, Daniel Selsam, and Joseph Myers. ı̈mo geometryẗopic in the lean zulip
chat archive. https://leanprover-community.github.io/archive/
stream/219941-Machine-Learning-for-Theorem-Proving/topic/IMO.
20Geometry.html, 2022. LeanProver Community Chat, Apr 2022.

Jiaxin Zhang, Zhongzhi Li, Mingliang Zhang, Fei Yin, Chenglin Liu, and Yashar Moshfeghi. Geoe-
val: benchmark for evaluating llms and multi-modal models on geometry problem-solving. arXiv
preprint arXiv:2402.10104, 2024b.

Yichi Zhou, Jianqiu Zhao, Yongxin Zhang, Bohan Wang, Siran Wang, Luoxin Chen, Jiahui Wang,
Haowei Chen, Allan Jie, Xinbo Zhang, Haocheng Wang, Luong Trung, Rong Ye, Phan Nhat
Hoang, Huishuai Zhang, Peng Sun, and Hang Li. Solving formal math problems by decomposi-
tion and iterative reflection. 2025. URL https://arxiv.org/abs/2507.15225.

13

https://x.ai/news/grok-4
https://leanprover-community.github.io/archive/stream/219941-Machine-Learning-for-Theorem-Proving/topic/IMO.20Geometry.html
https://leanprover-community.github.io/archive/stream/219941-Machine-Learning-for-Theorem-Proving/topic/IMO.20Geometry.html
https://leanprover-community.github.io/archive/stream/219941-Machine-Learning-for-Theorem-Proving/topic/IMO.20Geometry.html
https://arxiv.org/abs/2507.15225

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A ANALYSIS OF SCALABILITY

A.1 SCALABILITY OF SMT

We conduct a series of supplementary experiments to evaluate the scalability of LeanGeo, examining
how four key factors influence both compilation time and the number of heartbeats required for proof
execution:

• [(1)] The number of basic geometric elements (points, lines, and circles),
• [(2)] The number of given conditions,
• [(3)] The length of the proof, and
• [(4)] The number of applications of the euclid tactics.

The scaling curves are shown in Figure 5.

(a) Experiment 1 (b) Experiment 2

(c) Experiment 3 (d) Experiment 4

Figure 5: Scaling behavior of heartbeats and compilation time across four experimental settings.

Across all four experiments, LeanGeo exhibits approximately linear scaling: as we increase assump-
tions, conditions, proof length, or the number of Euclid tactics, both heartbeats and compilation time
grow in a strongly correlated, near-linear manner. The only noticeable rises occur when the logical
structure becomes denser (e.g., deeper lemma dependencies), which naturally increases the amount
of proof search. Overall, the results show that LeanGeo is practically scalable, with performance
determined primarily by the expected positive correlation between heartbeats and compilation effort
rather than by any pathological geometric cases.

A.2 COMPLEXITY VERSUS LEMMA GRANULARITY

Our experiments demonstrate that coarse lemma granularity leads to severe blow-ups in both compi-
lation time and heartbeats. When large “all-in-one” lemmas are inlined directly into a theorem, many
nearly identical reasoning steps must be recompiled repeatedly, causing exponential-like scaling.

In contrast, extracting commonly reused intermediate results into separate lemmas keeps the compi-
lation cost close to linear in the dependency depth, because each lemma is compiled once and then
reused. This is precisely why Lean’s modular proof structure is essential for scalability.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

The Table 7 illustrates this effect using Miquel’s Theorem at different lemma-dependency depths:

Lemma Depth Compiled One Time Compiled Multiple Times
Heartbeats Time(ms) Heartbeats Time(ms)

0 1.7× 105 2.1× 104 1.7× 105 2.1× 104

1 6.3× 105 8.8× 104 7.6× 105 1.0× 105

2 1.4× 106 2.1× 105 2.7× 106 4.0× 105

3 2.5× 106 3.6× 105 8.9× 106 1.3× 106

5 4.6× 106 7.5× 105 1.0× 108 1.8× 107

8 7.5× 106 1.3× 106 1.4× 109 2.2× 108

Table 7: Scaling behavior of heartbeats and compilation time under different lemma depths.

In the table, ”lemma depth” refers to the depth of dependencies referenced back from the current
theorem, where a ”lemma depth” of 0 indicates the current theorem itself. The right side repre-
sents the total compilation resource consumption at that lemma depth. If intermediate theorems are
not extracted, a single theorem may need to be written and compiled multiple times. Conversely,
extracting them ensures that the intermediate result is compiled only once.

B COMMAND CACHING

/--
Adds a command for a new constant to the SMT command cache and updates

the dependency graph.

* ‘oldAxiomExprs‘: the expressions corresponding to the types of all
currently cached axioms.

* ‘cName‘: the name of the axiom to be added to the cache.
* ‘initialState‘: the current state of the global dependency graph.

Returns a tuple of the form ‘(new global dependency graph, new list of
cached axioms, list of SMT commands for all of the axioms)‘.

-/
def addCommandForConstant

(oldAxiomExprs : List Expr)
(cName : Name)
(initialState : QueryBuilderM.State)
: MetaM (QueryBuilderM.State × List Expr × List Command) := do
let constInfo ← getConstInfo cName
let constExpr := mkConst cName (constInfo.levelParams.map Level.param)
let ((_, st), r) ←
QueryBuilderM.buildDependencyGraph (mkConst ‘True)
|>.run { toDefine := oldAxiomExprs ++ [constExpr] :
QueryBuilderM.Config }
|>.run initialState
|>.run { uniqueFVarNames := {} : TranslationM.State }

let (_, cmds) ← StateT.run (st.graph.orderedDfs (oldAxiomExprs ++
[constExpr]) (emitVertex st.commands)) []

return ⟨st, oldAxiomExprs ++ [constExpr], cmds⟩

Figure 6: Command caching code for SystemE axioms.

C CHANGES TO SYSTEME FORMALISM

There are some descrepencies between how SystemE axioms are described in the LeanEuclid lean
theory vs how they are passed into the SMT solver. In particular degree and length and area
are defined directly as functions from Points to a real number. That is the types Angle and

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Segment do not exist in the SMT query. If a rule involves substituting a function into applica-
tion into a forall statement it will double the search depth required to obtain that proof. For example
if angle degree is defined as Angle.degree (Angle.ofPoints a b c) the smt’s search
procedure would have to first apply Angle.ofPoints to points a, b, c and then apply Angle.degree to
that resultant angle. By contrast, if degree is defined as the measure of three points only a single
application is required to obtain the term degree a b c. By changing the definition of degree to
be a function on three points it halves the search depth required to acheive the same term. Since we
generally never reason about segments or angles outside of their measures this simplification is ac-
ceptable and segment congruence is defined uniquely by length. For Triangles it is not possible to get
rid of the type entirely since Triangle congruence. We can however define a function area’ which
behaves as an area function on points. When then define Triangle.area (Triangle.ofPoints a b
c) = area’ a b c. And tag it as a simp lemma. Thus, since simplification is applied before passing
into the smt solver, the Triangle type will dissappear by the time the smt solver is invoked. A similar
trick can be done Triangle.congruence.

opaque Angle : Point → Point → Point → R
-- . . .
notation:71 "∠" a ":" b ":" c:72 => Angle a b c

Listing 3: Angle Definition

opaque area’ : Point → Point → Point → R

inductive Triangle
| ofPoints (a b c : Point)

@[simp]
abbrev Triangle.area : Triangle → R :=

fun x =>
match x with
| ofPoints a b c => area’ a b c

notation:max "△" a ":" b ":" c:66 => Triangle.ofPoints a b c

instance : Coe Triangle R :=
⟨Triangle.area⟩

Listing 4: Triangle Definition

Besides, to broaden SystemE’s applicability to the wider field of geometry, we add nine axioms to
LeanGeo covering circles, triangles, similar triangles, and triangle areas, which cannot be derived
within the original SystemE.

axiom triangle_area_foot :∀ (a b c d: Point) (BC: Line),b.onLine BC ∧
c.onLine BC ∧ (Triangle a b c) ∧ Foot a d BC → (△ a:b:c).area = |
(a-d)| * |(b-c)|/2

axiom threePoints_existCircle : ∀ (A B C : Point),
Triangle A B C →
∃ (Ω : Circle),
(A.onCircle Ω ∧ B.onCircle Ω ∧ C.onCircle Ω)

axiom exists_centre : ∀ (O: Circle), ∃ (C : Point), C.isCentre O

axiom rightAngle_eq_pi_div_two :

⌟

= Real.pi / 2

axiom rightTriangle_sin : ∀ (A B C : Point), RightTriangle A B C →
Real.sin (∠A:B:C) = |(A-C)| / |(B-C)|

axiom rightTriangle_cos : ∀ (A B C : Point), RightTriangle A B C →
Real.cos (∠A:B:C) = |(A-B)| / |(B-C)|

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

axiom similar_AA : ∀ (A B C D E F : Point), Triangle A B C ∧ Triangle D
E F ∧ ∠ A:B:C = ∠ D:E:F ∧ ∠ B:A:C = ∠ E:D:F → SimilarTriangles A B
C D E F

axiom similar_SAS : ∀ (A B C D E F : Point), Triangle A B C ∧ Triangle D
E F ∧ ∠ A:B:C = ∠ D:E:F ∧ |(A-B)| * |(E-F)| = |(B-C)| * |(D-E)| →
SimilarTriangles A B C D E F

axiom similar_SSS : ∀ (A B C D E F : Point), Triangle A B C ∧ Triangle D
E F ∧ |(A-B)| * |(E-F)| = |(B-C)| * |(D-E)| ∧ |(B-C)| * |(F-D)| = |(C-A)| * |
(E-F)| → SimilarTriangles A B C D E F

Listing 5: Additional Axioms in LeanGeo

D EXAMPLES OF FORMALIZATION

D.1 EXAMPLES IN THEOREM LIBRARY

Here is a proof example from the LeanGeo theorem library.

theorem angle_lt_outsideCircle: ∀ (A B C D : Point) (AB : Line) (Ω :
Circle), A.onCircle Ω ∧ B.onCircle Ω ∧ distinctPointsOnLine A B AB ∧
C.onCircle Ω ∧ C ̸= A ∧ C ̸= B ∧ D.sameSide C AB ∧ ∠A : D : B < ∠ A:C:B
→ D.outsideCircle Ω := by

euclid_intros
have h1 : ¬ (D.onCircle Ω) := by
by_contra
euclid_apply cyclic_eqAngle A B C D AB Ω
euclid_finish

have h2: ¬ (D.insideCircle Ω):= by
by_contra
euclid_apply line_from_points A D as AD
euclid_apply intersection_circle_line_extending_points Ω AD D A as E
have h3: ∠ B:C:A = ∠ B:E:A := by

euclid_apply cyclic_eqAngle A B C E AB Ω
euclid_finish

euclid_apply triangle_exteriorAngle E D B A
have h4: ∠ A:E:B = ∠ D:E:B := by

euclid_apply angle_between_transfer A D E B
euclid_finish

euclid_finish
euclid_finish

Listing 6: Example of Theorem Library

LeanGeo proofs are structured to mirror the step-by-step, declarative style of traditional, natural-
language geometry proofs. This design choice results in simple, readable proof scripts that are
particularly amenable to machine learning techniques. The proof development relies on a small set
of core tactics:

• euclid_intros
This is an initialization tactic that begins the proof. It processes the theorem’s statement,
automatically introducing all universally quantified variables (e.g., ‘A’, ‘B’, ‘C’, ‘D’, ‘Ω’)
and hypotheses (e.g., ‘A.onCircle Ω’, ‘D.sameSide C AB’) into the local proof context.

• euclid_apply <rule> <args>
Given a rule <rule> with type of the form ∀(<args> : Types) ... P -> Q,
this tactic attempts to prove premise P from the local proof and attempts to prove premise
P from the local proof context using an SMT solver. If successful, propsition Q is added to
the proof context.
In this example, euclid apply cyclic eqAngle A B C D AB refers to the for-
mer theorem in the library(in Circle.lean)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

theorem cyclic_eqAngle: ∀ (A B C D: Point) (AB:Line) (Ω :
Circle), distinctPointsOnLine A B AB ∧ C ̸= A ∧ D ̸= A ∧ C ̸= B ∧
D ̸= B ∧ A.onCircle Ω ∧ B.onCircle Ω ∧ C.onCircle Ω ∧

D.onCircle Ω ∧ C.sameSide D AB → ∠ B:C:A = ∠ B:D:A := by . . .

LeanGeo automatically checks whether all of the premises of cyclic eqAngle, i.e.
distinctPointsOnLine A B AB, C ̸= A, D ̸= A ... are satisfied. If yes,
then its result,∠ B:C:A = ∠ B:D:A will be added in the proof context.

• euclid apply <rule> with <args> as <x, h>
A forward-reasoning tactic designed to apply theorems and construction rules. Given a
rule, typically of the form ∀..., P → ∃ x, Q(x)
This tactic instantiates it with the provided arguments <args>. It then employs an SMT
solver to automatically prove the premise ‘P‘ using hypotheses from the local context. If
successful, the tactic introduces the newly constructed object ’x’ and its property ’Q(x)’
(named ’h’) into the context. This command streamlines geometric constructions and de-
ductions by combining the application of a rule with the automated verification of its pre-
conditions, making the proof script more declarative and readable.

• euclid finish
A terminal tactic that invokes an SMT solver to automatically prove the current goal using
the set of available hypotheses in the local context. This tactic is effective for discharg-
ing goals that are either direct assumptions or straightforward logical consequences of the
premises, requiring minimal search from the solver.

• have hP : P := by
A construct for structuring proofs by introducing an intermediate lemma ‘P‘ (named ‘hP‘).
This allows a complex proof to be decomposed into a sequence of smaller, more manage-
able sub-proofs. This methodology not only enhances the readability and maintainability
of the proof script but also improves the SMT solver’s performance by reducing its search
space. The solver can tackle the smaller lemma in isolation and then utilize the proven
result ‘hP‘ in the main proof.

D.2 FORMALIZATION OF IMO 2001 P1

Problem statement:� �
Let ABC be an acute-angled triangle with O as its circumcenter. Let P

on line BC be the foot of the altitude from A. Assume that
∠BCA ≥ ∠ABC + 30◦. Prove that ∠CAB + ∠COP < 90◦.� �

Proof of LeanGeo:� �
import Mathlib
import SystemE
import LeanGeo
open LeanGeo Real
--Consider an acute-angled Triangle ABC. Let P be the Foot of the

altitude of Triangle ABC issuing from the vertex A, and let O be
the circumcenter of Triangle ABC. Assume that ∠C ≥ ∠B + 30◦. Prove
that ∠A+ ∠COP < 90◦.

--To Trigonometry.lean
--To Triangle.lean
set_option maxHeartbeats 0

theorem sin_inequality(B C : R)
(hB : 0 < B ∧ B < π) (hC : 0 < C ∧ C < π)
(hC1 : C ≥ B + π/6) : 4 * sin B * cos C ≤ 1 := by
rcases hB with ⟨hB1, hB2⟩
rcases hC with ⟨hC11, hC22⟩
have h1 : cos C ≤ cos (B + π / 6) := by
have h2 : C ≥ B + π / 6 := hC1
have h3 : C < π := by linarith [hC22]

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

have h4 : 0 < B + π / 6 := by
linarith [hB1, Real.pi_pos]

have h5 : B + π / 6 < π := by
nlinarith [hB2, hC11, hC22, Real.pi_pos]

have h6 : cos C ≤ cos (B + π / 6) := by
apply Real.cos_le_cos_of_nonneg_of_le_pi
all_goals
nlinarith [Real.pi_pos, hB1, hB2, hC11, hC22, Real.pi_pos]

linarith
have h2 : sin B * cos (B + π / 6) ≤ 1 / 4 := by
have h21 : cos (B + π / 6) = cos B * cos (π / 6) - sin B * sin (π /
6) := by

rw [Real.cos_add]
have h22 : cos (π / 6) = Real.sqrt 3 / 2 := by

rw [cos_pi_div_six]
have h23 : sin (π / 6) = 1 / 2 := by

rw [sin_pi_div_six]
have h24 : sin B * cos (B + π / 6) = (Real.sqrt 3 / 2) * sin B * cos
B - (1 / 2) * sin B ˆ 2 := by

rw [h21, h22, h23]
ring_nf

have h25 : (Real.sqrt 3 / 2) * sin B * cos B - (1 / 2) * sin B ˆ 2 ≤
1 / 4 := by

nlinarith [sq_nonneg (sin B - 1 / 2), sq_nonneg (cos B - Real.sqrt
3 / 2),

sq_nonneg (sin B ˆ 2 - 1 / 4), sq_nonneg (sin B - Real.sqrt 3
/ 2),

sq_nonneg (cos B ˆ 2 - 1 / 4), sq_nonneg (cos B - 1 / 2),
Real.sqrt_pos.mpr (by linarith : (0 : R) < (3 : R)),
Real.sqrt_nonneg 3, Real.sq_sqrt (show (0 : R) ≤ (3 : R) by

linarith),
Real.sin_sq_add_cos_sq B, mul_nonneg (show 0 ≤ (0 : R) by

linarith) (show 0 ≤ (0 : R) by linarith),
Real.sin_pos_of_pos_of_lt_pi hB1 (by linarith : B < Real.pi)]

linarith [h24, h25]
have h3 : 0 < sin B := by
apply sin_pos_of_pos_of_lt_pi
all_goals linarith [hB1, hB2, Real.pi_pos]

nlinarith [h1, h2, h3, Real.sin_sq_add_cos_sq B,
Real.sin_sq_add_cos_sq C, Real.pi_pos]

theorem sin_range (A : R) (hA : 0 < A ∧ A < π/2) : sin A < 1 ∧ sin A > 0
:= by

have h1 : 0 < A := hA.1
have h2 : A < π / 2 := hA.2
have h3 : sin A < 1 := by
have h4 : sin (π / 2) = 1 := by

rw [sin_pi_div_two]
have h5 : sin A < sin (π / 2) := by

apply sin_lt_sin_of_lt_of_le_pi_div_two
all_goals linarith [Real.pi_pos, Real.pi_gt_three, h1, h2]

linarith [h4, h5]
have h6 : sin A > 0 := by
have h7 : sin (0 : R) = 0 := by

simp [Real.sin_zero]
have h8 : sin (0 : R) < sin A := by

apply sin_lt_sin_of_lt_of_le_pi_div_two
all_goals linarith [Real.pi_pos, Real.pi_gt_three, h1, h2]

linarith [h7, h8]
constructor
· linarith [h3]
· linarith [h6]

--To Triangle, Generated b

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

theorem IMO_2001_P1 :
∀ (A B C P O : Point) (AB BC CA : Line),
formAcuteTriangle A B C AB BC CA ∧
Foot A P BC ∧
Circumcentre O A B C ∧
∠ A:C:B ≥ ∠ C:B:A +

⌟

/3 →
∠ B:A:C + ∠ C:O:P <

⌟

:= by
euclid_intros
euclid_apply rightAngle_eq_pi_div_two
euclid_apply acuteTriangle_circumcentre_insideTriangle A B C O AB BC CA
euclid_apply circle_from_points O B as Ω
euclid_apply circumcentre_inscribedAngle_comp B C A O BC Ω
have h0: 4 * sin (∠ B:A:C) * sin (∠A:B:C) * cos (∠A:C:B) < 1 := by
have h1: 0 < ∠ A:B:C ∧ ∠ A:B:C < π := by

euclid_finish
have h2: 0 < ∠ A:C:B ∧ ∠ A:C:B < π := by

euclid_finish
have h3: (sin (∠ B:A:C) < 1) ∧ (sin (∠ B:A:C) > 0) := by

euclid_apply sin_range (∠B:A:C)
euclid_finish

have h4: ∠ A:C:B ≥ ∠ C:B:A + π/6 := by
euclid_finish

have h5: 4 * sin (∠A:B:C) * cos (∠A:C:B) ≤ 1 := by
euclid_apply sin_inequality (∠A:B:C) (∠A:C:B)
euclid_finish

nlinarith

have h1: between B P C := by
euclid_apply acuteTriangle_foot_between A B C P BC
euclid_finish

have h2: |(P-C)| < |(P-O)| := by
have h3: |(P-C)| * |(P-C)| < |(P-O)| * |(P-O)| := by

have h4: |(O-C)| * |(O-C)| - |(O-P)| * |(O-P)| = |(P-B)| * |(P-C)|:= by
euclid_apply ApolloniusTheorem_to_isoTriangle O B C P BC
euclid_finish

have h5: |(P-C)| = |(A-C)| * cos (∠ A:C:P) := by
euclid_apply rightTriangle_cos P C A
euclid_finish

have h6: |(A-C)| = 2 * |(O-C)| * sin (∠A:B:C) := by
euclid_apply LawOfSines_radius B A C O
euclid_finish

have h7: |(B-C)| = 2 * |(O-C)| * sin (∠B:A:C) := by
euclid_apply LawOfSines_radius A B C O
euclid_finish

have h8: ∠A:C:P = ∠A:C:B := by
euclid_apply coll_angles_eq B P C A
euclid_finish

have h9: |(P-C)| * |(B-C)| < |(O-C)| * |(O-C)| := by
rw [h5, h6, h7,h8]
have h10: (|(O-C)| * |(O-C)|) > 0 := by euclid_finish
calc
_ = (4 * sin (∠ B:A:C) * sin (∠A:B:C) * cos (∠A:C:B)) *

(|(O-C)| * |(O-C)|) := by linarith
_ < 1 * (|(O-C)| * |(O-C)|) := by euclid_finish
_ = _ := by euclid_finish

euclid_finish
euclid_assert |(P-C)| > 0
euclid_assert |(P-O)| > 0
nlinarith

euclid_assert Triangle O C P
euclid_apply triangle_gt_side_gt_angle P C O
have h_final: ∠ P:C:O = ∠ B:C:O := by
euclid_apply coll_angles_eq B P C O
euclid_finish

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

euclid_finish� �
Listing 7: Proof of LeanGeo for IMO 2001 P1

A significant advantage of LeanGeo is its seamless integration with Mathlib’s extensive mathemati-
cal library, enabling it to tackle a broader class of problems . This is particularly evident in its ability
to formalize geometric inequalities, a domain where systems like AlphaGeometry face challenges
due to their reliance on converting geometry into polynomial equations. The formalization of IMO
2001 P1, shown above, serves as a prime example. The proof strategy involves reducing the geo-
metric inequality ∠CAB + ∠COP < π

2 to a trigonometric one: 4 sin(∠ABC) cos(∠BCA) ≤ 1,
derived from the condition ∠BCA ≥ ∠ABC + π

6 .

This trigonometric lemma, ‘sin inequality’, is proven not by geometric tactics. Annotators could
obtain the proof from a open-sourced formal prover, Kimina-Prover Wang et al. (2025). The main
geometric proof, orchestrated by LeanGeo’s ‘euclid ...‘ tactics, then imports and applies this ana-
lytical result to complete the formalization. This hybrid approach, combining high-level geometric
reasoning with deep analytical capabilities from Mathlib, demonstrates LeanGeo’s power in unify-
ing different mathematical domains to expand the scope of automated geometric theorem proving.

E COMPARISON WITH ALPHAGEOMETRY

E.1 EXPRESSIVITY

Compared with LeanGeo, AlphaGeometry(Trinh et al., 2024) is built upon a significantly weaker
axiomatic foundation. Its formal language cannot express many essential geometric notions, includ-
ing:

1. inequality and quantitative relations,

2. positional relations (inside, outside, between, same side),

3. existential quantifiers and locus-type assertions,

4. trigonometric functions and general real-number computation,

5. ordered-angle semantics required for precise angular reasoning.

To quantify this gap, we analyzed all 260 theorems in the LeanGeo library and found that 56.%
(148 theorems) are completely inexpressible in AlphaGeometry, 21.2% (55 theorems) are partially
expressible but not semantically equivalent. Only 21.9% (57 theorems) theorems in LeanGeo can
be completely translated in Alphageometry’s pattern. On the other hand, 100% of AlphaGeometry-
expressible statements are expressible in LeanGeo.

Below are representative theorems from LeanGeo whose statements cannot be expressed in Alpha-
Geometry due to limitations of its formal system.

Example 1: Diameter is the longest chord.� �
theorem diameter_longest :
∀ (a b c d o : Point) (C : Circle),
(Diameter a b o C) ∧ (c.onCircle C) ∧ (d.onCircle C)
→ |(a-b)| ≥ |(c-d)| := by� �

AlphaGeometry does not support inequalities, so relations such as |AB| ≥ |CD| cannot be ex-
pressed at all.

Example 2: Orthocenter of an acute triangle lies inside the triangle.� �
theorem orthocentre_of_acuteTriangle_insideTriangle :
∀ (A B C H D E F : Point) (AB BC CA : Line),
(formAcuteTriangle A B C AB BC CA) ∧
(Orthocentre H A B C D E F AB BC CA)
→ InsideTriangle H A B C AB BC CA := by� �

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

AlphaGeometry cannot express “inside/outside” relations or “acute/obtuse” distinctions, making
this theorem inexpressible.

Example 3: Existence of a circumcenter� �
theorem exists_circumcentre :
∀ (A B C : Point), Triangle A B C →
∃ (O : Point), Circumcentre O A B C := by� �

AlphaGeometry lacks existential quantifiers such as “there exists”, so existence theorems cannot be
stated.

Example 4: Law of sines (radius form)� �
theorem LawOfSines_radius :
∀ (A B C O: Point),
Triangle A B C ∧ Circumcentre O A B C
→ |(B-C)| = 2 * Real.sin (\angle B:A:C) * |(A-O)| := by� �

AlphaGeometry does not include trigonometric functions and therefore cannot express any theorem
involving sin, cos, or angle measure.

Example 5: Cyclic quadrilateral angle relations.� �
theorem cyclic_eq_angles’ :
∀ (A B C D: Point) (AB : Line) (Ω : Circle),
distinctPointsOnLine A B AB ∧
C.sameSide D AB ∧
A.onCircle Ω ∧ B.onCircle Ω ∧
C.onCircle Ω ∧ D.onCircle Ω
→ \angle C:A:D = \angle C:B:D := by� �

AlphaGeometry uses unordered “full-angle” equality, which cannot distinguish positional relations
or angle orientation, making this theorem not exactly expressible. In AlphaGeometry’s framework,
this statement is expressed as ”cyclic A B P Q =¿ eqangle P A P B Q A Q B”. This formulation does
not account for changes in the relative positions of A, B, P, Q that may cause ∠APB = ∠AQB or
∠APB + ∠AQB = π.

To further illustrate the differences between our formal system and that of AlphaGeometry in the
shared subset of representation, we present the followiing two examples.

Example 6: Prove that the mid-segment of an isosceles trapezoid ABCD is parallel to AB.

LeanGeo proof:� �
theorem trapezoid_midsegment_parallel_base :
∀ (A B C D E F: Point) (AB BC CD DA EF: Line),
formQuadrilateral A B C D AB BC CD DA ∧
(¬ AB.intersectsLine CD) ∧ distinctPointsOnLine E F EF ∧
MidPoint B E C ∧ MidPoint A F D →
(¬ EF.intersectsLine CD) := by
euclid_intros
euclid_apply line_from_points A E as AE
euclid_apply intersection_lines CD AE as G
have h1: |(A-E)| = |(E-G)| := by

euclid_apply trapezoid_imp_similarTriangles_interior B A C G E AB
CD

euclid_apply similar_AA B A E C G E
euclid_assert |(B-E)| = |(C-E)|
euclid_apply congruentTriangles_ASA B E A C E G
euclid_finish

have h2: ¬ EF.intersectsLine CD := by
euclid_apply triangleMidsegment_parallel_base A D G F E DA CD AE
euclid_finish

euclid_finish� �
22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Alphageometry Proof:� �
==========================
* From theorem premises:

A B C D E F : Points
DC // AB [00]
A,E,C are collinear [01]
EA = EC [02]
F,B,D are collinear [03]
FB = FD [04]

* Auxiliary Constructions:
: Points

* Proof steps:
001. EA = EC [02] & FB = FD [04] ⇒ EA:EC = FB:FD [05]
002. CD // AB [00] & A,E,C are collinear [01] &

F,B,D are collinear [03] & EA:EC = FB:FD [05]
⇒ EF // CD

==========================� �
The reason AlphaGeometry produces such a short proof is that its deductive database contains many
relatively high-level secondary rules (as shown in step 002). These rules are treated as “axioms”
inside AlphaGeometry. In contrast, within the LeanGeo framework, we do not freely introduce such
axioms. Instead, all basic theorems must be proved from more primitive axioms and inference tools.
For instance, in this problem we introduce an auxiliary intersection point of CD and AE, and then
complete the proof via congruence and similarity of triangles. As a consequence, our proof is longer
but conceptually more instructive.

Example 7: IMO 2000 P1� �
Two circles G1 and G2 intersect at two points M and N. Let AB be the

line tangent to these circles at A and B, respectively, so that M
lies closer to AB than N. Let CD be the line parallel to AB and
passing through the point M, with C on G1 and D on G2. Lines AC
and BD meet at E; lines AN and CD meet at P; lines BN and CD
meet at Q. Show that EP = EQ.� �

Listing 8: IMO 2000 Problem 1

LeanGeo proof:� �
import Mathlib
import SystemE
import LeanGeo
namespace LeanGeo
set_option maxHeartbeats 0
--To circle
--Two circles G1 and G2 intersect at two points M and N. Let AB be the

line tangent to these circles at A and B, respectively, so that M
lies closer to AB than N. Let CD be the line parallel to AB and
passing through the point M, with C on G1 and D on G2. Lines AC
and BD meet at E; lines AN and CD meet at P; lines BN and CD
meet at Q. Show that EP = EQ.

theorem IMO_2000_P1 :
∀ (M N A B C D E P Q O1 O2 : Point) (G1 G2 : Circle) (AB CD AC BD AN
BN : Line),
CirclesIntersectAtTwoPoints G1 G2 M N ∧
distinctPointsOnLine A B AB ∧
TangentLineCircleAtPoint A O1 AB G1 ∧
TangentLineCircleAtPoint B O2 AB G2 ∧
¬ AB.intersectsLine CD ∧
distinctPointsOnLine M C CD ∧
C.onCircle G1 ∧ C ̸= M ∧ C ̸= N ∧

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

D.onCircle G2 ∧ between C M D ∧
distinctPointsOnLine A C AC ∧
distinctPointsOnLine B D BD ∧
between E A C ∧ between E B D ∧
distinctPointsOnLine A N AN ∧
TwoLinesIntersectAtPoint AN CD P ∧
distinctPointsOnLine B N BN ∧
TwoLinesIntersectAtPoint BN CD Q →
|(E-P)| = |(E-Q)| := by
euclid_intros
euclid_apply line_from_points M N as MN
euclid_apply intersection_lines MN AB as T
have midP_ATB: MidPoint A T B := by

have h1: |(T-A)| * |(T-A)| = |(T-M)| * |(T-N)| := by
euclid_apply TangentSecantTheorem T A M N O1 G1 AB
euclid_finish

have h2: |(T-B)| * |(T-B)| = |(T-M)| * |(T-N)| := by
euclid_apply TangentSecantTheorem T B M N O2 G2 AB
euclid_finish

have h3: |(T-A)| * |(T-A)| = |(T-B)| * |(T-B)| := by
rw[h1,h2]

euclid_assert |(T-A)| > 0
euclid_assert |(T-B)| > 0
have h4: |(T-A)| = |(T-B)| := by
nlinarith

euclid_finish
have midP_PMQ : MidPoint P M Q := by

have h1 : |(M-Q)| = |(M-P)| := by
have h4: |(T-A)| = |(T-B)| := by euclid_finish
have h5: |(M-Q)| * |(T-A)| = |(M-P)| * |(T-B)| := by
euclid_apply triangle_parallel_bases_eq_ratio N T A M P B Q AB

CD
euclid_finish

rw [h4] at h5
have h6: |(T-B)| > 0 := by euclid_finish
euclid_finish

have h2: between P M Q := by
euclid_finish

euclid_finish
euclid_apply line_from_points E M as EM
have h_congr: CongruentTriangles A B E A B M := by

have h1: ∠E:A:B = ∠M:A:B := by
have h2: ∠E:A:B = ∠E:C:D := by
euclid_apply parallel_imp_eq_alternateExteriorAngles B A D C E

AB CD AC
euclid_finish

have h3: ∠M:A:B = ∠M:C:A := by
euclid_apply line_from_points A M as AM
have h4: M.sameSide B AC := by
euclid_finish

euclid_apply AlternateSegmentTheorem A M C B O1 G1 AM CD AC AB
euclid_finish

euclid_finish
have h5: ∠E:B:A = ∠M:B:A := by
have h6: ∠E:B:A = ∠E:D:C := by
euclid_apply parallel_imp_eq_alternateExteriorAngles A B C D E

AB CD BD
euclid_finish

have h7: ∠M:B:A = ∠M:D:B := by
euclid_apply line_from_points B M as BM
have h8: M.sameSide A BD := by
euclid_finish

euclid_apply AlternateSegmentTheorem B M D A O2 G2 BM CD BD AB
euclid_finish

euclid_finish

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

euclid_apply congruentTriangles_ASA A B E A B M
euclid_finish

have perp_EM_CD: PerpLine EM CD := by
have h1: PerpBisector E M AB := by
euclid_apply perpBisector_if_eq_dist E M A B AB
euclid_finish

euclid_apply perpBisector_imp_perpLine E M EM AB
euclid_apply perp_parallel_imp_perp AB EM CD
euclid_finish

have perpB: PerpBisector P Q EM := by
euclid_apply (perpBisector_iff P Q EM).mpr
euclid_finish

euclid_finish� �
Listing 9: Proof of LeanGeo for IMO 2000 P1

Alphageometry Proof:� �
* Formal statement:
a b = segment a b; c = on_tline c a a b; d = on_tline d b b a; e =

on_circle e c a, on_circle e d b; f = on_circle f c a, on_circle f d
b; g = on_pline g e a b, on_circle g c a; h = on_pline h e a b,
on_circle h d b; i = on_line i a g, on_line i b h; j = on_line j a
f, on_line j g h; k = on_line k b f, on_line k g h ? cong i j i k

==========================
* From theorem premises:

A B C D E F G H I J K : Points
AC ⊥ AB [00]
BA ⊥ DB [01]
DE = DB [02]
CE = CA [03]
DF = DB [04]
CF = CA [05]
∠FAE = ∠FAE [06]
GE // AB [07]
CG = CA [08]
∠GAF = ∠GAF [09]
HE // AB [10]
DH = DB [11]
∠FBH = ∠FBH [12]
I,G,A are collinear [13]
I,B,H are collinear [14]
J,F,A are collinear [15]
J,G,H are collinear [16]
BF:BK = BF:BK [17]
G,K,H are collinear [18]
B,F,K are collinear [19]

* Auxiliary Constructions:
: Points

* Proof steps:
001. EG // AB [07] & EH // AB [10] ⇒ EH // EG [20]
002. EH // EG [20] ⇒ E,G,H are collinear [21]
003. DH = DB [11] & DF = DB [04] ⇒ D is the circumcenter of \Delta BHF

[22]
004. D is the circumcenter of \Delta BHF [22] & DB ⊥ BA [01] ⇒ ∠ABH = ∠

BFH [23]
005. D is the circumcenter of \Delta BHF [22] & DB ⊥ BA [01] ⇒ ∠ABF = ∠

BHF [24]
006. E,G,H are collinear [21] & G,K,H are collinear [18] & ∠BFH = ∠ABH

[23] & AB // EG [07] ⇒ ∠BFH = ∠KHB [25]

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

007. E,G,H are collinear [21] & G,K,H are collinear [18] & B,F,K are
collinear [19] & ∠BHF = ∠ABF [24] & AB // EG [07] ⇒ ∠BHF = ∠HKB
[26]

008. ∠BFH = ∠KHB [25] & ∠BHF = ∠HKB [26] (Similar Triangles)⇒ BF:BH =
BH:BK [27]

009. DF = DB [04] & DH = DB [11] & DE = DB [02] ⇒ E,B,F,H are
concyclic [28]

010. DF = DB [04] & DE = DB [02] ⇒ D is the circumcenter of \Delta BFE
[29]

011. D is the circumcenter of \Delta BFE [29] & DB ⊥ BA [01] ⇒ ∠EBA = ∠
EFB [30]

012. E,G,H are collinear [21] & ∠EFB = ∠EBA [30] & AB // EG [07] ⇒ ∠
EFB = ∠BEH [31]

013. E,B,F,H are concyclic [28] & ∠EFB = ∠BEH [31] ⇒ EB = BH [32]
014. CE = CA [03] & CG = CA [08] ⇒ C is the circumcenter of \Delta AEG

[33]
015. C is the circumcenter of \Delta AEG [33] & AC ⊥ AB [00] ⇒ ∠BAE = ∠

AGE [34]
016. I,G,A are collinear [13] & ∠BAE = ∠AGE [34] & EG // AB [07] ⇒ ∠

IAB = ∠BAE [35]
017. DH = DB [11] & DE = DB [02] ⇒ D is the circumcenter of \Delta BHE

[36]
018. D is the circumcenter of \Delta BHE [36] & DB ⊥ BA [01] ⇒ ∠ABH = ∠

BEH [37]
019. I,B,H are collinear [14] & ∠ABH = ∠BEH [37] & EH // AB [10] ⇒ ∠

ABE = ∠IBA [38]
020. ∠IAB = ∠BAE [35] & ∠ABE = ∠IBA [38] (Similar Triangles)⇒ BI = BE

[39]
021. ∠IAB = ∠BAE [35] & ∠ABE = ∠IBA [38] (Similar Triangles)⇒ AI = AE

[40]
022. BF:BH = BH:BK [27] & EB = BH [32] & BI = BE [39] ⇒ IB:BF = BK:IB

[41]
023. B,F,K are collinear [19] & I,B,H are collinear [14] & ∠FBH = ∠FBH

[12] ⇒ ∠KBI = ∠FBI [42]
024. IB:BF = BK:IB [41] & ∠KBI = ∠FBI [42] (Similar Triangles)⇒ BK:IK =

IB:IF [43]
025. E,B,F,H are concyclic [28] ⇒ ∠FEH = ∠FBH [44]
026. CF = CA [05] & CG = CA [08] & CE = CA [03] ⇒ E,G,F,A are

concyclic [45]
027. E,G,F,A are concyclic [45] ⇒ ∠GEF = ∠GAF [46]
028. I,G,A are collinear [13] & I,B,H are collinear [14] & ∠FEH = ∠FBH

[44] & EH // AB [10] & ∠GEF = ∠GAF [46] & EG // AB [07] ⇒ ∠IAF = ∠
IBF [47]

029. ∠IAF = ∠IBF [47] ⇒ I,B,F,A are concyclic [48]
030. I,B,F,A are concyclic [48] ⇒ ∠IBA = ∠IFA [49]
031. I,B,F,A are concyclic [48] ⇒ ∠IFB = ∠IAB [50]
032. E,G,H are collinear [21] & G,K,H are collinear [18] & J,F,A are

collinear [15] & ∠IBA = ∠IFA [49] & I,B,H are collinear [14] & ∠ABH =
∠BEH [37] & EH // AB [10] & AB // EG [07] ⇒ ∠BEK = ∠JFI [51]

033. CE = CA [03] & CF = CA [05] ⇒ C is the circumcenter of \Delta AEF
[52]

034. C is the circumcenter of \Delta AEF [52] & AC ⊥ AB [00] ⇒ ∠BAE = ∠
AFE [53]

035. J,G,H are collinear [16] & E,G,H are collinear [21] & ∠BAE = ∠AFE
[53] & AB // EG [07] ⇒ ∠JEA = ∠AFE [54]

036. J,F,A are collinear [15] & ∠FAE = ∠FAE [06] ⇒ ∠JAE = ∠FAE [55]
037. ∠JEA = ∠AFE [54] & ∠JAE = ∠FAE [55] (Similar Triangles)⇒ JA:EA =

EA:FA [56]
038. EA:FA = JA:EA [56] & IA = EA [40] ⇒ IA:FA = JA:IA [57]
039. I,G,A are collinear [13] & J,F,A are collinear [15] & ∠GAF = ∠GAF

[09] ⇒ ∠IAF = ∠IAJ [58]
040. IA:FA = JA:IA [57] & ∠IAF = ∠IAJ [58] (Similar Triangles)⇒ ∠AIF =

∠IJA [59]
041. B,F,K are collinear [19] & E,G,H are collinear [21] & G,K,H are

collinear [18] & J,F,A are collinear [15] & ∠AIF = ∠IJA [59] & I,G,A

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

are collinear [13] & ∠IFB = ∠IAB [50] & AB // EG [07] ⇒ ∠BKE = ∠
FJI [60]

042. ∠BEK = ∠JFI [51] & ∠BKE = ∠FJI [60] (Similar Triangles)⇒ BE:IF =
BK:IJ [61]

043. BK:IK = IB:IF [43] & BE:IF = BK:IJ [61] & BI = BE [39] ⇒ BK:JI =
BK:IK [62]

044. BF:BK = BF:BK [17] & BK:JI = BK:IK [62] ⇒ JI = IK
==========================� �

Listing 10: Proof of AlphaGeometry for IMO 2000 Problem 1

AlphaGeometry presents the proof as a flat, linear sequence of 44 atomic deductions. While logically
sound, this format obscures the underlying geometric narrative. It reads as a symbolic log where
high-level concepts, without explicitly grouping these steps into a coherent subgoal.

In contrast, the LeanGeo proof is structured more hierarchically, perfectly reflecting the problem’s
intrinsic geometric structure. The proof is organized into clear, self-contained logical blocks, such
as proving ‘midP ATB’ (T is the midpoint of AB) or ‘perp EM CD’. Each block is achieved by
invoking powerful theorems in LeanGeo library like ‘TangentSecantTheorem’ and ‘AlternateSeg-
mentTheorem’ — mirroring the exact language a mathematicia would use. Consequently, the Lean-
Geo proof is not only verifiable but also intelligible, bridging the gap between a machine-generated
proof trace and a human-authored mathematical argument. It demonstrates a system that reasons in
a manner remarkably close to natural geometric intuition.

E.2 VERIFIABILITY AND SOUNDNESS

A fundamental requirement for any formal deductive system is soundness: every statement that can
be derived within the system must be logically valid under the intended semantics. In other words,
a proof system is sound if it never proves anything false.

One important limitation of AlphaGeometry is that it can only generate correct proofs, but cannot
verify them. Each proof generated by AlphaGeometry implicitly corresponds to a specific geometric
figure, and the deductions are valid only within that configuration. For other admissible figures
satisfying the same hypotheses, the conclusion may fail.

Example 8: The internal angle bisector and the external angle bisector are perpendicular.

AlphaGeometry’s Proof:� �
Input:
b c d = triangle b c d; a = on_line a b d; e = angle_bisector e b a c;

f = angle_bisector f c a d ? perp e a a f
==========================
* From theorem premises:
B C D A E F : Points
D,A,B are collinear [00]
\angle BAE = \angle EAC [01]
\angle CAF = \angle FAD [02]

* Proof steps:
1. \angle CAF = \angle FAD [02] & D,A,B are collinear [00] ⇒ \angle

CAF = \angle FAB [03]
2. \angle BAE = \angle EAC [01] & \angle CAF = \angle FAB [03] (Angle

chase) ⇒ AE \perp AF
==========================� �
However, if claim that A,E,F are collinear, AlphaGeometry produces a completely contradictory
conclusion under exactly the same assumptions.� �
Input:
b c d = triangle b c d; a = on_line a b d; e = angle_bisector e b a c;

f = angle_bisector f c a d ? coll e a f
==========================
* From theorem premises:

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

B C D A E F : Points
A,D,B are collinear [00]
\angle BAE = \angle EAC [01]
\angle CAF = \angle FAD [02]
* Auxiliary Constructions:

: Points

* Proof steps:
001. \angle CAF = \angle FAD [02] & A,D,B are collinear [00] ⇒ \angle

CAF = \angle FAB [03]
002. \angle BAE = \angle EAC [01] & \angle CAF = \angle FAB [03] (Angle

chase) ⇒ AE // AF [04]
003. AE // AF [04] ⇒ E,F,A are collinear
==========================� �
The core issue is that many of AlphaGeometry’s built-in inference rules are not purely syntactic
logical consequences of axioms; instead, they depend on properties of the internal geometric dia-
gram. Since this diagram-based reasoning is not exposed or verified independently of the figure,
ambiguous or under-specified statements may lead to incorrect deductions.

LeanGeo, however, is graph-free and handles positional relations with full logical rigor. This in-
evitably makes its proofs more complex, but we believe it more faithfully reflects the intrinsic nature
of geometric reasoning.

Overall, AlphaGeometry is a *task-specialized solving system* tailored for IMO-style geometry
problems: it is extremely powerful in problem solving, but this comes at the cost of sacrificing inter-
nal axiomatic rigor and omitting several components we believe are equally essential for geometry
learners and researchers—such as geometric inequalities, trigonometric reasoning, and positional or
incidence relations. Its simplified formal system accelerates search and inference but loses part of
the rigor and human interpretability. In contrast, our system aims to be more complete, rigorous,
and structurally expressive, though this naturally results in more intricate and elaborate reasoning
processes.

F PROMPT FOR EVALUATION� �
You are an expert of Lean 4. Now You are using a new Lean 4 system
called LeanEuclid. The following is how you prove your theorem.

--- Proof DSL ---
Your proof must be a tactic proof in the LeanEuclid proof DSL. This DSL

is built from
the following tactics (arguments shown in angle-brackets <>):

* TACTIC: euclid_intros *
Introduces universally quantified variables and premises of the current

goal into the proof context. No names required.
* TACTIC: euclid_apply <rule> <args> *
where <rule> is either a construction rule, inference rule, or other

theorem.
Given a rule <rule> with type of the form ∀ (<args> : Types) . . . P -> Q,

this tactic
instantiates <rule> with <args>, and attempts to prove premise P

from the local proof
context using an SMT solver. If successful, propsition Q is added

to the proof
context.

usage examples :
euclid_apply PythagoreanTheorem_point a b c : SMT solver will try to
search whether the premise of theorem "PythagoreanTheorem_point"
i.e.(Triangle a b c) ∧ (∠ b:a:c : R) are satisfied, if not, the
proof will fail. If all premises are found, then the conclusion of
this theorem will be added to the solving context, i.e. |(b-c)| * |
(b-c)| = |(b-a)| * |(b-a)| + |(a-c)| * |(a-c)|.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

* TACTIC: euclid_apply <rule> <args> as X *
Given a rule <rule> with type of the form ∀ (<args> : Types) . . . P -> ∃ x

. Q(x), this
tactic instantiates <rule> with <args>, and attempts to prove
premise P from the local
proof context using an SMT solver. If successful, object x and

premise Q(x) are added
to the proof context.

usage examples:
euclid_apply line_from_points p1 p2 as M this tactic will first check
whether p1 and p2 are different. If they are, then a new line M is
added to the proof context and new condition, p1.onLine M and
p2.onLine M will be added to the condition.

NOTE: You can only use ’euclid_apply <rule> <args> as <X>’ if the rule
produces an
existential. You should not name any propsotions introduced using
’euclid_apply’ e,g,
’euclid_apply <rule> <args> as H1’.

NOTE: It is very important that *all* non-propositional (i.e.,
universally quantified)
arguments are provided to the rule when invoking ’euclid_apply’.

*TACTIC: euclid_finish *
Attempts to resolve the proof goal using the current proof context
using an SMT solver.

* euclid_assert <P> *
Attempts to prove proposition <P> from the current proof context
using an SMT solver.

Equivalent to "have : <P> := by euclid_finish"

If you are proving an existentially quantified proposition, you can use
the standard Lean tactic ’ use <X>’ to provide the witness <X> for
the quantifier. DO NOT use the tactic ’use’ if you are not proving
an existentially quantified proposition.

Here is several additional tips with examples:

1. You can use standard Lean tactics such as <by_cases>, <cases>,
<split_ands> and <constructor> <by_contra> to structure your proof.
Specifically, you are encouraged to use "have hX: P := by" to divide
the whole problems to small proposition. However, you should not use
imperative Lean tactics, such as ’rw’ or ’simp’. You should only use
the above declarative tactics.

2. You should be careful to check the degenerate case and special cases.
For example, sometimes you want to get the intersection of two
lines. You may use"euclid_apply intersection_lines L1 L2 as O" but
before that you should guarantee that the SMT can deduce that L1 and
L2 intersects.

3. You must ensure that every step in your proof is rigorous, not only
in natural language, but in LeanEuclid. For example, in the
following proof,

<error_example1>
theorem altitude_hypotenuse_similar:
∀ (A B C D: Point) (BC : Line),
RightTriangle A B C ∧
distinctPointsOnLine B C BC ∧
foot A D BC
→ SimilarTriangles D B A A B C := by
euclid_intros
have h_tri_DBA : Triangle D B A := by

euclid_finish"
. . .

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

<correction1>
Here if you want to claim triangle D B A, you must either prove that D

is not equal to B and A, or claim it in your premise (like adding
between A B D). Although in natural language it is trivial, but in
this formal language you must PROVE it! In this example, instead,
your method to prove h_tri_DBA should be:
have h_tri_DBA : Triangle D B A := by

have h4: between C D B := by
have h5: ∠A:B:C <

⌟

:= by
euclid_apply triangle_angles_sum A B C
euclid_finish

have h6: ∠A:C:B <

⌟

:= by
euclid_apply triangle_angles_sum A B C
euclid_finish

euclid_apply acuteTriangle_foot_between A B C D BC
euclid_finish

euclid_finish.
NOTE: Using recursive "have"s to split the goal and make the proof neat.

Another example is:
<error_example2>
theorem apollonius_isoceles :
∀ (A B C D : Point) (BC : Line),
IsoTriangle A B C ∧
distinctPointsOnLine B C BC ∧
Coll B D C ∧
between B D C
→ |(A-B)| * |(A-B)| - |(A-D)| * |(A-D)| = |(B-D)| * |(C-D)| := by

euclid_intros
have h_A_not_on_BC : ¬(A.onLine BC) := by
euclid_finish

euclid_apply exists_foot A BC as H
have h_midpoint_H : MidPoint B H C := by
euclid_apply isoTriangle_three_lines_concidence_foot A B C H BC
euclid_finish

have h_tri_AHD : Triangle H A D := by
euclid_finish

<correction2>
Here h_tri_AHD is wrong. Since you cannot assume triangle H A D,
because H may coincide with D. Instead your response shold be:
by_cases H = D
· . . .
· have h_tri_AHD : triangle H A D := by

-- H, D are on line BC, while A is not. So H, A, D are not
collinear.

euclid_finish
. . .

<error_example3>
theorem Numina_Geometry_1110 :
∀ (A B C H M K : Point) (AC: Line),
(triangle A B C) ∧
(between A H C) ∧
(foot B H AC) ∧
(distinctPointsOnLine A C AC) ∧
(midpoint B M C) ∧
(midpoint A K B)
→
(∠ K:H:M = ∠ A:B:C)
euclid_intros
have h_tri_KHM: triangle K H M := by euclid_finish
. . .

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

3. "euclid_assert" make very few progress in the proof. Try to use less
"euclid_assert X", but use more "have h: X := by . . .".

4. When using the "*" symbol for multiplication, please ensure there is
a space on both sides of the "*" symbol. For example, the correct
expression should be "|(A-M)| * |(B-M)|" instead of "|(A-M)|*|(B-M)|"

5. Sometimes when chasing angles, especially using "coll_angles_eq" and
"coll_supp_angles" you are encouraged to use "line_from points" to
construct the between-line, for example, in the following theorem,

<error_example>
theorem median_is_half_side_implies_right_triangle:
∀ (A B C M : Point),
Triangle A B C ∧
MidPoint B M C ∧
|(A-M)| = |(B-M)|
→ ∠ B:A:C =

⌟

:= by
have h_sum_BAC : ∠B:A:M + ∠M:A:C = ∠B:A:C := by

euclid_apply coll_supp_angles A B M C
euclid_finish

<correction>
In the example, "euclid_apply coll_supp_angles A B M C" will fail

because the SMT cannot deduce A,B,M form a triangle. So how to prove
this? actually you should add a line "euclid_apply line_from_points
B C as BC" in your proof. Remember SMT cannot construct. So you
should tell SMT there is a line BC, and SMT will automatically
deduce A B M are not collinear. So your proof should be

theorem median_is_half_side_implies_right_triangle:
∀ (A B C M : Point),
Triangle A B C ∧
MidPoint B M C ∧
|(A-M)| = |(B-M)|
→ ∠ B:A:C =

⌟
:= by

have h_sum_BAC : ∠B:A:M + ∠M:A:C = ∠B:A:C := by
euclid_apply line_from_points B C as BC.
euclid_apply coll_supp_angles A B M C
euclid_finish

6. Take care of the order of parameter. For example, if you want to
express "Right Triangle ABC with right angle ABC", you should use
"RightTriangle B A C" (First parameter is rightangle) instead of
"rightTriangle A B C". When apply lemma or writing formal statement,
always check whether the order is align with definition. Also you
should check the number of parameters. For example, "Coll" only
contains three parameters. So donn’t use "Coll A B C D" to represent
A,B,C,D are collinear. Instead, use "Coll A B C ∧ Coll B C D"

7. At the beginning of your proof, you should firstly using
"euclid_apply line_from_points X Y as XY" To obtain all the the line
you needed in the problem, if the problem does not give these lines.
This step is benificial to the later SMT steps.

8. When using "euclid_apply", do not add additional condition to it, for
example, do not use "euclid_apply coll_supp_angles A E C B
h_between_AEC hA". Instead, use "euclid_apply coll_supp_angles A E C
B". SMT will automatically search whether the absent condition is
satisfied.

--- End of Proof DSL ---

Your proofs can make use of the following abbreviation of geometry
structure:

--- Begin of Abbreviation ---

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

/-Relations-/

abbrev Coll (A B C : Point) : Prop :=
between A B C ∨ between B C A ∨ between C A B ∨ A = B ∨ A = C ∨ B = C

abbrev Triangle (A B C : Point) : Prop :=
¬ (Coll A B C)

. . .

. . .

abbrev RadicalAxis (Ω1 Ω2 : Circle) (L : Line) : Prop :=
∀ (A : Point), A.onLine L → Pow(A, Ω1) = Pow(A, Ω2)
--- End of Abbreviation ---

Also, I’ll provide you the construction rules where you can construct
lines, points and circles by these rules using "euclid_apply
<theorem> as . . .". Notice that these rules are not included in SMT.
So you should construct lines, points in your proof by yourself.

--- Begin of Construction Rules ---

axiom intersection_lines : ∀ (L M : Line), L.intersectsLine M →
∃ a : Point, (a.onLine L) ∧ (a.onLine M)

utsideCircle α

. . .

. . .

axiom exists_distinct_point_outside_circle :
∀ (α : Circle) (b : Point), ∃ a : Point, a ̸= b ∧ a.outsideCircle α

--- End of Construction Rules ---
Also, I’ll provide you the theorem libarary. Use "euclid_apply" to use

these theorems in theorem library.
--- Begin of Theorem Library ---

axiom triangle_area_foot :∀ (a b c d: Point) (BC: Line),b.onLine BC ∧
c.onLine BC ∧ (Triangle a b c) ∧ Foot a d BC → (△a:b:c).area = |
(a-d)| * |(b-c)|/2

. . .

. . .

theorem trapezoid_midsegment_parallel_base : ∀ (A B C D E F: Point) (AB
BC CD DA EF: Line), formQuadrilateral A B C D AB BC CD DA ∧ (¬
AB.intersectsLine CD) ∧ distinctPointsOnLine E F EF ∧ MidPoint B E C
∧ MidPoint A F D → (¬ EF.intersectsLine CD) := by

--- End of Theorem Library ---
All theorems in library are proved and you can apply them directedly.

The following are few-shot example proof of the most commonly used
theorems in library.

--- Few-shot Examples ---
Input1:
import Mathlib
import SystemE
import LeanGeo
namespace LeanGeo

theorem InscribedAngleTheorem_sameSide :
∀ (A B C O : Point) (AB: Line) (Ω : Circle), Triangle A B C ∧
distinctPointsOnLine A B AB ∧ (O.sameSide C AB) ∧ (A.onCircle Ω) ∧
(B.onCircle Ω) ∧ (C.onCircle Ω) ∧ (O.isCentre Ω)
→ ∠ A:O:B = ∠ A:C:B + ∠ A:C:B := by

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Output1:
import Mathlib
import SystemE
import LeanGeo
namespace LeanGeo

. . .

. . .

Output5:
import Mathlib
import SystemE
import LeanGeo
namespace LeanGeo

theorem cyclic_supp_angles : ∀ (A B C D: Point) (AB:Line) (Ω : Circle),
distinctPointsOnLine A B AB ∧ DistinctFourPoints A B C D ∧
A.onCircle Ω ∧ B.onCircle Ω ∧ C.onCircle Ω ∧ D.onCircle Ω ∧
C.opposingSides D AB → ∠B:C:A + ∠B:D:A =

⌟
+

⌟

:= by
euclid_intros
euclid_apply exists_centre Ω as O
by_cases O.sameSide C AB
· euclid_assert O.opposingSides D AB
euclid_apply InscribedAngleTheorem_sameSide A B C O AB Ω
euclid_apply InscribedAngleTheorem_opposingSides A B D O AB Ω
euclid_finish

· by_cases O.onLine AB
· euclid_apply ThalesTheorem A B C O Ω

euclid_apply ThalesTheorem A B D O Ω
euclid_finish

· euclid_apply InscribedAngleTheorem_sameSide A B D O AB Ω
euclid_apply InscribedAngleTheorem_opposingSides A B C O AB Ω
euclid_finish

-- End of Few-shot Examples ---

IMPORTANT: Your response should be started with
"import Mathlib
import SystemE
import LeanGeo
namespace LeanGeo

theorem . . ." You should restate the theorem that you want to prove in
formal language, give a complete proof of the theorem.

Now, please prove the following theorem:
<formal statement>� �

Listing 11: Prompt for LLMs in Evaluation

G LLM ACKNOWLEDGMENTS

The authors acknowledge the use of an AI-powered language tool (e.g., ChatGPT, GPT-4) for en-
hancing the readability of this paper. We wish to clarify that all core ideas, research frameworks,
and expressed opinions are original to the authors. Furthermore, all experimental results and data
reported are authentic and based on real-world tests conducted by our team. The authors assume full
responsibility for the content and integrity of this work.

33

	Introduction
	Related Work
	Automated Theorem Proving
	LeanEuclid
	Geometry Problem Solving
	Geometry and Lean Benchmarks

	LeanGeo
	Theorem Library
	LeanSMT 4.15

	LeanGeo-Bench
	Benchmark
	Evaluation Method
	Baseline Result

	Reinforcement Learning Experiments
	Generating data by LLM
	Instilling Knowledge in RL
	RL Training

	Discussion and Future Work
	Automation Capabilities
	Instilling Domain-Specific Knowledge to LLMs

	Conclusion
	Reproducibility Statement
	Analysis of Scalability
	Scalability of SMT
	Complexity versus Lemma Granularity

	Command Caching
	Changes to SystemE formalism
	Examples of Formalization
	Examples in Theorem Library
	Formalization of IMO 2001 P1

	Comparison with AlphaGeometry
	Expressivity
	Verifiability and Soundness

	Prompt for Evaluation
	LLM Acknowledgments

