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Abstract

Large Language Models (LLMs) excel in NLP
tasks but are highly sensitive to input design.
This study examines the impact of context aug-
mentation as a way of fine-tuning NLP models
for adverse drug event (ADE) detection from
social media text. We evaluate on the sequence
and token classification tasks using different
input regimes, including appended context and
span highlighting.

Our results show that the appended context con-
sistently improves performance, increasing F1
scores by 2—4 points. However, added context
shifts the precision-recall balance, boosting re-
call at the cost of precision.

These findings highlight the potential of LLM-
generated and knowledge-based context for en-
hancing NLP quality for tasks in data-scarce
settings.

1 Introduction

The release of GPT-3 (Brown et al., 2020) marked
the beginning of a new era for large language mod-
els (LLMs) in deep learning (Sevilla et al., 2022).
These models exhibit remarkable adaptability, en-
abling them to generate free-text responses that
align with specific instructions provided in the in-
put. The process of crafting precise and effective
instructions to guide an LLM toward producing
the desired output is known as prompt engineering
(Ouyang et al., 2022).

Unlike traditional fine-tuning (A), which re-
quires retraining on domain-specific datasets,
prompt engineering (B) allows models to modify
their responses dynamically based on the given
instructions. This capability makes LLMs partic-
ularly useful in data-scarce environments, as they
can generalize to previously unseen data without
requiring extensive labeled examples.

Despite their impressive capabilities, generative
LLMs suffer from a critical limitation: they occa-

sionally produce incorrect or misleading informa-
tion, a phenomenon known as hallucination (C)
(Jietal., 2023). Additionally, their outputs can be
overly verbose and may contain irrelevant details,
often leading to false-positive errors in downstream
tasks.

In this paper, we will explore strategies to over-
come LLMs (C) hallucination issues by employing
(A) fine-tuning and (B) prompt engineering. These
methods are used to generate additional context
for the raw data, thus improving overall system
performance. The code is available on GitHub !.

2 Related work

Current approaches for solving token classifica-
tion tasks with GPT primarily rely on few-shot
prompting techniques (Wang et al., 2023; Yan et al.,
2025). While these methods generally underper-
form compared to specialized fine-tuned models,
they demonstrate remarkable effectiveness in data-
scarce environments. The core principle involves
constructing input-output samples, where the out-
put replicates the input text but includes injected
special tokens to denote named entities.

A novel unified approach investigated in this pa-
per leverages LLMs as knowledge bases (Mukans
and Barzdins, 2023) for specialized fine-tuned mod-
els. This method was introduced in the Multilin-
gual Complex Named Entity Recognition (Multi-
CoNER 1) shared task. Although the winning sys-
tem (Tan et al., 2023) relied on traditional knowl-
edge bases, the implementation costs for an LLM-
based alternative were significantly lower.

For our research in this paper, we utilize a
dataset from the Social Media Mining for Health
Research and Applications 2024 (SMM4H-2024)
shared Task 1 (Xu et al., 2024) which is based on
SMM4H-2017 dataset 2. SMM4H-2024 Task 1

'https://github.com/emukans/context-matters-2025
Zhttps://data.mendeley.com/datasets/rxwfb3tysd/2



challenges participants to extract and normalize ad-
verse drug events (ADEs) to MedDRA high-level
term identifiers from English tweets. In this study,
we focus exclusively on the extraction task, em-
ploying the dataset for both token and sequence
classification.

Several teams, including the winning submis-
sion, leveraged LLLMs to augment or enrich the
original dataset during the competition (Li et al.,
2024; Berkowitz et al., 2024; Mukans and Barzdins,
2024). Building upon these approaches, we experi-
ment with input-enrichment methodologies, specif-
ically custom tag injection and the addition of con-
textual information from various sources.

3 Experiments

3.1 Dataset and Evaluation

Our experiments are conducted using the SMM4H-
2024 dataset. The training subset consists of 17,306
tweets, while the evaluation is performed on the
dev subset, containing 965 tweets. This subset was
not included in the training process.

The primary objective of our experiments is to
assess the impact of additional context on model
performance, particularly in relation to model size
and quality. We evaluate two tasks: sequence clas-
sification and token classification.

3.2 Context Sources

For both tasks, we incorporate the following addi-
tional context sources:

1. LLM-generated context;

2. Matched symptoms from the Symptom
dataset (Schriml et al., 2009, 2022);

3. Matched symptoms from the Drug dataset
(NLM, 2022).

To generate LLLM-based context, we applied a
consistent prompt across all LLM models (detailed
in Appendix A). The same generated context was
used for both sequence and token classification
tasks.

3.3 Few-shot LLM Performance

Before fine-tuning, we evaluated the off-the-shelf
performance of various LLMs in a few-shot setup.
As LLM-generated outputs may differ in spelling
from the original input, we employed the Jaro-
Winkler algorithm with a 95% threshold to match
the generated spans with the ground-truth annota-
tions. The results are summarized in Table 1.

Model name F1  Precision Recall

Sequence classification

GPT-40 0.55 0.46 0.69

GPT-40-mini  0.48 0.35 0.75

GPT-3.5-turbo 0.3 0.17 1
Token classification

GPT-40 0.27 0.22 0.35

GPT-40-mini  0.23 0.17 0.37

GPT-3.5-turbo 0.14 0.08 0.52

Table 1: Off-the-shelf LLM performance using few-shot
prompting.

3.4 Fine-tuned Models

To evaluate the effectiveness of additional context,
we fine-tuned three types of models:

1. BERT-base (Devlin et al., 2018) (110M pa-
rameters) — a small, generic model,

2. BERT-large (Devlin et al., 2018) (336M pa-
rameters) — a larger generic model;

3. Task-specific models:
- Twitter-based RoBERTa (Antypas et al.,
2023) (355M parameters) — used for sequence
classification;
- Medical-NER (He et al., 2021) (185M pa-
rameters) — used for token classification.

In total, we trained 22 different model variations
with distinct input configurations. The naming con-
ventions for these models are provided in Table
2.

3.5 Input Regimes

We experimented with four input configurations to
assess the impact of additional context:

1. Baseline: The model is trained solely on the
original tweet text.

2. Context: Additional context is appended at
the end of the tweet. Since LLMs may gen-
erate multiple spans for ADEs or tweets may
contain multiple drug or symptom mentions,
each context entry is separated by a <sep>
tag.

3. Span: A preprocessing script identifies text
spans matching entries from the generated
LLM context or external datasets. Matches are
determined using the Jaro-Winkler algorithm
(Jaro, 1989; Winkler, 1990). The identified
spans are highlighted using specialized tags:



* <ade></ade> for LLM-generated ADE
matches;

* <drug></drug> for drug mentions;

e <symptom></symptom> for symptom
mentions.

4. Span + Context: This regime combines the
span-enriched text with additional context.

An example input for Span + Context configura-
tion, that incorporates all knowledge sources. The
other regimes utilizes some part of this augmented
input.

"@QUSER it was explained to me that
all the anti-tnfs can bring out
other issues. I had <symptom>
<ade> severe joint pain <ade>
<symptom> on <drug> humira <drug>
& <drug> remicaid <drug> <sep>
severe joint pain”

In this example, the correct ADE output is
"joint pain”.

3.6 Training Methodology

All models were trained under a consistent method-
ology. Each model was fine-tuned at least 10 times
with different seed values to ensure stability and
reproducibility of results.

4 Results

We evaluate model performance using the F1 score,
with results presented in Figures 1 and 2. Precision
and recall values are detailed in Appendix C.

4.1 Key Observations

1. Scaling Effects: Increasing the foundation
model’s size and quality consistently im-
proves performance across both tasks. This
aligns with scaling laws (Kaplan et al., 2020),
which state that improvements arise from scal-
ing at least two of the following: model size,
computational resources, or dataset size.

2. Effectiveness of Appended Context: The ap-
pended context regime yields stable improve-
ments across models, regardless of foundation
model size or GPT version. Even for the best-
performing models, F1 scores increase by 2—4
points.
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Figure 1: F1 score for sequence classification.

. Limitations of Span Highlighting: The span
regime is more efficient due to smaller input
sizes but produces inconsistent results. While
it can enhance performance, it often performs
at the same level as the baseline.

. Instability in Combined Methods: The span
+ context regime tends to confuse the model,
sometimes improving performance but more
often remaining on par with the baseline.

. Dependence on Context Quality: The effec-
tiveness of additional context depends on its
quality. Using a more advanced LLM (e.g.,
GPT-40) to generate context boosts perfor-
mance. However, if computational resources
are limited, omitting additional context may
be preferable.

. Precision-Recall Tradeoff: Additional con-
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Figure 2: F1 score for token classification

text consistently increases recall but often re-
duces precision, leading to more false posi-
tives.

Based on the experiment results, we can formu-
late the following Hypothesis:

Additional context introduced during fine-tuning
biases model outputs toward increased false posi-
tives while reducing false negatives.

4.2 Task 1: ADE Detection in Tweets

For sequence classification, most models benefit
from additional context, with appended context pro-
viding the most stable improvements. Combining
different context sources (e.g., GPT-40 with knowl-
edge base data) further enhances performance.
Span-based injections are more variable and de-
pendent on span quality. While combining spans

with high-quality GPT-40 context improves perfor-
mance, unrefined span injections can impact results
negatively.

4.3 Task 2: ADE Span Boundary Detection in
Tweets

For token classification, the appended context
regime consistently performs the best. However,
unlike sequence classification, the overall perfor-
mance boost is relatively minor. Most models and
input configurations performed at roughly the same
level, with only slight variations across different
setups.

Models trained with highlighted spans or a com-
bination of span and context often matched or un-
derperformed relative to the baseline, indicating
that span-based methods may not provide signifi-
cant advantages in this setting. The most notice-
able performance improvement was observed in
the smallest model, where the additional context
had a more substantial impact.

5 Conclusion

Our experiments demonstrate that incorporating
additional context into fine-tuning systematically
improves the performance of both sequence and
token classification tasks. The most consistent and
stable improvements are observed when using the
appended context approach, which boosts F1 scores
by at least 2—4 points across different model con-
figurations. However, the amount of gain is highly
dependent on the quality of the base model and the
quality of the LLM used for augmentation: low-
quality base models gain more from LLM augmen-
tation, while high-quality base models gain less,
but with high-quality LLM augmentation are still
able to improve results further achieving top perfor-
mance crucial for competitions like SMM4H-2024.

An additional finding is that context augmenta-
tion systematically shifts the precision-recall bal-
ance by increasing recall. This makes context
augmentation particularly valuable for applications
where maximizing recall is more important than
minimizing false positives. Potential use cases in-
clude event filtering and anomaly detection, where
datasets are often imbalanced, and missing a true
positive is more costly than generating additional
false positives.



6 Limitations

Our study has two primary limitations. First, the
methods were tested on a single dataset, which may
limit generalizability to other domains. Further val-
idation on diverse datasets is needed. Second, the
GPT-generated context was derived from a prompt
optimized for token classification, rather than se-
quence classification tasks, which may have con-
strained its effectiveness for task 1. Future work
should explore dataset diversity and task-specific
prompt tuning to improve adaptability and perfor-
mance across different NLP applications.
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A ADE boundary detection prompt

You will be provided with a tweet. Your
task is to identify and highlight any
adverse drug events (ADEs) mentioned
in relation to drug use. Only the
exact phrases describing the ADEs should
be outputted, without including any
additional context. Each ADE should
be listed on a new line. If the same
ADE is mentioned multiple times, each

occurrence should be listed separately.

If multiple different ADEs are identified
within the same tweet, they should be
listed on separate lines. If no ADEs are
found, output "null”.

Format:

SPAN: text or null

Samples:

Tweet:

user if avelox has hurt your liver, avoid
tylenol always, as it further damages
liver, eat grapefruit wunless taking
cardiac drugs

nnn

SPAN: hurt your liver

Tweet:

losing it. could not remember the word
power strip. wonder which drug is doing
this memory lapse thing. my guess the
cymbalta. helps

SPAN: not remember

SPAN: memory lapse

Tweet:

is adderall a performance enhancing drug
for mathletes?

nnn

SPAN:

null

Tweet:

nnn

debating on taking a trazodone and

literally passing out for the day.

nnn

For a given prompt, GPT generates the following
output
SPAN: passing out

B Naming conventions in the experiments

C Precision and recall for experiments
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Key Explanation Context type
tweet Only the original tweet. None
tweet_w_symptom_c Tweet + symptoms Context
tweet_w_drug_c Tweet + drugs Context
tweet_w_drug_w_symptom_c  Tweet + drugs and symptoms Context
tweet_w_symptom_s Tweet + symptoms Span
tweet_w_drug_s Tweet + drugs Span
tweet_w_drug_w_symptom_s Tweet + drugs and symptoms Span
40_c Tweet + GPT4o Context
4o0_w_drug_c Tweet + GPT4o0 + drugs Context
4o0_w_symptom_c Tweet + GPT40 + symptoms Context
4o0_w_drug_w_symptom_c Tweet + GPT4o0 + drugs and symptoms Context
tweet_w_drug_w_symptom_s Tweet + drugs and symptoms Span
4o0_w_drug_c Tweet + GPT4o0 + drugs Span
40_w_symptom_c Tweet + GPT40 + symptoms Span
4o0_w_drug_w_symptom_c Tweet + GPT4o0 + drugs and symptoms Span
40_sc Tweet + GPT4o0 Span + Context
35 ¢ Tweet + GPT3.5 Context
35_s Tweet + GPT3.5 Span
35_sc Tweet + GPT3.5 Span + Context
40_mini_c Tweet + GPT40-mini Context
40_mini_s Tweet + GPT40-mini Span
40_mini_sc Tweet + GPT40-mini Span + Context

Table 2: Model naming conventions and explanation.
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Figure 3: Precision values for sequence classification.
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Figure 4: Recall values for sequence classification.
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Figure 6: Recall values for token classification.



	Introduction
	Related work
	Experiments
	Dataset and Evaluation
	Context Sources
	Few-shot LLM Performance
	Fine-tuned Models
	Input Regimes
	Training Methodology

	Results
	Key Observations
	Task 1: ADE Detection in Tweets
	Task 2: ADE Span Boundary Detection in Tweets

	Conclusion
	Limitations
	ADE boundary detection prompt
	Naming conventions in the experiments
	Precision and recall for experiments

