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Abstract

Large Language Models (LLMs) excel in NLP001
tasks but are highly sensitive to input design.002
This study examines the impact of context aug-003
mentation as a way of fine-tuning NLP models004
for adverse drug event (ADE) detection from005
social media text. We evaluate on the sequence006
and token classification tasks using different007
input regimes, including appended context and008
span highlighting.009

Our results show that the appended context con-010
sistently improves performance, increasing F1011
scores by 2–4 points. However, added context012
shifts the precision-recall balance, boosting re-013
call at the cost of precision.014

These findings highlight the potential of LLM-015
generated and knowledge-based context for en-016
hancing NLP quality for tasks in data-scarce017
settings.018

1 Introduction019

The release of GPT-3 (Brown et al., 2020) marked020

the beginning of a new era for large language mod-021

els (LLMs) in deep learning (Sevilla et al., 2022).022

These models exhibit remarkable adaptability, en-023

abling them to generate free-text responses that024

align with specific instructions provided in the in-025

put. The process of crafting precise and effective026

instructions to guide an LLM toward producing027

the desired output is known as prompt engineering028

(Ouyang et al., 2022).029

Unlike traditional fine-tuning (A), which re-030

quires retraining on domain-specific datasets,031

prompt engineering (B) allows models to modify032

their responses dynamically based on the given033

instructions. This capability makes LLMs partic-034

ularly useful in data-scarce environments, as they035

can generalize to previously unseen data without036

requiring extensive labeled examples.037

Despite their impressive capabilities, generative038

LLMs suffer from a critical limitation: they occa-039

sionally produce incorrect or misleading informa- 040

tion, a phenomenon known as hallucination (C) 041

(Ji et al., 2023). Additionally, their outputs can be 042

overly verbose and may contain irrelevant details, 043

often leading to false-positive errors in downstream 044

tasks. 045

In this paper, we will explore strategies to over- 046

come LLMs (C) hallucination issues by employing 047

(A) fine-tuning and (B) prompt engineering. These 048

methods are used to generate additional context 049

for the raw data, thus improving overall system 050

performance. The code is available on GitHub 1. 051

2 Related work 052

Current approaches for solving token classifica- 053

tion tasks with GPT primarily rely on few-shot 054

prompting techniques (Wang et al., 2023; Yan et al., 055

2025). While these methods generally underper- 056

form compared to specialized fine-tuned models, 057

they demonstrate remarkable effectiveness in data- 058

scarce environments. The core principle involves 059

constructing input-output samples, where the out- 060

put replicates the input text but includes injected 061

special tokens to denote named entities. 062

A novel unified approach investigated in this pa- 063

per leverages LLMs as knowledge bases (Mukans 064

and Barzdins, 2023) for specialized fine-tuned mod- 065

els. This method was introduced in the Multilin- 066

gual Complex Named Entity Recognition (Multi- 067

CoNER II) shared task. Although the winning sys- 068

tem (Tan et al., 2023) relied on traditional knowl- 069

edge bases, the implementation costs for an LLM- 070

based alternative were significantly lower. 071

For our research in this paper, we utilize a 072

dataset from the Social Media Mining for Health 073

Research and Applications 2024 (SMM4H-2024) 074

shared Task 1 (Xu et al., 2024) which is based on 075

SMM4H-2017 dataset 2. SMM4H-2024 Task 1 076

1https://github.com/emukans/context-matters-2025
2https://data.mendeley.com/datasets/rxwfb3tysd/2
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challenges participants to extract and normalize ad-077

verse drug events (ADEs) to MedDRA high-level078

term identifiers from English tweets. In this study,079

we focus exclusively on the extraction task, em-080

ploying the dataset for both token and sequence081

classification.082

Several teams, including the winning submis-083

sion, leveraged LLMs to augment or enrich the084

original dataset during the competition (Li et al.,085

2024; Berkowitz et al., 2024; Mukans and Barzdins,086

2024). Building upon these approaches, we experi-087

ment with input-enrichment methodologies, specif-088

ically custom tag injection and the addition of con-089

textual information from various sources.090

3 Experiments091

3.1 Dataset and Evaluation092

Our experiments are conducted using the SMM4H-093

2024 dataset. The training subset consists of 17,306094

tweets, while the evaluation is performed on the095

dev subset, containing 965 tweets. This subset was096

not included in the training process.097

The primary objective of our experiments is to098

assess the impact of additional context on model099

performance, particularly in relation to model size100

and quality. We evaluate two tasks: sequence clas-101

sification and token classification.102

3.2 Context Sources103

For both tasks, we incorporate the following addi-104

tional context sources:105

1. LLM-generated context;106

2. Matched symptoms from the Symptom107

dataset (Schriml et al., 2009, 2022);108

3. Matched symptoms from the Drug dataset109

(NLM, 2022).110

To generate LLM-based context, we applied a111

consistent prompt across all LLM models (detailed112

in Appendix A). The same generated context was113

used for both sequence and token classification114

tasks.115

3.3 Few-shot LLM Performance116

Before fine-tuning, we evaluated the off-the-shelf117

performance of various LLMs in a few-shot setup.118

As LLM-generated outputs may differ in spelling119

from the original input, we employed the Jaro-120

Winkler algorithm with a 95% threshold to match121

the generated spans with the ground-truth annota-122

tions. The results are summarized in Table 1.123

Model name F1 Precision Recall
Sequence classification

GPT-4o 0.55 0.46 0.69
GPT-4o-mini 0.48 0.35 0.75
GPT-3.5-turbo 0.3 0.17 1

Token classification
GPT-4o 0.27 0.22 0.35
GPT-4o-mini 0.23 0.17 0.37
GPT-3.5-turbo 0.14 0.08 0.52

Table 1: Off-the-shelf LLM performance using few-shot
prompting.

3.4 Fine-tuned Models 124

To evaluate the effectiveness of additional context, 125

we fine-tuned three types of models: 126

1. BERT-base (Devlin et al., 2018) (110M pa- 127

rameters) – a small, generic model; 128

2. BERT-large (Devlin et al., 2018) (336M pa- 129

rameters) – a larger generic model; 130

3. Task-specific models: 131

- Twitter-based RoBERTa (Antypas et al., 132

2023) (355M parameters) – used for sequence 133

classification; 134

- Medical-NER (He et al., 2021) (185M pa- 135

rameters) – used for token classification. 136

In total, we trained 22 different model variations 137

with distinct input configurations. The naming con- 138

ventions for these models are provided in Table 139

2. 140

3.5 Input Regimes 141

We experimented with four input configurations to 142

assess the impact of additional context: 143

1. Baseline: The model is trained solely on the 144

original tweet text. 145

2. Context: Additional context is appended at 146

the end of the tweet. Since LLMs may gen- 147

erate multiple spans for ADEs or tweets may 148

contain multiple drug or symptom mentions, 149

each context entry is separated by a <sep> 150

tag. 151

3. Span: A preprocessing script identifies text 152

spans matching entries from the generated 153

LLM context or external datasets. Matches are 154

determined using the Jaro-Winkler algorithm 155

(Jaro, 1989; Winkler, 1990). The identified 156

spans are highlighted using specialized tags: 157
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• <ade></ade> for LLM-generated ADE158

matches;159

• <drug></drug> for drug mentions;160

• <symptom></symptom> for symptom161

mentions.162

4. Span + Context: This regime combines the163

span-enriched text with additional context.164

An example input for Span + Context configura-165

tion, that incorporates all knowledge sources. The166

other regimes utilizes some part of this augmented167

input.168

"@USER it was explained to me that169

all the anti-tnfs can bring out170

other issues. I had <symptom>171

<ade> severe joint pain <ade>172

<symptom> on <drug> humira <drug>173

& <drug> remicaid <drug> <sep>174

severe joint pain"175

In this example, the correct ADE output is176

"joint pain".177

3.6 Training Methodology178

All models were trained under a consistent method-179

ology. Each model was fine-tuned at least 10 times180

with different seed values to ensure stability and181

reproducibility of results.182

4 Results183

We evaluate model performance using the F1 score,184

with results presented in Figures 1 and 2. Precision185

and recall values are detailed in Appendix C.186

4.1 Key Observations187

1. Scaling Effects: Increasing the foundation188

model’s size and quality consistently im-189

proves performance across both tasks. This190

aligns with scaling laws (Kaplan et al., 2020),191

which state that improvements arise from scal-192

ing at least two of the following: model size,193

computational resources, or dataset size.194

2. Effectiveness of Appended Context: The ap-195

pended context regime yields stable improve-196

ments across models, regardless of foundation197

model size or GPT version. Even for the best-198

performing models, F1 scores increase by 2–4199

points.200

Figure 1: F1 score for sequence classification.

3. Limitations of Span Highlighting: The span 201

regime is more efficient due to smaller input 202

sizes but produces inconsistent results. While 203

it can enhance performance, it often performs 204

at the same level as the baseline. 205

4. Instability in Combined Methods: The span 206

+ context regime tends to confuse the model, 207

sometimes improving performance but more 208

often remaining on par with the baseline. 209

5. Dependence on Context Quality: The effec- 210

tiveness of additional context depends on its 211

quality. Using a more advanced LLM (e.g., 212

GPT-4o) to generate context boosts perfor- 213

mance. However, if computational resources 214

are limited, omitting additional context may 215

be preferable. 216

6. Precision-Recall Tradeoff: Additional con- 217
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Figure 2: F1 score for token classification

text consistently increases recall but often re-218

duces precision, leading to more false posi-219

tives.220

Based on the experiment results, we can formu-221

late the following Hypothesis:222

Additional context introduced during fine-tuning223

biases model outputs toward increased false posi-224

tives while reducing false negatives.225

4.2 Task 1: ADE Detection in Tweets226

For sequence classification, most models benefit227

from additional context, with appended context pro-228

viding the most stable improvements. Combining229

different context sources (e.g., GPT-4o with knowl-230

edge base data) further enhances performance.231

Span-based injections are more variable and de-232

pendent on span quality. While combining spans233

with high-quality GPT-4o context improves perfor- 234

mance, unrefined span injections can impact results 235

negatively. 236

4.3 Task 2: ADE Span Boundary Detection in 237

Tweets 238

For token classification, the appended context 239

regime consistently performs the best. However, 240

unlike sequence classification, the overall perfor- 241

mance boost is relatively minor. Most models and 242

input configurations performed at roughly the same 243

level, with only slight variations across different 244

setups. 245

Models trained with highlighted spans or a com- 246

bination of span and context often matched or un- 247

derperformed relative to the baseline, indicating 248

that span-based methods may not provide signifi- 249

cant advantages in this setting. The most notice- 250

able performance improvement was observed in 251

the smallest model, where the additional context 252

had a more substantial impact. 253

5 Conclusion 254

Our experiments demonstrate that incorporating 255

additional context into fine-tuning systematically 256

improves the performance of both sequence and 257

token classification tasks. The most consistent and 258

stable improvements are observed when using the 259

appended context approach, which boosts F1 scores 260

by at least 2–4 points across different model con- 261

figurations. However, the amount of gain is highly 262

dependent on the quality of the base model and the 263

quality of the LLM used for augmentation: low- 264

quality base models gain more from LLM augmen- 265

tation, while high-quality base models gain less, 266

but with high-quality LLM augmentation are still 267

able to improve results further achieving top perfor- 268

mance crucial for competitions like SMM4H-2024. 269

An additional finding is that context augmenta- 270

tion systematically shifts the precision-recall bal- 271

ance by increasing recall. This makes context 272

augmentation particularly valuable for applications 273

where maximizing recall is more important than 274

minimizing false positives. Potential use cases in- 275

clude event filtering and anomaly detection, where 276

datasets are often imbalanced, and missing a true 277

positive is more costly than generating additional 278

false positives. 279
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6 Limitations280

Our study has two primary limitations. First, the281

methods were tested on a single dataset, which may282

limit generalizability to other domains. Further val-283

idation on diverse datasets is needed. Second, the284

GPT-generated context was derived from a prompt285

optimized for token classification, rather than se-286

quence classification tasks, which may have con-287

strained its effectiveness for task 1. Future work288

should explore dataset diversity and task-specific289

prompt tuning to improve adaptability and perfor-290

mance across different NLP applications.291

References292

Dimosthenis Antypas, Asahi Ushio, Francesco Barbieri,293
Leonardo Neves, Kiamehr Rezaee, Luis Espinosa-294
Anke, Jiaxin Pei, and Jose Camacho-Collados. 2023.295
Supertweeteval: A challenging, unified and hetero-296
geneous benchmark for social media nlp research.297
In Findings of the Association for Computational298
Linguistics: EMNLP 2023.299

Jacob Berkowitz, Apoorva Srinivasan, Jose Cortina, and300
Nicholas Tatonetti1. 2024. TLab at #SMM4H 2024:301
Retrieval-augmented generation for ADE extraction302
and normalization. In Proceedings of The 9th Social303
Media Mining for Health Research and Applications304
(SMM4H 2024) Workshop and Shared Tasks, pages305
153–157, Bangkok, Thailand. Association for Com-306
putational Linguistics.307

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie308
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind309
Neelakantan, Pranav Shyam, Girish Sastry, Amanda310
Askell, Sandhini Agarwal, Ariel Herbert-Voss,311
Gretchen Krueger, Tom Henighan, Rewon Child,312
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,313
Clemens Winter, Christopher Hesse, Mark Chen, Eric314
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,315
Jack Clark, Christopher Berner, Sam McCandlish,316
Alec Radford, Ilya Sutskever, and Dario Amodei.317
2020. Language models are few-shot learners. In318
Proceedings of the 34th International Conference on319
Neural Information Processing Systems, NIPS ’20,320
Red Hook, NY, USA. Curran Associates Inc.321

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and322
Kristina Toutanova. 2018. BERT: pre-training of323
deep bidirectional transformers for language under-324
standing. CoRR, abs/1810.04805.325

Pengcheng He, Jianfeng Gao, and Weizhu Chen. 2021.326
Debertav3: Improving deberta using electra-style pre-327
training with gradient-disentangled embedding shar-328
ing. Preprint, arXiv:2111.09543.329

M. A Jaro. 1989. Advances in record linkage method-330
ology as applied to the 1985 census of tampa florida.331
In Journal of the American Statistical Association,332
page 414–20.333

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan 334
Su, Yan Xu, Etsuko Ishii, Ye Jin Bang, Andrea 335
Madotto, and Pascale Fung. 2023. Survey of halluci- 336
nation in natural language generation. ACM Comput. 337
Surv., 55(12). 338

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. 339
Brown, Benjamin Chess, Rewon Child, Scott Gray, 340
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020. 341
Scaling laws for neural language models. CoRR, 342
abs/2001.08361. 343

Hongyu Li, Yuming Zhang, Yongwei Zhang, Shanshan 344
Jiang, and Bin Dong. 2024. SRCB at #SMM4H 2024: 345
Making full use of LLM-based data augmentation 346
in adverse drug event extraction and normalization. 347
In Proceedings of The 9th Social Media Mining for 348
Health Research and Applications (SMM4H 2024) 349
Workshop and Shared Tasks, pages 32–37, Bangkok, 350
Thailand. Association for Computational Linguistics. 351

Eduards Mukans and Guntis Barzdins. 2023. RIGA at 352
SemEval-2023 task 2: NER enhanced with GPT-3. 353
In Proceedings of the 17th International Workshop 354
on Semantic Evaluation (SemEval-2023), pages 331– 355
339, Toronto, Canada. Association for Computational 356
Linguistics. 357

Eduards Mukans and Guntis Barzdins. 2024. RIGA 358
at SMM4H-2024 task 1: Enhancing ADE discovery 359
with GPT-4. In Proceedings of The 9th Social Me- 360
dia Mining for Health Research and Applications 361
(SMM4H 2024) Workshop and Shared Tasks, pages 362
23–27, Bangkok, Thailand. Association for Compu- 363
tational Linguistics. 364

NLM. 2022. A list of pharmaceutical drug names by 365
the united states national library of medicine. 366

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, 367
Carroll Wainwright, Pamela Mishkin, Chong Zhang, 368
Sandhini Agarwal, Katarina Slama, Alex Ray, John 369
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller, 370
Maddie Simens, Amanda Askell, Peter Welinder, 371
Paul F Christiano, Jan Leike, and Ryan Lowe. 2022. 372
Training language models to follow instructions with 373
human feedback. In Advances in Neural Information 374
Processing Systems, volume 35, pages 27730–27744. 375
Curran Associates, Inc. 376

Lynn M. Schriml, Cesar Arze, Suvarna Nadendla, Anu
Ganapathy, Victor Felix, Anup Mahurkar, Katherine
Phillippy, Aaron Gussman, Sam Angiuoli, Elodie
Ghedin, Owen White, and Neil Hall. 2009. Gemina,
genomic metadata for infectious agents, a geospa-
tial surveillance pathogen database. Nucleic Acids
Research, 38(suppl1) : D754−−D764.

Lynn M Schriml, James B Munro, Mike Schor, Dustin Ol- 377
ley, Carrie McCracken, Victor Felix, J Allen Baron, Re- 378
becca Jackson, Susan M Bello, Cynthia Bearer, Richard 379
Lichenstein, Katharine Bisordi, Nicole Campion Di- 380
alo, Michelle Giglio, and Carol Greene. 2022. The 381
human disease ontology 2022 update. Nucleic Acids 382
Res., 50(D1):D1255–D1261. 383

5

https://aclanthology.org/2024.smm4h-1.36/
https://aclanthology.org/2024.smm4h-1.36/
https://aclanthology.org/2024.smm4h-1.36/
https://aclanthology.org/2024.smm4h-1.36/
https://aclanthology.org/2024.smm4h-1.36/
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2111.09543
https://arxiv.org/abs/2111.09543
https://arxiv.org/abs/2111.09543
https://arxiv.org/abs/2111.09543
https://arxiv.org/abs/2111.09543
https://doi.org/10.1145/3571730
https://doi.org/10.1145/3571730
https://doi.org/10.1145/3571730
https://arxiv.org/abs/2001.08361
https://aclanthology.org/2024.smm4h-1.8/
https://aclanthology.org/2024.smm4h-1.8/
https://aclanthology.org/2024.smm4h-1.8/
https://aclanthology.org/2024.smm4h-1.8/
https://aclanthology.org/2024.smm4h-1.8/
https://doi.org/10.18653/v1/2023.semeval-1.45
https://doi.org/10.18653/v1/2023.semeval-1.45
https://doi.org/10.18653/v1/2023.semeval-1.45
https://aclanthology.org/2024.smm4h-1.6
https://aclanthology.org/2024.smm4h-1.6
https://aclanthology.org/2024.smm4h-1.6
https://aclanthology.org/2024.smm4h-1.6
https://aclanthology.org/2024.smm4h-1.6
http://druginfo.nlm.nih.gov/drugportal/
http://druginfo.nlm.nih.gov/drugportal/
http://druginfo.nlm.nih.gov/drugportal/
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://doi.org/10.1093/nar/gkp832
https://doi.org/10.1093/nar/gkp832
https://doi.org/10.1093/nar/gkp832


Jaime Sevilla, Lennart Heim, Anson Ho, Tamay Besiroglu,384
Marius Hobbhahn, and Pablo Villalobos. 2022. Com-385
pute trends across three eras of machine learning. In386
2022 International Joint Conference on Neural Net-387
works (IJCNN), pages 1–8.388

Zeqi Tan, Shen Huang, Zixia Jia, Jiong Cai, Yinghui Li,389
Weiming Lu, Yueting Zhuang, Kewei Tu, Pengjun Xie,390
Fei Huang, and Yong Jiang. 2023. DAMO-NLP at391
SemEval-2023 task 2: A unified retrieval-augmented392
system for multilingual named entity recognition. In393
Proceedings of the 17th International Workshop on Se-394
mantic Evaluation (SemEval-2023), pages 2014–2028,395
Toronto, Canada. Association for Computational Lin-396
guistics.397

Shuhe Wang, Xiaofei Sun, Xiaoya Li, Rongbin Ouyang,398
Fei Wu, Tianwei Zhang, Jiwei Li, and Guoyin Wang.399
2023. Gpt-ner: Named entity recognition via large400
language models. Preprint, arXiv:2304.10428.401

W. E Winkler. 1990. String comparator metrics and en-402
hanced decision rules in the fellegi-sunter model of403
record linkage. In Proceedings of the Section on Survey404
Research Methods. American Statistical Association,405
page 354–359.406

Dongfang Xu, Guillermo Lopez Garcia, Lisa Raithel,407
Rolland Roller, Philippe Thomas, Eiji Aramaki,408
Shuntaro Yada, Pierre Zweigenbaum, Sai Tharuni Sami-409
neni, Karen O’Connor, Yao Ge, Sudeshna Das,410
Abeed Sarker, Ari Klein, Lucia Schmidt, Vishakha411
Sharma, Raul Rodriguez-Esteban, Juan Banda, Ivan412
Flores Amaro, Davy Weissenbacher, and Graciela413
Gonzalez-Hernandez. 2024. Overview of the 9th so-414
cial media mining for health applications (#SMM4H)415
shared tasks at ACL 2024. In Proceedings of The 9th416
Social Media Mining for Health Research and Applica-417
tions Workshop and Shared Tasks, Bangkok, Thailand.418
Association for Computational Linguistics.419

Faren Yan, Peng Yu, and Xin Chen. 2025. Ltner: Large lan-420
guage model tagging for named entity recognition with421
contextualized entity marking. In Pattern Recognition,422
pages 399–411, Cham. Springer Nature Switzerland.423

A ADE boundary detection prompt424

You will be provided with a tweet. Your425

task is to identify and highlight any426

adverse drug events (ADEs) mentioned427

in relation to drug use. Only the428

exact phrases describing the ADEs should429

be outputted, without including any430

additional context. Each ADE should431

be listed on a new line. If the same432

ADE is mentioned multiple times, each433

occurrence should be listed separately.434

If multiple different ADEs are identified435

within the same tweet, they should be436

listed on separate lines. If no ADEs are437

found, output "null".438

— 439

Format: 440

SPAN: text or null 441

— 442

Samples: 443

Tweet: 444

""" 445

user if avelox has hurt your liver, avoid 446

tylenol always, as it further damages 447

liver, eat grapefruit unless taking 448

cardiac drugs 449

""" 450

SPAN: hurt your liver 451

— 452

Tweet: 453

""" 454

losing it. could not remember the word 455

power strip. wonder which drug is doing 456

this memory lapse thing. my guess the 457

cymbalta. helps 458

""" 459

SPAN: not remember 460

SPAN: memory lapse 461

Tweet: 462

""" 463

is adderall a performance enhancing drug 464

for mathletes? 465

""" 466

SPAN: null 467

— 468

Tweet: 469

""" 470

debating on taking a trazodone and 471

literally passing out for the day. 472

""" 473

474

For a given prompt, GPT generates the following 475

output 476

SPAN: passing out 477

B Naming conventions in the experiments 478

C Precision and recall for experiments 479
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Key Explanation Context type
tweet Only the original tweet. None
tweet_w_symptom_c Tweet + symptoms Context
tweet_w_drug_c Tweet + drugs Context
tweet_w_drug_w_symptom_c Tweet + drugs and symptoms Context
tweet_w_symptom_s Tweet + symptoms Span
tweet_w_drug_s Tweet + drugs Span
tweet_w_drug_w_symptom_s Tweet + drugs and symptoms Span
4o_c Tweet + GPT4o Context
4o_w_drug_c Tweet + GPT4o + drugs Context
4o_w_symptom_c Tweet + GPT4o + symptoms Context
4o_w_drug_w_symptom_c Tweet + GPT4o + drugs and symptoms Context
tweet_w_drug_w_symptom_s Tweet + drugs and symptoms Span
4o_w_drug_c Tweet + GPT4o + drugs Span
4o_w_symptom_c Tweet + GPT4o + symptoms Span
4o_w_drug_w_symptom_c Tweet + GPT4o + drugs and symptoms Span
4o_sc Tweet + GPT4o Span + Context
35_c Tweet + GPT3.5 Context
35_s Tweet + GPT3.5 Span
35_sc Tweet + GPT3.5 Span + Context
4o_mini_c Tweet + GPT4o-mini Context
4o_mini_s Tweet + GPT4o-mini Span
4o_mini_sc Tweet + GPT4o-mini Span + Context

Table 2: Model naming conventions and explanation.
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Figure 3: Precision values for sequence classification. Figure 4: Recall values for sequence classification.
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Figure 5: Precision values for token classification. Figure 6: Recall values for token classification.
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