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ABSTRACT

The rapid advancement of Large Language Models (LLMs) has sparked growing
interest in their application to time series analysis. Yet, their ability to perform
complex reasoning over temporal data remains underexplored. A rigorous bench-
mark is a crucial first step toward systematic evaluation. In this work, we present
the TSAIA Benchmark, a comprehensive framework for assessing LLMs as
time-series artificial intelligence assistants. TSAIA integrates two complementary
tiers of tasks. The series-centric tier instantiates canonical time-series formula-
tions—such as forecasting, anomaly detection, and risk-return analysis—via a
controlled question-generation pipeline, providing continuity with prior evaluation
settings. The problem-centric tier, in contrast, derives tasks from real-world an-
alytical questions in healthcare, retail, and climate science, and formalizes their
construction through a task-design paradigm spanning three levels: evidence in-
tegration, operator-based comparison, and structural multi-step reasoning. This
paradigm enables dynamic extensibility, allowing new task instances to be gen-
erated as data evolve in practice. To accommodate heterogeneous task types, we
define task-specific success criteria and tailored inference quality metrics, applied
under a unified evaluation protocol. We evaluate 7 state-of-the-art LLMs and
find that while they achieve reasonable performance on series-centric tasks, they
struggle substantially on problem-centric ones, often failing at multi-step reasoning,
numerical precision, and constraint adherence. These results underscore the need
for domain-grounded, dynamically extensible benchmarks as a foundation for
advancing LLM-based time-series assistants.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable general-purpose capabilities across
various domains, such as language understanding Dong et al. (2019), code generation Jiang et al.
(2024), and scientific reasoning Taylor et al. (2022); Wang et al. (2025c). However, their ability to
perform complex reasoning over time series data remains significantly underexplored. Time series
analysis is a fundamental competency for data analysts and scientists in fields like energy Alvarez
et al. (2010), finance Sezer et al. (2020), climate Mudelsee (2019), and healthcare Rathlev et al.
(2007), yet it remains an area where LLMs are relatively untested. In practice, real-world time
series workflows are inherently complex Yan et al. (2021); Han et al. (2021): they require multi-step
reasoning Fu et al. (2022), precise numerical computation Cvejoski et al. (2022), integration of
domain knowledge Xue et al. (2024), and adherence to operational constraints Wang et al. (2016).
With the rise of LLM-based agents Li et al. (2025); Chang et al. (2025), there is growing interest in
developing intelligent systems that can interpret natural language instructions for time series analysis.
However, since time series analysis is challenging even for humans Uddin et al. (2024), a rigorous
benchmark is necessary to evaluate whether LLMs can truly serve as reliable time series reasoning
assistants.

Existing benchmarks have made progress toward temporal or time-series evaluation, but they re-
main insufficient. Many focus on individual subtasks Merrill et al. (2024) or fixed experimental
configurations (e.g., sliding-window forecasting Du et al. (2024)), or reduce the problem to simple
question-answering (QA) tasks that use temporal keywords, but do not require structured numerical
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reasoning Zhou et al. (2021). Others fail to incorporate realistic operational constraints Abdullahi
et al. (2025) or to capture the inherently multi-step nature of time series workflows Chang et al.
(2025). Critically, most existing datasets are static Du et al. (2024); Liu et al. (2024b); Xu et al. (2024),
limiting their ability to reflect evolving real-world settings and preventing long-term evaluation of
models’ adaptivity.

To address these limitations, we present the Time Series Artificial Intelligence Assistant (TSAIA
) benchmark for evaluating LLMs as general-purpose time-series assistants. TSAIA is grounded
in real-world datasets across healthcare, retail, climate, energy, and finance , and it combines two
complementary suites of tasks. The series-centric suite instantiates canonical time-series formulations
via template-defined constructions (e.g., forecasting, anomaly detection, analytical and decision-
oriented tasks), providing a controlled baseline and continuity with prior evaluation settings . The
problem-centric suite is derived from researcher-driven questions in practical domains and is in-
stantiated through a task-design paradigm that supports continual creation of task instances as new
data arrive . This paradigm structures multi-step reasoning along three complementary levels: Ev-
idence—integration of heterogeneous variables or modalities before inference; Operator—after
temporal understanding, application of mathematically specified computations or comparisons over
features (across series or within a series); and Structural—execution of ordered, compositional
pipelines with intermediate artifacts (e.g., detection → attribution → forecasting). A unified eval-
uation protocol applies to both suites, enabling baseline assessment on series-centric tasks and
rigorous, domain-grounded appraisal of multi-step reasoning on problem-centric tasks. To achieve
good performance on TSAIA, the following capabilities are needed: compositional reasoning Li
et al. (2024) (the sequential execution of logical and numerical operations to construct end-to-end
analytical pipelines), comparative reasoning (selecting the optimal asset based on calculated summary
indicators), commonsense reasoning Davis & Marcus (2015) (identifying plausible covariates for the
target variable), decision-oriented reasoning (interpreting risk-return metrics in investment contexts),
and numerical precision.

We evaluate a set of state-of-the-art LLMs under this benchmark, including GPT-4o Hurst et al.
(2024), Qwen-Max Qwen Team (2025), Claude-3.7 Sonnet Anthropic (2025), Gemini-2.5 Google
DeepMind (2025),Grok-4 xAI (2025) and others, using a unified agent framework Gao et al. (2024)
that prompts models to generate executable code and iteratively refine their predictions. Our findings
show that while LLMs can succeed on core static tasks, they struggle significantly on dynamic,
real-world multi-step tasks, often failing to integrate constraints, carry out intermediate reasoning,
or adapt under distribution shifts Fan et al. (2023). These results underscore the urgent need for
domain-grounded, dynamically extensible benchmarks, and position TSAIA as a foundation for the
development of reasoning-capable time series AI assistants.

2 RELATED WORK

Benchmark Dynamic TS-Involved Reasoning #Tasks Task Type
Test of Time Fatemi et al. (2024) ✗ ✗ ✓ 1 QA
TRAM Wang & Zhao (2024) ✗ ✗ ✓ 1 QA
TSI-Bench Du et al. (2024) ✗ ✓ ✗ 1 TS Analysis
TSB-AD Liu & Paparrizos (2024) ✗ ✓ ✗ 1 TS Analysis
GIFT-Eval Aksu et al. (2024) ✗ ✓ ✗ 1 TS Analysis
TFB Qiu et al. (2024) ✗ ✓ ✗ 1 TS Analysis
Time-MMD Liu et al. (2024b) ✗ ✓ ✗ 1 TS Analysis
CiK Williams et al. (2024) ✗ ✓ ✗ 1 TS Analysis
TGTSF Xu et al. (2024) ✗ ✓ ✗ 1 TS Analysis
LLM TS Struggle Merrill et al. (2024) ✗ ✓ ✓ 2 QA, TS Analysis
MTBench Chen et al. (2025) ✗ ✓ ✓ 3 QA, TS Analysis
ChatTime Wang et al. (2025a) ✗ ✓ ✓ 3 QA, TS Analysis
TSAIA(Ours) ✓ ✓ ✓ 4+, extensible QA, TS Analysis

Table 1: Comparison of TSAIA and existing temporal-related benchmarks. Dynamic indicates
whether new task instances can be continuously generated.
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2.1 BENCHMARKS FOR TEMPORAL AND TIME-SERIES REASONING

A number of recent efforts examine LLMs’ capabilities on temporal or time-series related tasks, yet
they differ markedly from the goal of evaluating multi-step, constraint-aware time-series assistants in
real-world workflows. Test of Time (ToT) Fatemi et al. (2024) focuses on temporal reasoning with
synthetic datasets that control factors such as fact order, graph structure, and temporal arithmetic.
TRAM Wang & Zhao (2024) aggregates ten textual temporal-reasoning datasets spanning order,
duration, frequency, and arithmetic, reporting substantial gaps to human performance. Closer to
classical time-series pipelines, TSI-Bench Du et al. (2024) targets imputation across real datasets
and models with standardized evaluation, while TSB-AD Liu & Paparrizos (2024) curates a large,
heterogeneous anomaly-detection suite and argues for more reliable metrics such as VUS-PR. These
benchmarks either center on textual temporal logic or isolate single TS subtasks (e.g., imputation,
anomaly detection), and typically use static datasets and single-step or end-only evaluation protocols.
By contrast, TSAIA is introduced as a domain-grounded benchmark with two complementary tiers: a
series-centric Tier that instantiates canonical time-series tasks for continuity and baseline comparison,
and a problem-centric Tier that derives real-world analytical tasks across domains, formalized through
operator-based design and intermediate-step evaluation, enabling dynamic extensibility as data evolve.

2.2 MULTI-STEP BENCHMARKS IN OTHER DOMAINS: A FOUR-LEVEL TAXONOMY

Beyond time series, multi-step reasoning has been extensively explored under diverse task construc-
tions. We summarize prominent task construction paradigms into four levels and draw from the first
three to define TSAIA’s dataset-generation paradigm.

Evidence Level — Cross-document / Cross-modal Aggregation (Multi-variant tasks). Tasks
require aggregating evidence across multiple documents or modalities. Representative datasets include
HotpotQA for multi-hop QA with supporting-fact supervision Yang et al. (2018)and ScienceQA
for multimodal science questions with lectures and explanations Saikh et al. (2022). These works
emphasize evidence collection/aggregation and often supervise supporting facts or interaction traces,
inspiring our multi-parameter TS tasks that aggregate signals across series, covariates, and modalities.

Operator Level — Numerical / Symbolic Computation after Understanding (Operation tasks).
Tasks explicitly require discrete operations or comparisons after comprehension. Canonical datasets
include DROP for discrete reasoning over paragraphs Dua et al. (2019) and TAT-QA for table-and-text
financial QA with numerical operations Zhu et al. (2021). This line motivates TSAIA’s operator-level
design, where time-series problems require computing indicators or comparing outcomes, such as
evaluating which patient faces higher mortality risk, or contrasting climate anomalies across regions.

Structural Level — Constraining and Supervising Intermediate Steps (Multi-step tasks). Here,
task definitions scaffold or supervise the sequence of reasoning steps. QDMR/BREAK introduces a
decomposition meaning representation with step-annotated questions Wolfson et al. (2020), while
ProofWriter evaluates logical chains with structured intermediate proofs Tafjord et al. (2020). TSAIA
adapts this idea to time series by formalizing structural stages (e.g., detection → attribution →
forecasting) with intermediate outputs and explicit checks.

Process Level — Action Sequences (Agent-style loops). Some benchmarks evaluate agents that
perform multi-step plans in interactive environments, such as GAIA Mialon et al. (2023) and
AgentBench Liu et al. (2023). While our focus is not on full agent loops, these works highlight the
broader direction of process-oriented evaluation, where models must plan, execute, and adapt their
reasoning pipelines over evolving contexts.

3 BENCHMARK PARADIGM

3.1 DATA SOURCES

To evaluate time series AI assistants effectively, we focus on tasks grounded in real-world use
cases that data analysts across diverse application domains routinely encounter. Our objective
is to assess whether an assistant can handle practical, multi-step scenarios involving time series,
thereby ensuring its utility in everyday analytical workflows. We reviewed over twenty research
publications addressing time-series challenges in healthcare, finance, energy, climate science, and
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Series-Centric Multi-Step TasksData Source

Problem-Centric Multi-Step Tasks

Evaluation

Task Choice

Time Series
Datset

Generate

Research 
Problem

Time Series
Datset

 ●Task Instruction
 ● Selected Time Series
 ● Ground truth

Ground Truth Final Result

Evaluator

 ✔️ Status: Yes/No 
 ✔️ Metric name:
     Metric value:
 ✔️ Message: ......

1. Check Structual correctness
2. Check constraint satisfaction and
knowledge incorporation
3. Compute Inference Quality Metric
(accuracy, F1, MAPE, etc.)

 Healthcare

   Finance

    Energy

   Climate

     Retail

1. Context Parameterization
2. Adding Complexity 
3. Ground Truth Construction 

Time Series

 ●Task Instruction
 ● Selected Time Series
 ● Ground truthGenerate

1. Evidence Level
2. Operator Level 
3. Structural Level 

LLMs

Task
Design

Paradigm

Figure 1: Pipeline for multi-step time-series task construction and instance generation, followed by
unified evaluation.

retail, and extracted recurring problems that involve reasoning and multi-stage analytical pipelines,
converting them into benchmark tasks. To ensure breadth and domain grounding, we curated
datasets from a wide range of sources, including the MIMIC-IV databaseJohnson et al. (2020) with
detailed ICU records such as vital signs, laboratory results, and outcomes; the FreshRetailNet-50K
dataset Wang et al. (2025b)capturing product-level demand, pricing, discounts, and holiday effects
across retail settings; and climate resources such as the ERA5 reanalysisHersbach et al. (2018)
and MTBenchChen et al. (2025), which provide multimodal meteorological variables including
temperature, precipitation, and wind. We also incorporated energy datasets such as electricity load,
renewable generation, and building consumption, as well as financial market data spanning indices
and individual equities, alongside physiological recordings such as ECG from public repositories. All
sources are preprocessed into aligned input–output windows and enriched with standardized metadata
covering units, covariates, temporal granularity, and operational context, ensuring that task instances
are consistent and comparable across domains. This heterogeneous but coherent collection provides
the foundation for constructing benchmark tasks that reflect both the intrinsic statistical properties of
time series and the domain-specific reasoning challenges faced by practitioners.

3.2 SERIES-CENTRIC MULTI-STEP TASKS

This component focuses on series-centric formulations that primarily probe the statistical and struc-
tural properties of time series themselves. Tasks are organized along four families reflecting common
analytical workflows: predictive (e.g., constraint-aware forecasting under operational limits), diagnos-
tic (e.g., anomaly detection and causal attribution with priors), analytical (e.g., portfolio risk–return
analytics, backtesting of rule-based strategies), and decision-making (e.g., selecting among structured
indicators under explicit criteria). These families abstract recurring practitioner questions while
remaining faithful to canonical time-series operations.

Task Construction. Following the original design, each family is specified by natural-language
templates that determine the observed window, forecast/decision horizon, admissible covariates, units,
and (when applicable) operational constraints (e.g., non-negativity, ramp-rate, or clinical thresholds).
Dataset slices are sampled under fixed time cuts to avoid leakage and to preserve reproducibility.
Templates are then parameterized by the sampled context (time spans, variable names, covariate lists)
and rendered into instructions that are unambiguous with respect to I/O schema.

Instance Materialization & Ground Truth. Instances consist of (i) an instruction, (ii) serialized
inputs with metadata, and (iii) a verifiable reference output. Ground truth is bound deterministically:
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\

Electricity Prediction without
Covariates (68)

Electricity Prediction with
Covariates （65)

Electricity Prediction for 
Multiple Grids (68)

Causal Discovery with Domain 
Knowledge (142)

Anomaly Detection with 
Anomaly-Free Samples (142)

Anomaly Detection with Known 
Prior (142)

Perform Risk Return Analysis
(66)

Stock Trading Investment (71)

Choose Best Portfolio Based 
on Financial Metrics (100)

Draw Conclusion on Stock 
Performance Compared to 

Market (50)

Predictive Task (201) Diagnostic Task (426) Analytical Task (277) Decision-making Task 
(150)

Benchmark Against Market
(71)

Stock Price, Volatility & Trend 
Prediction (69)

(a) Series-Centric Tasks Categorization

(b) Problem-Centric Tasks Design Paradigm

Figure 2: Illustrations of two task design. (a) Categorization of Series-Centric Tasks in TSAIA.
Lighter colors denote tasks with less difficulty and darker colors denote tasks with higher difficulty.
(b) Problem-Centric Task Design Paradigm across three levels: Evidence, Operator, and Structural.

either by retrieving targets from held-out future windows, or by applying reference computations
(e.g., statistical indicators, portfolio functions) defined by the template. The resulting series-centric
tier provides a controlled, reproducible baseline for assessing whether LLMs can execute well-posed
time-series tasks with numerical precision and format correctness.

3.3 PROBLEM-CENTRIC MULTI-STEP TASKS

Complementing the above, this component derives tasks directly from questions that domain re-
searchers genuinely care about in healthcare, retail, and climate settings. Task generation follows our
task design paradigm across three complementary levels that emphasize multi-step reasoning beyond
isolated statistical operations.

Evidence Level. Tasks require integrating heterogeneous variables/modalities and aligning them into
a sufficient evidence set prior to inference (e.g., combining precipitation, temperature, and wind to
identify extreme weather anomalies).

Operator Level. Tasks require feature understanding of time series followed by explicit operations
on derived quantities, including feature comparison across series or feature computation within a
series (e.g., deciding which ICU patient has higher near-term mortality risk from trajectories).
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I have historical Temperature, Relative
Humidity, Wind Speed data and the
corresponding load_power data for the
past 117 minutes. I need to ensure that
the maximum allowable system load
does not exceed 1.0689227278350713
MW. Think about how Temperature,
Relative Humidity, Wind Speed
influence load_power. Please give me a
forecast for the next 12 minutes for
load_power. Your goal is to make the
most accurate forecast as possible,
refine prediction result based on the
constraint previously described, and …

Task
Instruction

1.0051
 1.0057
 1.0062
 1.0068
 1.0073
 1.0079
 1.0084
 1.0090
 1.0095
 1.0101
 1.0106
 1.0112

Ground
Truth

Time
Tempe
-rature

Relative
Humidity

Wind
Speed

Load
Power

2020-09-
13 09:44 

24.58 89.41 1.4 0.923

2020-09-
13 09:45

24.60 89.31 1.4 0.924

... ... ... ... ...

2020-09-
13 11:39

25.40 81.87 1.4 1.003

2020-09-
13 11:40 

25.40 81.87 1.4 1.004

Figure 3: Example Task Instance containing the task instruction, accompanied serialized dataset,
and ground truth.

Structural Level. Tasks require executing an ordered, compositional pipeline with intermediate
artifacts and stepwise checks (e.g., demand recovery → substitution estimation → long-horizon
forecasting).

The paradigm maps real questions into tasks by extracting relevant data subsets and encoding domain
constraints into the instruction. Ground truth is established through later observations when available,
or through deterministic procedures aligned with the template. When questions involve future
outcomes, labels are revealed gradually, allowing longitudinal evaluation.

3.4 EVALUATION PROTOCOL

Evaluation in TSAIA must accommodate heterogeneous task goals while maintaining comparability.
Each task type is paired with success criteria and inference-quality metrics aligned with practical
expectations (e.g., MAE/RMSE/MAPE for forecasting, precision/recall-based statistics such as
VUS-PR for anomaly detection, AUROC/accuracy for classification and decision-oriented tasks).
Across all tasks, outputs must conform to the expected format, satisfy injected constraints, and
appropriately incorporate provided domain knowledge. Trivial or degenerate responses—such as
constant predictions, all-zero anomaly labels, or invalid code—are flagged as failures even when
syntactically well-formed.

The evaluation proceeds in three stages: (i) validation of structural correctness and shape conformity;
(ii) verification of constraint satisfaction and the use of required auxiliary information; and (iii)
computation of task-specific metrics against ground truth. Results are returned in a structured record
with overall success status, diagnostic messages, and detailed metric scores. Failures are categorized
into execution errors (outputs cannot be parsed or executed), constraint violations (outputs contradict
injected rules), and low-quality predictions (outputs meet format requirements but fall below metric
thresholds). For problem-centric tasks whose labels are revealed over time, we additionally track
performance longitudinally to assess adaptivity under distributional shifts.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We evaluate the performance of seven large language models (LLMs) on the full suite of benchmark
tasks: GPT-4o Hurst et al. (2024), Qwen-Max Qwen Team (2025), Claude-3.7 Sonnet Anthropic
(2025), DeepSeek Liu et al. (2024a), Gemini-2.5 Google DeepMind (2025), Codestral AI (2024),
and Grok-4 xAI (2025). Among them, Codestral is a code-specialized model built upon Mistral
Mistral AI (2024). To address LLMs’ limitations in processing structured numerical inputs and
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Task Metric GPT-4o Qwen-Max Claude-3.7 DeepSeek Gemini-2.5 Codestral Grok-4

Predictive Tasks

Elec. Pred. w/ Cov.
(Min Load)

Success Rate 0.76 0.82 0.64 0.88 0.70 0.59 0.88
MAPE (std) 0.11 (0.11) 0.09 (0.11) 0.07 (0.10) 0.12 (0.18) 0.09 (0.11) 0.09 (0.10) 0.06 (0.09)

Elec. Pred. w/o Cov.
(Load Var.)

Success Rate 0.82 0.88 0.06 0.76 0.11 0.71 1.00
MAPE (std) 0.17 (0.12) 0.13 (0.09) 0.34 (0.0) 0.19 (0.17) 0.20 (0.14) 0.13 (0.07) 0.08 (0.10)

Diagnostic Tasks

Extreme Weather
Detection

Success Rate 0.24 0.23 0.51 0.23 0.42 0.23 0.34
F1 (std) 0.91 (0.23) 0.90 (0.24) 0.90 (0.20) 0.90 (0.24) 0.73 (0.25) 0.91 (0.23) 0.91 (0.20)

ECG Anomaly Success Rate 0.51 0.17 0.58 0.54 0.35 0.59 0.76
F1 (std) 0.55 (0.35) 0.70 (0.29) 0.67 (0.25) 0.54 (0.34) 0.76 (0.21) 0.58 (0.34) 0.80 (0.16)

Energy Usage
Anomaly

Success Rate 0.87 0.52 0.79 1.00 0.50 0.58 0.97
F1 (std) 0.08 (0.09) 0.14 (0.20) 0.49 (0.18) 0.50 (0.19) 0.33 (0.22) 0.06 (0.06) 0.42 (0.21)

Analytical Tasks

Future Price Success Rate 0.96 1.00 0.70 0.87 0.70 0.39 1.00
MAPE (std) 0.06 (0.08) 0.05 (0.07) 0.21 (0.38) 0.05 (0.07) 0.03 (0.03) 0.05 (0.05) 0.06 (0.07)

Sharpe Ratio Success Rate 0.73 0.18 0.09 0.18 0.09 0.73 0.09
Abs Error (std) 0.00 (0.00) 0.00 (0.00) 0.03 (0.0) 0.02 (0.02) 0.03 (0.0) 0.00 (0.00) 0.03 (0.0)

Table 2: Selected results on Series-Centric Tasks. “Elec. Pred. w/ Cov.” = Electricity Prediction
with Covariates; “Elec. Pred. w/o Cov.” = Electricity Prediction without Covariates; We report
representative tasks from each family while preserving all metrics. Full results are in the Appendix.??

Task Metric GPT-4o Qwen-Max Claude-3.7 DeepSeek Gemini-2.5 Codestral Grok-4

Retail Tasks

Products
Substitution-
Effect Ranking

Success Rate 0.64 0.59 0.98 1.00 0.34 0.67 0.96
NDCG@3 (std) 0.74 (0.26) 0.74 (0.25) 0.72 (0.07) 0.70 (0.29) 0.47 (0.45) 0.71 (0.25) 0.69 (0.28)
MAP@3 (std) 0.82 (0.24) 0.83 (0.24) 0.83 (0.05) 0.82 (0.23) 0.78 (0.26) 0.81 (0.25) 0.79 (0.28)

Customer Demand
Forecast

Success Rate 0.76 0.82 0.58 0.86 0.73 0.88 0.88
WPE (std) 0.14 (1.51) 0.22 (1.69) 0.69 (2.35) 0.80 (2.31) 0.70 (2.31) 0.08 (1.40) 0.68 (2.15)
WAPE (std) 1.54 (1.07) 1.61 (1.22) 1.98 (1.85) 2.00 (1.81) 2.06 (1.91) 1.51 (0.96) 1.93 (1.72)

Healthcare Tasks

ICU Patient Death
Risk Evaluation

Success Rate 0.96 0.94 0.82 1.00 0.82 0.96 1.00
MSE (std) 0.86 (0.86) 1.74 (5.62) 0.63 (0.74) 0.84 (0.81) 0.73 (0.73) 0.74 (0.80) 0.90 (0.81)

Healthcare Task One
Success Rate 1.00 0.98 1.00 - 0.98 0.98 1.00
Acc (std) 0.56(0.49) 0.45 (0.50) 0.44 (0.50) - 0.44 (0.50) 0.53(0.49) 0.62 (0.49)

Climate Tasks

Weather Forecasting Success Rate 0.94 1.00 0.90 1.00 0.88 1.00 1.00
MAPE (std) 0.25 (0.32) 0.20 (0.24) 0.13 (0.17) 0.07 (0.03) 0.26 (0.28) 0.29 (0.51) 0.09 (0.20)

Property Damage
Prediction

Success Rate 1.00 1.00 0.84 1.00 0.92 1.00 1.00
Accuracy (std) 0.39 (0.36) 0.49 (0.36) 0.34 (0.31) 0.34 (0.29) 0.26 (0.30) 0.35 (0.35) 0.35 (0.35)

Social Impact
Prediction

Success Rate 1.00 1.00 0.82 0.98 0.88 1.00 1.00
Accuracy (std) 0.20 (0.28) 0.36 (0.40) 0.42 (0.37) 0.40 (0.35) 0.51 (0.31) 0.29 (0.36) 0.42 (0.30)

Table 3: Model Performance on Problem-Centric Tasks, covering retail, healthcare, and climate
domains. The Metric column specifies the evaluation measure used for each subtask. Red indicates
the best result, and Blue indicates the second best among populated entries.
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producing high-precision, correctly shaped numerical outputs, we adopt the CodeAct Wang et al.
(2024) agent framework for all models. Agentscope CodeAct agent Gao et al. (2024) enables code-
based interaction by allowing LLMs to generate executable Python code, receive execution feedback,
and revise outputs accordingly. All models are accessed via their official APIs and ran on a single
NVIDIA A40 GPU with 48G memory. For all experiments, we use the same hyperparameters,
temperature=0.0 for the most deterministic output and top p=1.0.

For each benchmark task, models are provided with the same input data, including a task instruction
and a serialized time series dataset in .pkl format. Responses are executed within a controlled jupyter
notebook python interpreter provided by CodeAct agent setup. The final outputs are passed to
task-specific evaluators, which extract predictions and compute metrics based on ground truth labels
or evaluation programs. Each model’s performance is assessed using two main criteria: The primary
metric is Success Rate which is defined as the proportion of task instances for which the model
output satisfies the predefined success criteria (see Table 4). For outputs deemed successful, we
further evaluate quality using task-specific metrics (e.g., MAPE for forecasting, F1-score for anomaly
detection), providing a more fine-grained comparison of inference quality.

Task Type Success Criterion Metrics

Constrained Forecasting Prediction is of correct shape and satisfies the specified opera-
tional constraint and the prediction is non-trivial (MAPE<1)

MAPE,WPE,
WAPE

Anomaly Detection w/
reference samples

A binary sequence with correct length is obtained and the
prediction is non-trivial (F1-score>0)

F1-score

Causal Inference w/
domain knowledge

A binary causal matrix with correct shape is returned. The
provided domain knowledge is incorporated

Accuracy

Financial Analytics A scalar value is returned and the prediction is non-trivial
(absolute error<0.05)

Absolute Error

Financial Trading An investment signal of correct length is returned and there
is no loss in investment

CR, AR, MDD

Retail Product
Substitution Ranking

A valid ranking list with all candidate products included
exactly once, in correct format, and non-degenerate scores

NDCG, MAP

Table 4: Task-specific success criteria and inference quality metrics. CR denotes Cumulative Return,
AR denotes Annualized Return, MDD denotes Maximum Drawdown.

4.2 RESULT

We report results on both series-centric and problem-centric tasks. Tables 2 and 3 present the full
quantitative outcomes.

Series-Centric Tasks. On canonical series-centric tasks such as electricity load forecasting and
financial metric estimation, models generally achieve strong performance under simple formulations
(e.g., maximum or minimum load). Success rates in these cases often exceed 0.9, although more
complex variants—including ramp-rate control and multi-grid forecasting—remain challenging, with
noticeably lower success rates and higher error measures. Similarly, diagnostic tasks (e.g., ECG
anomaly detection, extreme weather detection) and analytical tasks (e.g., risk-return estimation,
backtesting) expose significant variance in model capabilities.

Problem-Centric Tasks. In contrast, problem-centric tasks drawn from healthcare, retail, and
climate domains highlight the limitations of LLMs when confronted with domain-grounded, multi-
step reasoning. Retail subtasks such as product substitution ranking and latent demand forecasting
reveal difficulties in compositional reasoning. In climate-related forecasting and impact estimation,
success rates are relatively high, yet fine-grained accuracy remains inconsistent. Healthcare tasks are
particularly challenging, as models often struggle to integrate heterogeneous ICU signals. Importantly,
despite their higher intrinsic difficulty, problem-centric tasks achieve higher construction success
rates, reflecting their grounding in well-defined domain problems that reduce ambiguity and enhance
interpretability.

Analysis As summarized in Table 9, the proposed Problem-Centric Multi-Step Task Design in-
troduces tasks that are derived directly from domain-grounded analytical questions rather than
abstract time series manipulations. Figure 4.2 further contrasts the series-centric and problem-centric
paradigms across different datasets and representative task types. We observe that, despite being
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Figure 4: Visualization of success rates across four representative tasks. From left to right, the
tasks are: Diagnostic Task w/ Reference Samples, Stock Prediction, ReTail, and Climate. For each
task, bars are grouped by model in the order from left to right: GPT-4o, Qwen-Max, Claude-3.7,
DeepSeek, Gemini-2.5, Codestral, and Grok-4. Warm low-saturation colors denote Series-Centric
tasks (Diagnostic Task w/ Reference Samples and Stock Prediction), while cool low-saturation colors
denote Problem-Centric tasks (Retail and Climate).

more challenging, the problem-centric paradigm achieves a higher overall task generation success
rate.

Compared with the series-centric generation approach, our problem-centric paradigm produces tasks
that are inherently more demanding due to their grounding in real-world analytical questions and
multi-step reasoning requirements. Nevertheless, the generation process yields a higher success rate,
since tasks are formulated from well-defined domain problems that practitioners genuinely care about.
This grounding reduces ambiguity, enhances interpretability, and ensures verifiability of results. By
contrast, series-centric generation often depends on abstract templates or rule-based slicing, which
may produce trivial, poorly aligned, or even ambiguous tasks. Consequently, the problem-centric
design not only raises the difficulty level but also improves the overall reliability, robustness, and
meaningfulness of the benchmark.

Beyond the overall improvement in success rate under the problem-centric paradigm, several notable
trends emerge. First, model performance is highly task-dependent: predictive tasks such as electricity
forecasting exhibit relatively high success rates, while diagnostic tasks (e.g., anomaly detection
with known anomaly rates) remain substantially more challenging, with larger variance in F1 scores.
Second, although some models achieve high success rates, error-based metrics (e.g., MAPE, Absolute
Error) reveal persistent numerical deviations, suggesting that LLMs capture coarse patterns but lack
fine-grained precision. Finally, cross-domain comparison indicates that healthcare tasks are generally
harder, while climate tasks demonstrate more stable performance. A detailed categorization of failure
cases is further provided in Appendix E, offering insights into systematic error modes across tasks.

5 CONCLUSION

This work introduces the TSAIA Benchmark, a unified framework that combines series-centric
and problem-centric perspectives to evaluate LLMs on time-series reasoning. Series-centric tasks
capture canonical operations, while problem-centric tasks extend evaluation toward domain-grounded,
multi-step analytical challenges.

Our findings show that existing models handle simple, template-based formulations relatively well
but face substantial limitations in constraint adherence, compositional reasoning, and domain-specific
signal integration. The problem-centric paradigm, despite introducing harder tasks, demonstrates
higher success in task formulation and evaluation quality.

These results point to two key directions: (i) advancing LLMs toward stronger compositional reason-
ing and domain adaptation, and (ii) fostering problem-centric, dynamically extensible benchmarks to
support progress in real-world time-series AI applications.

9
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this work, we utilized LLMs as general-purpose assistants for time series analysis, particularly in
the generation of executable code and the iterative refinement of model predictions. LLMs played a
significant role in facilitating the generation of code for time series forecasting, anomaly detection,
and other time series tasks, and were employed within a unified agent framework. This framework
prompted the models to generate executable code, which was then executed, and refined based on
feedback from the results of the model’s performance. Our findings highlight both the strengths and
limitations of current LLMs in performing time series analysis.

B DATASET STATISTICS

Dataset Number of Data Files Avg Total Timestamps Number of Variables
Climate Data 624 526 2048
Climate QA Data 150 168 50
Energy Data w/ geolocation 22 8760 1-3
Energy Data w/ Covariates 66 872601 11
Building Energy Usage Data 398 5019 1
Causal Data 8 529 3–6
Daily Stock Data 6780 3785 7
Hourly Stock Data 5540 35 7
Fresh Retail Data 863 1440 17
Stock Market Indices Data 6 3388 4
ECG Signal Data 24 10804352 2
ICU Clinic Data 352 596 12

Table 5: Dataset Statistics of the constructed dataset. The exact number of time series are not
calculated because it depends on randomly sampled sequence length when generating task instances.
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Table 5 summarizes the dataset statistics for the raw time series datasets used in TSAIA. The climate
data is obtained from ERA5 dataset 1.The climate QA data is obtained from MTBench dataset 2.
Energy data with covariates is obtained from3. The ECG signal data and ICU Healthcare data are
obtained from PhysioNet456. The building energy usage data is obtained from Kaggle7.The Fresh
Retail Data is obtained from FreshRetailNet-50K dataset8. Notably, the daily stock data, hourly stock
data, and energy data with geolocation were manually scraped and preprocessed. The energy data
with geolocation was obtained from official energy grid operator websites91011, and the associated
geolocation was inferred as the largest city within the operational zone delineated by each provider’s
published grid map121314. Stock price data was scraped using the pyfinance15 package, with data
pulled up to date as of 2024-09-17. The stock market indices data are pulled from various sources on
the web. The causal discovery dataset is synthetically generated to reflect controlled causal structures.
The prompt used to obtain causal discovery dataset is shown in section G.

C COMPREHENSIVE RESULTS ON SERIES-CENTRIC TASKS

Tables 6–8 report the complete experimental results on the Series-Centric Tasks. These tasks cover
three categories—predictive, diagnostic, and analytical—designed to evaluate LLMs across different
aspects of time-series reasoning. For each subtask, we include the success rate along with task-
specific error or accuracy metrics (e.g., MAPE, F1, Absolute Error), providing a fine-grained view of
model performance. Results are compared across seven state-of-the-art models, with the best and
second-best scores in each row highlighted in red and blue, respectively. Blank entries indicate results
not yet available.

D DETAILS OF PROBLEM-CENTRIC MULTI-STEP TASK DESIGN

Table 9 summarizes the proposed Problem-Centric Multi-Step Task Design, where tasks are derived
not merely from time series sequences but from real-world problems requiring domain-grounded
reasoning. Unlike series-centric formulations that focus on direct prediction of future values, these
tasks emphasize evidence gathering, operator-level reasoning, and structural decomposition to capture
the complexity of decision-making in diverse domains. Specifically, retail tasks involve promotion-
driven substitution ranking and stock-out–aware demand forecasting; clinical tasks target patient-level
outcome prediction such as mortality and sepsis risk; and climate tasks cover both predictive (weather
forecasting) and diagnostic (property damage and social impact) challenges. Each task is paired with
domain-relevant metrics to ensure meaningful evaluation and fair comparison across models.

E ERROR ANALYSIS

Figure 5–9 present detailed error distributions across representative models. GPT-4o exhibits patterns
broadly consistent with other systems: in predictive tasks, incorporating covariates or handling

1https://climatelearn.readthedocs.io/en/latest/user-guide/tasks_and_
datasets.html#era5-dataset

2https://github.com/Graph-and-Geometric-Learning/MTBench
3https://github.com/tamu-engineering-research/Open-source-power-dataset
4https://physionet.org/content/nsrdb/1.0.0/
5https://physionet.org/content/ltdb/1.0.0/
6https://physionet.org/content/mimiciv/3.1/
7https://www.kaggle.com/competitions/energy-anomaly-detection/data
8https://huggingface.co/datasets/Dingdong-Inc/FreshRetailNet-50K
9https://www.nyiso.com/load-data

10https://www.ercot.com/gridinfo/load/load_hist
11https://www.misoenergy.org/markets-and-operations/

real-time--market-data/market-reports
12https://www.nyiso.com/documents/20142/1397960/nyca_zonemaps.pdf
13https://www.ercot.com/news/mediakit/maps
14https://www.misostates.org/images/stories/meetings/Cost_Allocation_

Principles_Committee/2021/Website_Presentations.pdf
15https://pypi.org/project/pyfinance/
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Task Metric GPT-4o Qwen-Max Claude-3.7 DeepSeek Gemini-2.5 Codestral Grok-4

Electricity Prediction with
Covariates — Max Load

Success Rate 0.50 0.75 1.00 0.31

MAPE (std) 0.09 (0.12) 0.07 (0.06) 0.10 (0.12) 0.03 (0.03)

Electricity Prediction with
Covariates — Min Load

Success Rate 0.76 0.82 0.88 0.59

MAPE (std) 0.11 (0.11) 0.09 (0.11) 0.12 (0.18) 0.09 (0.10)

Electricity Prediction with
Covariates — Load Ramp
Rate

Success Rate 0.46 0.80 0.80 0.47

MAPE (std) 0.18 (0.14) 0.14 (0.12) 0.11 (0.08) 0.12 (0.08)

Electricity Prediction with
Covariates — Load Variabil-
ity

Success Rate 0.47 0.76 0.76 0.35

MAPE (std) 0.20 (0.31) 0.13 (0.16) 0.19 (0.27) 0.04 (0.03)

Electricity Prediction with-
out Covariates — Max Load

Success Rate 1.00 0.94 0.94 1.00

MAPE (std) 0.18 (0.16) 0.10 (0.07) 0.15 (0.12) 0.12 (0.07)

Electricity Prediction with-
out Covariates — Min Load

Success Rate 0.94 0.94 0.88 0.71

MAPE (std) 0.14 (0.08) 0.14 (0.08) 0.13 (0.09) 0.14 (0.05)

Electricity Prediction with-
out Covariates — Load
Ramp Rate

Success Rate 0.76 1.00 0.82 0.88

MAPE (std) 0.24 (0.19) 0.23 (0.22) 0.19 (0.20) 0.29 (0.30)

Electricity Prediction with-
out Covariates — Load Vari-
ability

Success Rate 0.82 0.88 0.76 0.71

MAPE (std) 0.17 (0.12) 0.13 (0.09) 0.19 (0.17) 0.13 (0.07)

Electricity Prediction for
Multiple Grids — Max Load

Success Rate 0.76 0.88 0.94 0.12

MAPE (std) 0.21 (0.27) 0.21 (0.24) 0.16 (0.21) 0.10 (0.03)

Electricity Prediction for
Multiple Grids — Min Load

Success Rate 0.76 0.88 0.94 0.29

MAPE (std) 0.10 (0.12) 0.18 (0.29) 0.08 (0.11) 0.23 (0.37)

Electricity Prediction for
Multiple Grids — Load
Ramp Rate

Success Rate 0.65 0.65 0.94 0.29

MAPE (std) 0.19 (0.24) 0.18 (0.18) 0.21 (0.21) 0.10 (0.05)

Electricity Prediction for
Multiple Grids — Load Vari-
ability

Success Rate 0.41 0.59 0.59 0.29

MAPE (std) 0.15 (0.13) 0.18 (0.23) 0.18 (0.14) 0.19 (0.13)

Table 6: Full results on Series-Centric Tasks (Predictive Tasks). For rows with color highlights, red
marks the best and blue marks the second best among the populated entries in that row. Blank cells
indicate results not yet reported for that model.

multiple time series increases the likelihood of execution and constraint violation errors, reflecting the
difficulty of enforcing operational limits under added complexity. Similarly, in diagnostic tasks, GPT-
4o struggles when contextual reasoning is required—such as calibrating thresholds from reference
samples—while tasks with explicit prior knowledge (e.g., causal discovery with known graphs) show
comparatively higher success rates. In analytical tasks, GPT-4o’s performance declines in market
benchmarking and trading, where failures often stem from inadequate strategies or unfamiliarity with
specialized financial metrics.

Across models, comparable limitations emerge. By contrast, Gemini-2.5 and Codestral suffer
frequent execution errors across nearly all categories, underscoring difficulty with structured multi-
step reasoning. Taken together, these results highlight that while model-specific differences exist, all
systems—including GPT-4o—face substantial challenges as task complexity increases, especially
when structured reasoning, contextual integration, or domain-specific financial acumen are required.
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Task Metric GPT-4o Qwen-Max Claude-3.7 DeepSeek Gemini-2.5 Codestral Grok-4

Extreme Weather Detection
with Reference Samples

Success Rate 0.24 0.23 0.23 0.23

F1 (std) 0.91 (0.23) 0.90 (0.24) 0.90 (0.24) 0.91 (0.23)

ECG Signal Anomaly with
Reference Samples

Success Rate 0.51 0.17 0.54 0.59

F1 (std) 0.55 (0.35) 0.70 (0.29) 0.54 (0.34) 0.58 (0.34)

Causal Discovery with Quan-
titative Domain Knowledge

Success Rate 0.94 0.92 0.97 0.94

Accuracy
(std)

0.69 (0.09) 0.77 (0.11) 0.71 (0.11) 0.72 (0.11)

Causal Discovery with Qual-
itative Domain Knowledge

Success Rate 0.85 0.70 0.96 0.93

Accuracy
(std)

0.87 (0.17) 0.79 (0.17) 0.89 (0.14) 0.88 (0.15)

Extreme Weather Detection
with Known Anomaly Rate
(Across Sequences)

Success Rate 0.87 0.31 0.97 0.23

F1 (std) 0.53 (0.25) 0.62 (0.19) 0.72 (0.11) 0.42 (0.31)

Energy Usage Anomaly
with Known Anomaly Rate
(Across Sequences)

Success Rate 0.87 0.52 1.00 0.58

F1 (std) 0.08 (0.09) 0.14 (0.20) 0.50 (0.19) 0.06 (0.06)

Table 7: Full results on Series-Centric Tasks (Diagnostic Tasks).
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Figure 5: Case Study on GPT-4o Error Distribution across Tasks Grouped by Difficulty Level
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Figure 6: Case Study on Qwen Error Distribution across Tasks Grouped by Difficulty Level
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Task Metric GPT-4o Qwen-Max Claude-3.7 DeepSeek Gemini-2.5 Codestral Grok-4

Future Stock Price Predic-
tion

Success Rate 0.96 1.00 0.87 0.39

MAPE (std) 0.06 (0.08) 0.05 (0.07) 0.05 (0.07) 0.05 (0.05)

Future Stock Volatility Pre-
diction

Success Rate 0.83 0.43 0.57 0.57

MAPE (std) 0.70 (0.28) 0.83 (0.26) 0.90 (0.13) 0.61 (0.32)

Future Stock Trend Predic-
tion

Success Rate 0.43 0.30 0.43 0.52

Accuracy
(std)

0.90 (0.20) 0.86 (0.23) 0.85 (0.23) 0.96 (0.14)

Annualized Return Estima-
tion

Success Rate 0.45 – 0.36 0.18

Absolute Er-
ror (std)

0.02 (0.02) – 0.02 (0.01) 0.03 (0.02)

Annualized Volatility Esti-
mation

Success Rate 0.91 0.82 1.00 1.00

Absolute Er-
ror (std)

0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

Maximum Drawdown Esti-
mation

Success Rate 0.18 0.09 0.27 –

Absolute Er-
ror (std)

0.00 (0.00) 0.00 (0.00) 0.00 (0.00) –

Calmar Ratio Estimation Success Rate 0.18 0.18 0.27 0.82
Absolute Er-
ror (std)

0.01 (0.01) 0.01 (0.01) 0.02 (0.01) 0.01 (0.01)

Sortino Ratio Estimation Success Rate 0.09 0.09 0.18 0.09
Absolute Er-
ror (std)

0.01 (0.00) 0.01 (0.00) 0.00 (0.00) 0.00 (0.00)

Sharpe Ratio Estimation Success Rate 0.73 0.18 0.18 0.73
Absolute Er-
ror (std)

0.00 (0.00) 0.00 (0.00) 0.02 (0.02) 0.00 (0.00)

Information Ratio (Bench-
mark vs. Market)

Success Rate 0.44 0.20 0.73 0.01

Absolute Er-
ror (std)

0.00 (0.00) 0.01 (0.01) 0.00 (0.00) 0.00 (0.00)

Stock Trading Strategy Back-
testing

Success Rate 0.44 0.59 0.61 0.63

Cumulative
Return

0.13 0.10 0.09 0.06

Annualized
Return

2.43 4.56 1.69 3.87

Maximum
Drawdown

0.05 0.05 0.05 0.02

Table 8: Full results on Series-Centric Tasks (Analytical Tasks).

F CODEACT SYSTEM PROMPT TEMPLATE

You are a helpful assistant that gives helpful, detailed, and polite answers to the user’s
questions. The code written by assistant should be enclosed using <execute> tag, for
example: <execute> print(’Hello World!’) </execute>. You should provide the
solution in a single <execute> block instead of taking many turns. You’ll receive feedback
from your code execution. You should always import packages and define variables before
starting to use them. You should stop <execute> and provide an answer when they have
already obtained the answer from the execution result. Whenever possible, execute the code
for the user using <execute> instead of providing it. Your response should be concise,
but do express their thoughts. Always write the code in <execute> block to execute
them. You should not ask for the user’s input unless necessary. Solve the task on your own
and leave no unanswered questions behind. You should do every thing by your self. You
are not allowed to install any new packages or overwrite available variables provided to
you in the question. Additionally, you are provided with the following variables available:
{variable names} The above variables is already available in your interactive Python (Jupyter
Notebook) environment, allowing you to directly use them without needing to re-declare
them.
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Domain Dataset Problem Level Task Description Metric

Retail FreshRetailNet

-50K

Product Substi-
tution Ranking

Operator During promotion period of
item A, rank the impact on all
items in the same category.

NDCG,
MAP

Future Demand
Forecasting

Structural First recover latent demand
caused by stock-out, then fore-
cast user demand over a future
horizon.

WPE,
WAPE

Healthcare MIMIC-IV
Mortality Risk
Assessment

Evidence Given a recent window of ICU
vitals/labs and related signals,
estimate the patient’s future mor-
tality risk.

MAE

Sepsis Risk Pre-
diction

Evidence Given a recent window of ICU
vitals/labs and related signals,
estimate the patient’s future sep-
sis risk.

ACC

Climate MTBench
Weather Fore-
casting

Structural Predict future weather values for
multiple stations based on histor-
ical weather data during extreme
events.

MAPE

Property Dam-
age Prediction

Evidence Predict property damage sever-
ity levels based on historical
weather patterns and extreme
weather characteristics.

ACC

Social Impact
Prediction

Evidence Predict social impact sever-
ity levels based on historical
weather patterns and extreme
weather characteristics.

ACC

Table 9: Problem-Centric Multi-Step Task Design
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Figure 7: Case Study on Codestral Error Distribution across Tasks Grouped by Difficulty Level
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Figure 8: Case Study on Gemini Error Distribution across Tasks Grouped by Difficulty Level

G CASUAL DISCOVERY DATA GENERATION PROMPT

Now you are a Time series data scientist, please help me to write the code to generate some synthetic
data in real world Time series domain, you should save the data into ”*/data.csv”:

Now suggesting you should construct a series data based on a relation matrix and the correlation
ratio for different influence factor, you should notice the following points,for time step I want you to
generate 500 time steps:

1. data correlation: the multi variable should be correlated, sample: which A first influence B, then B
have influence on C or D, there should be some time delay, as the influence on other staff needs time.

2. data trend: there should be some trend in the data, like the data is increasing or decreasing.
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Figure 9: Case Study on Deepseek Error Distribution across Tasks Grouped by Difficulty Level
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3. data: seasonality there should be some seasonality in the data, like the data is periodic.

4. data noise: the noise should be added to the data, as the real world data is not perfect.

5. data background: the data should have some real world background, you should first think about
different real world data, and provide a description for the variable and time series data, then generate
the data using the code. CoT Sample: Q: Approximate Relation Ratio: 0.5 Relation Matrix:

A B C D
A 1 1 0 1
B 0 1 0 1
C 0 1 1 1
D 0 0 0 1

• A influences B and D, and itself.
• B influences D, and itself.
• C influences B and D, and itself.
• D influences only itself.

variable size: 4 A: Scenario: Sales Data of a Chain of Stores Over Time Let’s assume we are
generating synthetic data,the variable size for the data is 4. for the daily sales of multiple stores across
a chain, the sales numbers are influenced by:

1. Advertising (A): The level of advertising spend directly impacts the sales of each store. After a
delay, this starts influencing sales. 2. Sales (B): The sales numbers for each store are influenced by
both the advertising and local seasonal events. 3. Economic Factors (C): Broader economic trends,
like GDP growth or unemployment rates, also impact sales. These factors show a delayed and more
subtle influence over time. 4. Customer Sentiment (D): Customer sentiment affects the sales of
specific products in each store and is influenced by both advertising and broader economic factors.

Seasonality: Sales experience periodic seasonal trends, with peaks around the holidays and lower
numbers during off-seasons.

Trend: There is a general increasing trend in sales as the chain expands.

Noise: Random noise is added to mimic real-world data fluctuations.
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