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ABSTRACT

The rapid advancement of Large Language Models (LLMs) has sparked growing
interest in their application to time series analysis. Yet, their ability to perform
complex reasoning over temporal data remains underexplored. A rigorous bench-
mark is a crucial first step toward systematic evaluation. In this work, we present
the TSAIA Benchmark, a comprehensive framework for assessing LLMs as
time-series artificial intelligence assistants. TSAIA integrates two complementary
tiers of tasks. The series-centric tier instantiates canonical time-series formula-
tions—such as forecasting, anomaly detection, and risk-return analysis—via a
controlled question-generation pipeline, providing continuity with prior evaluation
settings. The problem-centric tier, in contrast, derives tasks from real-world an-
alytical questions in healthcare, retail, and climate science, and formalizes their
construction through a task-design paradigm spanning three levels: evidence in-
tegration, operator-based comparison, and structural multi-step reasoning. This
paradigm enables dynamic extensibility, allowing new task instances to be gen-
erated as data evolve in practice. To accommodate heterogeneous task types, we
define task-specific success criteria and tailored inference quality metrics, applied
under a unified evaluation protocol. We evaluate 7 state-of-the-art LLMs and
find that while they achieve reasonable performance on series-centric tasks, they
struggle substantially on problem-centric ones, often failing at multi-step reasoning,
numerical precision, and constraint adherence. These results underscore the need
for domain-grounded, dynamically extensible benchmarks as a foundation for
advancing LLM-based time-series assistants.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable general-purpose capabilities across
various domains, such as language understanding |Dong et al|(2019)), code generation Jiang et al.
(2024)), and scientific reasoning Taylor et al.|(2022); [Wang et al.|(2025c). However, their ability to
perform complex reasoning over time series data remains significantly underexplored. Time series
analysis is a fundamental competency for data analysts and scientists in fields like energy |Alvarez
et al.| (2010), finance |Sezer et al.| (2020), climate Mudelsee| (2019), and healthcare Rathlev et al.
(2007), yet it remains an area where LLMs are relatively untested. In practice, real-world time
series workflows are inherently complex |Yan et al. (2021)); Han et al.| (2021)): they require multi-step
reasoning |[Fu et al.| (2022)), precise numerical computation |Cvejoski et al.| (2022), integration of
domain knowledge Xue et al.| (2024), and adherence to operational constraintsWang et al.[(2016)).
With the rise of LLM-based agents|Li et al.| (2025)); \Chang et al.|(2025), there is growing interest in
developing intelligent systems that can interpret natural language instructions for time series analysis.
However, since time series analysis is challenging even for humans|Uddin et al.| (2024), a rigorous
benchmark is necessary to evaluate whether LLMs can truly serve as reliable time series reasoning
assistants.

Existing benchmarks have made progress toward temporal or time-series evaluation, but they re-
main insufficient. Many focus on individual subtasks |[Merrill et al.| (2024) or fixed experimental
configurations (e.g., sliding-window forecasting Du et al.|(2024))), or reduce the problem to simple
question-answering (QA) tasks that use temporal keywords, but do not require structured numerical
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reasoning [Zhou et al.|(2021). Others fail to incorporate realistic operational constraints /Abdullahi
et al.| (2025) or to capture the inherently multi-step nature of time series workflows |Chang et al.
(2025). Critically, most existing datasets are static Du et al.|(2024); Liu et al.|(2024b); |Xu et al.| (2024)),
limiting their ability to reflect evolving real-world settings and preventing long-term evaluation of
models’ adaptivity.

To address these limitations, we present the Time Series Artificial Intelligence Assistant (TSAIA
) benchmark for evaluating LLLMs as general-purpose time-series assistants. TSAIA is grounded
in real-world datasets across healthcare, retail, climate, energy, and finance , and it combines two
complementary suites of tasks. The series-centric suite instantiates canonical time-series formulations
via template-defined constructions (e.g., forecasting, anomaly detection, analytical and decision-
oriented tasks), providing a controlled baseline and continuity with prior evaluation settings . The
problem-centric suite is derived from researcher-driven questions in practical domains and is in-
stantiated through a task-design paradigm that supports continual creation of task instances as new
data arrive . This paradigm structures multi-step reasoning along three complementary levels: Ev-
idence—integration of heterogeneous variables or modalities before inference; Operator—after
temporal understanding, application of mathematically specified computations or comparisons over
features (across series or within a series); and Structural—execution of ordered, compositional
pipelines with intermediate artifacts (e.g., detection — attribution — forecasting). A unified eval-
uation protocol applies to both suites, enabling baseline assessment on series-centric tasks and
rigorous, domain-grounded appraisal of multi-step reasoning on problem-centric tasks. To achieve
good performance on TSAIA, the following capabilities are needed: compositional reasoning [Li
et al.| (2024) (the sequential execution of logical and numerical operations to construct end-to-end
analytical pipelines), comparative reasoning (selecting the optimal asset based on calculated summary
indicators), commonsense reasoning |Davis & Marcus| (2015)) (identifying plausible covariates for the
target variable), decision-oriented reasoning (interpreting risk-return metrics in investment contexts),
and numerical precision.

We evaluate a set of state-of-the-art LLMs under this benchmark, including GPT-40 Hurst et al.
(2024), Qwen-Max |Qwen Team)|(2025), Claude-3.7 Sonnet|Anthropic|(2025), Gemini-2.5 |Google
DeepMind| (2025),Grok-4 xAl| (2025) and others, using a unified agent framework (Gao et al.| (2024)
that prompts models to generate executable code and iteratively refine their predictions. Our findings
show that while LLMs can succeed on core static tasks, they struggle significantly on dynamic,
real-world multi-step tasks, often failing to integrate constraints, carry out intermediate reasoning,
or adapt under distribution shifts [Fan et al|(2023). These results underscore the urgent need for
domain-grounded, dynamically extensible benchmarks, and position TSAIA as a foundation for the
development of reasoning-capable time series Al assistants.

2 RELATED WORK

Benchmark Dynamic TS-Involved Reasoning #Tasks Task Type
Test of Time Fatemi et al.|(2024) X X v 1 QA
TRAM Wang & Zhao|(2024) X X v 1 QA
TSI-Bench Du et al.|(2024) X v/ X 1 TS Analysis
TSB-AD [Liu & Paparrizos|(2024) X 4 X 1 TS Analysis
GIFT-Eval|Aksu et al.|(2024) X v X 1 TS Analysis
TFB |Qiu et al.|(2024) X v X 1 TS Analysis
Time-MMD |Liu et al.|(2024b) X v X 1 TS Analysis
CiK|Williams et al.|(2024) X v X 1 TS Analysis
TGTSF Xu et al.|{(2024) X v X 1 TS Analysis
LLM TS Struggle Merrill et al.|(2024) X 4 v 2 QA, TS Analysis
MTBench |Chen et al.|{(2025) X v v 3 QA, TS Analysis
ChatTime Wang et al.|(2025a) X v v 3 QA, TS Analysis
TSAIA(Ours) ) v v v 4+, extensible QA, TS Analysis

Table 1: Comparison of TSAIA and existing temporal-related benchmarks. Dynamic indicates
whether new task instances can be continuously generated.
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2.1 BENCHMARKS FOR TEMPORAL AND TIME-SERIES REASONING

A number of recent efforts examine LLMs’ capabilities on temporal or time-series related tasks, yet
they differ markedly from the goal of evaluating multi-step, constraint-aware time-series assistants in
real-world workflows. Test of Time (ToT) Fatemi et al.[(2024) focuses on temporal reasoning with
synthetic datasets that control factors such as fact order, graph structure, and temporal arithmetic.
TRAM |Wang & Zhao| (2024)) aggregates ten textual temporal-reasoning datasets spanning order,
duration, frequency, and arithmetic, reporting substantial gaps to human performance. Closer to
classical time-series pipelines, TSI-Bench Du et al.| (2024) targets imputation across real datasets
and models with standardized evaluation, while TSB-AD |Liu & Paparrizos| (2024) curates a large,
heterogeneous anomaly-detection suite and argues for more reliable metrics such as VUS-PR. These
benchmarks either center on textual temporal logic or isolate single TS subtasks (e.g., imputation,
anomaly detection), and typically use static datasets and single-step or end-only evaluation protocols.
By contrast, TSAIA is introduced as a domain-grounded benchmark with two complementary tiers: a
series-centric Tier that instantiates canonical time-series tasks for continuity and baseline comparison,
and a problem-centric Tier that derives real-world analytical tasks across domains, formalized through
operator-based design and intermediate-step evaluation, enabling dynamic extensibility as data evolve.

2.2  MULTI-STEP BENCHMARKS IN OTHER DOMAINS: A FOUR-LEVEL TAXONOMY

Beyond time series, multi-step reasoning has been extensively explored under diverse task construc-
tions. We summarize prominent task construction paradigms into four levels and draw from the first
three to define TSAIA’s dataset-generation paradigm.

Evidence Level — Cross-document / Cross-modal Aggregation (Multi-variant tasks). Tasks
require aggregating evidence across multiple documents or modalities. Representative datasets include
HotpotQA for multi-hop QA with supporting-fact supervision |Yang et al.| (2018)and ScienceQA
for multimodal science questions with lectures and explanations |Saikh et al.| (2022)). These works
emphasize evidence collection/aggregation and often supervise supporting facts or interaction traces,
inspiring our multi-parameter TS tasks that aggregate signals across series, covariates, and modalities.

Operator Level — Numerical / Symbolic Computation after Understanding (Operation tasks).
Tasks explicitly require discrete operations or comparisons after comprehension. Canonical datasets
include DROP for discrete reasoning over paragraphs|Dua et al.|(2019) and TAT-QA for table-and-text
financial QA with numerical operations Zhu et al.|(2021). This line motivates TSAIA’s operator-level
design, where time-series problems require computing indicators or comparing outcomes, such as
evaluating which patient faces higher mortality risk, or contrasting climate anomalies across regions.

Structural Level — Constraining and Supervising Intermediate Steps (Multi-step tasks). Here,
task definitions scaffold or supervise the sequence of reasoning steps. QDMR/BREAK introduces a
decomposition meaning representation with step-annotated questions [Wolfson et al.| (2020), while
ProofWriter evaluates logical chains with structured intermediate proofs Tafjord et al.|(2020). TSAIA
adapts this idea to time series by formalizing structural stages (e.g., detection — attribution —
forecasting) with intermediate outputs and explicit checks.

Process Level — Action Sequences (Agent-style loops). Some benchmarks evaluate agents that
perform multi-step plans in interactive environments, such as GAIA Mialon et al.| (2023) and
AgentBench|Liu et al.[(2023)). While our focus is not on full agent loops, these works highlight the
broader direction of process-oriented evaluation, where models must plan, execute, and adapt their
reasoning pipelines over evolving contexts.

3 BENCHMARK PARADIGM

3.1 DATA SOURCES

To evaluate time series Al assistants effectively, we focus on tasks grounded in real-world use
cases that data analysts across diverse application domains routinely encounter. Our objective
is to assess whether an assistant can handle practical, multi-step scenarios involving time series,
thereby ensuring its utility in everyday analytical workflows. We reviewed over twenty research
publications addressing time-series challenges in healthcare, finance, energy, climate science, and
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Figure 1: Pipeline for multi-step time-series task construction and instance generation, followed by
unified evaluation.

retail, and extracted recurring problems that involve reasoning and multi-stage analytical pipelines,
converting them into benchmark tasks. To ensure breadth and domain grounding, we curated
datasets from a wide range of sources, including the MIMIC-IV databaseJohnson et al.| (2020) with
detailed ICU records such as vital signs, laboratory results, and outcomes; the FreshRetailNet-50K
dataset|Wang et al.[(2025b)capturing product-level demand, pricing, discounts, and holiday effects
across retail settings; and climate resources such as the ERAS5 reanalysisHersbach et al.| (2018))
and MTBenchChen et al.| (2025), which provide multimodal meteorological variables including
temperature, precipitation, and wind. We also incorporated energy datasets such as electricity load,
renewable generation, and building consumption, as well as financial market data spanning indices
and individual equities, alongside physiological recordings such as ECG from public repositories. All
sources are preprocessed into aligned input—output windows and enriched with standardized metadata
covering units, covariates, temporal granularity, and operational context, ensuring that task instances
are consistent and comparable across domains. This heterogeneous but coherent collection provides
the foundation for constructing benchmark tasks that reflect both the intrinsic statistical properties of
time series and the domain-specific reasoning challenges faced by practitioners.

3.2 SERIES-CENTRIC MULTI-STEP TASKS

This component focuses on series-centric formulations that primarily probe the statistical and struc-
tural properties of time series themselves. Tasks are organized along four families reflecting common
analytical workflows: predictive (e.g., constraint-aware forecasting under operational limits), diagnos-
tic (e.g., anomaly detection and causal attribution with priors), analytical (e.g., portfolio risk—return
analytics, backtesting of rule-based strategies), and decision-making (e.g., selecting among structured
indicators under explicit criteria). These families abstract recurring practitioner questions while
remaining faithful to canonical time-series operations.

Task Construction. Following the original design, each family is specified by natural-language
templates that determine the observed window, forecast/decision horizon, admissible covariates, units,
and (when applicable) operational constraints (e.g., non-negativity, ramp-rate, or clinical thresholds).
Dataset slices are sampled under fixed time cuts to avoid leakage and to preserve reproducibility.
Templates are then parameterized by the sampled context (time spans, variable names, covariate lists)
and rendered into instructions that are unambiguous with respect to I/O schema.

Instance Materialization & Ground Truth. Instances consist of (i) an instruction, (ii) serialized
inputs with metadata, and (iii) a verifiable reference output. Ground truth is bound deterministically:
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(b) Problem-Centric Task Design Paradigm across three levels: Evidence, Operator, and Structural.

either by retrieving targets from held-out future windows, or by applying reference computations
(e.g., statistical indicators, portfolio functions) defined by the template. The resulting series-centric
tier provides a controlled, reproducible baseline for assessing whether LLMs can execute well-posed
time-series tasks with numerical precision and format correctness.

3.3 PROBLEM-CENTRIC MULTI-STEP TASKS

Complementing the above, this component derives tasks directly from questions that domain re-
searchers genuinely care about in healthcare, retail, and climate settings. Task generation follows our
task design paradigm across three complementary levels that emphasize multi-step reasoning beyond
isolated statistical operations.

Evidence Level. Tasks require integrating heterogeneous variables/modalities and aligning them into
a sufficient evidence set prior to inference (e.g., combining precipitation, temperature, and wind to
identify extreme weather anomalies).

Operator Level. Tasks require feature understanding of time series followed by explicit operations
on derived quantities, including feature comparison across series or feature computation within a
series (e.g., deciding which ICU patient has higher near-term mortality risk from trajectories).
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Figure 3: Example Task Instance containing the task instruction, accompanied serialized dataset,
and ground truth.

Structural Level. Tasks require executing an ordered, compositional pipeline with intermediate
artifacts and stepwise checks (e.g., demand recovery — substitution estimation — long-horizon
forecasting).

The paradigm maps real questions into tasks by extracting relevant data subsets and encoding domain
constraints into the instruction. Ground truth is established through later observations when available,
or through deterministic procedures aligned with the template. When questions involve future
outcomes, labels are revealed gradually, allowing longitudinal evaluation.

3.4 EVALUATION PROTOCOL

Evaluation in TSAIA must accommodate heterogeneous task goals while maintaining comparability.
Each task type is paired with success criteria and inference-quality metrics aligned with practical
expectations (e.g., MAE/RMSE/MAPE for forecasting, precision/recall-based statistics such as
VUS-PR for anomaly detection, AUROC/accuracy for classification and decision-oriented tasks).
Across all tasks, outputs must conform to the expected format, satisfy injected constraints, and
appropriately incorporate provided domain knowledge. Trivial or degenerate responses—such as
constant predictions, all-zero anomaly labels, or invalid code—are flagged as failures even when
syntactically well-formed.

The evaluation proceeds in three stages: (i) validation of structural correctness and shape conformity;
(ii) verification of constraint satisfaction and the use of required auxiliary information; and (iii)
computation of task-specific metrics against ground truth. Results are returned in a structured record
with overall success status, diagnostic messages, and detailed metric scores. Failures are categorized
into execution errors (outputs cannot be parsed or executed), constraint violations (outputs contradict
injected rules), and low-quality predictions (outputs meet format requirements but fall below metric
thresholds). For problem-centric tasks whose labels are revealed over time, we additionally track
performance longitudinally to assess adaptivity under distributional shifts.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We evaluate the performance of seven large language models (LLMs) on the full suite of benchmark
tasks: GPT-4o |Hurst et al.| (2024)), Qwen-Max |Qwen Team! (2025), Claude-3.7 Sonnet |Anthropic
(2025)), DeepSeek [Liu et al.| (2024a), Gemini-2.5 |Google DeepMind| (2025)), Codestral |All (2024]),
and Grok-4 [xAl| (2025). Among them, Codestral is a code-specialized model built upon Mistral
Mistral Al| (2024). To address LLMs’ limitations in processing structured numerical inputs and
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Task Metric GPT-40 Qwen-Max Claude-3.7 DeepSeek Gemini-2.5 Codestral Grok-4

Predictive Tasks

Elec. Pred. w/ Cov. Success Rate 0.76 0.82 0.64 0.88 0.70 0.59 0.88
(Min Load) MAPE (std) 0.11 (0.11)  0.09 (0.11)  0.07 (0.10) 0.12(0.18) 0.09 (0.11)  0.09 (0.10) 0.06 (0.09)
Elec. Pred. w/o Cov. Success Rate 0.82 0.88 0.06 0.76 0.11 0.71 1.00
(Load Var.) MAPE (std) 0.17 (0.12)  0.13(0.09)  0.34(0.0) 0.19(0.17) 0.20 (0.14) 0.13 (0.07) 0.08 (0.10)

Diagnostic Tasks

Extreme Weather Success Rate 0.24 0.23 0.51 0.23 042 0.23 0.34
Detection F1 (std) 0.91(0.23) 0.90 (0.24) 0.90 (0.20) 0.90 (0.24) 0.73 (0.25) 0.91 (0.23) 0.91 (0.20)
Success Rate 0.51 0.17 0.58 0.54 0.35 0.59 0.76
ECG Anomaly
F1 (std) 0.55(0.35) 0.70(0.29) 0.67 (0.25) 0.54(0.34) 0.76 (0.21) 0.58 (0.34) 0.80 (0.16)
Energy Usage Success Rate 0.87 0.52 0.79 1.00 0.50 0.58 0.97
Anomaly F1 (std) 0.08 (0.09) 0.14(0.20) 0.49 (0.18) 0.50(0.19) 0.33(0.22) 0.06 (0.06) 0.42(0.21)
Analytical Tasks
Future Price Success Rate 0.96 1.00 0.70 0.87 0.70 0.39 1.00
MAPE (std) 0.06 (0.08) 0.05(0.07) 0.21(0.38) 0.05(0.07) 0.03(0.03) 0.05(0.05) 0.06(0.07)
Success Rate 0.73 0.18 0.09 0.18 0.09 0.73 0.09

Sharpe Ratio
Abs Error (std)  0.00 (0.00) 0.00(0.00) 0.03(0.0) 0.02(0.02) 0.03(0.0) 0.00(0.00) 0.03(0.0)

Table 2: Selected results on Series-Centric Tasks. “Elec. Pred. w/ Cov.” = Electricity Prediction
with Covariates; “Elec. Pred. w/o Cov.” = Electricity Prediction without Covariates; We report
representative tasks from each family while preserving all metrics. Full results are in the Appendix.??

Task Metric GPT-40 Qwen-Max Claude-3.7 DeepSeek Gemini-2.5 Codestral Grok-4
Retail Tasks
Products Success Rate 0.64 0.59 0.98 1.00 0.34 0.67 0.96
Substitution- NDCG@3 (std) 0.74 (0.26) 0.74 (0.25) 0.72 (0.07) 0.70 (0.29) 0.47 (0.45) 0.71 (0.25) 0.69 (0.28)
Effect Ranking MAP@3 (std)  0.82(0.24) 0.83(0.24) 0.83(0.05) 0.82(0.23) 0.78 (0.26) 0.81 (0.25) 0.79 (0.28)
c b J Success Rate 0.76 0.82 0.58 0.86 0.73 0.88 0.88
F(‘)‘f;g:;fr cman WPE (std) 0.14 (1.51) 022(1.69) 0.69(2.35) 0.80(2.31) 0.70(2.31) 0.08 (1.40) 0.68 (2.15)

WAPE (std) 1.54(1.07) 1.61(1.22) 1.98(1.85) 2.00(1.81) 2.06(1.91) 1.51(0.96) 1.93(1.72)
Healthcare Tasks
ICU Patient Death Success Rate 0.96 0.94 0.82 1.00 0.82 0.96 1.00
Risk Evaluation MSE (std) 0.86 (0.86) 1.74(5.62) 0.63(0.74) 0.84(0.81) 0.73(0.73) 0.74 (0.80) 0.90 (0.81)

Success Rate 1.00 0.98 1.00 - 0.98 0.98 1.00
Healthcare Task One

Acc (std) 0.56(0.49)  0.45(0.50) 0.44 (0.50) - 0.44 (0.50)  0.53(0.49) 0.62 (0.49)
Climate Tasks

. Success Rate 0.94 1.00 0.90 1.00 0.88 1.00 1.00

Weather Forecasting

MAPE (std) 0.25(0.32) 0.20(0.24) 0.13(0.17) 0.07 (0.03) 0.26 (0.28) 0.29 (0.51) 0.09 (0.20)
Property Damage Success Rate 1.00 1.00 0.84 1.00 0.92 1.00 1.00
Prediction Accuracy (std)  0.39 (0.36) 0.49 (0.36)  0.34(0.31) 0.34(0.29) 0.26 (0.30) 0.35(0.35) 0.35(0.35)
Social Impact Success Rate 1.00 1.00 0.82 0.98 0.88 1.00 1.00
Prediction Accuracy (std)  0.20 (0.28) 0.36 (0.40) 0.42 (0.37) 0.40(0.35) 0.51(0.31) 0.29 (0.36) 0.42 (0.30)

Table 3: Model Performance on Problem-Centric Tasks, covering retail, healthcare, and climate
domains. The Metric column specifies the evaluation measure used for each subtask. Red indicates
the best result, and Blue indicates the second best among populated entries.
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producing high-precision, correctly shaped numerical outputs, we adopt the CodeAct [Wang et al.
(2024) agent framework for all models. Agentscope CodeAct agent|Gao et al.|(2024) enables code-
based interaction by allowing LLMs to generate executable Python code, receive execution feedback,
and revise outputs accordingly. All models are accessed via their official APIs and ran on a single
NVIDIA A40 GPU with 48G memory. For all experiments, we use the same hyperparameters,
temperature=0.0 for the most deterministic output and top_p=1.0.

For each benchmark task, models are provided with the same input data, including a task instruction
and a serialized time series dataset in .pkl format. Responses are executed within a controlled jupyter
notebook python interpreter provided by CodeAct agent setup. The final outputs are passed to
task-specific evaluators, which extract predictions and compute metrics based on ground truth labels
or evaluation programs. Each model’s performance is assessed using two main criteria: The primary
metric is Success Rate which is defined as the proportion of task instances for which the model
output satisfies the predefined success criteria (see Table ). For outputs deemed successful, we
further evaluate quality using task-specific metrics (e.g., MAPE for forecasting, F1-score for anomaly
detection), providing a more fine-grained comparison of inference quality.

Task Type Success Criterion Metrics
Prediction is of correct shape and satisfies the specified opera- MAPE,WPE,
tional constraint and the prediction is non-trivial MAPE<1) WAPE

Constrained Forecasting

Anomaly Detection w/ A binary sequence with correct length is obtained and the F1-score
reference samples prediction is non-trivial (F1-score>0)

Causal Inference w/ A binary causal matrix with correct shape is returned. The  Accuracy
domain knowledge provided domain knowledge is incorporated

A scalar value is returned and the prediction is non-trivial ~ Absolute Error
(absolute error<0.05)

An investment signal of correct length is returned and there CR, AR, MDD
is no loss in investment

Retail Product A valid ranking list with all candidate products included NDCG, MAP
Substitution Ranking exactly once, in correct format, and non-degenerate scores

Financial Analytics

Financial Trading

Table 4: Task-specific success criteria and inference quality metrics. CR denotes Cumulative Return,
AR denotes Annualized Return, MDD denotes Maximum Drawdown.

4.2 RESULT

We report results on both series-centric and problem-centric tasks. Tables [2]and [3| present the full
quantitative outcomes.

Series-Centric Tasks. On canonical series-centric tasks such as electricity load forecasting and
financial metric estimation, models generally achieve strong performance under simple formulations
(e.g., maximum or minimum load). Success rates in these cases often exceed 0.9, although more
complex variants—including ramp-rate control and multi-grid forecasting—remain challenging, with
noticeably lower success rates and higher error measures. Similarly, diagnostic tasks (e.g., ECG
anomaly detection, extreme weather detection) and analytical tasks (e.g., risk-return estimation,
backtesting) expose significant variance in model capabilities.

Problem-Centric Tasks. In contrast, problem-centric tasks drawn from healthcare, retail, and
climate domains highlight the limitations of LLMs when confronted with domain-grounded, multi-
step reasoning. Retail subtasks such as product substitution ranking and latent demand forecasting
reveal difficulties in compositional reasoning. In climate-related forecasting and impact estimation,
success rates are relatively high, yet fine-grained accuracy remains inconsistent. Healthcare tasks are
particularly challenging, as models often struggle to integrate heterogeneous ICU signals. Importantly,
despite their higher intrinsic difficulty, problem-centric tasks achieve higher construction success
rates, reflecting their grounding in well-defined domain problems that reduce ambiguity and enhance
interpretability.

Analysis As summarized in Table 0] the proposed Problem-Centric Multi-Step Task Design in-
troduces tasks that are derived directly from domain-grounded analytical questions rather than
abstract time series manipulations. Figure [f.2] further contrasts the series-centric and problem-centric
paradigms across different datasets and representative task types. We observe that, despite being
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Success Rate
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T
1

Diagnostic Task w/ Stock Prediction Retail Climate
Reference Samples

Figure 4: Visualization of success rates across four representative tasks. From left to right, the
tasks are: Diagnostic Task w/ Reference Samples, Stock Prediction, ReTail, and Climate. For each
task, bars are grouped by model in the order from left to right: GPT-40, Qwen-Max, Claude-3.7,
DeepSeek, Gemini-2.5, Codestral, and Grok-4. Warm low-saturation colors denote Series-Centric
tasks (Diagnostic Task w/ Reference Samples and Stock Prediction), while cool low-saturation colors
denote Problem-Centric tasks (Retail and Climate).

more challenging, the problem-centric paradigm achieves a higher overall task generation success
rate.

Compared with the series-centric generation approach, our problem-centric paradigm produces tasks
that are inherently more demanding due to their grounding in real-world analytical questions and
multi-step reasoning requirements. Nevertheless, the generation process yields a higher success rate,
since tasks are formulated from well-defined domain problems that practitioners genuinely care about.
This grounding reduces ambiguity, enhances interpretability, and ensures verifiability of results. By
contrast, series-centric generation often depends on abstract templates or rule-based slicing, which
may produce trivial, poorly aligned, or even ambiguous tasks. Consequently, the problem-centric
design not only raises the difficulty level but also improves the overall reliability, robustness, and
meaningfulness of the benchmark.

Beyond the overall improvement in success rate under the problem-centric paradigm, several notable
trends emerge. First, model performance is highly task-dependent: predictive tasks such as electricity
forecasting exhibit relatively high success rates, while diagnostic tasks (e.g., anomaly detection
with known anomaly rates) remain substantially more challenging, with larger variance in F1 scores.
Second, although some models achieve high success rates, error-based metrics (e.g., MAPE, Absolute
Error) reveal persistent numerical deviations, suggesting that LLMs capture coarse patterns but lack
fine-grained precision. Finally, cross-domain comparison indicates that healthcare tasks are generally
harder, while climate tasks demonstrate more stable performance. A detailed categorization of failure
cases is further provided in Appendix [E] offering insights into systematic error modes across tasks.

5 CONCLUSION

This work introduces the TSAIA Benchmark, a unified framework that combines series-centric
and problem-centric perspectives to evaluate LLMs on time-series reasoning. Series-centric tasks
capture canonical operations, while problem-centric tasks extend evaluation toward domain-grounded,
multi-step analytical challenges.

Our findings show that existing models handle simple, template-based formulations relatively well
but face substantial limitations in constraint adherence, compositional reasoning, and domain-specific
signal integration. The problem-centric paradigm, despite introducing harder tasks, demonstrates
higher success in task formulation and evaluation quality.

These results point to two key directions: (i) advancing LLMs toward stronger compositional reason-
ing and domain adaptation, and (ii) fostering problem-centric, dynamically extensible benchmarks to
support progress in real-world time-series Al applications.



Under review as a conference paper at ICLR 2026

REFERENCES

Shamsu Abdullahi, Kamaluddeen Usman Danyaro, Abubakar Zakari, Izzatdin Abdul Aziz, Noor
Amila Wan Abdullah Zawawi, and Shamsuddeen Adamu. Time-series large language models: A
systematic review of state-of-the-art. IEEE Access, 2025.

Mistral AL. Codestral, May 2024. URL https://mistral.ai/news/codestral. Accessed:
2025-05-14.

Taha Aksu, Gerald Woo, Juncheng Liu, Xu Liu, Chenghao Liu, Silvio Savarese, Caiming Xiong, and
Doyen Sahoo. Gift-eval: A benchmark for general time series forecasting model evaluation. In
NeurIPS Workshop on Time Series in the Age of Large Models, 2024.

Francisco Martinez Alvarez, Alicia Troncoso, Jose C Riquelme, and Jesus S Aguilar Ruiz. Energy
time series forecasting based on pattern sequence similarity. IEEE Transactions on Knowledge
and Data Engineering, 23(8):1230-1243, 2010.

Anthropic. Claude 3.7 sonnet, February 2025. URL https://www.anthropic.com/news/
claude-3-7-sonnetl Accessed: 2025-09-24.

Ching Chang, Yidan Shi, Defu Cao, Wei Yang, Jeehyun Hwang, Haixin Wang, Jiacheng Pang, Wei
Wang, Yan Liu, Wen-Chih Peng, et al. A survey of reasoning and agentic systems in time series
with large language models. arXiv preprint arXiv:2509.11575, 2025.

Jialin Chen, Aosong Feng, Ziyu Zhao, Juan Garza, Gaukhar Nurbek, Cheng Qin, Ali Maatouk,
Leandros Tassiulas, Yifeng Gao, and Rex Ying. Mtbench: A multimodal time series benchmark
for temporal reasoning and question answering. arXiv preprint arXiv:2503.16858, 2025.

Kostadin Cvejoski, Ramsés J Sanchez, and César Ojeda. The future is different: Large pre-trained
language models fail in prediction tasks. arXiv preprint arXiv:2211.00384, 2022.

Ernest Davis and Gary Marcus. Commonsense reasoning and commonsense knowledge in artificial
intelligence. Communications of the ACM, 58(9):92-103, 2015.

Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xiaodong Liu, Yu Wang, Jianfeng Gao, Ming Zhou,
and Hsiao-Wuen Hon. Unified language model pre-training for natural language understanding
and generation. Advances in neural information processing systems, 32, 2019.

Wenjie Du, Jun Wang, Linglong Qian, Yiyuan Yang, Zina Ibrahim, Fanxing Liu, Zepu Wang, Haoxin
Liu, Zhiyuan Zhao, Yingjie Zhou, et al. Tsi-bench: Benchmarking time series imputation. arXiv
preprint arXiv:2406.12747, 2024.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky, Sameer Singh, and Matt Gardner.
Drop: A reading comprehension benchmark requiring discrete reasoning over paragraphs. arXiv
preprint arXiv:1903.00161, 2019.

Lizhou Fan, Wenyue Hua, Lingyao Li, Haoyang Ling, and Yongfeng Zhang. Nphardeval: Dynamic
benchmark on reasoning ability of large language models via complexity classes. arXiv preprint
arXiv:2312.14890, 2023.

Bahare Fatemi, Mehran Kazemi, Anton Tsitsulin, Karishma Malkan, Jinyeong Yim, John Palowitch,
Sungyong Seo, Jonathan Halcrow, and Bryan Perozzi. Test of time: A benchmark for evaluating
llms on temporal reasoning. arXiv preprint arXiv:2406.09170, 2024.

Yao Fu, Hao Peng, Ashish Sabharwal, Peter Clark, and Tushar Khot. Complexity-based prompting
for multi-step reasoning. arXiv preprint arXiv:2210.00720, 2022.

Dawei Gao, Zitao Li, Xuchen Pan, Weirui Kuang, Zhijian Ma, Bingchen Qian, Fei Wei, Wenhao
Zhang, Yuexiang Xie, Daoyuan Chen, Liuyi Yao, Hongyi Peng, Ze Yu Zhang, Lin Zhu, Chen
Cheng, Hongzhu Shi, Yaliang Li, Bolin Ding, and Jingren Zhou. Agentscope: A flexible yet robust
multi-agent platform. CoRR, abs/2402.14034, 2024.

Google DeepMind. Introducing gemini 2.5: Our next-generation ai model, April
2025. URL |https://blog.google/technology/google—deepmind/
google—gemini-2-5-update/. Accessed: 2025-09-24.

10


https://mistral.ai/news/codestral
https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://blog.google/technology/google-deepmind/google-gemini-2-5-update/
https://blog.google/technology/google-deepmind/google-gemini-2-5-update/

Under review as a conference paper at ICLR 2026

Kyo Beom Han, Jaesung Jung, and Byung O Kang. Real-time load variability control using energy
storage system for demand-side management in south korea. Energies, 14(19):6292, 2021.

H. Hersbach, B. Bell, P. Berrisford, S. Hirahara, A. Horanyi, J. Mufioz-Sabater, C. Nicholls, C. Peubey,
R. Radu, D. Schepers, A. Simmons, C. Soci, X. Abellan, G. Balsamo, P. Bechtold, G. Bia-
vati, J. Bidlot, M. Bonavita, G. D. Chiara, P. Dahlgren, D. Dee, M. Diamantakis, R. Dragani,
J. Flemming, R. Forbes, M. Fuentes, A. Geer, L. Haimberger, S. Healy, H. Hersbach, E. H6Im,
M. Janiskovd, S. Keeley, P. Laloyaux, P. Lopez, C. Lupu, G. Radnoti, P. de Rosnay, I. Rozum,
F. Vamborg, S. Villaume, and J.-N. Thépaut. Era5 hourly data on single levels from 1940 to
present, 2018. URL https://cds.climate.copernicus.eu/cdsappi#!/dataset/
reanalysis—-erab-single—-levels,

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and Sunghun Kim. A survey on large language
models for code generation. arXiv preprint arXiv:2406.00515, 2024.

Alistair Johnson, Lucas Bulgarelli, Lu Shen, Adam Gayles, Abdullah Shammout, Steven Horng, Tom
Pollard, Stephanie Hao, Benjamin Moody, Brian Gow, Dylan Bernard, Darren Fong, David Joel,
Derek Fong, Faisal Shakeel, Brett Beaulieu-Jones, Jesse Raffa, Payel Rad, Laura Moukheiber,
Rebeccah Stemerman, Andrew Walden, Nathaniel Greenbaum, Scott Mayhew, Samuel Ellis,
David Stone, Leo Celi, Roger Mark, Matthieu Komorowski, and Omar Badawi. Mimic-iv, a
freely accessible electronic health record dataset, 2020. URL https://physionet.org/
content/mimiciv/L

Zechen Li, Baiyu Chen, Hao Xue, and Flora D Salim. Zara: Zero-shot motion time-series analysis
via knowledge and retrieval driven llm agents. arXiv preprint arXiv:2508.04038, 2025.

Zhaoyi Li, Gangwei Jiang, Hong Xie, Lingi Song, Defu Lian, and Ying Wei. Understanding and
patching compositional reasoning in llms. arXiv preprint arXiv:2402.14328, 2024.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024a.

Haoxin Liu, Shangqing Xu, Zhiyuan Zhao, Lingkai Kong, Harshavardhan Kamarthi, Aditya B.
Sasanur, Megha Sharma, Jiaming Cui, Qingsong Wen, Chao Zhang, and B. Aditya Prakash.
Time-MMD: Multi-domain multimodal dataset for time series analysis. In The Thirty-eight
Conference on Neural Information Processing Systems Datasets and Benchmarks Track, 2024b.
URLhttps://openreview.net/forum?id=fuDOh4R1ILl

Qinghua Liu and John Paparrizos. The elephant in the room: Towards a reliable time-series anomaly
detection benchmark. In The Thirty-eight Conference on Neural Information Processing Systems
Datasets and Benchmarks Track, 2024. URL https://openreview.net/forum?id=
R6kJLWsTGyl

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, et al. Agentbench: Evaluating llms as agents. arXiv preprint
arXiv:2308.03688, 2023.

Mike A Merrill, Mingtian Tan, Vinayak Gupta, Thomas Hartvigsen, and Tim Althoff. Language
models still struggle to zero-shot reason about time series. In EMNLP (Findings), 2024.

Grégoire Mialon, Clémentine Fourrier, Thomas Wolf, Yann LeCun, and Thomas Scialom. Gaia:
a benchmark for general ai assistants. In The Twelfth International Conference on Learning
Representations, 2023.

Mistral Al. Mistral ai, 2024. URL https://mistral.ail
Manfred Mudelsee. Trend analysis of climate time series: A review of methods. Earth-science

reviews, 190:310-322, 2019.

11


https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels
https://physionet.org/content/mimiciv/
https://physionet.org/content/mimiciv/
https://openreview.net/forum?id=fuD0h4R1IL
https://openreview.net/forum?id=R6kJtWsTGy
https://openreview.net/forum?id=R6kJtWsTGy
https://mistral.ai

Under review as a conference paper at ICLR 2026

Xiangfei Qiu, Jilin Hu, Lekui Zhou, Xingjian Wu, Junyang Du, Buang Zhang, Chenjuan Guo, Aoying
Zhou, Christian S. Jensen, Zhenli Sheng, and Bin Yang. Tfb: Towards comprehensive and fair
benchmarking of time series forecasting methods. Proc. VLDB Endow., 17(9):2363-2377, 2024.

Qwen Team. Qwen2.5-max: Exploring the intelligence of large-scale moe model, January 2025.
URL https://gwenlm.github.io/blog/gqwen2.5-max/. Accessed: 2025-05-14.

Niels K Rathlev, John Chessare, Jonathan Olshaker, Dan Obendorfer, Supriya D Mehta, Todd
Rothenhaus, Steven Crespo, Brendan Magauran, Kathy Davidson, Richard Shemin, et al. Time
series analysis of variables associated with daily mean emergency department length of stay. Annals
of emergency medicine, 49(3):265-271, 2007.

Tanik Saikh, Tirthankar Ghosal, Amish Mittal, Asif Ekbal, and Pushpak Bhattacharyya. Scienceqa:
A novel resource for question answering on scholarly articles. International Journal on Digital
Libraries, 23(3):289-301, 2022.

Omer Berat Sezer, Mehmet Ugur Gudelek, and Ahmet Murat Ozbayoglu. Financial time series
forecasting with deep learning: A systematic literature review: 2005-2019. Applied soft computing,
90:106181, 2020.

Oyvind Tafjord, Bhavana Dalvi Mishra, and Peter Clark. Proofwriter: Generating implications,
proofs, and abductive statements over natural language. arXiv preprint arXiv:2012.13048, 2020.

Ross Taylor, Marcin Kardas, Guillem Cucurull, Thomas Scialom, Anthony Hartshorn, Elvis Saravia,
Andrew Poulton, Viktor Kerkez, and Robert Stojnic. Galactica: A large language model for science.
arXiv preprint arXiv:2211.09085, 2022.

Md Nayem Uddin, Amir Saeidi, Divij Handa, Agastya Seth, Tran Cao Son, Eduardo Blanco,
Steven R Corman, and Chitta Baral. Unseentimeqa: Time-sensitive question-answering beyond
llms’ memorization. arXiv preprint arXiv:2407.03525, 2024.

Chengsen Wang, Qi Qi, Jingyu Wang, Haifeng Sun, Zirui Zhuang, Jinming Wu, Lei Zhang, and
Jianxin Liao. Chattime: A unified multimodal time series foundation model bridging numerical
and textual data. In AAAI Conference on Artificial Intelligence, 2025a.

Ke-qiu Wang, Si-guang Sun, Hong-yi Wang, Chang-xu Jiang, and Zhao-xia Jin. 220kv city power grid
maximum loadability determination with static security-constraints. Power, Energy Engineering
and Management (PEEM2016), pp. 1, 2016.

Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, Yunzhu Li, Hao Peng, and Heng Ji.
Executable code actions elicit better llm agents. In Forty-first International Conference on Machine
Learning, 2024.

Yangyang Wang, Jiawei Gu, Li Long, Xin Li, Li Shen, Zhouyu Fu, Xiangjun Zhou, and Xu Jiang.
Freshretailnet-50k: A stockout-annotated censored demand dataset for latent demand recovery and
forecasting in fresh retail. arXiv preprint arXiv:2505.16319, 2025b.

Yuqing Wang and Yun Zhao. Tram: Benchmarking temporal reasoning for large language models. In
Findings of the Association for Computational Linguistics ACL 2024, pp. 6389-6415, 2024.

Ziqing Wang, Kexin Zhang, Zihan Zhao, Yibo Wen, Abhishek Pandey, Han Liu, and Kaize Ding. A
survey of large language models for text-guided molecular discovery: from molecule generation to
optimization. arXiv preprint arXiv:2505.16094, 2025c.

Andrew Robert Williams, Arjun Ashok, Etienne Marcotte, Valentina Zantedeschi, Jithendaraa
Subramanian, Roland Riachi, James Requeima, Alexandre Lacoste, Irina Rish, Nicolas Chapados,
et al. Context is key: A benchmark for forecasting with essential textual information. arXiv
preprint arXiv:2410.18959, 2024.

Tomer Wolfson, Mor Geva, Ankit Gupta, Matt Gardner, Yoav Goldberg, Daniel Deutch, and Jonathan
Berant. Break it down: A question understanding benchmark. Transactions of the Association for
Computational Linguistics, 8:183—-198, 2020.

12


https://qwenlm.github.io/blog/qwen2.5-max/

Under review as a conference paper at ICLR 2026

xAl Grok 4 model release & documentation, July 2025. URL |https://x.ai/news/grok—4.
Accessed: 2025-09-24.

Zhijian Xu, Yuxuan Bian, Jianyuan Zhong, Xiangyu Wen, and Qiang Xu. Beyond trend and
periodicity: Guiding time series forecasting with textual cues. arXiv preprint arXiv:2405.13522,
2024.

Zhiyi Xue, Liangguo Li, Senyue Tian, Xiaohong Chen, Pingping Li, Liangyu Chen, Tingting Jiang,
and Min Zhang. Domain knowledge is all you need: A field deployment of llm-powered test
case generation in fintech domain. In Proceedings of the 2024 IEEE/ACM 46th International
Conference on Software Engineering: Companion Proceedings, pp. 314-315, 2024.

Xudong Yan, Huaidong Zhang, Xuemiao Xu, Xiaowei Hu, and Pheng-Ann Heng. Learning semantic
context from normal samples for unsupervised anomaly detection. In Proceedings of the AAAI
conference on artificial intelligence, volume 35, pp. 3110-3118, 2021.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan Salakhutdinov,
and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
answering. arXiv preprint arXiv:1809.09600, 2018.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings
of the AAAI conference on artificial intelligence, volume 35, pp. 11106-11115, 2021.

Fengbin Zhu, Wenqiang Lei, Youcheng Huang, Chao Wang, Shuo Zhang, Jiancheng Lv, Fuli Feng,
and Tat-Seng Chua. Tat-qa: A question answering benchmark on a hybrid of tabular and textual
content in finance. arXiv preprint arXiv:2105.07624, 2021.

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this work, we utilized LLMs as general-purpose assistants for time series analysis, particularly in
the generation of executable code and the iterative refinement of model predictions. LLMs played a
significant role in facilitating the generation of code for time series forecasting, anomaly detection,
and other time series tasks, and were employed within a unified agent framework. This framework
prompted the models to generate executable code, which was then executed, and refined based on
feedback from the results of the model’s performance. Our findings highlight both the strengths and
limitations of current LLMs in performing time series analysis.

B DATASET STATISTICS

Dataset Number of Data Files Avg Total Timestamps Number of Variables
Climate Data 624 526 2048
Climate QA Data 150 168 50
Energy Data w/ geolocation 22 8760 1-3
Energy Data w/ Covariates 66 872601 11
Building Energy Usage Data 398 5019 1
Causal Data 8 529 3-6
Daily Stock Data 6780 3785 7
Hourly Stock Data 5540 35 7
Fresh Retail Data 863 1440 17
Stock Market Indices Data 6 3388 4
ECG Signal Data 24 10804352 2
ICU Clinic Data 352 596 12

Table 5: Dataset Statistics of the constructed dataset. The exact number of time series are not
calculated because it depends on randomly sampled sequence length when generating task instances.

13


https://x.ai/news/grok-4

Under review as a conference paper at ICLR 2026

Table [§ summarizes the dataset statistics for the raw time series datasets used in TSAIA. The climate
data is obtained from ERAS dataset [ﬂThe climate QA data is obtained from MTBench dataset El
Energy data with covariates is obtained fro The ECG signal data and ICU Healthcare data are
obtained from PhysioNem The building energy usage data is obtained from KaggleﬂThe Fresh
Retail Data is obtained from FreshRetailNet-50K datase(®} Notably, the daily stock data, hourly stock
data, and energy data with geolocation were manually scraped and preprocessed. The energy data
with geolocation was obtained from official energy grid operator websitesﬂm and the associated
geolocation was inferred as the largest city within the operational zone delineated by each provider’s
published grid ma Stock price data was scraped using the pyﬁnanc package, with data
pulled up to date as of 2024-09-17. The stock market indices data are pulled from various sources on
the web. The causal discovery dataset is synthetically generated to reflect controlled causal structures.
The prompt used to obtain causal discovery dataset is shown in section[G]

C COMPREHENSIVE RESULTS ON SERIES-CENTRIC TASKS

Tables [6H8| report the complete experimental results on the Series-Centric Tasks. These tasks cover
three categories—predictive, diagnostic, and analytical—designed to evaluate LLMs across different
aspects of time-series reasoning. For each subtask, we include the success rate along with task-
specific error or accuracy metrics (e.g., MAPE, F1, Absolute Error), providing a fine-grained view of
model performance. Results are compared across seven state-of-the-art models, with the best and
second-best scores in each row highlighted in red and blue, respectively. Blank entries indicate results
not yet available.

D DETAILS OF PROBLEM-CENTRIC MULTI-STEP TASK DESIGN

Table [ summarizes the proposed Problem-Centric Multi-Step Task Design, where tasks are derived
not merely from time series sequences but from real-world problems requiring domain-grounded
reasoning. Unlike series-centric formulations that focus on direct prediction of future values, these
tasks emphasize evidence gathering, operator-level reasoning, and structural decomposition to capture
the complexity of decision-making in diverse domains. Specifically, retail tasks involve promotion-
driven substitution ranking and stock-out—aware demand forecasting; clinical tasks target patient-level
outcome prediction such as mortality and sepsis risk; and climate tasks cover both predictive (weather
forecasting) and diagnostic (property damage and social impact) challenges. Each task is paired with
domain-relevant metrics to ensure meaningful evaluation and fair comparison across models.

E ERROR ANALYSIS

Figure 5HO| present detailed error distributions across representative models. GPT-4o exhibits patterns
broadly consistent with other systems: in predictive tasks, incorporating covariates or handling

1https://climatelearn.readthedocs.io/en/latest/user—guide/tasks_and_
datasets.html#era5-dataset
“https://github.com/Graph-and-Geometric-Learning/MTBench
*https://github.com/tamu-engineering-research/Open-source-power—dataset
‘nttps://physionet.org/content/nsrdb/1.0.0/
Shttps://physionet.org/content/1tdb/1.0.0/
®https://physionet.org/content/mimiciv/3.1/
"nttps://www.kaggle.com/competitions/energy—anomaly-detection/data
$https://huggingface.co/datasets/Dingdong-Inc/FreshRetailNet-50K
‘https://www.nyiso.com/load-data
Ynttps://www.ercot.com/gridinfo/load/load_hist
11https://www.misoenergy.org/marketsfandfoperations/
real-time--market-data/market-reports
"“https://www.nyiso.com/documents/20142/1397960/nyca_zonemaps .pdf
Bhttps://www.ercot .com/news/mediakit/maps
“https://www.misostates.org/images/stories/meetings/Cost_Allocation_
Principles_Committee/2021/Website_Presentations.pdf
Phttps://pypi.org/project/pyfinance/
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Task Metric GPT-40 Qwen-Max Claude-3.7 DeepSeek Gemini-2.5 Codestral Grok-4
Electricity Prediction with Success Rate 0.50 0.75 1.00 0.31
Covariates — Max Load

MAPE (std)  0.09 (0.12) 0.07 (0.06) 0.10 (0.12) 0.03 (0.03)
Electricity Prediction with Success Rate 0.76 0.82 0.88 0.59
Covariates — Min Load

MAPE (std) ~ 0.11 (0.11) 0.09 (0.11) 0.12 (0.18) 0.09 (0.10)
Electricity Prediction with Success Rate 0.46 0.80 0.80 0.47
Covariates — Load Ramp
Rate

MAPE (std)  0.18 (0.14) 0.14 (0.12) 0.11 (0.08) 0.12 (0.08)
Electricity Prediction with Success Rate 0.47 0.76 0.76 0.35
Covariates — Load Variabil-
ity

MAPE (std)  0.20 (0.31) 0.13(0.16) 0.19 (0.27) 0.04 (0.03)
Electricity Prediction with- Success Rate 1.00 0.94 0.94 1.00
out Covariates — Max Load

MAPE (std)  0.18 (0.16) 0.10 (0.07) 0.15(0.12) 0.12 (0.07)
Electricity Prediction with- Success Rate 0.94 0.94 0.88 0.71
out Covariates — Min Load

MAPE (std)  0.14 (0.08) 0.14 (0.08) 0.13 (0.09) 0.14 (0.05)
Electricity Prediction with- Success Rate 0.76 1.00 0.82 0.88
out Covariates — Load
Ramp Rate

MAPE (std)  0.24 (0.19) 0.23 (0.22) 0.19 (0.20) 0.29 (0.30)
Electricity Prediction with- Success Rate 0.82 0.88 0.76 0.71
out Covariates — Load Vari-
ability

MAPE (std)  0.17 (0.12) 0.13 (0.09) 0.19(0.17) 0.13 (0.07)
Electricity Prediction for Success Rate 0.76 0.88 0.94 0.12
Multiple Grids — Max Load

MAPE (std)  0.21 (0.27) 0.21(0.24) 0.16 (0.21) 0.10 (0.03)
Electricity Prediction for Success Rate 0.76 0.88 0.94 0.29
Multiple Grids — Min Load

MAPE (std)  0.10(0.12) 0.18(0.29) 0.08 (0.11) 0.23 (0.37)
Electricity Prediction for Success Rate 0.65 0.65 0.94 0.29
Multiple Grids — Load
Ramp Rate

MAPE (std)  0.19 (0.24) 0.18 (0.18) 0.21 (0.21) 0.10 (0.05)
Electricity Prediction for Success Rate 0.41 0.59 0.59 0.29
Multiple Grids — Load Vari-
ability

MAPE (std)  0.15(0.13) 0.18(0.23) 0.18 (0.14) 0.19 (0.13)

Table 6: Full results on Series-Centric Tasks (Predictive Tasks). For rows with color highlights, red
marks the best and blue marks the second best among the populated entries in that row. Blank cells
indicate results not yet reported for that model.

multiple time series increases the likelihood of execution and constraint violation errors, reflecting the
difficulty of enforcing operational limits under added complexity. Similarly, in diagnostic tasks, GPT-
40 struggles when contextual reasoning is required—such as calibrating thresholds from reference
samples—while tasks with explicit prior knowledge (e.g., causal discovery with known graphs) show
comparatively higher success rates. In analytical tasks, GPT-40’s performance declines in market
benchmarking and trading, where failures often stem from inadequate strategies or unfamiliarity with
specialized financial metrics.

Across models, comparable limitations emerge. By contrast, Gemini-2.5 and Codestral suffer
frequent execution errors across nearly all categories, underscoring difficulty with structured multi-
step reasoning. Taken together, these results highlight that while model-specific differences exist, all
systems—including GPT-40—face substantial challenges as task complexity increases, especially
when structured reasoning, contextual integration, or domain-specific financial acumen are required.
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Task Metric GPT-40 Qwen-Max Claude-3.7 DeepSeek Gemini-2.5 Codestral Grok-4
Extreme Weather Detection Success Rate 0.24 0.23 0.23 0.23
with Reference Samples

F1 (std) 0.91 (0.23) 0.90 (0.24) 0.90 (0.24) 0.91 (0.23)
ECG Signal Anomaly with Success Rate 0.51 0.17 0.54 0.59
Reference Samples

F1 (std) 0.55 (0.35) 0.70(0.29) 0.54 (0.34) 0.58 (0.34)
Causal Discovery with Quan- Success Rate 0.94 0.92 0.97 0.94
titative Domain Knowledge

Accuracy 0.69 (0.09) 0.77 (0.11) 0.71 (0.11) 0.72 (0.11)

(std)
Causal Discovery with Qual- Success Rate 0.85 0.70 0.96 0.93
itative Domain Knowledge

Accuracy 0.87 (0.17)  0.79 (0.17) 0.89 (0.14) 0.88 (0.15)

(std)
Extreme Weather Detection Success Rate 0.87 0.31 0.97 0.23
with Known Anomaly Rate
(Across Sequences)

F1 (std) 0.53 (0.25) 0.62(0.19) 0.72 (0.11) 0.42 (0.31)
Energy Usage Anomaly Success Rate 0.87 0.52 1.00 0.58
with Known Anomaly Rate
(Across Sequences)

F1 (std) 0.08 (0.09) 0.14 (0.20) 0.50 (0.19) 0.06 (0.06)

Table 7: Full results on Series-Centric Tasks (Diagnostic Tasks).

W= Execution Error/Did Not Reach A Solution

Electricity Prediction
w/o covariates

Diagnostic Task w/ known prior

87.3% 174%

= Constraint Violation

Electricity Prediction
w/ covariates

103%

14.7%

55.4%

Stock Prediction

mm Trivial Prediction/Inadequate Result ~ mmm Format, Shape, Others = Success

Electricity Prediction Causal Doscovery Diagnostic Task
across multiple grids w/ domain knowledge wi reference samples

64.7%
07% 46.5%
9.9%
373%
89.4%

10.3%

Risk & Return analysis Benchmark Against Market Financial Tradmg

1.4%
739% 5300

39.4% s2.3%
42.4% 437% 43.7%
11.3%
5.6%

14.1%

Figure 5: Case Study on GPT-40 Error Distribution across Tasks Grouped by Difficulty Level

mmm Execution Error/Did Not Reach A Solution

Electricity Prediction
w/o covariates

Diagnostic Task w/ known prior

45.

21.8%

[ Constraint Violation

Electricity Prediction
w/ covariates

%

Stock Prediction

2.9%

5.9%

g5% 88%

mmm Trivial Prediction/Inadequate Result W Format, Shape, Others W= Success

Electricity Prediction Causal Doscovery Diagnostic Task
across multiple grids w/ domain knowledge w reference samples

8.5%

47.2%,
73.5%
44.4%
Risk & Return analysis Benchmark Against Market Financial Trading
63.6%
19.7%
9.2%

10.6%

Figure 6: Case Study on Qwen Error Distribution across Tasks Grouped by Difficulty Level
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Task Metric GPT-40 Qwen-Max Claude-3.7 DeepSeek Gemini-2.5 Codestral Grok-4

Future Stock Price Predic- Success Rate 0.96 1.00 0.87 0.39

tion
MAPE (std)  0.06 (0.08) 0.05 (0.07) 0.05 (0.07) 0.05 (0.05)

Future Stock Volatility Pre- Success Rate 0.83 0.43 0.57 0.57

diction
MAPE (std)  0.70 (0.28) 0.83 (0.26) 0.90 (0.13) 0.61 (0.32)

Future Stock Trend Predic- Success Rate 0.43 0.30 0.43 0.52

tion
Accuracy 0.90 (0.20) 0.86 (0.23) 0.85 (0.23) 0.96 (0.14)
(std)

Annualized Return Estima- Success Rate 0.45 - 0.36 0.18

tion
Absolute Er- 0.02 (0.02) - 0.02 (0.01) 0.03 (0.02)
ror (std)

Annualized Volatility Esti- Success Rate 0.91 0.82 1.00 1.00

mation
Absolute Er- 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
ror (std)

Maximum Drawdown Esti- Success Rate 0.18 0.09 0.27 -

mation
Absolute Er- 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) -
ror (std)

Calmar Ratio Estimation Success Rate 0.18 0.18 0.27 0.82
Absolute Er- 0.01 (0.01) 0.01(0.01) 0.02 (0.01) 0.01 (0.01)
ror (std)

Sortino Ratio Estimation Success Rate 0.09 0.09 0.18 0.09
Absolute Er- 0.01 (0.00) 0.01 (0.00) 0.00 (0.00) 0.00 (0.00)
ror (std)

Sharpe Ratio Estimation Success Rate 0.73 0.18 0.18 0.73
Absolute Er- 0.00 (0.00) 0.00 (0.00) 0.02 (0.02) 0.00 (0.00)
ror (std)

Information Ratio (Bench- Success Rate 0.44 0.20 0.73 0.01

mark vs. Market)

Absolute Er- 0.00 (0.00) 0.01 (0.01) 0.00 (0.00) 0.00 (0.00)
ror (std)

Stock Trading Strategy Back- Success Rate 0.44 0.59 0.61 0.63

testing
Cumulative 0.13 0.10 0.09 0.06
Return
Annualized 243 4.56 1.69 3.87
Return
Maximum 0.05 0.05 0.05 0.02
Drawdown

Table 8: Full results on Series-Centric Tasks (Analytical Tasks).

F CODEACT SYSTEM PROMPT TEMPLATE

You are a helpful assistant that gives helpful, detailed, and polite answers to the user’s
questions. The code written by assistant should be enclosed using <execute> tag, for
example: <execute> print("Hello World!’) </execute>. You should provide the
solution in a single <execute> block instead of taking many turns. You’ll receive feedback
from your code execution. You should always import packages and define variables before
starting to use them. You should stop <execute> and provide an answer when they have
already obtained the answer from the execution result. Whenever possible, execute the code
for the user using <execute> instead of providing it. Your response should be concise,
but do express their thoughts. Always write the code in <execute> block to execute
them. You should not ask for the user’s input unless necessary. Solve the task on your own
and leave no unanswered questions behind. You should do every thing by your self. You
are not allowed to install any new packages or overwrite available variables provided to
you in the question. Additionally, you are provided with the following variables available:
{variable names} The above variables is already available in your interactive Python (Jupyter
Notebook) environment, allowing you to dit8ctly use them without needing to re-declare
them.
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Domain  Dataset Problem Level Task Description Metric
Retail . Product Substi- Operator During promotion period of NDCG,
cta FreshRetailNet  tjon Ranking item A, rank the impact on all MAP

items in the same category.
-50K Future Demand  Structural ~ First recover latent demand WPE,
Forecasting caused by stock-out, then fore- WAPE
cast user demand over a future
horizon.
Mortality Risk Evidence  Given a recent window of ICU MAE
Healthcare - MIMIC-IV Assessm)tlznt vitals/labs and related signals,
estimate the patient’s future mor-
tality risk.
Sepsis Risk Pre- Evidence  Given a recent window of ICU  ACC
diction vitals/labs and related signals,
estimate the patient’s future sep-
sis risk.
Climate MTBench Weather Fore- Structural  Predict future weather values for MAPE
casting multiple stations based on histor-
ical weather data during extreme
events.
Property Dam- Evidence  Predict property damage sever- ACC
age Prediction ity levels based on historical
weather patterns and extreme
weather characteristics.
Social Impact Evidence  Predict social impact sever- ACC
Prediction ity levels based on historical

weather patterns and extreme
weather characteristics.

Table 9: Problem-Centric Multi-Step Task Design
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W= Execution Error/Did Not Reach A Solution % Constraint Violation =l Trivial Prediction/Inadequate Result BB Format, Shape, Others W= Success

Electricity Prediction Elecmmy prediction Electricity Prediction Causal Doscovery Diagnostic Task
wlo covariates es across multiple grids w/ domain knowledge w reference samples
5.9%
43.1%
45.6%
2.9% 45.1%
4.9%
11.8 1.4%
82.4% 40.8%
2.9% 3.7%
2.9%
50.8% 1.5%
46% 45.6%
14.1%
Diagnostic Task w/ known prior Stock Prediction Risk & Return analysis Benchmark Against Market Financial Trading
6.1%
40.1%
2.
49.3%  40.9%, \>0%
101% 33.8%
31.7%
63.4%
47.0%
36.6% 2.8%

6.3% 21.8% 333% 1%

Figure 7: Case Study on Codestral Error Distribution across Tasks Grouped by Difficulty Level
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Electricity Prediction Electricity Prediction Electricity Prediction Causal Doscovery Diagnostic Task
w/o covariates w/ covariates across multiple grids w/ domain knowledge w/ reference samples
33.8% 32.3% 1.5% 32.4%
22.3% 12.0%
52.8%
57.4% %
66.2% 66.2%

Diagnostic Task w/ known prior Stock Prediction Risk & Return analysis Benchmark Against Market Financial Trading
18.3% 5.6% 18.3%

29.6
43.5% 13.0%
30.3%,

58.5%

I 2

34.8%

76.1%

Figure 8: Case Study on Gemini Error Distribution across Tasks Grouped by Difficulty Level

G CASUAL DISCOVERY DATA GENERATION PROMPT

Now you are a Time series data scientist, please help me to write the code to generate some synthetic
data in real world Time series domain, you should save the data into ”*/data.csv’:

Now suggesting you should construct a series data based on a relation matrix and the correlation
ratio for different influence factor, you should notice the following points,for time step I want you to
generate 500 time steps:

1. data correlation: the multi variable should be correlated, sample: which A first influence B, then B
have influence on C or D, there should be some time delay, as the influence on other staff needs time.

2. data trend: there should be some trend in the data, like the data is increasing or decreasing.

W= Execution Error/Did Not Reach A Solution % Constraint Violation ==l Trivial Prediction/Inadequate Result ~ BSM Format, Shape, Others = Success

Electricity Prediction Electricity Prediction Electricity Prediction Causal Doscovery Diagnostic Task
w/o covariates w/ covariates across multiple grids w/ domain knowledge w/ reference samples
7.7% 8.8%
4.6% 2.9%
15% 2.9% 52.8
38.0%
6.5%
86.2% 85.3%
9.2%
Diagnostic Task w/ known prior Stock Prediction Risk & Return analysis Benchmark Against Market Financial Trading

98.6%

: 37.9%
22.5%
29.0%,
39.4
2.3% a8 0.6%
7.6% 73.2%
8.7% 53.0%

Figure 9: Case Study on Deepseek Error Distribution across Tasks Grouped by Difficulty Level
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3. data: seasonality there should be some seasonality in the data, like the data is periodic.
4. data noise: the noise should be added to the data, as the real world data is not perfect.

5. data background: the data should have some real world background, you should first think about
different real world data, and provide a description for the variable and time series data, then generate
the data using the code. CoT Sample: Q: Approximate Relation Ratio: 0.5 Relation Matrix:

|A B C D
AT 1 0 1
B|o 1 0 1
clo 1 1 1
D0 0 0 1

¢ A influences B and D, and itself.
¢ B influences D, and itself.
e Cinfluences B and D, and itself.

* D influences only itself.

variable size: 4 A: Scenario: Sales Data of a Chain of Stores Over Time Let’s assume we are
generating synthetic data,the variable size for the data is 4. for the daily sales of multiple stores across
a chain, the sales numbers are influenced by:

1. Advertising (A): The level of advertising spend directly impacts the sales of each store. After a
delay, this starts influencing sales. 2. Sales (B): The sales numbers for each store are influenced by
both the advertising and local seasonal events. 3. Economic Factors (C): Broader economic trends,
like GDP growth or unemployment rates, also impact sales. These factors show a delayed and more
subtle influence over time. 4. Customer Sentiment (D): Customer sentiment affects the sales of
specific products in each store and is influenced by both advertising and broader economic factors.

Seasonality: Sales experience periodic seasonal trends, with peaks around the holidays and lower
numbers during off-seasons.

Trend: There is a general increasing trend in sales as the chain expands.

Noise: Random noise is added to mimic real-world data fluctuations.
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