

000 001 002 003 004 005 C-VOTING: CONFIDENCE-BASED TEST-TIME VOTING 006 WITHOUT EXPLICIT ENERGY FUNCTIONS 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029

030 ABSTRACT

031 Neural network models with latent recurrent processing, where identical layers
032 are recursively applied to the latent state, have gained attention as promising mod-
033 els for performing reasoning tasks. A strength of such models is that they en-
034 able test-time scaling, where the models can enhance their performance in the
035 test phase without additional training. Models such as the Hierarchical Reason-
036 ing Model (HRM) and Artificial Kuramoto Oscillatory Neurons (AKOrN) can
037 facilitate deeper reasoning by increasing the number of recurrent steps, thereby
038 enabling the completion of challenging tasks, including Sudoku, Maze solving,
039 and AGI benchmarks. In this work, we introduce confidence-based voting (C-
040 voting), a test-time scaling strategy designed for recurrent models with multiple
041 latent candidate trajectories. Initializing the latent state with multiple candidates
042 using random variables, C-voting selects the one maximizing the average of top-1
043 probabilities of the predictions, reflecting the model’s confidence. Additionally, it
044 yields 4.9% higher accuracy on Sudoku-hard than the energy-based voting strat-
045 egy, which is specific to models with explicit energy functions. An essential
046 advantage of C-voting is its applicability: it can be applied to recurrent mod-
047 els without requiring an explicit energy function. Finally, we introduce a simple
048 attention-based recurrent model with randomized initial values named ItrSA++,
049 and demonstrate that when combined with C-voting, it outperforms HRM on
050 Sudoku-extreme (95.2% vs. 55.0%) and Maze (78.6% vs. 74.5%) tasks.
051
052

053 1 INTRODUCTION

054 In recent years, reasoning has been recognized as crucial for achieving Artificial General Intelligence
055 (AGI). Recurrent models, which repeat identical layers, have emerged as a promising approach to
056 achieve the goal. A key advantage of recurrent models is that their performance can be enhanced at
057 test time without additional training, a technique known as test-time scaling. The test-time scaling
058 is typically realized in two ways: (1) increasing the number of inference recurrence steps, and (2)
059 selecting a “good” trajectory from multiple candidates with random sampling, or *voting*. The method
060 of increasing inference steps (1) has been investigated in (Anil et al., 2022) and other studies. The
061 method of selecting “good” trajectories (2) has recently attracted attention in large language models
062 (LLMs), particularly in the context of self-consistency (Wang et al., 2023) as well as search and
063 decoding strategies (Yao et al., 2023; Zhou et al., 2022).

064 Recent recurrent models, such as the Hierarchical Reasoning Model (HRM) (Wang et al., 2025) and
065 the Artificial Kuramoto Oscillatory Neurons (AKOrN) (Miyato et al., 2025), have become capable
066 of solving complex tasks, including Sudoku and Maze by utilizing test-time scaling. Sudoku and
067 Maze are regarded as benchmarks for reasoning because they require consistent logical inference
068 under complex constraints. These are challenging tasks for conventional models, including leading
069 LLMs as reported in (Wang et al., 2025). HRM mainly relies on increasing recurrence depth,
070 whereas AKOrN introduces energy-based voting (E-voting) in addition to increasing the depth. E-
071 voting samples multiple initial latent states and selects the final trajectory with the lowest energy,
072 yielding large performance gains in Sudoku. It enables further improvement even in cases where
073 performance improvement from increasing the number of recurrent steps is saturated. Specifically,
074 it has been reported that using 4096 candidates resulted in an approximately 40% increase in the
075 board accuracy (Miyato et al., 2025). Although highly effective, it has the limitation that it cannot
076 be used unless the energy function is explicitly defined. In most promising reasoning models, such

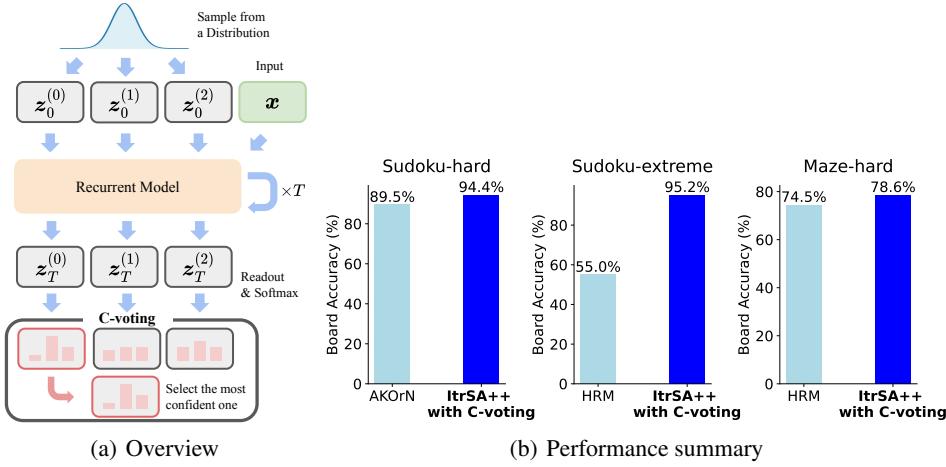


Figure 1: (a): The overview of confidence-based voting (C-voting). The candidates of the latent state are initialized by random variables, and the recurrent model updates the latent states from $t = 0$ to $t = T$ using input x . Calculating probabilities from the final states, C-voting selects the most confident prediction. (b): The performance comparisons of ItrSA++ with C-voting to other state-of-the-art models. The proposed method outperforms in Sudoku-hard, Sudoku-extreme, and Maze-hard tasks.

as HRM and recurrent transformers (Geiping et al., 2025), the energy is not explicitly defined, making it impossible to use E-voting. This limitation raises natural questions: (RQ1) Can we facilitate a model-agnostic test-time voting strategy without explicit energy functions, and (RQ2) Does there exist a simple, lightweight recurrent architecture matching or surpassing state-of-the-art performance with C-voting?

In this work, we propose confidence-based voting (C-voting), a novel voting strategy at test time, which enhances performance on a broader range of recurrent models. C-voting only requires the recurrent models to start from randomly sampled initial values, and does not require explicit energy functions. The model initializes the latent states with random variables, updates them applying an identical model repeatedly, and performs inferences. With these sampled trajectories, the rule of C-voting is very simple: take the most confident one (Figure 1(a)). We measure the confidence of a trajectory through the average top-1 probability that the trajectory finally provides. We experimentally find that C-voting offers better performance than E-voting in the case of Sudoku-solving with AKOrN.

C-voting can be applied not only to existing models, but also to newly designed, more powerful recurrent models. As an example, we introduce ItrSA++, a simple recurrent model with randomized initial values. It outperforms HRM on Sudoku-extreme (95.2% vs. 55.0%) and Maze-hard tasks (78.6% vs. 74.5%), and AKOrN on Sudoku-hard task (94.4% vs. 89.5%) as shown in Figure 1(b). The model only requires about 3 million parameters, which is about one-ninth the number of parameters in HRM, and comparable to that of AKOrN. **We also demonstrate that C-voting can be applied to HRM with C-voting.** This represents that C-voting is a simple and portable test-time voting strategy that enables recurrent models to achieve state-of-the-art performance with significantly fewer parameters.

2 PRELIMINARIES

2.1 RECURRENT MODELS WITH RANDOMIZED INITIALIZATION

Recent works show that recurrent models, which apply identical layers iteratively, are a powerful and promising framework for a variety of complex reasoning tasks (Dehghani et al., 2019; Anil et al., 2022; Geiping et al., 2025; Jaegle et al., 2021; Gladstone et al., 2025; Wang et al., 2025; Miyato et al., 2025; Saunshi et al., 2025; Darlow et al., 2025). Concretely, these recurrent models typically

108 have the form of

$$110 \quad z_{i,t+1} = f(z_{i,t}, x_i; \theta), \quad (1)$$

111 where f is a neural network, $z_{i,t} \in \mathbb{R}^{L \times C}$ the latent state at layer $t (\in \mathbb{N})$, $x_i \in \mathbb{R}^{L \times C}$ the i -th input
 112 (e.g., image, Sudoku board with blanks) embedded in the latent space, and θ the parameters. $L \in \mathbb{N}$
 113 is the number of tokens, and $C \in \mathbb{N}$ is the embedding dimensions. For models that solve tasks with
 114 complex reasoning, such as Sudoku or Maze tasks, f is oftentimes set to have a Transformer-based
 115 architecture (Vaswani et al., 2017; Dehghani et al., 2019; Saunshi et al., 2025). Note that the network
 116 $f(\cdot, \cdot; \theta)$ is identical for every t , hence equation 1 can be thought of as a time-invariant nonlinear
 117 dynamical system.

118 The behavior of the latent dynamics equation 1 depends on the initialization of $z_{i,0}$, which possibly
 119 improves or deteriorates the model’s performance. One strategy is to sample $z_{i,0}$ from a probability
 120 distribution, e.g., a standard Gaussian distribution. Such randomized initialization can lead the
 121 model to learn path independence, or the convergence to the same final steady state (Anil et al.,
 122 2022), which helps the model to generalize better than initializing the dynamics with a fixed value,
 123 e.g., $z_{i,0} \equiv 0$.

124 After repeating equation 1 from $t = 0$ to $t = T - 1 (T \in \mathbb{N})$, the final latent state $z_{i,T}$ is passed to
 125 the readout module. In classification problems such as Sudoku, the readout module produces logits,
 126 which are subsequently converted to class probabilities by the softmax function or its variant.

127 Recurrent models with randomized initialization are beneficial not only in parameter efficiency but
 128 also in that they allow *test-time scaling*. Test-time scaling is a phenomenon where the model en-
 129 hances its performance without further training, and is observed in a number of recurrent models
 130 (Gladstone et al., 2025; Geiping et al., 2025; Miyato et al., 2025; Hu et al., 2025). Test-time scaling
 131 can be realized in the following two ways: one is to run more iterations at inference than in training;
 132 the second is to select from the trajectories, which are initialized randomly, the “best” one based on
 133 a pre-determined criterion.

134 Although the term “test-time scaling” typically refers only to the concept of extending iterative
 135 steps, which has been studied extensively (Anil et al., 2022; Geiping et al., 2025), here we place
 136 our focus on the other concept, that is, selecting one trajectory from the sampled ones. We consider
 137 that this “sample & choose”, or *voting* strategy, is as significant as extending iterative steps, as the
 138 voting strategy can compensate for the next two shortcomings of iterative step extension. First, the
 139 performance of a recurrent model cannot grow monotonously with extending iterative steps: the per-
 140 formance can saturate. Second, extending the iterative steps in the test phase requires long iterative
 141 computations and cannot be parallelized. The voting strategy works well with parallel computing
 142 and can enhance the performance even when it is saturated. Therefore, voting can enhance the
 143 reasoning ability to the point where the step extension cannot be solely reached.

144 3 RELATED WORK

145 3.1 RECURRENT MODELS WITH RANDOMIZED INITIALIZATION

146 As representative examples of the recurrent models with randomized initial values, we focus on
 147 HRM (Wang et al., 2025) and AKOrN (Miyato et al., 2025), as they demonstrate outstanding per-
 148 formance in logical tasks such as Sudoku and Maze.

149 **HRM** HRM (Wang et al., 2025) is a recurrent model that is gaining attention for its strong rea-
 150 soning abilities for the relatively small size (≈ 27 million parameters), reaching SoTA in Sudoku-
 151 extreme, Maze-hard, and ARC-AGI challenges (Chollet, 2019; Chollet et al., 2025). The latent
 152 dynamics is a two-fold model that has *higher* and *lower* order processing given as follows:

$$153 \quad z_{i,t+1}^L = f^L(z_{i,t}^L, z_{i,t}^H, x; \theta^L), \\ 154 \quad z_{i,t+1}^H = \begin{cases} f^H(z_{i,t}^H, z_{i,t}^L; \theta^H) & \text{if } t \equiv 0 \pmod{\tau} \\ z_{i,t}^H & \text{otherwise} \end{cases}, \quad (2)$$

155 where τ is an update cycle for higher-level layers. The superscripts H and L respectively represent
 156 higher and lower order processings. This two-fold structure was first proposed as the main break-
 157 through but later shown to have a limited effect on the performance (Team, 2025). HRM makes use

of other techniques to boost its performance, such as one-step gradient approximation (taking its origin from Deep Equilibrium Model (Bai et al., 2019)) or adaptive computational time (ACT).

AKOrN AKOrN (Miyato et al., 2025) is another recurrent model that shows SoTA performance in the Sudoku-hard task (Palm et al., 2018). AKOrN utilizes the C -dimensional Kuramoto oscillators (Kuramoto, 1975; Lipton et al., 2019) as the latent dynamics and given as:

$$\Delta \mathbf{z}_{i,t} = \Omega(\mathbf{z}_{i,t}) + \text{Proj}_{\mathbf{z}_{i,t}}(\mathbf{x}_i + \mathbf{J}(\mathbf{z}_{i,t})), \quad (3)$$

$$\mathbf{z}_{i,t+1} = \Pi(\mathbf{z}_{i,t} + \eta \Delta \mathbf{z}_{i,t}). \quad (4)$$

Here, all rows of $\mathbf{z}_{i,t}$ are confined on the unit hypersphere (thus have norm one). $\Omega : \mathbb{R}^{L \times C} \rightarrow \mathbb{R}^{L \times C}$ is a linear map that rotates each token on the hypersphere, and thus is represented as a set of skew-symmetric matrices. $\mathbf{J} : \mathbb{R}^{L \times C} \rightarrow \mathbb{R}^{L \times C}$ is the connectivity strength between each token pair, and is implemented using self-attention. The projection onto the tangent space Proj and normalization onto the hypersphere Π are applied token-wise.

3.2 TEST-TIME SCALING WITH E-VOTING

E-voting is a test-time voting strategy introduced in (Miyato et al., 2025). E-voting can be applied to the recurrent model equipped with an energy (scalar) function —i.e., the recurrent models where a scalar function $E : \mathbb{R}^{L \times C} \rightarrow \mathbb{R}$ exists, such that

$$\mathbf{z}_{i,t+1} = f(\mathbf{z}_{i,t}, \mathbf{x}_i; \boldsymbol{\theta}) = \mathbf{z}_{i,t} - \alpha \nabla_{\mathbf{z}} E(\mathbf{z}_{i,t}; \boldsymbol{\theta}), \quad \alpha \in \mathbb{R}_+. \quad (5)$$

This dynamics proceeds in the direction in which the energy (expectedly) decreases when α is small enough. For example, AKOrN has a closed-form energy function¹, whereas energy-based transformer (Gladstone et al., 2025) explicitly models an energy using a Transformer-based architecture. As the model learns the dynamics to decrease the energy function, a smaller energy value is expected to reflect higher accuracy. E-voting is based on this assumption, and proceeds as follows. We first sample initial states $\mathbf{z}_{i,0}$ for $K \in \mathbb{N}$ times from a probability distribution, which we denote by $\{\mathbf{z}_{i,0}^{(k)}\}_{k \in [1, K]}$. We then select the sample with the lowest energy at the final step $t = T$, i.e.,

$$k^* = \arg \min_k E(\mathbf{z}_{i,T}^{(k)}; \boldsymbol{\theta}). \quad (6)$$

This voting strategy is effective in the Sudoku-solving task; in fact, AKOrN achieves about a 40% improvement with E-voting.

Although E-voting is an effective voting strategy, it is not available in many models since the energy function is not explicitly obtained. For example, in recurrent models with a residual connection

$$\mathbf{z}_{i,t+1} = \mathbf{z}_{i,t} + g(\mathbf{z}_{i,t}; \boldsymbol{\theta}), \quad (7)$$

g has to be written as the gradient of some scalar function, which does not exist in general.

4 CONFIDENCE-BASED VOTING

We describe the detailed procedure of the proposed voting method, C-voting. C-voting, as the name indicates, is a simple voting strategy applicable at test time. Concretely, C-voting applies the following steps to the trained model. We first sample initial states $\mathbf{z}_{i,0}$ for $K \in \mathbb{N}$ times from a probability distribution, which we denote by $\{\mathbf{z}_{i,0}^{(k)}\}_{k \in [1, K]}$. From these sampled initial states, we update the latent state with a neural network f by equation 1. Reading out the final state $\mathbf{z}_{i,T}^{(k)}$ as logits, we obtain the probability of the class j at the position l of k -th candidate as

$$P_{j,l}(\mathbf{z}_{i,T}^{(k)}) = \text{Softmax} \left(\text{Readout}(\mathbf{z}_{i,T}^{(k)}) \right)_{j,l}, \quad (8)$$

¹Note that equation 5 does not strictly hold when \mathbf{J} in equation 3 is asymmetric. Nevertheless, E-voting is shown to be effective for AKOrN in such a case.

216 where the softmax function is applied in the dimension of classes. The position l indicates the
 217 location at which the probability is computed, e.g., a cell in Sudoku. Then, the top-1 probability at
 218 the position l is

$$219 \quad 220 \quad 221 \quad \hat{P}_l(\mathbf{z}_{i,T}^{(k)}) = \max_j P_{j,l}(\mathbf{z}_{i,T}^{(k)}). \quad (9)$$

222 The average of top-1 probabilities over all positions reflects the confidence of the model. Therefore,
 223 we define the model’s confidence for the i -th input and the k -th candidate as

$$224 \quad 225 \quad 226 \quad C_i^{(k)} = \frac{1}{|\mathcal{L}|} \sum_{l \in \mathcal{L}} \hat{P}_l(\mathbf{z}_{i,T}^{(k)}), \quad (10)$$

227 where \mathcal{L} denotes the set of positions to be predicted, e.g., indices of blank cells in Sudoku, and $|\cdot|$
 228 denotes the number of elements in the set. We select the index of the most confident candidate by

$$229 \quad 230 \quad 231 \quad k_i^* = \arg \max_k C_i^{(k)}. \quad (11)$$

232 Thus, the prediction with the C-voting for input i at position l is obtained by

$$233 \quad 234 \quad 235 \quad \hat{y}_{i,l}^* = \arg \max_j P_{j,l}(\mathbf{z}_{i,T}^{(k^*)}). \quad (12)$$

236 If the model is well calibrated, the following approximation holds

$$237 \quad 238 \quad 239 \quad \Pr[y_{i,l} = \hat{y}_{i,l}^* | \hat{P}_l(\mathbf{z}_{i,T}^{(k)})] \simeq \hat{P}_l(\mathbf{z}_{i,T}^{(k)}), \quad (13)$$

240 where $\hat{y}_{i,l}^* = \arg \max_j P_{j,l}(\mathbf{z}_{i,T}^{(k)})$. Using equation 13, we obtain the index of the candidate that
 241 maximizes average accuracy across all positions by

$$242 \quad 243 \quad 244 \quad \arg \max_k \frac{1}{|\mathcal{L}|} \sum_{l \in \mathcal{L}} \Pr[y_{i,l} = \hat{y}_{i,l}^* | \hat{P}_l(\mathbf{z}_{i,T}^{(k)})] \simeq \arg \max_k \frac{1}{|\mathcal{L}|} \sum_{l \in \mathcal{L}} \hat{P}_l(\mathbf{z}_{i,T}^{(k)}) = k_i^*. \quad (14)$$

245 Note that the average accuracy across all positions may not be the same as the objectives. Nevertheless,
 246 it would be a good proxy for them.

249 5 ItrSA++

251 As introduced in subsection 2.1, recurrent models, such as AKOrN and HRM, incorporate various
 252 techniques that may be redundant with C-voting. To verify if higher performance can be achieved
 253 with a simpler and optimized model for C-voting, we introduce ItrSA++, a simple recurrent model to
 254 which C-voting can be applied. The design principles of ItrSA++ are as follows: (1) Cross-attention
 255 is employed to mix random initialization with input, similar to Perceiver (Jaegle et al., 2021). As in
 256 (Geiping et al., 2025), a linear layer was also tested, but experiments showed that cross-attention per-
 257 formed better. (2) Rather than recurrent transformers, we adopt recurrent attention layers to maintain
 258 a simple architecture. Experiments showed that periodically inserting SwiGLU (Shazeer, 2020) out-
 259 performs, so we adopt it. (3) The normalization method was determined experimentally. As noted
 260 in Geiping et al. (2025), normalization has a significant impact on the performance. [Appendix D](#)
 261 [confirms these design choices](#).

262 Concretely, ItrSA++ is defined as follows. At first, we embed the input \mathbf{x}_i using an embedding layer
 263 and apply normalization.

$$264 \quad 265 \quad \mathbf{x}_i^{\text{emb}} = \text{Norm}_{\text{attn}}(\text{Embedding}(\mathbf{x}_i)). \quad (15)$$

266 Hereafter, we use RMSNorm (Zhang & Sennrich, 2019) for the normalization. The initial latent
 267 state is sampled from a standard normal distribution. To mix the information of the input and the
 268 latent state, we use cross-attention as follows;

$$269 \quad \tilde{\mathbf{z}}_{i,t} = \text{Norm}_{\text{attn}}(\mathbf{z}_{i,t}) + \text{CrossAttn}(q = \text{Norm}_{\text{attn}}(\mathbf{z}_{i,t}), k = \mathbf{x}_i^{\text{emb}}, v = \mathbf{x}_i^{\text{emb}}). \quad (16)$$

270 After mixing the information, we apply the self-attention layer $S \in \mathbb{N}$ times.
 271

$$\bar{z}_{i,t,s+1} = \text{Norm}_{\text{attn}}(\bar{z}_{i,t,s}) + \text{SelfAttn}(\text{Norm}_{\text{attn}}(\bar{z}_{i,t,s})), \quad \bar{z}_{i,t,0} = \bar{z}_{i,t}, \quad (17)$$

273 At the end of the iterative self-attention, we apply SwiGLU (Shazeer, 2020) and obtain
 274

$$z_{i,t+1} = \text{Norm}_{\text{mlp}}(\bar{z}_{i,t+1,S}) + \text{SwiGLU}(\text{Norm}_{\text{mlp}}(\bar{z}_{i,t+1,S})). \quad (18)$$

276 By repeating a block composed of equation 16, equation 17, and equation 18 T times, we obtain the
 277 final latent state $z_{i,T}$. The readout module consists of a normalization and a linear layer, defined by
 278

$$\text{logit}_i = W_O \text{Norm}_{\text{out}}(z_{i,T}). \quad (19)$$

280 We use Geometry-Aware Attention Mechanism (Miyato et al., 2024) as the position embedding.
 281

282 6 EXPERIMENTS

284 6.1 BENCHMARKS

286 Sudoku is a logical puzzle in which the digits 1 to 9 are placed in 9×9 cells. The cells must be
 287 filled with digits to satisfy the following constraints: no digit appears more than once in any row,
 288 any column, and any of the nine 3×3 sub-grids. Several cells are filled with digits in advance as
 289 clues, and players fill in the digits referencing these clues. The difficulty of the Sudoku depends on
 290 the number of given digits and their placement. We adopt three kinds of datasets: Sudoku, Sudoku-
 291 hard, and Sudoku-extreme datasets. Sudoku and Sudoku-hard datasets are identical to those defined
 292 in (Miyato et al., 2025). Sudoku dataset (Wang et al., 2019) consists of 10,000 boards with (31–42)
 293 given digits. The first 9,000 samples are extracted for training, and the remaining 1,000 samples
 294 are extracted for validation. On the other hand, the Sudoku-hard dataset (Palm et al., 2018) contains
 295 (17–34) given digits, which is much fewer than the Sudoku dataset. Sudoku-extreme is introduced in
 296 (Wang et al., 2025) and is a challenging dataset. It is composed of Sudoku problems from multiple
 297 datasets. We use 1,000 samples for training and 1,000 samples for testing and apply the same data
 298 augmentation for Sudoku-extreme datasets as in (Wang et al., 2025).

299 Maze-hard is also a logical puzzle in which the players find the optimal path given 30×30 cells
 300 with passable and impassable cells, a start cell, and a goal cell. We use the same dataset as in (Wang
 301 et al., 2025), which contains 1,000 samples in both the training and test datasets.

302 For the metric of the model performance, we use the board accuracy, which is defined as the proportion
 303 of test instances for which the model produces an entirely correct board, i.e., all cells satisfy the
 304 given constraints without any errors.

305 6.2 C-VOTING VS. E-VOTING IN AKORN

307 To compare the performance of C-voting and E-voting, we conduct test-time scaling experiments
 308 using AKOrN. For the inference, we use C-voting instead of E-voting and run E-voting on the same
 309 pre-trained model. Note that no modification is needed to integrate C-voting into AKOrN.

310 Figure 2 shows that the board accuracy under C-voting outperforms that of E-voting as the number
 311 of random samples increases. For Sudoku-hard test in Figure 2(a), we use the Sudoku dataset
 312 for training and the Sudoku-hard dataset for inference during testing. This experimental setting is
 313 identical to that in (Miyato et al., 2025). The board accuracy in C-voting with 4096 samples is
 314 $94.4 \pm 0.1\%$, which is 4.9% higher than that of E-voting ($89.5 \pm 2.5\%$) reported in (Miyato et al.,
 315 2025). We also compare the performance with the Sudoku-extreme dataset in Figure 2(b). This
 316 result indicates that C-voting outperforms E-voting and is useful for models even with an explicit
 317 energy function. For Maze-hard, AKOrN fails to learn, resulting in a test board accuracy of 0.

318 6.3 ITRSA++ WITH C-VOTING

320 To show the performance of ItrSA++ with C-voting, we train ItrSA++ for Sudoku, Sudoku-extreme,
 321 and Maze-hard datasets and compare the test-time accuracy to HRM and AKOrN.
 322

323 The results are shown in Figure 3. Even without the voting, ItrSA++ outperforms AKOrN and HRM
 324 for all the tasks. Note that for the HRM experimental results for Sudoku-extreme and Maze-hard,

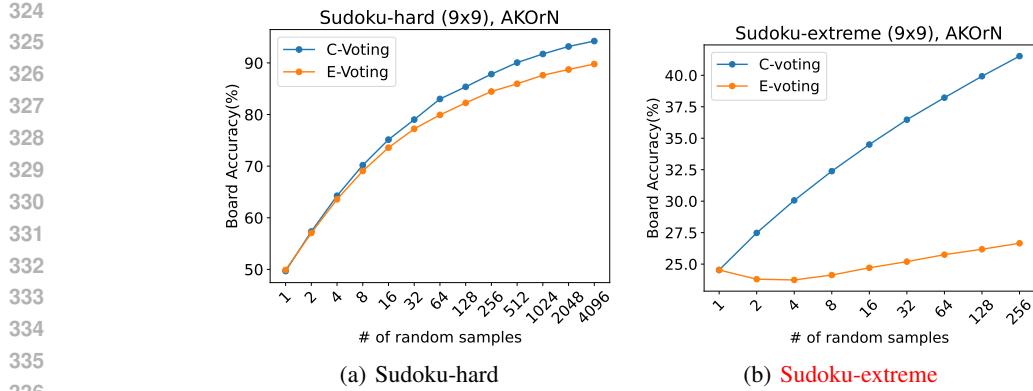


Figure 2: A performance comparison between C-voting and E-voting in AKOrN.

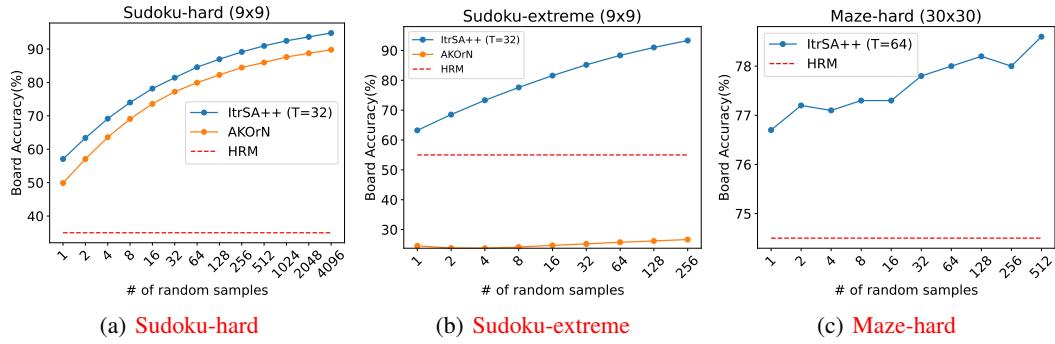


Figure 3: Scaling analysis of ItrSA++ with C-voting.

355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
we utilize those reported in (Wang et al., 2025). On the other hand, for the HRM results on Sudoku-hard, we employ the original HRM code and modify only the dataset. For all of the AKOrN results, we employ the original code (Miyato et al., 2025) and implement datasets for Sudoku-extreme and Maze-hard. As mentioned in subsection 6.2, the test board accuracy of AKOrN for Maze-hard is 0 and not plotted in the figure. ItrSA++ with C-voting scales similarly to AKOrN for the Sudoku tasks when the number of random samples increases, and also exhibits similar scaling for the Sudoku-extreme task. For Maze-hard, the improvement with scaling is weaker compared to Sudoku-hard or Sudoku-extreme, but it nonetheless surpasses HRM and confirms the effectiveness of the voting.

6.4 HRM WITH C-VOTING

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
To demonstrate the general applicability of C-voting, we combine C-voting with HRM and evaluate the scaling ability on the Sudoku-extreme dataset. While HRM initializes the latent state with random variables, it fixes throughout training and inference. To integrate C-voting with HRM, we modify to use a different initial latent state for each input. We also set the exploration rate for ACT to 1, which means that ACT is not actually used. With these modifications, we train HRM and use C-voting at test-time.

401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
70100
70101
70102
70103
70104
70105
70106
70107
70108
70109
70110
70111
70112
70113
70114
70115
70116
70117
70118
70119
70120
70121
70122
70123
70124
70125
70126
70127
70128
70129
70130
70131
70132
70133
70134
70135
70136
70137
70138
70139
70140
70141
70142
70143
70144
70145
70146
70147
70148
70149
70150
70151
70152
70153
70154
70155
70156
70157
70158
70159
70160
70161
70162
70163
70164
70165
70166
70167
70168
70169
70170
70171
70172
70173
70174
70175
70176
70177
70178
70179
70180
70181
70182
70183
70184
70185
70186
70187
70188
70189
70190
70191
70192
70193
70194
70195
70196
70197
70198
70199
70200
70201
70202
70203
70204
70205
70206
70207
70208
70209
70210
70211
70212
70213
70214
70215
70216
70217
70218
70219
70220
70221
70222
70223
70224
70225
70226
70227
70228
70229
70230
70231
70232
70233
70234
70235
70236
70237
70238
70239
70240
70241
70242
70243
70244
70245
70246
70247
70248
70249
70250
70251
70252
70253
70254
70255
70256
70257
70258
70259
70260
70261
70262
70263
70264
70265
70266
70267
70268
70269
70270
70271
70272
70273
70274
70275
70276
70277
70278
70279
70280
70281
70282
70283
70284
70285
70286
70287
70288
70289
70290
70291
70292
70293
70294
70295
70296
70297
70298
70299
70300
70301
70302
70303
70304
70305
70306
70307
70308
70309
70310
70311
70312
70313
70314
70315
70316
70317
70318
70319
70320
70321
70322
70323
70324
70325
70326
70327
70328
70329
70330
70331
70332
70333
70334
70335
70336
70337
70338
70339
70340
70341
70342
70343
70344
70345
70346
70347
70348
70349
70350
70351
70352
70353
70354
70355
70356
70357
70358
70359
70360
70361
70362
70363
70364
70365
70366
70367
70368
70369
70370
70371
70372
70373
70374
70375
70376
70377
70378
70379
70380
70381
70382
70383
70384
70385
70386
70387
70388
70389
70390
70391
70392
70393
70394
70395
70396
70397
70398
70399
70400
70401
70402
70403
70404
70405
70406
70407
70408
70409
70410
70411
70412
70413
70414
70415
70416
70417
70418
70419
70420
70421
70422
70423
70424
70425
70426
70427
70428
70429
70430
70431
70432
70433
70434
70435
70436
70437
70438
70439
70440
70441
70442
70443
70444
70445
70446
70447
70448
70449
70450
70451
70452
70453
70454
70455
70456
70457
70458
70459
70460
70461
70462
70463
70464
70465
70466
70467
70468
70469
70470
70471
70472
70473
70474
70475
70476
70477
70478
70479
70480
70481
70482
70483
70484
70485
70486
70487
70488
70489
70490
70491
70492
70493
70494
70495
70496
70497
70498
70499
70500
70501
70502
70503
70504
70505
70506
70507
70508
70509
70510
70511
70512
70513
70514
70515
70516
70517
70518
70519
70520
70521
70522
70523
70524
70525
70526
70527
70528
70529
70530
70531
70532
70533
70534
70535
70536
70537
70538
70539
70540
70541
70542
70543
70544
70545
70546
70547
70548
70549
70550
70551
70552
70553
70554
70555
70556
70557
70558
70559
70560
70561
70562
70563
70564
70565
70566
70567
70568
70569
70570
70571
70572
70573
70574
70575
70576
70577
70578
70579
70580
70581
70582
70583
70584
70585
70586
70587
70588
70589
70590
70591
70592
70593
70594
70595
70596
70597
70598
70599
70600
70601
70602
70603
70604
70605
70606
70607
70608
70609
70610
70611
70612
70613
70614
70615
70616
70617
70618
70619
70620
70621
70622
70623
70624
70625
70626
70627
70628
70629
70630
70631
70632
70633
70634
70635
70636
70637
70638
70639
70640
70641
70642
70643
70644
70645
70646
70647
70648
70649
70650
70651
70652
70653
70654
70655
70656
70657
70658
70659
70660
70661
70662
70663
70664
70665
70666
70667
70668
70669
70670
70671
70672
70673
70674
70675
70676
70677
70678
70679
70680
70681
70682
70683
70684
70685
70686
70687
70688
70689
70690
70691
70692
70693
70694
70695
70696
70697
70698
70699
70700
70701
70702
70703
70704
70705
70706
70707
70708
70709
70710
70711
70712
70713
70714
70715
70716
70717
70718
70719
70720
70721
70722
70723
70724
70725
70726
70727
70728
70729
70730
70731
70732
70733
70734
70735
70736
70737
70738
70739
70740
70741
70742
70743
70744
70745
70746
70747
70748
70749
70750
70751
70752
70753
70754
70755
70756
70757
70758
70759
70760
70761
70762
70763
70764
70765
70766
70767
70768
70769
70770
70771
70772
70773
70774
70775
70776
70777
70778
70779
70780
70781
70782
70783
70784
70785
70786
70787
70788
70789
70790
70791
70792
70793
70794
70795
70796
70797
70798
70799
70800
70801
70802
70803
70804
70805
70806
70807
70808
70809
70810
70811
70812
70813
70814
70815
70816
70817
70818
70819
70820
70821
70822
70823
70824
70825
70826
70827
70828
70829
70830
70831
70832
70833
70834
70835
70836
70837
70838
70839
70840
70841
70842
70843
70844
70845
70846
70847
70848
70849
70850
70851
70852
70853
70854
70855
70856
70857
70858
70859
70860
70861
70862
70863
70864
70865
70866
70867
70868
70869
70870
70871
70872
70873
70874
70875
70876
70877
70878
70879
70880
70881
70882
70883
70884
70885
70886
70887
70888
70889
70890
70891
70892
70893
70894
70895
70896
70897
70898
70899
70900
70901
70902
70903
70904
70905
70906
70907
70908
70909
70910
70911
70912
70913
70914
70915
70916
70917
70918
70919
70920
70921
70922
70923
70924
70925
70926
70927
70928
70929
70930
70931
70932
70933
70934
70935
70936
70937
70938
70939
70940
70941
70942
70943
70944
70945
70946
70947
70948
70949
70950
70951
70952
70953
70954
70955
70956
70957
70958
70959
70960
70961
70962
70963
70964
70965
70966
70967
70968
70969
70970
70971
70972
70973
70974
70975
70976
70977
70978
70979
70980
70981
70982
70983
70984
70985
70986
70987
70988
70989
70990
70991
70992
70993
70994
70995
70996
70997
70998
70999
71000
71001
71002
71003
71004
71005
71006
71007
71008
71009
71010
71011
71012
71013
71014
71015
71016
71017
71018
71019
71020
71021
71022
71023
71024
71025
71026
71027
71028
71029
71030
71031
71032
71033
71034
71035
71036
71037
71038
71039
71040
71041
71042
71043
71044
71045
71046
71047
71048
71049
71050
71051
71052
71053
71054
71055
71056
71057
71058
71059
71060
71061
71062
71063
71064
71065
71066
71067
71068
71069
71070
71071
71072
71073
71074
71075
71076
71077
71078
71079
71080
71081
71082
71083
71084
71085
71086
71087
71088
71089
71090
71091
71092
71093
71094
71095
71096
71097
71098
71099
71100
71101
71102
71103
71104
71105
71106
71107
71108
71109
71110
71111
71112
71113
71114
71115
71116
71117
71118
71119
71120
71121
71122
71123
71124
71125
71126
71127
71128
71129
71130
71131
71132
71133
71134
71135
71136
71137
71138
71139
71140
71141
71142
71143
71144
71145
71146
71147
71148
71149
71150
71151
71152
71153
71154
71155
71156
71157
71158
71159
71160
71161
71162
71163
71164
71165
71166
71167
71168
71169
71170
71171
71172
71173
71174
71175
71176
71177
71178
71179
71180
71181
71182
71183
71184
71185
71186
71187
71188
71189
71190
71191
71192
71193
71194
71195
71196
71197
71198
71199
71200
71201
71202
71203
71204
71205
71206
71207
71208
71209
71210
71

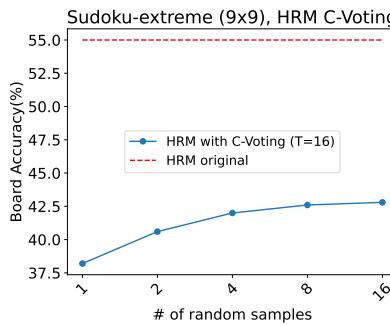


Figure 4: Board accuracy for Sudoku-extreme task of HRM with C-voting.

While the computational complexity of C-voting increases linearly with the number of votes, the computational complexity increase in HRM when increasing the maximum ACT step is expected to be sublinear. Note, however, that our results demonstrate C-voting can be scaled in a manner distinct from scaling in the direction of recurrence and does not focus on computational complexity.

6.5 VISUALIZATION OF CONFIDENCE

To analyze the reasons why the performance doesn't improve much on the Maze dataset compared to the Sudoku dataset, where it scales nicely, we visualize the confidence in this section.

First, we show the reliability diagram with several temperatures and the relationship between the expected calibration error (ECE) and average accuracy across all positions with 16 different initial states in Figure 5. When varying the temperature, the ranking of the probability for each position remains unchanged, but the average confidence slightly changes, allowing candidate rankings to fluctuate a little. In fact, calibration does change, with ECE reaching a minimum at $T=2$. However, we also observe that the impact of calibration on average accuracy across all positions is limited. In our setting, C-voting relies on the relative ordering of confidence among sampled candidates, rather than the absolute calibration measured by ECE. Temperature scaling changes the absolute confidence values but preserves the top-1 ordering within each cell, explaining why ECE varies while accuracy remains nearly unchanged.

We show the distributions of confidence for 32 samples with 32 different initial states grouped by whether predictions are correct in Figure 6. For the Sudoku-extreme samples, we observe a broader distribution for incorrect samples than for correct samples. This indicates that when problems are difficult, predictions become unstable due to the randomness of the initialization. On the other hand, the lower histogram, which is from the Maze-hard samples, shows that even for the incorrect predictions, the distribution is tight. This suggests that the model possesses incorrect confidence in the Maze-hard samples, regardless of its initial state.

Figure 7 shows the relationship between the number of iteration steps and confidence for 32 random initial states. In all cases, it can be seen that confidence increases as the number of iteration steps increases. For the Sudoku-extreme dataset, the confidence is low when predictions are incorrect. In contrast, this trend is not observed in Maze-hard, which again indicates that the model has incorrect confidence for incorrectly-predicted samples in the Maze-hard dataset.

7 DISCUSSION AND CONCLUSION

We propose C-voting, a new test-time voting strategy applicable even when the explicit energy function is not defined. It starts from multiple initial random latent states in models with recurrent structures and selects the best candidate based on confidence.

It provides test-time scaling other than increasing recursion depth. We show that C-voting can be integrated into AKOrN, and find that it outperforms E-voting in subsection 6.2. Although the reason

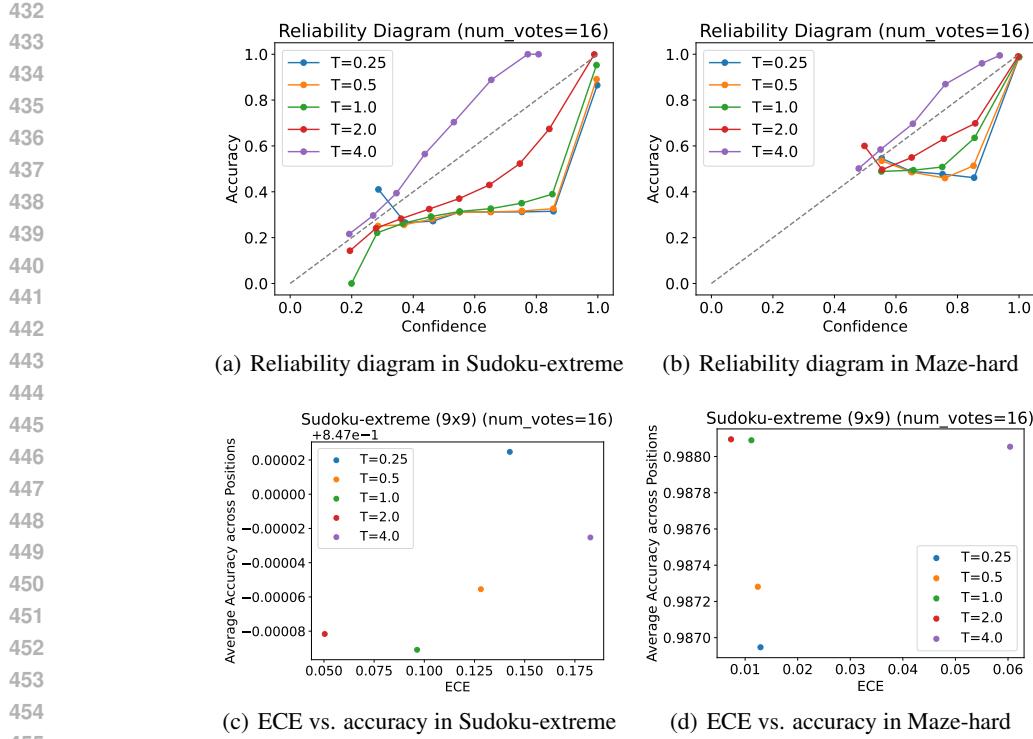


Figure 5: Visualization of calibration of ItrSA++.

for the improvement is not yet clear, at least in the Sudoku task, the confidence may be a more direct proxy for board accuracy than energy.

C-voting achieves state-of-the-art performance by integrating with a new lightweight recurrent model. We introduce ItrSA++ in section 5 as a simple but powerful example of recurrent models for which C-voting can be applied. In subsection 6.3, we demonstrate that ItrSA++ integrated with C-voting outperforms AKOrN in *Sudoku tasks*, and HRM in *Sudoku* and *Maze-hard* tasks.

For models such as AKOrN and ItrSA++, which are trained to operate with random initializations, the sampled candidates evolve into meaningfully different predictions, making C-voting effective. For HRM, however, the original design relies on a fixed initial state shared across all inputs. Introducing randomness at inference time breaks this assumption and can lead to similar or unstable hidden-state evolutions across samples, which fundamentally limits the improvement obtainable from C-voting. Nevertheless, even under this mismatch, we still observe non-trivial gains when the number of samples increases.

As seen in subsection 6.5, performance gains from voting are limited when the model holds incorrect confidence or makes similar predictions regardless of initial random variables. On the other hand, it would also be possible that even if the prediction accuracy of the models cannot be improved, C-voting may still enhance performance by making the models produce more diverse outputs.

Since voting based on confidence corresponds to the maximization of average accuracy across all positions, as shown in equation 14, it would be useful for masked language models (Devlin et al., 2019; Joshi et al., 2020; Li et al., 2022), text infilling (Zhu et al., 2019; Raffel et al., 2020), or image inpainting (Lugmayr et al., 2022; Pathak et al., 2016). Furthermore, using other uncertainty metrics, such as entropy or the sum of log probabilities, may potentially improve performance for specific tasks. We would like to address these as topics for future research.

Reproducibility Statement We provide anonymized codes containing training and evaluation scripts for HRM with C-voting, AKOrN with C/E-voting, and ItrSA++. We specify all hyper-parameters in Tables 1–3, including optimizer settings, gradient clipping, EMA, iteration steps T,

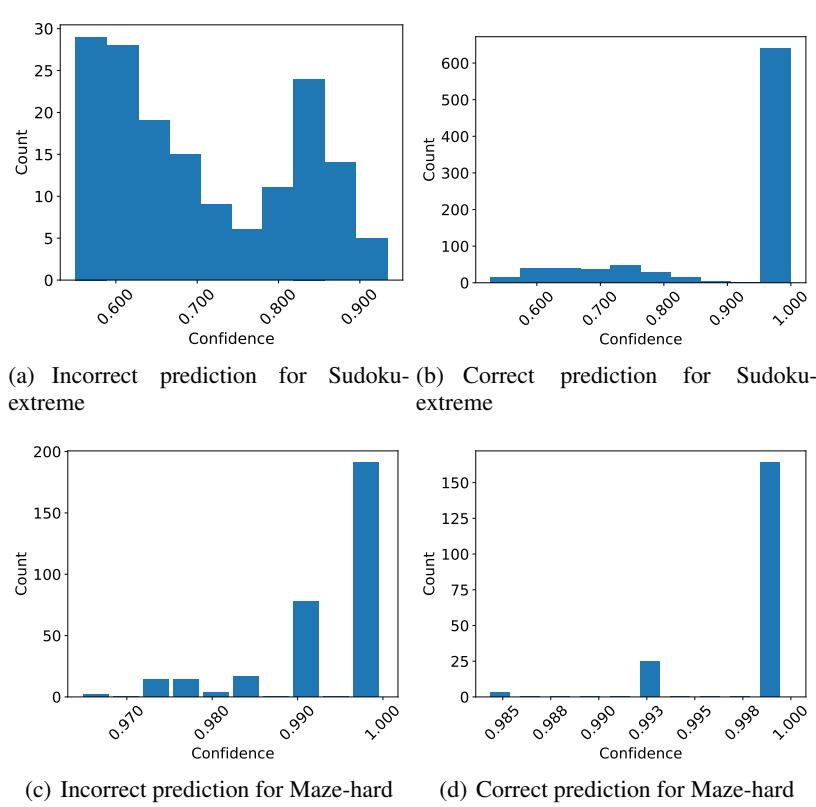
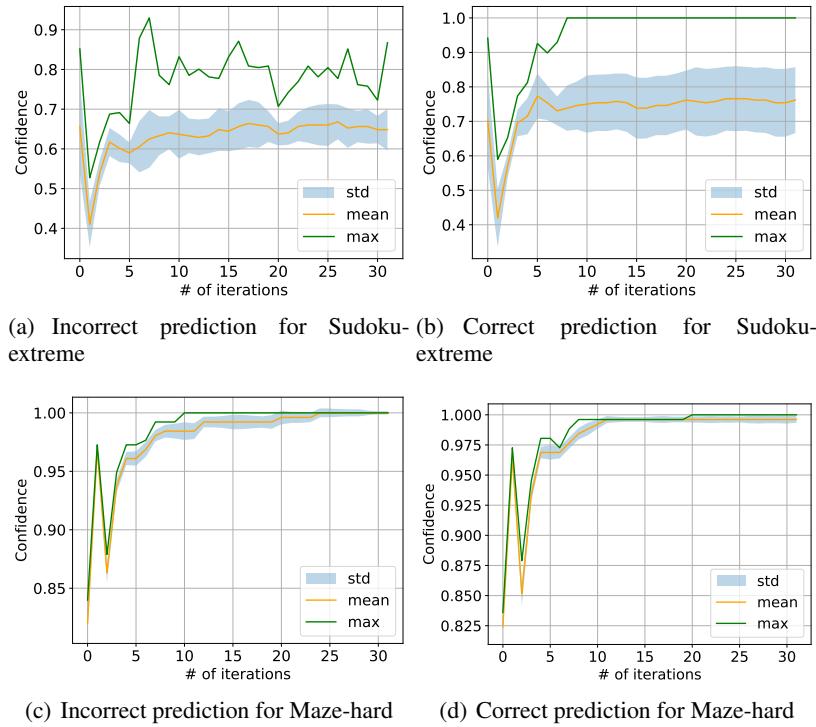
Figure 6: Distributions of confidence of ItrSA++ at $t = 32$.

Figure 7: Time step dependency of confidence.

540 and the number of attention heads. We also provide exact data preprocessing and augmentation
 541 pipelines for Sudoku, Sudoku-hard, Sudoku-extreme, and Maze-hard.
 542

543 **544 REFERENCES**

545 Cem Anil, Ashwini Pokle, Kaiqu Liang, Johannes Treutlein, Yuhuai Wu, Shaojie Bai, J Zico Kolter,
 546 and Roger Baker Grosse. Path independent equilibrium models can better exploit test-time com-
 547 putation. In *Advances in Neural Information Processing Systems*, October 2022.

548 Shaojie Bai, J Zico Kolter, and Vladlen Koltun. Deep equilibrium models. *arXiv [cs.LG]*, September
 549 2019.

550 François Chollet. On the measure of intelligence. *arXiv preprint arXiv:1911.01547*, 2019.

551 Francois Chollet, Mike Knoop, Gregory Kamradt, Bryan Landers, and Henry Pinkard. Arc-agi-2:
 552 A new challenge for frontier ai reasoning systems. *arXiv preprint arXiv:2505.11831*, 2025.

553 Luke Darlow, Ciaran Regan, Sebastian Risi, Jeffrey Seely, and Llion Jones. Continuous thought
 554 machines. *arXiv preprint arXiv:2505.05522*, 2025.

555 Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Lukasz Kaiser. Universal
 556 transformers. In *International Conference on Learning Representations*, 2019. URL <https://openreview.net/forum?id=HyzdRiR9Y7>.

557 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
 558 bidirectional transformers for language understanding. In *Proceedings of the 2019 conference of
 559 the North American chapter of the association for computational linguistics: human language
 560 technologies, volume 1 (long and short papers)*, pp. 4171–4186, 2019.

561 Katie Everett, Lechao Xiao, Mitchell Wortsman, Alexander A Alemi, Roman Novak, Peter J Liu,
 562 Izzeddin Gur, Jascha Sohl-Dickstein, Leslie Pack Kaelbling, Jaehoon Lee, et al. Scaling expo-
 563 nents across parameterizations and optimizers. *arXiv preprint arXiv:2407.05872*, 2024.

564 Jonas Geiping, Sean McLeish, Neel Jain, John Kirchenbauer, Siddharth Singh, Brian R. Bartoldson,
 565 Bhavya Kailkhura, Abhinav Bhatele, and Tom Goldstein. Scaling up test-time compute with
 566 latent reasoning: A recurrent depth approach. *CoRR*, abs/2502.05171, February 2025. URL
 567 <https://doi.org/10.48550/arXiv.2502.05171>.

568 Alexi Gladstone, Ganesh Nanduru, Md Mofijul Islam, Peixuan Han, Hyeonjeong Ha, Aman Chadha,
 569 Yilun Du, Heng Ji, Jundong Li, and Tariq Iqbal. Energy-based transformers are scalable learners
 570 and thinkers, 2025. URL <https://arxiv.org/abs/2507.02092>.

571 Yunzhe Hu, Difan Zou, and Dong Xu. Hyper-SET: Designing transformers via hyperspherical
 572 energy minimization. *arXiv [cs.LG]*, 2025.

573 Andrew Jaegle, Felix Gimeno, Andy Brock, Oriol Vinyals, Andrew Zisserman, and Joao Carreira.
 574 Perceiver: General perception with iterative attention. In *International conference on machine
 575 learning*, pp. 4651–4664. PMLR, 2021.

576 Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S Weld, Luke Zettlemoyer, and Omer Levy. Span-
 577 bert: Improving pre-training by representing and predicting spans. *Transactions of the association
 578 for computational linguistics*, 8:64–77, 2020.

579 Tero Karras, Miika Aittala, Jaakko Lehtinen, Janne Hellsten, Timo Aila, and Samuli Laine. An-
 580 alyzing and improving the training dynamics of diffusion models. *ArXiv*, abs/2312.02696, 2023.
 581 URL <https://api.semanticscholar.org/CorpusID:265659032>.

582 Yoshiki Kuramoto. Self-entrainment of a population of coupled non-linear oscillators. In *Inter-
 583 national Symposium on Mathematical Problems in Theoretical Physics*, pp. 420–422. Springer-
 584 Verlag, Berlin/Heidelberg, 1975.

594 Hojoon Lee, Hyeonseo Cho, Hyunseung Kim, Donghu Kim, Dugki Min, Jaegul Choo, and
 595 Clare Lyle. Slow and steady wins the race: Maintaining plasticity with hare and tortoise
 596 networks. *ArXiv*, abs/2406.02596, 2024. URL <https://api.semanticscholar.org/CorpusID:270258586>.

598 Siyuan Li, Zicheng Liu, Juanxi Tian, Ge Wang, Zedong Wang, Weiyang Jin, Di Wu, Cheng Tan,
 599 Tao Lin, Yang Liu, Baigui Sun, and Stan Z. Li. Switch ema: A free lunch for better flatness and
 600 sharpness. *ArXiv*, abs/2402.09240, 2024. URL <https://api.semanticscholar.org/CorpusID:267657558>.

603 Xiang Li, John Thickstun, Ishaan Gulrajani, Percy S Liang, and Tatsumi B Hashimoto. Diffusion-
 604 lm improves controllable text generation. *Advances in neural information processing systems*, 35:
 605 4328–4343, 2022.

606 Max Lipton, Renato Mirollo, and Steven H Strogatz. The kuramoto model on a sphere: Explaining
 607 its low-dimensional dynamics with group theory and hyperbolic geometry. *arXiv [math.DS]*, July
 608 2019.

609 Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher Yu, Radu Timofte, and Luc Van Gool.
 610 Repaint: Inpainting using denoising diffusion probabilistic models. In *Proceedings of the
 611 IEEE/CVF conference on computer vision and pattern recognition*, pp. 11461–11471, 2022.

612 Takeru Miyato, Bernhard Jaeger, Max Welling, and Andreas Geiger. GTA: A geometry-aware attention
 613 mechanism for multi-view transformers. In *The Twelfth International Conference on Learning
 614 Representations*, 2024. URL <https://openreview.net/forum?id=uJVHygNeSZ>.

615 Takeru Miyato, Sindy Löwe, Andreas Geiger, and Max Welling. Artificial kuramoto oscillatory
 616 neurons. In *The Thirteenth International Conference on Learning Representations*, 2025. URL
 617 <https://openreview.net/forum?id=nwDRD4AMoN>.

618 Rasmus Palm, Ulrich Paquet, and Ole Winther. Recurrent relational networks. *Advances in neural
 619 information processing systems*, 31, 2018.

620 Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, and Alexei A Efros. Context
 621 encoders: Feature learning by inpainting. In *Proceedings of the IEEE conference on computer
 622 vision and pattern recognition*, pp. 2536–2544, 2016.

623 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
 624 Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
 625 transformer. *Journal of machine learning research*, 21(140):1–67, 2020.

626 Nikunj Saunshi, Nishanth Dikkala, Zhiyuan Li, Sanjiv Kumar, and Sashank J Reddi. Reasoning
 627 with latent thoughts: On the power of looped transformers. *arXiv preprint arXiv:2502.17416*,
 628 2025.

629 Noam Shazeer. Glu variants improve transformer. *arXiv preprint arXiv:2002.05202*, 2020.

630 ARC Prize Team. The hidden drivers of hrm’s performance on arc-agi, 2025. URL <https://arcprize.org/blog/hrm-analysis>.

631 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 632 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information
 633 processing systems*, 30, 2017.

634 Guan Wang, Jin Li, Yuhao Sun, Xing Chen, Changling Liu, Yue Wu, Meng Lu, Sen Song, and
 635 Yasin Abbasi Yadkori. Hierarchical reasoning model. 2025. URL <https://arxiv.org/abs/2506.21734>.

636 Po-Wei Wang, Priya Donti, Bryan Wilder, and Zico Kolter. Satnet: Bridging deep learning and log-
 637 ical reasoning using a differentiable satisfiability solver. In *International Conference on Machine
 638 Learning*, pp. 6545–6554. PMLR, 2019.

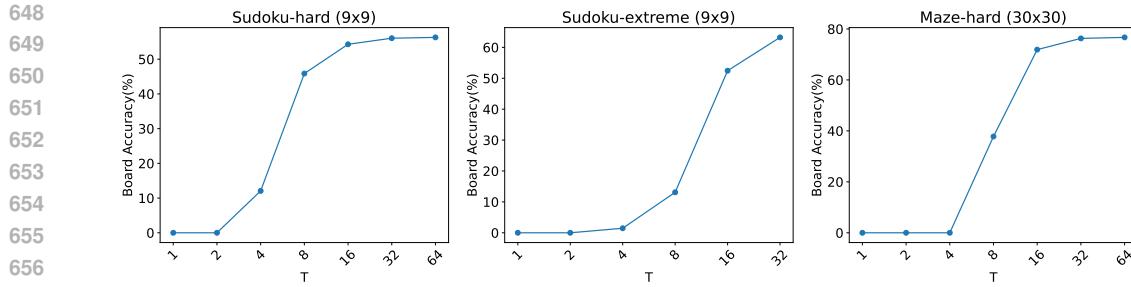


Figure 8: Test-time scaling in ItrSA++

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models. In *The Eleventh International Conference on Learning Representations*, 2023. URL <https://openreview.net/forum?id=1PL1NIMMrw>.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. *Advances in neural information processing systems*, 36:11809–11822, 2023.

Biao Zhang and Rico Sennrich. Root mean square layer normalization. *Advances in Neural Information Processing Systems*, 32, 2019.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans, Claire Cui, Olivier Bousquet, Quoc Le, et al. Least-to-most prompting enables complex reasoning in large language models. *arXiv preprint arXiv:2205.10625*, 2022.

Wanrong Zhu, Zhiting Hu, and Eric Xing. Text infilling. *arXiv preprint arXiv:1901.00158*, 2019.

A TEST-TIME SCALING IN ITRSA++

ItrSA++ has recursive structures similar to models such as the recurrent transformer (Geiping et al., 2025; Jaegle et al., 2021), and test-time scaling can be observed. Figure 8 demonstrates that for Sudoku-hard, Sudoku-extreme, and Maze-hard tasks, board accuracy increases as the number of iterative steps grows in ItrSA++.

B TRANSFORMER WITH C-VOTING

To validate the performance improvement by C-voting for other than recurrent models, we also integrate it into a transformer and conduct experiments. Training is performed using the Sudoku dataset, and testing is performed using the Sudoku-hard dataset. This is the same problem setting as subsection 6.2. Unlike a standard transformer, it requires a random initial latent state to use C-voting. Therefore, we mix the input x and the initial latent state z using a linear layer before feeding them into the transformer.

Figure 9 shows the dependence of board accuracy on the number of random samples for initial states. Since the transformer is not performing well on the Sudoku-hard task, performance improvements through C-voting are also limited.

C EXPERIMENTAL DETAILS

In this section, we provide an overview of the experimental details. We apply exponential moving average (Karras et al., 2023; Lee et al., 2024; Li et al., 2024) for the model parameters of ItrSA++ and AKOrN. We adopt gradient truncation (Geiping et al., 2025) for ItrSA++. More precisely, during the training, we detach the gradient of the latent state z_t at $t = 2$ for Sudoku, at $t = 14$ for

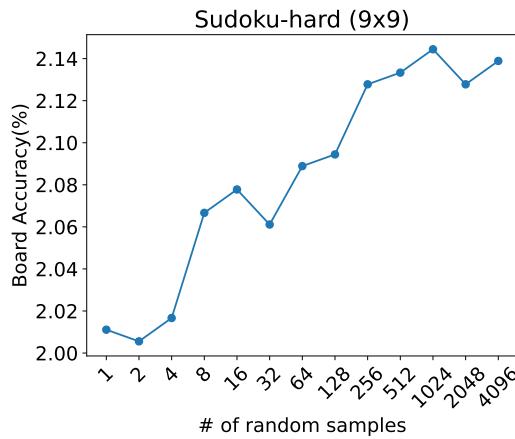


Figure 9: Board accuracy of a transformer with C-voting.

Parameter	Value
Optimizer	AdamW
β for Adam	(0.9, 0.95)
Weight decay	0.01
Gradient clipping threshold	1.0
Learning rate	5×10^{-4}
Batch size	64
EMA decay rate	0.995
# of heads	12
Embedding dims.	384
# of repetitions of Self-Attn.	4

Table 1: Hyperparameters for ItrSA++.

Sudoku-extreme, and at $t = 28$ for Maze. We show the hyperparameters for ItrSA++ in Table 1, for HRM in Table 2, and for AKOrN in Table 3. The number of parameters is ≈ 3 million for AKOrN and ItrSA++, and ≈ 27 million for HRM with these settings.

Parameter	Value
Optimizer	Adam-atan2 (Everett et al., 2024)
β for Adam	(0.9, 0.95)
Weight decay	1.0
Gradient clipping threshold	1.0
Learning rate	1×10^{-4}
Warm-up steps	2000
Batch size	768
# of heads	8
Embedding dimension	512
Epochs	20000
# of H layers	4
# of L layers	4
Halt exploration prob.	1.0

Table 2: Hyperparameters for modified HRM.

Parameter	Value
Optimizer	Adam
β for Adam	(0.9, 0.999)
Gradient clipping threshold	1.0
Learning rate	5×10^{-4}
Batch size	100
EMA decay rate	0.995
# of heads	8
Embedding dimension	512
Epochs	100
# of iteration steps	16
# of Kuramoto layers	1
Oscillator dims.	4
Step size	1.0
Connectivity	Attention

Table 3: Hyperparameters for AKOrN.

Variant	Board acc. in test
w/o GT	0.0%
w/o EMA	0.0%
Cross attn. to linear	59.2%
SWiGLU to FFN	62.0%
ItrSA++(Proposed)	63.2%

Table 4: Ablation study for ItrSA++

D ABLATION STUDY OF ITRSA++

To clarify the contribution of each architectural and inference component of ItrSA++, we conduct ablation experiments on Sudoku-extreme. Table 4 summarizes the results.

Overall, the ablations demonstrate that (1) ItrSA++ requires EMA and GT for stable training, (2) the cross-attention block provides meaningful improvements in reasoning ability.

We further examine how the effectiveness of voting changes when using metrics other than top-1 probability $\hat{P}_l(\mathbf{z}_{i,T}^{(k)})$ in Equation 9. Specifically, we use negative entropy (NE) and the sum of log probability (LP) defined below.

$$\hat{P}_l^{(\text{NE})}(\mathbf{z}_{i,T}^{(k)}) = \sum_j P_{j,l}(\mathbf{z}_{i,T}^{(k)}) \log P_{j,l}(\mathbf{z}_{i,T}^{(k)}) \quad (20)$$

$$\hat{P}_l^{(\text{LP})}(\mathbf{z}_{i,T}^{(k)}) = \max_j \log P_{j,l}(\mathbf{z}_{i,T}^{(k)}) \quad (21)$$

The results with ItrSA++ are shown in Figure 10. For Sudoku-extreme, almost no difference is observed, and even in Maze-hard, the difference is only about 0.1%. This is thought to be because when the top-1 probability is dominant, there is little difference in ranking across metrics. On the other hand, since it facilitates analyses such as Equation 14, we adopt the top-1 probability.

E PERFORMANCE DEPENDENCY ON RANDOM SEEDS

Our method uses random variables, so performance may vary when different random seeds are used. To verify this, we perform inference on ItrSA++ with C-voting using multiple random seeds. Figure 11 shows the box plots of the results obtained using five different seeds. Compared with Sudoku-extreme, Maze-hard exhibits greater seed dependence, though it remains at around 1%. However, looking at the median, board accuracy increases almost monotonically, indicating that the overall results are not significantly affected.

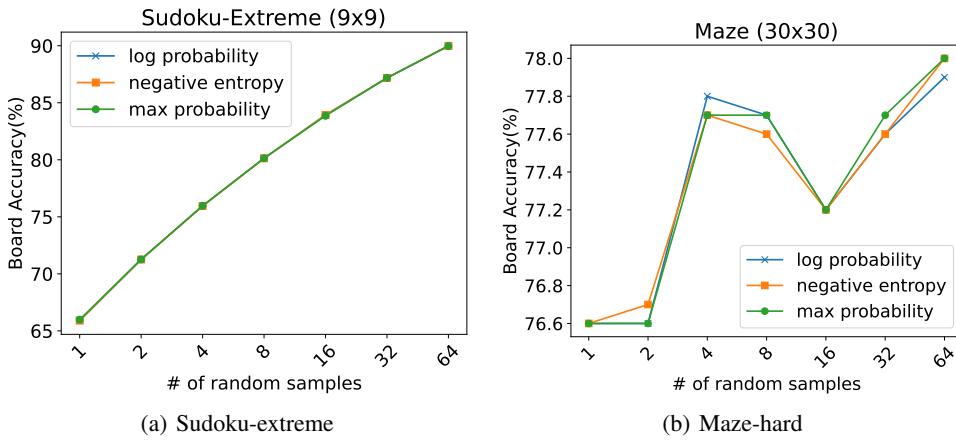


Figure 10: Comparison of voting effects across different metrics.

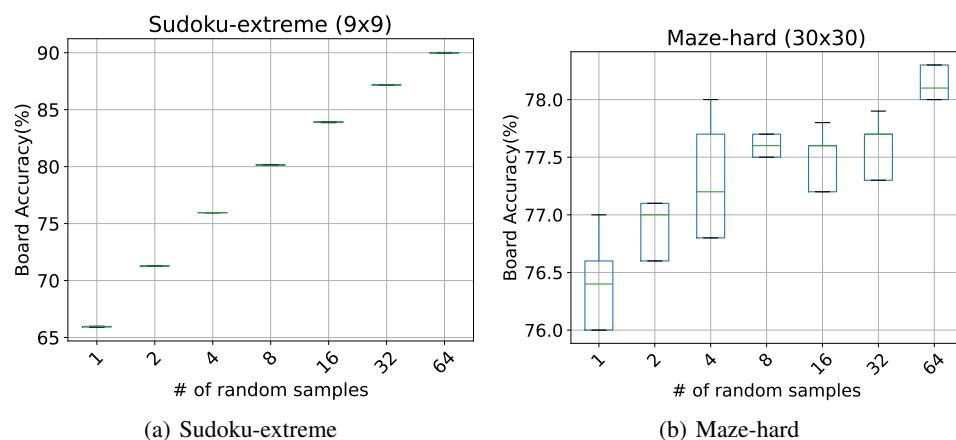


Figure 11: Random seed dependency of board accuracy.

864 **F USE OF LARGE LANGUAGE MODELS**
865

866 We use large language models (LLMs) to refine writing for this paper and partially use them for
867 code generation of experiments. We also use LLMs to help explore related works.
868

869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917