
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

ORFA: Exploring WebAssembly as a Turing CompleteQuery
Language for Web APIs

Anonymous Author(s)
Abstract
Web APIs are the primary communication form for Web services,
with RESTful design being the predominant paradigm. However,
RESTful APIs are typically fixed once defined, causing data under-
or over-fetching as they can’t meet clients’ varying Web service
needs. While semantic enriched API query languages like GraphQL
mitigates this problem, they still face expressiveness limitations for
logical operations such as indirect queries and loop traversals. To
address this, we propose ORFA (One Request For All), the first in lit-
erature that employsWebAssembly (Wasm) as aWeb API query lan-
guage to achieve complete expressiveness of client requests. ORFA’s
key advantage lies in its use of Wasm’s Turing completeness to al-
low clients to compose arbitrary operations within a single request,
thus significantly eliminating redundant data transmission and
boosting communication efficiency. Technically, ORFA provides a
runtime for executing Wasm query programs and incorporates new
module splitting strategies and a caching mechanism customized
for integrating Wasm into Web API services, which can enable
lightweight code transfer and fast request responses. Experimental
results on a realistic testbed and popular Web applications show
that ORFA effectively reduces latency by 18.4% and network traffic
by 24.5% on average, compared to the state-of-the-art GraphQL.

Keywords
Web API, WebAssembly, Query Language, Expressiveness, Runtime

1 Introduction
In modernWeb systems, Web APIs play a crucial role as the primary
method of co-operation and communication between -services [1,
2, 3], particularly in microservice architectures [4, 5]. Web service
interfaces are required to support increasingly complex network
services and have evolved from traditional Restful APIs [6] to more
flexible solutions such as GraphQL [7]. As illustrated in Figure 1,
different clients may request various types of information through
theAPI to interact with theWeb server. Despite varying client needs,
RESTful APIs are generally fixed in service, which can easily cause
data over-fetching and under-fetching in practice [8, 9, 10, 11]. Over-
fetching occurs when the server’s response includes more data than
the client requires, leading to unnecessary network transmission
costs, while under-fetching happens when the data returned is
insufficient, forcing the client to make additional requests.

GraphQL is the state-of-the-art query language that can mitigate
these data over-fetching and under-fetching issues at Web ser-
vices, given its enhanced expressiveness. For instance, in a scenario
where client A only needs create_time and client B requires only the
last_login time of the target user, both clients use a GET /user/{id} re-
quest if using RESTful style APIs. This causes unnecessary network

WWW ’25, April 28–May 02, 2025, Sydney, Australia
2024. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

External
Service

Desktop

Mobile

Web API
Service

(GraphQL)

query{ users{
 id, create_time,
 last_login } }

{ "users": [
 { "id": ...,
 "create_time": ...,
 "last_login": ... },
 {...}, {...}, ...] }

Figure 1: A typical modern Web API service example that
supports various clients with varying needs.

transmission since redundant information will be returned using
this query. In contrast, with improved expressiveness of GraphQL,
the clients can submit query{user{id, create_time}} and query{user{id,
last_login}} to acquire the exact required information, effectively
saving network resources by eliminating over-fetching. On the
other hand, under-fetching can also occur by using RESTful style,
which causes significant back-and-forth communications across the
network. As shown in Figure 2 (top), GET /user/{id} request is for
acquiring detailed information of user {id} like privilege roles; and
POST /user/{id}/notice for sending notification. Then, to implement
the logic of "sending notifications to admins", the client needs to
send 1 +𝑚 + 𝑛 requests, where 𝑚 is the user count and 𝑛 is the
admin count. In contrast, the same operation can be accomplished
via GraphQL in just two requests, as detailed in Figure 2 (middle).
Apparently, enhanced expressiveness significantly helps shorten
the operation time and reduces the data transmitted.
Expressiveness limitations of GraphQL. Despite its improved
expressiveness, GraphQL still has a critical limitation in that it
is not Turing complete, meaning not all operations can be accom-
plished within a single request. In practice, some common logic
patterns such as indirect queries [12] and loop traversals [13] re-
main inexpressible by GraphQL. For instance, due to GraphQL’s
inability to mix querys and mutations, at least two requests are
needed to accomplish the task, shown in Figure 2 (middle). If we
elevate the expressiveness of the query language to a Turing com-
plete level, e.g., allowing clients to send a program as a query, then
it theoretically enables arbitrarily complex operations performed
in a single query, realizing the full potential of “One Request For
All”. Demonstrated by Figure 2 (bottom), with a Turing complete
query language (like C), only one request is needed for this task.
Thus, there still remains significant potential for further enhancing
expressiveness.

However, implementing this Turing complete idea poses practi-
cal challenges. Executing client-provided programs on the server

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

WWW ’25, April 28–May 02, 2025, Sydney, Australia Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

C
lie
nt

Se
rv
er

GET /users

GET /users/{id} *m

POST /users/{id}/notice *n

C
lie
nt

Se
rv
er

query {

 users(filter: {...}) { id name }
}

mutation {

 a: notify(id:"a", msg:"how") { ok }
 b: notify(id:"b", msg:"are") { ok }

 c: notify(id:"c", msg:"you") { ok }
 ...

}

C
lie
nt

Se
rv
erfor (int i = 0; i < userNum; ++i) {

 if (filter(users[i]))

 notify(users[i], "...");
}

RESTful

1+m+n
requests

GraphQL

2
requests

Turing
Complete

1
request

Figure 2: An example illustrating data under-fetching using
RESTful (top), problemmitigation by GraphQL (middle), and
the best solution using a Turing Complete language (bottom).

introduces data and resource security risks, as these programsmight
exploit vulnerabilities or overconsume resources. To address these
risks, the programming language used for queries and its inter-
preter must enforce strong data isolation and resource constraints,
which traditional languages often lack. Fortunately, WebAssembly
(Wasm) [14] meets the strict security requirements. Wasm is a Tur-
ing complete intermediate representation (IR) with built-in perfor-
mance and security mechanisms, originally for running server-sent
programs in client browsers with strong safety guarantees. More-
over, the core of Wasm [15] is neural and general-purpose, making
it suitable for applications beyond the browser.

Building on these insights, this paper explores the novel use of
Wasm as a Turing-complete query language for Web APIs. Tradi-
tionally, Wasm is employed in a server-to-client model, where the
server sends Wasm binaries to the client (often a Web browser)
for secure execution in a sandbox environment. Our approach re-
verses this conventional flow by enabling clients to send queries as
Wasm programs to the server, which poses unique implementation
challenges. 1○ The foremost problem is the programming model,
i.e., how should the Wasm program be written, executed, and de-
bugged in such a new querying scenario? 2○ Although Wasm is
more compact than traditional binary programs like x86 ELF files,
it is still too large for most query use cases. Typical queries are
only a few kilobytes in size, whereas even the simplest hello-world
Wasm program can exceed 100 kilobytes, which can greatly burden
the request initiation. 3○ Unlike GraphQL, Wasm programs spend
much more time on compilation and instantiation before execution,
thus necessitating an effective solution to reuse previously served
programs, particularly for repeated queries.

We give our solutions to the above-mentioned issues in this
paper. Specifically, the contributions of this work are as follows:

(1) We highlight the necessity of enhancing expressiveness
for Web API requests and the imperfection of the SOTA

GraphQL in terms of completeness, which motivate us to
propose ORFA, a Web-oriented framework employingWasm
as the query language to achieve Turing completeness and
reaches the goal of "One Request For All".

(2) We introduce ORFA’s programming model and explain how
to program, execute and debug the query programs. To
reduce the size of the query module, we propose a novel
module splitting technique that utilizes Wasm’s inherit im-
port/export functionality and avoids relocation overhead in
existing linking methods. We also design a caching mecha-
nism for ORFA that significantly reduces the startup latency,
program transmission, and resource usage at the servers.
Ourmechanism achieves a new application ofWasm toWeb
API querying scenarios with effective solutions addressing
the program size and startup problems simultaneously.

(3) Evaluations on representative system andworkloads demon-
strate that ORFA remarkably reduces request latency and
network traffic, effectively outperforming the traditional
RESTful APIs and the state-of-the-art GraphQL.

2 Background and Related Works
RESTful Web API. Modern Web systems rely on Web APIs for
inter-service communication and co-operation [1, 2, 3], especially
in distributed and microservice architecture [4, 5]. Although many
protocols can be used for Web APIs, such as SOAP [16], JSON-
RPC [17], etc., RESTful style that directly utilizes the elements in
the HTTP protocol has become the default choice for Web API
design [18, 19, 3, 5]. REST [6] is not a specific protocol, but rather a
vague set of design rules and guidelines. OpenAPI [20] specification
is an effort to formalize and standardize REST that defines a format
to describe and document APIs in an organized and predictable
manner, serving both for humans and machines.
GraphQL and Query Languages. GraphQL has become a popular
supplement and alternative for traditional RESTful API design. By
2023, as many as 23% software projects have adopted GraphQL [21],
with industrial companies such as GitHub, Shopify, and Yelp imple-
menting it. Practical evidence has demonstrated that GraphQL can
significantly reduce engineering efforts, accelerate development [9],
and decrease communication overheads [8], strongly demonstrating
the necessity and feasibility of enhancing expressiveness. Netflix
previously addressed the inflexibility of traditional Web APIs with
Falcor [22], a JavaScript library rather than an formal query lan-
guage. However, due to GraphQL’s growing popularity, Netflix has
discontinued Falcor. Other techniques, such as OData [23] and HT-
SQL [24], embed SQL queries into HTTP URLs for client request
customization. But they are limited to specific application scenarios
and thus do not generalize well for broader Web API use cases.
Query languages are more commonly associated with database sys-
tems, as seen with graph query languages including SPARQL [25],
Cypher [26], Gremlin [27], and more. These database scenarios
are different from Web services in that databases manage well-
structured, static data, while Web services handle more dynamic
and client-specific interactions. Therefore, Turing completeness is
not the focus and primary goal of database works.
WebAssembly (Wasm) was proposed to address the performance
limitations of JavaScript on the currentWeb platform [14]. The strict

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

ORFA: Exploring WebAssembly as a Turing CompleteQuery Language for Web APIs WWW ’25, April 28–May 02, 2025, Sydney, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

security limitations of browsers ensure thatWasm is executed in iso-
lated sandbox environments with strong safety features. Although
originally designed for the Web, Wasm’s language design avoids
introducing Web-specific components and keeps its core purely
computational. As a result, it has become an ideal, general-purpose
intermediate representation suitable for various systems and has
been widely applied to many outside-browser domains, including
cloud and serverless computing [28, 29], high-performance com-
puting [30, 31], and the Internet of Things [32, 33]. Similarly, Wasm
can be very promising to reshape and empower the query-based
Web systems.
Wasm-based Server-side Remote Execution. The native use of
Wasm is to execute programs sent by Web servers, inside client
browsers. But this paper aims at the reverse, i.e., sending query
programs from the clients to be executed on the server. In fact,
the practice of sending Wasm to servers for remote execution is
not new, with one common usage to offload computation from
clients to servers for both Wasm [34, 35, 32] and JavaScript [36, 37,
38]. Nonetheless, the Web API querying scenario focused by ORFA
differs significantly from these works in terms of the program size,
execution time, and job amount by orders of magnitude. Therefore,
these techniques cannot replace ORFA. Wasm has also been widely
explored for serverless systems as a lightweight alternative for
Linux containers [39, 40, 29], where the Wasm programs act as
remote executions from the perspectives of serverless developers.
The Wasm programs in these systems function as normal Web
services and are pre-uploaded to the serverless platform, whereas
ORFA’s query programs are dynamic and unpredictable. As far as we
know, no existing works have used Wasm as a query language for
Web APIs to enable the complete expressiveness of client requests.

3 ORFA
3.1 Overview

Server

Web API

Service

Other
Microservices

Req ×n

Wasm Engine

HTTP
API

ORFA runtime

Cache

Wasm
Query
Module

Query

Data

Wasm
Env

Module

Client

 Application

Req ×1

Req ×n

Client
Application

Internet

ORFA

Programing

Client
Application

Query
Source
Code

Figure 3: ORFA is a Wasm-based framework consisting of
programming supports and server-side runtime. The Wasm
query modules are programmed into client applications and
then sent to remote runtime for execution to issue multiple
local requests in substitution of original remote requests.

Figure 3 illustrates the overall architecture of ORFA, a framework
consisting of programming supports and server-side runtime. The
programming support aims to assist client developers to compose
their consecutive Web API operations into a Wasm query module,
embedded as part of the client application. The runtime is deployed

as a microservice alongside existing Web API microservices, mini-
mizing communication costs between them. At run time, the client
application sends the query module along with the associated query
data to the ORFA runtime for remote execution. The query module
is then combined with the environment module preloaded on the
server and executed within the Wasm engine, with existing query
program instances being reused if the cache hits. During execution,
the query module can perform arbitrary computations and send
requests to system-specified Web API services via ORFA’s HTTP
APIs. The Turing completeness of Wasm ensures that any complex
operational logic can be encapsulated within a single query module.
This approach allows the original n cross-internet remote Web
API requests to be reduced to 1 remote request plus n inexpensive
local requests, thereby reducing overall operational latency and
network traffic. On the other hand, forWeb API services, since ORFA
enables users’ customization for query operations, service devel-
opers now can refine Web API granularity to eliminate redundant
functionalities, thus reducing service code maintenance costs.

Table 1: Additional headers defined by ORFA.

Header Note
ORFA-Input Specify the length of input data in the mes-

sage body, used to separate input data and
Wasm module code.

ORFA-Limit Specify the required time and space for pro-
gram execution.

ORFA-Debug Used in debugging mode.
ORFA-Cache Specify cache mode and cache token for

caching mechanisms.
ORFA-Trust ECDSA signature of Wasm module, used for

verifying the integrity of the received pro-
gram.

The clients communicate with ORFA via the HTTP protocol, with
additional headers supporting ORFA’s functionalities, as summa-
rized in Table 1. The main components of the client’s request are
the query data and the Wasm query module, shown in Figure 3,
which are encoded in binary and concatenated to form the HTTP
request body, with the ORFA-Input header indicating the bound-
ary in between. If the query succeeds, ORFA puts the result in the
HTTP response body and returns it to the client. The specific con-
tent and encoding of the response body are entirely determined by
the query module. Here are two major differences between ORFA
and GraphQL: First, ORFA enforces the separation of query data
and the query program, whereas GraphQL allows the mixture of
the variable parts and the query code (refer to Figure 2), though
it does recommend the usage of variables to achieve such separa-
tion [41]. The enforcement caters to the usual static compilation
usage of Wasm and plays a key role in supporting ORFA’s caching
mechanism (§3.4). Second, GraphQL defines its response body as
JSON format corresponding to the request’s query structure, while
ORFA allows the query itself fully determines the response body,
allowing autonomous selection of the most efficient and compact
encoding method. This is attributed to the Turing complete expres-
siveness, which enables the computation required for encoding.

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

WWW ’25, April 28–May 02, 2025, Sydney, Australia Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

To prevent clients from abusing the computational resource, ORFA
uses the ORFA-Limit header to constrain the resource usage during
execution. The resource safety risks associated with enhanced ex-
pressiveness is unavoidable and also exists in non-Turing-complete
GraphQL [42, 43, 44, 45], but the success of GraphQL demonstrates
that these risks can be accepted in practice1.

3.2 Programming Web API Queries
Unlike usual Wasm programs, ORFA defines the query’s entry point
as a Wasm function named "orfa", which accepts two i32 parame-
ters representing the starting address and length of the query data
in the request body, respectively. Since Wasm is a general-purpose
intermediate representation supported by many programming lan-
guages, any language capable of generating such a Wasm function
can be used to write ORFA’s query modules. For simplicity and due
to the maturity of the toolchain, we choose C as the source language
in this work.

Query Data

GET / HTTP/1.1
... ORFA Runtime

void

orfa(void* req,

 int reqLen) {

 //

 done(res, resLen);
}

HTTP*n

Wasm

Query Module

Web API
Service

HTTP/1.1 200 OK
...

Response Data

Figure 4: Programming an ORFA query. The query data car-
ried in the request body is passed as parameters. The query
should submit the data to response body by calling done().
Arbitrary HTTP requests can be made to the specified Web
API service.

As shown in Figure 4, the entry point of the ORFA query program
corresponds to a C function with the signature void orfa(void*,
int). Before executing the orfa function, ORFA places the query data
from the request body into the Wasm program’s address space and
passes the starting address and data length as arguments. The query
then executes from the beginning of orfa, where programmers can
write arbitrary code for computation or calling functions from
Table 2 to interact with external services. Finally, at the end of
the query execution, the programmer should collect the necessary
data and encode it into a contiguous address space, then call the
done function to submit the data to the ORFA runtime. The data will
be put into the response body and returned to the client by ORFA,
thereby completing the query.

One thing to note about Table 2’s API design is that the function
used for issuing HTTP requests is asynchronous, thus allowing for
the overlapping of multiple Web API operations. Also, it is impor-
tant to point out that writing a practical query program requires
1Details of the solution to the resource safety risks, e.g. resource limiting policies, are
omitted due to space limit.

Table 2: Built-in functions in ORFA environment.

Function Note
void done(const void*,
uint32_t)

Submit the response data.

void Handle_del(Handle) Delete an object.
int32_t
Future_ready(Handle)

Check that whether a future
object is ready.

Handle http(Request*)
Send a HTTP reqeust asyn-
chronously, returning a future
object handle.

int32_t
Response_get(Handle,
Response*)

Extract data from a future ob-
ject if it’s ready.

significantly more supports than what is provided by the Wasm
built-in instructions and Table 2 ’s APIs, such as dynamic memory
allocation, string manipulation, JSON parsing, and more. Without
these supports, writing a query program would be exceptionally dif-
ficult. However, these supports are essentially purely computational
and can be implemented as Wasm functions. ORFA consolidates
these basic supports into a commonWasm environment module for
shared use across all requests. The specific implementation details
will be discussed in §3.3.

Equivalent Environment ORFA
Mock

ORFA

Native
Libs

Wasm
Libs

Query
Data

Web API
Services

debug mock

normal run

Log Data

Query
Code

Figure 5: The record and replay debugging of ORFA. The
ORFA Mock tool together with native libraries ensures the
equivalence of query execution environment.

The complexity of query code greatly surges along with the
enriched expressiveness, which thus crucially necessitates the sup-
port for debugging to facilitate query programming. In such Web
API querying scenario, connecting a debugger to a remote Wasm
runtime service is not feasible, as the queries are very short-live
and the server needs to handle massive queries, hence unavail-
able for interactive debugging with programmers. Therefore, we
choose an alternative design: recording and replaying the query
program’s execution. The availability of this approach highly relies
on the deterministic property of ORFA’s programming model: As
the Wasm core is fully sandboxed and purely computational, by
recording all inputs during the execution, the entire running pro-
cess can be reproduced elsewhere. To enable the recording, clients
set the ORFA-Debug header in its requests, and ORFA will respond
the recorded log data instead of the original query result. The log
data can be later used by our ORFA Mock tools at the client side
locally, as shown in Figure 5. The query code links to different en-
vironment libraries in normal execution and debugging simulation,

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

ORFA: Exploring WebAssembly as a Turing CompleteQuery Language for Web APIs WWW ’25, April 28–May 02, 2025, Sydney, Australia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

 Query
 Module

 Env
 Module memory

Query
Data

Query
Globals

Stack Heap

*other
funcs*

Env Exported

Query Exported

Variant Data

Invariant Data

*
O
R
F
A

A
P
I
s
*

Runtime Built-In

Env
Globals

_
_
s
t
a
c
k

_
p
o
i
n
t
e
r _
_
w
a
s
m
_
c
a
l
l

_
c
t
o
r
s

_
_
w
a
s
m
_
c
a
l
l

_
e
n
v
_
c
t
o
r
s

o
r
f
a

(
e
n
t
r
y
)

_
_
w
a
s
m
_
c
a
l
l

_
d
t
o
r
s

Figure 6: The splitting and recombination of the query module and environment module. This figure shows the export/import
relation of key elements of query and environment modules and the partition of memory space for the two modules.

and ORFA Mock ensures the equivalence of the simulated environ-
ment between real remote environment. This way, the query code
can be debugged locally like a normal program.

3.3 Shrinking Query Module Size
Using a normal Wasm module as the query program may bring
an serious issue that the program size itself greatly outweighs
the truly critical query data, thus potentially nullifying the traffic
reducing benefits of composing multiple requests into one. This
isn’t to say that Wasm format is bloated; in fact, quite the opposite
is true that Wasm programs are significantly smaller than typical
binary programs (such as x86 machine code). However, in our query
scenario, the programs are extremely small, with just a few kilobytes
usually, whereas even the simplest Wasm "Hello, World!" program
can exceed 100 KB. This discrepancy forces us to devise a method
to reduce the size of the query module.

We have identified that this issue arises from the semantic gap
between queries and Wasm. In detail, to support "simple" data
extraction and assembly operations in queries, Wasm programs
require a substantial amount of basic support code like dynamic
string concatenation from standard libraries. But just including
the musl libc from WASI-SDK [46] can cost over 1 MB, without
consideration of other libraries. If we could separate these common
basic codes from the query code and pre-load them onto the servers,
it would eliminate the need to repeatedly transfer them over the
Internet. Therefore, we propose a method to split a complete query
Wasm program into a query module and an environment module.
The environmentmodule contains the common basic code, provided
by the server and pre-loaded into ORFA. The query module includes
query-specific variable code, provided by the client and combined
with the environment module to form a whole Wasm program for
execution.

Figure 6 explains the splitting and recombination of the two mod-
ules. A compiledWasm programmainly consists of functions, which
can be easily split and recombined using the import and exportmech-
anisms. However, making functions from two separate modules
work together requires additional conventions that are not explic-
itly defined in the Wasm specifications. A representative example
is that both modules must agree on the memory layouts, which is
reflected in the addresses used by all memory access instructions
across all functions. Our design involves splitting the global vari-
able segment in the memory space into two regions with one for

the query module and another for the environment. We then cus-
tomize the Wasm linker to allocate different regions for the global
variables of each module, ensuring that they do not overlap. To
correctly access stack data, we export the global __stack_pointer
from the environment module and import it in the query module,
making both modules share a common stack. Finally, during the
query initialization process, the global constructors generated in
both modules, __wasm_call_env_ctors and __wasm_call_ctors,
should be both invoked in order to ensure proper execution of the
query code.

Be noted that our module splitting and recombination method is
neither existent static linking [47] nor dynamic linking [48]. It is
directly based on theWasm’s import and export mechanisms instead
and requires no additional compilation information. Accordingly,
one advantage of this splitting design is that it avoids the traditional
linking overhead of redirecting all memory access instructions, and
allows the environment module to be pre-loaded into ORFA.

3.4 Reducing Query Startup Latency
The execution of a Wasm query program consists of three phases,
i.e., compilation, instantiation and execution. The first two phases
are newly introduced compared to GraphQL. Considering that
query requests are typically short-lived and massive in scale, the
two phases may incur considerable startup overhead and latency.
On the other hand, unlike GraphQL, whose programs are in text
format and easy to be assembled dynamically, Wasm programs are
in binary format and usually compiled statically from hand-written
source code in high-level languages. As a result, Wasm query mod-
ules tend to remain unchanged during the run time of the client
applications, leading to repeated compilation and instantiation of
same query programs. Based on this observation, we extend ORFA
with a caching mechanism to store the compiled results (referred
to as the ORFA-code mode) or the initialized instances (referred to
as the ORFA-inst mode). The ORFA-inst mode can help eliminate
the startup overhead, achieving performance comparable to native
code, but requires additional server memory and more careful cod-
ing of the query module to make the Wasm instance stateless and
reusable.

To enable caching, the client must set the ORFA-Cache header in
the request, specifying the desired caching mode and the previously
cached token (if any). If the caching succeeds, the server then re-
turns the refreshed cache token, and the client can omit the Wasm

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

WWW ’25, April 28–May 02, 2025, Sydney, Australia Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

query module part in later requests to further reduce the network
overhead. For cache management, we employ a function-based [49]
strategy, which exploits a background thread to periodically check
the cache. If the number of cache items reaches a predefined thresh-
old, the thread removes the least valuable cache items. The value of
a cache item is calculated simply as the ratio of use counts to the
time since last use.

It is common to see the same query programs sent from different
front-end clients, as a client application usually serves many end-
users. To share caches of query programs between clients, the value
of the ORFA-Trust header is used as a key to retrieve the existing
cache token at the first caching request. The ORFA-Trust value is a
cryptographic signature of the query program, whose private key
is generated by the client developers, and the corresponding public
key is given to server maintainers and preset into the ORFA service.
Using cryptographic signatures instead of plain hashes can also
helps to avoid the risks of caching efficiency downgrading when
malicious attackers flood the server with useless cache requests to
exhaust the cache capacity. Such signature-based caching mecha-
nism is made possible by the data-query separation design in ORFA’s
requests, and is not feasible in GraphQL for those dynamically as-
sembled queries from clients, as it is impossible to sign the query
program in advance.

4 Evaluation
To demonstrate the effectiveness of the proposed ORFA, we evaluate
primarily from the following aspects. 1) Efficiency (§4.2): we apply
ORFA in three widely-used realistic applications, and compare the
latency and traffic metrics with those of GraphQL and the REST
API; 2) Sensitivity (§4.3): we further conduct sensitivity studies to
investigate the impact of network conditions and workflow com-
plexities by adjusting client locations and the task workflow; 3)
Cost (§4.4): to understand ORFA’s service cost and its impact on
other Web API services when sharing server resources, we collect
the peak throughput of GraphQL and ORFA by stress testing with
synthesized and realistic workloads respectively.

4.1 Experimental Methodology

Table 3: Configurations of the experimental machines.

AWS t2.micro
(Client)

Azure Standard B1s
(Server)

RAM 1G (+ 1G SWAP) 1G (+ 1G SWAP)

CPU Intel Xeon E5-2676 v3
@ 2.40GHz (1 vCPU)

Intel Xeon E5-2673 v4
@ 2.30GHz (1 vCPU)

OS Ubuntu 22.04 Ubuntu 22.04

4.1.1 Node Testbed. To model the real scenarios, our experiments
are conducted on two virtual machines of different public cloud ser-
vices: an AWS t2.micro and an Azure Standard B1s. These machines
are designated to operate as the client and server, respectively. As
detailed in Table 3, they roughly have equivalent configurations.
And, for ORFA, we choose the popular outside-browser embedder,
Wasmtime2, as the Wasm engine.

4.1.2 Workloads. Three representative and popular applications
on GitHub are chosen as benchmarks:
• Gitea3 (39k stars): a popular open-source Git server written in

Go. Gitea only provides REST APIs specified with OpenAPI.
• Memos4 (21k stars): a self-hosted lightweight online note-

taking service developed inGo. Similarly, it only provides OpenAPI-
specified REST interfaces for third-party integration.

• Strapi5 (58k stars): a leading open-source headless content
management system (CMS) developed purely in JavaScript. Strapi
uses REST APIs as default, and also provides a GraphQL interface
as a plugin.

For each application, we compose two types of workflows, with
one for read-only query and the other for write-operation query
(with data modification). In total, as listed in Table 4, there are six
workflows, which are denoted with suffix .r/.w. For instance, the
read-only workflow of Memos is Memos.r. Each workflow is further
associated with a variable N, representing the complexity of the
workflow. Notably, since Gitea and Memos only provide REST in-
terfaces in OpenAPI format, we use the OpenAPI-to-GraphQL [50]
tool to generate GraphQL wrappers.

4.1.3 Metrics. We focus on three common metrics, latency, net-
work traffic, and throughput, to quantify ORFA’s efficiency. The
latency represents the time taken to complete the entire workflow,
the network traffic is the amount of data transmitted during the
workflow execution, and the throughput is the request number
processed within a fixed time interval. The results are obtained
using JMeter6, a popular load testing tool.

4.1.4 Comparison Designs. We compare baseline and our proposed
methods as listed below:
• REST represents that the operations are done by invoking REST

APIs directly. The number of remote requests to complete each
workflow is N.

• GraphQL depicts that the same operations are performed in-
directly by GraphQL queries. Using GraphQL, these workflows
need to first retrieve a JSON list, followed by batching operations
on the elements in the list. Thus, the number of remote requests
is always 2, regardless of the value of N.

• ORFA-base represents that the same operations are performed
indirectly by sending a Wasm query module to ORFA without
caching. Due to the improved expressiveness, the number of
remote requests is always 1.

• ORFA-code is same as ORFA-base except that the compiled
results are cached so that the code of the query module will not
be sent repetitively. In this mode, the compilation is eliminated
but the initialization is still required.

• ORFA-inst is same as ORFA-code except that the final instance
is cached and reused too, so that all overheads of compilation
and initialization are eliminated. ORFA-inst is our default config-
uration in continuously running serving processes.

2https://wasmtime.dev/
3https://github.com/go-gitea/gitea
4https://github.com/usememos/memos
5https://github.com/strapi/strapi
6https://jmeter.apache.org

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

ORFA: Exploring WebAssembly as a Turing CompleteQuery Language for Web APIs WWW ’25, April 28–May 02, 2025, Sydney, Australia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 4: Composed workflows of real applications.

Application Read-only Workflow (.r) Read-write Workflow (.w)

Memos Get the second newest notes of each user. N is the user
number.

Change the visibilities of all notes from a user. N is the
notes number.

Strapi Get related entries in table A for each entry in table B.
N is the number of entries in table B.

Add relations between entries in table A and a entry in
table B. N is the number of entries in table A.

Gitea Get the second newest commits of all branches in a
repository. N is the number of branches.

Delete users whose name stars with a prefix. N is the
number of filtered users.

4.2 Service Latency and Network Traffic
In this section, we place our Azure server in Singapore and the
AWS client in Sydney. This setup leads to a communication latency
of 93ms in between. Figure 7 presents the latency, and network
traffic results of the six workflows, specifically when variable N is
set to a typical value of 4.

memos.rmemos.wstrapi.r strapi.w gitea.r gitea.w AVG
0.0
0.2
0.4
0.6

la
te

nc
y

(s
ec

) HongKong
SanJose

REST GraphQL ORFA-base ORFA-code ORFA-inst

(a) Latency results. The bars show the metrics measured in Sydney,
while the metrics from Hong Kong and San Jose are depicted as grey
and black lines (to be analyzed in §4.3).

memos.rmemos.wstrapi.r strapi.w gitea.r gitea.w AVG
0

10

20

tra
ns

m
iss

io
n

(K
B)

REST GraphQL ORFA-base ORFA-code ORFA-inst

(b) Network traffic results. This figure shows the total transmission
amount for each workflow.

Figure 7: Experimental results of realistic applications.

4.2.1 Latency. For the latency analysis, we execute each workflow
ten times and choose the median as the final result, as shown in
Figure 7a. ORFA poses lower latency across all work modes when
compared to both REST and GraphQL, with the only exception of
the gitea.r workflow. Particularly, ORFA-inst reduces at most 52%
latency onmemos.r compared to GraphQL, with an average of 18.4%
reduction. In terms of gitea.r, the obviously long bar in Figure 7b
and the observed latency issues are attributed to the parsing of the
uncommonly long JSON data returned by Gitea’s REST interface.
In ORFA, this parsing process is conducted using cJSON within the
Wasm interpreter, which is significantly less efficient compared to
GraphQL’s approach. GraphQL utilizes highly optimized JavaScript

engine code for parsing, leading to better performance in this work-
flow. This additional parsing overhead in ORFA becomes the primary
contributor to latency, overshadowing the benefits gained from re-
duced network communication.

4.2.2 Network Traffic. Since the volume of data transmission is
solely determined by the task and method, it remains consistent and
is thus unaffected by variations in network conditions. Figure 7b
presents the network traffic for eachworkflow.We can see that ORFA
mostly has the least transmission volume, especially in the caching
modes. On average, 24.5% traffic is reduced in ORFA-base and 72.4%
in ORFA-code/ORFA-inst. This is because the increased expres-
siveness reduces the number of requests and allows the workflow-
specific data encoding. There is only one exception: ORFA-base in
the memos.w workflow. In this case, the data transmitted is not so
much that the extra size of the Wasm query module diminishes
the benefits of reducing one data round trip compared to GraphQL.
As a result, ORFA-base’s total transmission is slightly higher than
GraphQL’s.

Putting together, the latency and traffic results demonstrate that
ORFA can effectively improve latency and network transmission,
outperforming the existing REST and GraphQL.

4.3 Impacts of Network and Workflow
To further validate the efficiency and robustness of ORFA, we con-
tinue investigating the influence of network conditions and work-
flow complexities. Previously, we position the client in Sydney,
with a delay of 93ms to the server, and choose a moderate value
for N, being set as 4. For network conditions, we relocate clients to
another two positions, Hong Kong and San Jose, and then observe
changes in overall latency. For workflow complexities, we sweep
over different values of N to understand their effects on latency
and network traffic.

memos.rmemos.wstrapi.r strapi.w gitea.r gitea.w AVG
0.0

0.5

1.0

la
te

nc
y

(O
RF

A-
in

st
 /

Gr
ap

hQ
L) Sydney HongKong SanJose

Figure 8: The latency ratio of ORFA-inst to GraphQL when the
client is in different positions (Lower is better).

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

WWW ’25, April 28–May 02, 2025, Sydney, Australia Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

n=2 n=4 n=8 n=16
0.5

1.0

1.5

OR
FA

-in
st

 /
Gr

ap
hQ

L latency

n=2 n=4 n=8 n=16

0.5

1.0
transmission

memos.r
memos.w

strapi.r
strapi.w

gitea.r
gitea.w

Figure 9: The latency and network traffic ratio of ORFA-inst
to GraphQL when N varies (Lower is better).

4.3.1 Network Conditions. In terms of network conditions, clients
in Sydney, Hong Kong, and San Jose respectively have a delay of
93ms, 35ms and 170ms. Since the data transmission amount is un-
affected by network latency, we only analyze latency results. At
first, we notice that the network condition change causes a shift on
latency and the trend largely remains stable, which is illustrated in
Figure 7a (§4.2). We further calculate the ratio between the latency
of ORFA-inst and that of GraphQL, with results being reported in
Figure 8. It can be observed that in almost all cases, ORFA achieves
lower latency than GraphQL regardless of network conditions. Over-
all, ORFA can generally perform better with constrained network
conditions, i.e., higher transmission delays.

4.3.2 Workflow Complexity. Regarding workflow complexity, we
place the client in Sydney and choose 2, 4, 8, 16 for N. Figure 9 sum-
marizes the latency and network traffic ratios between ORFA-inst
and GraphQL. Overall, in most cases, ORFA still maintains advan-
tages in all values of N, demonstrating the robustness of our design.
In terms of the network traffic, ORFA consistently achieves lower
network transmission. Besides, for latency and throughput, we ob-
serve that applications react differently to changes in the value of N
and two workflows of the same application react similarly.Memos’s
workflows are not very sensitive to N, as Memos is lightweight on
operations. To the contrary, Strapi is significantly affected. When N
increases, the latency of the related workflows grows rapidly and
the throughput decreases instead. This is because the intermediate
Web API responses become pretty verbose, bringing in higher pars-
ing overhead. Gitea does not show significant differences when N
is large. This is because the server is already overloaded when N
is 8. Both ORFA and GraphQL spend most of their time on Gitea’s
internal operations.

4.4 Service Cost
In this section, we compare the peak throughput of ORFA with that
of GraphQL to evaluate the running overhead, or rather service
costs. Specifically, we tend to figure out two questions: 1. Howmuch
overhead does executing the Wasm program itself brings? 2. How
much impact does ORFA have on the services when co-located on the
same server? For the first question, we defined a synthesized task,
which solely commands the server to return a "hello world" string
as the result, for both GraphQL and ORFA. For the second question,

we deployed ORFA and GraphQL alongside with three applications
(in RESTful) on the same machine and collected their throughput
metrics. Three three applications maintain the same workloads
when co-existing with ORFA and GraphQL. Also, they only contain
read workflows, as the write workflows are not idempotent. The
results for both questions are reported in Table 5.

Table 5: Stress testing results.
(a) Detailed results of stress testing with the synthesized workload.

GraphQL
ORFA
-base

ORFA
-code

ORFA
-inst

TPS 909.09 222.22 384.62 1111.11
Time (ms) 1.1 4.5 2.6 0.9

CPU 88% 100% 100% 20%
(b) Throughput per second (TPS) results of co-existing ORFA with the
three realistic applications.

REST GraphQL
ORFA
-base

ORFA
-code

ORFA
-inst

memos.r 260.2 97.24 77.48 120.12 130.52
strapi.r 42.1 53.34 18.9 23.058 23.352
gitea.r 3.88 2.761 2.379 3.678 4.017

Table 5a shows that ORFA significantly lowers throughput (57% ∼
76%) and increases latency (134% ∼ 157%) compared to GraphQL in
the no-caching (ORFA-base) and code caching (ORFA-code) modes,
which can be attributed to the compilation and initialization cost
of Wasm programs. On the other hand, when the compilation and
initialization are completely eliminated in the instance caching
mode (ORFA-inst), ORFA achieves 22% throughput boost and 18.2%
latency reduction with 68% less CPU usage, demonstrating the high
performance of Wasm’s execution and effectiveness of proposed
caching revisions.

Table 5b shows that ORFA generally achievesmuch lower through-
put than original RESTful APIs, with a median value of 54.9%,
demonstrate the the high cost of using Web API services indirectly
through ORFA. This is reasonable, as the additional costs not only
come from the compilation and initialization of Wasm query pro-
grams, but also from the clients’ offloaded computation for parsing
and assembling HTTP messages. Also, note that GraphQL achieves
even better result than original RESTful API in strapi.r. This falls
onto the embedding of GraphQL into service code, which eliminates
the overhead of a wrapper layer, thereby hinting more potential
performance gain by integrating ORFA and the service.

5 Conclusion
In this paper, we propose ORFA, a framework that employs We-
bAssebmly as a Turing complete query language for Web API ser-
vices, allowing "One Request For All" operations to eliminate all
data round-trips. We present ORFA’s programming support and
runtime design, explain how to program, run, and debug a Wasm
query module. We also introduce two key techniques of module
splitting and caching to reduce query module size and query startup
latency. Experimental results on representative systems and work-
loads demonstrate that ORFA significantly boosts Web API service
efficiency with reduced latency and transmission traffic.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

ORFA: Exploring WebAssembly as a Turing CompleteQuery Language for Web APIs WWW ’25, April 28–May 02, 2025, Sydney, Australia

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

References
[1] Yan Hu et al. 2014. A Time-Aware and Data Sparsity Tolerant Approach for

Web Service Recommendation. In 2014 IEEE International Conference on Web
Services. (June 2014), 33–40. doi: 10.1109/ICWS.2014.18.

[2] Maria Maleshkova et al. 2010. Investigating web apis on the world wide web.
In 2010 Eighth IEEE European Conference on Web Services. 2010 Eighth IEEE
European Conference on Web Services. (Dec. 2010), 107–114. doi: 10 .1109
/ECOWS.2010.9.

[3] Neng Zhang et al. 2023. Web APIs: Features, Issues, and Expectations – A
Large-Scale Empirical Study of Web APIs From Two Publicly Accessible Reg-
istries Using Stack Overflow and a User Survey. IEEE Transactions on Software
Engineering, 49, 2, (Feb. 2023), 498–528. doi: 10.1109/TSE.2022.3154769.

[4] Johannes Thönes. 2015. Microservices. IEEE Software, 32, 1, (Jan. 2015), 116–116.
doi: 10.1109/MS.2015.11.

[5] Olaf Zimmermann. 2017. Microservices tenets. Computer Science - Research
and Development, 32, 3, (July 2017), 301–310. doi: 10.1007/s00450-016-0337-0.

[6] Roy Thomas Fielding et al. 2000. Architectural styles and the design of network-
based software architectures. Ph.D. Dissertation. isbn: 0599871180. AAI9980887.

[7] [n. d.] Graphql | a query language for your api. Retrieved Oct. 26, 2023 from
https://graphql.org/.

[8] Gleison Brito et al. 2019. Migrating to graphql: a practical assessment. In
2019 IEEE 26th International Conference on Software Analysis, Evolution and
Reengineering (SANER). 2019 IEEE 26th International Conference on Software
Analysis, Evolution and Reengineering (SANER). (Feb. 2019), 140–150. doi:
10.1109/SANER.2019.8667986.

[9] Gleison Brito et al. 2020. Rest vs graphql: a controlled experiment. In 2020 IEEE
International Conference on Software Architecture (ICSA). 2020 IEEE Interna-
tional Conference on Software Architecture (ICSA), 81–91. doi: 10.1109/ICSA4
7634.2020.00016.

[10] Piotr Roksela et al. 2020. Evaluating execution strategies of graphql queries. In
2020 43rd International Conference on Telecommunications and Signal Processing
(TSP). 2020 43rd International Conference on Telecommunications and Signal
Processing (TSP). (July 2020), 640–644. doi: 10.1109/TSP49548.2020.9163501.

[11] Maximilian Vogel et al. 2018. Experiences on Migrating RESTful Web Services
to GraphQL. In Service-Oriented Computing – ICSOC 2017 Workshops. Lars
Braubach et al., (Eds.) Springer International Publishing, Cham, 283–295. isbn:
978-3-319-91764-1. doi: 10.1007/978-3-319-91764-1_23.

[12] 2018. Graphql: can you mutate the results of a query? Stack Overflow. (Sept. 14,
2018). Retrieved Jan. 10, 2024 from https://stackoverflow.com/q/52330018/1378
4274.

[13] 2018. Graphql loop through array and get all results. Stack Overflow. (Jan. 18,
2018). Retrieved Nov. 13, 2023 from https://stackoverflow.com/q/48321689/137
84274.

[14] Andreas Haas et al. 2017. Bringing the web up to speed with webassembly. In
Proceedings of the 38th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI 2017). Association for Computing Machinery,
Barcelona, Spain, 185–200. isbn: 9781450349888. doi: 10.1145/3062341.3062363.

[15] [n. d.] Webassembly specification — webassembly 2.0 (draft 2023-12-01). Re-
trieved Dec. 24, 2023 from https://webassembly.github.io/spec/core/.

[16] [n. d.] SOAP Version 1.2 Part 1: Messaging Framework (Second Edition).
https://www.w3.org/TR/soap12/. (). Retrieved Dec. 29, 2023 from.

[17] [n. d.] JSON-RPC 2.0 Specification. https://www.jsonrpc.org/specification. ().
Retrieved Dec. 29, 2023 from.

[18] Andy Neumann et al. 2021. An Analysis of Public RESTWeb Service APIs. IEEE
Transactions on Services Computing, 14, 4, (July 2021), 957–970. doi: 10.1109
/TSC.2018.2847344.

[19] Mohamed A. Oumaziz et al. 2017. Empirical Study on REST APIs Usage in
Android Mobile Applications. In Service-Oriented Computing. Michael Max-
imilien et al., (Eds.) Springer International Publishing, Cham, 614–622. isbn:
978-3-319-69035-3. doi: 10.1007/978-3-319-69035-3_45.

[20] [n. d.] OpenAPI Specification v3.1.0 | Introduction, Definitions, & More. https:
//spec.openapis.org/oas/v3.1.0. (). Retrieved Dec. 3, 2023 from.

[21] [n. d.] 2023 state of software quality | api | smartbear. https://smartbear.com.
Retrieved Oct. 30, 2023 from https://smartbear.com/state-of-software-quality
/api/,%20https://smartbear.com/state-of-software-quality/api/.

[22] [n. d.] Falcor: one model everywhere. Retrieved Dec. 19, 2023 from https://netf
lix.github.io/falcor/.

[23] [n. d.] Odata - the best way to rest. Retrieved Dec. 19, 2023 from https://www
.odata.org/.

[24] Clark Evans. 2007. Htsql-a native web query language. 439–445.
[25] Jorge Pérez et al. 2009. Semantics and complexity of SPARQL. ACM Trans.

Database Syst., 34, 3, (Sept. 2009), 16:1–16:45. doi: 10.1145/1567274.1567278.
[26] Nadime Francis et al. 2018. Cypher: An Evolving Query Language for Property

Graphs. In Proceedings of the 2018 International Conference on Management of
Data (SIGMOD ’18). Association for Computing Machinery, New York, NY,
USA, (May 2018), 1433–1445. isbn: 978-1-4503-4703-7. doi: 10.1145/3183713.31
90657.

[27] Harsh Thakkar et al. 2017. Towards an Integrated Graph Algebra for Graph
Pattern Matching with Gremlin. In Database and Expert Systems Applications.
Djamal Benslimane et al., (Eds.) Springer International Publishing, Cham, 81–
91. isbn: 978-3-319-64468-4. doi: 10.1007/978-3-319-64468-4_6.

[28] Philipp Gackstatter et al. 2022. Pushing Serverless to the Edge with WebAssem-
bly Runtimes. In 2022 22nd IEEE International Symposium on Cluster, Cloud and
Internet Computing (CCGrid). (May 2022), 140–149. doi: 10.1109/CCGrid54584
.2022.00023.

[29] Simon Shillaker et al. 2020. Faasm: lightweight isolation for efficient stateful
serverless computing. In 2020 USENIX Annual Technical Conference (USENIX
ATC 20). USENIX Association, (July 2020), 419–433. isbn: 978-1-939133-14-4.

[30] Mohak Chadha et al. 2023. Exploring the use of webassembly in hpc. In Proceed-
ings of the 28th ACM SIGPLAN Annual Symposium on Principles and Practice
of Parallel Programming (PPoPP ’23). Association for Computing Machinery,
New York, NY, USA, (Feb. 21, 2023), 92–106. isbn: 9798400700156. doi: 10.1145
/3572848.3577436.

[31] Samuel Ginzburg et al. 2023. {Vectorvisor}: a binary translation scheme for
{throughput-oriented} {gpu} acceleration. In 2023 USENIX Annual Technical
Conference (USENIX ATC 23), 1017–1037. isbn: 978-1-939133-35-9. Retrieved
July 24, 2023 from https://www.usenix.org/conference/atc23/presentation/gin
zburg.

[32] Borui Li et al. 2021. Wiprog: a webassembly-based approach to integrated iot
programming. In IEEE INFOCOM 2021 - IEEE Conference on Computer Communi-
cations. IEEE INFOCOM2021 - IEEE Conference on Computer Communications.
(May 2021), 1–10. doi: 10.1109/INFOCOM42981.2021.9488424.

[33] Jämes Ménétrey et al. 2022. Watz: a trusted webassembly runtime environment
with remote attestation for trustzone. In 2022 IEEE 42nd International Confer-
ence on Distributed Computing Systems (ICDCS). 2022 IEEE 42nd International
Conference on Distributed Computing Systems (ICDCS). (July 2022), 1177–
1189. doi: 10.1109/ICDCS54860.2022.00116.

[34] Sebastian Heil et al. 2023. Dcm: dynamic client-server code migration. In
Web Engineering (Lecture Notes in Computer Science). Irene Garrigós et al.,
(Eds.) Springer Nature Switzerland, Cham, 3–18. isbn: 978-3-031-34444-2. doi:
10.1007/978-3-031-34444-2_1.

[35] Hyuk-Jin Jeong et al. 2019. Seamless Offloading of Web App Computations
From Mobile Device to Edge Clouds via HTML5 Web Worker Migration. In
Proceedings of the ACM Symposium on Cloud Computing (SoCC ’19). Association
for Computing Machinery, New York, NY, USA, (Nov. 2019), 38–49. isbn: 978-
1-4503-6973-2. doi: 10.1145/3357223.3362735.

[36] Xiaoli Gong et al. 2016. WWOF: An Energy Efficient Offloading Framework for
Mobile Webpage. In Proceedings of the 13th International Conference on Mobile
and Ubiquitous Systems: Computing, Networking and Services (MOBIQUITOUS
2016). Association for Computing Machinery, New York, NY, USA, (Nov. 2016),
160–169. isbn: 978-1-4503-4750-1. doi: 10.1145/2994374.2994379.

[37] Chaoran Xu et al. 2014. Moja - mobile offloading for javascript applications.
In 25th IET Irish Signals & Systems Conference 2014 and 2014 China-Ireland
International Conference on Information and Communications Technologies (ISSC
2014/CIICT 2014). 25th IET Irish Signals & Systems Conference 2014 and 2014
China-Ireland International Conference on Information and Communications
Technologies (ISSC 2014/CIICT 2014). (June 2014), 59–63. doi: 10.1049/cp.2014
.0659.

[38] Meihua Yu et al. 2015. Javascript offloading for web applications in mobile-
cloud computing. In 2015 IEEE International Conference on Mobile Services. 2015
IEEE International Conference on Mobile Services. (June 2015), 269–276. doi:
10.1109/MobServ.2015.46.

[39] David Goltzsche et al. 2019. AccTEE: A WebAssembly-based Two-way Sand-
box for Trusted Resource Accounting. In Proceedings of the 20th International
Middleware Conference (Middleware ’19). Association for Computing Machin-
ery, New York, NY, USA, (Dec. 2019), 123–135. isbn: 978-1-4503-7009-7. doi:
10.1145/3361525.3361541.

[40] Vojdan Kjorveziroski et al. 2023. WebAssembly as an Enabler for Next Genera-
tion Serverless Computing. Journal of Grid Computing, 21, 3, (June 2023), 34.
doi: 10.1007/s10723-023-09669-8.

[41] 2024. Queries andMutations | GraphQL. https://graphql.org/learn/queries/#variables.
(Aug. 2024). Retrieved Oct. 14, 2024 from.

[42] Alan Cha et al. 2020. A principled approach to GraphQL query cost analysis.
In Proceedings of the 28th ACM Joint Meeting on European Software Engineer-
ing Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE 2020). Association for Computing Machinery, New York, NY, USA,
(Nov. 2020), 257–268. isbn: 978-1-4503-7043-1. doi: 10.1145/3368089.3409670.

[43] Olaf Hartig et al. 2018. Semantics and complexity of graphql. In Proceedings of
the 2018 World Wide Web Conference (WWW ’18). International World Wide
Web Conferences Steering Committee, Republic and Canton of Geneva, CHE,
(Apr. 10, 2018), 1155–1164. isbn: 978-1-4503-5639-8. doi: 10.1145/3178876.3186
014.

[44] Yun Wan Kim et al. [n. d.] An empirical analysis of graphql api schemas in
open code repositories and package registries.

9

https://doi.org/10.1109/ICWS.2014.18
https://doi.org/10.1109/ECOWS.2010.9
https://doi.org/10.1109/ECOWS.2010.9
https://doi.org/10.1109/TSE.2022.3154769
https://doi.org/10.1109/MS.2015.11
https://doi.org/10.1007/s00450-016-0337-0
https://graphql.org/
https://doi.org/10.1109/SANER.2019.8667986
https://doi.org/10.1109/ICSA47634.2020.00016
https://doi.org/10.1109/ICSA47634.2020.00016
https://doi.org/10.1109/TSP49548.2020.9163501
https://doi.org/10.1007/978-3-319-91764-1_23
https://stackoverflow.com/q/52330018/13784274
https://stackoverflow.com/q/52330018/13784274
https://stackoverflow.com/q/48321689/13784274
https://stackoverflow.com/q/48321689/13784274
https://doi.org/10.1145/3062341.3062363
https://webassembly.github.io/spec/core/
https://doi.org/10.1109/TSC.2018.2847344
https://doi.org/10.1109/TSC.2018.2847344
https://doi.org/10.1007/978-3-319-69035-3_45
https://spec.openapis.org/oas/v3.1.0
https://spec.openapis.org/oas/v3.1.0
https://smartbear.com/state-of-software-quality/api/,%20https://smartbear.com/state-of-software-quality/api/
https://smartbear.com/state-of-software-quality/api/,%20https://smartbear.com/state-of-software-quality/api/
https://netflix.github.io/falcor/
https://netflix.github.io/falcor/
https://www.odata.org/
https://www.odata.org/
https://doi.org/10.1145/1567274.1567278
https://doi.org/10.1145/3183713.3190657
https://doi.org/10.1145/3183713.3190657
https://doi.org/10.1007/978-3-319-64468-4_6
https://doi.org/10.1109/CCGrid54584.2022.00023
https://doi.org/10.1109/CCGrid54584.2022.00023
https://doi.org/10.1145/3572848.3577436
https://doi.org/10.1145/3572848.3577436
https://www.usenix.org/conference/atc23/presentation/ginzburg
https://www.usenix.org/conference/atc23/presentation/ginzburg
https://doi.org/10.1109/INFOCOM42981.2021.9488424
https://doi.org/10.1109/ICDCS54860.2022.00116
https://doi.org/10.1007/978-3-031-34444-2_1
https://doi.org/10.1145/3357223.3362735
https://doi.org/10.1145/2994374.2994379
https://doi.org/10.1049/cp.2014.0659
https://doi.org/10.1049/cp.2014.0659
https://doi.org/10.1109/MobServ.2015.46
https://doi.org/10.1145/3361525.3361541
https://doi.org/10.1007/s10723-023-09669-8
https://doi.org/10.1145/3368089.3409670
https://doi.org/10.1145/3178876.3186014
https://doi.org/10.1145/3178876.3186014

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

WWW ’25, April 28–May 02, 2025, Sydney, Australia Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

[45] Erik Wittern et al. 2019. An empirical study of graphql schemas. In Service-
Oriented Computing (Lecture Notes in Computer Science). Sami Yangui et al.,
(Eds.) Springer International Publishing, Cham, 3–19. isbn: 978-3-030-33702-5.
doi: 10.1007/978-3-030-33702-5_1.

[46] [n. d.] Webassembly/wasi-sdk: wasi-enabled webassembly c/c++ toolchain.
Retrieved Dec. 3, 2023 from https://github.com/WebAssembly/wasi-sdk/tree
/main.

[47] [n. d.] Tool-conventions/linking.md at main · webassembly/tool-conventions.
GitHub. Retrieved Dec. 3, 2023 from https://github.com/WebAssembly/tool-co
nventions/blob/main/Linking.md.

[48] [n. d.] Tool-conventions/dynamiclinking.md atmain ·webassembly/tool-conventions.
GitHub. Retrieved Dec. 3, 2023 from https://github.com/WebAssembly/tool-co
nventions/blob/main/DynamicLinking.md.

[49] Stefan Podlipnig et al. 2003. A survey of web cache replacement strategies.
ACM Comput. Surv., 35, 4, 374–398. doi: 10.1145/954339.954341.

[50] Erik Wittern et al. 2018. Generating graphql-wrappers for rest(-like) apis. In
Web Engineering (Lecture Notes in Computer Science). Tommi Mikkonen et al.,
(Eds.) Springer International Publishing, Cham, 65–83. isbn: 978-3-319-91662-0.
doi: 10.1007/978-3-319-91662-0_5.

10

https://doi.org/10.1007/978-3-030-33702-5_1
https://github.com/WebAssembly/wasi-sdk/tree/main
https://github.com/WebAssembly/wasi-sdk/tree/main
https://github.com/WebAssembly/tool-conventions/blob/main/Linking.md
https://github.com/WebAssembly/tool-conventions/blob/main/Linking.md
https://github.com/WebAssembly/tool-conventions/blob/main/DynamicLinking.md
https://github.com/WebAssembly/tool-conventions/blob/main/DynamicLinking.md
https://doi.org/10.1145/954339.954341
https://doi.org/10.1007/978-3-319-91662-0_5

	Abstract
	1 Introduction
	2 Background and Related Works
	3 ORFA
	3.1 Overview
	3.2 Programming Web API Queries
	3.3 Shrinking Query Module Size
	3.4 Reducing Query Startup Latency

	4 Evaluation
	4.1 Experimental Methodology
	4.2 Service Latency and Network Traffic
	4.3 Impacts of Network and Workflow
	4.4 Service Cost

	5 Conclusion

